
The Homogeneous Interior-Point
Algorithm: Nonsymmetric Cones,
Warmstarting, and Applications

Anders Skajaa

Kongens Lyngby 2013

IMM-PhD-2013-311



Technical University of Denmark

DTU Compute

Department of Applied Mathematics and Computer Science

Matematiktorvet, building 303B

DK-2800 Kongens Lyngby, Denmark.

Phone: +4545253031. Email: compute@compute.dtu.dk

Web: www.compute.dtu.dk IMM-PhD-2013-311



Summary (English)

The overall topic of this thesis is convex conic optimization, a sub-�eld of mathe-
matical optimization that attacks optimization problem with a certain geometric
structure. These problems allow for modelling of an extremely wide range of
real-world problems, but the availability of solution algorithms for these prob-
lems is still limited.

The goal of this thesis is to investigate and shed light on two computational
aspects of homogeneous interior-point algorithms for convex conic optimization:
The �rst part studies the possibility of devising a homogeneous interior-point
method aimed at solving problems involving constraints that require nonsym-
metric cones in their formulation. The second part studies the possibility of
warmstarting the homogeneous interior-point algorithm for conic problems.

The main outcome of the �rst part is the introduction of a completely new
homogeneous interior-point algorithm designed to solve nonsymmetric convex
conic optimization problems. The algorithm is presented in detail and then ana-
lyzed. We prove its convergence and complexity. From a theoretical viewpoint,
it is fully competitive with other algorithms and from a practical viewpoint,
we show that it holds lots of potential, in several cases being superior to other
solution methods.

The main outcome of the second part of the thesis is two new warmstart-
ing schemes for the homogeneous interior-point algorithm for conic problems.
Again, we �rst motivate and present the schemes and then analyze them. It is
proved that they, under certain circumstances, result in an improved worst-case
complexity as compared to a normal coldstart. We then move on to present an



ii

extensive series of computational results substantiating the practical usefulness
of these warmstarting schemes. These experiments include standard bench-
marking problem test sets as well as an application from smart energy systems.



Summary (Danish)

Det overordnede emne for denne afhandling er konveks konisk optimering, et
underområde af matematisk optimering som angriber problemer med en bestemt
geometrisk struktur. Disse problemer muliggør modellering af en ekstremt bred
vifte af virkelige problemer, men tilgængeligheden af løsningsalgoritmer til disse
problemer er stadig meget begrænset.

Målet for denne afhandling er at undersøge og kaste lys over to beregningsmæs-
sige aspekter af den homogene indre-punkts algoritme til løsning af konvekse
koniske optimeringsproblemer: Den første del studerer muligheden for at udvikle
en homogen indre-punkts metode målrettet løsning af problemer, der indehol-
der begrænsninger, som kræver ikke-symmetriske kegler i deres beskrivelse. Den
anden del studerer muligheden for at varmstarte den homogene indre-punkts
algorithme til koniske problemer.

Hovedresultat af den første del er introduktionen af en helt ny homogen indre-
punkts algoritme designet til at løse ikke-symmetriske konvekse koniske optime-
ringsproblemer. Denne algoritme præsenteres i detaljer og derefter analyseret.
Vi beviser dens konvergens og kompleksitet. Fra et teoretisk synspunkt er den
fuldt kompetitiv med mere generelle metoder og fra et praktisk synspunkt viser
vi, at den indeholder stort potentiale; mange gange er den at foretrække frem
for andre løsningsmetoder.

Hovedresultatet af den anden del af afhandlingen er to nye varmstart metoder til
den homogene indre-punkts algorithm til koniske problemer. Som før motiverer
og præsenterer vi først metoderne og derefter analyseres de. Det bevises, at de,
under visse omstændigheder, resulterer i en forbedret værste-falds kompleksitet



iv

når man sammenligner med sædvanlig koldstart. We fortsætter derefter med
præsentationen af en omfattende serie af beregningsresultater der understøtter
den praktiske anvendelighed af disse varmstart metoder. Eksperimenterne in-
kluderer standard benchmark problemsamlinger såvel som en anvendelse, der
stammer fra smarte energisystemer.



Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science (DTU Compute) at the Technical University of Denmark in ful-
�lment of the requirements for acquiring an PhD degree in informatics.

The thesis deals with various aspects of interior-point algorithms for convex
conic optimization problems. The main contributions fall in the area of interior-
point methods for nonsymmetric conic optimization and warmstarting interior-
point methods. The thesis consists of four main chapters: Firstly, an intro-
ductory chapter outlining the background material necessary. Secondly, three
chapters all concerned with interior-point methods: �rst for linear programming,
then for convex conic programming and �nally warmstarting of interior-point
methods.

Included as part of the thesis are the two journal papers which both can be
found in the appendix.

1. Anders Skajaa and Yinyu Ye: A Homogeneous Interior-Point Algorithm
for Nonsymmetric Convex Conic Optimization. Submitted to Mathemat-
ical Programming. Accepted for publication on March 26th, 2014.

2. Anders Skajaa, Erling D. Andersen and Yinyu Ye: Warmstarting the
Homogeneous and Self-Dual Interior-Point Method for Linear and Conic
Quadratic Problems. Published in Mathematical Programming Computa-
tion. Volume 5, Issue 1, Pages 1�25, 2013.

As part of the PhD programme, the original research contained in this thesis
was presented at the following conferences and seminars:



vi

1. SIAM Conference on Optimization (SIAM OP11). May 16th, 2011, Darm-
stadt, Germany.

2. Seminar on Optimization, May 24th, 2011. Center for Operations Re-
search and Econometrics (CORE), Uni. Catholique de Louvain, Belgium.

3. Seminar on Linear Algebra and Optimization. January 19th, 2012, Insti-
tute for Computational and Mathematical Engineering (ICME), Stanford
University, USA.

4. International Sympositum on Mathematical Programming (ISMP12). Au-
gust 24th, 2012, Berlin, Germany.

Three external research stays were completed during the course of the PhD:

1. Center for Operations Research and Econometrics (CORE), Uni. Catholique
de Louvain, Belgium, May 23rd � 25th, 2011. Host: Prof. Francois
Glineur.

2. Institute for Computational and Mathematical Engineering (ICME), Stan-
ford University, USA, January 16th � 25th, 2012. Host: Prof. Yinyu Ye.

3. Institute for Computational and Mathematical Engineering (ICME), Stan-
ford University, USA, July 12th � August 15th, 2012. Host: Prof. Yinyu
Ye.

Lyngby, 30-June-2013

Anders Skajaa



Acknowledgements

During the course of my PhD programme, I have drawn support from many
people to whom I am very thankful. Obvious to anyone who has completed a
PhD study, this process can not be realized without a great deal of academic
and personal support.

First and foremost, I thank my advisors Professor Per Christian Hansen and
Associate Professor John Bagterp Jørgensen. John has providing me with in-
spiration from a range of interesting and relevant applications of mathematical
optimization and initiated and facilitated much valuable collaboration between
myself and co-workers ultimately leading to stimulating research. Per Christian
has o�ered a constant availability to discuss anything ranging from trivial to
highly intricate technical issues, from o�ce politics to good academic writing.

This project has been highly in�uenced by several external collaborators whose
input and guidance I have greatly appreciated. Particularly I want to thank
experts in the �eld of optimization Erling D. Andersen and Joachim Dahl of
Mosek ApS for o�ering many hours of their time and numerous of their ideas
to me. This collaboration in turn led to a fruitful collaboration with Professor
Yinyu Ye, whom, aside from unbelievable intuition and insight into mathemat-
ical optimization, I thank for great hospitality during my two research stays at
ICME at Stanford University. Similarly, I am grateful to Prof. Francois Glineur
for a lot of early inspiration when he welcomed me at CORE at UC Louvain.

Finally, I am happy to have spent three years in great company at IMM at
the Technical University of Denmark. Many inspiring hours have been spent
talking to co-workers about everything and nothing: Leo Emil Sokoler, Rasmus
Halvgaard, Carsten Völcker, Tobias Hovgaard, Dimitri, Andrea, Fabrice and
particularly my o�ce-mate and friend Jakob H. Jørgensen.

Above all, I am grateful to my family for enduring the ups and downs that the
PhD process causes: Thank you, Johan and Gitte.



viii



Notation

The table below shows most of the notation used repeatedly in this thesis. The
notation is aimed at being as consistent with standard interior-point litterature
as possible without being confusing or ambiguous.

Symbol Meaning

R The real numbers
∅ The empty set
C A set (usually a convex set)
K A cone (usually the primal cone in a conic program)
K∗ The dual cone of K
int(C) The interior of a set C
∂C The boundary of a set C
F Primal barrier function
F ∗ The conjugate of F
‖ · ‖ A norm
µ(x, s) Complementarity gap de�ned as xT s/n
σ Centering parameter
τ Parameter indexing the central path points
ν Barrier parameter
◦ Jordan-product
X � 0 Denotes that X is a positive semi-de�nite matrix
diag(x) The diagonal matrix with x in the diagonal
L2 The Lorentz cone (2-norm cone)
Sn+ The cone of symmetric, positive semi-de�nite n×n-matrices
Kexp The exponential cone
Kα The power cone with parameter α



x Contents

Some acronyms are used throughout the thesis for simplicity and clarity. They
are listed in the following table.

Acronym Meaning

ipm Interior-Point Method
pdipm Primal-Dual Interior-Point Method
lhscb Logarithmically Homogeneous Self-Concordant Barrier
hsd Homogeneous and Self-Dual
lp Linear Program
qp Quadratic Program
sdp Semide�nite Program
mpc Model Predictive Control



Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

Notation ix

1 Introduction 1

2 Optimization Background 5
2.1 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Convex functions . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Convex cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Dual cones . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Homogeneity and symmetry . . . . . . . . . . . . . . . . . 8

2.3 Self-concordant functions . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Unconstrained optimization and Newton's method . . . . . . . . 10
2.5 Barrier functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Logarithmic homogeneity and self-concordance . . . . . . 13
2.5.2 The conjugate barrier . . . . . . . . . . . . . . . . . . . . 14

2.6 Convex constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.1 General case . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.2 The dual problem . . . . . . . . . . . . . . . . . . . . . . 17
2.6.3 Karush-Kuhn-Tucker conditions . . . . . . . . . . . . . . 18
2.6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



xii CONTENTS

2.7 Conic constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7.1 Conic duality . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7.2 Karush-Kuhn-Tucker conditions . . . . . . . . . . . . . . 22
2.7.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7.4 Homogeneous and self-dual model . . . . . . . . . . . . . 25

3 Linear Programming 29
3.1 The central path . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Central path neighborhoods . . . . . . . . . . . . . . . . . 31
3.2 Path-following algorithms . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Feasible short-step algorithm . . . . . . . . . . . . . . . . 33
3.2.2 Feasible Mizuno-Todd-Ye predictor-corrector algorithm . 34
3.2.3 Feasible long-step algorithm . . . . . . . . . . . . . . . . . 35
3.2.4 Infeasible long-step algorithm . . . . . . . . . . . . . . . . 36

3.3 Solving for the search direction . . . . . . . . . . . . . . . . . . . 38

4 Convex Conic Programming 41
4.1 A family of barrier problems . . . . . . . . . . . . . . . . . . . . . 42
4.2 Linearization of the complementarity conditions . . . . . . . . . . 44
4.3 Symmetric cones . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Nonsymmetric cones . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 Nesterov-Todd-Ye 1998 . . . . . . . . . . . . . . . . . . . 50
4.4.2 Nesterov 2006 . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Skajaa-Ye 2012: A Homogeneous Interior-Point Algorithm for
Nonsymmetric Convex Conic Optimization . . . . . . . . . . . . 52
4.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.2 Theoretical results . . . . . . . . . . . . . . . . . . . . . . 53
4.5.3 Computational results . . . . . . . . . . . . . . . . . . . . 54

5 Initialization and Warmstarting 55
5.1 Initialization of interior-point methods . . . . . . . . . . . . . . . 56
5.2 Warmstarting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 Skajaa-Andersen-Ye 2012: Warmstarting the homogeneous and

self-dual interior point method for linear and conic quadratic
problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.2 Theoretical results . . . . . . . . . . . . . . . . . . . . . . 62
5.3.3 Computational results . . . . . . . . . . . . . . . . . . . . 62

5.4 Accelerating computations in model predictive control using interior-
point warmstarting . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4.3 Model predictive control . . . . . . . . . . . . . . . . . . . 66
5.4.4 Warmstarting problem in mpc . . . . . . . . . . . . . . . 68



CONTENTS xiii

5.4.5 Case study: Smart energy system . . . . . . . . . . . . . . 70
5.4.6 Further computational results: Quadratic programs . . . 76
5.4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A Paper: A Homogeneous Interior-Point Algorithm for Nonsym-
metric Convex Conic Optimization 83

B Paper: Warmstarting the Homogeneous and Self-Dual Interior-
Point Method for Linear and Conic Quadratic Problems 121

Bibliography 147



xiv CONTENTS



Chapter 1

Introduction

It is not hard to argue why the �eld of mathematical optimization is useful and
important � both in science, engineering and society in general: it is concerned
with determining the best possible decision amongst a large number of possible
decisions. Of course, it is not successful in answering every such question but
nevertheless successful enough that it has found applications in a vast number of
industries. Examples include portfolio management, automatic control, arti�cial
intelligence, web commerce, logistics, production scheduling, engineering design,
automated trading and much more.

A number of challenges lie between the wish to �nd this optimal decision and
the possibility of using mathematical optimization to do so. Firstly, one must
formulate his problem using only a strict and standardized mathematical lan-
guage. This can often prove di�cult because it requires the exact identi�cation
a several quantities: (1) the decision variables, which represent the choices that
we can actually control, (2) the objective function, which is the object we want
to minimize (or maximize) � for example a cost (or pro�t) and (3) the con-
straints, which precisely state which combinations of variables are not allowed,
for example because of physical limitations.

Secondly, some way to solve the problem must be devised. For all but the
very simplest and uninteresting optimization problems, it is not possible to de-
rive a �nite formula describing the solution. Instead, mathematicians construct



2 Introduction

algorithms that, step by step, build a solution to the problem by following a
prede�ned set of rules which ultimately lead to a solution of the problem. An
algorithm is designed to be e�ective for a certain subset of problems. In other
words, the rules de�ning the algorithm are speci�cally chosen to work particu-
larly well for that speci�c subset of problems. If the subset is very small, very
targeted rules can be chosen and we therefore expect a very e�ective (i.e. fast
and robust) algorithm. On the other hand, if the subset is very large, the rules
must be more general, and thus the algorithm is expected to work less e�ciently.

The sub-�eld of this thesis is convex optimization, which describes a class of
problems with a useful geometric property: convexity. This sub-�eld pursues
the strategy of �smaller subsets of problems� and �more targeted algorithm rules�
in the sense outlined above. Indeed, the mathematical language that must be
used in formulating the optimization problem is stricter. The reward is more
e�cient algorithms.

In this thesis, we take the slightly more speci�c viewpoint of conic optimization.
Theoretically, it is no less general than convex optimization, but the mathemat-
ical formulation required of the problem is in a certain sense even stricter. The
problems that are allowed must be described as compositions of convex cones.
The advantage lies again in the ability to make even more e�cient algorithms,
which are designed to take advantage of the speci�c geometric properties of each
type of cone allowed. The idea is then to accumulate a repertoire of cones that
can be combined in every imaginable way. In this sense, the cones play the role
of atoms and problems the roles of molecules. The analysis of algorithms then
becomes very elegant in the sense that the atoms can be treated separately even
if the molecules are very complex.

One could fear that this demanded conic structure would severely limit the
amount of problems that are practical to formulate. But this turns out not to
be the case. As well shall see, the conic structure is very versatile and allows
for modelling of an extremely wide range of problems.

Thesis overview. We begin the thesis by providing the background material
necessary to presenting the main contributions which appear later in the the-
sis. This background material includes such core concepts as convexity, cones,
Newton's method for self-concordant functions, barriers and conjugate barriers.
We then present general convex optimization problems, their dual problems and
optimality conditions. We then move on to conic problems and introduce for
this class the homogeneous and self-dual model. Readers familiar with all of the
above material can safely skip the entire Chapter 2.



3

The remaining part of the thesis is concerned only with interior-point methods
and applications thereof. As the primordial example of a convex conic optimiza-
tion problem, we �rst review in Chapter 3 interior-point algorithms for linear
programming. This problem class is attractive to study because it is su�ciently
complex to capture the core ideas of interior-point methods yet su�ciently sim-
ple to not require too much tedious notation and technicalities. We introduce
the crucial concept of the central path and consider four of the historically most
prominent interior-point algorithms. Thus, this chapter also contains no original
contributions but instead the concepts discussed will serve as reference points
for the contributions that follow in the two following chapters.

In Chapter 4, we �nally reach the subject at the core of this thesis: interior-point
methods for convex conic programming. The chapter mainly discusses one of
the core di�culties with this problem class: the symmetric linearization of the
complementarity conditions. We describe the algorithmic consequences of the
convex cone begin nonsymmetric and then move on to present the main con-
tribution of the thesis: the introduction of an e�cient interior-point algorithm
to solve nonsymmetric convex conic optimization problems. The core results
are outlined in the main text, but the details and proofs are diverted to the
appendix where a research paper is included in full length.

Finally, Chapter 5 deals with the issue of initializing an interior-point algorithm:
Which point should the algorithm use as its starting point? This is still a rel-
atively undecided problem, albeit it is not uncommon that the iteration count
for an interior-point algorithm starting in one particular point may be several
times that of a good point for the same problem. For this reason alone, this
issue deserves attention. We �rst outline the common heuristics that are some-
what agreed upon constitute good pointers as to what a good starting point is.
We then move on to the second main original contribution of this thesis: warm-
starting an interior-point algorithm. How does one utilize information from one
optimization problem when solving a similar, but di�erent problem? Again, we
outline the results in the main text but refer to the full-length research paper
which is included in the appendix. Following the presentation of our paper,
we demonstrate in a case study about smart energy systems and automatic
control, how our warmstarting scheme may be used to speed-up the internal
computations that take place when a process is being governed by an automatic
control regime. This case study thus serves as a demonstration of the practical
applicability of warmstarting of interior-point methods.



4 Introduction



Chapter 2

Optimization Background

The purpose of this chapter is to introduce the fundamental concepts essential
to presenting this thesis' main contributions which appear in later chapters.
We aim at providing a clear and simplistic presentation with focus on light
notation and include only those proofs that highlight important properties while
remaining of predominantly non-technical nature.

We �rst de�ne and give examples of convex sets, functions, cones and dual cones,
all of which are absolutely core material in the theory of interior point methods.
We then move on to present the classical Newton's method for unconstrained
optimization starting from self-concordant functions, which allow for a partic-
ularly nice and simple analysis. This naturally continues into logarithmically
homogeneous and self-concordant barrier functions and their conjugates which
are absolutely crucial in the analysis of interior-point methods. We then review
general convex constrained optimization problems, their duals and optimality
conditions and consider a few examples of such problems. This extends into
convex conic optimization problem, the problem class at the core of this thesis.
We highlight the remarkable dual symmetry present with this family of prob-
lems and give a series of examples of problems, all of which will be treated again
later in the thesis. Finally, we present the so-called homogeneous and self-dual
model which o�ers itself as the solution to two practical issues when solving
convex conic optimization problems: the identi�cation of infeasible problems
and determining a suitable starting point for the algorithm.



6 Optimization Background

The content of this chapter is overall well-known material. Readers familiar
with the above terms can therefore safely skip this entire chapter.

For a more comprehensive treatment of the contents of this chapter, the reader
is directed to the following references: [7, 12, 21, 40, 45, 49].

2.1 Convexity

2.1.1 Convex sets

A set C ⊆ Rn is convex if

∀x, y ∈ C and λ ∈ [0, 1] : λx+ (1− λ)y ∈ C. (2.1.1)

That is: the convex combination of any two points in C is also contained in C.
Geometrically, one can think of convexity in the following way: Take any two
points in C and draw the line segment connecting them. The line segment must
be contained in C. If this holds for any two points in C, then C is convex.

A few examples of convex sets:

1. The empty set ∅ and Rn.
2. An orthant, for example: {x ∈ Rn : xi ≥ 0}.
3. A norm-ball: {x ∈ Rn : ‖x‖ ≤ r} for some norm ‖ · ‖.
4. An a�ne subspace: {x ∈ Rn : Ax = b}.
5. The intersection of two convex sets.

2.1.2 Convex functions

A function F : C 7→ R is convex if C is convex and

∀x, y ∈ C, λ ∈ [0, 1] : F (λx+ (1− λ)y) ≤ λF (x) + (1− λ)F (y) (2.1.2)

Geometrically, this means that the line segment connecting the two points
(x, F (x)) and (y, F (y)) is an upper bound of F on the interval [x, y].

If F is convex and also di�erentiable, then another equivalent de�nition of con-
vexity is

∀x, y ∈ C : F (y) ≥ F (x) +∇F (x)T (y − x) (2.1.3)



2.2 Convex cones 7

which means that the hyperplane tangent to a point on the graph of F is a lower
bound on F .

Finally, if F is twice di�erentiable, then convexity is equivalent to

∀x ∈ C : ∇2F (x) � 0 (2.1.4)

i.e. the Hessian of F must be positive semide�nite on C. See for example [12]
for examples and many other properties of convex functions.

2.2 Convex cones

A convex cone K is a set that satis�es

∀x, y ∈ K, α, β > 0 : αx+ βy ∈ K. (2.2.1)

This means that a convex cone is a convex set that further satis�es that if a
point is in the cone, then the ray starting in the origin and passing through the
point is also contained in the cone.

A few examples of convex cones:

1. The set Rn+ is clearly a convex cone for if x and y are vectors with non-
negative elements then also αx + βy for α, β > 0 will have non-negative
elements.

2. For a parameter α, the set

Kα =
{

(x1, x2, x3) ∈ R× R2
+ : |x1| ≤ xα2x1−α3

}
(2.2.2)

is a convex cone. Kα is called the three-dimensional power cone and can
used to model constraints involving power functions.

As an example, consider the problem of �nding the point in a given a�ne
space with the property that its p-norm is least among all points in the
space:

minx ‖x‖p
s.t. Ax = b

where p ≥ 1 and A ∈ Rm×n. It is not hard to see [21] that this problem
is equivalent to

minx,y,t t
s.t. Ax = b, eT y = t

(xj , yj , t) ∈ K1/p, j = 1, . . . , n.



8 Optimization Background

3. The set

Sn+ =
{
X ∈ Rn×n : X symmetric and X � 0

}
(2.2.3)

is a convex cone. Here, X � 0 means that X is a positive semi-de�nite
matrix. Notice that because the members of Sn+ must be symmetric ma-
trices, this set can be identi�ed with a smaller space with only n(n+ 1)/2
degrees of freedom.

A quite non-restrictive assumption often required by cones in theoretical texts
is that it be proper. This means that the cone is convex, closed, pointed and
solid. The �rst, we have already de�ned. A closed set is one that contains its
own boundary, i.e. its complement is open. A pointed cone is one that contains
no straight line of in�nite length. A cone is solid if its interior is not empty.
Therefore, it is meaningful to think of a proper cone as a non-degenerate cone.

2.2.1 Dual cones

Given a convex cone K, let us de�ne the set

K∗ = {s ∈ Rn : sTx ≥ 0, ∀x ∈ K}.

This set is called the dual cone of K and it is easy to see that indeed it is a cone.
It further holds that when K is proper, K∗ is also proper.

As an example, consider the cone Rn+. Since it clearly holds that

∀x ∈ Rn+ : xT y ≥ 0 ⇔ y ≥ 0

we have (Rn+)
∗

= Rn+. It is therefore said that Rn+ is self-dual. Similarly, it can
be shown that the set Sn+ de�ned above is self-dual.

2.2.2 Homogeneity and symmetry

If the set (group) of all linear maps L such that LK = K acts transitively on
K, then the cone K is called homogeneous. This means that for a homogeneous
cone K, we have

∀x, y ∈ K : ∃ linear operator L such that LK = K for which Lx = y.

A convex cone that is both homogeneous and self-dual is called symmetric.



2.3 Self-concordant functions 9

In [25], it was shown that any symmetric cone consists of a (unique) Cartesian
product of irreducible symmetric cones, of which only �ve exist. These irre-
ducible cones can therefore be thought of as a basis of all symmetric cones. For
optimization, currently only two of these cones are of practical interest. They
are:

1. The Lorentz cone, de�ned by

Ln2 =
{

(x, t) ∈ Rn+1 : ‖x‖2 ≤ t
}

(2.2.4)

is symmetric (see e.g. [12]). It is known under di�erent names, e.g. the
ice-cream cone, the second order cone or the 2-norm cone.

This cone is used in modelling constraints involving quadratic terms. It
allows, for example, formulation of quadratically constrained quadratic
programs, second order cone programs and constraints involving rational
powers of the variables (see [40]).

2. The set of all positive semide�nite and real symmetric matrices, Sn+, is
also a symmetric cone. See [12] for a proof of this fact. This cone is used
in formulating so called semide�nite programs. These programs are very
versatile and can be used in a variety of optimization models.

Notice that the positive orthant Rn+ is a direct product of n copies of the latter
cone. This is clear because Sn+ for the case n = 1 reduces to containing non-
negative scalars.

2.3 Self-concordant functions

Let F be a convex function de�ned on the set D. It is very convenient to de�ne
the following local Hessian-norm for a point y:

‖y‖x =
√
yTH(x)y (2.3.1)

where H(x) = ∇2F (x), the Hessian of F at x.

Let us also de�ne the open ball centered at y of radius r measured in the local
Hessian-norm:

Bx(y, r) = {v : ‖v − y‖x < r}. (2.3.2)



10 Optimization Background

The concept of self-concordant functions plays an important role in analyzing
the e�ciency of the classical Newton's method. A self-concordant function F is
one that satis�es the two conditions

x ∈ D ⇒ Bx(x, 1) ⊆ D (2.3.3)

y ∈ Bx(x, 1) ⇒ 1− ‖y − x‖x ≤
‖v‖y
‖v‖x

≤ 1

1− ‖y − x‖x
(2.3.4)

for any v 6= 0.

Notice that this de�nition, which is used in [49], is somewhat di�erent from
the original de�nition of self-concordant function given in [40]. Although there
are slight technical di�erences, the above conditions de�ne the same family of
functions but where �degenerate� functions are eliminated from the familiy. See
[49, �2.5] for a precise statement about the equivalence of the two de�nitions.
We use the de�nition (2.3.3)-(2.3.4) because it is better suited for the later
analysis.

2.4 Unconstrained optimization and Newton's method

Given a convex function F on a convex domain D, consider the unconstrained
optimization problem

min
x∈D

F (x). (2.4.1)

Let us de�ne the Newton step for F at x by

NF (x) = −∇2F (x)−1∇F (x). (2.4.2)

If the current iterate is x, Newton's method �nds the next iterate x+ from

x+ = x+NF (x). (2.4.3)

One way to motivate this step is to consider the quadratic model of F around
x (the second order Taylor expansion):

Qx(y) = F (x) + (y − x)T g(x) + 1
2 (y − x)TH(x)(y − x)

where again H(x) = ∇2F (x) and g(x) = ∇F (x). In order to minimize Qx(y)
w.r.t. y, let us �nd the point where ∇yQx(y) = 0:

∇yQx(y) = g(x) +H(x)(y − x)
!
= 0 ⇒

y = x−H(x)−1g(x)

= x+NF (x).



2.4 Unconstrained optimization and Newton's method 11

So the next iteration in Newton's method is indeed the minimizer of the quadratic
model around x. The function F being convex, the intuitive rationale is that
when we approach a minimizer of F , the quadratic approximation Q will be an
increasingly better model of F and hence (2.4.3) will bring a large improvement.

When F is assumed to be self-concordant, the convergence analysis of Newton's
method is particularly elegant and simple. It is expressed very clearly in terms
of the local Hessian-norm de�ned in Section 2.3. Because Newton's method is
at the core of the analysis of interior point methods, we include below a few
results explaining the convergence behavior of Newton's method under these
assumptions. The presentation here is based on that found in [49]. We skip the
proofs (which are never more than 10 lines long) and instead comment on the
meaning and role of each of the theorems.

The �rst theorem shows how the local norm of the Newton step decreases.

Theorem 2.2.4 of [49]. If F is self-concordant and ‖NF (x)‖x < 1, then

‖NF (x+)‖x+ ≤
( ‖NF (x)‖x

1− ‖NF (x)‖x

)2

. (2.4.4)

This theorem states that when ‖NF (x)‖x is su�ciently small, the Newton step
converges quadratically to zero when measured in the local Hessian norm. If, for
example, ‖NF (x)‖x = 1/k, the theorem implies that ‖NF (x+)‖x+ ≤ 1/(k− 1)2.

The theorem only states, however, that once the Newton step is small enough,
it decreases quickly to zero. Does this also mean that we are close to a solution
of (2.4.1)? The following theorem answers this question positively:

Theorem 2.2.5 of [49]. If F is self-concordant and ‖NF (x)‖x < 1/4, then
F has a minimizer x? and

‖x? − x‖x ≤ ‖NF (x)‖x +O(‖NF (x)‖2x). (2.4.5)

Because of (2.4.4), we can apply this theorem to the next iterate x+. When
‖NF (x)‖x ≤ 1/4, we have ‖NF (x+)‖x+ ≤ 1/9 < 1/4 and therefore (dropping
the higher order term):

‖x? − x+‖x+

(2.4.5)

≤ O
(
‖NF (x+)‖x+

) (2.4.4)

≤ O
(
‖NF (x)‖2x

)

This shows that ‖x? − x‖x, i.e. the distance from the iterates to the minimizer,
decreases quadratically to zero.



12 Optimization Background

The quantity ‖NF (x)‖x also provides a suitable stopping criterion for Newton's
method. It holds that (see [12, p. 502])

F (x)− F (x?) ≤ ‖NF (x)‖2x
when ‖NF (x)‖x < 0.68.

The previous results explain the behavior of Newton's method once a su�ciently
small neighborhood of the optimal point x? has been reached. This neighbor-
hood can be characterized by ‖NF (x)‖x ≤ 1/4. Once this is the observed, the
algorithm is said to be in the quadratically convergent phase, since it converges
quadratically to the solution. In practice, this is extremely fast as it means
that a tolerance on the order of machine precision can be reached within 6�8
iterations.

In order to make sure that the quadratically convergent phase is eventually
reached, Newton's method must be slightly modi�ed:

x+ = x+ tNF (x). (2.4.6)

where t ∈ (0, 1] is a step size chosen in each iteration to satisfy certain criteria
ensuring a su�cient decrease in F . Under mild conditions, such a t always exists
and it then holds (see [12, p. 504]) that there is a constant γ > 0 dependent
only on these criteria so that

F (x+)− F (x) ≤ −γ. (2.4.7)

That is, the function F is reduced at least by a �xed amount in each iteration.
This phase is called the Damped Newton phase. Because of (2.4.7) the quadrat-
ically convergent phase will eventually be reached. The full behavior for the
method (2.4.6) can thus be summarized:

There is a positive constant η ≤ 1/4 so that

Case 1: ‖NF (x)‖x > η (Damped Newton phase). The step size t can be
chosen so that

F (x+)− F (x) ≤ −γ.
That is, a constant reduction in F can be achieved.

Case 2: ‖NF (x)‖x ≤ η (quadratically convergent phase). With the step
size t = 1, we have

‖x? − x+‖x+ ≤ ‖NF (x+)‖x+ ≤ O
(
‖NF (x)‖2x

)
.

That is, the iterates approach the optimal point with quadratic conver-
gence speed. Further, once this phase is entered, the method never leaves
this phase again.



2.5 Barrier functions 13

The latter statement follows from (2.4.4): If η < 1/4, then (η/(1−η))2 ≤ 1/9 <
1/4 so the next step also satis�es the condition of Case 2.

2.5 Barrier functions

The class of functions most important for interior-point methods is the barrier
functions. A function F is said to be a barrier function for the convex set C if

F (x)→∞ for x→ ∂C. (2.5.1)

This should be understood as: take any sequence of point xi that approaches
a point on ∂C, the boundary of C. Then if F (xi) approaches ∞, F is called a
barrier function of C.

As an example, let C = R++, the positive real numbers. Then

F (x) = − log (x)

is a barrier function for C.

2.5.1 Logarithmic homogeneity and self-concordance

If a barrier function F satis�es for any x in its domain that

F (τx) = F (x)− ν log τ (2.5.2)

for a �xed constant ν characteristic of the function, then F is said to be loga-
rithmically homogeneous with barrier parameter ν. The property (2.5.2) implies
the following properties (see [42]):

∇2F (x)x = −∇F (x) (2.5.3)

∇F (τx) = τ−1∇F (x) (2.5.4)

∇2F (τx) = τ−2∇2F (x) (2.5.5)

xT∇F (x) = −ν (2.5.6)

‖x‖2x = ν (2.5.7)

If F further is self-concordant, we call it a lhscb-function, which is an acronym
for Logarithmically Homogeneous Self-Concordant Barrier function.



14 Optimization Background

As an example generalizing the example from before, consider now C = Rn+, the
non-negative orthant. The following function is certainly a barrier for C:

F+(x) = −
n∑

j=1

log (xj).

This is a self-concordant function (see [49, p. 24]). Let us see that it is also
logarithmically homogeneous:

F+(τx) = −
n∑

j=1

log (τxj)

= −
n∑

j=1

log (xj)−
n∑

j=1

log (τ)

= F+(x)− n log (τ),

which shows that F+ is logarithmically homogeneous with parameter ν = n.

As a second example, let C = Ln2 , the Lorentz cone of dimension n + 1. See
(2.2.4) for a de�nition of this convex cone. The function

F2(x, t) = − log (t2 − ‖x‖22)

is self-concordant. Further, it is a logarithmically homogeneous barrier. Let us
compute its barrier parameter:

F2(τx, τt) = − log
(
(τt)2 − ‖τx‖22

)

= − log
(
τ2
(
t2 − ‖x‖22

))

= − log
(
t2 − ‖x‖22

)
− log τ2

= F2(x, t)− 2 log τ

which shows that the barrier parameter of F2 is ν = 2.

2.5.2 The conjugate barrier

Given a lhscb-function F with domain C, let us de�ne

F ∗(s) = sup
x∈C

{
−sTx− F (x)

}
(2.5.8)

which is called the conjugate function of F . This function is particularly inter-
esting when C is a proper cone K (see Section 2.2) because then F ∗ has domain
K∗ and is a lhscb-function for this cone .



2.5 Barrier functions 15

The connection between F and F ∗ is very important for ipm theory and, as
we shall later see, helps to explain the relationship between a convex conic
optimization problem and its dual.

The following relations connect the two functions (see [42]):

−∇F (x) ∈ int(K∗) = domain(F ∗) (2.5.9)

−∇F ∗(s) ∈ int(K) = domain(F ) (2.5.10)

∇F (−∇F ∗(s)) = −s (2.5.11)

∇F ∗ (−∇F (x)) = −x (2.5.12)

∇2F (−∇F ∗(s)) = ∇2F ∗(s)−1 (2.5.13)

∇2F ∗(−∇F (x)) = ∇2F (x)−1. (2.5.14)

The above relations show that there is a certain symmetry between the �primal�
side where the domain is K on which F is a lhscb-function and the dual side
where the domain is K∗ on which F ∗ is a lhscb-function. As we will see, this
symmetry can be extensively exploited when devising interior-point algorithms
for optimization problems involving conic constraints.

A major question remains: Can F ∗ be easily computed when F is given? Un-
fortunately, the answer in the general case is no.

Let us consider an example where the answer is yes: Let again C = K = Rn+,
the non-negative orthant. The lhscb-function is again

F (x) = −
n∑

j=1

log (xj).

Let 1/v denote the elementwise reciprocal of the vector v, i.e. 1/v = (1/v1, . . . , 1/vn).
To determine when the supremum in (2.5.8) is attained, we compute

∇x(−sTx− F (x)) = −s+ 1/x
!
= 0 ⇒

x = 1/s.

Therefore,

F ∗(s) = −sT (1/s) +

n∑

j=1

log (1/sj)

= −
n∑

j=1

log (sj)− n.

So we see that F and F ∗ in this case are equal up to a constant di�erence.



16 Optimization Background

2.6 Convex constraints

A convex optimization problem is one with a convex objective function and
convex constraints:

minx f(x)
s.t. x ∈ C (2.6.1)

where f is a convex function on the convex set C. The appearance of problem
(2.6.1) can be simpli�ed slightly by de�ning

C̄ = {(x, t) ∈ C × R+ : f(x) ≤ t}
This set is clearly convex since it is the intersection of C × R+ with {(x, t) :
f(x) ≤ t} which is convex since f is convex. Then problem (2.6.1) can be
equivalently written as

min(x,t) t
s.t. (x, t) ∈ C̄. (2.6.2)

Notice that (2.6.1) and (2.6.2) have the same form except that (2.6.2) is simpler:
its objective function is linear.

Reformulations like this serve no real purpose other than simple convenience,
however. For an optimization problem to be accessible by an algorithm executed
on a computer, the crucial point is that it must be possible to communicate the
constraints, in this case C, to the computer. As the reformulation from (2.6.1)
into (2.6.2) shows, the objective function can be subsumed into the constraints.

In this section, we describe �rst the general standard explicit representation of
convex optimization problems. We then reach the optimization problem class
at the core of this thesis: convex conic programs. As is the case in many other
�elds, systematic structure in the problem can usually be exploited to yield more
e�cient algorithms. As we shall see, the class of problems that can be cast as
conic programs appears to precisely encompass the problems that can be solved
by highly practically e�cient primal-dual interior-point algorithms.

2.6.1 General case

One way to explicitly describe the feasible set C is by a linear matrix equality
and an elementwise vector inequality:

minx f(x)
s.t. Ax = b

h(x) ≤ 0
(2.6.3)



2.6 Convex constraints 17

where f is still a convex function, h is a vector valued function where each
component is a convex function, A is a matrix of suitable size and b is a vector.
The inequality h(x) ≤ 0 should be understood in the elementwise sense. Then
we have

C = {x : h(x) ≤ 0, Ax = b}. (2.6.4)

Notice that it again is possible to subsume the general objective function f
into the constraints and replace it by a linear function. Similarly, the equation
Ax = b could be included in h(x) ≤ 0. It is, however, preferable to maintain
the form (2.6.3) as it reveals certain exploitable structure in the problem.

2.6.2 The dual problem

The optimization problem known as the dual problem of (2.6.3) is

max(y,s) g(y, s)
s.t. s ≥ 0

(2.6.5)

where

g(y, s) = infx L(x, y, s) (2.6.6)

and

L(x, y, s) = f(x) + sTh(x) + yT (b−Ax), (2.6.7)

the Lagrangian. The in�mum in (2.6.6) must be taken over the intersection of
the domains of f and h. Let us mention a few important properties about the
primal and dual problem pair. Assume x? is an optimal solution to (2.6.3) and
(y?, s?) are optimal solutions to (2.6.5).

1. Duality gap: The di�erence

f(x?)− g(y?, s?) (2.6.8)

is known as the duality gap.

2. Weak duality: It always holds that

g(y?, s?) ≤ f(x?). (2.6.9)

That is: the optimal value of the dual problem (2.6.5) is a lower bound
on the optimal value of the primal problem (2.6.3). This means that the
duality gap is always non-negative.



18 Optimization Background

3. Strong duality: If

g(y?, s?) = f(x?) (2.6.10)

then we say that strong duality holds. Not all convex optimization problem
pairs satisfy strong duality (see [12] for examples). Di�erent su�cient
conditions for strong duality have been etablished. One such condition
is Slater's condition: If there exists x such that Ax = b and h(x) < 0,
then strong duality holds. That is, the problem is strictly feasible, i.e.
there is a point x that satis�es the convex inequalities of (2.6.3) strictly.
This corresponds to saying that the relative interior of the set C de�ned
in (2.6.4) is non-empty.

2.6.3 Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker conditions (or KKT conditions) for problem (2.6.3)
are (see [12]): Any points (x?, y?, s?) that satisfy

Ax? = b (2.6.11)

h(x?) ≤ 0 (2.6.12)

s? ≥ 0 (2.6.13)

s? ◦ h(x?) = 0 (2.6.14)

∇f(x?) + [Dh(x?)] s? −AT y? = 0. (2.6.15)

are primal and dual optimal for (2.6.3) and (2.6.5) and have zero duality gap.
Speci�cally, x? is optimal for the primal problem (2.6.3) and (y?, s?) are optimal
for the dual problem (2.6.5) and g(y?, s?) = f(x?). Here, ◦ denotes elementwise
product1 of vectors and Dh is the Jacobian matrix of the function h.

The KKT conditions are particularly important in convex optimization because
they provide necessary and su�cient conditions for optimality. Therefore, many
optimization algorithms, including interior-point methods, are constructed with
the overall goal of solving the KKT equations (2.6.11)�(2.6.15)

2.6.4 Examples

Some particularly important convex optimization problems deserve individual
mention:

1Some texts use � to denote the elementwise product. To emphasize the connection to
Jordan algebra, we maintain the notation ◦. See e.g. [52] for further details.



2.6 Convex constraints 19

1. Linear programming (lp): An lp in standard form is the following prob-
lem:

minx cTx
s.t. Ax = b

x ≥ 0
(2.6.16)

where x ∈ Rn and A, b and c are a matrix and two vectors of suitable
dimensions. Using the terminology of the previous sections, we have
f(x) = cTx and h(x) = −x. By inserting these functions in (2.6.5),
we see that the dual problem of (2.6.16) is

maxx bT y
s.t. AT y + s = c

s ≥ 0.
(2.6.17)

Similarly, we can �nd the KKT conditions from (2.6.11)�(2.6.15): Optimal
primal and dual solutions (x, y, s) to (2.6.16) and (2.6.17) satisfy

Ax = b
x ≥ 0

}
primal feasibility (2.6.18)

AT y + s = c
s ≥ 0

}
dual feasibility (2.6.19)

x ◦ s = 0
}
complementary slackness. (2.6.20)

The requirement (2.6.18) simply states that the primal solution must be
feasible in the primal problem (2.6.16). Similarly, the requirement (2.6.19)
states that the dual solution must be feasible in the dual problem (2.6.17).
The last condition (2.6.20) is called complementary slackness and is, for a
primal and dual feasible pair x and s, su�cient for optimality of the linear
program. As we shall see, one of the absolute most important questions
to answer when designing algorithms to solve convex conic programs (of
which lp is an example), is how to linearize the complementary slackness
conditions (2.6.20).

2. Quadratic program (qp): A convex quadratic program is the following
problem

minx
1
2x

TQx+ cTx
s.t. Ax = b

Ex ≤ d,
(2.6.21)

where Q ∈ Rn×n is a positive semi-de�nite and symmetric matrix, A and
E are matrices of suitable dimensions and c, b and d are vectors of suitable
length. Identifying each component of the problem with the corresponding
elements of (2.6.3), we �nd f(x) = 1

2x
TQx+ cTx and h(x) = Ex− d.



20 Optimization Background

2.7 Conic constraints

A particularly important kind of convex optimization problem (2.6.1) is one
where C is the intersection of an a�ne subspace and a proper cone (see Section
2.2):

minx cTx
s.t. Ax = b

x ∈ K
(2.7.1)

where K is a proper cone. A problem of this type is called a convex conic
program. In all that follows, we make the non-restrictive assumption that A has
full row rank.

Let us �rst remark that, in principle, the constraint x ∈ K is no less general
than the constraint x ∈ C, where C is any convex set. This inclusion can
be obtained by choosing K as the intersection of the conical hull of C and an
a�ne subspace (see [40]). This reformulation has mostly theoretical interest,
however. The main motivation for studying the convex conic program (2.7.1) is
that particularly e�cient primal-dual interior-point algorithms can be developed
for certain convex cones and direct products of these cones. The fundamental
reason is that by specifying convex optimization problems in this way, certain
structure is revealed that can be exploited by the algorithm. In practice, the
cone K is speci�ed as

K = K1 ×K2 × · · · × Kk (2.7.2)

where each Ki is one of a number of basic cones. These basic cones have been
very well studied and a lot is known as to how their structure should be exploited
in the algorithm. In Section 2.7.3, a number of these basic cones are presented.
Also examples of optimization problems that can be modelled in this way are
presented.

2.7.1 Conic duality

A particularly pleasing feature about the convex conic program (2.7.1) is the
symmetry that exists between the primal problem (2.7.1) and its Lagrangian
dual problem. We associate with the conic constraint x ∈ K a Lagrange multi-
plier s such that sTx ≥ 0. Notice that this is the same as s ∈ K∗ (see Section
2.2.1). We then get the Lagragian

L(x, y, s) = cTx− sTx+ yT (b−Ax). (2.7.3)



2.7 Conic constraints 21

To �nd where the in�mum of (2.7.3) is attained, we determine where its gradient
vanishes:

∇xL(x, y, s) = c− s−AT y !
= 0 ⇒ (2.7.4)

c = AT y + s. (2.7.5)

When (2.7.5) is satis�ed, we therefore �nd L(x, y, s) = bT y, which is the objec-
tive function of the dual problem of (2.7.1). Therefore we arrive at the following
primal and dual pair of convex conic optimization problems:

Primal





minx cTx
s.t. Ax = b

x ∈ K
Dual





maxy,s bT y
s.t. AT y + s = c

s ∈ K∗, y ∈ Rm.
(2.7.6)

It is readily seen that the pair (2.7.6) satis�es weak duality:

cTx− bT y = yTAx+ sTx− bT y = yT b+ sTx− bT y = sTx ≥ 0. (2.7.7)

Following [49], let us make apparent the complete symmetry between the two
problems. Assume that the two problems are feasible and �x an arbitrary primal
point x̂ satisfying Ax̂ = b and arbitrary dual points (ŷ, ŝ) satisfying AT ŷ+ ŝ = c.
Then, similarly to (2.7.7) we have

xT ŝ = cTx− bT ŷ (2.7.8)

x̂T s = −bT y + cT x̂. (2.7.9)

Notice that the second term in both (2.7.8) and (2.7.9) is constant while the
�rst term is the primal respectively negative dual objective function. Now let
L denote the nullspace of A:

L = {w : Aw = 0}.

Then, we can write Ax = b as x ∈ L + x̂. Similarly, we can write AT y + s = c
as s ∈ L⊥ + ŝ. Using (2.7.8) and (2.7.9) and that an additive constant in the
objective function does not change the solution of an optimization problem, we
can write the primal-dual pair (2.7.6) as

Primal





minx xT ŝ
s.t. x ∈ L+ x̂

x ∈ K
Dual





mins sT x̂
s.t. s ∈ L⊥ + ŝ

s ∈ K∗
(2.7.10)

which should make the symmetry clear. Because (K∗)∗ = K, it is also clear that
the dual of the dual problem in (2.7.10) is again the primal. Notice that y was
eliminated from the dual problem. Given s and using the assumption that A
has full row rank, y is �xed from the equation AT y + s = c.



22 Optimization Background

2.7.2 Karush-Kuhn-Tucker conditions

We saw in (2.7.7) that the conic problem pair satis�ed weak duality. Similarly
to the general convex problem (2.6.3), strong duality is satis�ed under Slater's
condition: If there exist x ∈ int(K) and (y, s) such that s ∈ int(K∗), Ax = b
and AT y+ s = c, then strong duality holds: There exist feasible optimal points
x? and y? so that bT y? = cTx?.

Therefore, if Slater's condition holds, we need only search for points that satisfy
the KKT conditions in order to �nd solutions for (2.7.6):

Ax− b = 0
−AT y − s+ c = 0

xT s = 0
x ∈ K, s ∈ K∗, y ∈ Rm

(2.7.11)

It should be mentioned, that because of the extra geometric structure that the
cone K and its dual cone K∗ introduce in the convex conic problem pair, more
can be said about solvability, boundedness and feasibility without assuming
Slater's condition. For example, if it is only assumed that there are dual interior
points (y, s) so that AT y+s = c and s ∈ int(K∗), then (a) if the dual problem is
unbounded, the primal problem is infeasible (b) otherwise, the primal is feasible
and strong duality holds. For many more details and results in this direction,
see [52] and [7].

2.7.3 Examples

1. K = Rn+. The primordial example of convex conic programming is linear
programming lp:

minx cTx
s.t. Ax = b

x ≥ 0.
(2.7.12)

Notice that this problem is the result of simply replacing K in (2.7.1) by the
cone Rn+. Some texts (e.g. [12]) emphasize the connection between linear pro-
gramming and convex conic programming by de�ning a generalized inequality
operator w.r.t. a cone: x �K 0 :⇔ x ∈ K. Then the convex conic program
(2.7.1) can be written minx{cTx : Ax = b, x �K 0}.

As we already saw in Section 2.2.2, the non-negative orthant Rn+ is a symmetric
cone (i.e. it is homogeneous and is its own dual). Therefore, the conic constraint



2.7 Conic constraints 23

in the dual problem in (2.7.6) is simply s ≥ 0.

2. K = Ln2 . When replacing K in (2.7.1) by the Lorentz cone

Ln2 =
{

(x, t) ∈ Rn+1 : ‖x‖2 ≤ t
}
, (2.7.13)

we obtain a quadratic cone program. This cone allows for modelling of a great
variety of optimization problems involving quadratic constraints.

As an example, let us consider a quadratic program:

minx
1
2x

TQx
s.t. Ax = b

x ≥ 0.

where Q ∈ Rn×n is a positive de�nite and symmetric matrix, A is a matrix of
suitable dimension and b a vector of suitable length. This means that Q can
be Cholesky factorized. Let L be the Cholesky factor of Q so that LTL = Q.
Through the linear change of variables w = Lx, the quadratic program above
becomes

minw
1
2‖w‖22

s.t. AL−1w = b
L−1w ≥ 0

which we may write as (see [2])

min t
s.t. AL−1w = b, L−1w − z = 0

u+ v −
√

2t = 0, u− v =
√

2
z ≥ 0, t ≥ 0
(w, v, u) ∈ Ln+1

2 .

(2.7.14)

The problem (2.7.14) is now in the primal conic form (2.7.1). The decision
variable is (z, t, w, v, u) and the cone is K = Rn+1

+ × Ln+1
2 .

Thus we can formulate quadratic programs as convex conic optimization prob-
lems by use of the two speci�c cones R+ and Ln2 . In fact, the quadratic cone is
more general. For example, it also allows modelling of qudratically constrained
quadratic programs and constraints involving rational powers (see [7]).

3. K = Sn+. As was mentioned in Section 2.2.2, the set of all positive
semide�nite real symmetric matrices, Sn+, is also a cone. When we replace K
in (2.7.1) by this cone, we obtain a semide�nite program. The members of
this cone are matrices rather than vectors of a real vector space. However, the
identi�cation between the two are readily made: The space Sn+ is isomorphous



24 Optimization Background

to the space Rn(n+1)/2
+ . The inner product cTx in Rn(n+1)/2

+ should therefore
be understood as the inner product trace(CX) in Sn+ where C and X are the

matrices in Sn+ corresponding to c respectively x in Rn(n+1)/2
+ according to the

isomorphism between the two spaces.

The semide�nite cone is quite general and very versatile. For example, it is
more general than the two cones previously mentioned in this section. That is,
any constraint x ∈ Rn+ or x ∈ Ln2 can in principle be written as a semide�nite
constraint. From an algorithmic viewpoint, this is usually not fruitful as the
explicit structure of the two less general cones reveals structure in the problem
that can be exploited.

4. K = Kα. The three-dimensional power cone is de�ned by

Kα =
{

(x1, x2, x3) ∈ R× R2
+ : |x1| ≤ xα2x1−α3

}
(2.7.15)

where α ∈ [0, 1] is a parameter. The cone K1/2 is a rotated Lorentz cone. The
power cone is useful in modelling constraints involving powers of variables with
exponents no smaller than 1.

As an example, let us consider the optimization problem of �nding the point in
an a�ne space with the smallest p-norm:

minx ‖x‖p
s.t. Ax = b.

(2.7.16)

Using the three-dimesional power cone, this problem can be modelled as

minx,y,t t
s.t. Ax = b,

∑n
j=1 yj = t

(xj , yj , t) ∈ K(1/p), j = 1, . . . , n
(2.7.17)

To see this, notice that the conic constraints are equivalent to

|xj | ≤ yjtp−1

and therefore

n∑

j=1

|xj |p ≤ tp−1
n∑

j=1

yj = tp ⇒




n∑

j=1

|xj |p



1/p

≤ t

or ‖x‖p ≤ t. Of course, t can not be required to lie in multiple cones, so to
conform to the format (2.7.1), it is necessary rewrite (2.7.17) into

minx,y,t t1
s.t. Ax = b,

∑n
j=1 yj = t1

t1 = t2 = · · · = tn
(xj , yj , tj) ∈ K(1/p) j = 1, . . . , n.



2.7 Conic constraints 25

It should be mentioned, however, that an algorithm internally does not need to
store n copies of t.

5. K = Kexp. The three-dimensional exponential cone is de�ned by

Kexp = closure {(x1, x2, x3) ∈ R× R+ × R++ :
exp (x1/x3) ≤ x2/x3} . (2.7.18)

This cone can be used for modelling constraints involving exponentials and
logarithms.

As an example, consider the entropy maximization problem:

minx
∑n
j=1 djxj log xj

s.t. Ax = b
x ≥ 0

(2.7.19)

which is easily seen to be equivalent to

minx,u −dTu
s.t. Ax = b

vj = 1 j = 1, . . . , n
(uj ; vj ;xj) ∈ Kexp j = 1, . . . , n.

(2.7.20)

The class of problems known as geometric programs can be formulated using the
exponential cone. The derivation is slightly longer, but is quite straight forward
and underlines the usefulness of the exponential cone.

2.7.4 Homogeneous and self-dual model

When presented with a convex conic optimization problem of the form (2.7.1),
we know that if Slater's condition holds, that is, if there are interior primal and
dual feasible points, then we can �nd a solution by searching for points that
satisfy the KKT conditions:

Ax− b = 0
−AT y − s+ c = 0

xT s = 0
x ∈ K, s ∈ K∗, y ∈ Rm.

(2.7.21)

It is, however, not practical to be forced to verify that such interior feasible
points indeed exist. At the same time, it is extremely important in virtually all
real-world applications of optimization to be able to identify when a problem is
infeasible � i.e. has no solution. Therefore, a good algorithm for solving opti-
mization problems should for any problem at least (a) provide an approximate



26 Optimization Background

(to some speci�ed tolerance) optimal solution when it exists or (b) detect if
the primal or dual problem is infeasible or unbounded and provide a certi�cate
thereof.

A particularly elegant way to achieve these properties in an algorithm is via
the so-called simpli�ed homogeneous self-dual embedding [60]. The idea is to
solve a slightly larger optimization problem which is known to have an optimal
solution and which has the following properties: From the solution of this new
problem, either an optimal solution to the original problem can be easily com-
puted or a certi�cate of infeasibility can be easily computed � and the two can
be distinguished.

In this section, this simpli�ed homogeneous self-dual (hsd) model for convex
conic optimization problems will be presented and its properties will be dis-
cussed.

The KKT conditions of the conic problem pair (2.7.6) are shown in (2.7.21).
Instead of looking for points that satisfy these conditions, we introduce two
extra non-negative scalar variables τ and κ and seek to �nd x, τ, y, s, κ such
that

min 0
s.t. Ax −bτ = 0

−AT y +cτ −s = 0
bT y −cTx −κ = 0

(x, τ) ∈ K × R+, (s, κ) ∈ K∗ × R+, y ∈ Rm.





(hsd)

Notice that the two �rst equations of (hsd) correspond to primal and dual
feasibilty, cf (2.7.21), when normalizing the equations by τ . In case a pair of
primal and dual feasible points are found, we know that cTx − bT y = xT s.
Therefore the third equation of (hsd) measures how close the points are to
satisfying complementarity slackness. When all three equations are satis�ed
along with the conic constraints, the problem (hsd) is solved, since the objective
function is zero. Therefore, (hsd) is in fact a feasibility problem.

The main motivation for solving this slightly enlarged problem can be summa-
rized in the following points:

Assume (x, τ, y, s, κ) solves hsd. Then

1. (x, τ, y, s, κ) is complementary. That is: xT s+ τκ = 0.

2. If τ > 0 then (x, y, s)/τ is optimal for (2.7.6).

3. If κ > 0 then one or both of bT y > 0 and cTx < 0 hold. If the �rst
holds, then (2.7.6) is primal-infeasible. If the second holds, then (2.7.6) is



2.7 Conic constraints 27

dual-infeasible.

In order to justify these statements, let us �rst de�ne

G :=




0 A −b
−AT 0 c
bT −cT 0




and notice that G is skew-symmetric: G = −GT . Now observe that we can
write the equality constraints of (hsd) as

G(y, x, τ)T − (0, s, κ)T = 0. (2.7.22)

The three statements above are now readily proven by:

1. Pre-multiplying (2.7.22) by (y, x, τ)T gives xT s+ τκ = 0.

2. τ > 0 implies κ = 0 and hence bT (y/τ) − cT (x/τ) = 0 and therefore
xT s = 0. Dividing the two �rst linear equality constraints of (hsd) by τ ,
we obtain the equality constraints of (2.7.21). Thus (x, y, s)/τ is optimal
for (2.7.6).

3. If κ > 0 then τ = 0 so Ax = 0 and AT y+s = 0. Further cTx−bT y = −κ <
0 so not both cTx and −bT y can be non-negative. Assume −bTx < 0. If
(2.7.6) is primal-feasible then there exists x̂ ∈ K such that Ax̂ = b. But
then 0 > −bT y = −x̂TAT y = x̂T s ≥ 0, a contradiction. We can argue
similarly if cTx < 0.

These points mean that any solution to (hsd) with τ +κ > 0 provides either an
optimal solution to our original problems (2.7.6) or a certi�cate of infeasibility
of (one of) the original problems (see [30] for further details).

The advantages of solving the homogeneous and self-dual model therefore in-
clude

� It solves the original primal-dual problem pair (2.7.6) without assuming
anything concerning the existence of optimal or feasible solutions.

� The dimension of the problem is not essentially larger than that of the
original primal-dual pair (2.7.6).

� If the original primal-dual pair (2.7.6) is infeasible, a certi�cate of this
infeasibility is produced.



28 Optimization Background

A further very useful feature of (hsd) is that it is a self-dual optimization
problem, i.e. it is its own dual. This implies that we can apply a primal-dual
interior-point algorithm to the problem (hsd) without doubling the dimension
of the problem � i.e. there is no need to handle and store variables from the
dual of (hsd) since they are identical to those of the primal.



Chapter 3

Linear Programming

Linear programming has, perhaps because of the speed and robustness of solu-
tion methods, grown into what may now be called a technology. Applications of
linear programming range from classical production scheduling and logistics to
the more modern network �ow problems, �nancial optimization problems and
determining the maximal utilization of assets in a smart electricity grid.

The previous sections introduced the concepts needed to understand certain
theoretical aspects of interior-point methods, which, in di�erent forms, will be
the sole focus of the remaining part of this thesis. In this chapter, interior-point
methods for linear programming are explained and reviewed. From a theoretical
viewpoint, this problem class is attractive to study because it is su�ciently com-
plex to capture the core ideas of interior-point methods yet su�ciently simple
to not require too much tedious notation and technicalities.

With a starting point in the Karush-Kuhn-Tucker condition for linear programs,
we begin our presentation by de�ning the central path and its most common
neighborhoods. We then present the framework for interior-point methods for
linear programs as a Newton-type method that tracks the central path. Next,
we review some historically relevant interior-point methods: the feasible short-
step algorithm, the Mizuno-Todd-Ye predictor-corrector algorithm, the feasible
long-step and the infeasible long-step algorithm. Finally, we brie�y address a
computationally important aspect: how to e�ciently solve the linear system of



30 Linear Programming

equations arising in each iteration of an interior-point algorithm.

For a historical review of linear programming and further details about the
theoretical aspects, the reader is referred to [21, 29, 58, 62]. Many interesting
examples of linear programs can be found in [9, 12].

3.1 The central path

The aim is to solve the standard form linear programming problem

minx cTx
s.t. Ax = b

x ≥ 0
(3.1.1)

where x, c ∈ Rn, A ∈ Rm×n, b ∈ Rm and we assume that m ≤ n and that
rank(A) = m. We have already seen that the KKT conditions for this problem
are

Ax− b = 0
−AT y − s+ c = 0

x ◦ s = 0
x ≥ 0, s ≥ 0, y ∈ Rm.

(3.1.2)

where again ◦ denotes elementwise product of vectors. For now, we assume that
the problem has solutions and that strong duality holds (see Section 2.6.2).

A core concept in interior-point methods is that of the central path. It is de�ned
as the set of stricly feasible points that satisfy

Ax− b = 0
−AT y − s+ c = 0

x ◦ s = τe
x ≥ 0, s ≥ 0.

(3.1.3)

for τ > 0 where e denotes the vector of all ones. The KKT conditions require
xisi = 0 for every i while a point on the central path satis�es xisi = τ for some
τ > 0. Let (xτ , yτ , sτ ) denote the central path point that satis�es x ◦ s = τ .
The entire central path if thus the set

CP = {(xτ , yτ , sτ ) : τ > 0}.
The central path is useful because it guides us towards a solution of (3.1.1):
As τ → 0, the points on the central path approach a point that satis�es the
KKT conditions (3.1.2). Therefore, primal-dual interior-point methods take
steps that loosely track the central path towards the solution. As we shall see,
this tracking is realized by taking Newton steps.



3.2 Path-following algorithms 31

3.1.1 Central path neighborhoods

First, let us de�ne what we mean by �loosely tracking�: It is too restrictive to
require that the iterates generated by an algorithm be exactly on the central
path. Instead, we require that they stay inside some neighborhood of the central
path. We de�ne the function

µ(x, s) = xT s/n (3.1.4)

i.e. the average value of the pairwise products of elements x and s. This quantity
is called the complementarity gap. Let us also de�ne the interior feasible region
as the set

F =
{

(x, y, s) : Ax = b, −AT y − s = c, x, s > 0
}
. (3.1.5)

Let us �nally de�ne a centrality function whose magnitude (norm) is a measure
of the proximity of a point to the central path:

ψ(x, s) = x ◦ s− µ(x, s)e (3.1.6)

When ψ = 0, the iterate is on the central path, cf (3.1.3). We can then de�ne
the following neighborhoods of the central path:

N2(η) = {(x, y, s) ∈ F : ‖ψ(x, s)‖2 ≤ ηµ(x, s)} (3.1.7)

N−∞(η) = {(x, y, s) ∈ F : ‖ψ(x, s)‖−∞ ≤ ηµ(x, s)} (3.1.8)

where η is a parameter in (0, 1). Here, ‖z‖−∞ = ‖z−‖∞ with z−i = min {0, zi}.

It clearly holds that

CP = N2(0) = N−∞(0) ⊂ N2(η) ⊂ N−∞(η) ⊂ F

for any η ∈ (0, 1). These neighborhoods are going to play a crucial role in
de�ning and analyzing interior-point methods. They will de�ne the limits of
how far away from the central path we will allow iterates to go.

3.2 Path-following algorithms

Let us �rst make the assumption that we know a point in the feasible set F from
which we can initialize the algorithm. That is, we have available (x, y, s) ∈ F .



32 Linear Programming

Most of the algorithms discussed in this section use as search direction the
solution (dx, dy, ds) to the following system of linear equations:

Adx = 0
−AT dy − ds = 0

s ◦ dx + x ◦ ds = −x ◦ s+ σµe.
(3.2.1)

The solution to this system is the Newton direction for the equations (3.1.3) (see
Section 2.4). Unlike using Newton's method for an unconstrained optimization
problem, there is no guarantee that the full Newton step will stay inside the
feasible region. The solution d = (dx, dy, ds) is dependent only on x, s and σ,
so we may write d = d(x, s, σ).

Let us brie�y study the search direction d. For simplicity, we will write µ =
µ(x, s) and de�ne for an α ∈ [0, 1]:

x+ = x+ αdx

s+ = y + αdy

y+ = s+ αds

µ+ = µ(x+, s+)

ψ+ = ψ(x+, s+).

We have (x, y, s) ∈ F by assumption, so it follows from the two �rst equations
of (3.2.1) that also (x+, y+, s+) ∈ F . Further, using elementary linear algebra,
we readily see that

µ+ = (1− α)µ+ ασµ (3.2.2)

ψ+ = (1− α)ψ(x, s) + α2(dx ◦ ds). (3.2.3)

From (3.2.2), it follows that if α were �xed, the greatest reduction in the function
µ(·) is obtained for small σ (idealy σ = 0). Since it is our overall goal to �nd
(x?, y?, s?) ∈ F with µ(x?, s?) = 0 (cf. (3.1.2)), this makes a small σ attractive.
From (3.2.3), we see how the centrality measure changes along the direction
d. The next centrality measure is reduced by a factor (1 − α) relative to the
previous centrality measure plus the term α2(dx ◦ ds).

The direction obtained by setting σ = 0, i.e. the direction d(x, y, 0) is known as
the a�ne scaling direction. It is the pure Newton step for the KKT conditions
(3.1.2) and seen in that light, it is reasonable to consider it the direction that
reduces µ(·) the most (we say it improves optimality the fastest). On the other
hand, the Newton step for the central path equations (3.1.3) would be d(x, y, 1).
Since this direction aims at a central path point, we expect it reduces ‖ψ‖
the fastest, i.e. it improves centrality the most. Therefore, it is known as the
centering direction.



3.2 Path-following algorithms 33

Algorithm 1 Short-step pdipm for lp

Input: Data A, b and c, Parameters η and σ, initial point (x0, y0, s0) ∈ N2(η).
For k = 0, 1, 2, . . .

(xk+1, yk+1, sk+1) = (xk, yk, sk) + d(xk, sk, σ)
End

3.2.1 Feasible short-step algorithm

Perhaps the simplest algorithm within this framework is the so-called short-
step primal-dual interior-point algorithm (pdipm). The algorithm takes only
relatively short steps in the search direction de�ned in (3.2.1). It is shown in
Algorithm 1.

Notice that in each iteration, the full Newton step is taken. By a su�ciently
conservative choice of the parameters η and σ, it is possible to ensure that the
next iterate is strictly feasible and still contained in N2(η). For example, the
choices η = 0.4 and σ = 1−0.4/

√
n are su�cient [58]. This would ensure that dx

and ds stay small enough that the iterates never leave the neighborhood N2(η),
cf. (3.2.3).

The short step pdipm has the following theoretical properties (see [58] for
proofs):

1. All iterates are in F .
2. All iterates stay within the narrow neighborhood N2(η).

3. The complementarity gap is reduced according to

µ(xk+1, sk+1) ≤ σµ(xk, sk). (3.2.4)

The latter property (3.2.4) means that the complementarity gap µ(·) is reduced
geometrically with a rate (1−Ω(1/

√
n)) which implies that the algorithm reaches

an iterate (x?, y?, s?) ∈ F with µ(x?, s?) ≤ εµ(x0, s0) in

O
(√
n log (1/ε)

)
(3.2.5)

iterations. Here, we used the �big-O�-style notation meaning

w = O(f(n)) :⇔ w ≤ C1f(n), for n→∞ (3.2.6)

w = Ω(f(n)) :⇔ w ≥ C2f(n), for n→∞ (3.2.7)

for some (possibly large) positive constant C1 and some (possibly small) positive
constant C2, both independent of n.



34 Linear Programming

Algorithm 2 MTY predictor-corrector pdipm for lp

Input: Data A, b and c, initial point (x0, y0, s0) ∈ N2(1/4).
For k = 0, 1, 2, . . .

Compute maximal αk so that

(x′, y′, s′) := (xk, yk, sk) + αkd(xk, sk, 0) ∈ N2(1/2)

(xk+1, yk+1, sk+1) = (x′, y′, s′) + d(x′, s′, 1)
End

3.2.2 Feasible Mizuno-Todd-Ye predictor-corrector algo-

rithm

In the short-step pdipm (Algorithm 1), the search direction is d(x, y, σ) with
σ ∈ (0, 1). Since σ is neither 0 nor 1, we can consider the search direction a
combination of the a�ne scaling direction d(x, s, 0) and the centering direction
d(x, s, 1). In order for the theoretical results outlined in the previous section
to hold, we must, however, choose σ quite close to 1, which in practice makes
progress towards the optimal solution quite slow.

One remedy to this situation was suggested by Mizuno, Todd and Ye in [35].
Instead, the algorithm alternates between 1. taking the maximal step possible
in the a�ne scaling direction d(x, s, 0) while remaining in a pre-de�ned central
path-neighborhood and 2. taking a full step in the centering direction d(x, s, 1).
The details are shown in Algorithm 2.

The Mizuno-Todd-Ye (MTY) predictor-corrector algorithm has the following
theoretical properties (see [62] for proofs):

1. The step lengths satisfy αk = Ω(1− 1/
√
n) uniformly for all k.

2. (xk, yk, sk) ∈ N2(1/4) for all k.

3. The complementarity gap is reduced according to

µ(xk+1, sk+1) ≤ (1− αk)µ(xk, sk). (3.2.8)

Because of the �rst and third property, we immediately see

µ(xk+1, sk+1) = (1− Ω(1/
√
n))µ(xk, sk).

and therefore that the algorithm reaches an iterate (x?, y?, s?) ∈ F with µ(x?, s?) ≤
εµ(x0, s0) in

O
(√
n log (1/ε)

)
(3.2.9)



3.2 Path-following algorithms 35

Algorithm 3 Long-step pdipm for lp

Input: Data A, b and c, Parameters η ∈ (0, 1) and σ1, σ2 so that 0 < σ1 < σ2 < 1
and initial point (x0, y0, s0) ∈ N−∞(η).
For k = 0, 1, 2, . . .

Choose σk ∈ [σ1, σ2]
Compute maximal αk so that
(xk+1, yk+1, sk+1) := (xk, yk, sk) + αkd(xk, sk, σk) ∈ N−∞(η)

End

iterations. This complexity result matches the one found for the short-step
pdipm in the previous section, compare (3.2.9) and (3.2.5). As is often the
case for numerical algorithms, the above estimates are worst-case analysis and
it is therefore equally important to investigate the actual performance of the
algorithms when applied to real problems.

From a practical viewpoint, the MTY predictor-corrector may look less e�cient
than the short-step method: The former requires two solutions of the system
(3.2.1) in each iteration while the latter requires only one. Therefore each iter-
ation is twice as computationally expensive. However, practical evidence shows
that indeed the MTY predictor-corrector method is overall faster. In the aver-
age case, the step in the a�ne scaling direction brings so much progress towards
optimality (reduction in µ(·)) that it o�sets the extra costs required to bring
the iterate back close to the central path, speci�cally inside the narrow neigh-
borhood N2(1/4). So, although one iteration is twice as expensive, the number
of iterations is usually less than half that of the short-step pdipm making the
MTY predictor-corrector overall superior in the average case.

3.2.3 Feasible long-step algorithm

Let us �nally discuss the long-step pdipm. This method is sometimes also called
the wide-neighborhood pdipm [62]. In each iteration, the longest step possible
in the direction d(x, s, σ) is taken, subject to the next iterate staying inside
N−∞(η). The details are shown in Algorithm 3.

The long-step pdipm has the following theoretical properties (see [62] for proofs):

1. The complementarity gap is reduced according to

µ(xk+1, sk+1) ≤ (1− αk(1− σk))µ(xk, sk). (3.2.10)

2. It holds that (1 − αk(1 − σk)) is asymptotically Ω(1− 1/n) where the
constant depends on σ1, σ2 and η but not n.



36 Linear Programming

These two points allow the conclusion that the algorithm reaches an iterate
(x?, y?, s?) ∈ F with µ(x?, s?) ≤ εµ(x0, s0) in

O(n log (1/ε)) (3.2.11)

iterations. Notice that this complexity result is theoretically worse than the
complexity estimates for the short-step and for the MTY predictor-corrector
algorithm, cf (3.2.5) and (3.2.9). The estimate is worse by a factor

√
n.

In practice, however, the long-step method almost always outperforms both of
the two methods presented in the previous sections. Similar to the short-step
pdipm, the long-step method requires only one solution of (3.2.1) per iteration.
At the same time, it allows for the longest possible step subject to staying in
N−∞(η), which is similar to the �rst step of the MTY predictor-corrector pdipm
(except that the latter uses a more narrow neighborhood).

The long-step algorithm allows a certain degree of adaptivity: The choice of σk
in each iteration can be done using various strategies and di�erent strategies
lead to di�erent variants of the algorithm. For example, σk can be chosen close
to σ2 if the current iterate, according to some measure, is deemed not su�ciently
close to the central path. Otherwise, σk is chosen close to σ1 thus allowing a
faster improvement in terms of optimality since σ1 is closer to 0.

3.2.4 Infeasible long-step algorithm

In Sections 3.2.1 through 3.2.3 we have assumed that an initial point

(x0, y0, s0) ∈ F

was available to us. If such a point is not known, one can be found using
a so-called phase I algorithm. This algorithm works by applying a pdipm to
a modi�ed problem for which an initial feasible point is trivially identi�ed.
Therefore, it is equally expensive to �nd a feasible starting point as solving the
original instance, starting from this point. Essentially, this means that unless a
point in F is known beforehand, the pdipm must be run twice in order to solve
a problem from scratch. This is clearly not very satisfactory.

This issue is addressed via the so-called infeasible-start pdipms. These algo-
rithms allow starting from a point not necessarily feasible with respect to the
linear equality constraints of (3.1.2). Where the algorithms of the previous sec-
tions always maintain a feasible point and attempt to reduce µ(·) in order to
progress towards optimality, the infeasible pdipm simultaneously improve feasi-
bility and optimality, as we now outline.



3.2 Path-following algorithms 37

Algorithm 4 Infeasible long-step pdipm for lp

Input: Data A, b and c, Parameters η ∈ (0, 1) and σ1, σ2 so that 0 < σ1 < σ2 < 1
and initial point (x0, y0, s0) ∈ N (η).
For k = 0, 1, 2, . . .

Solve (3.2.12) for search direction (dx, dy, ds) with σ = σk ∈ [σ1, σ2].
Compute maximal αk so that
(xk+1, yk+1, sk+1) := (xk, yk, sk) + αk(dx, dy, ds) ∈ N (η)

End

If the current iterate is (x, y, s), the search direction in an infeasible pdipm is
the solution (dx, dy, ds) to the system

Adx = −(Ax− b)
−AT dy − ds = −(−AT y − s+ c)

s ◦ dx + x ◦ ds = −x ◦ s+ σµe.
(3.2.12)

Consider the �rst equation Adx = −(Ax−b). Its solution dx is the Newton step
towards solving the equation Ax = b. Notice that if the iterate is feasible, the
equation becomes Adx = 0, i.e. it reduces to the corresponding equation used
in the feasible pdipm, cf. (3.2.1). The same observation applies to the second
equation. The third equation is unchanged as compared to (3.2.1).

The analysis of infeasible pdipm is somewhat more complicated than that of a
feasible pdipm. This is primarily because we no longer have dTx ds = 0 which
simpli�es many derivations in the proofs.

An outline of the infeasible pdipm is seen in Algorithm 4. The neighborhood
N (η) used in Algorithm 4 is a slight generalization of N−∞(η). To avoid unnec-
essary complication, we can, for now, think ofN (η) as equivalent toN−∞(η) but
allowing also points that are not feasible w.r.t. to the linear equality constraints
of (3.1.2).

The algorithm has the following theoretical properties (see [58] for proofs).

1. The linear residuals are reduced according to

Axk+1 − b = (1− αk)(Axk − b)
−AT yk+1 − sk+1 + c = (1− αk)(−AT yk − sk + c) (3.2.13)

2. The step lengths αk can be chosen so that

µ(xk+1, sk+1) ≤ (1− αk(1− σk))µ(xk, sk)



38 Linear Programming

3. There exists a uniform lower bound on αk so that

αk = Ω(1− 1/n2).

These points imply that the algorithm reaches an iterate (x?, y?, s?) with

Ax? − b ≤ ε(Ax0 − b)
−AT y? − s? + c ≤ ε(−AT y0 − s0 + c)

µ(x?, s?) ≤ εµ(x0, s0)

in no more than

O
(
n2 log (1/ε)

)
(3.2.14)

iterations. This complexity result is even worse than the one obtained for the
feasible long-step algorithm, compare (3.2.14) and (3.2.11). However, in prac-
tice, we usually observe that the infeasible long-step pdipm outperforms all
previously discussed pdipms. In terms of number of iterations, it is often com-
parable to the feasible long-step pdipm, but the latter requires a feasible initial
point. Therefore, the infeasible pdipm is usually preferable.

The discrepancy often observed between the theoretical worst-case behavior
and the practically observed behavior for pdipms in part motivates one of the
main contributions of this thesis. As will be described in much more detail in
Section 4.5, our implementation of an interior-point algorithm for nonsymmetric
conic optimization problem is aimed at obtaining the best possible practical
performance. To obtain this, we take inspiration from the techniques that seem
to improve performance for the infeasible long-step pdipm just described, as
compared to the feasible long-step pdipm.

3.3 Solving for the search direction

The main computational task in pdipms is to solve the system de�ning the
search direction. These systems have the general form (cf. (3.2.1) and (3.2.12))




A 0 0
0 −AT −I
S 0 X






dx
dy
ds


 =




r1
r2
r3


 (3.3.1)

where X = diag(x1, x2, . . . , xn), S = diag(s1, s2, . . . , sn) and r1, r2, r3 are arbi-
trary right-hand sides. Eliminating ds from this system of equations, we get

(
H AT

A 0

)(
dx
v

)
=

(
r4
r1

)
(3.3.2)



3.3 Solving for the search direction 39

where we de�ned H = S−1X, v = −dy and r4 = r2 + X−1r3. Notice that
any multiplication with either X, S or their inverses is computationally cheap
since they are diagonal matrices. The existence of the matrices X−1 and S−1

is ensured by x and s being strictly feasible points, i.e. x > 0 and s > 0.

There are several ways to solve the KKT system (3.3.2). Because all elements
of the diagonal matrix H are strictly positive and since we are assuming that
A has full row rank, the system matrix in (3.3.2) is nonsingular. Therefore, the
system has a unique solution for any right-hand side. Probably the most often
used general method is to reduce the system to the so-called normal equation
system: Eleminate dx to obtain

(AH−1AT )v = r (3.3.3)

where r = r1 − AH−1r4. The matrix AH−1AT is symmetric and positive
de�nite, so it has a Cholesky decomposition: AH−1AT = RTR where R is an
upper triangular matrix.

Since the sparsity pattern of AH−1AT is constant regardless of the stage of the
algorithm, a pivoting order for the Cholesky factorization aimed at minimizing
the number of non-zeros in R can be chosen at initialization time of the pdipm.
It is in general a di�cult problem to determine the optimal pivoting order, but
several e�cient heuristics exist [20].

Once the Cholesky factor has been computed, which requires O((1/3)n3) �ops
for a dense matrix, recovering v from (3.3.3) requires two back-substitutions:

v = R−1R−T r.

Each of these operations requires O(n2) �ops and thus are negligeble compared
to the factorization. Once v is known, dy, dx and ds are readily recovered by
simply substituting back into (3.3.2) and (3.3.1).

There exist a number of other ways to speed up the solution, particularly when a
certain exploitable structure in A is present. A particularly important example
is when A has a single or a few dense columns, but is otherwise sparse. In this
case, these dense columns cause the entire matrix AH−1AT to be dense, since
it essentially consists of sums of multiples of the outer products of the columns
of A. This, in turn, causes the Cholesky factor R to be completely dense,
signi�cantly slowing down the solution process. Fortunately, dense columns
can be handled separately through the so-called modi�ed Schur complement
method. This corresponds to viewing AH−1AT as a sum of a dense low-rank
matrix (the outer product of the dense columns) and the remaining full-rank but
sparse matrix. Using this method, the sparsity in AH−1AT is not completely
destroyed even if A contains several dense columns. See [4] and [54] for further
details.



40 Linear Programming



Chapter 4

Convex Conic Programming

Interior-point methods were �rst developed for linear programming problems.
In their early existence, interior-point methods for linear programming certainly
o�ered a theoretically attractive alternative to the already well-established sim-
plex method: the theoretical complexity of interior-point methods is superior
to that of the simplex algorithm, which is exponential in worst-case running
time. However, from a practical viewpoint it was not, and still is not, estab-
lished which algorithm will perform better on a given problem � each of the
two types of algorithm o�ers advantages and disadvantages.

A very compelling argument in favor of interior-point algorithms came with the
generalization to convex conic programming � which is not directly possible
for the simplex algorithm. Albeit important di�erences exist, it turns out that
most of the core concepts in interior-point algorithms for linear programming
are very elegantly generalizable to the much broader class of problems known as
convex conic programs. This family of problems encompasses so many di�erent-
natured optimization problems that likely only a small fraction of them are in
application today. A much deeper penetration into industry is expected in the
future.

In this chapter, we �rst develop the framework for interior-point methods for
convex conic programs by �rst describing the central path of a linear program
as a family of barrier problems. This is the natural starting point for the gen-



42 Convex Conic Programming

eralization to convex conic programs, which we turn to afterwards. Next, we
treat the somewhat intricate issue of symmetrically linearizing the complemen-
tarity conditions when the cone in question is symmetric. We then describe the
di�culties that arise when the cone is no longer symmetric. This �nally brings
us to the main contribution of this thesis. After outlining previous work in the
area of nonsymmetric conic optimization, we brie�y present the contents of a
scienti�c paper by Skajaa and Ye [51] submitted1 to the journal Mathemati-
cal Programming in 2012 which addresses these problems � the paper may be
found in its full length in the appendix.

Currently, examples of applications of convex conic optimization include truss-
topology optimization, di�erent eigenvalue optimization problems, second-order
cone problems in �nancial optimization and robust optimization. Also classical
quadratic programming can be seen as a convex conic optimization problem. All
of these examples involve symmetric cones. A still relatively unexplored area is
those problems involving nonsymmetric cones, although some applications are
known: entropy optimization problems, geometric programs and applications
from �nancial optimization. Further applications are expected by this author
to surface over the coming years as solution methods become even more accurate
and robust.

The generalization of interior-point algorithms from linear programming to con-
vex conic optimization problems has had many contributers. The theoretical
foundation includes, amongst many others, the following references: [7, 40, 41,
42, 43, 49]. Interesting examples of applications of convex conic programs can
be found in [10, 12, 19].

4.1 A family of barrier problems

In order to better understand how pdipms are generalized to this more general
problem class, it is fruitful to �rst derive the key concept from the point of view
of barrier functions (see Section 2.5.1).

We can reduce the standard form lp

minx cTx
s.t. Ax = b

x ≥ 0
(4.1.1)

1The paper is currently under review.



4.1 A family of barrier problems 43

to a family of unconstrained barrier problems

minx cTx+ τF (x)
s.t. Ax = b

(4.1.2)

where

F (x) = −
n∑

j=1

log (xj) (4.1.3)

and τ > 0 is a parameter indexing the family of problems. When τ goes to 0,
the solution of (4.1.2) goes to a solution of (4.1.1). As we saw in Section 2.5.1,
the function in (4.1.3) is a logarithmically homogeneous self-concordant barrier
function (a lhscb-function) for the cone Rn+. The KKT conditions for (4.1.2)
are

Ax = b
c+ τ∇F (x)−AT y = 0.

(4.1.4)

By introducing the variable s = −τ∇F (x), we can rewrite (4.1.4) into

Ax− b = 0
−AT y − s+ c = 0
s+ τ∇F (x) = 0.

(4.1.5)

Notice that x is implicitely assumed to contain only positive elements, as it is
in the domain of F (cf. (4.1.3)).

When F is speci�cally given by (4.1.3), we have∇F (x) = −X−1e and∇2F (x) =
X−2 where X is the diagonal matrix with x on the diagonal. Since s = −τ∇F =
τX−1e, also s contains only positive elements. So the third equation of (4.1.5)
is

s− τX−1e = 0
x > 0, s > 0.

By multiplying this equation by ∇2F (x)−1/2 = X, we get x ◦ s = τe, the
familiar relaxed complementarity conditions for lp. We have thus arrived at
the same equations by which we de�ned the central path, (3.1.3) (except for
last inequalities which in fact can be relaxed to non-strict inequalities as the
third equation anyway implies they are strict). Therefore, the primal point
xτ on the central path is the solution to the barrier problem (4.1.2), and the
corresponding dual point is sτ = −τ∇F (xτ ).

The above derivations lead to the generalization to convex conic cones. The cone
Rn+ is replaced by the general cone K so that the problem under consideration



44 Convex Conic Programming

now is

minx cTx
s.t. Ax = b

x ∈ K.
(4.1.6)

The family of barrier problems is then still (compare with (4.1.2))

minx cTx+ τF (x)
s.t. Ax = b

(4.1.7)

indexed by τ > 0, where F is now a lhscb-function for the cone K. Similarly
to before, we de�ne the central path for (4.1.6) as the points that satisfy the
KKT conditions for (4.1.7) for some τ > 0:

Ax− b = 0
−AT y − s+ c = 0
s+ τ∇F (x) = 0

(4.1.8)

where, for the same reason as described for lp, we implicitely assume x ∈ K
and s ∈ K∗. The overall idea of a pdipm to solve (4.1.6) is then again to track
the central path (4.1.8) towards a point that is optimal for (4.1.6).

The success of the method depends crucially on at least two issues: 1. The
properties (particularly the barrier parameter) of the barrier function F for K
and 2. how the third equation of the KKT conditions (4.1.8) is linearized to
de�ne the search direction. This latter issue will be the topic of the following
sections.

4.2 Linearization of the complementarity condi-

tions

Recall that the conic problem pair is given by:

Primal





minx cTx
s.t. Ax = b

x ∈ K
Dual





maxy,s bT y
s.t. AT y + s = c

s ∈ K∗, y ∈ Rm.
(4.2.1)

The derivation in the previous section led to the KKT conditions in (4.1.8). Had
we performed the same derivation starting instead from the dual problem with
a lhscb-function G for K∗, we would arrive at the conditions on the right in



4.2 Linearization of the complementarity conditions 45

(4.2.2) below. For comparison we also repeat those from the primal:

Primal





Ax− b = 0
−AT y − s+ c = 0
s+ τ∇F (x) = 0
x ∈ K, s ∈ K∗.

Dual





Ax− b = 0
−AT y − s+ c = 0
x+ τ∇G(s) = 0
x ∈ K, s ∈ K∗

(4.2.2)

Clearly the two systems in (4.2.2) di�er only in the last equation. That is

Primal: s+ τ∇F (x) = 0
Dual: x+ τ∇G(s) = 0.

(4.2.3)

If we do not assume any relation between F and G the two sets of equations in
(4.2.2) do not generally de�ne the same set of points � i.e. the same central
path. This property, however, can be achieved if we in place of G use the
conjugate barrier F ∗ which is a barrier for K∗ (see Section 2.5.2). The two
equations in (4.2.3) then become

Primal: s+ τ∇F (x) = 0
Dual: x+ τ∇F ∗(s) = 0.

(4.2.4)

These equations now de�ne the same set of points. This is quickly seen us-
ing the relations (2.5.9)�(2.5.14): Applying the function ∇F ∗ to both sides of
−∇F (x) = τ−1s, we get

∇F ∗ (−∇F (x)) = ∇F ∗
(
τ−1s

)

which, by (2.5.12) and (2.5.4) is the same as x+τ∇F ∗(s) = 0. Therefore the two
sets of equations indeed de�ne the same points. Notice that requiring G = F ∗

is a strong requirement since computing F ∗ and its derivates is not necessarily
simple, cf. the de�nition (2.5.8) and Section 2.5.2.

The primal and dual problems in (4.2.1) have the same general form and are
completely symmetric in duality (see Section 2.7.1). Thus there is no reason
in particular that one should be called �the primal� and the other �the dual�.
They are best understood as a pair of problems which are dual to each other,
each containing information about the other. For this reason, it is generally
undesireable to let an algorithm that solves them both simultaneously, such as
a pdipm, place emphasis on one of the problems in some way. In other words, an
algorithm should be consistent w.r.t. duality so that it would not be forced to,
for each problem instance, to determine which of the two problems to emphasize.
It should therefore produce exactly the same iterates if we interchange the roles
of the two problems.

The iterates of a pdipm depend on the search directions and the step lengths.
The search directions arise from the linearization of the KKT conditions. Lin-
earization here refers to computing the Newton step of a set of equations.



46 Convex Conic Programming

Although the two equations (4.2.4) de�ne the same points, this is unfortu-
nately no guarantee that their linearizations result in equations de�ning the
same search direction. This is a consequence of the fact that linearization of
a set of equations depends not on the solution set but the particular algebraic
representation of the points.

As an illustrative example, consider the problem of �nding x > 0 such that
f(x) = x2−4 = 0. Clearly the solution is x? = 2. The Newton step is determined
by f ′(x)dx = −f(x). If the current iterate is x = 1, we �nd dx = 3/2. On the
other hand, if the problem is to �nd x > 0 such that f(x) = x−2 = 0, we would
in the same way �nd dx = 1 although the two equations have the same solution
set.

Reiterating this point for the equations occuring in interior-point algorithms:
The relaxed complementarity conditions for lp are x ◦ s = τe but the same
conditions derived from the barrier formulation are s − τX−1e = 0. The mul-
tiplication of the latter with X to obtain the �rst changes the linearization. In
[15] it was shown that indeed the two search directions obtained from linearizing
these two equations are always di�erent in all but degenerate situations.

Therefore, a problem now arises: If the algorithm for the general conic program-
ming should be consistent w.r.t. duality, which of the two sets of equations in
(4.2.2) should be linearized? Considering again the case of lp: We see that the
operation

s− τX−1e = 0
mult. X⇒ x ◦ s = τe (4.2.5)

symmetrizes the complementarity conditions: The equation on the right in
(4.2.5) is clearly symmetric in x and s. I.e. interchanging the primal and
dual problems would lead to x and s in (4.2.5) being interchanged which clearly
makes no di�erence for the equation on the right.

Whether a transformation similar to (4.2.5) exists for the conic problem depends
on the fundamental geometric properties of the cone K. It turns out than when
the cone is self-dual and homogeneous (see Section 2.2.2), the search direction
can be de�ned so that it is symmetric w.r.t. duality. When the cone lacks these
properties, this is not the case. The following sections discuss these issues in
more detail.



4.3 Symmetric cones 47

4.3 Symmetric cones

The property needed to ensure that a search direction symmetric w.r.t. duality
can be de�ned is that the cone be self-scaled. This property was introduced in
[41], developed further in [42] and was originally de�ned as a property of the
barrier function:

De�nition 2.1 of [42]. Assume F is a lhscb-function for K with barrier
parameter ν. Then F is called self-scaled if the following two properties hold:
For any x,w ∈ K,

∇2F (w)x ∈ int(K∗)
F ∗(∇2F (w)x) = F (x)− 2F (w)− ν

It is now common to say that a cone is self-scaled and one can take this as mean-
ing that the cone in question admits a self-scaled barrier � i.e., the geometric
structure of the cone is rich enough that a self-scaled barrier can be de�ned on
it.

The de�ning properties look quite technical at �rst but one crucial property that
they imply is that of the existence of a so-called scaling point for any primal-dual
pair:

Theorem 3.2 of [41]. For each pair x ∈ K and s ∈ K∗, there exists a unique
point w ∈ int(K) such that

s = ∇2F (w)x. (4.3.1)

The point w is sometimes called the scaling point. When this concept was �rst
introduced in [41], the authors, Nesterov and Todd, were unaware of a fact
proved by Güler around the same time [25]: The self-scaled cones coinside with
the cones that are homogeneous and self-dual (see Section 2.2.2 for de�nitions)
� i.e. those that are symmetric. As we mentioned in Section 2.2.2, any sym-
metric cone is a direct (Cartesian) product of the a combination of the �ve basic
symmetric cones:

1. The Lorentz (second-order) cone Ln2 (see de�nition in (2.2.4)).

2. The cone of positive semi-de�nite symmetric real matrices Sn+ (see de�ni-
tion in (2.2.3))

3. The cone of positive semi-de�nite Hermitian complex matrices



48 Convex Conic Programming

4. The cone of positive semi-de�nite Hermitian quaternion matrices

5. A special 27-dimensional cone

These irreducible cones can therefore be thought of as a basis of all symmetric
cones. For optimization, currently only the two �rst of the above cones are of
practical interest. Notice that the positive orthant is a special case of the above:
Rn+ is the direct product of n copies of S1

+.

In practice, it is relevant to know explicit expressions for the scaling point (4.3.1)
for speci�c cones. As an example, let K = Sn+, then one can �nd

w = x1/2
(
x1/2sx1/2

)−1/2
x1/2 (4.3.2)

where (4.3.1) and (4.3.2) should be understood in the sense of the isomorphism
between Sn+ and Rn(n+1) described on page 24. If n = 1, we clearly have

w =
√
x/s and therefore for K = Rn+, we get w = (

√
x1/s1, . . . ,

√
xn/sn).

Let us now see how a search direction in a pdipm can be de�ned symmetrically
w.r.t. duality by making explicit use of the scaling point. In the general conic
case, the only nonlinear equation of the KKT conditions (4.2.4) arising from the
primal barrier problem is

s+ τ∇F (x) = 0. (4.3.3)

Its linearization is

τ∇2F (x)dx + ds = − (s+ τ∇F (x)) . (4.3.4)

Now let w be the scaling point for x and s. That is, s = ∇2F (w)x. Then
a symmetric search direction is obtained by replacing τ∇2F (x) in (4.3.4) by
∇2F (w):

∇2F (w)dx + ds = − (s+ τ∇F (x)) . (4.3.5)

To see that the direction (4.3.5) is indeed symmetric, left-multiply the equation
by ∇2F (w)−1 to obtain

dx +∇2F (w)−1ds = −∇2F (w)−1 (s+ τ∇F (x)) . (4.3.6)

Now notice that by taking the �dual-side scaling point� v = −∇F (w) ∈ int(K∗),
we have from (2.5.12) and (2.5.13) that

∇2F ∗(v)s = x (4.3.7)

∇2F ∗(v) = ∇2F (w)−1. (4.3.8)



4.4 Nonsymmetric cones 49

We can therefore write (4.3.6) as

∇2F (v)ds + dx = − (x+ τ∇F ∗(s)) . (4.3.9)

Comparing (4.3.9) with (4.3.5), it is clear that they are symmetric w.r.t. duality.
The above derivation was carried through for the centering direction. If we set
τ = 0, the direction is the a�ne scaling direction, and the symmetry can be
made particularly clear. The a�ne scaling direction is

∇2F (w)dx + ds = −s. (4.3.10)

Let B denote the unique square root of ∇2F (w) so that B2 = ∇2F (w). Then
(4.3.1) can be written Bx = B−1s. Let us de�ne λ := Bx = B−1s. Then by
left-multiplying by B−1, we can write the equation (4.3.10) as

Bdx +B−1ds = −λ. (4.3.11)

If the roles of s and x (and hence dx and ds) were switched, B would be inverted
because of (4.3.8), and thus (4.3.11) would be left invariant. The symmetric
picture is thus complete. The view of the primal and dual problems as mirror
images in �problem space� is therefore maintained in �algorithm space� when the
algorithm uses the general search direction (4.3.5), known as the Nesterov-Todd
direction.

It is not simple vanity that makes this property desireable. It has been widely
veri�ed empirically that the practially most e�cient algorithms within the �eld
of interior-point methods are those that respect the symmetry w.r.t. duality.
The Nesterov-Todd direction discussed above has proven very e�cient for prob-
lems involving the Lorentz cone Ln2 , the positive semi-de�nite cone Sn+ and
combinations of them. See for example [2, 52, 54] for results substantiating
these claims.

4.4 Nonsymmetric cones

One of the main contributions in this thesis is to develop an algorithm that can
solve convex conic optimization problems of the form (4.1.6) when the cone K
is not symmetric. When the cone no longer admits a self-scaled barrier, the
existence of a unique scaling point w for each primal and dual pair of points x
and s is no longer guaranteed. This means that we can not use the approach
outlined in Section 4.3 to obtain a search direction symmetric w.r.t. duality.

The main contribution in this direction is included as an original research paper
in appendix A. In this section, we �rst describe two approaches previously em-
ployed to develop pdipms for solving such general nonsymmetric conic programs.



50 Convex Conic Programming

Here, it should be stressed that these methods deal with methods to solve gen-
eral nonsymmetric conic programs. Other more specialized approaches have
been studied with some success elsewhere, see e.g. [5, 61] and the introduction
in the paper in appendix A.

Following the description of these two previous lines of study, we provide a brief
overview of the general results obtained in our paper and otherwise refer the
reader to the paper in the appendix.

4.4.1 Nesterov-Todd-Ye 1998

The method discussed in this section was published in [43] in 1998. Two main
conceptual algorithms are developed in the paper. The second speci�cally re-
quires that the problem de�ning cone K be self-scaled and is therefore of no
interest to us.

The �rst method, however, is aimed at solving general, not necessarily self-scaled
convex conic optimization problem. The method has two important character-
istics:

1. It solves the self-dual and homogeneous (hsd) model, see Section 2.7.4.

2. It assumes availability of both the primal barrier function and its conjugate
barrier (see Section 2.5.2), their gradients and Hessians.

The �rst of these characteristics implies all the advantageous properties of solv-
ing the hsd model. The second allows the construction of a search direction
symmetric w.r.t. duality, which, as we described in the previous section, is a
highly desirable property. However, this feature also implies at least two crucial
disadvantages:

1. In many cases, the conjugate (dual) barrier, its gradient and Hessian are
not available in closed form or are not easily computable.

2. The use of Hessians of both the primal and dual barrier in de�ning the
search direction means that the linear systems that must be solved in each
iteration double in size compared to the standard pdipm for self-scaled
cones.

The �rst of these two points means that the methods are restricted to be ap-
plicable only to problems involving cones for which the conjugate barrier and



4.4 Nonsymmetric cones 51

its derivatives are easily computable. This, however, is not the case even for
simple examples. As an example, consider the three dimensional power cone
(see de�nition in (2.7.15)). The function

Fα(x) = − log
(
x2α2 x

2(1−α)
3 − x21

)
− log x2 − log x3 (4.4.1)

was shown by Nesterov in [39] to be a lhscb-function with parameter 4 for
the three-dimensional power cone. However, its conjugate function can not be
written in closed form. Although a method was derived in [39] to compute the
value of the conjugate barrier for this particular cone, still the gradient and
Hessian are unavailable. So indeed the assumption of availability of both primal
and conjugate barriers and their derivates is quite restrictive.

The second disadvantage mentioned above is more straight-forward: The de�ni-
tion of the search direction involves Hessians of both the primal and conjugate
barrier. They appear in the de�nition in such a way that the system of linear
equations needed to be solved is twice the size of that possible in a pdipm for
self-scaled cones. This makes each iteration signi�cantly slower as the solution
of the linear system is the dominating computational work in each iteration.
So even though the iteration bound obtained in [43] matches the best-known
bounds for pdipms, namely O(

√
n log (1/ε)), each iteration is slower and in this

respect, the algorithms therefore compare infavorably.

4.4.2 Nesterov 2006

The method discussed in this section was published in [39] in 2006. In this
paper, some of the disadvantages of the algorithms mentioned in the previous
section are remedied.

First and foremost, the primal barrier, its gradient and Hessian and just the
value of the conjugate (dual) barrier are required. I.e. the gradient and Hessian
of the conjugate barrier are not used. Secondly the search direction is de�ned so
that the linear system that must be solved has the same size as those occuring
in a pdipm for self-scaled problems. This latter property greatly increases the
practical performance of the algorithm.

Drawbacks of the algorithm include that it allows only starting from a strictly
feasible starting point. Indeed, it proposes a phase-I method (see Section 5.1)
to produce such a starting point. As we discussed in Section 5.1, this is not a
very desirable property from a practical viewpoint as one must solve two equally
sized problems in order to solve the original problem. In spite of the inferior
worst-case complexity estimate of infeasible-start ipms (see Section 3.2.4), their



52 Convex Conic Programming

real-life popularity and applications far exceed that of feasible-start algorithms.
Since a similar discrepancy between theory and practice might be present for the
case of nonsymmetric cones, it may leave room for improvement to solely focus
on a feasible-start algorithm. It should also be mentioned that the analysis
of the algorithm is somewhat simpler when only feasible starting points are
considered. This is a signi�cant advantage from a theoretical viewpoint.

4.5 Skajaa-Ye 2012: A Homogeneous Interior-

Point Algorithm for Nonsymmetric Convex

Conic Optimization

Our contribution to the area of interior-point methods for nonsymmetric convex
conic optimization is included as an original research paper in appendix A.

4.5.1 Overview

The main objective of the paper is to introduce and analyze a novel interior-point
algorithm able to solve convex conic optimization problems involving nonsym-
metric cones.

The contribution to the �eld is three-fold:

1. The new algorithm introduced remedies some of the drawbacks of the
algorithms brie�y outlined in the two previous sections. Speci�cally, it uses
exclusively the primal barrier function, its gradient and its Hessian. Thus
the dual barrier is not needed in any form which is signi�cant practical
improvement compared to previous methods. A proof of convergence and
worst-case complexity is included (see outline further below).

2. An extensive series of numerical experiments with the algorithm is carried
out. Comparisons are made with previous less general algorithms. Thus
the paper adds to the extremely limited body of knowledge concerning
practical performance of interior-point methods for nonsymmetric cones.
The numerical results are overall positive, particularly when considering
the very general nature of this algorithm.

3. The algorithm is designed with high practical performance in mind. Firstly,
the algorithm solves the homogeneous model (see Section 2.7.4) which im-



4.5 Skajaa-Ye 2012: A Homogeneous Interior-Point Algorithm for

Nonsymmetric Convex Conic Optimization 53

plies the ability to start from any infeasible point and allows for infeasibil-
ity detection. Secondly, we introduce two heuristic techniques to speed up
convergence. These techniques are inspired by similar practice employed
in ipms for symmetric cones.

The paper is organized in two main parts. In the �rst, theoretical issues are
discussed, the algorithm is presented and a proof that the method converges in
O(
√
ν log (1/ε)) iterations is carried through via a series of lemmas. Here, ν de-

notes the barrier parameter of the barrier for the cone in the conic formulation
of the problem (see Section 2.5.1). This complexity estimate thus matches the
best-known estimates for ipms symmetric cones, cf. Section 3.2.1. All theoret-
ical results are included in the main text, emphasizing asymptotic complexity
behavior, but the proofs are diverted to the appendix to make the main text
clean and maximally readable. In the second part, details related to the actual
implementation of the algorithm are presented. We introduce heuristic methods
to increase convergence speed and then present an extensive series of computa-
tional results substantiating the e�ectiveness and practical applicability of our
algorithm.

4.5.2 Theoretical results

The proof of convergence and the worst-case iteration complexity result con-
stitutes a major part of this paper. The algorithm is composed of two main
phases: 1. Prediction and 2. Correction.

The prediction phase essentially consists in taking a step in the direction ap-
proximately tangent to the central path. This improves optimality, but possibly
worsens centrality.

The correction phase consists of repeatedly improving the centrality enough that
another prediction step can be taken, thus returning to prediction.

The proof procedes by �rst analyzing the prediction phase. First, a lower bound
on the step length is established ensuring the we do not stray to far from the
central path while still maintaining feasibility (Lemmas 4 and 5). Lemma 6
then shows that the correction phase needs no more than two steps in order to
su�ciently restore centrality. Finally, Theorem 1 guarantees that the algorithm
reaches an ε-optimal point in no more than O(

√
ν log (1/ε)) iterations.



54 Convex Conic Programming

4.5.3 Computational results

The second part of the paper �rst introduces two heuristic ways to speed up
convergence.

The �rst is an adaptation of the Mehotra second order correction [34] term,
which is known to signi�cantly improve practical performance of ipms for linear
and quadratic conic problems [34, 2, 54]. With the same goal in mind, we suggest
a new way to compute a search direction containing second order information
for the general (possibly non-self-scaled) conic problem. We show how the �nal
search direction can be viewed as a type of Runge-Kutta method to solve an
ordinary di�erential equation.

The second improvement is an application of quasi-Newton updating of the
Hessian of the barrier function to reduce the number of full matrix factorizations
needed. It is shown how this can be done in a way retaining the possibility to
exploit sparsity in A.

Following the description of these techniques, an extensive series of computa-
tional experiments are presented. All the problems solved can be modelled
using the non-negative cone, the exponential cone and the power cone (see
Section 2.7.3). The performance of the algorithm is evaluated on 1. facility
location problems, 2. p-cone problems, 3. geometric programs and 4. entropy
maximization problems. The instances of the two latter are based on �real-life�
data, the p-cone problems use data from NETLIB [44] and the facility location
problems are randomly generated. The algorithm is compared to Mosek [36]
and CVX/SeDuMi [24]. The full details about computational performance of the
algorithm is included in tables in the paper in appendix A. Please note that
because of space constraints, the tables occuring in the main text of the paper
have been shortened, while the full-length tables are to be o�ered as electronic
supplements. For the sake of completeness of this thesis, the full-length tables
have been included in the very end of the paper, i.e. following the references
within the paper.



Chapter 5

Initialization and
Warmstarting

In Section 3, we described both feasible start and infeasible start algorithms
for linear programming. When discussing the �rst kind, we tacitly assumed the
availability of a feasible starting point. As we saw, infeasible-start algorithms
allow the use of a starting point that does not necessarily satisfy the linear
equality constraints. Complexity results for the infeasible-start long-step ipm

guarantee convergence to the solution set for any starting point in the positive
orthant. However, this is a large set and from a theoretical point of view, nothing
gives us information about which one to choose.

Nevertheless, it is not uncommon that the iteration count for an interior-point
algorithm starting in one particular point may be several times that of a good
point for the same problem. For this reason alone, this issue deserves attention.
In this chapter, we �rst outline the common heuristics that are somewhat agreed
upon constitute good pointers as to what a good starting point is.

We then move on to the question of warmstarting an interior-point algorithm:
How does one utilize information from one optimization problem when solving
a similar, but di�erent problem? It is well established, that this is a property
present with active set methods, and it is probably one of several reasons for
some to prefer e.g. the simplex method over an interior-point method. Indeed



56 Initialization and Warmstarting

it is widely perceived that is di�cult to successfully warmstart an interior-point
method. After describing the issue in greater detail, we move on to presenting
our contribution to this �eld: a scienti�c paper by Skajaa, Andersen and Ye
published in the journal Mathematical Programming Computation in 2013. The
full reference is [50]. In it, we develop theory and provide empirical support for
two new methods to generate warm starting points for interior-point methods
based on the homogeneous and self-dual model. We include only parts of the
results in the main text � the paper may be found in its full length in appendix
B.

Following the presentation of our paper [50], we demonstrate in an application
closer to reality, how our warmstarting scheme may be used to speed-up the
internal computations that take place when a process is being controlled under
the regime called Model Predictive Control (mpc). In this thorough case study,
we work out the details of applying our warmstarting scheme in a smart energy
system where �exible consumers (a �eet of electric vehicles) help balance the
electricity grid which is supplied partly by classical power plants and partly by
stochastic renewable energy sources (wind turbines). To further substantiate
the applicability of the warmstarting schemes in model predictive control, we
measure their performance against a standard benchmark known as the OPTEC
Online QP Benchmark Collection, which is a collection of series of quadratic
programs all stemming from real applications in optimal control.

Warmstarting interior-point methods has so far been studied mostly for the case
of linear programming, although even for that class of problems, it is still not a
very well understood subject. The most recent references in this direction are
[8, 14, 16, 22, 23, 27, 31, 48, 63].

5.1 Initialization of interior-point methods

The feasible start algorithms described in Section 3 require a starting point
(x0, y0, s0) satisfying

Ax0 = b

AT y0 + s0 = c (5.1.1)

x0 > 0, s0 > 0

The problem of determining such a feasible starting is generally of the same
complexity as solving the linear program itself with a feasible point available!
In practice, this task can be carried out by solving a di�erent but similarly
sized lp whose solution is a feasible point for the original lp. This procedure



5.1 Initialization of interior-point methods 57

is commonly called a phase-I method. Thus, we must complete two executions
of the solution algorithm to �nd the �nal solution. If we use the feasible long-
step method (see Section 3.2.3), they have the worst-case iteration complexity
O(n log (1/ε)).

An alternative is o�ered by the infeasible start long-step interior point algorithm
which we described in Section 3.2.4. It allows starting from any point that
satis�es x0 > 0, s0 > 0. That is, the two �rst equations of (5.1.1) need not be
satis�ed. This eliminates the need for a phase-I method but it increases the
worst-case complexity to O

(
n2 log (1/ε)

)
.

One might argue that two executions of an algorithm with iteration complex-
ity O(n log (1/ε)) is much better that one execution with iteration complexity
O
(
n2 log (1/ε)

)
, since, in all but trivial cases, we have n2 � 2n. However, worst-

case complexity results are not predictions of the actual practical behavior of an
algorithm. Indeed the infeasible-start long-step ipms are by far the most pop-
ular and applied types of interior-point algorithms today because they perform
superiorly in practice.

Theoretical complexity results for the infeasible-start long-step ipm guarantee
convergence to the solution set for any starting point satisfying x0 > 0 and
s0 > 0. Still, the question remains: which one to choose?

This is largely an unanswered question. Computational experience suggests,
however, that the performance of an interior-point algorithm depends crucially
on a good starting point. It is not uncommon that the iteration count for one
starting point can be several times that of a good one for the same problem.

It is the general perception that a good starting point should satisfy at least
two properties: First, it should be well centered. That is, the quantites x0i s

0
i ,

i = 1, 2, . . . should not be too di�erent. This is measured by use of some
centrality measure, e.g. ‖ψ(x0, s0)‖, see Section 3.1.1. Secondly, the magnitude
of infeasibility should be roughly the same as that of the initial complementarity
gap. That is, the point should not have ‖Ax0 − b‖ very large while µ(x0, s0) =
(x0)T s0/n is tiny or vice versa. This is due to the fact that the algorithm
decreases the linear residuals and the complementarity gap at roughly the same
rate. Therefore, if one is much smaller than the other, it will lead to blocking
in the step size, preventing fast progress in the larger of the two. This will
eventually deteriorate performance.

It is trivial to �nd a well-centered point (take, for example, x = e, s = e where
e is the vector all ones), but not one that is simultaneously not too infeasi-
ble. There exist heuristics for choosing a starting point aiming at the above
properties, see for example [58].



58 Initialization and Warmstarting

In Section 2.7.4, we described the hsd model: a linear program (in fact, a
feasibility problem) that, when solved, provided either a solution to the original
lp or a certi�cate of infeasibility. The chosen starting point is, by construction,
feasible for the problem. Similarly to the infeasible-start long-step algorithm,
this eliminates the need for a phase-I method. But unlike the latter, the hsd
model has the advantage, that the point x = e, s = e, y = 0, τ = 1, κ = 1 is
feasible and is perfectly centered. Therefore, we might expect, although we have
no theoretical justi�cation for this expectation, that this trivial starting point is
a good one. Indeed, some computational experience shows that solving the hsd
model performs well when simply using this trivial starting point[1, 2, 54]. This
is a property that we will exploit in our contribution to this �eld, see Section
5.3.

The discussion above applies to linear programming problem as well as to general
conic programs (see Section 4). Here, the initial point must satisfy x ∈ K and
s ∈ K∗ and in this area, the existing knowledge about starting points is even
more limited that in the case of linear programming.

5.2 Warmstarting

Although �nding a consistently good starting point for an ipm, dependent on
the data A, b, c, would be very desirable, it may be a goal set too high. Instead,
a situation that has been studied to a certain extent is that of warmstarting
(sometimes called hotstarting) optimization algorithms. Here, one attempts to
construct a good starting point for the algorithm using available information
about the speci�c optimization problem at hand. This information may, for
example, be in the form of a solution of a di�erent but similar optimization
problem of the same type.

Assume that one needs to solve a sequence of di�erent but presumably related
optimization problems. Let x? denote the solution to an optimization problem
P. The aim is then to use the information contained in x? to initialize the
optimization algorithm at a particularly good (i.e. �warm�) point when solving
P̂, a related but di�erent problem. Hopefully this will enable us to solve P̂ using
less computational e�ort than had we not known or used x?.

It is well established computationally that active set methods, such as the sim-
plex method for linear programming, are well able to use the information from
x∗ when restarted to solve P̂. Since the simplex method works by identifying
the optimal basis, the success of the warmstart depends on how many of the
active constraints change to inactive and vice versa. Generally, however, the



5.2 Warmstarting 59

solution of an optimization problem does not depend continuously on the data,
i.e. the solution can �jump� even when the problem is perturbed an arbitrarily
small amount. So even for the simplex method, there is no theoretical guarantee
of a large improvement when warmstarting.

In fact, from a theoretically viewpoint, it seems sensible to be modest in our
expectations about the gains from warmstarting in general. Let the linear pro-
gram {minx c

Tx, s.t. Ax = b, x ≥ 0} be denoted by lp(A, b, c) and let x? be its
optimal primal solution. It was shown in [33] that the existence of a strongly
polynomial time algorithm1 for {given x?, solve lp(A, b, c)} would imply the
existence of a strongly polynomial time algorithm for {solve lp(A, b, c)}. Here
�solve� means (a) �nding an optimal solution and a certi�cate of optimality or
(b) certify that no such solution exists. Thus even checking whether a given
point is primal optimal (even if the point actually is a primal optimal solution)
may potentially be as hard as simply solving the problem from scratch.

Yet computational experience for the simplex method shows that in many cases,
warmstarting can indeed bring a large improvement. It is interesting to ask
whether warmstarting can also bring practical improvement to interior-point
methods in spite of the above theoretical result. Since interior-point methods
are applicable to a wider range of problems than active set methods (an example
is general convex conic problems), the overall gain may be even larger if succesful
warmstarting schemes can be devised for interior-point algorithms.

It is widely perceived that it is hard to warmstart ipms. The main reason is
that if the solution x? of P is on the boundary of the feasible region, then x? is
likely to also be close to the boundary for P̂ but not well-centered. At an iterate
that is close to the boundary but not well-centered, ipms generally behave badly
producing either ill conditioned linear systems or search directions that allow
only tiny step sizes. For that reason, progress towards the solution of P̂ is very
slow and often it would have been better to simply coldstart the ipm. For the
problem classes usually considered x? is e�ectively always on the boundary of
P.

Recent work on this topic includes [8, 14, 16, 22, 23, 27, 31, 48, 63], most
often for the case of Linear Programming (lp). Common to several of these
approaches is the requirement of more information from the solution process of
P than just the �nal solution x?. In both [23] and [63], for example, a pool of
primal and dual (non-�nal) iterates from the solution process of P is required.
Other approaches include (a) further perturbing P̂ to move the boundary and
in that way avoid tiny stepsizes [31] and (b) allowing decreasing infeasibility
of nonnegativity constraints yielding an �exterior point� method, see e.g. [48].

1see [62] for a de�nition



60 Initialization and Warmstarting

Computational results from several of the above references are generally positive
in that they obtain reductions in the number of interior point iterations on the
order of about 50% when perturbations are not too large. A problem often
incurred, however, is a relatively costly procedure to compute the warm point.
This is in particular seen in the comparisons of di�erent warmstarting schemes
in [27]. Very recently, a warm-starting method based on a slack-approach was
introduced in [16]. Extra arti�cial variables are introduced to avoid any of the
two above mentioned drawbacks and the method exibits promising numerical
results. For further information about previous work on warmstarting ipms, see
also the thorough overview in [16].

In the following section, we brie�y describe our �rst original contribution to this
line of research in the form of the original research paper [50].

5.3 Skajaa-Andersen-Ye 2012: Warmstarting the

homogeneous and self-dual interior point method

for linear and conic quadratic problems

5.3.1 Overview

The contents of this and the following sections is an overview of the paper in
appendix B.

The contribution of the paper is to introduce two warmstart strategies that use
only the �nal optimal iterate of the solution of P and has low computational
complexity. Further they are applicable to general convex conic problems. One
of the strategies, wp, uses only the primal optimal solution x? while the other,
wpd, uses the primal x? and the dual optimal solution (y?, s?) of P.

There are several reasons motivating these schemes. Firstly, optimization soft-
ware is often used as black-box subroutines that output only �nal iterates.
Hence intermediate non-optimal iterates or internal algorithmic variables may
not be available at all. In such a situation, both strategies are useful. Secondly,
sometimes just one optimization problem is to be solved, but a user with tech-
nical insight into the particular problem may know a good guess for the optimal
primal solution. This information should be possible to utilize without requiring
a guess for the dual solution as well. In this situation, the strategy wp is useful.

In overview, the warmstarting schemes introduced have the following distinctive



5.3 Skajaa-Andersen-Ye 2012: Warmstarting the homogeneous and

self-dual interior point method for linear and conic quadratic problems 61

features when compared with previously suggested warmstarting strategies:

� They both require virtually zero computational e�ort to compute

� They both require only the �nal solution from the previous solution pro-
cess (no pool of previous iterates)

� One requires only the previous primal solution

� The other requires both the previous primal and dual solution

� They are devised specially for the hsd model and thus maintain the ad-
vantages introduced by solving this model (see Section 2.7.4).

� They are applicable to general convex conic programming

Assume that x? is the primal optimal solution and (y?, s?) the dual optimal
solution of a linear program P. Further let λ ∈ [0, 1) and µ0 > 0 be (user
chosen) parameters. The two warm starting points for the initialization of a
related but di�erent linear program P̂ are then:

(wp)





x0 = λx? + (1− λ)e
s0 = µ0(x0)−1

y0 = 0
τ0 = 1
κ0 = µ0

(wpd)





x0 = λx? + (1− λ)e
s0 = λs? + (1− λ)e
y0 = λy?

τ0 = 1
κ0 = (x0)T s0/n

(5.3.1)

Here, (x0)−1 denotes the elementwise reciprocal of x0.

As previously discussed, some computational experience[1, 2, 54] indicates that
the starting point c := (e, 1, 0, e, 1) seems to work well for the initialization of
an interior point method to solve the hsd-model. We will call this starting
point the cold point. We can view the starting point wpd in (5.3.1) as a convex
combination of (x?, y?, s?) and the cold starting point c. Thus, hopefully, wpd is
a point closer (in some sense) to the solution of P̂, but incorporation of (1−λ)c
introduces enough centrality to avoid tiny step sizes. The point wp is identical
to wpd for the primal variable, but, as we restrict ourselves to using only primal
information, we cannot do the same for the dual variables. Instead we choose s0

so that the point is perfectly centered and has a prescribed duality gap, namely
µ0.

The paper contains two main parts: 1. Some mainly theoretical results proving
improved theoretical complexity when warmstarting under certain conditions
and 2. A series of numerical experiments substantiating that the warmstarting
strategies are useful in practice.



62 Initialization and Warmstarting

5.3.2 Theoretical results

The proof in the �rst part establishes that under certain conditions, the warm-
starting schemes indeed improve worst-case theoretical complexity. This is done
by noting that by applying the Mizuno-Todd-Ye feasible predictor-corrector ipm
(see Section 3.2.2), the worst-case iteration complexity is O

(√
n log (Ψ(z0)/ε)

)

when using the initial point z0 ∈ N2(η) with η ∈ (0, 1), see Section 3.1.1. Here,

Ψ(z) = max
{
µ(z), ‖Ax− bτ‖, ‖AT y + s− cτ‖

}
.

See [62] for a proof of this complexity result.

To obtain a better worst-case complexity than starting in c, we would need to
initialize the algorithm in a point z0 satisfying Ψ(z0) < Ψ(c), which is certainly
satis�ed if

µ(z0) < µ(c), ‖Ax0 − bτ0‖ < ‖Ae− b‖, ‖AT y0 + s0 − cτ0‖ < ‖e− c‖.
(5.3.2)

Our paper's proof of improved worst-case complexity when warmstarting then
proceeds by showing the conditions exist under which the three inequalities in
(5.3.2) and z0 ∈ N2(η) hold. See the paper in appendix B for further details.

5.3.3 Computational results

The second part of the paper present an extensive series of computational exper-
iment documenting that the warmstarting schemes indeed are useful in practice.
The proposed schemes are tested on the generic test set of lps from NETLIB
[44] as well as real-life problems arising in �nancial portfolio optimization. The
latter problems are mixed linear and quadratic conic problems and the positive
results thus support the previous claim that the schemes are applicable to more
general convex conic programming.

To quantify the performance improvement from warmstarting, we use the fol-
lowing measures. Let Icold and Iwarm denote the number of iterations needed
to solve P̂ from a cold- and warmstart respectively. We then de�ne the measure

R = Iwarm/Icold

to quantify the gain from warmstarting. If R < 1 the warmstarted run was
more e�cient than the coldstarted and vice versa.



5.3 Skajaa-Andersen-Ye 2012: Warmstarting the homogeneous and

self-dual interior point method for linear and conic quadratic problems 63

For an entire sequence of problems P1, . . . ,PK we de�ne

GcoldI = K

√
Icold1 · · · IcoldK

GwarmI = K
√
Iwarm1 · · · IwarmK

GR = K
√
R1 · · ·RK

= GwarmI /GcoldI ,

the geometric means of the quantities Icoldi , Iwarmi and Ri. When GR < 1, the
warmstarting strategy was more e�cient in solving the sequence of problems
alltogether than had we coldstarted the algorithm � and vice versa. We count
iterations since the main iterations of an interior point method constitutes the
majority of computational work involved. Since the computational e�ort needed
to compute the warm points is negligible, cf (5.3.1), the reduction in CPU-time
will be the same as that measured in terms of iterations.

The experiments generally show work reductions when warmstarting compared
to coldstarting in the range 30%�75% depending on the problem class and mag-
nitude of the problem perturbation.

A particularly illustrative result is that of solving the NETLIB benchmark test
set of lps with varying problem perturbation. In this experiment, we perform
the following sequence for each problem in the NETLIB test set.

1. Solve the problem P = lp(A, b, c), and store solution in x?, y?, s?.

2. Compute the warm starting point wp and wpd according to (5.3.1).

3. Randomly perturb the problem into a new problem P̂ = lp(Â, b̂, ĉ)

4. Solve the new problem P̂ initializing the algorithm from c, wp and wpd.

5. Count the number of iterations spent solving the new problem both from
the cold point c and the warm points wp and wpd.

Let v be a vector we want to perturb randomly (think of either b, c or the vector
of nonzeros of A). Assume v has M elements. An element in v is changed if a
[0, 1]-uniform randomly chosen number is less than min{0.1, 20/M}. Thus on
average, we change 10% but at most 20 elements of v. Notice that we this way
preserve the sparsity pattern of v. An element vi is changed by setting

vi :=

{
δr if |vi| ≤ 10−6

(1 + δr)vi otherwise



64 Initialization and Warmstarting

Figure 5.1: Results from the NETLIB test set of lps with λ = 0.99 and µ0 =
0.01 and varying δ. Each data point in the �gure corresponds to
solving all problems in the NETLIB test set with the problem-
perturbation speci�ed in the legend for a certain value of δ.

where r is a number chosen randomly from a uniform distribution on [−1, 1].
The scalar δ is a parameter that controls the pertubation magnitude.

Figure 5.1 presents results for the three cases where v is either b, c or the
nonzeros of A. The �gure shows the relation between the magnitude of the
perturbation δ and reduction in the geometric mean of number of iterations. As
expected, we clearly observe that the reduction depends crucially on δ. The size
of the reduction is signi�cant as long as δ is small enough. It is apparent that
wpd is consistently better than wp. This is of course reasonable since wpd uses
more information from the solution of P than wp. Notice, however, that the
gap between wp and wpd narrows as δ grows. This too is reasonable, because
as the problem is perturbed more, the information from the primal or the dual
points can no longer be expected to be good. Thus both behave more and more
like a coldstart.



5.4 Accelerating computations in model predictive control using

interior-point warmstarting 65

5.4 Accelerating computations in model predic-

tive control using interior-point warmstart-

ing

As a more application oriented contribution to the area of warmstarting interior-
point methods, this section focusses on the optimization problems that arise in
optimal control when following the regime of Model Predictive Control (mpc).

5.4.1 Overview

Economic Model Predictive Control (mpc) for linear systems is useful for solu-
tion of a number of control problems arising in smart energy systems. Economic
MPCs can be formulated as sequences of linear programs. In this section we ap-
ply the homogeneous and self-dual interior-point algorithm to solve these linear
programs. This enables the use of the novel warmstarting strategy for mixed
linear and conic quadratic optimization problems presented in Section 5.3. We
demonstrate the e�ciency of this warmstarting strategy when used for economic
mpc as well as mpc resulting in a sequence of quadratic programs. Compared
to an implementation not making use of warmstarting, our scheme results in
a reduced number of iterations and therefore a more e�cient method which is
useful in time-critical applications.

The charging of the batteries in electrical vehicles as well as the control of a
portfolio of power generators are examples of processes that can be e�ciently
controlled by economic mpc. The series of lps that must be solved comprises
problems where each instance is closely related to the next. We conduct com-
putational experiments with these problems, showing that in this case compu-
tational work load can be reduced by about 25�40% using our warmstarting
scheme.

We then further substantiate the usefulness of our warmstarting scheme by
conducting experiments for �ve di�erent test sets of qps arising from di�erent
linear mpc applications. These sets are from the OPTEC Online QP Benchmark
Collection [46]. For these problems, the warmstarting scheme exhibits work
reductions of 65%�83%.



66 Initialization and Warmstarting

5.4.2 Introduction

Model predictive control requires solution of optimization problems in real-time.
Consequently, until recently mpc has been limited to slow systems with ample
time for solution of the optimization problem. To expand the types of processes
that can be controlled by mpc, intensive research has been conducted to improve
the computational e�ciency of optimization algorithms. Examples include au-
tomatically generated tuned code [32] and intelligent warmstarting of active set
methods [18]. In the mpc regime, an optimization problem P � most often
either a linear program (lp) or quadratic program (qp) � must be solved in
each sampling instant. Since each problem usually does not di�er much from the
next, the entire solution process involves solving a sequence of closely related
optimization problems. In case online solution of the optimization problem is
needed, an obvious idea to reduce computation time is to somehow utilize the
information contained in the solution x? of the problem P when solving P̂, the
next problem in the sequence. In this section, we demonstrate how to implement
this idea by using warmstarting of the homogeneous and self-dual interior-point
method (ipm) for mixed linear and conic quadratic optimization. Speci�cally,
we show how the warmstarting strategy from [50] (included in appendix B)
can be suitably modi�ed to work well for the sequences of problems that arise
from economic mpc generating sequences of lps and for linear mpc generating
sequences of qps.

The following sections are structured as follows: First the general framework
for mpc is introduced followed by a presentation of how to generate the warm
starting point and a demonstration of how to e�ciently use it for the case of
mpc. We then turn to a particularly interesting case study, which focusses on
smart energy systems and its model predictive control scheme. For this case
study, we present simulation results as well as numerical results showing that
the warmstarting strategy indeed is e�cient in practice for these sequences of
lps. Finally, the e�ciency of the warmstarting strategy is further substantiated,
where we use it on sequences of qps from di�erent linear mpc applications.

5.4.3 Model predictive control

In this work, we exclusively deal with mpc for linear discrete time state space
systems on the form

xk+1 = Axk +Buk + Edk (5.4.1a)

yk = Cxk +Duk + Fdk. (5.4.1b)



5.4 Accelerating computations in model predictive control using

interior-point warmstarting 67

Here, x is the state vector, u the manipulable variable, d a disturbance and y
the output. Subscripts are indices for time-steps.

In traditional tracking control, the objective is to minimize the error between a
given reference r and the measured output. When implemented as an mpc, the
error is often penalized using the Euclidean norm. This approach leads to the
following optimization problem to be solved over the prediction horizon N :

min
{y,u,x}

f(y, u, x) (5.4.2a)

s.t. xk+1 = Axk +Buk + Edk (5.4.2b)

yk = Cxk +Duk + Fdk (5.4.2c)

umin ≤ uk ≤ umax (5.4.2d)

ymin ≤ yk ≤ ymax (5.4.2e)

i.e. minimize some cost function (or penalty function) subject to the vari-
ables respecting the discrete time state space system and stay within prede�ned
bounds.

For tracking problems in which the Euclidean norm is used as a penalty for
deviation, (5.4.2) becomes a qp with an objective function of the form

f(y, u, x) =
1

2

N−1∑

k=0

||yk − rk||2Q + ||uk − uk−1||2R (5.4.3)

The weights Q and R are tunable and a regularization term has been added.
At every time step k the goal is to compute {uk}N−1k=0 such that the predicted

output trajectory {yk}N−1k=0 follows the speci�ed output trajectory {rk}N−1k=0 as
well as possible. N is the prediction horizon, which is normally chosen quite
large in order to avoid discrepancies between open loop and closed loop pro�les.
The �rst control input u∗0 is then applied to the system. As new information
becomes available at the next sampling time, we redo the process of solving the
optimization problem using a moving horizon and keep applying the �rst control
input u∗0 of the solution to the system. The input and output constraints are
inherently taken into consideration and handled by this optimal controller.

In the case where the objective function is instead the actual cost of operating
the system we obtain a so-called economic mpc. When there is only a cost
associated with control action u the objective is linear and the problem (5.4.2)
reduces to an lp with

f(y, u, x) =

N−1∑

k=0

cTk uk. (5.4.4)



68 Initialization and Warmstarting

The costs enter the optimization problem as the coe�cients ck, which must be
forecast over the entire prediction horizon, i.e. for k = 0, . . . , N − 1. Similarly,
we must model and forecast the disturbances {dk}N−1k=0 . If the forecasts are of
high quality and there are no unmodelled disturbances, then the solution does
not change very much from one time step to the next. We might expect that
the solution for time k = 0 shifted one time step is very similar to the solution
at k = 1. Shifting in time corresponds to removing the �rst element in u∗0 and
adding an end point at k = N − 1 with a quali�ed guess of the solution, for
example the previous last element of u∗. Consequently the mpc-setup is an
ideal candidate for warmstarting. Both lps and qps as described above will be
treated in the following sections.

5.4.4 Warmstarting problem in mpc

The mpc problems from Section 5.4.3 have the following generic form after
eliminating the states from (5.4.2):

minz f(z)
s.t. ` ≤ z ≤ u

d` ≤ Kz ≤ du

(5.4.5)

which we will bring into standard form as follows: The simple bounds ` ≤ z ≤ u
are equivalent to z1 + z2 = u − ` with z1, z2 ≥ 0 and z1 = z − `. De�ning
z3 = Kz−d`, we further get that d` ≤ Kz ≤ du gives −Kz1 +z3 = K`−d` and
z1+z4 = du−d` where z3, z4 ≥ 0. Altogether we get the standard form-problem

min
z1,z2,z3,z4

f(z1 + `), s.t. (5.4.6a)




In In 0 0
−K 0 ImK

0
0 0 ImK

ImK







z1
z2
z3
z4


 =




u− `
K`− d`
du − d`


 (5.4.6b)

(z1, z2, z3, z4) ≥ 0 (5.4.6c)

where mK is the number of rows in K, n is the number columns in K and Im
denotes the identity matrix of size m×m. Notice that the number of nonzeros
in the linear constraint matrix in 5.4.6b is essentially the same as that of K.
The function f is the cost function which, for the case of mpc problems in this
study, is either a linear function making (5.4.6) an lp or a quadratic function
making (5.4.6) a qp.

In the case of an lp, the problem is directly applicable to the homogeneous and
self-dual interior-point algorithm which was implemented and used extensively



5.4 Accelerating computations in model predictive control using

interior-point warmstarting 69

in computation experiments in the paper from Section 5.3. For the full describ-
tion of the algorithm, see Section 4 in the paper in appendix B. In order to apply
it to a qp, we need to model the quadratic cost function using the quadratic
cone to bring the problem onto the stadard conic form (2.7.1). For this purpose,
consider the optimization problem minz∈A{zTQz/2}, where A denotes an a�ne
set and Q is symmetric and positive de�nite with Cholesky factor L. We can
then model this problem by

min
p,t,v,w

t (5.4.7a)

subject to v + w =
√

2t (5.4.7b)

v − w =
√

2 (5.4.7c)

p ∈ LA (5.4.7d)

‖(y, w)‖2 ≤ v (5.4.7e)

which contains a quadratic cone constraint in (5.4.7e) and the problem is indeed
on the form (2.7.1).

Let us now describe in detail an e�ective way to apply the warmstarting strate-
gies of the paper in appendix B to our mpc problems. Since we have available
both the primal and the dual solution of the previous problem in the sequence,
we will use the strategy denoted wpd (see [50]).

Assume (z?1 , z
?
2 , z

?
3 , z

?
4 ,m

?
1,m

?
2,m

?
3, s

?
1, s

?
2, s

?
3, s

?
4) is the primal and dual optimal

solution of P, an optimization problem of the type (5.4.6) in the sequence of
problems that we need to solve. Here, zi denote the primal variables,mi the dual
multipliers and si the dual slacks. The next problem in the sequence is denoted
P̂, for which the horizon has moved one time step. It is then reasonable to
expect that the point ẑi := ([z?i ]2:n, [z

?
i ]n), for i = 1, . . . , 4 is close to the primal

optimal solution of P̂. De�ne similarly ŝi := ([s?i ]2:n, [s
?
i ]n). The dual problem

of (5.4.6) is linearly constrained by




In −KT 0
In 0 0
0 ImK

ImK

0 0 ImK







m1

m2

m3


+




s1
s2
s3
s4


 =




c
0
0
0


 (5.4.8)

from which we can deduce m1 = −s2, m2 = −s3 − s4 and m3 = −s4. For that
reason we de�ne m̂1 = −ŝ2, m̂2 = −ŝ3 − ŝ4 and m̂3 = −ŝ4. We will then use
the starting point wpd to initialize our homogeneous interior-point algorithm to



70 Initialization and Warmstarting

solve P̂:

z0 = λẑ + (1− λ)e
s0 = λŝ+ (1− λ)e
m0 = λm̂
τ0 = 1
κ0 = (z0)T s0/N

(5.4.9)

where λ ∈ [0, 1] is a parameter and e is unit vector de�ned in Section 4.4 in [50]
(Appendix B). The starting point is thus a convex combination of the shifted
previous solution (ẑ, m̂, ŝ) and the point (e, 0, e), which we will call the cold
starting point. This cold point is commonly used in ipms for solving the hsd-
model, see e.g. [53]. Choosing λ close to 1 implies a certain a risk of starting
close to the boundary of the feasible region while λ = 0 results in the perfectly
centered cold point. It is shown in [50] that, under certain conditions, the
initialization of an ipm to solve hsd in the above starting point results in a
better theoretical worst-case complexity.

5.4.5 Case study: Smart energy system

We now study a particular mpc scenario from smart energy systems. This case
study results in linear economic mpc, which as usual requires the solution of a
sequence of lps and is therefore well suited for the warmstarting scheme outlined
in the previous section. We �rst present the system under consideration and then
show simulations results and numerical results from warmstarting experiments.

A smart energy system essentially consists of a number of �exible consumers
along with a stochastically varying power production. Here ��exible� means
that the consumers are able to expedite or delay their consumption upon request
while staying within certain limits. This situation occurs when part of the power
production comes from renewable energy sources that are di�cult to accurately
predict such as wind or solar. Balancing the power at all time scales therefore
requires a high level of coordination between producers and consumers. On the
timescale of minutes conventional power plants must control their production in
the cheapest possible way while meeting the load demand imposed by consumers.

In this case study we use economic mpc to minimize the power plant production
costs. An aggregated �eet of electric vehicles (EVs) is available and can be used
as �exible storage to help balance the load but they have limited storage and
their prede�ned charging needs must simultaneously be satis�ed. Finally, the
model must also take into account the �exible consumers. This setup results
in a large-scale optimization problem to be solved in each time instance. Using



5.4 Accelerating computations in model predictive control using

interior-point warmstarting 71

warmstarting, we demonstrate that computation time can be reduced which will
allow the solution of even larger systems.

A smart energy system. The following transfer function models describe
the dynamics of the individual components considered in this case study of a
smart energy system:
(a) Power plant:

yp =
Kp

(τps+ 1)3
up (5.4.10)

where up denotes the set point controlling the output power production yp. The
parameters τp and Kp represent time constant and gain [26].
(b) Wind farm:

xw =
Kw

τws+ 1
dw (5.4.11)

where dw is the wind speed input and xw is the produced power.
(c) Electric vehicle:

yv =
1

s

(
η+u+ − 1/η−u− − dv

)
. (5.4.12)

Here, yv denotes the state of charge in�uenced by the charge and discharge
signals, u+ respectively u−, with e�ciency η. The charging need of the EVs
is denoted dv and are thus modelled by a disturbance. In order to reduce the
problem size, the EVs are modeled as one large aggregated battery storage.
The resulting aggregated charge and discharge plan can be submitted to a lower
level controller or aggregator that can manage each EV and make sure that
the aggregated response is ful�lled. Note that the charging and discharging
constraints should be quite conservative since they depend on the availability
of the EVs, i.e. it is assumed that an EV is not connected to the grid and able
to charge while driving. Based on driving pattern analysis the availability has
been reported to be more than 90% assuming that the EV is able to charge
whenever it is parked [59].

The EV batteries naturally have a �nite battery capacity Qc that limits the size
of the EV storage such that

0 ≤ yv ≤ Qcnev (5.4.13)

where nev is the number of EVs in the �eet. The power balance yt ≥ 0 must be
nonnegative in order to meet the demand. So we set

yt = y1 + y2 + xw − u+ + u− − db ≥ 0

where db is some base load from other non�exible consumers in the energy
system.



72 Initialization and Warmstarting

State space model. We consider the case with np = 2 power plants, nw = 1
wind farm and nv = 1 EV �eet aggregated by nev = 10.000 EVs. Also a
base load nb = 1 is set as a disturbance, i.e. the reference load from all other
unmodeled power consumers that must also be supplied with energy.

The transfer functions (5.4.10)-(5.4.12) are realized in a discrete time state space
model (5.4.1) with sampling period Ts = 5s. For np = 2, nw = 1, nv = 1, nb = 1
we get the states, x, the manipulables u, disturbances d, and the outputs y:

x =
[
ẍ1 ẋ1 x1 ẍ2 ẋ2 x2 xw xv

]T

u =
[
u1 u2 u+ u−

]T

d =
[
db dw dv

]T

y =
[
y1 y2 yv yt

]T

The disturbances are modeled here but could be forecasted directly from some
other routine. Notice that the charge inputs for the EV are measured and intro-
duces a direct control action in the output through the D matrix, cf. (5.4.2c).

Economic model predictive control. Let us now apply economic mpc to
control the entire power system planning. Economic mpc for intelligent energy
systems has previously been proposed in [26]. The mpc will minimize the elec-
tricity costs of operating a number of power plants, �eets of EVs, wind farms
and consumers based on predictions of the demand, production and operating
costs over the prediction horizon. The economic mpc can in full be formulated
as

min
u

N−1∑

k=0

pTk uk +

N∑

k=0

ρvk (5.4.14)

s.t. xk+1 = Axk +Buk + Edk

yk = Cxk +Duk + Fdk

umin ≤ uk ≤ umax

∆umin ≤ ∆uk ≤ ∆umax

ymin − vk ≤ yk ≤ ymax + vk

vk ≥ 0

where k ∈ {0, 1, . . . , N} and N is the prediction horizon. Note that soft con-
straints on the power balance output are used. It is crucial to meet power
demands at all times and any imbalances will be economically penalized in a
real power market. In case of imbalance, external spinning reserves will be acti-
vated to restore the balance. Consequently, in our case the slack variable penalty
ρ could also be an actual cost or penalty for not providing enough power.



5.4 Accelerating computations in model predictive control using

interior-point warmstarting 73

Value Unit Description

np 2 � Number of power plants
nw 1 � Number of wind farms
nv 1 � Number of EV �eets
nb 1 � Number of base loads
nev 10.000 � Number of EVs
nx 3np + nw + nv � Number of states
nu np + 2nv � Number of inputs
ny np + nv + 1 � Number of outputs
nd nw + nv � Number of disturbances
K [1, 1] � Power plant gain
Kw 1 MW/(m/s) Wind farm gain
τ [1, 1] s Power plant time constant
τw 0.7 s Wind farm time constant
yp var. MW Power plant output power
xw var. MW Wind farm output power
yv var. MWh EV �eet state of charge (SOC)
u+ var. MW EV charge input
u− var. MW EV discharge input
Qc 24 kWh EV battery capacity
η+ 0.9 � EV charge e�ciency
η− 0.9 � EV discharge e�ciency
dw var. m/s Wind speed at wind farm
dv var. MW EV charge demand
db var. MW Base load power demand
umin [0,0,0,0] MW Minimum control input
umax [5,7,3,3] MW Maximum control input
∆umin [-2,-0.2,-0.6,-0.6] MW/s Minimum control ramp input
∆umax [2,0.2,0.6,0.6] MW/s Maximum control ramp input
ymin [0,0,0,0] � Minimum output
ymax [5,7,240,∞] � Maximum output
p [10,5,0,5] MW−1 Production costs

Table 5.1: Case study parameters



74 Initialization and Warmstarting

The optimal power production within the prediction horizon is the solution to
(5.4.14) and is denoted U∗ = {u∗k}N−1k=0 . This control action is calculated at
every time step k and represents a decision plan, stating when to produce and
with how much power. The EV storage charge and discharge is also part of
the decision plan. The control action is optimal in terms of economy and is
the cheapest based on the predictions and model assumptions available at time
k = 0. The �rst decision of the plan, u∗0, is implemented, i.e. a certain amount
of power is delivered to the battery at the present time step k = 0. This process
is repeated at every time step. This is the general principle of model predictive
control.

Simulation. Figure 5.2 on the next page shows the results of a closed loop
simulation of the power system described. We have used the parameters from
Table 5.1 on the preceding page. A prediction horizon of 6 min was chosen
with a 5s sampling period. The �rst plot from above shows the power plant
production and their set points. The expensive but fast power plant is used to
balance the load while the slower but cheaper power plant ramps up production.
The second plot shows how the EV �eet is controlled and the resulting charge
and discharge power. In the beginning of the simulation the EV �eet discharges
to the grid to boost production. Consequently, the EV batteries are gradually
depleted and the state of charge decreases. The charge demand from the EVs
was modeled as a sinusoid. The third plot shows overall power balance including
a base load disturbance and the wind power production. Also the power balance
yt is shown expressing the imbalances from the positive production and negative
consumption. Since we have no uncertainty on the load forecasts this imbalance
is mostly zero.

Finally, in the bottom plot the number of iterations used by our algorithm when
coldstarting (C) and warmstarting (W) is shown. We always use the solution
of P to compute our warm starting point for the initialization of our algorithm
to solve P̂. This was done as described in the preceeding pages.

The results are also shown in Table 5.2 on page 76. We notice a relatively large
variety in the improvement of using warmstarting over the individual problems.
For some problems the iteration count is about 50% of the corresponding cold
start while it for others cuts away only about 10%. Overall, the total work
reduction is about 25%.

We remark further, that the gain from warmstarting for these problems is quite
sensitive to the parameters involved. If, for example, the sampling time is
reduced, the neighboring problems are more alike, and warmstarting is even
more useful. Another example is the initial state of charge of the EVs which, if



5.4 Accelerating computations in model predictive control using

interior-point warmstarting 75

0 1 2 3 4 5

0

2

4

6

[M
W

]
Power plant production and set points

 

 
y

1

y
2

u
1

u
2

0 1 2 3 4 5
0

1

2

3

EV charge / discharge

[M
W

]

 

 

x
v

d
v

u
+

u
−

0 1 2 3 4 5

−5

0

5

[M
W

]

Production/Consumption

 

 

y
1

y
2

u
−

x
w

u
+

d
b

y
t

0 1 2 3 4 5
5

10

15

t [min]

It
e

ra
ti
o

n
s

 

 

C

W

Figure 5.2: Case study simulation with two power plants, a wind farm, a large EV

�eet and a base load consumption. Shows the resulting closed loop eco-

nomic MPC decisions of production and consumption over 6 minutes.

Performance when warmstarting our algorithm (W) is compared to stan-

dard coldstarting (C) at the bottom (see also Table 5.2).



76 Initialization and Warmstarting

P Icold Iwarm R
1 11 11 1.00
2 13 11 0.85
3 11 10 0.91
· · · ·
13 12 10 0.83
14 12 11 0.92
15 11 12 1.09
16 13 14 1.08
17 13 12 0.92
· · · ·
69 13 7 0.54
70 12 7 0.58
71 12 8 0.67
72 12 8 0.67

G 12.2 9.3 0.76

Table 5.2: LPs from the Electric Vehicle Control Problem. Columns two and three

show iteration counts and the fourth column their ratio. The last row

shows geometric means (see Section 5.4.6).

relatively high, results in few charging periods and thus less varying predictions.
This also improves warmstarting performance. Generally, warmstarting is most
useful when the simulation is �uneventful� in the sense that few changes occur.
These considerations suggest an adaptive strategy: When model predictions are
relatively uneventful, use warmstarting. In the opposite case, use coldstart.

5.4.6 Further computational results: Quadratic programs

In this section, we conduct a number of computational experiments to further
substantiate the usefulness of the warmstarting strategy when used in mpc ap-
plications. These experiments also show the versatility of the strategy. Here it
is applied to sequences of qps that stem from di�erent mpc applications.

Methodology. Let Icold and Iwarm denote the number of iterations needed
to solve P̂ from a cold- and warmstart, respectively. We then de�ne the measure

R = Iwarm/Icold

to quantify the gain from warmstarting. If R < 1 the warmstarted run was
more e�cient than the coldstarted and vice versa. To compute the starting
point (5.4.9), we use for (x?, y?, s?) the solution to P, the previous problem in
the sequence.



5.4 Accelerating computations in model predictive control using

interior-point warmstarting 77

For an entire sequence of problems P1, . . . ,PK we de�ne

GcoldI = K

√
Icold1 · · · IcoldK

GwarmI = K
√
Iwarm1 · · · IwarmK

GR = K
√
R1 · · ·RK

= GwarmI /GcoldI ,

the geometric means of the quantities Icoldi , Iwarmi and Ri. When GR < 1,
the warmstarting strategy was more e�cient in solving the sequence of prob-
lems alltogether than had we coldstarted the algorithm � and vice versa. We
count just the number of iterations since the main iterations of an interior point
method consume the vast majority of computational work involved. There-
fore, the reduction in CPU-time will be the same as that measured in terms of
iterations.

QPs from the OPTEC online QP benchmark collection. We test the
strategy on test problems obtained from the OPTEC Online QP Benchmark
Collection [46]. Quoting from the source of this test problem collection, it is
apparent that our strategy is well suited for these problems:

�In our opinion, it is not su�cient just to apply fast o�ine QP solvers
to problems arising in mpc applications. Instead, fast online QP
solvers must take into account the special structure of the problems.
Normally, the problems within the mpc context do not di�er much
from one QP to the next making it essential to incorporate this
knowledge into e�cient solvers.�

Each problem set from the collection provides a sequence of qps of the form

min
z

1
2z
THz + gT z (5.4.15a)

s.t.
` ≤ z ≤ u
d` ≤ Kz ≤ du

(5.4.15b)

where H and K ∈ RmK×n are assumed to be constant throughout the sequence
of problems. Thus only g in (5.4.15a) and the constraints `, u, d` and du in
(5.4.15b) change from problem to problem. It is in this sense that the problems
in the sequence are close to each other.

Below we will, for each of the problem sets on which we test our warmstarting
strategy, explain which mpc-problem gave rise to the sequence of problems in
question.



78 Initialization and Warmstarting

P Icold Iwarm R
1 10 10 1.00
2 10 4 0.40
3 10 4 0.40
4 10 4 0.40
· · · ·
18 13 5 0.38
19 13 5 0.38
20 13 5 0.38
21 13 5 0.38
22 11 5 0.45
· · · ·
98 10 2 0.20
99 10 3 0.30
100 10 3 0.30
101 10 2 0.20

G 10.4 3.7 0.35

Table 5.3: Problem 1: Hanging

Chain

P Icold Iwarm R
1 11 11 1.00
2 12 5 0.42
3 12 7 0.58
4 12 6 0.50
· · · ·
18 11 7 0.64
19 11 7 0.64
20 11 9 0.82
21 11 9 0.82
22 11 7 0.64
· · · ·
98 12 2 0.17
99 12 2 0.17
100 11 2 0.18
101 13 2 0.15

G 11.8 3.4 0.29

Table 5.4: Problem 2: Hanging

Chain +State Con-

straints

Problems 1 and 2. We include here a detailed description of one of the prob-
lems sets to give an idea of the type of problems found in [46]. We quote from
[46]: �This test problem aims at regulating a chain of nine masses connected by
springs into a certain steady-state. One end of the chain is �xed on a wall while
the three velocity components of the other end are used as control inputs with
�xed lower and upper bounds. The prediction horizon of 16 seconds is divided
into 80 control intervals. The model equations are derived from linearisation
of the nonlinear ODE model (with 57 states) at the steady-state. Deviation
from the steady-state, the velocities of all masses and the control action are
penalised via the objective function. In order to obtain the QP series we simu-
lated in a closed-loop manner integrating the nonlinear ODE system to obtain
the movements of the chain. Starting at the steady-state, a strong perturbation
was exerted to the chain by moving the free end with a given constant velocity
for 3 seconds. Then the mpc controller took over and tried to return the chain
into its original steady-state.�

Problem 2 is the same as Problem 1 with the addition of state constraints that
prevent the chain from hitting the vertical wall. The original reference for these
problems is [57].

The results of our experiments are seen in tables 5.3 and 5.4. We see from the
tables that the work needed to solve the entire series of problems is reduced
by about 70%. Hence, problems that usually demand around 10�13 iterations
to solve, need just 2�4 iterations when we warmstart. This is clearly a very
signi�cant reduction in computational e�ort.



5.4 Accelerating computations in model predictive control using

interior-point warmstarting 79

P Icold Iwarm R
1 12 12 1.00
2 11 4 0.36
3 11 5 0.45
4 10 3 0.30
· · · ·
101 9 3 0.33
102 10 4 0.40
103 11 4 0.36
104 10 3 0.30
105 11 3 0.27
· · · ·
597 13 3 0.23
598 11 3 0.27
599 10 4 0.40
600 9 4 0.44

G 10.6 3.7 0.34

Table 5.5: Problem 3: Diesel En-

gine

P Icold Iwarm R
1 16 16 1.00
2 16 4 0.25
3 16 4 0.25
4 16 4 0.25
· · · ·
155 16 4 0.25
156 17 4 0.24
157 16 6 0.38
158 16 4 0.25
159 16 4 0.25
· · · ·
918 16 4 0.25
919 16 4 0.25
920 16 4 0.25
921 16 4 0.25

G 15.8 4.4 0.28

Table 5.6: Problem 4: Crane

Problem 3. This problem set stems from the simulation of a controller gov-
erning a turbo charged direct injection diesel engine. This is a time-critical
situation so this is an example of a problem where warmstarting might be par-
ticularly useful. Faster computation times imply that higher re-optimization
frequency can be applied resulting in a more e�cient operation of the engine.
The original source is [17].

The results are shown in table 5.5. We see again a clearly signi�cant work
reduction, this time about 65%.

Problem 4. This problem deals with the optimal load movement of a boom
crane. The variables are the piecewise constant highest derivative of the load
position reference trajectory and slack variables for some of the inequality con-
straints. The constraints are load position and acceleration bounds and ap-
proximate position-dependent load velocity restrictions. The original source is
[6].

The results are shown in table 5.6. For this problem we see reductions in work
at about 70%.

Problem 5. In this problem, a crude distillation unit (CDU) is modelled. We
leave out the details of the model, but simply refer the reader to the original
reference [47]. This problem as well as the sequence as a whole was by far the



80 Initialization and Warmstarting

P Icold Iwarm R
1 12 12 1.00
2 12 2 0.17
3 12 2 0.17
4 12 2 0.17
· · · ·
14 12 2 0.17
15 12 2 0.17
16 12 2 0.17
17 12 2 0.17
18 12 2 0.17
· · · ·
77 12 2 0.17
78 12 2 0.17
79 12 2 0.17
80 12 2 0.17

G 12.0 2.0 0.17

Table 5.7: Problem 5: Crude Distillation Unit

largest of all the �ve test sets. Each problem had 800 variables, 800 inequality
constraints and no simple bounds. There were 7201 problems in the set, but
to keep total computation times limited, we solved only the �rst 80 problems.
We did, however, solve other sub-sequences of 80 problems from the series and
got roughly the same results. We therefore see no reason that the warmstarting
strategy should perform any di�erently on average had we solved the entire
sequence. The results are shown in table 5.7. Again we see signi�cant work
reductions, this time on the order of 83%, always reducing work to just 2 interior-
point iterations!

The parameter λ. The warm starting point (5.4.9) depends on the parameter
λ which we are free to choose in the interval [0, 1]. A smaller value of λ is more
conservative since then the warm point is closer to the standard (cold) starting
point. Larger values of λ are more aggresive, but might also be closer to the
boundary of the feasible region of P̂. Hence, one might suspect that larger
values of λ would lead to more blocking and potentially a slow or even failed
run.

For problems 1 and 2 of section 5.4.6, we used λ = 0.99 and λ = 0.95 respectively.
For problems 3 and 4 of the same section we used λ = 0.99 and λ = 0.75. This
smaller value of λ was used simply as it was more e�ective.

It is clear that our strategy calls for some adaptive way of choosing λ. We have
experimented with the following simple heuristic to adjust λ adaptively during
the solution of an entire sequence of problems: We start with λ = 0.99. If a
problem is encountered where the warmstarted run fails, we set λ := ηλ, where



5.4 Accelerating computations in model predictive control using

interior-point warmstarting 81

Problem Set n mB GcoldI GwarmI GR
LP-EV 1160 292 12.2 9.3 0.76

QP�Hanging Chain 240 0 10.4 3.7 0.35

QP�Hanging Chain +SC 240 709 11.8 3.4 0.29

QP�Diesel Engine 20 20 10.6 3.7 0.34

QP�Crane 57 160 15.8 4.4 0.28

QP�Crude Distillation Unit 800 800 12.0 2.0 0.17

Table 5.8: Overview of results from all test sets. n denotes the number of variables,

mB the number of inequality constraints.

η < 1, e.g. η = 0.9. If, on the other hand, K consecutive problems were solved
successfully using warmstarting, we set λ := min {0.99, η−1λ}. For example,
K = 10. This method seems to work quite well in practice for the problems
we have tested. Indeed it improves the results for the crane-problem (problem
4 of section 5.4.6) to GR = 0.24, but � (a) since the above method obviously
should be re�ned and analyzed, (b) to emphasize the importance of λ and (c)
for simplicity � we used static values of λ in our experiments.

5.4.7 Conclusion

In the previous sections, we demonstrated how to apply the warmstarting strat-
egy of [50] to sequences of lps and qps arising from di�erent mpc applications.
Numerous numerical experiments have shown that the strategy indeed is e�-
cient and useful for real problems. See Table 5.8 for an overview of all the
results.



82 Initialization and Warmstarting



Appendix A

Paper: A Homogeneous
Interior-Point Algorithm for

Nonsymmetric Convex
Conic Optimization



Mathematical Programming manuscript No.
(will be inserted by the editor)

A Homogeneous Interior-Point Algorithm for
Nonsymmetric Convex Conic Optimization

Anders Skajaa · Yinyu Ye

Received: date / Accepted: date

Abstract

Accepted for publication in Mathematical Programming on March 26th, 2014.

A homogeneous interior-point algorithm for solving nonsymmetric
convex conic optimization problems is presented. Starting each iteration from
the vicinity of the central path, the method steps in the approximate tangent
direction and then applies a correction phase to locate the next well-centered
primal-dual point. Features of the algorithm include that it makes use only
of the primal barrier function, that it is able to detect infeasibilities in the
problem and that no phase-I method is needed. We prove convergence to ε-
accuracy in O(

√
ν log (1/ε)) iterations. To improve performance, the algorithm

employs a new Runge-Kutta type second order search direction suitable for
the general nonsymmetric conic problem. Moreover, quasi-Newton updating
is used to reduce the number of factorizations needed, implemented so that
data sparsity can still be exploited. Extensive and promising computational
results are presented for the p-cone problem, the facility location problem,
entropy maximization problems and geometric programs; all formulated as
nonsymmetric convex conic optimization problems.

Keywords Convex Optimization · Nonsymmetric Conic Optimization ·
Homogeneous Self-dual Model · Interior-point Algorithm

Anders Skajaa
Department of Informatics and Mathematical Modelling
Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
E-mail: andsk@dtu.dk

Yinyu Ye
Department of Management Science and Engineering
Stanford University, CA 94305-4121, USA.
E-mail: yinyu-ye@stanford.edu



2 Anders Skajaa and Yinyu Ye

1 Introduction

This paper is concerned with conic optimization problem pairs of the form

Primal





minx c
Tx

s.t. Ax = b
x ∈ K

Dual





maxy,s b
T y

s.t. AT y + s = c
s ∈ K∗, y ∈ Rm

(pd)

where x, c ∈ Rn, A ∈ Rm×n, b ∈ Rm, K ⊂ Rn is a proper cone (i.e. it is convex,
pointed, closed and has non-empty interior) and K∗ = {s ∈ Rn : sTx ≥
0, ∀x ∈ K} is its dual cone, which is also proper. We are further assuming
that m ≤ n and that rank(A) = m.

If K is the positive orthant Rn+, then (pd) is a linear programming (lp)
problem in standard form and its dual. Solution methods for lp have been
studied for long in different settings and until the emergence of interior-point
methods (ipms), the most prominent method was the simplex method, devel-
oped by Dantzig in the 1940s. The introduction of ipms is usually ascribed to
Karmarkar [10] in 1984 and since then, research in the area has been extensive.

In [17], it was studied how to extend the ideas of ipms to the nonlinear
case. If K admits a self-scaled barrier function F : K◦ 7→ R, problems of the
type (pd) are efficiently solvable using long-step symmetric primal-dual ipms
[18,19]. The practical efficiency of these algorithms has been widely verified,
see e.g. [1,2,25].

In [9], Güler demonstrated that self-scaled cones are identical to those
that are symmetric; a class that comprises just five cones of which only two
are interesting for optimization. These cones are the Lorentz cone (leading to
quadratic cone programming which generalizes quadratic programming and
second order cone programming) and the positive semidefinite cone (leading
to semidefinite programming). Notice that linear programming is a subset of
semidefinite programming.

Although these two self-scaled cones allow for modelling of a great variety
of constraints [4], many important types of constraints do not fall in this class.
Examples include entropy type constraints: x log x ≤ t, p-cone constraints:
‖x‖p ≤ t, and constraints arising in geometric programming [5]. Some of these
constraints can be modelled using self-scaled cones, but this usually requires
the introduction of many extra variables and constraints [4].

Theoretically, one can solve problems involving any convex constraint using
a purely primal short-step barrier method and still obtain an algorithm with
the best-known worst-case computational complexity. Such an algorithm is
known to be practically inefficient compared to a long-step primal-dual ipm.
Other approaches are also possible and special algorithms for certain sub-
classes of problems exist [27,30]. Another approach known to be effective for
general convex problems is to solve the monotone complementarity problem,
see for example [3].

It may be beneficial to model nonsymmetric constraints more directly using
non-self-scaled cones (nonsymmetric cones) such as the power cone or the ex-
ponential cone. This approach was employed by Nesterov in [16]. He proposed



A Homogeneous Nonsymmetric IPM 3

a method that mimics the ideas of a long-step primal-dual ipm for symmetric
cones by splitting each iteration into two phases. First, a pure primal correc-
tion phase is used to find a primal central point x and a scaling point w. These
points are used to compute a feasible dual point s such that an exact scaling
relation is satisfied: s = ∇2F (w)x. Second, a truly symmetric primal-dual step
in the approximate tangent direction is taken (a prediction step). This algo-
rithm, however, assumes the existence of a strictly feasible primal-dual point
and requires a strictly feasible initial primal point to start.

If knowledge of both the primal and the dual barrier function, their gradi-
ents and Hessians is assumed, truly primal-dual symmetric search directions
can be constructed. This approach was used in [20] to solve a homogeneous
model of the general convex conic problem (pd). This leads to a method with
some desirable properties but at the same time it has two crucial disadvan-
tages: Firstly, the linear systems that must be solved in each iteration are twice
the size compared to algorithms for self-scaled cones therefore increasing total
computation time by a factor of 23 = 8 for problems of equal dimension. Sec-
ondly, it can be difficult or impossible to find an expression for the dual barrier
and its derivatives. The so-called doubly non-negative cone1 is an example of
the latter situation. A simple barrier for the primal cone is known, but no
explicit barrier function for the dual cone is known.

Building on the algorithms of [16] and [20], we present in this paper a
primal-dual interior-point algorithm for a homogeneous model of (pd). This
approach has proven successful for self-scaled cones [29,2,24] because it implies
several desirable properties, among which are the ability to detect infeasibility
in the problem pair and the ease of finding a suitable starting point, eliminating
the need for a phase-I method. Unlike the algorithm in [20], our algorithm uses
only the primal barrier function and therefore our linear systems are no larger
than those appearing in ipms for self-scaled cones.

In addition to the advantages induced by using a homogeneous model, we
suggest the following improvements to reduce computational load. The Meho-
tra second order correction [12] is known to significantly improve practical
performance of ipms for linear and quadratic conic problems [12,2,25]. With
the same goal in mind, we suggest a new way to compute a search direction
containing second order information for the general (possibly non-self-scaled)
conic problem. This search direction is inspired by Runge-Kutta methods for
ordinary differential equations. Further, we employ bfgs-updating of the Hes-
sian of the barrier function to reduce the number of full matrix factorizations
needed. It is shown how this can be done in a way retaining the possibility to
exploit sparsity in A.

We will assume that K is a proper cone and that a logarithmically ho-
mogeneous self-concordant barrier function F for K, its gradient ∇F and its
Hessian ∇2F are available and can be efficiently computed for all x in the
interior of K. The definition of the barrier parameter ν of F and many of the
useful properties of these functions are listed in appendix A.

1 A positive semidefinite matrix with all non-negative entries is called doubly non-negative.



4 Anders Skajaa and Yinyu Ye

This paper is organized in two main parts. In the first, which consists
of Sections 2 through 4, we discuss theoretical issues, present our algorithm
and prove that the method converges in O(

√
ν log (1/ε)) iterations. We state

all theoretical results in the main text, emphasizing asymptotic complexity
behavior, but divert all proofs to the appendix to keep the main text clean
and free of technical details. Sections 5 and 6 make up the second part. Here, we
present and discuss details related to the implementation of our algorithm. We
introduce heuristic methods to increase convergence speed and then present
an extensive series of computational results substantiating the effectiveness
and practical applicability of our algorithm. We finally draw conclusions in
Section 7.

2 Homogeneous and self-dual model

If there exist x ∈ K◦ such that Ax = b and s ∈ (K∗)◦, y ∈ Rm such that
AT y+ s = c, then strong duality holds for the primal-dual problem pair (pd).
In this case, any primal optimal x and dual optimal (y, s) must satisfy

Ax− b = 0
−AT y − s+ c = 0

xT s = 0
x ∈ K, s ∈ K∗, y ∈ Rm.

(1)

We propose solving a homogeneous model of problems (pd). We therefore
introduce two extra non-negative scalar variables τ and κ and seek to find
x, τ, y, s, κ that solve the following problem:

minimize 0
subject to Ax −bτ = 0

−AT y +cτ −s = 0
bT y −cTx −κ = 0

(x, τ) ∈ K × R+, (s, κ) ∈ K∗ × R+, y ∈ Rm.





(hsd)

The motivation for doing so is summarized in the following.

Lemma 1 Assume (x, τ, y, s, κ) solves (hsd). Then

1. (x, τ, y, s, κ) is complementary. That is: xT s+ τκ = 0.
2. If τ > 0 then (x, y, s)/τ is optimal for (pd).
3. If κ > 0 then one or both of bT y > 0 and cTx < 0 hold. If the first

holds, then (pd) is primal-infeasible. If the second holds, then (pd) is dual-
infeasible.

Proof See appendix B.1.

Lemma 1 shows that any solution to (hsd) with τ + κ > 0 provides either
an optimal solution to our original problems (pd) or a certificate of infeasibility
of (one of) the original problems.



A Homogeneous Nonsymmetric IPM 5

Any useful algorithm aimed at solving (hsd) must therefore at least have
the following two properties: If (pd) is both primal and dual feasible and
has zero duality gap, the algorithm must produce a solution (or approximate
solution) to (hsd) with τ > 0. Conversely, if (pd) is either primal or dual
infeasible, the algorithm must produce a solution (or approximate solution) to
(hsd) with κ > 0. In [11], it is thoroughly demonstrated which properties are
sufficient for an algorithm to meet these goals. The algorithm that we later
present in Section 4 indeed has these properties. However, since this paper
concentrates on algorithmic aspects we omit the details regarding the various
primal and dual infeasibility cases and what they mean for the homogeneous
model and algorithm. Instead, we refer the reader to [20] and particularly [11]
for a much more detailed discussion in this direction.

There is another desirable feature of the homogeneous model (hsd):

Lemma 2 The optimization problem (hsd) is self-dual.

Proof See appendix B.2.

Lemma 2 implies that we can apply a primal-dual interior-point algorithm to
the problem (hsd) without doubling the dimension of the problem. Specifically,
there is no need to handle and store variables from the dual of (hsd) since
they are identical to those of the primal.

Given the two lemmas above and the comments following Lemma 1, we can
state the following desirable consequences of solving the homogeneous model
(hsd) with our algorithm to be presented later:

– If the original problem (pd) is primal and dual feasible and has zero duality
gap, an optimal primal-dual solution is found and a certificate of optimality
is produced.

– If the original primal-dual pair (pd) is primal or dual infeasible, a certificate
of this infeasibility is produced.

– The dimension of the problem is not essentially larger than that of the
original primal-dual pair (pd) and does not require more computational
effort to solve.

– The algorithm can be initialized in a point not necessarily feasible w.r.t.
the linear constraints of (hsd).

When K is not equal to R+
n , it is possible that the pair (pd) is primal

and dual feasible but has strictly positive duality gap. In this situation, a tiny
perturbation to the problem data exists such that the perturbed problem has
a solution with τ + κ > 0. Thus, the problem is ill-posed. See [4] for further
discussion and examples of this exceptional case.

3 Nonsymmetric path following

Path following methods are usually motivated by considering a family of bar-
rier problems parametrized by µ > 0:

min
x

cTx+ µF (x), s.t. Ax = b, x ∈ K◦ (2)



6 Anders Skajaa and Yinyu Ye

where F again is a logarithmically homogeneous self-concordant barrier func-
tion2 (lhscb) with barrier parameter ν. The Karush-Kuhn-Tucker (KKT)
conditions of problem (2) are: If x ∈ K◦ is optimal for (2), then there exist
s ∈ (K∗)◦ and y ∈ Rm so that

Ax− b = 0
−AT y − s+ c = 0
s+ µ∇F (x) = 0

x ∈ K, s ∈ K∗, y ∈ Rm
(3)

The points that satisfy (3) are known as the primal-dual central path. Let us
denote a point in this set by u(µ) = (x(µ), y(µ), s(µ)). Using relation (20) from
Appendix A, it is easy to see that central path points satisfy cTx(µ)−bT y(µ) =
x(µ)T s(µ) = νµ. The idea of a path-following method is to loosely track u(µ)
towards u(0), thus obtaining a point eventually being approximately optimal
for (pd), compare (3) to (1).

Experience shows that it is most efficient to take steps that are combina-
tions of two directions: 1. The direction approximately tangent to the central
path (the predictor direction), that is, the direction u′(µ) and 2. the direction
pointing towards the central path as the current iterate may not be exactly on
the central path. This correction direction is the Newton step for the equations
(3), we will denote it p(µ).

If the iterate is not exactly on the central path, the search direction u′(µ)
can still be computed so that it is symmetric. Here symmetric refers to the
search direction (and thus the iterates) being the same regardless of whether
the roles of the primal and dual problems in (pd) are interchanged [26]. Thus
no particular emphasis is put on either the primal or the dual problem, which
is a desirable feature of an algorithm. If K is self-scaled, a symmetric u′(µ)
can be computed using a scaling point [18,19]. If the cone is not self-scaled
(nonsymmetric), a symmetric u′(µ) can be computed by using both the Hessian
of the primal and the dual barrier. As discussed in the introduction, this,
however, leads to an algorithm that must solve linear systems double the size
of those occurring in a symmetric ipm. A further disadvantage is that one must
be able to compute both the primal and the dual barriers, their gradients and
Hessians, which may prove difficult.

Nesterov showed in [16] that a scaling point determined during an iterative
centering (correction) procedure can be used to compute a symmetric search
direction u′(µ). Let us briefly describe the concept underlying the algorithm
from [16]. The following proximity measure is needed:

Ψ(x, y, s) = F (x) + F ∗(s) + ν ln
xT s

ν
+ ν

which is ≥ 0 and = 0 only if (x, y, s) is on the central path. Here, F ∗ denotes
the dual barrier of F , see appendix A for properties of these two functions.

The general algorithm can then be outlined as below. Assume we start
with an initial point (x, y, s) ∈ K × Rm ×K∗ with Ψ(x, y, s) < η. Then

2 See Appendix A for a list of properties of this class of functions.



A Homogeneous Nonsymmetric IPM 7

Repeat

1. (x, y, s) := (x, y, s) + αu′(µ)
µ = xT s/µ.

2. while Ψ(x, y, s) > η
(x, y, s) := (x, y, s) + α̂p(µ)

end while

where α in step 1 is chosen so that Ψ(x, y, s) < β after step 1 and α̂ is chosen
to be λ/(1 + λ), where λ is the Newton decrement. In [16], it is proved that
with appropriate choices of η, β and α, the above algorithm converges in
O(
√
ν log (1/ε)) iterations. This method uses only the Hessian ∇2F (·) of the

primal barrier but still the value of the dual barrier F ∗(·). Two serious practical
drawbacks of the method are that it assumes that the original problems are
strictly feasible and that it requires a strictly feasible initial primal point to
start therefore needing a phase-I method.

The approach of [20] is instead to compute a symmetric u′(µ) by using both
the Hessian of the primal and the dual barriers. Again, the iteration complexity
result O(

√
ν log (1/ε)) is obtained and the two practical drawbacks of [16] are

alleviated by the use of a homogeneous model. Two major disadvantages of
the method of [20] are that one must know (or be able to compute) Hessians
of both barriers and that the linear systems that must be solved are double in
size.

Our goal in this paper is to construct an efficient algorithm utilizing the
main ideas of [16] and [20], but adapted to be efficient for the homogeneous
model (hsd) without using the Hessians of the primal and the dual barrier. In
fact, our method does not make any use of the dual barrier — not even the
function value. Unlike [16] and [20], our prediction direction u′(µ) will not be
exactly symmetric unless the iterate is exactly on the central path, which is
rarely the case. However, it turns out to be sufficient that we ensure that the
iterate is “close to” the central path. This will guarantee a high enough quality
of the prediction direction. In exchange for dropping the “exact symmetric”
tangent direction we obtain a method that does not suffer from any of the
above mentioned drawbacks of the methods in either of [16] and [20] while
still maintaining the O(

√
ν log (1/ε)) iteration complexity result.

Thus, compared to [20], this work represents the following improvements:

1. We need only to know the primal barrier function, its gradient and Hessian
(no need for the dual barrier and its derivatives)

2. The linear systems that need to be solved in each iteration are half the
dimension (i.e. a factor 8 faster in terms of computation time).

Likewise, in relation to [16], this work represent the following improvements:

1. We need only to know the primal barrier function, its gradient and Hessian
(no need for the dual barrier function value)



8 Anders Skajaa and Yinyu Ye

2. We do not require a feasible starting point (no phase-I method needed)
3. Our method detects infeasibilities in the problem.

We are also aware of the apparent gap between ipm complexity theory
and state-of-the-art implementations, see e.g. the introduction of [16] for a
discussion about this issue in the case of convex conic programming. In the
realm of interior-point algorithms, it is often the case in practice that methods
with inferior complexity estimates convincingly outperform algorithms with
best-known complexity estimates. See e.g. [1,25] for implementations of such
fast algorithms for the case of self-scaled cones. Furthermore, in industry-
standard software, heuristic techniques to speed up convergence rates are often
employed, although they invalidate the proofs of convergence in the purely
theoretical sense. A standard example of such a practice is pdipms for linear
programming in which it is common to use different primal and dual step
lengths. Since a similar discrepancy between theory and practice might be
present for the case of a nonsymmetric cone, we expect to be able to improve
the performance of our algorithm by employing techniques similar to those
used to accelerate the fastest pdipms for self-scaled problems.

4 Homogeneous algorithm

4.1 Notation

To simplify notation, we will make use of the following notation. For the con-
catenation of two vectors v and w, we will sometimes use the Matlab-inspired

notation (v;w) and otherwise the usual

(
v
w

)
. We will further simplify nota-

tion by writing

x̄ =

(
x
τ

)
= (x; τ), s̄ =

(
s
κ

)
= (s;κ)

F̄ (x̄) = F (x)− log τ, F̄ ∗(s̄) = F ∗(s)− log κ

and

K̄ = K × R+, K̄∗ = K∗ × R+, ν̄ = ν + 1

This notation is consistent with that of [20]. Notice that F̄ and F̄ ∗ are loga-
rithmically homogeneous self-concordant barrier functions for the cones K̄ and
K̄∗ respectively.

We will also use a higher level of aggregation: z = (x̄; y; s̄) = (x; τ ; y; s;κ) ∈
F := K̄×Rm×K̄∗ and define the complementarity gap of z by µ(z) := (x̄T s̄)/ν̄.
We will write gx̄ = ∇F̄ (x̄) and Hx̄ = ∇2F̄ (x̄) and make use of the following
local norms:

‖u‖x̄ = ‖H1/2
x̄ u‖, ‖v‖∗x̄ = ‖H−1/2

x̄ v‖, for u ∈ K̄ and v ∈ K̄∗,



A Homogeneous Nonsymmetric IPM 9

where ‖ · ‖ denotes the standard Euclidean norm. See also appendix A for
more properties of these local norms. In our new notation, we can write the
homogeneous model simply as

G

(
y
x̄

)
−
(

0
s̄

)
=

(
0
0

)
, z =



x̄
y
s̄


 ∈ F (4)

where G is the skew-symmetric matrix

G :=




0 A −b
−AT 0 c
bT −cT 0


 . (5)

Equations such as (4) will usually be written as G(y; x̄) − (0; s̄) = (0; 0) to
save vertical space. Notice that the expression G(y; x̄) involves a multiplication
between G and (y; x̄) and the parenthesis thus do not denote arguments to a
function. This latter situation will be clear from the context.

4.2 The central path in the homogeneous model

For x̄ ∈ K̄, s̄ ∈ K̄∗ and a scalar t, let us define the function

ψ(x̄, s̄, t) := s̄+ tgx̄. (6)

We initialize our algorithm in z0 ∈ F . Denote µ0 = µ(z0). Parametrized
by γ ∈ [0, 1], we define the central path of the homogenized problem (4) by
the points zγ that satisfy

G(yγ ; x̄γ)− (0, s̄γ) = γ
(
G(y0; x̄0)− (0; s̄0)

)
(7)

ψ(x̄γ , s̄γ , γµ
0) = 0 (8)

In the homogeneous model, the central path connects the point z0 (at γ = 1)
with a solution of the problem (4) as γ → 0. Therefore, the main idea of the
algorithm, as in other path-following algorithms, is to approximately track the
central path towards a solution.

For a fixed parameter η ∈ [0, 1], we define the set

N (η) = {z = (x̄; y; s̄) ∈ F : ‖ψ(x̄, s̄, µ(z))‖∗x̄ ≤ ηµ(z)} (9)

which, in view of (8), can be considered a neighborhood of the feasible central
path — that is, the path that would arise from using z0 in (7)–(8) such that
G(y0; x̄0)− (0; s̄0) = 0.

In the case of lp with the usual barrier F (x) = −∑j log xj , we remark that

equation (8) is the same as the familiar X̄s̄ = γµ0e where X̄ = diag(x̄) and
e = (1, . . . , 1). Similarly, the inequality in (9) reduces to ‖X̄s̄− µe‖ ≤ ηµ(z).



10 Anders Skajaa and Yinyu Ye

4.3 Prediction

The direction dz tangent to the central path (also called the predictor direc-
tion) is determined by differentiating (7)–(8) with respect to γ. For equation
(8), this yields

ds̄γ = −µ0gx̄γ − γµ0Hx̄γdx̄γ

where dx̄γ denotes x̄γ differentiated w.r.t. γ and similarly for other variables.
By (8), we have γ−1s̄γ = −µ0gx̄γ , which we insert and get

ds̄γ + γµ0Hx̄γdx̄γ = γ−1s̄γ .

The same operation on (7) gives the equations defining the direction dz:

G(dy; dx̄)− (0; ds̄) = − (G(y; x̄)− (0; s̄)) (10)

ds̄ + µ(z)Hx̄dx̄ = −s̄ (11)

where we have dropped the argument γ for readability and put µ(z)/µ0 = γ.
Notice also that we have rescaled the equations by −γ to make the notation
consistent with the general ipm literature. Determining the direction dz thus
amounts to solving the system of linear equations (10)–(11).

In the rest of this section, we will use the notation

z+ = (x̄+, y+, s̄+) = (x̄+ αdx̄, y + αdy, s̄+ αds̄) = z + αdz
ψ = ψ(x̄, s̄, µ(z))
ψ+ = ψ(x̄+, s̄+, µ(z+))
dz = solution of (10)–(11).

The next lemma explains how the linear residuals and the complementarity
gap are reduced along the predictor direction.

Lemma 3 The direction dz satisfies

G(y+; x̄+)− (0; s̄+) = (1− α) (G(y; x̄)− (0; s̄))

µ(z+) = (1− α)µ(z) + (1− α)αν−1ψT dx̄.

Proof See appendix C.1.

The first relation shows that the linear residuals are reduced by the factor 1−α
along the direction dz. The complementarity gap µ is reduced in a slightly more
complicated way depending on the vector ψ. If z is precisely on the central
path, ψ = 0, so µ(z+) = (1 − α)µ(z) and also the complementarity gap is
reduced by the factor 1−α. As we shall see, we can, similarly to other interior-
point algorithms, choose α = Ω(1/

√
ν̄) so that µ(z+) ≤ (1 − Ω(1/

√
ν̄))µ(z).

Here, we use the “big-Ω”-notation meaning that α is asymptotically bounded
below by 1/

√
ν̄ times a positive (possibly small) constant as ν →∞.

Lemma 4 Assume z ∈ N (η). Then we can choose α = Ω(1/
√
ν) so that

x̄+ ∈ K̄ and s̄+ ∈ K̄∗.



A Homogeneous Nonsymmetric IPM 11

Proof See appendix C.3.

Lemma 5 Assume z ∈ N (η). If η ≤ 1/6, then we can choose α = Ω(1/
√
ν)

so that z+ ∈ N (2η).

Proof See appendix C.4.

4.4 Correction phase

Given some point z+ = (x̄+, y+, s̄+) ∈ N (2η), the goal of the correction
phase is to find a new point z = (x̄, y, s̄) which is close to the central path
and satisfy the same linear constraints as z+. That is, we want to find z so
that ‖ψ(x̄, s̄, µ(z))‖∗x̄ ≤ ηµ(z) and G(y; x̄) − (0; s̄) = G(y+; x̄+) − (0; s̄+). We
therefore apply Newton’s method to the equations

G(y; x̄)− (0; s̄) = G(y+; x̄+)− (0; s̄+)

ψ(x̄, s̄, µ(z)) = 0 (12)

The Newton step for these of equations is the solution δz := (δx̄, δy, δs̄) to the
following linear system of equations:

G(δy; δx̄)− (0; δs̄) = 0 (13)

δs̄ + µ(z)Hx̄δx̄ = −ψ(x̄, s̄, µ(z)) (14)

We then solve (13)-(14) and starting from z = z+, we apply

z := z + α̂δz (15)

repeatedly until ‖ψ(x̄, s̄, µ(z))‖ ≤ ηµ(z).
The following Lemma shows that this process terminates quickly.

Lemma 6 If η ≤ 1/6, then the correction process (15) terminates in at most
two steps.

Proof See appendix D.

4.5 Convergence and complexity of algorithm

It is evident that our algorithm is a nonsymmetric conic generalization of
the simplified lp homogeneous and self-dual model [29]. Similarly to [29], let
us write θk+1 = (1 − αk)θk and θ0 = 1, where αk is the step length taken
in the prediction step in the k’th iteration. From (13), we see that the linear
residuals do not change during the correction phase. Thus, a useful result from
[29] applies also to our algorithm:



12 Anders Skajaa and Yinyu Ye

Algorithm 1 Nonsymmetric Predictor-Corrector Algorithm
Input: Barrier function F , η ≤ 1/6, and initial point z ∈ F ∩N (η).
α̂ := 1/84
Repeat

Set µ := µ(z)
Stopping

If stopping criteria satisfied: terminate.
Prediction

Solve (10)–(11) for dz
Choose largest α so that z + αdz ∈ F ∩N (2η)
Set z := z + αdz and µ = µ(z).

Correction
Solve (13)–(14) for δz
Set z := z + α̂δz
Solve (13)–(14) for δz
Set z := z + α̂δz

End

Lemma 7 Algorithm 1 generates iterates zk = (xk, τk, yk, sk, κk), k = 0, 1, . . .
that satisfy

ν̄
(
µk/θk + θkµ0

)
= (sk)Tx0 + (xk)T s0 + κkτ0 + τkκ0 (16)

Proof See Lemma 4, page 57 in [29].

This lemma implies that if µk and θk decrease at the same rate, then (16)
functions as a normalizing constraint — i.e. all the iterates remain bounded.
This is readily seen: The left-hand side of (16) remains bounded and since
each term on the right-hand side is non-negative, each term must remain
individually bounded. In particular as µk decreases to zero, at least one of τk

and κk will go to zero while the other will remain non-negative and bounded
above.

The following theorem will now finish our analysis.

Theorem 1 Algorithm 1 terminates with a point z = (x̄, y, s̄) that satisfies

µ(z) ≤ εµ(z0) and ‖G(y; x̄)− (0; s̄)‖ ≤ ε‖G(y0; x̄0)− (0; s̄0)‖

in no more than O (
√
ν log (1/ε)) iterations.

Proof See appendix E.

It is important to note that this theorem alone does not guarantee that we
have recovered a sufficiently accurate solution (or infeasibility certificate) to
the original problem (pd), only to (hsd). From the proofs of Theorem 1 and
Lemma 3 it follows, however, that µk and θk decrease at the same rate. There-
fore, Lemma 3 guarantees that τk and κk both remain bounded and if the
final point z has one of τ or κ large enough a sufficiently accurate solution or
infeasibility certificate for (pd) has been determined. For further details re-
garding the exact accuracy obtained and an explanation of all different types
of feasibility cases, the reader is again referred to [11,20]. For us, importance is



A Homogeneous Nonsymmetric IPM 13

Algorithm 2 Aggressive step implementation
Input: Barrier function F , 0 < η ≤ β < 1, and initial point z ∈ F ∩N (η).

Repeat
Set µ := µ(z)
Stopping

If stopping criteria satisfied: terminate.
Prediction

Solve (10)–(11) for dz
Choose largest α so that z + αdz ∈ F ∩N (β)
Set z := z + αdz and µ = µ(z).

Correction
Repeat

Solve (13)–(14) for δz
Choose α̂ to approximately minimize ‖ψ‖∗x̄ along δz
Set z := z + α̂δz

Until z ∈ F ∩N (η).
End

placed on the ability to practically distinguish these cases and what we mean
by “sufficiently close” is precisely stated in Section 5.4.

In this section, we have emphasized only the asymptotic behavior of our
algorithm. In several places, it may be possible to improve the constants in the
leading terms but as the above analysis serves only to demonstrate asymptotic
worst-case behavior, this is of minor importance.

5 Implementation

In order for an interior-point method to be practical and competitive, the im-
plementation must deviate somewhat from the pure theoretical algorithm. In
this section, we describe how such an efficient algorithm can be implemented.

Our implementation is outlined in Algorithm 2. As is common practice in
implementations of interior-point methods, we allow for a much longer predic-
tion step, for example β ≥ 0.80. This leads to faster convergence once we get
close to the optimal point. Indeed we do observe what appears to be super-
linear convergence in this region.

It should be noted, however, that we can no longer be certain that two
correction steps will be enough to reach a sufficiently centered point. Therefore,
we continue taking correction steps until the centrality condition ‖ψ‖∗x̄ ≤ ηµ
is satisfied. As the computational experiments later show, for the problems
we have solved, rarely more than one or two correction steps are needed. We
can further reduce the cost of the correction phase by using quasi-Newton
updating as we explain in the next section.

5.1 Quasi-Newton updating in the correction phase

Solving either for a prediction or a correction step requires the factorization
of the sparse n × n matrix Hx̄ and of the possibly sparse m × m matrix



14 Anders Skajaa and Yinyu Ye

Q = AH−1
x̄ AT . To reduce the total number of factorizations needed in the

correction phase, we suggest taking J quasi-Newton steps for each normal
correction step.

Let us show how this can be done computationally efficient without de-
stroying sparsity in the KKT-system, which is an essential requirement in
practical applications.

Let B and M denote the current quasi-Newton approximation of the in-
verses of H and Q respectively. Conceptually, we update B to B+ using bfgs
updating (see e.g. [22]), a rank-2 updating scheme: B+ = B + k(v)vvT +
k(w)wwT . In order to keep the ability to exploit sparsity of A and Q, we do
not actually store B or M but simply the Cholesky factors of the most re-
cent H and Q and the sequence of bfgs update vectors. More specifically, for
q ≤ J , let B(q) be the q’th update of H−1, i.e.

B(q) = C−1C−T + ΨΛΨT

where Ψ = [v(1), . . . , v(q), w(1), . . . , w(q)], Λ = diag(k
(v)
1 , . . . , k

(v)
q , k

(w)
1 , . . . , k

(w)
q ).

Then we compute products such as B(q)r by means of

B(q)r = C−1(C−T r) + Ψ
(
Λ(ΨT r)

)
.

For M , the situation is similar:

M (q) =
(
AB(q)AT

)−1

=
(
A(H−1 + ΨΛΨT )AT

)−1

=
(
Q+ ΦΛΦT

)−1

where Φ = AΨ . By the Sherman-Morrison-Woodbury formula, we get

M (q) = Q−1 −Q−1Φ
(
Λ−1 + ΦTQ−1Φ

)−1
ΦTQ−1.

We can thus compute products like M (q)r by

M (q)r = Q−1
(
I − Φ

(
Λ−1 + ΦTQ−1Φ

)−1
ΦTQ−1

)
r

= D−1D−T
(
r − Φ

(
Λ−1 + ΦTD−1D−TΦ

)−1
ΦTD−1D−T r

)

where we remark that 1) only two columns are added to Φ in each iteration so
that only two new back-substitutions in the operation D−TΦ are needed, 2) Λ
is diagonal and thus cheap to invert and 3) the matrix

(
Λ−1 + ΦTD−1D−TΦ

)

is only of size 2q × 2q and is therefore also cheap to invert.
We then alternate between taking J bfgs steps and one full Newton cor-

rection step, starting with bfgs steps and terminate when ‖ψ‖∗x̄ ≤ ηµ. The
resulting bfgs search direction is a descent direction for the function ‖ψ‖∗x̄, so
by using a backtracking line search along these directions, we can not make
the objective worse by proceeding in this way. On the other hand, we have no
theoretical guarantee that bfgs steps improve the objective value. However,



A Homogeneous Nonsymmetric IPM 15

as the computational experiments will demonstrate, it is often the case that
enough centrality can be achieved after just a few bfgs steps.

The norm ‖v‖∗x̄ is computed as (vTH−1
x̄ v)1/2. Computing this number re-

quires the evaluation and factorization of Hx̄. But since Hx̄ is block-diagonal,
this operation is cheap.

We finally remark that whether or not it is beneficial to take bfgs steps,
and if it is, how many should be taken, depends on the cost of building
and Cholesky factorizing AH−1

x̄ AT relative to the cost of subsequent back-
substitutions, of which the needed amount is increased if bfgs steps are used.
This ratio depends on the dimension and sparsity pattern of A — quantities
about which we know nothing beforehand. However, since the dimension and
sparsity pattern of AH−1

x̄ AT do not vary with x̄, it is possible to determine
this ratio at initialization time. Thus we can determine an upper bound on J
before the main loop of the algorithm.

5.2 Higher order predictor direction

It is well known that the Mehrotra second order correction [12] term signifi-
cantly improves performance of interior-point methods for symmetric cones.
This technique is used in virtually all competitive industry standard interior-
point implementations solving self-scaled problems. Mehrotra’s second order
correction generalizes nicely to self-scaled conic problem by use of the Jordan
product that can be defined on such cones, see e.g. [2]. For non-symmetric
cones, this generalization seems to no longer be possible. Hoping to achieve a
similar improvement in performance, we suggest instead to compute a higher
order prediction step as described in the following.

Let us denote the central path point with complementarity gap µ by z(µ),
which corresponds to µ = γµ0 in equations (7)–(8). By an appropriate defi-
nition of a matrix K(z) and a vector u(z), dependent on the current iterate
z = (x̄, y, s̄), it is clear that the equations (10)–(11) defining dz can be written

K(z)dz(µ) = u(z) or dz(µ) = K(z)−1u(z) =: f(z).

The central path is thus the solution of the ordinary differential equation
defined by dz(µ) = f(z). A step in the predictor direction, i.e. the direction
dz, is then the same as taking one Euler step for this ode. We can obtain a
direction that contains, for example, second order information by computing
a stage-2 Runge-Kutta direction d2, remembering that each evaluation of f
requires solving a system of the type Kdz = u. Such a direction is defined by

d2 = h

(
1− 1

2θ

)
f(z) + h

1

2θ
f(ζ)

ζ = (ζx̄, ζy, ζs̄) = z(µ) + θhf(z)

where h is the stepsize possible in the direction f(z) and θ ∈ (0, 1] is a param-
eter. The choices θ = 1/2 and θ = 1 correspond to the classical midpoint and
trapezoidal rules respectively [6].



16 Anders Skajaa and Yinyu Ye

Our experience shows that this approach reduces the total number of it-
erations as well as the number of factorizations needed to reach an optimal
solution, even though two factorizations are needed to compute d2.

We can, however, restrict ourselves to just one factorization by using in
place of Hζx̄ the bfgs update of Hx̄. In section 5.1, we showed how to imple-
ment such a procedure efficiently.

5.3 Initial point

The initial point z0 = (x̄0, y0, s̄0) is required to satisfy z0 ∈ F ∩ N (η). We
therefore choose some x̄0 ∈ K̄◦ and set s̄0 = −gx̄0 . We then get ν̄µ(z0) =

(x̄0)T s̄0 = −(x̄0)T gx̄0

(20)
= ν̄ and hence µ(z0) = 1. Therefore, this z0 is exactly

on the central path, i.e. z0 ∈ N (0) ⊂ N (η).

5.4 Termination

A point (x̄, y, s̄) = (x, τ, y, s, κ) that satisfies the bounds in Theorem 1 solves
to ε-accuracy the homogeneous model (hsd). However, we are interested in
either a certificate of infeasibility or a solution of (pd). Therefore, we need to
use stopping criteria able to detect one of these two situations. Consider the
following inequalities:

‖Ax− τb‖∞ ≤ ε ·max {1, ‖[A, b]‖∞} (p)

‖AT y + s− cτ‖∞ ≤ ε ·max {1,
∥∥[AT , I,−c

]∥∥
∞} (d)

∣∣−cTx+ bT y − κ
∣∣ ≤ ε ·max {1, ‖

[
−cT , bT , 1

]
‖∞} (g)

∣∣cTx/τ − bT y/τ
∣∣ ≤ ε ·

(
1 +

∣∣bT y/τ
∣∣) (a)

τ ≤ ε · 10−2 ·max {1, κ} (t)

τ ≤ ε · 10−2 ·min {1, κ} (k)

µ ≤ ε · 10−2 · µ0 (m)

We then terminate and conclude as follows:

(opt) (p) ∧ (d) ∧ (a)⇒ Feas. and approx. optimal solution found
(infeas) (p) ∧ (d) ∧ (g) ∧ (t)⇒ Problem nearly primal or dual infeasible

(illp) (k) ∧ (m)⇒ Problem deemed ill-posed

In case (opt), the approximately optimal solution (x, y, s)/τ is returned. If
we find (infeas), the problem is deemed dual infeasible if cTx < 0 and primal
infeasible if bT y > 0. The number ε > 0 is a user-specified tolerance.



A Homogeneous Nonsymmetric IPM 17

6 Computational experiments

In this section we present results from running our algorithm, which we will
denote by npc, on different test problems. We first introduce the nonsymmetric
cones needed for our test problems and then present the test problems. Finally,
we include tables with numerical results and discussion.

For all test problems that we consider, K will have the form K = K1 ×
· · · ×KK where each Kj is either a three-dimensional proper cone or R+. This
limitation to cones of such low dimension implies simple expressions for the
barrier function and its gradient and Hessian. As we shall see, it does impose
any restrictions on which problems can be formulated. See also [16] for further
discussion on this topic.

The notation used in this section is independent of previous sections.

6.1 Two three-dimensional nonsymmetric cones

In the rest of this paper, we will be considering problems involving the following
two nonsymmetric convex cones, both three dimensional.

The three-dimensional exponential cone is defined by

Kexp = closure {(x1;x2;x3) ∈ R× R+ × R++ : exp (x1/x3) ≤ x2/x3}

for which we are using the barrier function

Fexp(x) = − log (x3 log (x2/x3)− x1)− log x2 − log x3

with barrier parameter ν = 3.
The three-dimensional power cone is defined by

Kα =
{

(x1;x2;x3) ∈ R× R2
+ : |x1| ≤ xα2x1−α

3

}

where α ∈ [0, 1] is a parameter. Notice that K1/2 is the standard rotated
quadratic cone. For all other α ∈ (0, 1), Kα is not symmetric. In [7], it was
proved that the function

Fα(x) = − log (x2α
2 x2−2α

3 − x2
1)− (1− α) log x2 − α log x3

is a logarithmically homogeneous self-concordant barrier with parameter ν = 3
for Kα. It is this barrier function we are using in our experiments. Nesterov
proposed in [16] a barrier function for the three-dimensional power cone with
parameter ν = 4. Our computational experience shows that Fα is better in
practice which is in accordance with theory.

6.2 Test problems

In this section, e will denote the vector of all ones. The dimension of e will be
clear from the context.



18 Anders Skajaa and Yinyu Ye

6.2.1 p-cone problem

Given A ∈ RM×N and b ∈ RM , the p-cone problem is the problem

min
x

‖x‖p, s.t. Ax = b.

In [15], it is shown that this is equivalent to

min
x,y,t

t, s.t. Ax = b, eT y = t

(xj ; yj ; t) ∈ K(1/p), j = 1, . . . ,M.

6.2.2 Facility location problem

Given M points (locations) in RN : C(j), j = 1, . . . ,M , we want to find the
point z with the minimal sum of weighted distances to the locations C(j)

measured in pj-norms, pj ≥ 1. That is

min
z

M∑

j=1

aj‖z − C(j)‖pj (17)

where aj ≥ 0 are the weights. We can then formulate (17) in conic form:

min
z+,z−,v,w,u

M∑

j=1

aju
(j)
1

s.t. v(j) = z+ − z− − C(j) j = 1, . . . ,M

eTw(j) = u
(j)
1 , u

(j)
1 = u

(j)
2 = · · · = u

(j)
N j = 1, . . . ,M

(v
(j)
i ;w

(j)
i ;u

(j)
i ) ∈ K1/pj j = 1, . . . ,M, i = 1, . . . , N

z+ ≥ 0, z− ≥ 0

6.2.3 Geometric programming

This is a problem of the type

min
x

f (0)(x)

s.t. g(j)(x) = 1, j = 1, . . . ,M

f (j)(x) ≤ 1, j = 1, . . . , P

where g(j) are monomials and f (j) are posynomials. Using the notation xv :=∏n
i=1 x

vi
i where each xi > 0, they can be writting

g(x) = kjx
b(j)

, f (j)(x) =

Nj∑

i=1

dix
a

(j)
i .

With the j’th posynomial f (j), we then associate



A Homogeneous Nonsymmetric IPM 19

– the matrix A(j) :=
(
a

(j)
1 ,a

(j)
2 , . . . ,a

(j)
Nj

)T
∈ RNj×N ,

– the vector d(j) = (d
(j)
1 , . . . , d

(j)
Nj

)T ∈ RNj×1 and

– the vector c(j) = log (d(j)) = (log (d1), . . . , log (dNj ))
T ∈ RNj×1

Similarly, we associate with the j’th monomial g(j)

– the vector b(j), the scalar k(j), the scalar h(j) = log (k(j)).

Using the change of variables ui = log (xi) ⇔ xi = exp(ui) for all i, we can
write the problem in conic form:

min
u+,u−,w,v,y,t(0)

t(0)

s.t.: B(u+ − u−) + h = 0

w(j) = A(j)(u+ − u−) + c(j) j = 0, . . . , P

eTv(j) = t(j), y(j) = e j = 0, . . . , P

u+,u−, t
(0) ≥ 0

(
w

(j)
i ; v

(j)
i ; y

(j)
i

)
∈ Kexp j = 0, . . . , P, i = 1, . . . , Nj

where h = (h(1), . . . , h(M))T ∈ RM×1 and B =
(
b(1), . . . , b(M)

)T ∈ RM×N .

6.2.4 Entropy maximization

Given A ∈ RM×N , b ∈ RM and d ∈ RN+ , the entropy maximization problem is

min
x

N∑

j=1

djxj log xj

s.t. Ax = b

xj ≥ 0, j = 1, . . . , N

which can be formulated as

min
x,u
−dTu, s.t. Ax = b, v = e

(uj ; vj ;xj) ∈ Kexp, j = 1, . . . , N.

6.3 Computational results

The remaining tables in this section show the number of iterations (it), the
total number of factorizations made (ch), the average number of full correc-
tion steps per iteration (ce) and the termination status (st). opt means that an
optimal solution was found and ipr/idu means a primal/dual infeasibility cer-
tificate was found. For all computational experiments, we used the parameters
displayed in Table 1.



20 Anders Skajaa and Yinyu Ye

Table 1 Parameters used in computational experiments.

Parameter J θ η β ε
Value 3 0.70 0.50 0.80 10−6

For entropy maximization problems and geometric programs, we compare
our algorithm to the purpose-built solvers in Mosek [13]. For p-cone prob-
lems, we compare our algorithm to SeDuMi (see [24]) when called through CVX

(see [8]). We intentionally compare only the number of Cholesky factoriza-
tions performed by each algorithm. This is to eliminate from the comparisons
the CPU-time consumed by software overhead. Therefore, it is reasonable to
measure only the dominating operations, i.e. the Cholesky factorizations.

6.3.1 p-cone problems

Table 2 shows results from solving a series of p-cone problems. The data A
and b are from the netlib collection of linear programs. We see that npc

Table 2 Computational results for p-cone problems. Data A ∈ RM×N and b from netlib.
sp(A) denotes the sparsity of A. This table contains only a part of the instances tested. Full
results can be found in the electronic supplements.

Problem npc CVX/SeDuMi

name & size p m n it ch ce st m n ch st

bandm 1.13 777 1416 9 19 1.1 opt 6913 14632 21 opt
M = 305 1.57 777 1416 11 23 1.1 opt 8801 18408 26 opt
N = 472 2.09 777 1416 14 29 1.1 opt 9745 20296 27 opt
sp(A) = 1.73% 4.71 777 1416 23 37 0.6 opt 10689 22184 26 opt

7.39 777 1416 24 43 0.8 opt 11633 24072 26 opt

blend 1.13 188 342 9 19 1.1 opt 1670 3534 21 opt
M = 74 1.57 188 342 9 20 1.2 opt 2126 4446 22 opt
N = 114 2.09 188 342 9 16 0.8 opt 2354 4902 20 opt
sp(A) = 6.19% 4.71 188 342 11 19 0.7 opt 2582 5358 20 opt

7.39 188 342 13 21 0.6 opt 2810 5814 21 opt

.

.

. More results online.

stocfor1 1.13 282 495 9 16 0.8 opt 2427 5115 19 opt
M = 117 1.57 282 495 8 17 1.1 opt 3087 6435 20 opt
N = 165 2.09 282 495 9 19 1.1 opt 3417 7095 22 opt
sp(A) = 2.60% 4.71 282 495 18 30 0.7 opt 3747 7755 25 opt

7.39 282 495 22 29 0.3 opt 4077 8415 26 opt

performs very well compared to SeDuMi. CVX solves the problem by approxi-
mating the original p-cone problem by an approximately equivalent self-scaled
problem. The resulting self-scaled problem is then solved using SeDuMi. As
discussed in the introduction, this modelling of a nonsymmetric problem by



A Homogeneous Nonsymmetric IPM 21

symmetric cones requires the introduction of extra variables and constraints.
The table shows for each of the two solution methods, the number of rows
m and columns n of the final linear constraint matrix (corresponding to A
in (pd)). These results clearly demonstrate the advantage of modelling this
inherently nonsymmetric problem (the p-norm is not a self-dual norm when
p 6= 2) directly by using a nonsymmetric cone. As seen from the table, the size
of the problem built by CVX is much greater, in some instances by as much
as 17 times, than the size of the problem solved by npc. Notice also that the
latter problem, unlike the first, is independent of p.

In terms of iterations, npc uses about 40% less than SeDuMi. The total
number of factorizations for the two methods is about the same. However, as
described above, SeDuMi factorizes much larger matrices. Therefore we may
conclude for these problems, that the direct modelling method coupled with
a nonsymmetric solver like npc is clearly superior to CVX/SeDuMi.

6.3.2 Facility location problems

Table 3 shows the performances of our algorithm when run on random in-
stances of the facility location problem. For each pair (N,M), we generated
10 instances each with C(j) chosen at random from the standard normal distri-
bution. For each instance, M different pj were chosen as the maximum of 1.0
and a sample from a normal distribution with mean 2.0 and variance 0.25. The
aj were chosen randomly from a uniform distribution on [0, 1]. The column la-

belled p̄ shows the number M−1
∑M
j=1 pj averaged over the 10 instances. This

number should be close to 2.0.
We see that our algorithm uses in the region 10–20 iterations and the

number of Cholesky factorizations never exceeds 32. On average slightly more
than 0.50 full centering steps are needed in each iteration. These results can
be loosely compared with the computational results in [7, Table 4.1, page 142].
There, a dual variant of the algorithm of [16] is used to solve the same kind of
problem. Overall, our algorithm performs better, both in terms of iterations
and factorizations.

6.3.3 Geometric programs

Table 4 shows results from applying our algorithms to a set of geometric
programs supplied to us by Mosek. The column labelled dod denotes the
degree of difficulty of the problem [5]. For a particular problem instance j,
let IAj and CAj be the number of iterations and Cholesky factorization re-
spectively used by algorithm A to solve instance j and let us define the ra-
tio of sums S = (

∑
j C

npc
j )/(

∑
j C

npc
j ). Further let Rit

j = Inpcj /IMosek
j and

Rch
j = Cnpc

j /CMosek
j . If we let an overbar denote arithmetic mean and a tilde

denote geometric mean over all j, we then find

(S, Rit, Rch, R̃it, R̃ch) = (1.3, 1.1, 1.9, 0.94, 1.7).



22 Anders Skajaa and Yinyu Ye

Table 3 Results for facility location problems. The algorithm always terminated after
reaching optimality as all problem instances were feasible by construction. This table con-
tains only a part of the instances tested. Full results can be found in the electronic supple-
ments.

Problem npc

N M ν p̄ it ch ce

3 4 44 2.03 11.1 18.2 0.65
10 4 128 2.07 13.2 20.1 0.54
3 20 220 2.09 17.1 27.5 0.64
19 4 236 2.00 13.8 21.0 0.54

.

.

. More results online.

10 12 384 2.06 16.0 25.1 0.58
32 4 392 2.03 13.4 20.9 0.56
10 20 640 1.99 18.7 30.5 0.66
19 20 1180 2.01 19.7 30.5 0.60
32 20 1960 1.98 17.7 31.5 0.79

Table 4 Results for geometric programs. This table contains only a part of the instances
tested. Full results can be found in the electronic supplements.

Problem npc mskgpopt

name n dod it ch ce st ch st

beck751 7 10 16 30 0.9 opt 18 opt
beck753 7 10 13 27 1.1 opt 10 opt

car 37 104 15 28 0.9 opt 46 opt
demb761 11 19 12 22 0.8 ipr 10 opt

.

.

. More results online.

demb781 2 1 7 10 0.4 opt 7 opt
fang88 11 16 9 18 1.0 opt 11 opt
jha88 30 274 17 34 1.0 opt 13 opt
mra01 61 844 16 30 0.9 opt 58 opt
mra02 126 3494 30 57 0.9 opt 53 opt

rijc786 8 3 9 16 0.8 opt 6 opt
rijc787 7 40 12 23 0.9 opt 36 opt

For these problems we therefore conclude that our algorithm performs some-
what inferiorly to Mosek, using less iterations but cumulatively 30% more
Cholesky factorization than Mosek.

6.3.4 Entropy problems

Table 5 shows results from solving a set of real-world entropy problems sup-
plied to us by Mosek. Generally the problems have many variables compared
to the number of constraints resulting in a very “fat” constraint matrix A.
For these problems we compare our algorithms to the commercial solver from



A Homogeneous Nonsymmetric IPM 23

Table 5 Computational results for entropy problems. This table contains only a part of the
instances tested. Full results can be found in the electronic supplements.

Problem npc mskenopt

name N M it ch ce st ch st

prob 17 15 9 15 0.7 opt 8 opt
prob2 18 14 9 18 1.0 opt 8 opt
ento46 130 21 25 50 1.0 opt 42 opt
ento22 794 28 28 60 1.1 ipr 14 ipr
ento21 931 28 55 112 1.0 ipr 18 ipr
a tb 1127 25 38 87 1.3 opt 97 opt

ento23 1563 28 34 73 1.1 ipr 14 ipr

.

.

. More results online.

a 35 4333 37 43 90 1.1 ipr 18 ipr
a 24 5162 37 36 90 1.5 ipr 23 ipr
ento3 5172 28 49 126 1.6 opt 146 opt
ento50 5172 28 49 126 1.6 opt 146 opt
a 46 9455 37 40 102 1.6 ipr 20 ipr
a 56 9702 37 65 158 1.4 opt 123 opt

ento25 10142 28 116 250 1.2 opt 149 opt
entodif 12691 40 50 130 1.6 opt 155 opt
ento48 15364 31 16 52 2.2 opt 47 opt

Mosek, which solves the monotone complementarity problem [3] correspond-
ing to the entropy problem.

We see that, except for a few of the problems, our algorithm compares
somewhat unfavourable to Mosek. With the notation defined in Section 6.3.3,
we find

(S, Rit, Rch, R̃it, R̃ch) = (1.6, 1.2, 2.8, 0.93, 2.1).

That is, although npc uses fewer iterations, it uses cumulatively about 60%
more Cholesky factorizations to solve the entire set of problems when compared
to Mosek.

We remark that the solvers from Mosek for entropy problems and geo-
metric programs are two different solvers, each purpose-built to solve those
particular problems and not modelled as conic optimization problems. Our al-
gorithm, on the other hand, uses a purely conic formulation and thus is a much
more general purpose algorithm. We use no particular tuning of parameters to
particular problems. From simple experiments we know that tuning the param-
eters η and β for each type of problem, we could improve the computational
performance of our algorithm. However, since we believe in the importance
of practical applicability across various problem types, we choose to fix the
parameters and instead let our algorithm enjoy a very high degree of versatil-
ity. In that light, and considering the fact that Mosek is an industry-grade
implementation, we believe our algorithm compares very well.



24 Anders Skajaa and Yinyu Ye

7 Conclusions

In this paper, we have presented a homogeneous primal-dual interior-point
algorithm for nonsymmetric convex conic optimization. Unlike previous work
solving the homogenized convex conic problem, our algorithm makes use only
of the primal barrier function thus making the algorithm widely applicable.
We have proven the standard O(

√
ν log (1/ε)) worst-case complexity result.

Inspired by techniques known to significantly improve efficiency of algorithms
for self-scaled cones, we have developed techniques similar in purpose but for
the non-symmetric case. These include quasi-Newton updating to reduce com-
putational load and a Runge-Kutta type second order search direction, which
is new in this context. We demonstrated how to efficiently implement these
techniques without loosing the ability to exploit sparsity in the data matrix A.
Finally we have presented extensive computational results that indicate the
algorithm works well in practice.

By inspecting the tables in Section 6.3, we see that

– The performance of the algorithm depends a lot on the type of problem.
– For the p-cone problems, our algorithm superior in performance to SeDuMi

called via CVX. These experiments clearly show the potential advantage of
directly modelling nonsymmetric problems by using nonsymmetric cones.

– For the facility location problems, our algorithm compares favorably to an
algorithm [7], which is a dual variant of the one presented in [16].

– For geometric programs, our algorithm compares somewhat unfavourable
to Mosek.

– For entropy maximization problems, our algorithm again compares some-
what unfavourable to Mosek.

The computational results comparing our algorithm to Mosek should, how-
ever, be seen in the light of the comments in Section 6.3.4 on page 23.

Comparing the kind of algorithm we have presented with a primal-dual ipm
for self-scaled cones, we see that the major difference is the need for a separate
correction phase. Nesterov remarks in [16] that this process can be seen as the
process of finding a scaling point, i.e. a point w such that x = ∇2F (w)s.
It seems reasonable that this is a more complex problem when the cone is
not symmetric. We can not compute it analytically, so we need an iterative
procedure.

This difference is interesting theoretically as well as practically. For the
problems we have considered, the centering problem certainly is a relatively
easy problem compared to the full problem, in the sense that we do not need
a very accurately centered point. We have seen in the experiments with our
algorithm that rarely more a couple of correction steps are needed, some or
all of which may be comparably inexpensive quasi-Newton steps.

Acknowledgements The authors thank Erling D. Andersen and Joachim Dahl of Mosek
ApS for lots of insights and for supplying us with test problems for the geometric programs
and the entropy problems. The authors also thank the reviewers for many helpful comments.



A Homogeneous Nonsymmetric IPM 25

A Properties of the barrier function

Here we list some properties of logarithmically homogeneous self-concordant
barriers (lhscb) that we use in this paper. Many more properties and proofs
can be found in [18,19].

Let K◦ denote the interior of K. We assume that F : K◦ 7→ R is a lhscb
for K with barrier parameter ν. This means that for all x ∈ K◦ and t > 0,

F (tx) = F (x)− ν log t.

It follows that the conjugate of F , denoted F ∗ and defined for s ∈ (K∗)◦ by

F ∗(s) = sup
x∈K
{−sTx− F (x)}

is a lhscb for the dual cone K∗. Similarly to the notation used in [18,19], we
write the local Hessian norms on K and K∗ as:

‖g‖x = ‖H1/2
x g‖, for x ∈ K◦

‖h‖∗s = ‖(H∗s )1/2g‖, for s ∈ (K∗)◦

‖h‖∗x = ‖H−1/2
x h‖, for x ∈ (K)◦,

where H∗s = ∇2F ∗(s). Notice the different definitions of ‖ · ‖∗y depending on
whether y is in K or K∗. Using this convention and that −gx ∈ (K∗)◦ and
H∗−gx = H−1

x , we see that

‖s‖∗−gx = ‖(H∗−gx)−1/2s‖ = ‖H1/2
x s‖ = ‖s‖∗x. (18)

For x ∈ K◦, F satisfies

Hxx = −gx (19)

xT gx = −ν (20)

‖x‖2x = ν. (21)

The Dikin ellipsoids are feasible [4]. That is:

x ∈ K◦ ⇒ W (x) = {u, ‖u− x‖x ≤ 1} ⊆ K (22)

s ∈ (K∗)◦ ⇒ W ∗(s) = {h, ‖h− s‖∗s ≤ 1} ⊆ K∗. (23)

B The homogeneous and self-dual model

B.1 Optimality and infeasibility certificate

Let G be defined by (5) and notice that G is skew-symmetric: G = −GT .

1. Observe that we can write (hsd) as G(y;x; τ)T − (0; s;κ)T = 0. Pre-
multiplying this equation by (y;x; τ)T gives xT s+ τκ = 0.



26 Anders Skajaa and Yinyu Ye

2. τ > 0 implies κ = 0 and hence bT (y/τ) − cT (x/τ) = 0 and therefore
xT s = 0. Dividing the two first linear feasibility equations of (hsd) by τ ,
we obtain the linear feasibility equations of (1). Thus (x, y, s)/τ is optimal
for (pd).

3. If κ > 0 then τ = 0 so Ax = 0 and AT y+s = 0. Further cTx−bT y = −κ < 0
so not both cTx and −bT y can be non-negative. Assume −bTx < 0. If (pd)
is primal-feasible then there exists x̄ ∈ K such that Ax̄ = b. But then
0 > −bT y = −x̄TAT y = x̄T s ≥ 0, a contradiction. We can argue similarly
if cTx < 0,

and this completes the proof of Lemma 1.

B.2 Self-duality

The dual of (hsd) problem is

max
ŷ1,ŷ1,ŷ1,ŷ1,ŷ1,ŷ1,ŝ

0

s.t.




AT 0 −c
0 cT −bT
0 −I 0
−1 0 0






ŷ1

ŷ2

ŷ3


+




ŝ1

ŝ2

ŝ3

ŝ4


 = 0 (24)

−Aŷ2 + bŷ3 = 0 (25)

ŝ ∈ (K × R+ ×K∗ × R+)∗, ŷ free. (26)

After a few eliminations, we see that (24)–(26) are equivalent to

Aŝ3 −bŝ4 = 0
−AT ŷ1 +cŝ4 −ŝ1 = 0
bT ŷ1 −cT ŝ3 −ŝ2 = 0

(27)

(ŝ3, ŝ4) ∈ K × R+, (ŝ1, ŝ2) ∈ K∗ × R+, ŷ1 ∈ Rm.

Through the following identification of variables

ŝ1 ∼ s, ŝ2 ∼ κ, ŝ3 ∼ x, ŝ4 ∼ τ, ŷ1 ∼ y,

it is clear that the constraints (27) are equivalent to those of the problem
(hsd). Since the objective function in both problems is constant zero, the two
problems are identical and this proves Lemma 2.

C Prediction

The direction dz is defined by

G(dy; dx̄)− (0; ds̄) = − (G(y; x̄)− (0; s̄)) (28)

ds̄ + µHx̄dx̄ = −s̄ (29)



A Homogeneous Nonsymmetric IPM 27

C.1 Reduction of residuals

We first show:

1. s̄T dx̄ + x̄T ds̄ + x̄T s̄ = ψ(z)T dx̄ (30)

2. (x̄+ dx̄)T (s̄+ ds̄) = 0 (31)

3. dTx̄ ds̄ = −ψ(z)T dx̄. (32)

1. We get s̄T dx̄+ x̄T ds̄+ x̄T s̄
(29)
= s̄T dx̄+ x̄T (−s̄−µHx̄dx̄) + x̄T s̄, which, after

reduction, gives dTx̄ (s̄− µHx̄x̄) = ψ(z)T dx̄.
2. Equation (28) is equivalent to G(y + dy; x̄ + dx̄) − (0; s̄ + ds̄) = 0. Pre-

multiplying this equation by (y + dy, x̄+ dx̄) gives (31).
3. Follows from expanding (31) and using (30).

Now the lemma follows readily: We simply note that the first equation follows
directly from elementary linear algebra. To show the second:

ν̄µ(z+) = (x̄+ αdx̄)T (s̄+ αds̄)

= x̄T s̄+ α(s̄T dx̄ + x̄T ds̄) + α2dTx̄ ds̄
(30)–(32)

= x̄T s̄+ α(−x̄T s̄+ ψ(z)T dx̄) + α2(−ψ(z)T dx̄)

= (1− α)x̄T s̄+ α(1− α)ψ(z)T dx̄

which after division by ν̄ proves Lemma 3.

C.2 Bounds on s̄, ds̄ and dx̄

Assume ‖ψ‖∗x̄ ≤ ηµ. By definition, ψ = s̄−µHx̄x̄, which after left-multiplication

by H
−1/2
x̄ , taking norms and squaring both sides gives

(‖s̄‖∗x̄)2 = (‖ψ‖∗x̄)2 + µ2‖x̄‖2x̄ + 2µx̄Tψ

= (‖ψ‖∗x̄)2 + 2 + µ2ν̄ ≤ µ2(ν̄ + η2)

‖s̄‖∗x̄ ≤ µ
√
η2 + ν̄ (33)

where we used (21) and x̄Tψ = 0.
This bound allows us to obtain bounds on dx̄ and ds̄: Left-multiplying (29)

by H
−1/2
x̄ , taking norms and squaring both sides gives

(‖ds̄‖∗x̄)2 + µ2‖dx̄‖2x̄ = (‖s̄‖∗x̄)2 − 2µdTx̄ ds̄
(32)
= (‖s̄‖∗x̄)2 + 2µdTx̄ψ

≤ (‖s̄‖∗x̄)2 + 2µ‖dx̄‖x̄‖ψ‖∗x̄
by the Cauchy-Schwarz inequality. Therefore: µ2‖dx̄‖2x̄ ≤ (‖s̄‖∗x̄)2+2µ‖dx̄‖x̄‖ψ‖∗x̄.
Now subtracting 2µ‖dx̄‖x̄‖ψ‖∗x̄ and adding (‖ψ‖∗x̄)2 to both sides, we get

(µ‖dx̄‖x̄ − ‖ψ‖∗x̄)
2 ≤ (‖s̄‖∗x̄)2 + (‖ψ‖∗x̄)2



28 Anders Skajaa and Yinyu Ye

or

‖dx̄‖x̄ ≤ µ−1
(
‖ψ‖∗x̄ +

√
(‖s̄‖∗x̄)2 + (‖ψ‖∗x̄)2

)

≤ µ−1(ηµ+
√
µ2(η2 + ν̄) + η2µ2) = η +

√
η2 + ν̄ =: kx̄. (34)

For ds̄, we similarly have

(‖ds̄‖∗x̄)2 ≤ (‖s̄‖∗x̄)2 + 2µ‖dx̄‖x̄‖ds̄‖∗x̄
(‖ds̄‖∗x̄ − µ‖dx̄‖x̄)2 ≤ (‖s̄‖∗x̄)2 + µ2‖dx̄‖2x̄

‖ds̄‖∗x̄ ≤ kx̄µ+
√
µ2(η2 + ν̄) + k2

x̄µ
2 = ks̄µ (35)

where ks̄ := kx̄ +
√

(η2 + ν̄) + k2
x̄.

C.3 Feasibility of z+.

Define α1 := k−1
x̄ = Ω(1/

√
ν̄). Then for any α ≤ α1, we have

‖x̄− (x̄+ αdx̄)‖x̄ = α‖dx̄‖x̄
(34)

≤ αkx̄ ≤ 1

and so from (22), we conclude x̄+ αdx̄ = x̄+ ∈ K̄.
Now, define α2 := (1− η)k−1

s̄ = Ω(1/
√
ν̄). Then for α ≤ α2, we have

µ−1‖s̄+ + µgx̄‖∗−gx̄ = µ−1‖s̄+ αds̄ + µgx̄‖∗−gx̄ = µ−1‖ψ + αds̄‖∗−gx̄
(18)

≤ µ−1‖ψ‖∗x̄ + µ−1α‖ds̄‖∗x̄
(35)

≤ η + αks̄ ≤ 1.

Since −gx̄ ∈ K̄∗, we have by (23) that µ−1s̄+ ∈ K̄∗ and therefore s̄+ ∈ K̄∗.
Therefore, Lemma 4 holds with α = min{α1, α2} = Ω(1/

√
ν̄) = Ω(1/

√
ν).

C.4 Bound on ψ+.

First recall the definition (6): ψ(x̄, s̄, t) = s̄+ tgx̄. Now consider for a fixed v0

the function

Φt(x̄) = x̄T v0 + tF (x̄)

which is self-concordant with respect to x̄. Define its Newton step by nt(x̄) :=
−∇2Φt(x̄)−1∇Φt(x̄). Define also q = ‖nt2(x̄)‖x̄. From the general theory of
self-concordant functions, the following inequality holds. If q ≤ 1, then

‖nt2(x̄2)‖x̄2
≤
(

q

1− q

)2

. (36)



A Homogeneous Nonsymmetric IPM 29

For a proof of this relation, see e.g. Theorem 2.2.4 in [23]. With v0 = s̄+,
t2 = µ+ and x̄2 = x̄+, the inequality (36) is

‖ψ+‖∗x̄+ ≤ µ+

(
q

1− q

)2

. (37)

where µ+q = ‖H−1
x̄ (s̄+ + µ+gx̄)‖x̄ = ‖s̄+ + µ+gx̄‖∗x̄. From Lemma 3 and (34):

|µ− µ+| = | − αµ+ α(1− α)ν̄−1ψT dx̄|
≤ µα

(
1 + (1− α)ηkx̄ν̄

−1
)
. (38)

By the assumption ‖ψ‖∗x̄ ≤ ηµ combined with (34), we have ψT dx̄ ≥ −ηkx̄µ.
Therefore

µ+ = (1− α)µ+ α(1− α)ν̄−1ψT dx̄

≥ µ(1− α)(1− αηkx̄ν̄−1)

µ/µ+ ≤ (1− α)−1(1− αηkx̄ν̄−1)−1 (39)

Let us now obtain a bound on q.

µ+q = ‖s̄+ + µ+gx̄‖∗x̄ = ‖ψ − (µ− µ+)gx̄ + αds̄‖∗x̄ (40)

≤ ‖ψ‖∗x̄ + |µ− µ+|‖gx̄‖∗x̄ + α‖ds̄‖∗x̄
≤ ηµ+ µα

(
1 + (1− α)ηkx̄ν̄

−1
)√

ν̄ + αks̄µ

≤ µ
(
η + αks̄ + α(1 + (1− α)ν̄−1ηkx̄)

√
ν̄
)

q ≤ (µ/µ+)(η + α(
√
ν̄ + ks̄ + ηkx̄))

≤ (1− α)−1(1− αηkx̄ν̄−1)−1(η + α(
√
ν̄ + ks̄ + ηkx̄))

where we used (35), (38), (39) and the assumption ‖ψ‖∗x̄ ≤ ηµ. Now the reader
can verify that for η ≤ 1/6 and ν̄ ≥ 2, we have the implication

α ≤ α3 :=
1

11
√
ν̄

= Ω(1/
√
ν̄) ⇒ q2/(1− q)2 ≤ 2η ≤ 1/3 (41)

which also implies q < 1. Now by (37), we see that (41) implies ‖ψ+‖∗x̄+ ≤ 2ηµ+

and hence z+ ∈ N (2η) which finishes the proof of Lemma 5.

D Correction phase

Assume ‖ψ(x̄, s̄, µ)‖∗x̄ ≤ βµ where µ := µ(z) with z = (x̄, y, s̄). The equations
defining the correction step (δx̄, δy, δs̄) are

G(δy; δx̄)− (0; δs̄) = 0 (42)

δs̄ + µHx̄δx̄ = −ψ(x̄, s̄, µ) (43)



30 Anders Skajaa and Yinyu Ye

and the next point is then (x̄+, y+, s̄+) := (x̄, y, s̄)+α̂(δx̄, δy, δs̄). Left-multiplying
(42) by (δy, δx̄)T , we get δTx̄ δs̄ = 0. From (43), we then have

(‖δs̄‖∗x̄)2, µ2‖δx̄‖2x̄ ≤ (‖δs̄‖∗x̄)2 + µ2‖δx̄‖2x̄ = (‖ψ(x̄, s̄, µ)‖∗x̄)2 ≤ β2µ2

and therefore

‖δx̄‖x̄ ≤ β, ‖δs̄‖∗x̄ ≤ βµ. (44)

From (43), we also have

‖ψ(x̄, s̄, µ) + α̂δs̄‖∗x̄ = ‖(1− α̂)ψ(x̄, s̄, µ) + α̂µHx̄δx̄‖∗x̄
≤ (1− α̂)‖ψ(x̄, s̄, µ)‖∗x̄ + α̂µ‖δx̄‖x̄
≤ (1− α̂)βµ+ α̂µβ = βµ (45)

Where we used (44). Now define q = (µ+)−1‖s̄+ + µ+gx̄‖∗x̄. Then estimating
similarly to (40), we get

µ+q ≤ ‖ψ(x̄, s̄, µ) + (µ+ − µ)gx̄ + α̂δs̄‖∗x̄
≤ βµ(1 + α̂(βν̄−1/2 + 1))

and similarly to the computation in (39), we therefore find

µ/µ+ ≤ (1− α̂ν̄−1β2)−1

so that altogether

q ≤ β(1− α̂ν̄−1β2)−1(1 + α̂(βν̄−1/2 + 1)). (46)

Now we can apply the theorem (36) with v0 = s̄+, t = µ and x̄2 = x̄+:

‖ψ(x̄+, s̄+, µ+)‖∗x̄+ ≤ µ+

(
q

1− q

)2

(47)

The reader can verify that for α̂ ≤ 1/84, ν̄ ≥ 2, β ≤ 2η ≤ 1/3, the bound (46)
implies that when recursively using (47) twice, we obtain

‖ψ(x̄+, s̄+, µ+)‖∗x̄+ ≤ 1

2
β ≤ η

and therefore z+ ∈ N (η) which proves Lemma 6.



A Homogeneous Nonsymmetric IPM 31

E Algorithm complexity

From Lemma 3, we have that the linear residuals G(y; x̄)−(0; s̄) are reduced by
a factor (1− α) in each iteration. Since we can always take α = Ω(1/

√
ν̄), we

see that G(y; x̄)− (0; s̄) decreases geometrically with a rate of (1−Ω(1/
√
ν̄))

which implies that

‖G(y; x̄)− (0; s̄)‖ ≤ ε‖G(y0; x̄0)− (0; s̄0)‖

in O(
√
ν̄ log (1/ε)) = O(

√
ν log (1/ε)) iterations.

To see that the same holds for µ(z), let us briefly use the following notation:
z is the starting point, z+ is the point after prediction and z(j) is the point
after applying j correction steps starting in z+. Then from Lemma 3 and (34),
we have

µ(z+) ≤ (1− α)µ(z) + α(1− α)ν̄−1µηkx̄

≤ µ(z)(1− α)(1 + αηkx̄ν̄
−1)

= µ(z)(1−Ω(1/
√
ν̄)) (48)

Since δTx̄ δs̄ = 0, we see from (43) that

(x̄+)T δs̄ = µ(z+)δTx̄ gx̄+ = δTx̄ ψ(x̄+, s̄+, µ(z+))− δTx̄ s̄+ (49)

Therefore

ν̄µ(z(1)) = (x̄+ + α̂δx̄)T (s̄+ + α̂δs̄)
(49)
= (x̄+)T (s̄+) + α̂δTx̄ ψ(x̄+, s̄+, µ(z+))

≤ ν̄µ(z+) + α̂β2µ(z+)

= ν̄µ(z+)(1 + α̂β2ν̄−1)

and hence

µ(z(2)) ≤ µ(z+)(1 + α̂β2ν̄−1)2

(48)

≤ µ(z)(1−Ω(1/
√
ν̄))(1 + α̂β2ν̄−1)2

= µ(z)(1−Ω(1/
√
ν̄))

which shows that also µ(z) is decreased geometrically with a rate of (1 −
Ω(1/

√
ν̄)). Therefore µ(z) ≤ εµ(z0) in O(

√
ν̄ log (1/ε)) = O(

√
ν log (1/ε)) ite-

rations, finishing the proof of Theorem 1.

References

1. Andersen, E. D., Andersen, K. D.: The MOSEK interior point optimization for linear
programming: an implementation of the homogeneous algorithm. In: Frenk, H., Roos, K.,
Terlaky, T., Zhang, S.: High Performance Optimization, 197–232. Kluwer, Boston (1999).

2. Andersen, E. D., Roos, C., Terlaky, T.: On implementing a primal-dual interior-point
method for conic quadratic optimization. Math. Program. 95(2), 249–277 (2003).



32 Anders Skajaa and Yinyu Ye

3. Andersen, E. D., Ye, Y.: On a homogeneous algorithm for the monotone complementarity
problem. Math. Program. 84(2), 375–399 (1999).

4. Ben-Tal, A., Nemirovski, A. S.: Lectures on Modern Convex Optimization: Analysis,
Algorithms and Engineering Applications. SIAM, Philadelphia (2001).

5. Boyd, S., Kim, S. J., Vandenberghe, L., Hassibi, A.: A Tutorial on Geometric Program-
ming. Optim. Eng. 8, 67–127 (2007).

6. Butcher, J. C.: Numerical Methods for Ordinary Differential Equations. Wiley, 2nd
edition (2008).

7. Chares, P. R.: Cones and Interior-Point Algorithms for Structured Convex Optimization
involving Powers and Exponentials. PhD thesis, Uni. Catholique de Louvain, 2009.

8. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version
1.21. http://cvxr.com/cvx, October 2010.

9. Güler, O.: Barrier Functions in Interior Point Methods. Math. Oper. Res. 21, 860–885
(1996).

10. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combina-
torica 4, 373–395 (1984).

11. Luo, Z. Q., Sturm, J. F., Zhang, S.: Conic convex programming and self-dual embedding.
Optim. Method. Softw. 14, 169–218 (2000).

12. Mehrotra, S.: On the Implementation of a Primal-Dual Interior Point Method. SIAM
J. Optim. 2, 575–601 (1992).

13. MOSEK Optimization Software: Developed by MOSEK ApS. See www.mosek.com.
14. Nemirovski, A. S., Todd, M. J.: Interior-point methods for optimization. Acta Numerica

17, 191–234 (2008).
15. Nesterov, Y. E.: Constructing self-concordant barriers for convex cones. CORE Discus-

sion Paper (2006/30).
16. Nesterov, Y. E.: Towards Nonsymmetric Conic Optimization. Optim. Method. Softw.

27, 893–917 (2012).
17. Nesterov, Y. E., Nemirovski, A. S.: Interior-Point Polynomial Algorithms in Convex

Programming. SIAM (1994).
18. Nesterov, Y. E., Todd, M. J.: Self-Scaled Barriers and Interior-Point Methods for Convex

Programming. Math. Oper. Res. 22, 1–42 (1997).
19. Nesterov, Y. E., Todd, M. J.: Primal-Dual Interior-Point Methods for Self-Scaled Cones.

SIAM J. Optim. 8, 324–364 (1998).
20. Nesterov, Y. E., Todd, M. J., Ye, Y.: Infeasible-Start Primal-Dual Methods and In-

feasibility Detectors for Nonlinear Programming Problems. Math. Program. 84, 227–267
(1999).

21. Netlib repository: Collection of linear programs. See www.netlib.org/lp/.
22. Nocedal, J., Wright, S. J.: Numerical Optimization. Springer, 2nd edition (2006).
23. Renegar, J.: A Mathematical View of Interior-Point Methods in Convex Optimization.

SIAM, Philadelphia (1987).
24. Sturm, J. F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric

cones. Optim. Method. Softw. 12, 625–653 (1999).
25. Sturm, J. F.: Implementation of Interior Point Methods for Mixed Semidefinite and

Second Order Cone Optimization Problems. Optim. Method. Softw. 17, 1105–1154 (2002).
26. Tuncel, L.: Primal-Dual Symmetry and Scale Invariance of Interior-Point Algorithms

for Convex Optimization. Math. Oper. Res. 23, 708–718 (1998).
27. Tuncel, L.: Generalization Of Primal-Dual Interior-Point Methods To Convex Opti-

mization Problems In Conic Form. Found. Comput. Math. 1, 229–254 (2001).
28. Wright, S. J.: Primal-Dual Interior-Point Methods. SIAM (1997).
29. Xu, X., Hung, P. F., Ye, Y.: A simplified homogeneous and self-dual linear programming

algorithm and its implementation. Ann. Oper. Res. 62, 151–171 (1996).
30. Xue, G. Ye, Y.: An Efficient Algorithm for Minimizing a Sum of p-Norms. SIAM J.

Optimiz. 10, 551–579 (1999).
31. Ye, Y.: Interior Point Algorithms: Theory and Analysis. Wiley (1997).



A Homogeneous Nonsymmetric IPM 33

Electronic supplements: Complete Numerical Results

1. p-cone Problems

Table 6 Computational results for p-cone problems. Data A ∈ RM×N and b from netlib.
sp(A) denotes the sparsity of A.

Problem npc CVX/SeDuMi

name & size p m n it ch ce st m n ch st

bandm 1.13 777 1416 9 19 1.1 opt 6913 14632 21 opt
M = 305 1.57 777 1416 11 23 1.1 opt 8801 18408 26 opt
N = 472 2.09 777 1416 14 29 1.1 opt 9745 20296 27 opt
sp(A) = 1.73% 4.71 777 1416 23 37 0.6 opt 10689 22184 26 opt

7.39 777 1416 24 43 0.8 opt 11633 24072 26 opt

blend 1.13 188 342 9 19 1.1 opt 1670 3534 21 opt
M = 74 1.57 188 342 9 20 1.2 opt 2126 4446 22 opt
N = 114 2.09 188 342 9 16 0.8 opt 2354 4902 20 opt
sp(A) = 6.19% 4.71 188 342 11 19 0.7 opt 2582 5358 20 opt

7.39 188 342 13 21 0.6 opt 2810 5814 21 opt

bore3d 1.13 565 1002 7 8 0.1 opt 4907 10354 6 opt
M = 231 1.57 565 1002 7 8 0.1 opt 6243 13026 6 opt
N = 334 2.09 565 1002 7 8 0.1 opt 6911 14362 6 opt
sp(A) = 1.87% 4.71 565 1002 7 8 0.1 opt 7579 15698 6 opt

7.39 565 1002 7 8 0.1 opt 8247 17034 6 opt

scagr25 1.13 1142 2013 11 18 0.6 opt 9865 20801 21 opt
M = 471 1.57 1142 2013 10 21 1.1 opt 12549 26169 21 opt
N = 671 2.09 1142 2013 11 21 0.9 opt 13891 28853 20 opt
sp(A) = 0.55% 4.71 1142 2013 10 16 0.6 opt 15233 31537 19 opt

7.39 1142 2013 10 21 1.1 opt 16575 34221 17 opt

sctap1 1.13 960 1980 10 21 1.1 opt 9540 20460 22 opt
M = 300 1.57 960 1980 10 20 1.0 opt 12180 25740 25 opt
N = 660 2.09 960 1980 9 22 1.4 opt 13500 28380 21 opt
sp(A) = 0.95% 4.71 960 1980 9 23 1.6 opt 14820 31020 18 opt

7.39 960 1980 9 20 1.2 opt 16140 33660 21 opt

share1b 1.13 370 759 10 21 1.1 opt 3659 7843 21 opt
M = 117 1.57 370 759 12 20 0.7 opt 4671 9867 26 opt
N = 253 2.09 370 759 13 24 0.8 opt 5177 10879 24 opt
sp(A) = 3.98% 4.71 370 759 13 23 0.8 opt 5683 11891 23 opt

7.39 370 759 13 24 0.8 opt 6189 12903 24 opt

share2b 1.13 258 486 9 20 1.2 opt 2364 5022 19 opt
M = 96 1.57 258 486 9 18 1.0 opt 3012 6318 20 opt
N = 162 2.09 258 486 9 16 0.8 opt 3336 6966 20 opt
sp(A) = 5.00% 4.71 258 486 11 22 1.0 opt 3660 7614 20 opt

7.39 258 486 11 20 0.8 opt 3984 8262 20 opt

stocfor1 1.13 282 495 9 16 0.8 opt 2427 5115 19 opt
M = 117 1.57 282 495 8 17 1.1 opt 3087 6435 20 opt
N = 165 2.09 282 495 9 19 1.1 opt 3417 7095 22 opt
sp(A) = 2.60% 4.71 282 495 18 30 0.7 opt 3747 7755 25 opt

7.39 282 495 22 29 0.3 opt 4077 8415 26 opt



34 Anders Skajaa and Yinyu Ye

Electronic supplements: Complete Numerical Results

2. Facility Location problems

Table 7 Results for facility location problems. The algorithm always terminated after
reaching optimality as all problem instances were feasible by construction.

Problem npc

N M ν p̄ it ch ce

3 4 44 2.03 11.1 18.2 0.65
3 8 88 1.96 14.1 22.3 0.61
10 4 128 2.07 13.2 20.1 0.54
3 12 132 1.93 15.3 23.4 0.56
3 20 220 2.09 17.1 27.5 0.64
19 4 236 2.00 13.8 21.0 0.54
10 8 256 1.98 15.6 23.4 0.51
10 12 384 2.06 16.0 25.1 0.58
32 4 392 2.03 13.4 20.9 0.56
19 8 472 1.98 15.2 23.1 0.53
10 20 640 1.99 18.7 30.5 0.66
19 12 708 1.99 15.3 25.9 0.70
32 8 784 2.04 14.0 23.3 0.67
32 12 1176 2.05 16.4 27.0 0.65
19 20 1180 2.01 19.7 30.5 0.60
32 20 1960 1.98 17.7 31.5 0.79



A Homogeneous Nonsymmetric IPM 35

Electronic supplements: Complete Numerical Results

3. Geometric Programs

Table 8 Results for geometric programs.

Problem npc mskgpopt

name n dod it ch ce st ch st

beck751 7 10 16 30 0.9 opt 18 opt
beck752 7 10 15 29 0.9 opt 28 opt
beck753 7 10 13 27 1.1 opt 10 opt
bss2 2 1 9 13 0.4 opt 5 opt
car 37 104 15 28 0.9 opt 46 opt

demb761 11 19 12 22 0.8 ipr 10 opt
demb762 11 19 9 19 1.1 opt 11 opt
demb763 11 19 10 20 1.0 opt 11 opt
demb781 2 1 7 10 0.4 opt 7 opt
fang88 11 16 9 18 1.0 opt 11 opt
fiac81a 22 50 11 22 1.0 opt 16 opt
fiac81b 10 9 12 21 0.8 ipr 10 opt
gptest 4 1 8 12 0.5 opt 5 opt
jha88 30 274 17 34 1.0 opt 13 opt
mra01 61 844 16 30 0.9 opt 58 opt
mra02 126 3494 30 57 0.9 opt 53 opt

rijc781 4 1 8 12 0.5 opt 5 opt
rijc782 3 5 10 18 0.8 opt 8 opt
rijc783 4 7 12 23 0.9 opt 7 opt
rijc784 4 3 13 19 0.5 rnd 6 opt
rijc785 8 3 9 16 0.8 opt 9 opt
rijc786 8 3 9 16 0.8 opt 6 opt
rijc787 7 40 12 23 0.9 opt 36 opt



36 Anders Skajaa and Yinyu Ye

Electronic supplements: Complete Numerical Results

4. Entropy Problems

Table 9 Computational results for entropy problems.

Problem npc mskenopt

name N M it ch ce st ch st

prob 17 15 9 15 0.7 opt 8 opt
prob2 18 14 9 18 1.0 opt 8 opt
ento46 130 21 25 50 1.0 opt 42 opt
ento47 255 21 23 49 1.1 opt 54 opt
ento28 740 16 38 78 1.1 opt 63 opt
ento30 740 21 38 84 1.2 opt 55 opt
ento31 740 21 38 84 1.2 opt 55 opt
ento22 794 28 28 60 1.1 ipr 14 ipr
ento21 931 28 55 112 1.0 ipr 18 ipr
a tb 1127 25 38 87 1.3 opt 97 opt

ento23 1563 28 34 73 1.1 ipr 14 ipr
ento20 1886 28 41 94 1.3 opt 21 ipr
a 12 2183 37 46 104 1.3 opt 47 opt

ento12 2183 37 26 60 1.3 ipr 13 ipr
a 13 3120 37 44 99 1.2 ipr 20 ipr
a 23 3301 37 31 86 1.8 ipr 20 ipr
a 34 3905 37 36 83 1.3 ipr 17 ipr
a 14 3986 37 47 109 1.3 ipr 20 ukn
a 35 4333 37 43 90 1.1 ipr 18 ipr
a bd 4695 26 44 102 1.3 opt 78 opt
ento2 4695 26 44 102 1.3 opt 78 opt
a 24 5162 37 36 90 1.5 ipr 23 ipr
ento3 5172 28 49 126 1.6 opt 146 opt
ento50 5172 28 49 126 1.6 opt 146 opt
a 15 5668 37 84 176 1.1 opt 34 ipr
a 25 6196 37 61 137 1.2 opt 122 opt
a 36 7497 37 40 99 1.5 ipr 18 ipr
a 45 7667 37 54 120 1.2 opt 23 ipr

ento26 7915 28 43 107 1.5 opt 131 opt
a 16 8528 37 89 204 1.3 opt 135 opt
a 26 9035 37 39 108 1.8 opt 113 opt

ento45 9108 37 51 128 1.5 opt 149 opt
a 46 9455 37 40 102 1.6 ipr 20 ipr
a 56 9702 37 65 158 1.4 opt 123 opt

ento25 10142 28 116 250 1.2 opt 149 opt
entodif 12691 40 50 130 1.6 opt 155 opt
ento48 15364 31 16 52 2.2 opt 47 opt



120

Paper: A Homogeneous Interior-Point Algorithm for Nonsymmetric Convex

Conic Optimization



Appendix B

Paper: Warmstarting the
Homogeneous and

Self-Dual Interior-Point
Method for Linear and

Conic Quadratic Problems

DOI: 10.1007/s12532-012-0046-z

Available from:

http://link.springer.com/article/10.1007%2Fs12532-012-0046-z

10.1007/s12532-012-0046-z
http://link.springer.com/article/10.1007%2Fs12532-012-0046-z


Math. Prog. Comp.
DOI 10.1007/s12532-012-0046-z

FULL LENGTH PAPER

Warmstarting the homogeneous and self-dual interior
point method for linear and conic quadratic problems

Anders Skajaa · Erling D. Andersen · Yinyu Ye

Received: 17 November 2011 / Accepted: 28 July 2012
© Springer and Mathematical Optimization Society 2012

Abstract We present two strategies for warmstarting primal-dual interior point
methods for the homogeneous self-dual model when applied to mixed linear and
quadratic conic optimization problems. Common to both strategies is their use of only
the final (optimal) iterate of the initial problem and their negligible computational
cost. This is a major advantage when compared to previously suggested strategies that
require a pool of iterates from the solution process of the initial problem. Consequently
our strategies are better suited for users who use optimization algorithms as black-box
routines which usually only output the final solution. Our two strategies differ in that
one assumes knowledge only of the final primal solution while the other assumes the
availability of both primal and dual solutions. We analyze the strategies and deduce
conditions under which they result in improved theoretical worst-case complexity. We
present extensive computational results showing work reductions when warmstarting
compared to coldstarting in the range 30–75 % depending on the problem class and
magnitude of the problem perturbation. The computational experiments thus substan-
tiate that the warmstarting strategies are useful in practice.

A. Skajaa (B)
Department of Informatics and Mathematical Modelling,
Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
e-mail: andsk@imm.dtu.dk

E. D. Andersen
MOSEK ApS, Fruebjergvej 3, Box 16, 2100 Copenhagen, Denmark
e-mail: e.d.andersen@mosek.com

Y. Ye
Department of Management Science and Engineering, Stanford University,
Stanford, CA 94305-4121, USA
e-mail: yinyu-ye@stanford.edu

123



A. Skajaa et al.

Keywords Warmstart · Interior point method · Homogeneous model ·
Conic programming

Mathematics Subject Classification 90C25 · 90C51 · 90C05 · 90C20

1 Introduction

The problem of warmstarting an optimization algorithm occurs when one needs to
solve a sequence of different but presumably related optimization problems. Let x∗
denote the solution to an optimization problem P . The aim is then to use the infor-
mation contained in x∗ to initialize the optimization algorithm at a particularly good
(or warm) point when solving P̂ , a related but different problem. Hopefully this will
enable us to solve P̂ using less computational effort than had we not known or used x∗.

It is widely perceived that it is hard to warmstart interior point methods (ipm). The
main reason is that if the solution x∗ of P is on the boundary of the feasible region,
then x∗ is also close to the boundary for P̂ but not well-centered. At an iterate that is
close to the boundary but not well-centered, ipms generally behave badly producing
either ill conditioned linear systems or search directions that allow only tiny step sizes.
For that reason, progress towards the solution of P̂ is very slow and often it would have
been better to simply coldstart the ipm. For the problem classes usually considered
(this work included) x∗ is effectively always on the boundary of P .

Different warmstarting strategies for ipms have previously been studied in e.g.
[6–8,10–12,30], most often for the case of Linear Programming (lp). Common to
several of these approaches is the requirement of more information from the solution
process of P than just the final solution x∗. In both [11] and [30], for example, a
pool of primal and dual (non-final) iterates from the solution process of P is required.
Other approaches include (a) further perturbing P̂ to move the boundary and in that
way avoid tiny stepsizes [14] and (b) allowing decreasing infeasibility of nonneg-
ativity constraints yielding an “exterior point” method, see e.g. [21]. Computational
results from several of the above references are generally positive in that they obtain
reductions in the number of interior point iterations on the order of about 50 % when
perturbations are not too large. A problem often incurred, however, is a relatively costly
procedure to compute the warm point. This is in particular seen in the comparisons of
different warmstarting schemes in [12]. Very recently, a warm-starting method based
on a slack-approach was introduced in [8]. Extra artificial variables are introduced to
avoid any of the two above mentioned drawbacks and the method exhibits promising
numerical results. For further information about previous work on warmstarting ipms,
see the thorough overview in [8].

The contribution of the present paper is to introduce two warmstart strategies that
use only the final optimal iterate of the solution of P and has low computational com-
plexity. One of the strategies, wp, uses only the primal optimal solution x∗ while the
other, wpd, uses the primal x∗ and the dual optimal solution (y∗, s∗)ofP . There are sev-
eral reasons motivating these schemes. Firstly, optimization software is often used as
black-box subroutines that output only final iterates. Hence intermediate non-optimal
iterates or internal algorithmic variables may not be available at all. In such a situation,

123



Warmstarting the homogeneous and self-dual IPM

both strategies are useful. Secondly, sometimes just one optimization problem is to be
solved, but a user with technical insight into the particular problem may know a good
guess for the optimal primal solution. This information should be possible to utilize
without requiring a guess for the dual solution as well. In this situation, the strategy
wp is useful.

It seems sensible to be modest in our expectations about the gains from warm-
starting an ipm. Let the linear program {minx cT x, s.t. Ax = b, x ≥ 0} be de-
noted by lp(A, b, c) and let x∗ be its optimal primal solution. Megiddo [15] showed
in 1991 that the existence of a strongly polynomial time algorithm for {given x∗,
solve lp(A, b, c)} would imply the existence of a strongly polynomial time algo-
rithm for {solve lp(A, b, c)}. Here “solve” means (a) finding an optimal solution
and a certificate of optimality or (b) certify that no such solution exists. Thus even
checking whether a given point is primal optimal (even if the point actually is a pri-
mal optimal solution) is likely to be as hard as simply solving the problem from
scratch.

In this paper we consider general convex conic optimization problems of the form

minx cT x
s.t. Ax = b

x ∈ K
(1)

where x, c ∈ Rn, A ∈ Rm×n, b ∈ Rm and K ⊆ Rn is a proper cone of the form

K = Rn�+ × K(q1)
q × · · · × K(qnq )

q . (2)

Here, Rn�+ denotes the positive orthant of dimension n� and K(k)q denotes the standard
quadratic cone (or the Lorentz cone) of dimension k defined by

K(k)q =
{

x ∈ Rk : x1 ≥ ‖(x2, . . . , xk)‖2

}
(3)

We are further assuming that m ≤ n and that A has full row-rank. We have
n = n� + ∑nq

j=1 q j and we will be using the notation ν = n� + nq . Notice that
if q j = 0 for all j , the problem (1) reduces to an lp in standard form. A problem of
the kind (1) is defined by the data A, b and c along with the cone K defined by n� and
q1, . . . , qnq . We will only consider cases where the cone in P is identical to the cone

in P̂ so we need only consider changes in A, b and c.
We begin by presenting the Homogeneous and Self-Dual (hsd) model for (1) and

its dual in Sect. 2. We then analyze our warmstarting strategies from a theoretical
worst-case complexity viewpoint in Sect. 3. In Sect. 4, we describe our ipm. Readers
familiar with the standard concepts of homogeneous primal-dual interior point meth-
ods for mixed linear and quadratic cones can safely skip Sect. 4. Finally, in Sect. 5, we
present extensive computational results and conclude with directions for future work
in Sect. 6.

123



A. Skajaa et al.

2 Homogeneous self-dual model

Convex optimization has a very strong duality theory that connects the primal problem
(1) to its dual, see e.g. [18]. Because of the strong relations between these two prob-
lems, modern interior point methods solve simultaneously the two problems making
use of information from one to help progress in the other.

Primal

⎧⎨
⎩

minx cT x
s.t. Ax = b

x ∈ K
Dual

⎧⎨
⎩

maxy,s bT y
s.t. AT y + s = c

s ∈ K∗, y ∈ Rm
(4)

Here, K∗ denotes the dual cone of K, but when K is of the form (2), we have K = K∗.
Therefore we can employ the very efficient primal-dual symmetric interior point meth-
ods [19,20]. However, instead of solving (4) directly, we aim to solve the homoge-
neous and self-dual model [28] of problems (4). This problem is slightly larger than
the original problem, but in our situation there are enough benefits to offset the modest
extra cost incurred. We present this model for the case that K = Rn , i.e. for linear
programming.

For brevity, we will write z = (x, τ, y, s, κ) ∈ S := Rn+ × R+ × Rm × Rn+ × R+
and we introduce

rp(z) = Ax − bτ

rd(z) = −AT y − s + cτ

rg(z) = −cT x + bT y − κ

μ(z) = (xT s + τκ)/(ν + 1).

Now let z0 = (x0, τ 0, y0, s0, κ0) ∈ S be some initial point. Assume θ is a scalar
variable. We then consider the problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min(z,θ) θμ(z0)

s.t. Ax −bτ = θ rp(z0)

−AT y +cτ −s = θ rd(z0)

bT y −cT x −κ = θ rg(z0)

rp(z0)T y −rd(z0)T x +rg(z0)τ = μ(z0)

(x, τ ) ≥ 0, (s, κ) ≥ 0, (y, θ) free.

(5)

The following lemma explains the advantages of solving (5) instead of (4):

Lemma 1 Assume (z, θ) is a solution of (5). Then θ = 0 and

(i) if τ > 0 then (x, y, s)/τ is optimal for (4);
(ii) if κ > 0 then, one or both of bT y > 0 and cT x < 0 hold. If the first holds, then

(4) is primal infeasible. If the second holds, then (4) is dual infeasible.

So any solution to (5) with τ + κ > 0 provides either an optimal solution to our
original problems (4) or a certificate of infeasibility of (one of) the original problems.
See [13,25,29] for a proof and further details.

123



Warmstarting the homogeneous and self-dual IPM

Advantages of using the hsd-model thus include the ability to detect infeasibilities
in the problem and particularly the ease of finding a suitable starting point will be
of importance to us later. This latter property also eliminates the need for a Phase I
procedure in the interior point method.

3 Warmstarting

Since (5) is a linear program, we may solve it using any algorithm for linear program-
ming that generates a solution with τ + κ > 0. The point z0 used in generating the
hsd-model is by construction a feasible point for the problem, so we can use a feasible-
start ipm initialized in z0 to solve the problem. To obtain the best known complexity,
we could, for example, apply the Mizuno-Todd-Ye feasible predictor-corrector inte-
rior point algorithm [17]. If we initialize this algorithm in z0, the worst-case iteration
complexity to obtain a solution or an infeasibility-certificate to (4) at the tolerance ε
(see Sect. 4.3) is given by

O
(√

n log (Ψ (z0)/ε)
)
, where Ψ (z) = max

{
μ(z), ‖rp(z)‖, ‖rd(z)‖

}
, (6)

see particularly [29, pp. 169]. ‖ · ‖ denotes some norm. In practice when solving the
hsd-model, one usually initializes the algorithm from the point c := (e, 1, 0, e, 1).
Here e denotes the vector of all ones of length n and 0 denotes a zero-vector of length
m. We will refer to starting from this point as a cold start. To obtain a better worst-
case complexity, we would need to initialize the algorithm in a point z0 satisfying
Ψ (z0) < Ψ (c), which is certainly satisfied if

μ(z0) < μ(c), ‖rp(z
0)‖ < ‖rp(c)‖, ‖rd(z

0)‖ < ‖rd(c)‖. (7)

For the above complexity result to hold, the initial point z0 must lie in the central-path
neighborhood N2(η), defined by

N2(η) = {z ∈ S : ‖(x ◦ s, τκ)− μ(e, 1)‖2 ≤ ημ}, for η ∈ (0, 1). (8)

where ◦ denotes elementwise product of vectors of equal length. That is, (v ◦ w)i =
viwi for all i . Since μ(c) = 1, we clearly have c ∈ N2(η), but we must generally
make sure that our initial point is in N2(η).

3.1 Warm starting points

Now let x∗ be the primal optimal solution and (y∗, s∗) the dual optimal solution of a
linear program P . Further let λ ∈ [0, 1) and μ0 > 0 be (user chosen) parameters. We
propose the following two starting points for the initialization of a related but different
linear program P̂:

123



A. Skajaa et al.

(wp)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0 = λx∗ + (1 − λ)e
s0 = μ0(x0)−1

y0 = 0
τ 0 = 1
κ0 = μ0

(wpd)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0 = λx∗ + (1 − λ)e
s0 = λs∗ + (1 − λ)e
y0 = λy∗
τ 0 = 1
κ0 = (x0)T s0/n

(9)

Here, (x0)−1 denotes the elementwise reciprocal of x0. Much computational experi-
ence [1,2,23] indicates that the starting point c seems to work well for the initialization
of an interior point method to solve the hsd-model. We can view the starting point
wpd as a convex combination of (x∗, y∗, s∗) and c. Thus, hopefully, wpd is a point
closer (in some sense) to the solution of P̂ , but incorporation of (1 − λ)c introduces
enough centrality to avoid tiny step sizes. The point wp is identical to wpd for the
primal variable, but, as we restrict ourselves to using only primal information, we
cannot do the same for the dual variables. Instead we choose s0 so that the point is
perfectly centered and has a prescribed duality gap, namely μ0.

Since strategy wp uses only the primal solution x∗, it is especially suited for situ-
ations where just one optimization problem is to be solved, but the user may have a
qualified guess at a point close to the primal optimal solution or for some other reason,
only the primal optimal solution to P is available. The strategy wpd uses the full pri-
mal-dual solution (x∗, y∗, s∗) and is hence suited for the situation where a sequence
of optimization problems is to be solved and a black-box routine for solving (4) that
outputs (x∗, y∗, s∗) is used internally as a part of a larger program. We will see several
examples of both in Sect. 5.

Our goal in the rest of this section is, for each of the two starting points, to deduce
conditions under which they satisfy (7). We remark that (7) are sufficient conditions
for Ψ (z0) < Ψ (c) but not necessary since no attention is paid to which term in (6) is
the dominating one.

3.2 Comparison of primal and dual residuals

We first introduce some notation consistent with that of [8]. The original lp instance
P consists of the data triplet d◦ = (A◦, b◦, c◦). We will denote the perturbation by
�d = (�A,�b,�c) so that the perturbed problem P̂ has data

d = (A, b, c) = d◦ +�d = (A◦, b◦, c◦)+ (�A,�b,�c).

As in [8], we will measure the relative magnitude of perturbation between the two
problems by the quantities (α, α′, β, γ ), defined via:

‖�A‖ ≤ α‖A◦‖
‖�AT ‖ ≤ α′‖A◦T ‖

‖�b‖ ≤ β‖b◦‖
‖�c‖ ≤ γ ‖c◦‖.

123



Warmstarting the homogeneous and self-dual IPM

We are now ready to present three lemmas that, for both wp and wpd, state when their
primal and dual residuals are smaller than those of c.

Notice that rp(wp) = rp(wpd) so the lemma below applies to both points:

Lemma 2 Define δp = max {(‖x∗‖ + ‖e‖)α, 2β}. If

δp ≤ ‖A◦e − b◦‖
‖A◦‖ + ‖b◦‖

then

‖rp(wp)‖ = ‖rp(wpd)‖ ≤ ‖rp(c)‖.

Proof If λ = 0, rp(wp) = rp(c) so the statement olds trivially. For λ ∈ (0, 1),

rp(wp) = Ax0 − bτ 0

= λ(Ax∗ − b)+ (1 − λ)(Ae − b)

= λ(�Ax∗ −�b)+ (1 − λ)rp(c).

Therefore,

‖rp(wp)‖ ≤ λ(α‖A◦‖‖x∗‖ + β‖b◦‖)+ (1 − λ)‖rp(c)‖.

Similarly,

‖rp(c)‖ = ‖Ae − b‖ = ‖A◦e − b◦ +�Ae −�b‖
≥ ‖A◦e − b◦‖ − (α‖A◦‖‖e‖ + β‖b◦‖)

and therefore,

‖rp(c)‖ − ‖rp(wp)‖ ≥ ‖rp(c)‖ − λ(α‖A◦‖‖x∗‖ + β‖b◦‖)− (1 − λ)‖rp(c)‖
= λ‖rp(c)‖ − λ(α‖A◦‖‖x∗‖ + β‖b◦‖) ⇒

1

λ

(‖rp(c)‖ − ‖rp(wp)‖
) ≥ ‖rp(c)‖ − (α‖A◦‖‖x∗‖ + β‖b◦‖)

≥ ‖A◦e − b◦‖ − (α‖A◦‖‖e‖ + β‖b◦‖)
−(α‖A◦‖‖x∗‖ + β‖b◦‖)

= ‖A◦e − b◦‖ − (‖x∗‖ + ‖e‖)α‖A◦‖ − 2β‖b◦‖
≥ ‖A◦e − b◦‖ − δp

(‖A◦‖ + ‖b◦‖) . (10)

The statement then follows after a rearrangement of (10) ≥ 0. �

We remark that the preceding lemma is very similar in nature to the ones found in
[8, sec. 3.1].

The dual parts of wp and wpd are not identical. Let us begin with wp:

123



A. Skajaa et al.

Lemma 3 Define ψ = ‖e‖−1 (‖c − e‖ − ‖c‖). If

ψ ≥ μ0(1 − λ)−1

then

‖rd(wp)‖ ≤ ‖rd(c)‖.

Proof We have ‖rd(c)‖ = ‖c − e‖ and

‖rd(wp)‖ = ‖c − μ0(x0)−1‖
≤ ‖c‖ + μ0‖(x0)−1‖
≤ ‖c‖ + μ0(1 − λ)−1‖e‖

The statement follows by using this latter inequality to show that ‖rd(c)‖−‖rd(wp)‖ ≥
0 by simple rearrangement. �

The statement for rd(wpd) is very similar to the one in Lemma 2:

Lemma 4 Define δd = max
{
α′‖y∗‖, 2γ

}
. If

δd ≤ ‖c◦ − e‖
‖A◦T ‖ + ‖c◦‖

then

‖rd(wpd)‖ ≤ ‖rd(c)‖.

Proof If λ = 0, rd(wpd) = rd(c), so the statement holds trivially. For λ ∈ (0, 1), we
get from manipulations similar to those in Lemma 2 that

rd(wpd) = λ(−�AT y∗ +�c)+ (1 − λ)rd(c) ⇒
‖rd(wpd)‖ ≤ λ(α′‖A◦T ‖‖y∗‖ + γ ‖c◦‖)+ (1 − λ)‖rd(c)‖.

Similarly, ‖rd(c)‖ = ‖c◦ +�c − e‖ ≥ ‖c◦ − e‖ − γ ‖c◦‖. Therefore,

‖rd(c)‖ − ‖rd(wpd)‖ ≥ λ‖rd(c)‖ − λ(α′‖A◦T ‖‖y∗‖ + γ ‖c◦‖) ⇒
1

λ
(‖rd(c)‖ − ‖rd(wpd)‖) ≥ ‖rd(c)‖ −

(
α′‖A◦T ‖‖y∗‖ + γ ‖c◦‖

)

≥ ‖c◦ − e‖ − γ ‖c◦‖ − (α′‖A◦T ‖‖y∗‖ + γ ‖c◦‖)
= ‖c◦ − e‖ − α′‖A◦T ‖‖y∗‖ − 2γ ‖c◦‖
≥ ‖c◦ − e‖ − δd

(
‖A◦T ‖ + ‖c◦‖

)
(11)

The statement then follows after a rearrangement of (11) ≥ 0. �


123



Warmstarting the homogeneous and self-dual IPM

The three preceding lemmas state conditions under which the primal and dual residu-
als, for each of the two points, are smaller in norm than those of c. Combined with the
lemmas in the following section, this will allow us to present conditions under which
we obtain an improved worst-case complexity.

3.3 Comparison of centrality and complementarity gap

We also need results about the centrality and initial penalty value μ(z0) of our warm
points.

We start with wp, for which the situation is particularly simple: We haveμ(wp) = μ0

directly from the definition of wp. So for a better initial complementarity gap than the
cold start, we must chooseμ0 ≤ 1 = μ(c). Now let us apply this to Lemma 3: Assume
that ψ ≥ 0. The condition in Lemma 3 states

μ0(1 − λ)−1 ≤ ψ ⇔
(1 − λ) ≥ μ0/ψ ⇔

λ ≤ 1 − μ0/ψ. (12)

Since we must take λ ∈ [0, 1), (12) implies that we must require μ0 ≤ ψ . We remark
that the condition of Lemma 3 can only be satisfied if ψ > 0, which is a rather strong
requirement. Notice also that wp is perfectly centered, so it automatically satisfies any
neighborhood requirement imposed by the algorithm.

For wpd, the situation is more complicated: Define

ξ = eT (x∗ + s∗)/n.

We can then state the following lemma which expresses when the initial complemen-
tarity of wpd is smaller than that of c:

Lemma 5 If

ξ ∈ (0, 2] or

ξ > 2 and λ ≥ 1 − 1

ξ − 1
(13)

then

μ(wpd) ≤ 1.

Proof We have

x0 ◦ s0 = (λx∗ + (1 − λ)e) ◦ (λs∗ + (1 − λ)e)

= λ2(x∗ ◦ s∗)+ (1 − λ)2e + λ(1 − λ)(x∗ + s∗)
= λ(1 − λ)(x∗ + s∗)+ (1 − λ)2e (14)

123



A. Skajaa et al.

where we used that x∗ ◦ s∗ = 0. Therefore

μ(wpd) = (x0)T s0 + τ 0κ0

n + 1
= (x0)T s0 + (x0)T s0

n

n + 1
= (x0)T s0

n

= 1

n
eT (x0 ◦ s0) = λ(1 − λ)ξ + (1 − λ)2 (15)

μ(wpd) ≤ 1 ⇔
λ(1 − ξ) ≤ 2 − ξ (16)

Clearly, (16) holds for ξ ∈ [0, 2] because λ ∈ (0, 1). If ξ > 2, then (16) is equivalent
to λ ≥ (2 − ξ)/(1 − ξ) = 1 − 1/(ξ − 1). �

Lemma 5 imposes a lower bound on λ when ξ > 2. Notice that as ξ → ∞, the
lower bound approaches 1, collapsing the width of the interval for λ to zero, because
λ ∈ [0, 1].

The situation for wpd is further complicated by the fact that it, unlike wp, is not
necessarily in N2(η). Let us define the quantity

π = ‖ξ−1(x∗ + s∗)− e‖2.

The following lemma gives conditions under which wpd is sufficiently central.

Lemma 6 If

λξ(π − η) ≤ η(1 − λ) (17)

then

wpd ∈ N2(η).

Proof First notice that τ 0κ0 − μ(wpd) = 0 so this term does not contribute in the
norm in (8). Now from (14) and (15) we obtain

x0 ◦ s0 − μ(wpd)e = λ(1 − λ)(x∗ + s∗)+ (1 − λ)2e (18)

−λ(1 − λ)ξe − (1 − λ)2e

= λ(1 − λ)
(
x∗ + s∗ − ξe

) ⇒
‖(x0 ◦ s0, τ 0κ0)− μ(e, 1)‖ = λ(1 − λ)ξπ

Therefore using (17):

λξ(π − η) ≤ η(1 − λ) ⇒
λξπ ≤ η(λξ + (1 − λ)) ⇒

λ(1 − λ)ξπ ≤ η(λ(1 − λ)ξ + (1 − λ)2) ⇒
‖(x0 ◦ s0, τκ)− μ(e, 1)‖ ≤ ημ(wpd)

which is the statement. �


123



Warmstarting the homogeneous and self-dual IPM

We now have a lower bound (13) and an upper bound (17) on λ so we can determine
conditions under which there is a non-empty interval for λ which will imply that wpd
is sufficiently central and simultaneously has smaller initial complementary gap than
c:

Lemma 7 Define the following quantities:

q = η

ξπ + η(1 − ξ)
, ξ1 = ξ − 1

ξ
, ξ2 = (ξ − 1)2

ξ(ξ − 2)
, ξ3 = ξ1/ξ2 = ξ − 2

ξ − 1
.

We can then distinguish the following cases, all of which have the same conclusion,
which is stated afterwards:

1 : Assume 0 < ξ ≤ 1. I f λ ∈ (0, q),
2(a) : Assume 1 < ξ ≤ 2 and π ≤ ηξ1. I f λ ∈ (0, 1),
2(b) : Assume 1 < ξ ≤ 2 and π > ηξ1. I f λ ∈ (0, q),
3(a) : Assume ξ > 2 and π ≤ ηξ1. I f λ ∈ (ξ3, 1),
3(b) : Assume ξ > 2 and ηξ1 < π ≤ η. I f λ ∈ (ξ3, 1),
3(c) : Assume ξ > 2 and η < π < ηξ2. I f λ ∈ (ξ3, q),

then

μ(wpd) ≤ 1 and wpd ∈ N2(η).

Proof First notice that if ξ ≤ 1, then Lemma 5 imposes no restriction on λ, so the
lower bound on λ is 0. If ξ ≤ 1, then 1 − ξ ≥ 0 so (17) can be written (after some
simple manipulation) as λ ≤ q.

If 1 < ξ ≤ 2 then the lower bound on λ is still 0, for the same reason as above.
However, (17) may now be written

λ [ξπ + η(1 − ξ)] ≤ η. (19)

The expression in the hard brackets might be negative, which happens if π ≤ η(ξ −
1)/ξ = ηξ1. In this case, the condition (19) turns into λ ≥ q, but then q < 0, so this
is already satisfied for λ ≥ 0. Thus if π ≤ ηξ1, we can allow λ ∈ (0, 1). If on the
other hand π > ηξ1, the expression in the hard brackets of (19) is positive, and we
can write it simply as λ ≤ q.

If ξ > 2, Lemma 5 requires λ ≥ (ξ−2)/(ξ−1) = ξ3 while Lemma 6 only imposes
an upper bound on λ if π > ηξ1. In this case, the two lemmas require λ ∈ (ξ3, q),
which is only a non-empty interval if q > ξ3. This latter inequality holds precisely
when π < ηξ2. This accounts for all cases. �


3.4 Summary

Using all of the Lemmas 2–7, we can now summarize the conditions under which we
get better worst-case complexity for each of the two points. We begin with wp:

123



A. Skajaa et al.

Proposition 1 If

1. δp := max {(‖x∗‖ + ‖e‖)α, 2β} ≤ (‖A◦‖ + ‖b◦‖)−1‖A◦e − b◦‖
2. ‖c − e‖ ≥ ‖c‖
3. we choose μ0 ∈ (0, ψ) and finally
4. we choose λ ∈ (0, 1 − μ0/ψ)

then starting in wp results in a better worst-case complexity than a coldstart.

Similarly for wpd:

Proposition 2 If

1. δp := max {(‖x∗‖ + ‖e‖)α, 2β} ≤ (‖A◦‖ + ‖b◦‖)−1‖A◦e − b◦‖
2. δd := max

{
α′‖y∗‖, 2γ

} ≤ (‖A◦T ‖ + ‖c◦‖)−1‖c◦ − e‖ and
3. the conditions of one of the six cases of Lemma 7 are satisfied,

then starting in wpd results in a better worst-case complexity than a coldstart.

Thus we have established sufficient conditions under which we have improved worst-
case complexity by warmstarting. We are, however, aware of the apparent gap between
ipm complexity theory and state-of-the-art implementations, which in most cases per-
form much better than the worst case complexity estimates. Indeed, the algorithm
described in the following sections is in practice usually superior to the predictor-
corrector algorithm for which we have just derived complexity estimates relating
warmstarts to coldstarts. It is therefore more fruitful to think of the results above as
conceptual and purely theoretical justifications. That is, these statements should be
seen as an attempt to show the existence of conditions under which the warmstarting
strategies imply improved worst-case performance for the best-known algorithm in
terms of theoretical complexity. However whether the warmstart strategies are effective
in practice for the practically best-known algorithm shall be determined via computa-
tional experiments. For that reason, we devote the rest of the paper to such experiments.
In the following section we present the actual algorithm used in experiments. Then, we
show a series of computational evidences supporting the effectiveness of the warmstart
strategies in Sect. 5.

4 Symmetric primal-dual interior point algorithm

To carry out numerical experiments, we have implemented in Matlab a symmetric
primal-dual interior point method called ccopt. It uses the Nesterov-Todd scaling and
Mehrotra’s second order correction. Following [2], we give in this section a brief over-
view of the algorithm. We consider first the case of linear programming, i.e. K = Rn+,
and then show how we handle the more general quadratic cones (3). A reader familiar
with the standard ideas in this algorithm can safely skip this entire section. We use
our own implementation instead of other public domain software because it is then
easier to modify, control and monitor the algorithm. We remark that all of our source
code is publicly available1 and a reader can therefore reproduce and verify any of the
following computational experiments.

1 http://www2.imm.dtu.dk/~andsk/files/warmstart/downloadcode.html.

123



Warmstarting the homogeneous and self-dual IPM

4.1 Simplified homogeneous self-dual model

Instead of solving (5), our algorithm solves a slightly simpler version known as the
simplified hsd-model [27]:

Ax − bτ = 0 (20)

−AT y − s + cτ = 0 (21)

−cT x + bT y − κ = 0 (22)

x ≥ 0, s ≥ 0, y ∈ Rm, τ ≥ 0, κ ≥ 0 (23)

The hsd-model (5) and the simplified hsd-model (20)–(23) are closely related. See
[25,27] for results in this direction. The important points are that we retain the ability
to detect infeasibility and our warmstarting strategies are still valid.

4.2 Algorithm for linear programming

Assume z0 = (x0, τ 0, y0, s0, κ0) ∈ K ×R+ ×Rm ×K ×R+ is the initial point and
μ0 = μ(z0) its complementarity gap. We then define the central path, parametrized
by ρ ∈ [0, 1], for (20)–(23) by

Ax − bτ = ρ(Ax0 − bτ 0) (24)

−AT y − s + cτ = ρ(−AT y0 − s0 + cτ 0) (25)

−cT x + bT y − κ = ρ(−cT x0 + bT y0 − κ0) (26)

x ◦ s = ρμ0e (27)

τκ = ρμ0 (28)

The idea of a primal-dual interior point algorithm for the simplified hsd-model is to
loosely track the central path (24)–(28) towards a solution of (20)–(23). Notice that
(24)–(26) are the feasibility equations while (27)–(28) are relaxed complementarity
conditions. As ρ → 0, we are guided towards an optimal solution for (20)–(23).

In each iteration we compute the direction (dx , dτ , dy, ds, dκ )which is the solution
to the system of linear equations (29)–(33):

Adx − bdτ = (σ − 1)(Ax − bτ) (29)

−AT dy − ds + cdτ = (σ − 1)(−AT y − s + cτ) (30)

−cT dx + bT dy − dκ = (σ − 1)(−cT x + bT y − κ) (31)

τdκ + κdτ = −τκ + σμ− dτκ (32)

x ◦ ds + s ◦ dx = −x ◦ s + σμe − dxs (33)

where (x, τ, y, s, κ) is the current iterate and μ its duality gap. The numbers σ and
dτκ and the vector dxs are computed by first solving (29)–(33) with σ = dτκ = 0 and
dxs = 0. Let us denote the solution to this (pure Newton) system (d̂x , d̂τ , d̂y, d̂s, d̂κ).

123



A. Skajaa et al.

We then compute

α̂ = maxα
{
α : (x, τ, y, s, κ)+ α(d̂x , d̂τ , d̂y, d̂s, d̂κ) ≥ 0

}
(34)

and set

σ = (1 − α̂)min
(

0.5, (1 − α̂)2
)

(35)

The Mehrotra second order correctors [16] dxs and dτκ are computed by

dτκ = d̂τ d̂κ and dxs = d̂x ◦ d̂s (36)

After computing σ, dτκ and dxs by (35)–(36) we compute the final search direc-
tion by solving (29)–(33) again but with a now altered right hand side. The iter-
ate is then updated by taking a step of length α in this direction: (x, τ, y, s, κ) :=
(x, τ, y, s, κ) + α(dx , dτ , dy, ds, dκ ). It should be stressed that only the right hand
side changes so the factorization from the first solve can be used again. The step size
α is chosen to be maximal under the conditions that the iterate stays feasible in the
cone and that the iterates stay within a certain neighborhood of the central-path. See
e.g. [29, pp. 128] for several reasonable definitions of such a neighborhood.

4.3 Termination

Assume (x, τ, y, s, κ) is the current iterate and consider the following inequalities:

‖Ax − τb‖∞ ≤ ε · max {1, ‖[A, b]‖∞} (P)

‖AT y + s − cτ‖∞ ≤ ε · max
{

1,
∥∥∥
[

AT , I,−c
]∥∥∥∞

}
(D)

∣∣∣−cT x + bT y − κ

∣∣∣ ≤ ε · max
{

1, ‖
[
−cT , bT , 1

]
‖∞

}
(G)

∣∣∣cT x/τ − bT y/τ
∣∣∣ ≤ ε ·

(
1 +

∣∣∣bT y/τ
∣∣∣
)

(A)

τ ≤ ε · 10−2 · max {1, κ} (T)

τ ≤ ε · 10−2 · min {1, κ} (K)

μ ≤ ε · 10−2 · μ0 (M)

We then terminate and conclude as follows:

(opt) (P) ∧ (D) ∧ (A) ⇒ Feasible and optimal solution found
(infeas) (P) ∧ (D) ∧ (G) ∧ (T) ⇒ Problem primal or dual infeasible

(illp) (K) ∧ (M) ⇒ Problem ill-posed

In case (opt), the optimal solution (x, y, s)/τ is returned. If we find (infeas), the
problem is dual infeasible if cT x < 0 and primal infeasible if bT y > 0. The number
ε > 0 is a user-specified tolerance.

123



Warmstarting the homogeneous and self-dual IPM

4.4 Generalization to quadratic cones

In order to handle the more general quadratic cones alongside the positive orthant, it
is necessary to modify only a few steps in the algorithm in Sect. 4.2. Notationally, this
is facilitated by generalizing the product ◦ as follows (see e.g. [23] for many more
details). First define

ek+ := (1, 1, . . . , 1)T ∈ Rk

ek
q := (1, 0, . . . , 0)T ∈ Rk

and for x ∈ Rk :

mat+(x) := diag(x) ∈ Rk×k

matq(x) :=
(

x1 xT
2:k

x2:k x1 Ik−1

)
∈ Rk×k

For an x ∈ Rn�+ ×�
nq
j=1K

(q j )
q partitioned by x = (x+, x (1)q , . . . , x

(nq )
q ) we then define

mat(x) = mat+(x+)⊕ matq(x
(1)
q )⊕ · · · ⊕ matq(x

(nq )
q ) . (37)

where ⊕ denotes direct matrix sum. So mat(x) is a block-diagonal matrix, where the
blocks are the individual terms of the right-hand-side of (37). Similarly, we re-define
e := (en�+ , eq1

q , . . . , e
qnq
q ). If y ∈ K is partitioned in the same manner as x , we finally

re-define ◦ by

x ◦ y := mat(x) y

and the inverse

x−1 := mat(x)−1e.

It is easy to see that x ◦ x−1 = x−1 ◦ x = e.
When applying the algorithm to problems with mixed linear and quadratic cones,

the search direction is instead the solution to the linear equations (29)–(32) and the
equation

Ψ B−1ds + Ψ Bdx = −ψ ◦ ψ + σμe − dxs . (38)

Here we have introduced the notation Ψ := mat(ψ) and ψ = Bx , where B is a so
called scaling matrix, chosen to ensure the primal-dual symmetry of the algorithm (see
e.g. [24] for more details). Several different choices for B exist but in this algorithm
we use the particularly interesting Nesterov-Todd scaling [19,20], determined such
that B satisfies Bx = B−1s. This scaling matrix has proven very efficient in practice
[2,23]. The numbers σ and dτκ are determined as in Sect. 4.2, but now dxs is computed
by

123



A. Skajaa et al.

dxs = (Bd̂x ) ◦ (B−1d̂s). (39)

We remark that all operations involving B can be carried out in O(n) floating point
operations. Thus for example computing Bx or B−1d̂s is negligible in terms of com-
putational effort. See [2] for more details. The termination criteria are unchanged.

4.5 Modelling free variables

Some of the problems in Sect. 5 contain unrestricted (free) variables. Our algorithm
handles a free variable x f ∈ Rn f by introducing the extra variable t and adding another
standard quadratic cone constraint t ≥ ‖x f ‖2. The entry in c corresponding to t is set
to zero. See [3] for a discussion of this approach.

4.6 Solving the linear systems

In each iteration of the homogeneous and self-dual interior point method, linear sys-
tems of the type (29)–(33) need to be solved. This system can be solved by block-
reducing it to obtain the normal equations, a system of the form AD AT v = r where
D is diagonal and strictly positive and v is the unknown, see e.g. [1] for details. The
matrix AD AT is symmetric and positive definite, so we solve the equation using
Cholesky factorization.

The matrix AD AT becomes increasingly ill-conditioned as an optimal point is
approached. For this reason, special handling of the factorization is usually employed
as the optimal point is approached [26]. In our Matlab-implementation of ccopt,
we switch from the standard chol to cholinc if numerical problems are encoun-
tered with chol. Essentially cholinc perturbs small pivots during the Cholesky
factorization as is common practice, so the performance penalty is insignificant. This
approach often enables us to obtain a higher accuracy of the solution than had we not
switched to cholinc.

5 Numerical results

In this section we present a series of computational results that support the effec-
tiveness of our warmstarting strategies. We first describe the general methodology of
our testing and then we present results for linear programs and for mixed linear and
quadratic conic problems.

5.1 General methodology

When conducting numerical experiments with ccopt cold- and warmstarted, we
use the following procedure. We first solve P using ccopt and store the solution
(x∗, y∗, s∗). We then perturb P to obtain the new problem P̂—how we perturb de-
pends on the type of problem and is described in each subsection below. We then
solve P̂ using ccopt coldstarted, denoted ccopt(c) and ccopt warmstarted using

123



Warmstarting the homogeneous and self-dual IPM

just x∗ or (x∗, y∗, s∗) in the computation of the warm point, denoted ccopt(wp) and
ccopt(wpd) respectively. For each warmstart, we use the measure

R = #Iterations to solve P̂ warmstarted

#Iterations to solve P̂ coldstarted

to quantify the gain from warmstarting. If R < 1 the warmstarted run was more effi-
cient than the coldstarted and vice versa. For an entire set of problems P1, . . . ,PK ,
we define G, the geometric mean of R1, . . . ,RK , i.e.

G = K
√
R1 . . .RK

Further, we use the following rules:

1. If the solution status ofP was different from that of P̂ , the problem was discarded.
By solution status we mean either opt, infeas or illp—see Sect. 4.3.

2. If P was primal or dual infeasible, the problem was discarded. In this case there
is no reason to expect the final iterate of the algorithm to contain any valuable
information for the solution of P̂ .

3. If P̂ was solved completely by the presolve procedures described in [4], the prob-
lem was discarded. In this case, the number of main interior point iterations can
be considered zero, making comparison meaningless. This happened only rarely
for problems from the netlib-lp test set. We used Mosek2 to carry out this test.

For linear programs, we have tested our warmstarting strategies both when the
solution (x∗, y∗, s∗) to P was generated by a coldstarted run of ccopt and when it
was generated by a simplex method,3 which, unlike the ipm, always returns a vertex
(basic) solution. The warmstart strategies wp and wpd performed equally well for both
cases. This suggests that the ipm is capable of truly using the information contained
in the solution of P , regardless of whether the final solution is an interior optimal or
vertex solution and that the effectiveness of warmstart is not a result of some special
“ipm property” of the specific solution produced by ccopt.

5.2 The parameters λ and μ0

In all the following experiments, except the one presented in Sect. 5.6, we use λ = 0.99
and μ0 = 1−λ = 0.01. There is no theoretically well-justified reason for this choice.
It is a heuristic choice motivated by numerical experience. The experiment in Sect. 5.6
investigates the dependence on the parameter λ while using μ0 = 1 − λ. The experi-
ment shows that particularly the performance of wp is somewhat sensitive to the choice
of λ. Therefore, it is an interesting topic of future interest to devise an adaptive method
to choose the parameters λ and μ0. In the present work, however, we use the static
value of λ = 0.99 (except in Sect. 5.6) and always set μ0 = 1 − λ.

2 See http://www.mosek.com.
3 We used the simplex solver in Mosek.

123



A. Skajaa et al.

Fig. 1 Results from the netlib lp test set with λ = 0.99 and μ0 = 0.01. The box contains 90 % of the
problems, pluses are the remaining 10 %. The dashed line isR = 1.0. The largest solid line is the geometric
mean and the smaller solid line is the median. The accuracy used was ε = 10−6 (cf. Sect. 4.3). See text for
further explanation of this figure

5.3 Netlib linear programs

In this section we present results from running our warmstarted algorithm on the linear
programs in the netlib4 collection of test problems. We perturb the original problem
in a manner similar to the one introduced in [6] and reused in [11]: Let v be a vector
we want to perturb randomly (think of either b, c or the vector of nonzeros of A).
Assume v has M elements. An element in v is changed if a [0, 1]-uniform randomly
chosen number is less than min{0.1, 20/M}.

Thus on average, we change 10 % but at most 20 elements of v. An element vi is
changed by setting

vi :=
{
δr if |vi | ≤ 10−6

(1 + δr)vi otherwise

where r is a number chosen randomly from a uniform distribution on [−1, 1]. The
scalar δ is a parameter that controls the perturbation magnitude.

We present results for the three cases where v is either b, c or the nonzeros of A.
Figure 1 shows the value of R found for each problem in the test set. This was done
for all three types of perturbations and for two values of δ. We observe that at these
levels of δ, the gain in warmstarting using either strategy is significant. Overall, we
see a reduction in the geometric mean of the number of iterations ranging from 34 to
52 % when comparing ccopt(c) to ccopt(wp) and 50–75 % for ccopt(wpd). Usually
about one in four problems were discarded because of rules 1–3, Sect. 5.1. Clearly the
gain is smaller for the larger value of δ, compare Fig. 1a, b. Figure 2 shows the relation
between the magnitude of the perturbation δ and reduction in the geometric mean
of number of iterations. As expected, we clearly observe that the reduction depends
crucially on δ. The size of the reduction is significant as long as δ is small enough. It

4 http://www.netlib.org/lp/data/.

123



Warmstarting the homogeneous and self-dual IPM

Fig. 2 Results from the netlib-lp test set with λ = 0.99 and μ0 = 0.01 and varying δ. Each data point
in the figure corresponds to solving the entire netlib-lp test set with the problem-perturbation specified in
the legend for a certain value of δ. All problems were solved to the accuracy ε = 10−6 (cf. Sect. 4.3). See
text for further explanation of this figure

is apparent that wpd is consistently better than wp. This is of course reasonable since
wpd uses more information from the solution of P than wp. Notice, however, that the
gap between wp and wpd narrows as δ grows. This too is reasonable, because as the
problem is perturbed more, the information from the primal or the dual points can no
longer be expected to be good. Thus both behave more and more like a coldstart.

5.4 Efficient frontier computation

An obvious candidate problem on which a warmstarting strategy should be employed
is that of computing the efficient frontier in the Markowitz portfolio selection setting.
The presentation here follows that of [5].

Assume that r ∈ Rn is a multivariate random variable modelling the return of n
different assets. Assume further that the mean vector μr and covariance matrix �r

are known. If our initial holding in asset j is w0
j and we invest x j , the portfolio after

the investment period is w0 + x and thus the expected return of the investment is
r T (w0 + x). The risk of the investment is defined as the variance of the return of
the investment, namely (w0 + x)T�r (w

0 + x) = ‖R(w0 + x)‖2
2 where R is a factor

in the Q R-factorization of � = Q R. In the classical Markowitz portfolio selection
problem, one seeks to minimize risk while fixing a certain return t . That is, we solve

123



A. Skajaa et al.

minx ‖R(w0 + x)‖2

s.t. r̄ T (w0 + x) = t
eT x = 0
w0 + x ≥ 0

(40)

Here, r̄ denotes the mean of observed historical realizations of r and R is the triangular
factor from the Q R-factorization of X̄ = (N − 1)−1/2(X − er̄ T ) where X ∈ RN×n

contains the returns of each asset over time. Notice that X̄ is a scaled zero-mean ver-
sion of the observed data in X . We do not allow short-selling, so we also impose the
constraint w0 + x ≥ 0. The problem (40) can be reformulated in conic form as

minz, f,g f
s.t. r̄ T z = t

Rz = g
eT z = eTw0

f ≥ ‖g‖2
z ≥ 0

(41)

and it is this version that we are solving using ccopt. The solution x is then obtained
via z = x + w0. Let f (t) denote the optimal value of (41) for a requested return of
t . The set of points (t, f (t)) for t ∈ [0,max (r̄)] is called the efficient frontier. To
compute this curve, we must solve a sequence of problems of the type (41) where only
t varies from problem to problem—thus this entire computation is very well suited for
a warmstarting scheme: Compute the optimal solution of (41) for the first value of t
and compute a warm starting point using this solution as described in Sect. 3.1. Then
solve (41) for the next value of t , initializing the algorithm in the warm starting point.
We can then repeat this process for all following values of t using the solution of (41)
for the previous value of t to compute a warm starting point for the next problem.

We use as the data matrix X the historically observed data from N daily prices
for the 500 stocks in the S&P500 stock index.5 With N = 800, (41) is a problem of
the type (1) with A ∈ R502×1,002 and nnz(A) = 126,750. The results are shown in
Table 1. We see that the work is reduced by about 25 % when using wp and by about
60 % if we use wpd.

5.5 Frequent robust portfolio rebalancing

The Markowitz portfolio selection problem presented in the previous section can be
further generalized by assuming that the data X are uncertain but belong to known
uncertainty sets. The robust portfolio selection problem consists in choosing the best
possible portfolio while assuming that the worst case scenario within the uncertainty
sets is realized. The optimal such portfolio is the solution of a second order cone
program (socp). For a complete description of the model, see [9]—here we omit a
detailed description of the model as it is not the primary interest of this paper.

5 See e.g. http://www.standardandpoors.com/indices/main/en/us.

123



Warmstarting the homogeneous and self-dual IPM

Table 1 Results from solving a series of Markowitz portfolio optimization problems, combined comprising
an efficient frontier

ccopt(c) ccopt(wp) ccopt(wpd)

t f (t) Iters Iters R Iters R

1.00000 0.0042 14 14 1.00 14 1.00

1.00013 0.0037 16 16 1.00 8 0.50

1.00027 0.0038 14 13 0.93 8 0.57

1.00040 0.0042 14 12 0.86 7 0.50

1.00053 0.0050 16 14 0.88 6 0.38

1.00067 0.0058 15 13 0.87 6 0.40

1.00080 0.0068 14 14 1.00 7 0.50

1.00093 0.0078 14 12 0.86 7 0.50

1.00107 0.0089 14 12 0.86 6 0.43

1.00120 0.0101 19 11 0.58 6 0.32

1.00133 0.0114 16 12 0.75 6 0.38

1.00147 0.0127 14 11 0.79 5 0.36

1.00160 0.0141 14 10 0.71 6 0.43

1.00173 0.0158 19 9 0.47 6 0.32

1.00187 0.0177 15 10 0.67 5 0.33

1.00200 0.0197 14 9 0.64 5 0.36

1.00213 0.0219 14 10 0.71 5 0.36

1.00227 0.0242 14 8 0.57 5 0.36

1.00240 0.0265 13 10 0.77 4 0.31

1.00253 0.0289 14 9 0.64 4 0.29

1.00267 0.0313 11 9 0.82 4 0.36

1.00280 0.0338 12 10 0.83 5 0.42

1.00293 0.0363 12 8 0.67 4 0.33

1.00307 0.0388 12 8 0.67 5 0.42

1.00320 0.0414 12 8 0.67 5 0.42

G 14.1 10.7 0.76 5.7 0.41

We used λ = 0.99 and μ0 = 0.01. The third column shows the number of iterations spent solving the
problem using ccopt from a coldstart. The two column blocks to the right show the performance of wp and
wpd. All problems were solved to the accuracy ε = 10−6 (cf. Sect. 4.3)

Instead, we focus on the following situation. On a certain trading day, we can esti-
mate the return and variance of each asset and their uncertainty sets from historical
data, for example from the past H trading days. This is done as in Sect. 5.4 (see [9] for
estimation of the uncertainty sets). We can then compute a robust portfolio by solving
the corresponding socp. A number of trading days later (say, k days), we repeat this
procedure, estimating the relevant parameters over an equally long backwards time
horizon, which is now shifted by k days. If k is small compared to H , the new esti-
mates of the parameters are likely to be only slightly different from the previous ones.
Therefore we can compute a warm starting point using the solution of the previous
problem. This procedure can then be repeated.

123



A. Skajaa et al.

Fig. 3 Results from the portfolio rebalancing problems. The problem set contains 89 problems. The figure
shows the number of iterations spent solving each problem from a cold start (squares), the point wp (trian-
gles) and the point wpd (circles) computed using the solution of the previous problem. We used λ = 0.99
and μ0 = 0.01 for all problems

To facilitate future research in the field of warmstarting optimization algorithms
for socps, we have generated a sequence of such problems using data from 2761
consecutive trading days from the stocks in the S&P500 stock index. Starting on day
number 1,001, we estimated returns and uncertainty sets over the past H = 1,000
days and repeated this procedure for every k = 20 trading days. The result is a prob-
lem set consisting of 89 neighboring socps each with 2,531 variables and 1,527 linear
constraints, of which only two do not come from the introduction of slack variables.
Of the 2,531 variables, 2,005 are non-negative and the rest belong to quadratic cones
of dimensions 3, 21 and 502. The problems are stored in SeDuMi format (see [22]) in
the Matlab binary .mat-format and they are publicly available.6

Figure 3 shows the performance of wp and wpd on this set of problems. We see that
each problem is usually solved in about 20 iterations by ccopt when started from a
coldstart. Using warmstart from wp reduces the number of iterations to about 10–13.
Warmstarting from wpd reduces the number even further to the range 4–15 iterations.
The quantity G (defined in Sect. 5.1) for wp and wpd was 0.5590 and 0.3985 respec-
tively. We can conclude that for these problems, our warmstarting strategies are highly
effective.

5.6 Minimal norm vector in convex hull

In certain algorithms called bundle methods employed particularly in the field of non-
smooth optimization, a series of vectors (gradients at the iterates) are stored (in a
bundle) and used in computing the next search direction and sometimes used to check
stopping criteria. If the current bundle contains g1, . . . , gk ∈ Rn , usually we will have
k � n. At every iteration of these algorithms, the vector with minimal norm in the

6 http://www2.imm.dtu.dk/~andsk/files/warmstart/robpfrebalancing_probs.html.

123



Warmstarting the homogeneous and self-dual IPM

Fig. 4 Results from solving (42). Geometric means of R over 10 random instances are shown. We used
the tolerance ε = 10−6 (cf. Sect. 4.3) and always used μ0 = 1 − λ. Triangles denote wp, circles denote
wpd

convex hull of the vectors g1, . . . , gk is needed. At the end of each iteration, the bundle
is updated, for example by removing one vector and replacing it by another one. We
thus get a sequence of related optimization problems to solve—hence another suitable
candidate for a warmstarting strategy.

Let G ∈ Rn×k be a matrix with g1, . . . , gk in the columns. The problem of finding
the minimal norm vector in the convex hull of g1, . . . , gk can be formulated as

⎧⎨
⎩

minx ‖Gx‖2

s.t. eT x = 1
x ≥ 0

or

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min(x,t,y) t
s.t. Gx = y

eT x = 1
x ≥ 0
t ≥ ‖y‖2

(42)

The formulation on the right is in the standard conic form (1). If x∗ solves this prob-
lem then Gx∗ is the vector we seek. Using the notation of (1), we see that modifying
G corresponds to changing the constraint matrix A of the problem. We experiment
numerically with this problem by first generating G ∈ Rn×k randomly from a [−1, 1]-
uniform distribution and then solving the problem coldstarted—the solution is used
in computing the warm points for the modified problem. We then change one entire
column of G to a vector in Rn randomly chosen from the [−1, 1]-uniform distribu-
tion. The new problem is then solved both cold- and warmstarted for 20 equidistantly
distributed λ ∈ [0, 0.99]. All this is done for 10 random instances, for n = 80 and two
values of k. The results (geometric means over the 10 random instances) are shown
in Fig. 4. We clearly see, particularly for wp, that the best value of λ depends on the
problem (in this case on k). Again wpd consistently performs better than wp, producing
improvements in the range 20–40 % depending on problem and λ.

6 Conclusion and future work

In this paper, we have presented two new warmstarting strategies particularly well
suited for homogeneous interior point methods to solve convex conic optimization

123



A. Skajaa et al.

problems involving linear and quadratic cones. We have analyzed them and given
conditions under which each of them results in improved performance over a standard
coldstart. In contrast to several previous warmstarting strategies, one of our strategies
uses only the primal optimal point of the previous problem to solve the next. The other
strategy uses only the primal and dual optimal solution but no intermediate iterates.
This is significant in that it allows users of black-box optimization algorithms to apply
our warmstarting strategy as part of a larger program where a series of related opti-
mization problems are subproblems that need to be solved. A further benefit of our
strategies is that they cost virtually nothing to compute.

We have presented extensive computational experiments with our warmstarting
strategies showing work reductions in the range of 30–75 %. Thus the strategies are
very effective in practice. This was shown both for linear programming problems and
quadratic programming problems, which we formulated as general mixed linear and
quadratic cone problems.

Our results apply to an interior point method used to solve the homogeneous model.
It is an interesting question whether the presented warmstarting strategies would work
equally well when used in a primal-dual interior point method applied to solve the
original primal-dual pair of conic programs.

Using the general convex conic format, we expect to be able to easily generalize
our warmstarting strategies to the context of semidefinite programming. This step
simply involves the already known generalization of the Jordan product ◦ to the cone
of symmetric and semidefinite matrices, similar to what was done in Sect. 4.4 for the
quadratic cones. For that reason, we expect our strategies to also be useful in algorithms
for solving combinatorial optimization problems. Here, problems are often reduced
to solving a series of related simpler continuous problems such as linear programs,
quadratic programs or semidefinite programs. Thus warmstarting is an obvious idea
to improve computational performance. In this situation, the number of variables in
P and P̂ may be different. In case it increases, we can add in components from the
standard cold starting point c in appropriate places. If the number of variables on the
other hand decreases, we simply drop those variables from the warm starting point.

References

1. Andersen, E.D., Andersen, K.D. : The MOSEK interior point optimization for linear programming:
an implementation of the homogeneous algorithm. In: Frenk, H., Roos, K., Terlaky, T., Zhang, S.
(eds.) High Performance Optimization, pp. 197–232. Kluwer, Dordrecht (1999)

2. Andersen, E.D., Roos, C., Terlaky, T.: On implementing a primal-dual interior-point method for conic
quadratic optimization. Math. Program. 95(2), 249–277 (2003)

3. Andersen, E.D.: Handling free variables in primal-dual interior-point methods using a quadratic
cone. Available from http://www.mendeley.com/c/4812865462/p/11467401/andersen-2002-handling-
free-variables-in-methods-using-a-quadratic-cone/ (2002)

4. Andersen, E.D., Andersen, K.D.: Presolving in linear programming. Math. Program. 71(2), 221–245
(1995)

5. Andersen, E.D., Dahl, J., Friberg, H.A.: Markowitz portfolio optimization using MOSEK. MOSEK
Technical report: TR-2009-2 (2011)

6. Benson, H.Y., Shanno, D.F.: An exact primal-dual penalty method approach to warmstarting interior-
point methods for linear programming. Comput. Optim. Appl. 38, 371–399 (2007)

123



Warmstarting the homogeneous and self-dual IPM

7. Colombo, M., Gondzio, J., Grothey, A.: A warm-start approach for large-scale stochastic linear
programs. Math. Program. 127(2), 371–397 (2011)

8. Engau, A., Anjos, M.F., Vannelli, A.: On interior-point warmstarts for linear and combinatorial opti-
mization. SIAM J. Optim. 20(4), 1828–1861 (2010)

9. Goldfarb, D., Iyengar, G.: Robust portfolio selection problems. Math. Oper. Res. 28(1), 1–38 (2003)
10. Gondzio, J., Grothey, A.: Reoptimization with the primal-dual interior point method. SIAM J. Optim.

13, 842–864 (2002)
11. Gondzio, J., Grothey, A.: A new unblocking technique to warmstart interior point methods based on

sensitivity analysis. SIAM J. Optim. 19(3), 1184–1210 (2008)
12. John, E., Yildirim, E.A.: Implementation of warm-start strategies in interior-point methods for linear

programming in fixed dimension. Comput. Optim. Appl. 41, 151–183 (2008)
13. Luo, Z.Q., Sturm, J.F., Zhang, S.: Conic convex programming and self-dual embedding. Optim. Meth-

ods Softw. 14(3), 169–218 (2000)
14. Lustig, I.J., Marsten, R.E., Shanno, D.F.: Interior point methods for linear programming: computational

state of the art. ORSA J. Comput. 6(1), 1–14 (1994)
15. Megiddo, N.: On finding primal- and dual-optimal bases. ORSA J. Comput. 3(1), 63–65 (1991)
16. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4),

575–601 (1992)
17. Mizuno, S., Todd, M.J., Ye, Y.: On adaptive-step primal-dual interior-point algorithms for linear pro-

gramming. Math. Oper. Res. 18(4), 964–981 (1993)
18. Nesterov, Y.E., Nemirovski, A.S.: Interior-Point Polynomial Algorithms in Convex Programming.

SIAM, Philadelphia, PA (1994)
19. Nesterov, Y.E., Todd, M.J.: Self-scaled barriers and interior-point methods for convex program-

ming. Math. Oper. Res. 22(1), 1–42 (1997)
20. Nesterov, Y.E., Todd, M.J.: Primal-dual interior-point methods for self-scaled cones. SIAM J.

Optim. 8(2), 324–364 (1998)
21. Polyak, R.: Modified barrier functions (theory and methods). Math. Program. 54, 177–222 (1992)
22. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim.

Methods Softw. 12, 625–653 (1999)
23. Sturm, J.F.: Implementation of interior point methods for mixed semidefinite and second order cone

optimization problems. Optim. Methods Softw. 17(6), 1105–1154 (2002)
24. Tuncel, L.: Primal-dual symmetry and scale invariance of interior-point algorithms for convex optimi-

zation. Math. Oper. Res. 23(3), 708–718 (1998)
25. Wright, S.J.: Primal-Dual Interior-Point Methods . SIAM, Philadelphia, PA (1987)
26. Wright, S.J.: Modified cholesky factorizations in interior-point algorithms for linear programming.

SIAM J. Optim. 9(4), 1159–1191 (1999)
27. Xu, X., Hung, P.F., Ye, Y.: A simplified homogeneous and self-dual linear programming algorithm and

its implementation. Ann. Oper. Res. 62(1), 151–171 (1996)
28. Ye, Y., Todd, M.J., Mizuno, S.: An O(sqrt(n)L)-iteration homogeneous and self-dual linear program-

ming algorithm. Math. Oper. Res. 19(1), 53–67 (1994)
29. Ye, Y.: Interior Point Algorithms: Theory and Analysis. Wiley-Interscience, New York (1997)
30. Yildirim, E.A., Wright, S.J.: Warm-start strategies in interior-point methods for linear programming.

SIAM J. Optim. 12(3), 782–810 (2002)

123



Bibliography

[1] Andersen, E. D., Andersen, K. D.: The MOSEK interior point optimization
for linear programming: an implementation of the homogeneous algorithm.
In: Frenk, H., Roos, K., Terlaky, T., Zhang, S.: High Performance Optimiza-
tion, 197�232. Kluwer, Boston (1999).

[2] Andersen, E. D., Roos, C., Terlaky, T.: On implementing a primal-dual
interior-point method for conic quadratic optimization. Math. Program.
95(2), 249�277 (2003).

[3] Andersen, E. D., Ye, Y.: On a homogeneous algorithm for the monotone
complementarity problem. Math. Program. 84(2), 375�399 (1999).

[4] Andersen, K. D.: A modi�ed Schur complement method for handling dense
columns in interior-point methods for linear programming. ACMTrans. Math.
Software 22(3), 348�356 (1996).

[5] Andersen, M. S., Dahl, J., Vandenberghe, L.: Logarithmic barriers for sparse
matrix cones. Optimization Methods and Software 28(3), 396�423 (2012).

[6] Arnold, E., Neupert, J., Sawodny, O., Schneider, K.: Trajectory tracking for
boom cranes based on nonlinear control and optimal trajectory generation. In
Proc. IEEE International Conference on Control Applications �, 1444�1449
(2007).

[7] Ben-Tal, A., Nemirovski, A. S.: Lectures on Modern Convex Optimiza-
tion: Analysis, Algorithms and Engineering Applications. SIAM, Philadel-
phia (2001).



148 BIBLIOGRAPHY

[8] Benson, H.Y., Shanno, D.F.: An exact primal-dual penalty method ap-
proach to warmstarting interior-point methods for linear programming. Com-
put. Optim. Appl. 38, 371�399 (2007).

[9] Bertsimas, D., Tsitsiklis, J. N.: Introduction to Linear Optimization. Athena
Scienti�c (1997).

[10] Boyd, S., Kim, S. J., Vandenberghe, L., Hassibi, A.: A Tutorial on Geo-
metric Programming. Optim. Eng. 8, 67�127 (2007).

[11] Butcher, J. C.: Numerical Methods for Ordinary Di�erential Equations.
Wiley, 2nd edition (2008).

[12] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University
Press (2004).

[13] Chares, P. R.: Cones and Interior-Point Algorithms for Structured Con-
vex Optimization involving Powers and Exponentials. PhD thesis, Uni.
Catholique de Louvain, 2009.

[14] Colombo, M., Gondzio, J., Grothey, A.: A warm-start approach for large-
scale stochastic linear programs. Math. Program. 127(2), 371�397 (2011).

[15] El-Bakry, A. S., Tapia, R.A., Tsuchiya, T., Zhang, Y.: On the formulation
and theory of the Newton interior-point method for nonlinear programming.
J. Optim. Theory Appl. 89(3), 507�541 (1996).

[16] Engau, A., Anjos, M.F., Vannelli, A.: On Interior-Point warmstarts for
linear and combinatorial optimization. SIAM J. Optim. 20(4), 1828�1861
(2010).

[17] Ferreau, H. J.: An Online Active Set Strategy for Fast Solution of Para-
metric Quadratic Programs with Applications to Predictive Engine Control.
MSc thesis, Uni. of Heidelberg, 2006.

[18] Ferreau, H.J., Bock, H.G., Diehl, M.: An online active set strategy to
overcome the limitations of explicit MPC. International Journal of Robust
and Nonlinear Control 18(8), 816�830 (2008).

[19] Fukuda, M., Braams, B. J., Nakata, M., Overton, M. L., Percus, J. K.,
Yamashita, M., Zhao, Z.: Large-Scale Semide�nite Programs in Electronic
Structure Calculation. Math. Program. 109(2�3), 553�580 (2007).

[20] George, A., Liu, J. W. H.: The evolution of the minimum degree ordering
algorithm. SIAM Rev. 31, 1�19 (1989).

[21] Glineur, F.: Topics in Convex Optimization: Interior-Point Methods, Conic
Duality and Approximations. PhD thesis, Faculté Polytechnique de Mons.



BIBLIOGRAPHY 149

[22] Gondzio, J., Grothey, A.: Reoptimization with the Primal-Dual interior
point method. SIAM J. Optim. 13, 842�864 (2002).

[23] Gondzio, J., Grothey, A.: A new unblocking technique to warmstart in-
terior point methods based on sensitivity analysis. SIAM J. Optim. 19(3),
1184�1210 (2008).

[24] Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex pro-
gramming, version 1.21. http://cvxr.com/cvx, October 2010.

[25] Güler, O.: Barrier Functions in Interior Point Methods. Math. Oper. Res.
21, 860�885 (1996).

[26] Hovgaard, T. G., Edlund, K., Jørgensen, J. B.: The Potential of Economic
MPC for Power Management. In Proc. of 49th IEEE Conference on Decision
and Control, 2010 �, 7533�7538 (2010).

[27] John, E., Yildirim, E. A.: Implementation of warm-start strategies in
interior-point methods for linear programming in �xed dimension. Comput.
Optim. Appl. 41, 151�183 (2008).

[28] Karmarkar, N.: A new polynomial-time algorithm for linear programming.
Combinatorica 4, 373�395 (1984).

[29] Luenberger, D. G., Ye, Y.: Linear and Nonlinear Programming. Springer
(2008).

[30] Luo, Z. Q., Sturm, J. F., Zhang, S.: Conic convex programming and self-
dual embedding. Optim. Method. Softw. 14, 169�218 (2000).

[31] Lustig, I.J., Marsten, R.E., Shanno, D.F.: Interior point methods for linear
programming: Computational state of the art. ORSA J. Comput. 6(1), 1�14
(1994).

[32] Mattingley, J., Boyd, S.: CVXGEN: A Code Generator for Embedded
Convex Optimization. Optimization and Engineering 13(1), 1�27 (2012).

[33] Megiddo, N.: On �nding primal- and dual-optimal bases. ORSA J. Com-
put. 3(1), 63�65 (1991).

[34] Mehrotra, S.: On the Implementation of a Primal-Dual Interior Point
Method. SIAM J. Optim. 2, 575�601 (1992).

[35] Mizuno, S., Todd, M. J., Ye, Y.: On adaptive-step primal-dual interior-
point algorithms for linear programming. Math. Oper. Res. 18, 964�981
(1993).

[36] MOSEK Optimization Software: Developed by MOSEK ApS. See www.

mosek.com.

http://cvxr.com/cvx
www.mosek.com
www.mosek.com


150 BIBLIOGRAPHY

[37] Nemirovski, A. S., Todd, M. J.: Interior-point methods for optimization.
Acta Numerica 17, 191�234 (2008).

[38] Nesterov, Yu. E.: Constructing self-concordant barriers for convex cones.
CORE Discussion Paper (2006/30).

[39] Nesterov, Yu. E.: Towards Nonsymmetric Conic Optimization. Optim.
Method. Softw. 27, 893�917 (2012).

[40] Nesterov, Yu. E., Nemirovski, A. S.: Interior-Point Polynomial Algorithms
in Convex Programming. SIAM (1994).

[41] Nesterov, Yu. E., Todd, M. J.: Self-Scaled Barriers and Interior-Point
Methods for Convex Programming. Math. Oper. Res. 22, 1�42 (1997).

[42] Nesterov, Yu. E., Todd, M. J.: Primal-Dual Interior-Point Methods for
Self-Scaled Cones. SIAM J. Optim. 8, 324�364 (1998).

[43] Nesterov, Yu. E., Todd, M. J., Ye, Y.: Infeasible-Start Primal-Dual Meth-
ods and Infeasibility Detectors for Nonlinear Programming Problems. Math.
Program. 84, 227�267 (1999).

[44] Netlib repository: Collection of linear programs. See www.netlib.org/

lp/.

[45] Nocedal, J., Wright, S. J.: Numerical Optimization. Springer, 2nd edition
(2006).

[46] Online QP Benchmark Collection: Developed by Diehl, M. and Ferreau,
H.J.. See http://www.kuleuven.be/optec/software/onlineQP.

[47] Pannocchia, G., Rawlings, J. B., Wright, S.: Fast, large-scale model pre-
dictive control by partial enumeration. Automatica 43(5), 852�860 (2007).

[48] Polyak, R.: Modi�ed barrier functions (theory and methods). Math. Pro-
gram. 54, 177�222 (1992).

[49] Renegar, J.: A Mathematical View of Interior-Point Methods in Convex
Optimization. SIAM, Philadelphia (1987).

[50] Skajaa, A., Andersen, E. D., Ye, Y.: Warmstarting the homogeneous and
self-dual interior point method for linear and conic quadratic problems. Math.
Program. Comp. 5(1), 1�25 (2013).

[51] Skajaa, A., Ye, Y.: A Homogeneous Interior-Point Algorithm for Nonsym-
metric Convex Conic Optimization. Submitted to Math. Program., 2013.

[52] Sturm, J. F.: Primal-dual interior-point approach to semide�nite program-
ming. PhD thesis, Erasmus Universiteit Rotterdam, 1997.

www.netlib.org/lp/
www.netlib.org/lp/
http://www.kuleuven.be/optec/software/onlineQP


BIBLIOGRAPHY 151

[53] Sturm, J. F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones. Optim. Method. Softw. 12, 625�653 (1999).

[54] Sturm, J. F.: Implementation of Interior Point Methods for Mixed Semidef-
inite and Second Order Cone Optimization Problems. Optim. Method. Softw.
17, 1105�1154 (2002).

[55] Tuncel, L.: Primal-Dual Symmetry and Scale Invariance of Interior-Point
Algorithms for Convex Optimization. Math. Oper. Res. 23, 708�718 (1998).

[56] Tuncel, L.: Generalization Of Primal-Dual Interior-Point Methods To Con-
vex Optimization Problems In Conic Form. Found. Comput. Math. 1, 229�254
(2001).

[57] Wirsching, L., Bock, H. G., Diehl, M.: Fast NMPC of a chain of masses
connected by springs. In Proc. of the IEEE International Conference on
Control Applications, Munich �, 591�596 (2006).

[58] Wright, S. J.: Primal-Dual Interior-Point Methods. SIAM (1987).

[59] Wu, Q., Nielsen, A. H., Østergaard, J., Cha, S. T., Marra, F., Chen, Y.,
Træholt, C.: Driving Pattern Analysis for Electric Vehicle (EV) Grid In-
tegration Study. In Proc.: Innovative Smart Grid Technologies Conference
Europe (ISGT Europe), 2010 IEEE PES �, 1�6 (2010).

[60] Xu, X., Hung, P. F., Ye, Y.: A simpli�ed homogeneous and self-dual linear
programming algorithm and its implementation. Ann. Oper. Res. 62, 151�171
(1996).

[61] Xue, G. Ye, Y.: An E�cient Algorithm for Minimizing a Sum of p-Norms.
SIAM J. Optimiz. 10, 551�579 (1999).

[62] Ye, Y.: Interior Point Algorithms: Theory and Analysis. Wiley (1997).

[63] Yildirim, E.A., Wright, S.J.: Warm-start strategies in interior-point meth-
ods for linear programming. SIAM J. Optim. 12(3), 782�810 (2002).


	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Notation
	Contents
	1 Introduction
	2 Optimization Background
	2.1 Convexity
	2.1.1 Convex sets
	2.1.2 Convex functions

	2.2 Convex cones
	2.2.1 Dual cones
	2.2.2 Homogeneity and symmetry

	2.3 Self-concordant functions
	2.4 Unconstrained optimization and Newton's method
	2.5 Barrier functions
	2.5.1 Logarithmic homogeneity and self-concordance
	2.5.2 The conjugate barrier

	2.6 Convex constraints
	2.6.1 General case
	2.6.2 The dual problem
	2.6.3 Karush-Kuhn-Tucker conditions
	2.6.4 Examples

	2.7 Conic constraints
	2.7.1 Conic duality
	2.7.2 Karush-Kuhn-Tucker conditions
	2.7.3 Examples
	2.7.4 Homogeneous and self-dual model


	3 Linear Programming
	3.1 The central path
	3.1.1 Central path neighborhoods

	3.2 Path-following algorithms
	3.2.1 Feasible short-step algorithm
	3.2.2 Feasible Mizuno-Todd-Ye predictor-corrector algorithm
	3.2.3 Feasible long-step algorithm
	3.2.4 Infeasible long-step algorithm

	3.3 Solving for the search direction

	4 Convex Conic Programming
	4.1 A family of barrier problems
	4.2 Linearization of the complementarity conditions
	4.3 Symmetric cones
	4.4 Nonsymmetric cones
	4.4.1 Nesterov-Todd-Ye 1998
	4.4.2 Nesterov 2006

	4.5 Skajaa-Ye 2012: A Homogeneous Interior-Point Algorithm for Nonsymmetric Convex Conic Optimization
	4.5.1 Overview
	4.5.2 Theoretical results
	4.5.3 Computational results


	5 Initialization and Warmstarting
	5.1 Initialization of interior-point methods
	5.2 Warmstarting
	5.3 Skajaa-Andersen-Ye 2012: Warmstarting the homogeneous and self-dual interior point method for linear and conic quadratic problems
	5.3.1 Overview
	5.3.2 Theoretical results
	5.3.3 Computational results

	5.4 Accelerating computations in model predictive control using interior-point warmstarting
	5.4.1 Overview
	5.4.2 Introduction
	5.4.3 Model predictive control
	5.4.4 Warmstarting problem in mpc
	5.4.5 Case study: Smart energy system
	5.4.6 Further computational results: Quadratic programs
	5.4.7 Conclusion


	A Paper: A Homogeneous Interior-Point Algorithm for Nonsymmetric Convex Conic Optimization
	B Paper: Warmstarting the Homogeneous and Self-Dual Interior-Point Method for Linear and Conic Quadratic Problems
	Bibliography

