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Summary

Despite recent developments within diabetes management such as rapid-
acting insulin, continuous glucose monitors (CGM) and insulin pumps, tight
blood glucose control still remains a challenge. A fully automated closed-
loop controller, also known as an artificial pancreas (AP), has the potential
to ease the life and reduce the risk of acute and chronic diabetic complica-
tions. However, the noise associated to CGMs, the long insulin action time
for continuous subcutaneous infusion of insulin (CSII) pumps, and the high
intra- and inter-patient variability significantly limits the performance of
current closed-loop controllers.
In this thesis, we present different control strategies based on Model Pre-
dictive Control (MPC) for an artificial pancreas. We use Nonlinear Model
Predictive Control (NMPC) in order to determine the optimal insulin and
blood glucose profiles. The optimal control problem (OCP) is solved us-
ing a multiple-shooting based algorithm. We use an explicit Runge-Kutta
method (DOPRI45) with an adaptive stepsize for numerical integration and
sensitivity computation. The OCP is solved using a Quasi-Newton sequen-
tial quadratic programming (SQP) with a linesearch and a BFGS update for
the Hessian of the Lagrangian. In addition, we apply a Continuous-Discrete
Extended Kalman Filter (CDEKF) in order to simulate cases where the
meal size is uncertain, or even unannounced.
We also propose a novel control strategy based on linear MPC for overnight
stabilization of blood glucose. The model parameters are personalized us-
ing a priori available patient information. We consider an autoregressive
integrated moving average with exogenous input (ARIMAX) model. We
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summarize and the results of the overnight clinical studies conducted at
Hvidovre Hospital. Based on these results, we propose improvements for
the stochastic part of our controller model. We state and compare three dif-
ferent stochastic model structures. The first one is the ARIMAX structure
that has been used for the clinical studies. The second one is an autore-
gressive moving average with exogenous input (ARMAX) model. The third
one is an adaptive ARMAX model in which we estimate the parameters of
the stochastic part using a Recursive Least Square (RLS) method. We test
the controller in a virtual clinic of 100 patients. This virtual clinic is based
on the Hovorka model. We consider the case where only half of the bolus
is administrated at mealtime, and the case where the insulin sensitivity
increases during the night.
This thesis consists of a summary report, glucose and insulin profiles of
the clinical studies and research papers submitted, peer-reviewed and/or
published in the period September 2009 - September 2012.
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CHAPTER 1
Introduction

1.1 Motivation

1.1.1 Facts about diabetes

Insulin and glucagon are the main hormones involved in the blood glucose
regulation. In case of high blood glucose concentration, the pancreas se-
cretes insulin. Insulin promotes the uptake of glucose in the body cells and
the storage of glucose in the liver as glycogen. If the blood glucose is lower
than normal, the pancreas starts to produce glucagon. Glucagon has the
opposite effect, ie. promotes the breakdown of glycogen into glucose. This
regulatory mechanism is explicated in Fig. 1.1. In healthy people, these
hormones maintain the blood glucose around 90 mg/dL (∼5 mmol/L), and
usually in the range 72-144 mg/dL (∼4-8 mmol/L).

In 2010, approximately 280 million people suffered from diabetes, and this
number is expected to increase by 150 million by 2030 [2]. In addition, the
global health care expenditure to treat complications related to diabetes is
also going to significantly increase within next years [3], from approximately
375 billion dollars to approximately 490 billion dollars. The evolution of the
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1. Introduction

Figure 1.1: Blood glucose regulation in healthy people [1].

number of people with diabetes in the USA, Europe, India, China, Brazil
and Africa for 2010 and 2030 is shown in Fig 1.2.

Type 1 diabetes (also previously known as juvenile diabetes or insulin-
dependent diabetes) represent 5-10% of diabetes. In Denmark, the number
of people with type 1 diabetes is estimated to 30,000 [4]. Type 1 diabetes is
an autoimmune disease caused by the destruction of the insulin-producing
β-cells in the pancreas. Therefore, people with type 1 diabetes do not pro-
duce insulin, and need frequent injections of exogenous insulin to survive.

Presently, people with type 1 diabetes have the responsibility of deciding
on their insulin dosage. Too little insulin may lead to periods of high
blood glucose (hyperglycemia), which has long-term complications, such
as blindness, nerve disease or kidney disease. Conversely, overdosing the
insulin may lead to low blood glucose, which has immediate effects, such as
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1.1. Motivation

Figure 1.2: Estimation of the number of people with diabetes in the USA,
Europe, India, China, Brazil and Africa in 2010 and 2030.

seizures or even death.

The traditional treatment for people with type 1 diabetes consists of mul-
tiple daily injections (MDI) of slow-acting insulin once per day and rapid-
acting insulin several times per day with a needle. The decisions on the
amount of injected insulin are based on discrete blood glucose measure-
ments. The slow-acting insulin mitigates the endogenous glucose produc-
tion from the liver. The rapid-acting insulin compensates for the carbohy-
drates coming from meals.

An increasing number of people with type 1 diabetes are using a Contin-
uous Subcutaneous Insulin Infusion (CSII) pump combined with a Con-
tinuous Glucose Monitor (CGM). The insulin pump continuously injects
small amounts of rapid-acting insulin during the day, and can inject larger
amounts before mealtimes. The amount of basal insulin can be adjusted
to fit the patient’s daily variations in insulin needs. The CGM provides
frequent measurements of the subcutaneous glucose. This therapy results
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Continuous Glucose 
Monitor (CGM)

Insulin PumpControl Algorithm

Artificial Pancreas

Figure 1.3: Design of an artificial pancreas.

in a better control of blood glucose compared to the one based on MDI [5].

1.1.2 The Artificial Pancreas

So far, the decision on the amount of insulin to be injected is still left to the
patient. Closed-loop control of blood glucose, also known as an Artificial
Pancreas (AP), can reduce the burden and the risk of complications associ-
ated to type 1 diabetes. Current versions of the AP use a CGM for glucose
measurements, a control algorithm, and a CSII pump. Fig. 1.3 illustrates
the principle of an AP.

The AP has been a subject of interest for almost 50 years [6–8]. Early
versions of the AP like the BiostatorTMused intravenous (iv.) glucose mea-
surements and iv. insulin and glucagon injections. However, this setup
cannot be used for controlling the blood glucose in everyday life. In the re-
cent years, the improvements in CSII pump technologies, insulin analogues
and CGMs increased the potential of a fully automated AP [9–12].

Currently, the most popular control algorithms are proportional integral

4



1.1. Motivation

derivative (PID) control [13, 14], model predictive control (MPC) [15, 16],
sliding mode control [17], fuzzy logic [18, 19] and H∞ control [20].

Currently, the main limitations towards the development of an AP are [21]

• The accuracy of CGMs. Erroneous CGM measurements represent the
main limitation for closed-loop control [22, 23]. Currently available
CGMs have a mean absolute relative error of approximately 15% [24].
Attempts to enhance CGM accuracy using currently available CGMs
and novel approaches have been performed [25]. There also exists a lag
in the interstitial fluid response to changes in plasma glucose. Usually,
this lag is estimated to 15-20 minutes. However, [26] claimed that the
actual lag is 5-10 minutes, and that additional lags are introduced by
CGM filtering algorithms.

Here, the difference between a lag and a delay should be explained.
A delay is a period of time where the input has no influence on the
response of the system. Conversely, a lag is for example a low-pass
filter, where the response progressively reaches its final value. In
the considered compartment models, the lags and delays are always
modelled as lags. Fig. 1.4 illustrates the unit step response for a lag
and a delay.

• The lag and delay associated to the subcutaneous route for insulin ad-
ministration. The subcutaneously administrated insulin has its maxi-
mum effect on blood glucose after approximately 90-120 minutes, and
can remain active in the body for 4-5 hours. Several ways are being
investigated to make the insulin action faster. For example, the use
of a local heating device at the insulin injection site can accelerate
the insulin absorption [27]. Other routes, such as the intraperitoneal
route, have also been considered [28]. These novel ways of adminis-
trating insulin can improve the control of blood glucose, but cannot
be used in large populations of people with type 1 diabetes. They are
more invasive than the CSII therapy, require more maintenance and
can be subject to complications and infections.
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Figure 1.4: Example of lag and delay.

Glucagon can be used as a rescue in the case of an upcoming hypo-
glycemia. An example of AP using insulin and glucagon as manipu-
lated variables is given in [29]. Further studies on APs using insulin
and glucagon need to be performed, since glucagon has side effects
at high concentration (nausea and vomiting), and aged glucagon is
cytotoxic (ie. may alter or destroy cells) [30].

• The intra-patient variability. Many factors, such as insulin, meal in-
take, physical exercise, stress, illness, alcohol consumption etc. influ-
ence the blood glucose [31]. Also, hormone release during the night
may cause elevated blood glucose in the early morning (also called
dawn phenomenon).

1.1.3 Model Predictive Control

MPC is a control algorithm using a model to predict and optimize the fu-
ture response of a plant. At each iteration, the controller solves an Optimal
Control Problem (OCP). It computes the optimal sequence of inputs, based

6
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Figure 1.5: The principle of MPC.

on the current estimated state of the system, a prediction model and a de-
sired reference trajectory. Then, the first value of the input is implemented
to the plant and the new current state is estimated, eg. with a Kalman
filter. The computation is repeated at the next sample using a receding
horizon strategy. The principle of MPC and receding horizon is illustrated
in Fig. 1.5. An overview of possible industrial applications of MPC can be
found in [32].
MPC is a useful control method for the AP due to its ability to handle
constraints on insulin administration and glucose level in a systematic and
proactive way. In this thesis, we consider hard constraints on the insulin
level and soft constraints on the glucose level. Prototypes of AP using MPC
have been successfully tested both in silico [33] and in vivo [34].

1.1.4 Physiological models

Several physiological models have been developed to simulate virtual pa-
tients with type 1 diabetes. One of the oldest models is the Minimal Model
developed by Bergman et al. [35]. The glucose-insulin dynamics model
consists of three compartments in total. One compartment represents the
plasma glucose level. The second one represents the action of insulin. Fi-
nally, the third one depicts the insulin concentration. Its simplicity makes
it popular for modeling people with type 1 diabetes.
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1. Introduction

Another model for people with type 1 diabetes is the Sorensen model [36].
This model can simulate both healthy people and people with type 1 dia-
betes. This model consists of 19 states in total. This model is rarely used
for simulations due to its high complexity. It is illustrated in Fig. 1.6.
Examples of publications using the Sorensen model for modeling and/or
control are [37–39].

One of the most used models is the Cobelli model [40]. The University of
Virginia and the University of Padova developed a virtual clinic of people
with type 1 diabetes based on the Cobelli model [41]. This clinic can
simulate up to 300 patients (100 adults, 100 adolescents, 100 children), and
is approved by the FDA (Food and Drugs Administration) as a substitution
to animal trials. Consequently, this clinic is often used to test in silico
closed-loop controllers for blood glucose. Examples of works using this
virtual clinic are [42–44]. The main drawback of this model is the inability
to vary model parameters (eg. insulin sensitivities) during the simulation.

A more recent model is the Medtronic Virtual Patient (MVP) model [45].
This model contains the same compartments as the minimal model. Its
main difference is its identifiability. Thus, the 8 model parameters can be
identified from a sufficiently large collection of clinical data.

In this thesis, we are using the model developed by Hovorka et al. in order to
simulate patients with type 1 diabetes [46]. This model consists of 6 states
for describing the glucose-insulin dynamics, 2 states for modeling the meal
absorption, and 2 other states for modeling the sc. insulin infusion. As for
the Cobelli model, a simulator has been developed for in silico clinical trials
[47].

An overview of these models is available in [48].

1.2 Objective and main contributions

The main objective of this work is to implement and test in silico and in
vivo control strategies for control of blood glucose in people with type 1
diabetes. In this project we limited ourselves to strategies based on MPC
(both linear and nonlinear MPC). In addition, we only consider the sc.

8
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Figure 1.6: The Sorensen model.

route for insulin infusion and glucose measurements. We use the Hovorka
model to simulate patients with type 1 diabetes.

The first goal of this work is to determine the maximal achievable perfor-
mance of a closed-loop controller. In order to achieve this goal, we use
a constrained non-linear optimal controller. The algorithm is a multiple
shooting algorithm based on sequential quadratic programming (SQP) for
optimization and an explicit Dormand-Prince Runge-Kutta method (DO-
PRI54) for numerical integration and sensitivity computation. We imple-
ment a toolbox for simulating a patient with type 1 diabetes for various
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Figure 1.7: The Cobelli model.

scenarios. In the case where we assume that we do not know the current
state, we use a continuous-discrete extended Kalman Filter (CDEKF) for
state estimation.

The second goal is to implement a controller which can be used in a clinical
study. The in vivo clinical studies require a simple and realistic method
to estimate the model parameters. In this thesis we propose a simple and
systematic method based on a priori patient parameters. We propose a
robust controller to take into account the high intra-patient variability in
insulin needs.
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1.3. Outline

1.3 Outline

This thesis is structured as following.

Chapter 2 presents the Hovorka model. This model is used to simulate
people with type 1 diabetes. We present the glucose-insulin dynamics
model, the sc. insulin absorption model and the meal absorption
model. We use a parameter distribution to generate cohorts of people
with type 1 diabetes.

Chapter 3 discusses the limitations of closed-loop control for people with
type 1 diabetes. We describe a control algorithm based on Nonlinear
Model Predictive Control (NMPC). We test our controller in the cases
where full meal information is available in advance, where the meal
size is announced at mealtime only and where the meal sizes and
mealtimes are unknown to the controller. We also compare a pump-
based insulin therapy to a pen-based insulin therapy, and discuss the
benefits of faster insulin on postprandial glucose excursions.

Chapter 4 proposes a control algorithm designed for in vivo clinical stud-
ies. This controller uses known patient information to determine the
model parameters. We present the method for model computation,
the results of numerical simulations and in vivo clinical studies. We
also suggest possible improvements to the current controller. We com-
pare and assess 3 different control strategies in the case where only
half of the meal bolus is administrated at mealtime, and the case
where the insulin sensitivity increases during the night.

Chapter 5 summarizes the main contributions of this thesis, and proposes
possible future directions.

The appendices are structured as following.

• Appendix A shows the glucose and insulin profiles for the 25 clinical
studies conducted at Hvidovre Hospital.

11
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• Appendix B - C include a book chapter and a conference paper that
has been peer-reviewed and published in proceedings. In these papers
we describe the implementation of a controller based on NMPC. We
provide and discuss the optimal glucose and insulin profiles in the
case where the meal sizes and mealtimes are known in advance, and
the case where the meal size is announced at mealtime only.

• In Appendix D, we apply receding horizon constrained optimal control
to the computation of insulin administration for people with type 1
diabetes. We compare the glucose and insulin profiles for linear and
nonlinear MPC. We also discuss the benefits of faster insulin on the
postprandial glucose excursion.

• In Appendix E we estimate the sizes and the times of the meals us-
ing a continuous-discrete extended Kalman filter (EKF). We present
study results based on the Hovorka model, where we consider the
cases where the meal is correctly estimated, the case where the meal
size is overestimated and the case where the meal is not announced
at all. The paper describes the key aspects of the numerical imple-
mentation and provides quantitative insight into the factors limiting
the achievement of acceptable closed-loop performance.

• In Appendix F, we apply a robust feedforward-feedback control strat-
egy. The feedforward controller consists of a bolus calculator which
compensates the disturbance coming from meals. The feedback con-
troller is based on a linearized description of the model describing the
patient. We minimize the risk of hypoglycemia by introducing a time-
varying glucose setpoint based on the announced meal size and the
physiological model of the patient. The simulation results include the
cases where the insulin sensitivity changes, and mismatches in meal
estimation. They demonstrate that the designed controller is able to
achieve offset-free control when the insulin sensitivity changes, and
that having a time-varying reference signal enables more robust con-
trol of blood glucose in the cases where the meal size is known, but
also when the ingested meal does not match the announced one.

12



1.3. Outline

• In Appendix G, we summarize, compare and discuss the different
control strategies presented in the previous papers.

• Appendix H is a technical report. In this report, we present a closed-
loop control strategy for overnight glucose stabilization. The con-
troller is a model predictive controller (MPC) based on a first-order
extended ∆-ARX (autoregressive with exogenous input) model. We
test this control strategy on a cohort of 7 virtual patients simulated
by the Hovorka model.

• Appendix I - K include 2 peer-reviewed conference papers and a jour-
nal paper in submission. In these papers, we propose a control strat-
egy based on linear MPC for overnight glucose stabilization. We
propose a simple, systematic and patient-specific way of computing
the model parameters based on a priori known patient information.
The controller is evaluated in silico on a cohort of 100 randomly gen-
erated patients with a representative inter-subject variability. This
cohort is simulated overnight with realistic variations in the insulin
sensitivities and needs. We also provide results for the first tests of
this controller in a real clinic.

• Appendix L consists of a journal paper in submission. In this paper
we describe and compare 3 different control strategies for overnight
stabilization of blood glucose. The first one is the ARIMAX model
structure that has been used for the clinical studies on real patients.
The second one is an ARMAX model structure. The third one is an
adaptive ARMAX model structure, where we recursively estimate the
model parameters for the stochastic part.

13





CHAPTER 2
The Hovorka Model for

People with Type 1 Diabetes

This chapter describes the model that we use for our virtual clinic. The
model has been developed by Hovorka et al., and we refer to it as the
Hovorka model. First we state the differential equations describing the
glucose-insulin dynamics, the subsystem describing the meal absorption, the
subsystem describing the sc. insulin infusion and the subsystem modeling
the glucose transport from plasma to interstitial tissues. We also propose a
method for generating a cohort of people with type 1 diabetes representative
of a real population by using a parameter distribution.

The Hovorka model has been identified on 6 healthy male patients during
IVGTT (intravenous glucose tolerance test). In this study, traceable glucose
is used to estimate the effect of insulin on glucose distribution/transport,
glucose disposal, and endogenous glucose production (EGP) [49]. This
model consists of 6 states. One state represents the glucose contained in
plasma. The second state represents the glucose contained in peripheral
tissues. Three other states represent the action of insulin on glucose dis-
tribution/transport, glucose disposal, and endogenous glucose production

15
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D1

d(t)
D2 Q1 Q2

S1

u(t)
S2 I

x1x3 x2

SC Insulin Absorption

CHO Absorption

Gluco-Regulatory System

G(t)

I(t)

EGP

FR
F01

UG

UI

Figure 2.1: The Hovorka model.

(EGP). Finally, one state depicts the insulin concentration in plasma. This
model is augmented with a two-compartment model for the meal absorption
and another two-compartment model for sc. insulin absorption [46].

We also include a CGM model to simulate a sc. glucose sensor. This model
simulates the glucose transport from blood to interstitial tissues, and the
noise structure from the CGM. Hence, the full model used in this thesis to
simulate a patient with type 1 diabetes contains 11 states.

2.1 Physiological subsystem

The blood glucose dynamics are modeled with two compartments. The two
state variables are Q1(t) [mmol] and Q2(t) [mmol]. Q1(t) represents glucose
in the main blood stream, while Q2(t) represents glucose in peripheral tissue
such as muscles.

16



2.1. Physiological subsystem

The model describing evolution of glucose in the main blood stream

dQ1

dt
(t) = UG(t)− F01,c(t)− FR(t)

− x1(t)Q1(t) + k12Q2(t)

+ EGP0(1− x3(t))

(2.1)

includes absorption from the gut, UG(t) [mmol/min], consumption of glu-
cose by the central nervous system, F01,c [mmol/min], the renal excretion of
glucose in the kidneys, FR(t) [mmol/min], the insulin dependent uptake of
glucose in muscles, x1(t)Q1(t) [mmol/min], transfer of glucose from periph-
eral tissue such as muscle to the blood, k12Q2(t), and endogenous release
of glucose by the liver, EGP0(1− x3(t)). The uptake of glucose in muscles
depends on insulin. x1(t) is a state representing insulin in muscle tissue.
Release of glucose from the liver is also controlled by insulin. High concen-
trations of insulin suppress glucose release. x3(t) is used to model insulin
in the liver.

Glucose in peripheral tissue such as muscle is modeled by the differential
equation

dQ2

dt
(t) = x1(t)Q1(t)− (k12 + x2(t))Q2(t) (2.2)

in which x1(t)Q1(t) [mmol/min] is the transport of glucose from the main
blood stream to the muscles, k12Q2(t) [mmol/min], is transport of periph-
eral glucose to the main blood stream, and x2(t)Q2(t) [mmol/min] is the
insulin dependent disposal of glucose in the muscle cells. It depends on
insulin modeled by x2(t).

The glucose concentration is

y(t) = G(t) =
Q1(t)

VG
(2.3)

y(t) = G(t) is the glucose concentration [mmol/L] and VG [L] is the glucose
distribution volume. It depends on body weight, BW [kg], of the individual.
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2. The Hovorka Model for People with Type 1 Diabetes

The insulin-independent consumption of glucose by the central nervous sys-
tems and the red blood cells is modeled as

F01,c(t) =

{
F01 G(t) ≥ 4.5 mmol/L

F01G(t)/4.5 otherwise
(2.4)

At low glucose concentrations the consumption, F01,c [mmol/min], is pro-
portional to the glucose concentration, G(t), while it is constant when the
glucose concentration is not low.

The excretion rate of glucose in the kidneys is zero unless the glucose con-
centration is high (G(t) ≥ 9 mmol/L). In this case it is affine in the glucose
concentration. Consequently, the glucose excretion rate, FR [mmol/min],
is modeled as

FR(t) =

{
0.003(G(t)− 9)VG G(t) ≥ 9 mmol/L

0 otherwise
(2.5)

The plasma insulin concentration, I(t) [mU/L], evolves according to

dI

dt
(t) =

UI(t)

VI
− keI(t) (2.6)

The insulin action is governed by influence on transport and distribution
x1(t), utilization and phosphorylation of glucose in adipose tissue x2(t), and
endogenous production in the liver x3(t). These quantities are described
by the differential equations

dx1

dt
(t) = −ka1x1(t) + kb1I(t) (2.7a)

dx2

dt
(t) = −ka2x2(t) + kb2I(t) (2.7b)

dx3

dt
(t) = −ka3x3(t) + kb3I(t) (2.7c)
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2.2. Food Absorption Model

2.2 Food Absorption Model

Food absorption models have been considered by a number of authors [50–
53] and it has been observed that people with diabetes has abnormally slow
gastric emptying [54].

We consider a two-compartment model describing carbohydrate (CHO) ab-
sorption and conversion to glucose. The model describes the effect of orally
ingested carbohydrates on the rate of appearance of glucose in the blood
stream. The model is

dD1

dt
(t) = AGD(t)− 1

τD
D1(t) (2.8a)

dD2

dt
(t) =

1

τD
D1(t)− 1

τD
D2(t) (2.8b)

in which D(t) [mmol/min] is the amount of oral carbohydrate intake at
any time expressed as glucose equivalents, AG is a factor describing the
utilization of carbohydrates to glucose, τD [min] is the time constant, D1(t)
[mmol] and D2(t) [mmol] are the states describing the amount of glucose
in the two compartments. The rate of appearance of absorption of glucose
in the blood stream is described by

UG(t) =
1

τD
D2(t) (2.9)

UG(t) [mmol/min] is the glucose absorption rate. The carbohydrate input
rate, D(t) [mmol/min], may be related to the carbohydrate input rate, d(t)
[g/min], by

D(t) =
1000

MwG
d(t) (2.10)

in which MwG [g/mol] is the molecular weight of glucose. The glucose
absorption profiles for different meal sizes are illustrated in Fig. 2.3.
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Figure 2.2: Glucose absorption profiles for 100, 75, 50 and 25g CHO. The
model parameters are the average values.

2.3 Insulin Absorption Model

In this thesis, we assume that insulin is administered subcutaneously using
a CSII pump. A number of models to describe the absorption rate of sub-
cutaneously injected short acting insulin in the blood stream are available
[55].

We consider a two compartment model describing the absorption rate of
subcutaneously administered short acting insulin. The model is

dS1

dt
(t) = u(t)− 1

τS
S1(t) (2.11a)

dS2

dt
(t) =

1

τS
S1(t)− 1

τS
S2(t) (2.11b)

in which u(t) [mU/min] is the amount of insulin injected, τS [min] is the
time constant, S1(t) [mU] and S2(t) [mU] are the amounts of insulin in the
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Figure 2.3: Insulin absorption profiles for 1U, 0.5U, 0.25U and 0.1U insulin
boluses. The model parameters are the average values.

two compartments. The absorption rate of insulin in the blood stream is

UI(t) =
1

τS
S2(t) (2.12)

in which UI(t) [mU/min] is the absorption rate. The insulin absorption
profiles for different bolus sizes are depicted in Fig. 2.3.

2.4 Parameters

The parameters in the Hovorka model (2.8)-(2.7) are listed in Table 2.1.
The parameters kb,i are related to the insulin sensitivities, SI,i, by

kb,i = SI,ika,i i = 1, 2, 3 (2.13)

The European unit for glucose concentration is mmol/L and the American
unit is mg/dL. One can convert between these units using the molecular
weight of glucose (C6H12O6): MwG = 180.1577 g/mol.
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2. The Hovorka Model for People with Type 1 Diabetes

Table 2.1: Parameters and distribution for the Hovorka model.

Parameter Unit Distribution

EGP0 mmol/kg/min EGP0 ∼ N(0.0161, 0.00392)
F01 mmol/kg/min F01 ∼ N(0.0097, 0.00222)
k12 min−1 k12 ∼ N(0.0649, 0.02822)
ka,1 min−1 ka,1 ∼ N(0.0055, 0.00562)
ka,2 min−1 ka,2 ∼ N(0.0683, 0.05072)
ka,3 min−1 ka,3 ∼ N(0.0304, 0.02352)
SI,1 min−1/(mU/L) SI,1 ∼ N(51.2, 32.092)
SI,2 min−1/(mU/L) SI,2 ∼ N(8.2, 7.842)
SI,3 L/mU SI,3 ∼ N(520, 306.22)
ke min−1 ke ∼ N(0.14, 0.0352)
VI L/kg VI ∼ N(0.12, 0.0122)
VG L/kg exp(VG) ∼ N(1.16, 0.232)
τI min 1

τI
∼ N(0.018, 0.00452)

τG min 1
ln(τG) ∼ N(−3.689, 0.252)

Ag Unitless Ag ∼ U(0.7, 1.2)
BW kg BW ∼ U(65, 95)

2.4.1 Simulation of large populations of people with type 1
diabetes

In this thesis, we can use the parameter distribution presented in Table 2.1
to simulate a cohort of people with type 1 diabetes. We do it by generating
a certain number of realizations of the parameter distribution. We limit
ourselves to 100 patients in this work, but it is possible to generate a larger
population.

Nevertheless, the parameter distribution presented in Table 2.1 does not
include the parameter covariance. Also, some of the values are clearly not
statistically significant as they are of the same order of magnitude as their
standard deviation. In order to get a representative population of people
with type 1 diabetes, we exclude a patient if
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2.5. CGM Model

• One of their parameters is negative.

• Their insulin basal rate is below 0.35 U/hr.

2.5 CGM Model

In addition, we use a CGM for glucose feedback in our controller setup. For
the numerical simulations, we generate noisy CGM data based on the model
and the parameters determined by [56]. This model consists of two parts.
The first part describes the glucose transport from blood to interstitial
tissues, which is

dGsub
dt

=
1

τsub
(G(t)−Gsub(t)) (2.14)

Gsub(t) is the subcutaneous glucose and G(t) is the blood glucose. τsub is the
time constant associated to glucose transport from blood to subcutaneous
tissues.

The second part models non-Gaussian sensor noise. It is given by

{
e1 = v1

ek = 0.7(ek−1 + vn)
(2.15)

vk ∼ Niid(0, 1) (2.16)

ηk = ξ + λ sinh

(
ek − γ
δ

)
(2.17)

Fig. 2.4 provides an example of a CGM noise sequence ηk.

The glucose value returned by the CGM is

GCGM (tk) = Gsub(tk) + ηk (2.18)
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2. The Hovorka Model for People with Type 1 Diabetes

Table 2.2: Parameters for the CGM model [56].

Parameter Value

τsub 15 min
λ 15.96
ξ -5.471
δ 1.6898
γ -0.5444
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Figure 2.4: Example of a CGM noise realization.

2.6 Summary

In this chapter, we have presented the modified Hovorka model that we
will use for all our simulations. This model includes a description of the
glucose-insulin dynamics, a model for sc. insulin absorption, a model for
meal absorption and a model for CGM glucose measurements. We use the
parameter distribution to generate a representative population of people
with type 1 diabetes.
However, the main drawback of this model is its non-identifiability.
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CHAPTER 3
Nonlinear Model Predictive

Control for Glucose
Regulation in People with

Type 1 Diabetes

In this chapter, we apply a nonlinear model predictive control (NMPC)
strategy to people with type 1 diabetes. The optimal control problem
(OCP) is solved using a multiple-shooting based algorithm described in [57–
59]. We use an explicit Runge-Kutta method (DOPRI45) with an adaptive
stepsize for numerical integration and sensitivity computation. The OCP
is solved using a Quasi-Newton sequential quadratic programming (SQP)
algorithm with line search and a BFGS update for the Hessian of the La-
grangian. We simulates the case where meals are announced in advance,
and the case where meals are announced at mealtimes. We also apply a
Continuous-Discrete Extended Kalman Filter (CDEKF) in order to sim-
ulate cases where the meal size is uncertain, or even unannounced. The
developed framework is used to compare the glucose and insulin profiles for
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NMPC Patient

Extended
Kalman Filterx̂k∣k

u(t )

d (t)

r (t)
G (t)

Figure 3.1: The general controller setup.

a pump-based and a pen-based insulin therapy, and is illustrated in Fig.
3.1.
Paper A and Paper B discuss the optimal insulin administration profiles.
Paper C discusses the benefits of faster insulin on blood glucose regulation.
In Paper D, we present and test the CDEKF for uncertain meal sizes.

3.1 Problem formulation

We discuss here the optimal control problem used to determine the optimal
insulin injection profiles for people with type 1 diabetes. In this chapter,
we use the constrained continuous-time Bolza problem

min
[x(t),u(t)]

tf
t0

φ =

∫ tf

t0

g(x(t), u(t))dt+ h(x(tf )) (3.1a)

s.t. x(t0) = x0 (3.1b)

ẋ(t) = f(x(t), u(t), d(t)) t ∈ [t0, tf ] (3.1c)

umin ≤ u(t) ≤ umax t ∈ [t0, tf ] (3.1d)

to compute the optimal insulin administration. x(t) ∈ Rnx is the state
vector, u(t) ∈ Rnu is the manipulated inputs, and d(t) ∈ Rnd are known
disturbances. ẋ(t) = f(x(t), u(t), d(t)) represents the model equations. The
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3.1. Problem formulation

initial time, t0, and the final time, tf , are specified parameters. The initial
state, x0, is a known parameter in (3.1). The inputs are bound constrained
and must be in the interval u(t) ∈ [umin, umax].
The objective function is stated generally with a stage cost term, g(x(t), u(t)),
and a cost-to-go term, h(x(tf )). The numerical algorithms for the problem
are derived using this general structure of the objective function.
In the insulin administration problem, the stage cost term is a penalty func-
tion, the cost-to-go term is zero, and the model equations are represented
by the Hovorka model described in Chapter 2. u(t) represents the insulin
infusion rate at time t and d(t) represents the carbohydrates (CHO) intake
rate at time t. Given an initial state, x0, and a CHO intake rate profile,
[d(t)]

tf
t0

, the continuous-time Bolza problem (3.1) computes the optimal in-

sulin injection rate profile, [u(t)]
tf
t0

, as well as the optimal state trajectory,

[x(t)]
tf
t0

.

3.1.1 Choice of the cost function

The objective of the insulin administration is to mitigate glucose excur-
sions caused by meals and variations in endogenous glucose production and
utilization. We use an asymmetric penalty function defined as

g(x(t), u(t)) =
κ1

2
|max{0, G(t)− Ḡ}|2 +

κ2

2
|max{0, Ḡ−G(t)}|2

+
κ3

2
|max {0, G(t)−GU}|2 +

κ4

2
|max {0, GL −G(t)}|2

(3.2)

G(t) is the blood glucose concentration, Ḡ = 5 mmol/L is the target value
for the blood glucose concentration, GL = 4 mmol/L is a lower acceptable
limit on the glucose concentration, and GU = 8 mmol/L is an upper accept-
able limit on the blood glucose concentration. The weights κ1-κ4 are used
to balance the desirability of different deviations from the target. As hy-
poglycemia is considered a more acute threat than hyperglycemia, κ1 < κ2

and κ3 < κ4. The cost function used in this Chapter is depicted in Fig.
3.2.
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Figure 3.2: The cost function used to penalize glucose deviations from the
target.

3.1.2 Discrete-time approximation

The continuous-time bound constrained Bolza problem (3.1) is approx-
imated by a numerical tractable discrete-time bound constrained Bolza
problem using the zero-order-hold input parametrisation of the manipu-
lated variables, u(t), as well as the known disturbance variables, d(t). We
divide the time interval, [t0, tf ], into N equidistant intervals each of length
Ts. Let N = {0, 1, ..., N − 1} and tk = t0 + kTs for k ∈ N . The zero-order-
hold restriction on the input variables, u(t) and d(t), imply

u(t) = uk tk ≤ t < tk+1 k ∈ N (3.3a)

d(t) = dk tk ≤ t < tk+1 k ∈ N (3.3b)
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3.2. Numerical Optimisation Algorithm

Using this zero-order-hold restriction on the inputs, the bound constrained
continuous-time Bolza problem may be expressed as

min
{xk+1,uk}N−1

k=0

φ =
N−1∑

k=0

Gk(xk, uk, dk) + h(xN ) (3.4a)

s.t. bk = Fk(xk, uk, dk)− xk+1 = 0 k ∈ N (3.4b)

umin ≤ uk ≤ umax k ∈ N (3.4c)

The discrete-time state transition function is

Fk(xk, uk, dk) = {x(tk+1) : ẋ(t) = f(x(t), uk, dk), x(tk) = xk} (3.5)

and the discrete time stage cost is

Gk(xk, uk, dk) = {
∫ tk+1

tk

g(x(t), uk)dt :

ẋ(t) = f(x(t), uk, dk), x(tk) = xk}
(3.6)

3.2 Numerical Optimisation Algorithm

In this section, we develop a multiple-shooting based SQP algorithm for
the numerical solution of (3.1). The SQP algorithm is based on line search.
The structure of the quadratic sub-problems are utilised and they are solved
by a primal-dual interior-point algorithm using Riccati iterations as in [60,
61]. The DOPRI54 scheme is used for numerical solution of the differential
equation model and for computation of the sensitivities [62].

3.2.1 SQP algorithm

Define the parameter vector, p, as

p =
[
u′0 x′1 u′1 x′2 . . . x′N−1 u′N−1 x′N

]′
, (3.7)
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and the disturbance vector, d =
[
d′0 d′1 . . . d′N−1

]′
, such that the dis-

crete time dynamics may be represented by

b(p) = b(p;x0, d) =




F0(x0, u0, d0)− x1

F1(x1, u1, d1)− x2
...

FN−1(xN−1, uN−1, dN−1)− xN


 (3.8)

and the objective function may be denoted

φ(p) = φ(p;x0, d) =
N−1∑

k=0

Gk(xk, uk,d ) + h(xN ) (3.9)

Let c(p) denote the bound constraints, i.e.

c(p) =




u0 − umin

u1 − umin
...

uN−1 − umin

umax − u0

umax − u1
...

umax − uN−1




. (3.10)

Then the bound constrained discrete-time Bolza problem may be expressed
as a constrained optimisation problem in standard form

min
p

φ = φ(p) (3.11a)

s.t. b(p) = 0 (3.11b)

c(p) ≥ 0 (3.11c)

The concise formulation (3.11) is useful for presentation of the numerical
optimisation algorithm used for solving the bound constrained continuous-
time Bolza problem (3.1).
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Algorithm 1 SQP Algorithm for (3.11)

Require: Initial guess: (p0, y0, z0) with z0 ≥ 0.
Compute: φ(p0), ∇pφ(p0), b(p0), ∇pb(p0), c(p0), ∇pc(p0)
Set λ = 0, µ = 0, W 0 = I
while NOT stop do

Compute (∆pk, ỹk+1, z̃k+1) by solution of:

min
∆p

1

2
∆p′W k∆p+∇pφ′(pk)∆p (3.12a)

s.t.
[
∇pb(pk)

]′
∆p = −b(pk) (3.12b)

[
∇pc(pk)

]′
∆p ≥ −c(pk) (3.12c)

Compute ∆yk = ỹk+1 − yk and ∆zk = z̃k+1 − zk
Update the penalty parameter:
µ← max{|z|, 1

2(µ+ |z|)} and λ← max{|y|, 1
2(λ+ |y|)}

Compute α using soft line search and Powell’s `1 merit function (3.15).

pk+1 = pk + α∆pk, yk+1 = yk + α∆yk, zk+1 = zk + α∆zk

Compute φ(pk+1),∇pφ(pk+1), c(pk+1), ∇pc(pk+1), b(pk+1) and
∇pb(pk+1)
Compute W k+1 by Powell’s modified BFGS update. k ← k + 1.

end while

The Lagrangian of (3.11) is

L(p, y, z) = φ(p)− y′b(p)− z′c(p) (3.13)
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The first order KKT conditions

∇pL(p, y, z) = ∇pφ(p)−∇pb(p)y −∇pc(p)z = 0 (3.14a)

b(p) = 0 (3.14b)

c(p) ≥ 0 (3.14c)

z ≥ 0 (3.14d)

ci(p) = 0 ∨ zi = 0 ∀i (3.14e)

are used to test convergence of the SQP algorithm.
The steps for solution of (3.11) by an SQP algorithm with line search are
listed in Algorithm 1.

3.2.2 Line search algorithm

The line search is based on Powell’s `1 penalty function

P (p) = φ(p) + λ′|b(p)|+ µ′|min{0, c(p)}| (3.15)

and the Armijo sufficient decrease condition. The penalty vectors, λ and µ,
are selected such that they are numerically larger than the corresponding
Lagrange multipliers, i.e. λ ≥ |y| and µ ≥ z where y is the Lagrange multi-
pliers associated with (3.11b) and z is the Lagrange multipliers associated
with (3.11c). The line search algorithm is linted in Algorithm 2.

3.2.3 Gradient computation

The most time consuming computations in Algorithm 1 are computation of
the objective function φ(p), computation of the derivatives of the objective
function ∇pφ(p), computation of the dynamics b(p), and computation of
the sensitivities, ∇pb(p), associated with the dynamics. b(p) and φ(p) are
computed by evaluation of (3.5) and (3.6), respectively. Consequently

bk = bk(xk, xk+1, uk, dk) = Fk(xk, uk, dk)− xk+1 (3.16a)

∇xkbk = ∇xkFk(xk, uk, dk) = Sxk(tk+1)′ = A′k (3.16b)

∇ukbk = ∇ukFk(xk, uk, dk) = Suk(tk+1)′ = B′k (3.16c)

∇xk+1
bk = −I (3.16d)
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3.2. Numerical Optimisation Algorithm

Algorithm 2 Line Search Algorithm

Require: f(xk), ∇xf(xk),∆xk

Ensure: α
α = 1, i = 1, stop = false
Compute c = φ(0) = f(xk) + µ′|min{0, g(xk)}|
Compute b = φ′(0) = ∇xf(xk)∆xk − µ′|min{0, g(xk)}|
while NOT stop do

Compute xk+1 ← xk + α∆xk

Evaluatef(xk+1) and g(xk+1)
Compute φ(α) = f(xk+1) + µ′|min{0, g(xk+1)}|
if φ(α) ≤ φ(0) + 10−4φ′(0)α (Armijo condition) then

stop=true
else

Compute a = φ(α)−(c+bα)
α2 and αmin = −b

2a

α← min{0.9α,max{αmin, 0.1α}}
end if

end while

where x(tk+1) = F (xk, uk, dk) and

ẋ(t) = f(x(t), uk, dk) (3.17a)

Ṡxk(t) =

(
∂f

∂x
(x(t), uk, dk)

)
Sxk(t) (3.17b)

Ṡuk(t) =

(
∂f

∂x
(x(t), uk, dk)

)
Suk(t) +

(
∂f

∂u
(x(t), uk, dk)

)
(3.17c)
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with the initial conditions x(tk) = xk, Sxk(tk) = I, and Suk(tk) = 0. The
stage cost and the associated derivatives are computed as

Gk = Gk(xk, uk, dk) =

∫ tk+1

tk

g(x(t), uk, dk)dt (3.18a)

qk = ∇xkGk =

∫ tk+1

tk

(
∂g

∂x
(x(t), uk, dk)

)
Sxk(t)dt (3.18b)

rk = ∇ukGk =

∫ tk+1

tk

[(
∂g

∂x
(x(t), uk, dk)

)
Suk(t)

+

(
∂g

∂u
(x(t), uk, dk)

)]
dt (3.18c)

The derivatives ∇xkbk and ∇xkGk are computed for {xk}N−1
k=1 and k ∈ N .

These derivatives are not computed for x0 as x0 /∈ p, i.e. x0 is a fixed
parameter of the optimisation problem but not a decision variable. The
derivatives ∇ukbk and ∇ukGk are computed for k ∈ N . The derivatives
with respect to xN are

∇xN bN−1 = −I (3.19a)

pN = ∇xNφ = ∇xNh(xN ) (3.19b)

Therefore, the gradients of the equality constraints bk with respect to the
parameter vector p can be written as

∇pb =




B0

−I A1

B1

−I A2

B2

−I
. . .

AN−1

BN−1

−I




(3.20)
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Table 3.1: Butcher tableau of an explicit Runge Kutta (ERK) scheme.

c1 0 . . . . . . 0

c2 a2,1
. . .

...
...

...
. . .

. . .
...

cs as,1 . . . as,s−1 0

x b1 b2 . . . bs

x̂ b̂1 b̂2 . . . b̂s

e d1 d2 . . . ds

3.2.4 Choice of the Runge-Kutta scheme

In evaluation of the functions and derivatives needed in the SQP algorithm,
i.e. evaluation of φ(p), ∇pφ(p), b(p), and ∇pb(p), the major computational
task is solution of the differential equations (3.17) and evaluation of the
associated quadrature equations (3.18). These differential equations can be
formulated as an Initial Value Problem (IVP)

ẋ(t) = f(x, t) x(t0) = x0 (3.21)

The Hovorka model is a non-stiff system of differential equations. Therefore,
we use an embedded explicit scheme for solution of the differential equations
(3.17) and integration of the quadrature equations (3.18). The Butcher
tableau of an explicit Runge Kutta (ERK) scheme is illustrated in Table
3.1 [63].
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The main numerical steps in DOPRI54 for solution of (3.21) are

Ti = tn + cihn i = 1, 2, ..., s (3.22a)

Xi = xn + hn

s−1∑

j=1

ai,jf(Tj , Xj) i = 1, 2, ..., s (3.22b)

xn+1 = xn + hn

s−1∑

j=1

bjf(Tj , Xj) (3.22c)

en+1 = hn

s−1∑

j=1

djf(Tj , Xj) (3.22d)

hn is the step size. The step size is chosen adaptively using a PI-controller
such that the resulting error estimate, en+1, meets the specifications [64].
The coefficients ai,j , bj , cj and dj for DOPRI54 are given by the Butcher
tableau in Table 3.2 and in [62].
A special DOPRI54 method tailored for solution of (3.17)-(3.18) has been
implemented. In this implementation, we re-use the internal stages com-
puted by solution of (3.17) in the evaluation of the quadrature equation
(3.18). The implementation uses an adaptive time step based on PI-control
described in [64].
In order to avoid unnecessary computations when a stepsize is rejected, we
solve the systems of ODEs sequentially. Its implementation is illustrated
in Fig. 3.3.
When p is given as in the multiple shooting algorithm, evaluation of c(p) and
∇pc(p) becomes straightforward. As c(p) represents the bound constraints,
umin ≤ uk ≤ umax for k ∈ N , ∇pc(p) is a constant and the corresponding
constraints in the quadratic program (3.12) become bound constraints as
well.

3.2.5 Structure of the Hessian matrix

The BFGS update of the Hessian matrix usually produces a dense matrix
W k. However, for the multiple shooting algorithm for solution of (3.1),
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Compute x(t
n+1

) + Check vs. tolerance

Compute S
xk

(t
n+1

) + Check vs. tolerance

Compute q
k
(t

n+1
) + Check vs. tolerance

Compute S
uk

(t
n+1

) + Check vs. tolerance

Compute r
k
(t

n+1
) + Check vs. tolerance

Compute g(t
n+1

) + Check vs. tolerance

Update solution

Figure 3.3: Flowchart of the Runge-Kutta method.

the Hessian of the Lagrangian ∇2
ppL is a block diagonal matrix. Therefore,

we modify the BFGS update such that it also produces a block diagonal
matrix.
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Table 3.2: Butcher tableau for the DOPRI54 method.

0 0 0 0 0 0 0 0
1
5

1
5 0 0 0 0 0 0

3
10

3
40

9
40 0 0 0 0 0

4
5

44
55

−56
15

32
9 0 0 0 0

8
9

19372
6561

−25360
2187

64448
6561

−212
729 0 0 0

1 9017
3168

−355
33

46732
5247

49
176

−5103
18656 0 0

1 35
384 0 500

1113
125
192

−2187
6784

11
84 0

x 5179
57600 0 7571

16695
393
640

−92097
339200

187
2100

1
40

x̂ 35
384 0 500

1113
125
192

−2187
6784

11
84 0

e 71
57600 0 −71

16695
71

1920
−17253
339200

22
525

−1
40

The Lagrangian of (3.4) may be expressed as

L =
N−1∑

k=0

Gk(xk, uk, dk) + h(xN )

−
N−1∑

k=0

y′k+1(Fk(xk, uk, dk)− xk+1)

−
N−1∑

k=0

z′L,k (uk − umin) + z′U,k (umax − uk)

= H0 − z′L,0(u0 − umin)− z′U,0(umax − u0)

+
N−1∑

k=1

Hk + y′kxk − z′L,k(uk − umin)− z′U,k(umax − uk)

+ hN (xN ) + y′NxN

(3.23)
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in which the Hamiltonians are

Hk = Hk(xk, uk, dk, yk+1)

= Gk(xk, uk, dk)− y′k+1Fk(xk, uk, dk) k ∈ N (3.24)

Notice

∇xkHk(xk, uk, dk, yk+1) = qk −A′kyk+1 k ∈ N \ {0} (3.25a)

∇ukHk(xk, uk, dk, yk+1) = rk −B′kyk+1 k ∈ N (3.25b)

and that the Lagrangian, L, is partially separable such that

∇2
ppL =




R0

Q1 M1

M ′1 R1

. . .

QN−1 MN−1

M ′N−1 RN−1

PN




(3.26)

The block-matrices in ∇2
ppL are symmetric and given by

R0 = ∇2
u0,u0H0 ≈W0 (3.27a)

[
Qk Mk

M ′k Rk

]
=

[∇2
xk,xk
Hk ∇2

xk,uk
Hk

∇2
uk,xk
Hk ∇2

uk,uk
Hk

]
≈Wk (3.27b)

PN = ∇2
xN ,xN

hN ≈WN (3.27c)

for k = 1, 2, . . . , N − 1. Algorithm 3 describes a modified BFGS algorithm
used to compute the approximate block matrices, {Wk}Nk=0. The algorithm
ensures that all these block matrices are symmetric positive definite. In
implementations, we enforce symmetry explicitly by Wk ← 0.5(Wk +W ′k).

3.2.6 Interior point algorithm

In this Chapter we use a structured primal-dual interior point algorithm
for the solution of the constrained QP (3.12). We implement the centering
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Algorithm 3 Block Structured Modified BFGS Update

Compute (k = 1, 2, . . . , N − 1)

q0 = uj+1
0 − uj0

s0 = ∇u0H0(x0, u
j+1
0 , d0, y1)−∇u0H0(x0, u

j+1
0 , d0, y1)

qk =

[
xj+1
k − xjk
uj+1
k − ujk

]

sk =

[
∇xkHk(xj+1

k , uj+1
k , dk, yk+1)−∇xkHk(xjk, u

j
k, dk, yk+1)

∇ukHk(xj+1
k , uj+1

k , dk, yk+1)−∇ukHk(xjk, u
j
k, dk, yk+1)

]

qN = xj+1
N − xjN

sN = ∇xNh(xj+1
N )−∇xNh(xjN )

for k = 0, 1, ..., N do
Compute

θk =





1 q′ks
′
k ≥ 0.2q′kWkqk

0.8q′kWkqk
q′kWkqk − q′ksk

q′ks
′
k < 0.2q′kWkqk

rk = θksk + (1− θk)Wkqk

Wk ←




Wk ‖sk‖2 ≤ εs
Wk −

Wkqkq
′
kWk

q′kWkqk
+
rkr
′
k

q′krk
‖sk‖2 > εs

end for
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step correction proposed by Mehrotra [65]. We use the Riccati recusion pre-
sented in [60, 61] and [66] to factorize the KKT matrix. This factorization
can be used to compute the optimal variation in the manipulated variables
∆uk, the optimal change in states variables ∆xk+1, and the Lagrange mul-
tipliers yk−1.

We define the matrices C = ∇pg(pk) and A = ∇ph(pk), and the vectors
b = −h(pk) and d = −g(pk). The QP in the local SQP algorithm (3.12)
can be rewritten as

min
∆p

1

2
∆p′G∆p+ g′∆p

s.t. A′∆p = b

C ′∆p ≥ d

(3.28)

The Lagrangian for (3.28) is

L(∆p, ỹ, z) =
1

2
∆p′G∆p+ g′∆p− ỹ′(A′∆p− b)− z′(C ′∆p− d) (3.29)

and the optimality conditions (or first order KKT conditions) are

∇∆pL(∆p, ỹ, z) = G∆p+ g −Aỹ − Cz = 0

∇yL(∆p, ỹ, z) = b−A′∆p = 0

∇zL(∆p, ỹ, z) = −(C ′∆p− d) ≤ 0

z ≥ 0

(C ′∆p− d)izi = 0, i = 1, ...,mc

(3.30)

By introducing the slack variables s = C ′∆p − d ≥ 0, which is equivalent
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to s+ d− C ′∆p = 0, the KKT conditions (3.30) become

rL = G∆p+ g − Cỹ = 0 (3.31a)

rA = b−A′∆p = 0 (3.31b)

rC = −C ′∆p+ d+ s = 0 (3.31c)

z ≥ 0 (3.31d)

s ≥ 0 (3.31e)

sizi = 0, i = 1, ...,mc (3.31f)

The equality constraints (3.31a-3.31c, 3.31f) can be solved numerically by
the Newton method. We write these constraints in a vector form




rL = G∆p+ g − Cỹ
rA = b−A′∆p

rC = −C ′∆p+ d+ s
rSZ = SZe


 = 0 (3.32)

S = diag(s), Z = diag(z) and e is the unit vector. The Jacobian of (3.32)
is

J =




G −A −C 0
−A′ 0 0 0
−C ′ 0 0 I

0 0 S Z


 (3.33)

and the next Newton iteration is given by




G −A −C 0
−A′ 0 0 0
−C ′ 0 0 I

0 0 S Z







∆(∆p)
∆ỹ
∆z
∆s


 = −




rL = G∆p+ g − Cỹ
rA = b−A′∆p

rC = −C ′∆p+ d+ s
rSZ = SZe


 (3.34)

However, we need to check that the inequality constraints are satisfied for
each Newton iteration. So, we compute first the search direction for the
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optimization variables ∆p, the Lagrange multipliers ỹ and z and the slack
variables s and we find the biggest number α ∈ [0, 1] such that the new
iteration satisfies s ≥ 0 and z ≥ 0, where the new iteration is given by




∆p
ỹ
z
s


←




∆p
ỹ
z
s


+ α




∆(∆p)
∆ỹ
∆z
∆s




This algorithm defines the affine step



∆∆paff

∆ỹaff

∆zaff

∆saff


 (3.35)

However, the affine search often fails to find the optimal solution, since it
does not prevent the components of (s, z) from moving too close to the
boundary of the non-negative orthant.
The first improvement we can make is to correct the affine step. From the
Newton iteration (3.34) and for the full affine step (i.e. when α = 1), we ob-
tain that for the next iteration, the i-th component in the complementarity
condition is

(saffi + ∆saffi )(zaffi + ∆zaffi ) = saffi zaffi + saffi ∆zaffi + zaffi ∆saffi + ∆saffi ∆zaffi

= ∆saffi ∆zaffi

(3.36)

since saffi ∆zaffi + zaffi ∆saffi = −saffi zaffi . However, we want to have

(saffi + ∆saffi )(zaffi + ∆zaffi ) = 0

So, we replace the last system of equations in the affine step by adding the
corrector term −∆S∆Ze and thus we obtain the modified linear system




G −A −C 0
−A′ 0 0 0
−C ′ 0 0 I

0 0 S Z







∆∆pcor

∆ỹcor

∆zcor

∆scor


 =




0
0
0

−∆S∆Ze


 (3.37)
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The second improvement for the interior point algorithm is suggested by
Mehrotra [65]. Mehrotra adds a centering step




∆∆pcen

∆ỹcen

∆zcen

∆scen


 (3.38)

The centering step is computed by solving the system




G −A −C 0
−A′ 0 0 0
−C ′ 0 0 I

0 0 S Z







∆∆pcen

∆ỹcen

∆zcen

∆scen


 = −




0
0
0
σµe


 (3.39)

µ is the duality measure given by

µ =
z′s
mc

(3.40)

σ is given by

σ =

(
µaff

µ

)3

(3.41)

where µaff is the duality gap for the affine step

(z + αaff∆zaff )′(s+ αaff∆saff )

mc
(3.42)

We can use the affine step combined with the corrected and the centering
steps to implement the primal-dual interior point algorithm. The overall
idea is to compute first the affine step and the coefficient αaff by using the
Newton iteration (3.34), to use this affine step to compute the corrector
and the centering steps, and then to solve again the system of equations
using a corrected term for rSZ in (3.34) which includes the corrector step

44



3.2. Numerical Optimisation Algorithm

(3.37) and the centering step (3.39). This corrected step is given by solving
the linear system




G −A −C 0
−A′ 0 0 0
−C ′ 0 0 I

0 0 S Z







∆∆p
∆ỹ
∆z
∆s


 = −




rL = G∆p+ g − Cỹ
rA = −A′∆p+ b

rC = −C ′∆p+ d+ s
SZe+ ∆S∆Ze− σµe


 (3.43)

This algorithm is presented in Algorithm 4.

The stopping criteria is given by the KKT-conditions (3.31), i.e.





‖rL‖ ≤ εL
‖rA‖ ≤ εL
‖rC‖ ≤ εC
‖rSZ‖ ≤ εSZ

(3.44)

In Algorithm 4, the main computational task is to solve the linear systems
of equations. The linear system of equations we have to solve is in the form
(equations 3.34 and 3.43)




G −A −C 0
−A′ 0 0 0
−C ′ 0 0 I

0 0 S Z







∆p
∆ỹ
∆z
∆s


 = −




rL
rA
rC
r̄SZ


 (3.45)

r̄SZ is either SZe for the affine step, or SZe + ∆S∆Ze − σµe for the
corrected step. The matrices S and Z are positive definite (and therefore
invertible) since they are diagonal with positive terms. The Hessian matrix
G is also positive definite, and therefore invertible.

The linear system (3.45) is equivalent to the augmented equation

[
G+ C(S−1Z)C ′ −A

−A′ 0

] [
∆∆p
∆ỹ

]
=

[
−rL + C(S−1Z)

(
rC − Z−1r̄SZ

)

−rA

]

(3.46)
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Algorithm 4 Primal-Dual interior point algorithm

while not stop do
Solve (3.34)




G −A −C 0
−A′ 0 0 0
−C ′ 0 0 I

0 0 S Z







∆∆paff

∆ỹaff

∆zaff

∆saff


 = −




rL = G∆p+ g − Cỹ
rA = −A′∆p+ b

rC = −C ′∆p+ d+ s
rSZ = SZe




Compute the largest αaff such that: z + αaff∆zaff ≥ 0 and s +
αaff∆saff ≥ 0
Compute the affine duality gap: µaff = (z + αaff∆zaff )′(z +
αaff∆zaff )/mc

Compute the centering parameter: σ = (µaff/µ)3 with µ = z′s/mc

Solve the modified Newton iteration



G −A −C 0
−A′ 0 0 0
−C ′ 0 0 I

0 0 S Z







∆∆p
∆ỹ
∆z
∆s


 = −




rL = G∆p+ g − Cỹ
rA = −A′∆p+ b

rC = −C ′∆p+ d+ s
SZe+ ∆S∆Ze− σµe




Compute the largest α such that: z + α∆z ≥ 0 and s+ α∆s ≥ 0
η = 0.995. Update the solution:




∆p
ỹ
z
s


←




∆p+ η∆∆p
ỹ + η∆ỹ
z + η∆z
s+ η∆s




end while

combined with the equations

∆z = −
(
S−1Z

)
C ′∆∆p+

(
S−1Z

) (
rC − Z−1r̄SZ

)
(3.47a)

∆s = −Z−1r̄SZ −−Z−1S∆z (3.47b)
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Thus, we can compute ∆∆p and ∆ỹ by solving the QP

min
∆∆p

1

2
∆∆p′

[
G+ C(S−1Z)C ′

]
∆∆p+

[
rL − C(S−1Z)

(
rC − Z−1r̄SZ

)]
∆∆p

s.t. A′∆∆p = rA
(3.48)

and compute ∆z and ∆s

∆z = −(S−1Z)C ′∆∆p+ (S−1Z)(rC − Z−1r̄SZ) (3.49a)

∆s = −Z−1r̄SZ − Z−1S∆z (3.49b)

In the multiple shooting, the KKT-matrix
[
G+ C(S−1Z)C ′ −A

−A′ 0

]
(3.50)

has a special structure. This structure can be used to factorize it efficiently,
and is described in [60, 61] and [66]. The factorization algorithm is sum-
marized in Algorithm 5.

3.3 Continuous-discrete Extended Kalman Filter
(CDEKF)

In this section, we introduce the extended Kalman filter (EKF) for continuous-
discrete stochastic nonlinear systems [67–69]. The EKF is used to estimate
the state of the system given a stochastic continuous-time model and mea-
surements at discrete times, i.e.

dx(t) = f(t, x(t), u(t))dt+ σdω(t) (3.51a)

yk = h(tk, x(tk)) + vk (3.51b)

in which {ω(t), t ≥ 0} is a standard Wiener process, i.e. a process with
covariance Idt (intensity I). The matrix σ is time-invariant. The mea-
surement noise vk is normally distributed, vk ∼ Niid(0, Rk). We assume
that the initial state x0 is normally distributed with a known mean and
covariance, x0 ∼ N(x̂0|−1, P0|−1).
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Algorithm 5 KKT matrix factorization

for k = N − 1, N − 2, ..., 1 do
Compute

Re,k =Rk +BkPk+1B
′
k

Kk =−R−1
e,k(M

′
k +BkPk+1A

′
k)

ak =−R−1
e,k(rk +Bk(Pk+1bk + pk+1))

Pk =Qk +AkPk+1A
′
k −K ′kRe,kKk

Pk ←
1

2

(
Pk + P ′k

)

pk =qk +Ak(Pk+1bk + pk+1) +K ′k(rk +Bk(Pk+1bk + pk+1))

end for
Compute a0 = −(R0 +B0P1B

′
0)−1(r0 +B0(P1b0 + p1))

for k = 1, ..., N − 1 do
Compute ∆u0 = a0, ∆x1 = B′0∆u0 + b0
and

∆uk = Kk∆xk + ak

∆xk+1 = A′k∆xk +B′k∆uk + bk

end for
Compute the dual solution ỹN−1 = −PN∆xN − pN
for k = N − 1, ..., 1 do

Compute
ỹk−1 = Akỹk −Qk∆xk −Mk∆uk − qk

end for
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3.3.1 Filtering

Given an observation, yk, at time tk, the filtering in the EKF describes the
steps used to compute the filtered state x̂k|k and the corresponding covari-
ance Pk|k. The filter step assumes availability of the one-step predicitons,
x̂k|k−1 and Pk|k−1.
The filter gain is computed by

Ck =
∂h

∂x
(tk, x̂k|k−1) (3.52a)

Rk|k−1 = CkPk|k−1C
′
k +Rk (3.52b)

Kk = Pk|k−1C
′
k

(
Rk|k−1

)−1
(3.52c)

and the innovation is obtained by

ek = yk − ŷk|k−1 = yk − h(tk, x̂k|k−1) (3.53)

The filtered state x̂k|k and its covariance Pk|k are given by

x̂k|k = x̂k|k−1 +Kkek (3.54a)

Pk|k = Pk|k−1 −KkRk|k−1K
′
k (3.54b)

3.3.2 Prediction

Given the observations Yk = {y0, y1, . . . , yk}, the predicted state vector
x̂k+1|k = x̂k(tk+1) and its associated covariance Pk+1|k = Pk(tk+1) are com-
puted as the solutions to the system of ordinary differential equations ([69])

dx̂k(t)

dt
= f(t, x̂k(t), uk) (3.55a)

dPk(t)

dt
= Ak(t)Pk(t) + Pk(t)Ak(t)

′ + σσ′ (3.55b)

with

Ak(t) = A(t, x̂k(t), uk) =
∂f

∂x
(t, x̂k(t), uk) (3.56)
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and the initial conditions

x̂k(tk) = x̂k|k (3.57a)

Pk(tk) = Pk|k (3.57b)

The numerical integration of (3.55) is computed using the explicit DOPRI54
method described in Section 3.2.4.

3.4 Application to People With Type 1 Diabetes

In this section, we use the Hovorka model described in Chapter 2 and
the implemented multiple shooting algorithm presented in section 3.2 to
compute optimal insulin profiles for people with type 1 diabetes.
We use umin = 0 and a large umax such that the upper bound is never
active. We do the optimisation in a 24 hour window, i.e. t0 = 0 min and
tf = 24 · 60 min, using a sampling time of Ts = 5 min. In the scenario
considered, the simulated 70 kg subject has a 62 g CHO meal at 6:00, a 55
g CHO meal at 12:00, and a 50 g CHO meal at 18:00. To ensure an optimal
blood glucose profile, a prediction horizon of six hours, i.e., N = 6 ·12 = 72
samples, is employed in the receding horizon strategy.
In Section 3.4.1, we assume that the full state information is available at
any time. In Section 3.4.2, we use the CDEKF presented in Section 3.3 to
estimate the states of the system.

3.4.1 Optimal insulin administration

Fig. 3.4 illustrates an optimal insulin administration profile for the de-
scribed scenario in the case where the controller knows the size and time of
all meals in advance. Knowing the meal times and sizes allows the controller
to deliver anticipatory insulin to pre-empt postprandial hyperglycaemia.
However, the assumption that the patient would know in advance - and
with accuracy - the meal times and sizes is not practical. Safety consider-
ations would preclude significant amounts of insulin from being delivered
prior to mealtime (as in this ideal scenario).
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Figure 3.4: Optimal insulin administration for the case with meal announce-
ment in advance of the meal. Most insulin is taken before the meals.

Fig. 3.5 shows the simulation results for the case in which the meals are
announced to the MPC only at mealtime. Thus, the controller can deliver
no anticipatory insulin prior to meals. The limitations for this case force
the subject into (mild) hyperglycaemia, but hypoglycaemia is avoided. The
insulin delivery profile for this case looks quite similar to bolus delivery of
insulin by a pen; most of the meal-related insulin is delivered in bolus form
in the few samples after the meals are taken (and announced). Simulated
optimal bolus treatment with a pen in Fig. 3.6 provides glucose profiles
comparable to the glucose profile in Fig. 3.5.

These results demonstrate that for cases for which meal information is
unknown until mealtime, reasonably good control can still be obtained.
Perhaps more importantly, the bolus like nature of the insulin profile in
this case suggests that a pen-based system may be able to achieve control
comparable to that of a pump.
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Figure 3.5: Optimal insulin administration with meal announcement at
meal time. Most insulin is taken in bolus like form at meal time.

Figure 3.6: Optimal insulin administration with meal announcement at
meal time.
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3.4.2 Meal estimation

In real life, the mealtime and exact meal size cannot be exactly known.
Here, we apply the CDEKF in order to estimate the states of the Hovorka
model at every time step (i.e. every 5 minutes). Fig. 3.7(a) depicts the
insulin and glucose profiles in the case where the meal is not announced.
Fig. 3.7(b) depicts the actual and reconstructed profiles for the two com-
partments D1 and D2 in the CHO absorption subsystem. Although the
peaks for the the first compartment D1 are not correctly reconstructed by
the continuous-discrete extended Kalman filter, it is possible to reconstruct
the profile for the second compartment D2.

3.4.3 Benefits of faster insulin on postprandial blood
glucose

Fig. 3.8 shows the maximum blood glucose versus the insulin time constant
τs for small-sized meals (25 g CHO), normal-sized meals (50 g CHO) and
large-sized meals (100 g CHO) if the meal is announced only at mealtime.
A faster insulin reduces the peak of glucose. For normal-sized meals, having
an insulin absorption time constant at least equal to the glucose absorption
time constant (i.e. τs = 40 minutes) avoids hyperglycemic events.

3.5 Summary

In this chapter, we have applied NMPC to the control of blood glucose
for people with type 1 diabetes. We have computed optimal insulin and
glucose profiles in the cases where meals are announced beforehand, where
meal are announced at mealtimes, and where meals are not announced at
all. In the case where the meal size is announced at mealtime, the insulin
profile is similar to a bolus-like profile.
Application of NMPC to real patients would require a sufficient amount
of data and an identifiable model, such as the Medtronic Virtual Patient
(MVP) model. In addition, we need a simpler control strategy to be used
in a real clinic.
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(a) Optimal insulin administration and glucose profile.
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(b) Actual (dash-dotted line) and reconstructed (solid line) profiles for the two
compartments in the CHO absorption subsystem.

Figure 3.7: Case in which the meals are not announced.
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CHAPTER 4
Model Predictive Control

Algorithms for People with
Type 1 Diabetes

In this chapter, we develop linear model predictive controllers based on
models of the ARMAX-type. The deterministic part of the predictive model
used by the controller is selected from already known clinical parameters.
The parameters are the insulin sensitivity factor (ISF), the insulin action
time, and the basal insulin. The stochastic part of the model is determined
in different ways from data and cases with and without integrators are
considered. All controllers are tested and compared for a cohort of 100
virtual patients. The controller based on the model with the integrator, i.e.
the ARIMAX model, is also tested on 12 real patients at Hvidovre Hospital.
Paper H presents the clinical protocol and results from the pilot in vivo
studies. A detailed description of the controller and in silico simulations
are presented in Paper I and Paper J. In Paper J we compare 3 different
control strategies on overnight simulations. The glucose and insulin profiles
of the in vivo clinical studies are presented in Appendix A.
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4.1 Methods and material

This section describes the clinical protocol and the developed graphical user
interface for the clinical studies. The aim of these studies is to demonstrate
the ability of the controller to stabilize blood glucose in the euglycemic
range during the study nights.

4.1.1 Clinical protocol

The patient is equipped with 2 Dexcom Seven Plus CGMs 2-4 days prior to
the study and a Medtronic Paradigm Veo insulin pump. The CGMs provide
glucose measurements every 5 minutes. The clinician decides on the sensor
used by the controller, based on the accuracy of the sensor during the days
before the study. The other CGM can be used as a backup device. Insulin is
administrated to the patient through small discrete insulin injections (also
called microboluses) every 15 minutes.

The pump used for the clinical studies has discrete increments of 0.025U,
and a minimum continuous insulin injection (or basal rate) of 0.025 U/hr.
The controller handles these restrictions by using hard constraints on the
minimal insulin infusion rate and by rounding the suggested microbolus to
the nearest 0.025U.

In addition, blood samples are taken at least every 30 minutes in order to
measure the blood glucose. In case of a prolonged period of low blood glu-
cose concentration, blood samples are taken and analyzed every 15 minutes.
The blood samples are analyzed for blood glucose concentration immedi-
ately by Hemocue. These blood glucose measurements by Hemocue are
included in the clinical protocol to ensure the patients’ safety. These mea-
surements provides reliable glucose measurements and enable the medical
doctor to intervene and give IV glucose in case of critical low blood glucose
concentrations. After the study, YSI measurements have been taken. YSI is
the golden standard for blood glucose measurements. Neither the Hemocue
blood glucose concentrations nor the YSI blood glucose concentrations are
known to the controller. The controller receives feedback from one of the
CGMs only.
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The clinician has the authority to prevent severe hypoglycemia by injection
of intravenous glucose. Such a decision is based on the glucose history.

The protocol is the following

• The patient arrives at the clinic at approximately 17.00. The insulin
pump delivers the patient’s usual basal rate. The clinician chooses
the CGM that will be used for the study.

• At 18:00 an evening meal (white rice, curry sauce, boiled chicken
breast, green salad) is served. The size of the meal is determined by
the weight of the patient (1 gram carbohydrate/kg BW).

• At 22:00, the basal rate is reduced to its minimum (0.025 U/hr), and
the controller is switched to closed-loop, ie. the insulin infusion rate is
determined by the controller. The CGMs are calibrated using SMBG
(Self Monitoring of Blood Glucose).

• The study ends at 07:00 the following day. The insulin pump delivers
the patient’s usual basal rate again.

4.1.2 Graphical User Interface

Fig 4.1 provides an overview of the graphical user interface developed for
the artificial pancreas. The glucose sensor provides a glucose measurement
every 5 minutes. The glucose measurements are transmitted from the sensor
to the software via a wireless receiver.

The graphical user interface returns a new insulin microbolus suggestion
every 15 minutes. At these times, it also returns the glucose prediction and
insulin prediction profiles. The decision on the insulin microbolus can be
overruled if there is a safety risk for the patient. The exact time before the
next microbolus suggestion is provided by the graphical user interface.

The clinician also has the possibility to add comments if needed. These
comments have no influence on the microboluses computation.

59



4. Model Predictive Control Algorithms for People with
Type 1 Diabetes

Figure 4.1: Graphical User Interface screenshot. The left panel provides the
glucose and insulin history. The middle panel displays the current CGM
value and insulin microbolus and the comments. The right panel indicates
the time before the next microbolus administration, the time before the
next CGM measurement, the duration of closed-loop and the total study
duration. The plot depicts the glucose and insulin profiles (solid lines) and
the predictions for glucose and insulin (dashed lines).

4.2 Modeling of Glucose-Insulin Dynamics

In this section, we derive a prediction model for subcutaneous glucose, y(t).
The model has a deterministic part describing the effect of sc. injected in-
sulin, u(t), and a stochastic part describing the effect of other unknown
factors. This model identification technique turns out to give a good com-
promise between data requirements, performance and robustness of the
resulting controller for the overnight study described in this chapter.
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4.2. Modeling of Glucose-Insulin Dynamics

4.2.1 Choice of the deterministic model

All the physiological models listed in section 1.1.4 and in [48] contain a
large number of parameters, and even the minimal model may be difficult
to identify [70]. To overcome this issue, we use a low-order linear model
to describe the glucose-insulin dynamics. Similar approaches have been
investigated previously. [71] used a third order transfer function with an
integrator, [72] used a third order discrete transfer function model and [73]
applied a first order transfer function with a time delay. In this thesis we
use a continuous-time second order transfer function

G(s) =
Y (s)

U(s)
=

Ku

(τs+ 1)2
(4.1)

to model the effect of sc injected insulin on sc glucose. The gain, Ku, and
the time constant, τ , are computed from known subject-specific parameters;
the insulin action time and the insulin sensitivity factor (ISF).
The insulin action time and the insulin sensitivity factor are related to
the response of blood glucose to an insulin bolus. If we assume that blood
glucose is approximately identical to sc glucose, this is the impulse response
of (4.1). The insulin action time is the time for blood glucose to reach its
minimum. The ISF corresponds to the maximum decrease in blood glucose
per unit of insulin bolus. These parameters are empirically estimated by
the patient and his/her physician. These parameters may vary from day
to day for a given patient but gives an estimate of the effect of insulin on
blood glucose and sc glucose. An illustration of the ISF and the insulin
action time is provided in Fig. 4.2.
Fig 4.3 depicts the impulse response for a virtual patient with type 1 dia-
betes and its second order approximation (4.1). This patient is simulated
using the model developed by [46]. The figure demonstrates that a second
order model provides an acceptable approximation of a patient with type
1 diabetes.
In the temporal domain, the impulse response of (4.1) is described by

y(t) = Ku
t

τ2
exp(−t/τ) (4.2)
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Figure 4.2: Impulse response for the nonlinear Hovorka model. The bolus
size is 0.1U.

The insulin action time corresponds to the time to reach the minimum
blood glucose. Consequently, this insulin action time is equal to τ . We
determine Ku using (4.2) and the fact that the insulin sensitivity factor is
equal to the minimal blood glucose (sc glucose), y(τ) = −ISF , such that

Ku = −τ exp(1)ISF (4.3)

We discretize the transfer function (4.1) in the form

y(t) =
B(q−1)

A(q−1)
u(t) (4.4)

Using a zero-order-hold insulin profile, the continuous-time transfer func-
tion (4.1) may be used to determine the A and B polynomials in the model
(4.4). They are

A(q−1) = 1 + a1q
−1 + a2q

−2 (4.5a)

B(q−1) = b1q
−1 + b2q

−2 (4.5b)
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Figure 4.3: Impulse responses for a second order model and the nonlin-
ear Hovorka model. The bolus size is 0.1U and the parameters for the
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with the coefficients a1, a2, b1 and b2 computed as [74]

a1 = −2 exp(−Ts/τ) (4.6a)

a2 = exp(−2Ts/τ) (4.6b)

b1 = Ku(1− exp(−Ts/τ)(1 + Ts/τ)) (4.6c)

b2 = Ku exp(−Ts/τ)(−1 + exp(−Ts/τ) + Ts/τ) (4.6d)

Ts is the sample time.

4.3 Stochastic Model

We take into account the process and measurement noise by adding a term
describing the effect of unknown factors to the discrete-time model (4.4).
We assume the model describing the glucose-insulin dynamics to be in the

63



4. Model Predictive Control Algorithms for People with
Type 1 Diabetes

form

A(q−1)y(t) = B(q−1)u(t) +
C(q−1)

D(q−1)
ε(t) (4.7)

The model (4.7) has a deterministic part describing the effects of insulin
injections u(t) and a stochastic part. We assume either D(q−1) = 1− q−1,
which turns the model (4.7) into an ARIMAX model or D(q−1) = 1, which
turns the model (4.7) into an ARMAX model.

In this section we propose and discuss three different choices for the stochas-
tic model in (4.7). The two first choices estimate the C(q−1) based on a
previous clinical study, while the last method estimate it recursively using
a Recursive Least Square (RLS) algorithm.

4.3.1 ARIMAX modeling

The stochastic part, C(q−1), of the ARIMAX model

A(q−1)y(t) = B(q−1)u(t) +
C(q−1)

1− q−1
ε(t) (4.8)

is assumed to be a third order polynomial of the form

C(q−1) = 1 + c1q
−1 + c2q

−2 + c3q
−3

= (1− αq−1)(1− β1q
−1)(1− β2q

−1)
(4.9)

α = 0.99 is a fixed parameter. α has been determined based on performance
studies of the resulting MPC. The choice of α is discussed in [75]. β1 and
β2 are determined from clinical data for one real patient (see Paper H and
[76]).

We compute β1 and β2 by estimating the process and measurement noise
characteristics, σ and r, in the following continuous-discrete stochastic lin-
ear model

dx(t) = (Acx(t) +Bcu(t))dt+ σdω(t) (4.10a)

yk = h(tk, x(tk)) + vk (4.10b)
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Ac and Bc are realizations of (4.1). ω(t) is a standard Wiener process.
The matrix σ is time-invariant and the measurement noise vk is normally
distributed, i.e. vk ∼ Niid(0, r

2). We estimate, σ and r, using a maximum
likelihood criteria for the one-step prediction error [77, 78]. By zero-order
hold (zoh) discretization, Kalman filter design, and z-transformation, (4.10)
may be represented as

yk = G(q−1)uk +H(q−1)εk (4.11)

with

G(q−1) = B(q−1)/A(q−1) (4.12a)

H(q−1) = C̃(q−1)/A(q−1) (4.12b)

The parameters, β1 and β2, in

C̃(q−1) = (1− β1q
−1)(1− β2q

−1) (4.13)

are extracted from H(q−1). The coefficients β1 and β2 computed in this
way are β1,2 = 0.81± 0.16i.

The difference equation (4.11) corresponding to the SDE (4.10) is related
to the ARIMAX model (4.8) by

εk =
1− αq−1

1− q−1
εk (4.14)

This specification introduces a model-plant mismatch. εk is white noise
in (4.11) while (4.14) models εk as filtered integrated white noise. This
model-plant mismatch is necessary to have offset free control in the resulting
predictive control system. (4.14) implies that

C(q−1) = (1− αq−1)C̃(q−1) (4.15)

such that c1 = −2.61, c2 = 2.28 and c3 = −0.67.

65



4. Model Predictive Control Algorithms for People with
Type 1 Diabetes

4.3.2 ARMAX modeling

The stochastic part, C(q−1), of the ARMAX model

A(q−1)y(t) = B(q−1)u(t) + C(q−1)ε(t) (4.16)

is now assumed to be a second order polynomial of the form

C(q−1) = 1 + c1q
−1 + c2q

−2

= (1− β1q
−1)(1− β2q

−1)
(4.17)

We use the same way as in Section 4.3.1 for computing β1 and β2, i.e.
β1,2 = 0.81± 0.16i.

Unlike the ARIMAX model structure described in Section 4.3.1, this model
structure does not ensure offset-free control. However, it does not introduce
a supplementary model-plant mismatch.

4.3.3 Adaptive control

Here, we consider again the ARMAX model structure (4.16). A similar
approach has been proposed by [79].

The parameters c1 and c2 are estimated at each iteration using the recursive
least square (RLS) method

yk = φ′kθ̂k−1 + εk (4.18a)

Kk =
Pk−1φk

µ+ φ′kPk−1φk
(4.18b)

θ̂k = θ̂k−1 +Kk

(
yk − φ′kθ̂k−1

)
(4.18c)

Pk =
1

µ

(
Pk−1 −

Pk−1φkφ
′
kPk−1

µ+ φ′kPk−1φk

)
(4.18d)

φk is a vector of past observations

φk =
[
yk−1 yk−2 uk−1 uk−2 ek ek−1

]
(4.19)
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θk is a vector of model parameters

θk =
[
−a1 −a2 b1 b2 c1 c2

]′
(4.20)

Pk is the model parameters covariance matrix. Since we want to estimate
c1 and c2 only, we initialize it with

P0 = diag(0, 0, 0, 0, 100, 100) (4.21)

Finally, µ is the forgetting factor. This parameter has an influence on the
weight of previous observations. When µ = 1, all the past observations
are equally weighted. Smaller values of µ give more importance to recent
observations [80].

An approximation of the memory length (in time samples) is

1

1− µ (4.22)

In this Chapter, we chose µ = 0.95, ie. the corresponding memory length
is approximately 1/(1− 0.95) = 20 time samples, or 100 minutes.

This model structure allows for a personalized stochastic model description.

4.3.4 Realization and predictions

The ARIMAX model (4.8) and the ARMAX model (4.16) may be repre-
sented as a discrete-time state space model in innovation form

xk+1 = Axk +Buk +Kεk (4.23a)

yk = Cxk + εk (4.23b)

The observer canonical realization for the ARMAX model (4.16) is

A =

[
−a1 1
−a2 0

]
B =

[
b1
b2

]
K =

[
c1 − a1

c2 − a2

]

C =
[
1 0

]
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and the observer canonical realization for the ARIMAX model (4.8) is

A =




1− a1 1 0
a1 − a2 0 1
a2 0 0


B =




b1
b2 − b1
−b2


K =



c1 + 1− a1

c2 + a1 − a2

c3 + a2




C =
[
1 0 0

]

The innovation of (4.23) is

ek = yk − Cx̂k|k−1 (4.24)

and the corresponding predictions are [81]

x̂k+1|k = Ax̂k|k−1 +Bûk|k +Kek (4.25a)

x̂k+1+j|k = Ax̂k+j|k +Bûk+j|k, j = 1, . . . , N − 1 (4.25b)

ŷk+j|k = Cx̂k+j|k, j = 1, . . . , N (4.25c)

The innovation (4.24) and the predictions (4.25) constitute the feedback
and the predictions in the model predictive controller.

4.4 Model Predictive Control

Control algorithms for glucose regulation in people with type 1 diabetes
must be able to handle intra- and inter-patient variability. In addition, the
controller must administrate insulin in a safe way to minimize the risk of
hypoglycemia. Due to the nonlinearity in the glucose-insulin interaction,
the risk of hypoglycemic episodes as consequence of too much insulin is
particularly prominent.
In this section we describe an MPC formulation with soft output constraints
and hard input constraints. This formulation is based on the individualized
prediction model for glucose computed in Section 4.3.2. Along with other
features, we introduce a modified time-varying reference signal to robustify
the controller and mitigate the effect of glucose-insulin nonlinearities and
model-plant mismatch in the controller action.
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The MPC algorithm computes the insulin dose by solution of an open-
loop optimal control problem. Only the control action corresponding to
the first sample interval is implemented and the process is repeated at
the next sample interval. This is called a moving horizon implementation.
The innovation (4.24) provides feedback from the CGM, yk, and the open-
loop optimal control problem solved in each sample interval is the convex
quadratic program

min
{ûk+j|k,v̂k+j+1|k}N−1

j=0

φ (4.26a)

s.t. (4.25) (4.26b)

umin ≤ ûk+j|k ≤ umax (4.26c)

ŷk+j+1|k ≥ ymin − v̂k+j+1|k (4.26d)

v̂k+j+1|k ≥ 0 (4.26e)

with the objective function φ defined as

φ =
1

2

N−1∑

j=0

‖ŷk+j+1|k − r̂k+j+1|k‖22

+ λ‖∆ûk+j|k‖22 + κ‖v̂k+j+1|k‖22

(4.27)

N is the control and prediction horizon. We choose a prediction horizon
equivalent to 10 hours, such that the insulin profile of the finite horizon opti-
mal control problem (4.26) is similar to the insulin profile of the infinite hori-
zon optimal control problem, (4.26) with N → ∞. ‖ŷk+j+1|k − r̂k+j+1|k‖22
penalizes glucose deviation from the time-varying glucose setpoint and aims
to drive the glucose concentration to 6 mmol/L. λ‖∆uk+j|k‖22 is a regu-
larization term that prevents the insulin infusion rate from varying too
aggressively. For the simulations and the in vivo clinical studies we set
λ = 100/u2

ss. The soft output constraint (4.26d) penalizes glucose values
below 4 mmol/L. Since hypoglycemia is highly undesirable, we choose the
weight on the soft output constraint to be rather high, i.e. κ = 100. The
penalty function profile is illustrated in Fig. 4.4.
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Figure 4.4: The penalty function ρ = ‖y − r‖22 + κ‖min{y − ymin, 0}‖22.

To guard against model-plant mismatch we modify the maximal allowable
insulin injection, umax, and let it depend on the current glucose concentra-
tion. If the glucose concentration is low (below the target of 6 mmol/L),
we prevent the controller from taking future hyperglycemia into account
by restricting the maximal insulin injection. If the glucose concentration
is high (4 mmol/L above the target) we increase the maximal allowable
insulin injection rate. In the range 0 - 4 mmol/L above target we allow the
controller to double the basal insulin injection rate. These considerations
lead to

umax =





1.5uss 4 ≤ yk ≤ ∞
uss 0 ≤ yk ≤ 4

0.5uss −∞ ≤ yk ≤ 0

(4.28)

in which uss is the basal insulin infusion rate. Due to pump restrictions,
the minimum insulin injection rate, umin, is a low value but not exactly
zero.

[17] and [79] use a time-varying glucose reference signal to robustify the con-
troller and reduce the risk of hypoglycemic events. In this paper, we use an
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Figure 4.5: Time-varying reference signals for glucose above (blue curve)
and below (green curve) the target of 6 mmol/L.

asymmetric time-varying glucose reference signal. The idea of the asym-
metric reference signal is to induce safe insulin injections in hyperglycemic
periods and fast recovery in hypoglycemic and below target periods. The
asymmetric time-varying setpoint is given by

r̂k+j|k(t) =

{
yk exp (−tj/τ+

r ) yk ≥ 0

yk exp (−tj/τ−r ) yk < 0
(4.29)

Since we want to avoid hypoglycemia, we make the controller react more
aggressively if the blood glucose level is below 6 mmol/L, so we choose
τ−r = 15 min and τ+

r = 90 min. Fig 4.5 provides an illustration of the
time-varying reference signal.

4.5 Result of clinical studies

In this section we present results from simulations on virtual patients and
the clinical studies performed on real patients with type 1 diabetes.
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4.5.1 Test of the controller on a virtual clinic

In this section we discuss the performance of the MPC for a randomly
generated cohort of 100 patients. The 100 patients are generated from
the probability distribution presented in Chapter 2. We compare the per-
formance of the controller with simulated conventional insulin therapy in
which the basal insulin infusion rate remains constant during the night.
The change in insulin sensitivity is simulated by a step change in the in-
sulin sensitivity parameters of the Hovorka model. We provide glucose and
insulin profiles for a test clinical study using the MPC controller and the
setup presented in Section 4.1.
The clinical protocol for the 100 in silico patients is:

• The patient arrives at the clinic at 17:00. The Kalman filter starts.

• The patient gets a 75 g CHO dinner and an insulin bolus at 18:00.

• The closed loop starts at 22:00. The regulator of the MPC starts.

• The insulin sensitivity is modified by ±30% at 01:00.

• The patient gets a 60 g CHO breakfast and an insulin bolus at 08:00.
The controller is switched off.

The MPC is individualized using the insulin basal rate (uss), the insulin
sensitivity factor (ISF), and the insulin action time for each virtual patient.
In the virtual clinic these numbers are computed from an impulse response
starting at a steady state. The meal boluses are determined using a bolus
calculator similar to the one presented in Paper E. The glucose is provided
to the controller every 5 minutes by a noise-corrupted CGM. The pump
insulin infusion rate is changed every 5 minutes.
Fig. 4.6 shows the control variability grid analysis (CVGA) of the period
between 22:00 and 08:00 for the case without MPC (white circles) and the
case with MPC (black circles). In Fig. 4.6(a) we depict the case where the
insulin sensitivity is increased by 30%, and in Fig. 4.6(b) we depict the case
where the insulin sensitivity is decreased by 30%. These figures show that
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(a) Insulin sensitivity increases by 30%.
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(b) Insulin sensitivity decreases by 30%.

Figure 4.6: CVGA ([82]) plot of the 100 in silico patients. White: Without
MPC. Black: With MPC.
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(a) Insulin sensitivity increases by 30%.
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(b) Insulin sensitivity decreases by 30%.

Figure 4.7: Glucose and insulin profiles for 3 representative patients.
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Table 4.1: Evaluation of the MPC versus constant insulin infusion rate in
the case where the insulin sensitivity decreases by 30% during the night.

Glucose (mmol/L) w/o. MPC w. MPC

G > 10 2.1 <0.1
G > 8 30.7 13
3.9 ≤ G ≤ 10 97.9 100
3.9 ≤ G ≤ 8 69.3 87
G < 3.9 0 0
G < 3.5 0 0

our control algorithm reduces the risk of nocturnal hypoglycemia. Although
the improvement is less significant, they also show that it can slightly reduce
the risk of nocturnal hyperglycemia.

In the case where insulin sensitivity is increased by 30% (Fig. 4.6(a)), mild
hypoglycemic events occur for some of the patients. However, almost no
severe hypoglycemia (i.e. blood glucose concentrations below 3.5 mmol/L)
is observed, and the choice of the tuning parameters in the controller allows
for a fast recovery. In the case where insulin sensitivity is decreased by 30%
(Fig. 4.6(b)), all the patients are well controlled during the study period.

Fig. 4.7 depicts the mean blood glucose and insulin profiles, along with
blood glucose and insulin profiles for 3 representative patients. It shows a
well-controlled patient (black curve), a decently controlled patient (purple
curve) and a badly controlled patient (red curve), both in the case where
insulin sensitivity increases (Fig. 4.7(a)) and in the case where insulin
sensitivity decreases (Fig. 4.7(b)).

Table 4.1 and Table 4.2 provide the percentage of time spent in the period
between 22:00 and 08:00 for the 100 simulated patients within range (3.9-10
mmol/L), in hyperglycemia(>10 mmol/L), in slight hypoglycemia(between
3.5 and 3.9 mmol/L) and in severe hypoglycemia (<3.5 mmol/L). This table
show that MPC reduces the risk of hyperglycemia and significantly reduces
the time spent in hypoglycemia in the case where the insulin sensitivity
increases during the night.
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Table 4.2: Evaluation of the MPC versus constant insulin infusion rate in
the case where the insulin sensitivity increases by 30% during the night.

Glucose (mmol/L) w/o. MPC w. MPC

G > 10 <0.1 <0.1
G > 8 2.2 3.2
3.9 ≤ G ≤ 10 83.5 99.1
3.9 ≤ G ≤ 8 81.3 95.9
G < 3.9 16.5 0.9
G < 3.5 2.4 0.2

4.5.2 In vivo validation

We summarize here the main outcomes from the clinical studies conducted
at Hvidovre Hospital. All study plots are available in Appendix A. In these
studies, we used the ARIMAX controller design presented in 4.3.1. We
compare closed-loop studies where the full meal bolus is administrated at
mealtime, studies where half of the meal bolus is administrated at mealtime
and studies where no meal bolus is administrated.

Fig. 4.8 shows the glucose and insulin profiles in a case where the CGM
remains accurate during the study night. In this case, the controller is able
to stabilize the glucose in the euglycemic range.

Fig. 4.9 illustrates a case where the CGM is not correctly calibrated. In
this study, the self-monitoring of blood glucose (SMBG) underestimated the
blood glucose value by 2-3 mmol/L. Although the CGM profile is correctly
controlled, the YSI measurements are above the euglycemic range.

Fig. 4.10 illustrates a case where the CGM deviates from the YSI value.
In this study night, the inaccuracy and malfunction of the sensor is not de-
tected by the controller as we in the present controller have no monitoring
and fault detection layer. Therefore, the controller uses the very inaccu-
raty glucose signal from the CGM. Accordingly, the patient was improperly
controlled during this study night. or this study, detection of outliers such
as an hypothesis test similar to the one provided in [79] may help for im-
proving the controller. However, the consequence of bad sensors like this
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Figure 4.8: Glucose and insulin profiles for the study 11MMCLDouble.
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Figure 4.9: Glucose and insulin profiles for the study 09DKCL00.
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Figure 4.10: Glucose and insulin profiles for the study 11MMCL00.

will likely only be fully mitigated when redundant sensors are available. In
such situations of sensor failure, a monitoring and fault detection layer may
decide to suspend all insulin delivery and send an alarm. Also, it can be
noticed that the closed-loop starts at approximately 21:00 instead of 22:00.
This is due to the fact that the closed-loop starts 4 hours after the dinner.
In this study, the patient had the meal before 18:00.

Fig. 4.11 provides the CVGA plot for the studies where the controller
was used. The figure shows both the CGM and the YSI values for the 18
closed-loop studies and the YSI values for the 5 open-loop studies.

Table 4.3 shows the time spent inside and outside target for the 17 closed-
loop studies. For comparison, results for a similar study have been pub-
lished in [83].

The study plots in Appendix A show that the controller was able to stabilize
the blood glucose concentration in the euglycemic range when the feedback
from the CGM is accurate. However, it is also clear by these clinical studies
that the limited accuracy and reliability of the current generation of CGM
technology prevents routinely and unsupervised use of closed-loop glucose
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Figure 4.11: Control Variability Grid Analysis (CVGA) plot for the in
vivo closed-loop studies. Black circles: CGM (Closed-loop studies). Red
squares: YSI (Closed-loop studies). Blue squares: YSI (Open-loop studies)

control.

4.6 Comparison between ARIMAX, ARMAX
and adaptive ARMAX model structures

In this section we compare three different versions of our Model Predictive
Controller on a cohort of 100 virtual patients. These three versions are the
ARIMAX formulation presented in Section 4.3.1, the ARMAX formulation
presented in Section 4.3.2 and the adaptive ARMAX model formulation.
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Table 4.3: Evaluation of the controller for the different bolus sizes (100%
of the ideal bolus size, 50% of the ideal bolus size, unbolused meals). The
number into brackets represent the number of available study nights for
each category.

Glucose (mmol/L) 100% (6) 50% (5) 0% (6) Overall (17)

G > 10 0.2 11.0 32.1 14.1
G > 8 10.8 29.0 53.7 30.6
3.9 ≤ G ≤ 10 91.1 82.1 61.1 78.4
3.9 ≤ G ≤ 8 80.4 64.0 39.5 61.8
G < 3.9 8.8 6.9 6.8 7.6
G < 3.5 3.7 5.2 3.5 4.1

The ARMAX based controllers do not contain an integrator and cannot
guarantee steady-state offset-free control. However, the tuning of the MPC
based ARMAX models may be simpler than the tuning of the MPC based
on the ARIMAX model. The reason is that no artificial model-plant mis-
match is introduced in the MPC based on ARMAX models, while the
ARIMAX based controller deliberately include such a mismatch to ensure
steady-state offset-free control.

4.6.1 Underbolused meal

Fig. 4.12 shows the CVGA plot for the three different strategies in the
case where only 50% of the meal bolus is administrated at mealtime. The
control strategy based on an ARIMAX model shows several cases of mild
hypoglycemia due to an insulin overdose. The two control strategies based
on an ARMAX model are able to avoid this undershoot. Fig. 4.13 illustrates
an example of glucose and insulin profiles for the same patient using the
three different control strategies.

Table 4.4 shows the time spent in the euglycemic range, hypoglycemia and
hyperglycemia for the three different strategies in the case where only 50%
of the meal bolus is administrated at mealtime. The results show that the
control strategy based on an ARIMAX model structure reduce the time
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Figure 4.12: Control Variability Grid Analysis (CVGA) plot for the three
different stochastic model structures. 50% of the meal bolus is adminis-
trated at mealtime. Black: ARIMAX. Red: ARMAX. White: Adaptive
ARMAX.

spent in hyperglycemia. The adaptive ARMAX model structure shows the
best compromise between the time spent in euglycemia and safety concern-
ing the risk of insulin overdose.

4.6.2 Change in insulin sensitivity

Fig. 4.14 shows the CVGA plot for the three different strategies for the case
where the insulin sensitivity is increased by 30% during the night. Table
4.5 shows the time spent in the euglycemic range, hypoglycemia and hy-
perglycemia for the three different strategies in the case where the insulin
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Table 4.4: Evaluation of the controller for the different control strategies in
the case where only 50% of the meal bolus is administrated at mealtime.
The numbers show the total percentage of time spent in different glucose
ranges for the 100 virtual patients during the period 22:00 - 08:00.

Glucose (mmol/L) ARIMAX ARMAX Adaptive ARMAX

G > 10 17.8 23.9 20.8
G > 8 31.6 58.1 42.2
3.9 ≤ G ≤ 10 82.1 76.1 79.2
3.9 ≤ G ≤ 8 68.3 41.9 57.8
G < 3.9 0.1 0 0
G < 3.5 0 0 0
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Figure 4.13: Glucose and insulin profiles of a specific patient for the different
control strategies. The patients gets half of the optimal bolus at mealtime.
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Figure 4.14: Control Variability Grid Analysis (CVGA) plot for the three
different stochastic model structures in the case where the insulin sensitivity
is increased by 30% during the night. Black: ARIMAX. Red: ARMAX.
White: Adaptive ARMAX.

sensitivity is increased by 30% during the night. The control strategies
based on an ARMAX model structure, i.e. the controllers without the
integrator, reduces the occurrences of hypoglycemia, and avoid severe hy-
poglycemia (ie. glucose values below 3.5 mmol/L). Fig. 4.15 illustrates an
example of glucose and insulin profiles for the same patient using the three
different control strategies.
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Table 4.5: Evaluation of the controller for the different control strategies in
the case where the insulin sensitivity is increased by 30% during the night.
The numbers show the total percentage of time spent in different glucose
ranges for the 100 virtual patients during the period 22:00 - 08:00.

Glucose (mmol/L) ARIMAX ARMAX Adaptive ARMAX

G > 10 <0.1 <0.1 <0.1
G > 8 3.2 2.5 2.2
3.9 ≤ G ≤ 10 99.1 99.4 99.7
3.9 ≤ G ≤ 8 95.9 96.9 97.5
G < 3.9 0.9 0.6 0.3
G < 3.5 0.2 0 0
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Figure 4.15: Glucose and insulin profiles of a specific patient for the different
control strategies. The insulin sensitivity increases by 30% during the night.

84



4.7. Summary

4.7 Summary

The main advantage of the presented method is its simplicity. The use
of safety layers and a robust MPC formulation reduces the risk of hypo-
glycemia. Therefore, the method presented in this Chapter can easily be
reproduced or modified.
The results of the clinical studies suggest that the main limitation of the
artificial pancreas is currently the lack of accuracy of CGMs. Consequently,
a detection of outliers and an improved robustness of the controller could
help to handle the CGM inaccuracy. However, such methods will likely only
be sufficiently robust and safe when the glucose concentration is measured
by redundant sensors.
The choice of the model structure for the stochastic part is a tradeoff be-
tween offset-free control and model-plant mismatch. In our case, the adap-
tive ARMAX formulation presented in this chapter has the potential to
improve the controller performance, but would need a further investigation
before being tested on real patients.
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CHAPTER 5
Conclusion

This thesis illustrates the design and implementation of both linear and non-
linear model predictive control-based strategies for blood glucose in people
with type 1 diabetes. The main contributions of this thesis are summarized
below.

• We have developed a virtual clinic that can be used to evaluate and
screen insulin administration strategies. The virtual clinic uses a mod-
ified version of the Hovorka model to simulate a large population
of people with type 1 diabetes. The model consists of a subsystem
modeling the glucose-insulin dynamics, a subsystem modeling the sc.
insulin absorption, a subsystem modeling the meal absorption and
a subsystem modeling a noise-corrupted CGM. We use the parame-
ter distribution published by Hovorka et al. to generate a cohort of
people with type 1 diabetes.

• We have implemented Nonlinear Model Predictive Control (NMPC).
We have used a multiple-shooting algorithm to solve the optimal con-
trol problem (OCP) and an explicit Runge-Kutta method (DOPRI54)
with an adaptive step size for numerical integration and sensitivity
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computation. The OCP is solved using a Quasi-Newton sequential
quadratic programming (SQP) with line search and a BFGS update
for the Hessian of the Lagrangian. We have used this controller to gen-
erate optimal blood glucose and insulin profiles in the cases where the
meals are announced in advance, and where meals are announced at
mealtimes. We also apply a Continuous-Discrete Extended Kalman
Filter (CDEKF) in order to simulate cases where the meal size is
uncertain, or even unannounced. The numerical simulations demon-
strate that a pen may give similar performance to a pump.

• We have developed linear model predictive controllers based on AR-
MAX type of models. We have proposed a simple and systematic way
of computing model parameters based on a priori known patient infor-
mation. The required patient information are the insulin sensitivity
factor (ISF), the insulin action time and the basal insulin infusion
rate. We discussed three alternatives for the stochastic part of our
model. The three resulting controllers are tested on virtual patients,
and their performance is assessed.

• We have validated our control strategy on real patients with type 1
diabetes. We have tested the ability of our controller to stabilize the
glucose overnight. The simulations on virtual patients and the clinical
studies on real patients show that the current lack of accuracy of the
CGMs is the main limitation of the artificial pancreas.

Future possible research directions may include

• Model identification from another physiological model. The Medtronic
Virtual Patient (MVP) model or any model identified from previously
collected clinical data could be used to generate a population of people
with type 1 diabetes [45].

• Test of adaptive NMPC on virtual patients. The model used for the
controller can be for example the Medtronic Virtual Patient (MVP)
model.
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• Improvements of the control strategy for clinical studies on real pa-
tients. The replacement of the ARIMAX model structure with an
adaptive ARMAX model structure presented in Chapter 4 and the
detection of CGM outliers may improve the controller performance.
Also, a monitoring layer to adjust the basal insulin comparable to
run-to-run control pioneered by Palerm et al. can achieve offset-free
control [84].

• Further clinical studies. The purpose of these clinical studies would
be to validate the possible improvements presented in Chapter 4.
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[20] L. Kovács, P. Szalay, B. Benyó, and J.G. Chase. Robust tight gly-
caemic control of icu patients. In Proceedings of the 17th World
Congress, The International Federation of Automatic Control, pages
4995 – 5000, 2011.

[21] H. Thabit and R. Hovorka. Closed-loop insulin delivery in type 1
diabetes. Endocrinology Metabolism Clinics of North America, 41:105
– 117, 2012.

[22] R. Hovorka. Continuous glucose monitoring and closed-loop systems.
Diabetic Medicine, 23:1 – 12, 2005.

93



Bibliography

[23] G. M. Steil and K. Rebrin. Closed-loop insulin delivery - what lies
between where we are and where we are going. Expert Opinion on
Drug Delivery, 2(2):353 – 362, 2005.

[24] D. B. Keenan, R. Cartaya, and J. J. Mastrototaro. Accuracy of a new
real-time continuous glucose monitoring algorithm. Journal of Diabetes
Science and Technology, 4(1):111 – 118, 2010.

[25] S. Guerra, A. Facchinetti, G. Sparacino, G. De Nicolao, and C. Cobelli.
Enhancing the accuracy of subcutaneous glucose sensors: A real-time
deconvolution-based approach. IEEE transactions on biomedical engi-
neering, 59(6):1658 – 1669, 2012.

[26] K. Rebrin, N. F. Sheppard Jr., and G. M. Steil. Use of subcutaneous
interstitial fluid glucose to estimate blood glucose: Revisiting delay and
sensor offset. Journal of Diabetes Science and Technology, 4(5):1087 –
1098, 2010.

[27] I. Raz, R. Weiss, Y. Yegorchikov, G. Bitton, R. Nagar, and B. Pesach.
Effect of a local heating device on insulin and glucose pharmacokinetic
profiles in an opel-label, randomised, two-period, one-way crossover
study in patients with type 1 diabetes using continuous subcutaneous
insulin infusion. Clinical Therapeutics, 31:980 – 987, 2009.

[28] E. Renard, J. Place, M. Cantwell, H. Chevassus, and C. C. Palerm.
Closed-loop insulin delivery using a subcutaneous glucose sensor and
intraperitoneal insulin delivery: feasibility study testing a new model
for the artificial pancreas. Diabetes Care, 33:121 – 127, 2010.

[29] J. R. Castle, K. C. J. Yuen, J. M. Engle, R. Kagan, J. El youssef,
W. K. Ward, and R. G. Massoud. Novel use of glucagon in a closed-
loop system for prevention of hypoglycemia in type 1 diabetes. Diabetes
Care, 33(6):1282 – 1287, 2010.

[30] W. K. Ward, J. R. Castle, and J. El Youssef. Safe glycemic man-
agement during closed-loop treatment of type 1 diabetes: the role of

94



Bibliography

glucagon, use of multiple sensors, and compensation for stress hyper-
glycemia. Journal of Diabetes Science and Technology, 5(6):1373 –
1380, 2011.

[31] B. C. Turner, E. Jenkins, D. Kerr, R. S. Sherwin, and D. A. Cavan.
The effect of evening alcohol consumption on next-morning glucose
control in type 1 diabetes. Diabetes Care, 24:1888 – 1893, 2001.

[32] S. J. Qin and T. A. Badgwell. A survey of industrial model predictive
control technology. Control Engineering Practice, 11:733 – 764, 2003.

[33] L. Magni, D. M. Raimondo, C. Dalla Man, G. De Nicolao, B. P. Ko-
vatchev, and C. Cobelli. Model predictive control of glucose concen-
tration in type I diabetic patients: An in silico trial. Biomedical Signal
Processing and Control, 4(4):338–346, 2009.

[34] R. Hovorka, K. Kumareswaran, J. Harris, J. M. Allen, D. Elleri,
D. Xing, C. Kollman, M. Nodale, H. R. Murphy, D. B. Dunger, S. A.
Amiel, S. R. Heller, M. E. Wilinska, and M. L. Evans. Overnight
closed loop insulin delivery (artificial pancreas) in adults with type
1 diabetes: crossover randomised controlled studies. British Medical
Journal, (342):d1855, 2011.

[35] R. N. Bergman, L. S. Phillips, and C. Cobelli. Physiologic evaluation
of factors controlling glucose tolerance in man: measurement of insulin
sensitivity and beta-cell glucose sensitivity from the response to intra-
venous glucose. Journal of Clinical Investigation, 68(6):1456 – 1467,
1981.

[36] J. T. Sorensen. A physiologic model of glucose metabolism in man and
its use to design and assess improved insulin therapies for diabetes.
PhD thesis, Massachusetts Institute of Technology, 1985.

[37] R. S. Parker, F. J. Doyle III, J. H. Ward, and N. A. Peppas. Robust
H∞ glucose control in diabetes using a physiological model. AIChE
Journal, 46(12):2537 – 2549, 2000.

95



Bibliography

[38] E. Ruiz-Velasquez, R. Femat, and D. U. Campos-Delgado. Blood glu-
cose control for type 1 diabetes mellitus: a robust tracking H∞ prob-
lem. Control Engineering Practice, 12:1170 – 1195, 2004.
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APPENDIX A
Clinical study plots

In this Appendix, we show all the glucose and insulin profiles for the 25 clin-
ical studies (2 pilot studies + 23 overnight studies) conducted at Hvidovre
Hospital during the period November 2011 - May 2012.

• The studies whose name ends by ”CL” are closed-loop studies where
full meal bolus is provided.

• The studies whose name ends by ”OL”are studies where the controller
is not used and the usual basal insulin infusion rate is provided by
the pump.

• The studies whose name ends by ”CL00”are closed-loop studies where
no meal bolus is provided.

• The studies whose name ends by ”CL50”are closed-loop studies where
full meal bolus is provided.

• The study whose name ends by ”11MMCLdouble”is a particular study
where the patient got a larger meal (95g CHO), no insulin bolus and
2 apple juice glasses (15g CHO and 10g CHO respectively).
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A. Clinical study plots

A.1 First pilot study

In this study, the right CGM has been used for feedback. The insulin over-
dose at the beginning of the closed-loop phase led to a severe hypoglycemia
around midnight.
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A.2. Second pilot study

A.2 Second pilot study

In this study, we used the left CGM for feedback. Unlike all other studies,
this study was performed during the day.

10:00 12:00 14:00 16:00
2

4

6

8

10

12

14

16

G
lu

co
se

 [m
m

ol
/L

]

 

 
Normoglycemic range
Reference
Left CGM
Right CGM
Average
YSI
Hemocue
IV Glucose

10:00 12:00 14:00 16:00
0

1

2

3

Time [hr]

In
su

lin
 [U

/h
r]

107



A. Clinical study plots

A.3 01PBCL - Plot

In this study, we used the left CGM for feedback. Although the CGM signal
is inside the euglycemic range for almost the whole study night, the YSI
remains outside the euglycemic range for most of the study night.
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A.4. 01PBOL - Plot

A.4 01PBOL - Plot

In this open-loop study, the patient was in hypoglycemia during most of
the night. Intravenous glucose has been administrated 5 times.
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A. Clinical study plots

A.5 02KSCL - Plot

In this study, we used the left CGM for feedback. The CGM value remains
stable at approximately 5 mmol/L from 22:00 until midnight.
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A.6. 02KSOL - Plot

A.6 02KSOL - Plot

During this study, IV glucose has been administrated 2 times. The patient
was in hyperglycemia during most of the study night.
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A. Clinical study plots

A.7 03AHCL - Plot

Intravenous glucose has been administrated 2 times before the closed-loop
phase starts, probably due to an overbolused meal. However, the controller
managed to stabilize blood glucose during the night.
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A.8. 03AHOL - Plot

A.8 03AHOL - Plot

As in the closed-loop study, intravenous glucose has been administrated 2
times. However, the glucose remained stable during the study night.
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A. Clinical study plots

A.9 04BACL - Plot

In this study, we used the left CGM for feedback. The CGM has been
accurate for the whole study night, therefore the controller was able to
keep the glucose in the euglycemic range.
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A.10. 04BAOL - Plot

A.10 04BAOL - Plot

In this study, IV glucose were administrated once. In addition, the patient
was in a mild hypoglycemia from 03:00 approximately until the end of the
study.

18:00 20:00 22:00 00:00 02:00 04:00 06:00
2

4

6

8

10

12

14

16

G
lu

co
se

 [m
m

ol
/L

]

 

 
Normoglycemic range
Reference
Left CGM
Right CHM
Average
YSI
Hemocue
Meal
IV Glucose

18:00 20:00 22:00 00:00 02:00 04:00 06:00
0

0.5

1

1.5

2

Time [hr]

In
su

lin
 [U

/h
r]

115



A. Clinical study plots

A.11 05KFCL - Plot

In this study, the patient got 7 IV glucose injections due to low postprandial
blood glucose values. The controller was able to stabilize the blood glucose
concentration despite the disturbances induced by these injections.
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A.12. 05KFOL - Plot

A.12 05KFOL - Plot

In this study, the patient got 8 IV glucose injections due to low postprandial
blood glucose values.
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A. Clinical study plots

A.13 06MMCL - Plot

In this study, we used the left CGM for feedback. IV glucose has been
administrated 3 times during the study night. Globally, the CGM overes-
timated the actual blood glucose concentration.
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A.14. 07CKCL00 - Plot

A.14 07CKCL00 - Plot

In this study, we used the left CGM for feedback. Both CGMs were accurate
during the study night, and the controller was able to stabilize the glucose.
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A. Clinical study plots

A.15 07CKCL50 - Plot

In this study, we used the right CGM for feedback. Both CGMs were
accurate during the study night, and the controller was able to stabilize the
glucose.
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A.16. 08TSCL00 - Plot

A.16 08TSCL00 - Plot

In this study, we used the right CGM for feedback. The pump were shut
down between 23:00 and midnight approximately due to undetected out-
liers.
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A. Clinical study plots

A.17 08TSCL50 - Plot

The CGM remained inside or close to the euglycemic range during the study
night. However, the YSI showed values above 10 mmol/L.
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A.18. 09DKCL00 - Plot

A.18 09DKCL00 - Plot

In this study, we used the left CGM for feedback. Although the glucose
values from the CGM were tightly held around 6 mmol/L, the actual blood
glucose concentration was around 9 mmol/L. This offset is due to the wrong
calibration value before the beginning of the closed-loop sequence.
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A. Clinical study plots

A.19 09DKCL50 - Plot

The CGM sensor values dropped at approximately midnight. This sudden
drop inducted a mild hyperglycemia. Apart from this, the patient was
well-controlled during the study night.
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A.20. 10HTCL00 - Plot

A.20 10HTCL00 - Plot

In this study, we used the left CGM for feedback. The insulin was slightly
overdosed, consequently the subject was in hypoglycemia at the end of the
study night.
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A. Clinical study plots

A.21 10HTCL50 - Plot

In this study, we used the left CGM for feedback. IV glucose has been
administrated three times during the study time.
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A.22. 11MMCL00 - Plot

A.22 11MMCL00 - Plot

In this study, we used the right CGM for feedback. Oscillations in CGM
values from midnight until the end of the study and undetected outliers
caused an hyperglycemic event.
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A. Clinical study plots

A.23 11MMCLdouble - Plot

In this study, we used the right CGM for feedback. The CGM has been
accurate for the whole study night, therefore the controller was able to keep
the glucose in the euglycemic range.
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A.24. 12LKCL00 - Plot

A.24 12LKCL00 - Plot

In this study, we used the left CGM for feedback. The CGM has been quite
accurate for the whole study night, therefore the controller was able to keep
the glucose concentration in the euglycemic range.
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A. Clinical study plots

A.25 12LKCL50 - Plot

In this study, we used the left CGM for feedback. The blood glucose con-
centration remained in the euglycemic range for most of the study night.
However, a sudden drop in the CGM value at approximately 02:00 caused
a mild hyperglycemic event.
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Summary. In this contribution we apply receding horizon constrained nonlinear
optimal control to the computation of insulin administration for people with type 1
diabetes. The central features include a multiple shooting algorithm based on sequen-
tial quadratic programming (SQP) for optimization and an explicit Dormand-Prince
Runge-Kutta method (DOPRI54) for numerical integration and sensitivity compu-
tation. The study is based on a physiological model describing a virtual subject with
type 1 diabetes. We compute the optimal insulin administration in the cases with
and without announcement of the meals (the major disturbances). These calcula-
tions provide practical upper bounds on the quality of glycemic control attainable
by an artificial β-cell.

1 Introduction

The World Health Organization estimates that more than 220 million people
worldwide have diabetes, and this number is growing quickly [13]. The number
of people with diabetes is projected to double between 2005 and 2030. In
addition to the obvious physical and personal effects of diabetes, the disease
also has a detrimental economic impact. In the USA, for example, the budget
for diabetes care represents 10% of the health care budget, or more than 130
billion ( 132 billion in 2002).

In people without diabetes, the pancreas regulates the blood glucose con-
centration tightly near 90 mg/dL (∼5 mmol/L). Type 1 diabetes is a chronic
disease characterized by the autoimmune destruction of the insulin-producing
β-cells in the pancreas. Consequently, without insulin—a hormone whose key
physiological role is to facilitate the uptake of glucose from the blood into
the cells where it is metabolized—elevated concentrations of blood glucose, or
hyperglycemia, occur. Prolonged hyperglycemia is known to cause a litany of
complications: eye, nerve, and kidney disease, to name a few. Thus, exogenous
insulin must be injected to lower the blood glucose. This treatment must be
done carefully, however, because overinsulinization results in low blood glucose

M. Diehl et al. (eds.), Recent Advances in Optimization and its Applications in Engineering,  
DOI 10.1007/978-3-642-12598-0_26, © Springer-Verlag Berlin Heidelberg 2010 
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Fig. 1. Closed-loop glucose control for an artificial β-cell. Glucose is measured
subcutaneously using a continuous glucose monitor (CGM). Insulin is dosed either
continuously (using a pump) or in discrete instances (using a pen), based on the
control algorithm.

concentrations, or hypoglycemia, which can pose immediate and severe health
threats. Ideally, the blood glucose concentration should be kept within the
normoglycemic range of approximately 70–140 mg/dL (or 3.9–7.8 mmol/L).

By today’s standards, treatment consists of administration of exogenous
insulin either continuously using an insulin pump or in discrete instances using
an insulin pen (or syringe). In any case, the insulin is infused or injected into
the subcutaneous tissue of the user, and thus must absorb into the intravenous
system before being dispersed throughout the body. A critical component of
this insulin therapy is the delivery of boluses (i.e., rapid injections) to offset
the effects of carbohydrate (CHO) meals. The size of the bolus is based on
a measurement of the current blood glucose and the (estimated) size of the
meal, i.e., the amount of CHO in the meal.

Unfortunately, estimating the size of a meal can be a difficult task. Fur-
thermore, having measurements only at meal times does not provide enough
information about blood glucose. Hypoglycemic and hyperglycemic events can
be missed due to these infrequent blood glucose measurements. In addition,
such a measurement process does not provide any information about the dy-
namic trends of the blood glucose. Consequently, people with diabetes often
tolerate frequent hyperglycemia in order to avoid hypoglycemia and its drastic
effects.

An artificial β-cell is a biomedical device which would provide automatic
regulation of blood glucose (in the case of a pump-based system), or at least
optimal treatment suggestions (in the case of a pen-based system), based on
a robust control algorithm [4]. A vital element to the success of such a device
is the continuous glucose monitor (CGM), which will be used as the sensor
in the closed-loop controller. A schematic of the artificial β-cell algorithm is
shown in Fig. 1.
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Fig. 2. Diagram of the physiological Hovorka model [8].

From a control perspective, insulin administration via an insulin pump of-
fers a key advantage over insulin pens. Since an insulin pump is permanently
attached to the patient, it is suitable for truly automatic, user-free control.
That is, a pump-based system has the ability to adjust the manipulated vari-
able, insulin infusion rate, at any time, independent of the patient. In contrast,
a pen-based system ultimately relies on the patient physically delivering the
insulin dose. There is, of course, an associated tradeoff: insulin pens are less
invasive and cheaper for patients with type 1 diabetes.

2 Model Description

A prominent physiological model of the glucose-insulin dynamics in type 1
diabetes developed by Hovorka and colleagues [8] is depicted in Fig. 2. We
use this Hovorka model to simulate a virtual subject with type 1 diabetes.
In brief, it is a nonlinear model describing the effect of exogenous insulin,
u(t), on plasma insulin concentration, I(t), and ultimately on blood glucose
concentration, G(t). In addition, the model accounts for the appearance of
glucose in the blood due to CHO meals, d(t), and endogenous insulin produc-
tion, EGP , and removal due to insulin-independent cellular uptake, F01, and
renal excretion, FR.

The model includes descriptions of subcutaneous (SC)-to-intravenous in-
sulin absorption and CHO absorption from a meal, which are both represented
as two-compartment (i.e., second order) submodels with time constants of
τS = 55 min and τD = 40 min, respectively. The “slower” appearance of in-
sulin in the blood, relative to meal-related glucose, has important and limiting
control implications. These implications are elucidated through one of our key
results, which is discussed in Optimization Results.



302 Dimitri Boiroux et al.

The nonlinearity in the Hovorka model is due primarily to the time-varying
actions of insulin on glucose processes (namely, glucose transport, disposal,
and endogenous production), denoted by w1–w3 in Fig. 2. Two other sources
of nonlinearity are the insulin-independent glucose consumption F01 and the
renal excretion of glucose FR, which are both (modeled as) piecewise affine
functions of the glucose concentration.

3 Problem Formulation

In this section, we state and discuss the continuous-time optimal control prob-
lem that is the basis for computing the insulin injection profiles for people with
type 1 diabetes. We also discuss a numerically tractable discrete-time approx-
imation to the continuous-time optimal control problem. The optimal insulin
administration is formulated as the bound-constrained continuous-time Bolza
problem

min
[x(t),u(t)]

tf
t0

φ =

∫ tf

t0

g(x(t), u(t))dt+ h(x(tf )) (1a)

s.t. x(t0) = x0 (1b)

ẋ(t) = f(x(t), u(t), d(t)) t ∈ [t0, tf ] (1c)

umin ≤ u(t) ≤ umax t ∈ [t0, tf ] (1d)

in which x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the vector of
manipulated inputs, and d(t) ∈ Rnd is a vector of known disturbances.
ẋ(t) = f(x(t), u(t), d(t)) represents the model equations. The initial time,
t0, and the final time, tf , are specified parameters. The initial state, x0, is a
known parameter in (1). The inputs are bound-constrained and must be in
the interval [umin, umax].

The objective function is stated generally with a stage cost term, g(x(t), u(t)),
and a cost-to-go term, h(x(tf )). The numerical algorithms for the problem are
based on this general structure of the objective function.

3.1 Discrete-time Approximation

The continuous-time bound-constrained Bolza problem (1) is approximated by
a numerically tractable discrete-time bound-constrained Bolza problem using
the zero-order-hold input parameterization of the manipulated variables, u(t),
as well as the known disturbance variables, d(t). We divide the time interval,
[t0, tf ], into N intervals, each of length Ts. Let N = {0, 1, ..., N − 1} and
tk = t0+kTs for k ∈ N . The zero-order-hold restriction on the input variables,
u(t) and d(t), implies
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u(t) = uk tk ≤ t < tk+1 k ∈ N (2a)

d(t) = dk tk ≤ t < tk+1 k ∈ N (2b)

Using this zero-order-hold restriction on the inputs, the bound constrained
continuous-time Bolza problem (1) may be approximated by

min
{xk+1,uk}N−1

k=0

φ =
N−1∑

k=0

Gk(xk, uk, dk) + h(xN ) (3a)

s.t. bk := Fk(xk, uk, dk)− xk+1 = 0 k ∈ N (3b)

umin ≤ uk ≤ umax k ∈ N (3c)

The discrete-time state transition function is

Fk(xk, uk, dk) = {x(tk+1) : ẋ(t) = f(x(t), uk, dk), x(tk) = xk} (4)

and the discrete time stage cost is

Gk(xk, uk, dk) = {
∫ tk+1

tk

g(x(t), uk)dt : ẋ(t) = f(x(t), uk, dk), x(tk) = xk}

(5)

4 Numerical Optimization Algorithm

In this section, we implement a multiple-shooting based SQP algorithm for
the numerical solution of (1) [1, 5, 10]. The SQP algorithm is based on line
search and structured high rank BFGS updates of the Hessian matrix [1,
10]. The structures of the quadratic subproblems are utilized and they are
solved by a primal-dual interior-point algorithm using Riccati iterations [9,
11]. DOPRI54 is used for numerical solution of the differential equation model
and sensitivities [3, 6, 7].

4.1 SQP Algorithm

We define the parameter vector, p, as p =
[
u′0 x

′
1 u
′
1 x
′
2 . . . x

′
N−1 u

′
N−1 x

′
N

]′
,

and the disturbance vector, d, as d =
[
d′0 d

′
1 . . . d

′
N−1

]′
.

Then the bound constrained discrete-time Bolza problem (3) may be ex-
pressed as a constrained optimization problem in standard form

min
p

φ = φ(p) (6a)

s.t. b(p) = 0 (6b)

c(p) ≥ 0 (6c)

The concise formulation (6) is useful for presentation of the numerical opti-
mization algorithm used for solving the bound constrained continuous-time
Bolza problem (1).

The steps for solution of (6) by an SQP algorithm with line search are
listed in Algorithm 1.
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Algorithm 0.1 1 SQP Algorithm for (6)

Require: Initial guess: (p0, y0, z0) with z0 ≥ 0.
Compute: φ(p0), ∇pφ(p0), b(p0), ∇pb(p

0), c(p0), ∇pc(p
0)

Set λ = 0, µ = 0, W 0 = I
while NOT stop do

Compute (∆pk, ỹk+1, z̃k+1) by solution of:

min
∆p

1

2
∆p′W k∆p+∇pφ

′(pk)∆p (7a)

s.t.
h

∇pb(p
k)
i′
∆p = −b(pk) (7b)

h

∇pc(p
k)
i′
∆p ≥ −c(pk) (7c)

Compute ∆yk = ỹk+1 − yk and ∆zk = z̃k+1 − zk

Update the penalty parameter:
µ← max{|z|, 1

2
(µ+ |z|)} and λ← max{|y|, 1

2
(λ+ |y|)}

Compute α using soft line search and Powell’s `1 merit function.
pk+1 = pk + α∆pk, yk+1 = yk + α∆yk, zk+1 = zk + α∆zk

Compute φ(pk+1),∇pφ(pk+1), c(pk+1), ∇pc(p
k+1), b(pk+1) and ∇pb(p

k+1)
Compute W k+1 by Powell’s modified BFGS update. k ← k + 1.

end while

4.2 Gradient Computation

The most demanding computations in Algorithm 1 are those of the objective
function φ(p), the derivatives of the objective function ∇pφ(p), the dynamics
b(p), and the sensitivities, ∇pb(p), associated with the dynamics. b(p) and
φ(p) are computed by evaluation of (4) and (5), respectively. Consequently

bk = bk(xk, xk+1, uk, dk) = Fk(xk, uk, dk)− xk+1 (8a)

∇xk
bk = ∇xk

Fk(xk, uk, dk) (8b)

∇uk
bk = ∇uk

Fk(xk, uk, dk) (8c)

∇xk+1
bk = −I (8d)

The gradients ∇xk
Fk(xk, uk, dk) ∇uk

Fk(xk, uk, dk) are computed by numeri-
cal integration of the sensitivity equations [2].

In the evaluation of the functions and derivatives needed in the SQP al-
gorithm, i.e., φ(p), ∇pφ(p), b(p), and ∇pb(p), the major computational task
is solving the sensitivity equations and evaluating the associated quadrature
equations. The Hovorka model is a non-stiff system of differential equations.
Therefore, we use an embedded Dormand-Prince explicit Runge-Kutta scheme
(DOPRI54) for solving the differential equations and integrating the quadra-
ture equations. A special DOPRI54 method has been implemented [2] in which
we use the internal stages already computed by solving ẋ(t) = f(x(t), uk, dk)
in the evaluation of the quadrature equation. The implementation uses an
adaptive time step based on PI-control [7].
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5 Application to an Artificial β-cell

In this section we state and discuss the objective function and the scenarios
used in the simulations. We also state the strategy for the nonlinear model
predictive controller.

5.1 Nonlinear Model Predictive Control (NMPC)

NMPC is a receding horizon control technology that repeatedly solves open-
loop nonlinear optimal control problems and implements the computed opti-
mal control associated to the current time period [12]. In this contribution, we
use a receding horizon strategy to compute the ideal insulin administration
profile for people with type 1 diabetes. In order to obtain the ideal insulin
profile, the NMPC uses state feedback and relative long prediction horizons.

5.2 Objective Function with Soft Output Constraints

The objective of the insulin administration is to compensate for glucose ex-
cursions caused by meals and by variations in endogenous glucose production
and utilization. We use a penalty function defined as

ρ(G(t)) =
κ1

2
|max{0, G(t)− Ḡ}|2 +

κ2

2
|max{0, Ḡ−G(t)}|2+

κ3

2
|max {0, G(t)−GU}|2 +

κ4

2
|max {0, GL −G(t)}|2

(9)

where G(t) is the blood glucose concentration, Ḡ = 5 mmol/L is the target
value for the blood glucose concentration, GL = 4 mmol/L is a lower accept-
able limit, and GU = 8 mmol/L is an upper acceptable limit. The weights
κ1–κ4 are used to balance the desirability of different deviations from the
target. As hypoglycemia is considered a more immediate risk than hyper-
glycemia, κ1 < κ2 and κ3 < κ4. The penalty function used in the simulations
is illustrated in Fig. 3. Even though the penalty function (9) is not twice dif-
ferentiable, we use the standard BFGS update procedure. G(t) is a function of
the state, x(t), in the Hovorka model. Therefore, the penalty function (9) may
be expressed as a stage cost in the form g(x(t), u(t)). The objective function
used in the simulations is

φ =

∫ tf

t0

g(x(t), u(t))dt+
η

2

N−1∑

k=0

‖∆uk‖22 (10)

where u(t) represents the rate of insulin injection at any time and ∆uk =

uk+1 − uk. Given an initial state, x0, and a CHO intake rate profile, [d(t)]
tf

t0 ,
the continuous-time Bolza problem (1) computes the optimal insulin injection

rate profile, [u(t)]
tf

t0 , as well as the optimal state trajectory, [x(t)]
tf

t0 . This
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Fig. 3. Penalty as a function of the blood glucose concentration. The shaded region
is the interval of acceptable glucose concentrations. The target glucose concentration
is 5 mmol/L. Blood glucose concentrations less than 3 mmol/L are very undesirable
as severe hypoglycemia can result in immediate dangers for the patient.

objective function has no cost-to-go function, i.e., h(x(tf )) = 0, and can be
brought into the standard form (3a) using state augmentation [12].

We use umin = 0 and a large umax such that the upper bound is never
active. (The former bound is self-evident, and the latter is consistent with
realistic insulin pump and pen specifications.) We perform the optimization
over a 24-hour window, i.e., t0 = 0 min and tf = 24 · 60 = 1440 min, using a
sampling time of Ts = 5 min (consistent with realistic CGM and insulin pump
specifications). In the scenario considered, the simulated 70-kg subject has a
62-g CHO meal at 6:00, a 55-g CHO meal at 12:00, and a 50-g CHO meal
at 18:00. To ensure an optimal blood glucose profile, a prediction horizon of
six hours, i.e., N = 6 · 12 = 72 samples, is employed in the receding horizon
strategy.

6 Optimization Results

In this section, we use the Hovorka model and the developed multiple shooting
SQP algorithm for (1) to compute insulin administration profiles for a virtual
patient with type 1 diabetes.

Fig. 4(a) depicts the optimal insulin administration profile for the scenario
in which the controller knows the size and time of all meals in advance. It
illustrates the absolutely best insulin dosage and the corresponding glucose
profile. This profile is obtained by solving the discrete-time constrained op-
timal control problem (3) given the disturbance vector d. It is evident from
Fig. 4(a) that, due to the slower absorption of insulin relative to meal-related
glucose (see Model Description), the optimal glucose concentration is achieved
by administering the insulin in advance of the meal. Knowing the meal times
and sizes allows the controller to deliver this anticipatory insulin to preempt



Nonlinear Model Predictive Control for an Artificial β-cell 307

(a) Optimal insulin administration
for the case with meal announcement
in advance of the meal. Most insulin
is taken before the meals.

(b) Optimal insulin administration
with meal announcement at meal-
time. Most insulin is taken in bolus
like form at meal time.

Fig. 4. Optimal insulin administration and blood glucose profiles.

postprandial hyperglycemia. However, the assumption that the patient would
know in advance—and with accuracy—the meal times and sizes is not practi-
cal. Safety considerations would preclude significant amounts of insulin from
being delivered prior to mealtime.

Fig. 4(b) shows the simulation results for the more practical case in which
the meals are announced to the MPC only at mealtime. Thus, the controller
can deliver no anticipatory insulin prior to meals. The limitations for this case
force the subject into (mild) hyperglycemia, but hypoglycemia is avoided. The
insulin delivery profile for this case looks qualitatively similar to bolus delivery
of insulin by a pen; most of the meal-related insulin is delivered in bolus form
within the few samples after the meals are taken (and announced). Simulated
optimal bolus treatment with a pen provides glucose profiles comparable to
the glucose profile in Fig. 4(b) (results not shown).

These results demonstrate that for realistic cases, e.g., cases for which
meal information is unknown until mealtime, acceptable control can still be
obtained.

7 Conclusion

In this paper, we described a multiple shooting SQP algorithm for the solution
of a bound-constrained discrete-time Bolza problem. Based on the Hovorka
model for people with type 1 diabetes, we use an optimal control algorithm
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to compute insulin administration profiles for the cases with and without
meal announcement in advance. The blood glucose profiles provide informa-
tion about the best achievable performance in the case where anticipatory
insulin administration is allowed, and in the case where insulin is delivered
at mealtimes. The insulin profile for the realistic case with announcement of
meals at mealtime is reminiscent of a bolus-based treatment regimen. This
suggests that, for certain situations, insulin treatment based on pen systems
may be nearly as effective as insulin treatment based on pump systems.
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Abstract:
In this paper we use open-loop constrained non-linear optimal control to compute insulin
administration profiles for people with type 1 diabetes. The algorithm is a multiple shooting
algorithm based on sequential quadratic programming (SQP) for optimisation and an explicit
Dormand-Prince Runge-Kutta method (DOPRI54) for numerical integration and sensitivity
computation. We describe the numerical details of the constrained non-linear optimal control
algorithm. The Hovorka model is used to describe a person with type 1 diabetes. We use the
model and the algorithm to compute insulin administration profiles for people with type 1
diabetes in the cases with and without meal announcement in advance. The case with advance
meal announcement results in almost perfect glucose control, but is undesirable as an insulin
therapy due to the fact that most of the meal-related insulin is injected before the meal is
actually taken. In the second, more realistic case, information about the meal is provided to
the controller as the meal is taken. In this case, the optimal insulin administration profile is
characterised by bolus-like injections of insulin coincident with the meals. These results indicate
that, for certain conditions, insulin pens may be able to provide glucose control comparable to
that of insulin pumps.

Keywords: type 1 diabetes, non-linear model predictive control, meal announcement

1. INTRODUCTION

The World Health Organization (2009) estimates that 180
million people worldwide have diabetes. This number is
projected to double by 2030. In the USA, the budget for
diabetes represents approximately 10% of the health care
budget, i.e., more than 130 billion dollars.

People with type 1 diabetes produce negligible amounts
of pancreatic insulin. To maintain normal blood glucose
concentrations, or normoglycaemia (approximately 60–140
mg/dL or 3.3–7.8 mmol/L), exogenous insulin must be
injected. The glucose concentration must be regulated
around 90 mg/dL and kept in the normoglycaemic range
in order to avoid diabetes-related complications. Persis-
tent high blood glucose concentrations above 140 mg/dL
(hyperglycaemia) cause vascular, nerve, eye and kidney
diseases. On the other hand, very low blood glucose con-
centrations (hypoglycaemia) can cause insulin shock or
coma.

Insulin reduces the glucose concentration in the blood by
facilitating the uptake of glucose into liver cells, where
it can be stored as glycogen, and into peripheral tissue
cells (muscles and adipose), where it can be stored or
metabolised. Two types of insulin secretion patterns are

? Funding for this research as part of the DIACON project from the
Danish Council for Strategic Research is gratefully acknowledged.

used by a normal, fully functional pancreas. First, a low,
relatively constant basal rate of insulin is needed to coun-
teract the glucose secreted by the conversion of glycogen
to glucose in the liver (endogenous glucose production, or
EGP). In addition to EGP, the major disturbance affecting
the blood glucose levels is the absorption of carbohydrates
(CHO) from meals. To offset these large loads of glucose,
insulin is secreted in rapidly released boluses.

The challenge, then, for people with type 1 diabetes, is to
try to mimic these insulin delivery patterns of a normal
pancreas as closely as possible. Exogenous insulin therapy
is often based on several (say, 4–8) blood glucose mea-
surements per day, some of which are typically taken just
before meals. Rapid-acting insulin analogues are injected
as boluses to compensate for the CHO in the meal and
correct the current blood glucose level if necessary. Long-
acting insulin analogues are taken infrequently (say, once
per day) to counteract EGP. In well controlled subjects,
the outcome of this therapy is illustrated in Fig. 1. Fig.
1 shows the daily glucose concentration tracings for one
subject for seven consecutive days. Clearly, there is much
room for improvement in the degree of glucose control.
Significant parts of days are spent in the hyperglycaemic
range, and occasionally hypoglycaemic events do occur.

Digestion and absorption of CHO from the gastrointestinal
tract into the blood is generally faster than absorption of



Fig. 1. Glucose concentration variations in a person with
type 1 diabetes for 5 consecutive days using conven-
tional insulin therapy based on discrete glucose mea-
surements and discrete insulin injections. The green-
shaded area represents the normoglycaemic range.

Fig. 2. Closed-loop glucose control. Glucose is measured
subcutaneously using a continuous glucose monitor
(CGM). Insulin is dosed either continuously by an
insulin pump or discretely using an insulin pen.

subcutaneously injected insulin into the blood. Further-
more, the glucose-insulin dynamics are complex and non-
linear. Thus, with infrequent, discrete measurements of
blood glucose and estimates of the CHO content in meals,
it is not surprising that the degree of control depicted in
Fig. 1 is typical of conventional insulin therapy.

To improve the glycaemic control by fine-tuning their
insulin therapy, people with type 1 diabetes are using
continuous glucose monitors (CGMs) more prevalently.
These CGMs continuously (every one to few minutes) mea-
sure the subcutaneous glucose concentration. In addition,
insulin pumps that can continuously infuse rapid-acting
insulin are becoming more popular. The combination of
these two medical devices has inspired much research inter-
est in an artificial beta-cell (pancreas) that automatically
adjusts the insulin dosage to control the blood glucose in
people with type 1 diabetes. This concept is illustrated in
Fig. 2. Several research groups worldwide are investigating
aspects of control algorithms integrating the CGM and the
insulin pump to automatically adjust insulin administra-
tion for people with type 1 diabetes, such as Klonoff et al.
(2009).

The quality of the glucose control is limited by the time lag
associated with subcutaneous-to-intravenous insulin ab-
sorption. In some mathematical descriptions of the phys-
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Fig. 3. Diagram of the Hovorka model.

iology, such as that of Hovorka et al. (2004), the ab-
sorption and transport of subcutaneously injected insulin
to systemic circulation is modeled as linear second order
process with time constants of τS = 55 min. Digestion and
absorption of CHO is similarly modelled as a linear second
order process, but with time constants of τD = 40 min.
These absorption models and their relation to glucose-
insulin dynamics in the Hovorka model are illustrated
in Fig. 3. This system property fundamentally limits the
control quality that can be achieved in closed-loop insulin
administration.

In this paper, we use constrained non-linear optimal con-
trol theory to compute the optimal insulin injection rates
during a day. The computed profiles are open loop profiles
and are not based on feedback. We consider the case
when the meals throughout the day are announced to the
controller in advance, and the case when the meals are only
announced to the controller when they are taken. Knowing
the ideal insulin administration profiles, we compare and
discuss the advantages, disadvantages, and implications
of these solutions. In particular, we address the issue of
whether we can expect fundamentally better insulin ther-
apy with pumps than with pens in the limiting case of
perfect meal information.

The paper is structured as follows. The constrained non-
linear optimal control problem is presented in Section 2.
Section 3 presents an quasi-Newton SQP algorithm with
line search for solution of the discrete-time constrained
non-linear Bolza problem. The numerical procedures for
integration of the differential equations and computation
of their sensitivities are also presented in Section 3. The
non-linear model predictive controller and the scenarios
are stated in Section 4. Section 5 applies the constrained
non-linear optimal control algorithm to compute insulin
administration profiles for virtual subjects with type 1
diabetes. Conclusions are provided in Section 6.

2. PROBLEM FORMULATION

In this section, we state and discuss the continuous-time
optimal control problem that we use to compute the in-
sulin injection profiles for people with type 1 diabetes. We
also discuss a numerically tractable discrete-time approx-
imation to the continuous-time optimal control problem.



The bound constrained continuous-time Bolza problem

min
[x(t),u(t)]

tf
t0

φ =

∫ tf

t0

g(x(t), u(t))dt+ h(x(tf )) (1a)

s.t. x(t0) = x0 (1b)

ẋ(t) = f(x(t), u(t), d(t)) t ∈ [t0, tf ]
(1c)

umin ≤ u(t) ≤ umax t ∈ [t0, tf ]
(1d)

is used to compute the optimal insulin administration.
x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the manip-
ulated inputs, and d(t) ∈ Rnd are known disturbances.
ẋ(t) = f(x(t), u(t), d(t)) represents the model equations.
The initial time, t0, and the final time, tf , are specified
parameters. The initial state, x0, is a known parameter in
(1). The inputs are bound constrained and must be in the
interval u(t) ∈ [umin, umax].

The objective function is stated generally with a stage cost
term, g(x(t), u(t)), and a cost-to-go term, h(x(tf )). The
numerical algorithms for the problem are derived using
this general structure of the objective function.

In the insulin administration problem, the stage cost term
is a penalty function, the cost-to-go term is zero, and the
model equations are represented by the Hovorka model
Hovorka et al. (2004). u(t) represents the rate of insulin
injection at any time and d(t) represents the carbohydrates
(CHO) intake rate at any time. Given an initial state, x0,

and a CHO intake rate profile, [d(t)]
tf
t0 , the continuous-time

Bolza problem (1) computes the optimal insulin injection

rate profile, [u(t)]
tf
t0 , as well as the optimal state trajectory,

[x(t)]
tf
t0 .

2.1 Discrete-Time Approximation

The continuous-time bound constrained Bolza problem (1)
is approximated by a numerical tractable discrete-time
bound constrained Bolza problem using the zero-order-
hold input parametrisation of the manipulated variables,
u(t), as well as the known disturbance variables, d(t).
We divide the time interval, [t0, tf ], into N equidistant
intervals each of length Ts. Let N = {0, 1, ..., N − 1} and
tk = t0 + kTs for k ∈ N . The zero-order-hold restriction
on the input variables, u(t) and d(t), imply

u(t) = uk tk ≤ t < tk+1 k ∈ N (2a)

d(t) = dk tk ≤ t < tk+1 k ∈ N (2b)

Using this zero-order-hold restriction on the inputs, the
bound constrained continuous-time Bolza problem may be
expressed as

min
{xk+1,uk}N−1

k=0

φ =
N−1∑

k=0

Gk(xk, uk, dk) + h(xN ) (3a)

s.t. bk := Fk(xk, uk, dk)− xk+1 = 0 k ∈ N
(3b)

umin ≤ uk ≤ umax k ∈ N
(3c)

The discrete-time state transition function is

Fk(xk, uk, dk) = {x(tk+1) : ẋ(t) = f(x(t), uk, dk), x(tk) = xk}
(4)

and the discrete time stage cost is

Gk(xk, uk, dk) = {
∫ tk+1

tk

g(x(t), uk)dt :

ẋ(t) = f(x(t), uk, dk), x(tk) = xk}
(5)

3. NUMERICAL OPTIMISATION ALGORITHM

In this section, we develop a multiple-shooting based SQP
algorithm described in Diehl et al. (2009) and in Bock and
Plitt (1984) for the numerical solution of (1). The SQP
algorithm is based on line search. The structure of the
quadratic sub-problems are utilised and they are solved
by a primal-dual interior-point algorithm using Riccati
iterations, as in Jørgensen (2005) and Rao et al. (1998).
The DOPRI54 scheme derived in Dormand and Prince
(1980) is used for numerical solution of the differential
equation model and sensitivities.

3.1 SQP Algorithm

Define the parameter vector, p, as

p =
[
u′0 x

′
1 u
′
1 x
′
2 . . . x

′
N−1 u

′
N−1 x

′
N

]′
, (6)

and the disturbance vector, d =
[
d′0 d

′
1 . . . d

′
N−1

]′
, such

that the discrete time dynamics may be represented by

b(p) = b(p;x0, d) =




F0(x0, u0, d0)− x1

F1(x1, u1, d1)− x2

...
FN−1(xN−1, uN−1, dN−1)− xN




(7)
and the objective function may be denoted

φ(p) = φ(p;x0, d) =
N−1∑

k=0

Gk(xk, uk,d ) + h(xN ) (8)

Let c(p) denote the bound constraints, i.e.

c(p) =




u0 − umin

u1 − umin

...
uN−1 − umin

umax − u0

umax − u1

...
umax − uN−1




. (9)

Then the bound constrained discrete-time Bolza problem
may be expressed as a constrained optimisation problem
in standard form

min
p

φ = φ(p) (10a)

s.t. b(p) = 0 (10b)

c(p) ≥ 0 (10c)

The concise formulation (10) is useful for presentation of
the numerical optimisation algorithm used for solving the
bound constrained continuous-time Bolza problem (1).

The Lagrangian of (10) is

L(p, y, z) = φ(p)− y′b(p)− z′c(p) (12)



Algorithm 1 SQP Algorithm for (10)

Require: Initial guess: (p0, y0, z0) with z0 ≥ 0.
Compute: φ(p0),∇pφ(p0), b(p0),∇pb(p

0), c(p0),∇pc(p
0)

Set λ = 0, µ = 0, W 0 = I
while NOT stop do

Compute (∆pk, ỹk+1, z̃k+1) by solution of:

min
∆p

1

2
∆p′W k∆p+∇pφ

′(pk)∆p (11a)

s.t.
[
∇pb(p

k)
]′

∆p = −b(pk) (11b)
[
∇pc(p

k)
]′

∆p ≥ −c(pk) (11c)

Compute ∆yk = ỹk+1 − yk and ∆zk = z̃k+1 − zk
Update the penalty parameter:
µ← max{|z|, 1

2 (µ+|z|)} and λ← max{|y|, 1
2 (λ+|y|)}

Compute α using soft line search and Powell’s `1 merit
function (14).
pk+1 = pk + α∆pk, yk+1 = yk + α∆yk, zk+1 = zk +
α∆zk

Compute φ(pk+1),∇pφ(pk+1), c(pk+1), ∇pc(p
k+1),

b(pk+1) and ∇pb(p
k+1)

Compute W k+1 by Powell’s modified BFGS update.
k ← k + 1.

end while

and the first order KKT conditions

∇pL(p, y, z) = ∇pφ(p)−∇pb(p)y −∇pc(p)z = 0 (13a)

b(p) = 0 (13b)

c(p) ≥ 0 (13c)

z ≥ 0 (13d)

ci(p) = 0 ∨ zi = 0 ∀i (13e)

are used to test convergence of the SQP algorithm (Alg.
1).

The steps for solution of (10) by an SQP algorithm with
line search are listed in Algorithm 1. The line search is
based on Powell’s `1 penalty function

P (p) = φ(p) + λ′|b(p)|+ µ′|min{0, c(p)}| (14)

and the Armijo sufficient decrease condition. The penalty
vectors, λ and µ, are selected such that they are numeri-
cally larger than the corresponding Lagrange multipliers,
i.e. λ ≥ |y| and µ ≥ z where y is the Lagrange multipliers
associated with (10b) and z is the Lagrange multipliers
associated with (10c).

3.2 Gradient Computation

The most time consuming computations in Algorithm 1
are computation of the objective function φ(p), computa-
tion of the derivatives of the objective function ∇pφ(p),
computation of the dynamics b(p), and computation of
the sensitivities, ∇pb(p), associated with the dynamics.
b(p) and φ(p) are computed by evaluation of (4) and (5),
respectively. Consequently

bk = bk(xk, xk+1, uk, dk) = Fk(xk, uk, dk)− xk+1

(15a)

∇xk
bk = ∇xk

Fk(xk, uk, dk) = Sxk
(tk+1)′ = A′k (15b)

∇uk
bk = ∇uk

Fk(xk, uk, dk) = Suk
(tk+1)′ = B′k (15c)

∇xk+1
bk = −I (15d)

where x(tk+1) = F (xk, uk, dk) and

ẋ(t) = f(x(t), uk, dk) (16a)

Ṡxk
(t) =

(
∂f

∂x
(x(t), uk, dk)

)
Sxk

(t) (16b)

Ṡuk
(t) =

(
∂f

∂x
(x(t), uk, dk)

)
Suk

(t) +

(
∂f

∂u
(x(t), uk, dk)

)

(16c)

with the initial conditions x(tk) = xk, Sxk
(tk) = I, and

Suk
(tk) = 0. The stage cost and the associated derivatives

are computed as

Gk = Gk(xk, uk, dk) =

∫ tk+1

tk

g(x(t), uk, dk)dt (17a)

qk = ∇xk
Gk =

∫ tk+1

tk

(
∂g

∂x
(x(t), uk, dk)

)
Sxk

(t)dt

(17b)

rk = ∇uk
Gk =

∫ tk+1

tk

[(
∂g

∂x
(x(t), uk, dk)

)
Suk

(t)

+

(
∂g

∂u
(x(t), uk, dk)

)]
dt (17c)

The derivatives ∇xk
bk and ∇xk

Gk are computed for

{xk}N−1
k=1 and k ∈ N . These derivatives are not computed

for x0 as x0 /∈ p, i.e. x0 is a fixed parameter of the
optimisation problem but not a decision variable. The
derivatives ∇uk

bk and ∇uk
Gk are computed for k ∈ N .

The derivatives with respect to xN are

∇xN
bN−1 = −I (18a)

pN = ∇xN
φ = ∇xN

h(xN ) (18b)

In evaluation of the functions and derivatives needed in the
SQP algorithm, i.e. evaluation of φ(p), ∇pφ(p), b(p), and
∇pb(p), the major computational task is solution to the
differential equations (16) and evaluation of the associated
quadrature equations (17). The Hovorka model is a non-
stiff system of differential equations. Therefore, we use an
embedded Dormand-Prince explicit Runge-Kutta scheme
(DOPRI54) described in Dormand and Prince (1980) for
solution of the differential equations (16) and integration
of the quadrature equations (17). The Butcher tableau (see
Butcher (2003)) of the DOPRI54 method is listed in Table
1. The DOPRI54 method has 7 stages, the advancing step,
x, has order 5, and the error estimator, e, has order 4.
A special DOPRI54 method tailored for solution of (16)-
(17) has been implemented. In this implementation, we
re-use the internal stages computed by solution of (16)
in the evaluation of the quadrature equation (17). The
implementation uses an adaptive time step based on PI-
control developed by Gustafsson (1992).

When p is given as in the multiple shooting algorithm,
evaluation of c(p) and ∇pc(p) becomes trivial. As c(p)
represents the bound constraints, umin ≤ uk ≤ umax

for k ∈ N , ∇pc(p) is a constant and the corresponding
constraints in the quadratic program (11) become bound
constraints as well.

4. APPLICATION TO AN ARTIFICIAL PANCREAS

In this section we state and discuss the objective function
and the scenarios used in the simulations. We also state
the strategy for the non-linear model predictive controller.



Table 1. Butcher tableau for the DOPRI54
method.

0 0 0 0 0 0 0 0
1
5

1
5

0 0 0 0 0 0
3
10

3
40

9
40

0 0 0 0 0
4
5

44
55

−56
15

32
9

0 0 0 0
8
9

19372
6561

−25360
2187

64448
6561

−212
729

0 0 0

1 9017
3168

−355
33

46732
5247

49
176

−5103
18656

0 0

1 35
384

0 500
1113

125
192

−2187
6784

11
84

0

x 5179
57600

0 7571
16695

393
640

−92097
339200

187
2100

1
40

x̂ 35
384

0 500
1113

125
192

−2187
6784

11
84

0

e 71
57600

0 −71
16695

71
1920

−17253
339200

22
525

−1
40

4.1 Non-linear Model Predictive Control (NMPC)

NMPC is a receding horizon control technology that re-
peatedly solves open-loop non-linear optimal control prob-
lems and implements the computed optimal control asso-
ciated to the current time period (see e.g. Rawlings and
Mayne (2009)). In this contribution, we use a receding
horizon strategy to compute the ideal insulin adminis-
tration profile for people with type 1 diabetes. In order
to obtain the ideal insulin profile, the NMPC uses state
feedback and relative long prediction horizons.

4.2 Objective Function with Soft Output Constraints

The objective of the insulin administration is to compen-
sate glucose excursions caused by meals and variations in
endogenous glucose production and utilisation. We use a
penalty function defined as

ρ(G(t)) =
κ1

2
|max{0, G(t)− Ḡ}|2

+
κ2

2
|max{0, Ḡ−G(t)}|2

+
κ3

2
|max {0, G(t)−GU}|2

+
κ4

2
|max {0, GL −G(t)}|2

(19)

G(t) is the blood glucose concentration, Ḡ = 5 mmol/L
is the target value for the blood glucose concentration,
GL = 4 mmol/L is a lower acceptable limit on the glucose
concentration, and GU = 8 mmol/L is an upper acceptable
limit on the blood glucose concentration. The weights
κ1-κ4 are used to balance the desirability of different
deviations from the target. As hypoglycaemia is considered
worse than hyperglycaemia, κ1 < κ2 and κ3 < κ4. The
penalty function used in the simulations is illustrated
in Fig. 4. G(t) is a function of the state, x(t), in the
Hovorka model. Therefore, the penalty function (19) may
be expressed as a stage cost in the form g(x(t), u(t)). The
objective function used in the simulations is

φ =

∫ tf

t0

g(x(t), u(t))dt+
η

2

N−1∑

k=0

‖∆uk‖22 (20)

where ∆uk = uk − uk−1. This objective function has no
cost-to-go function, i.e. h(x(tf )) = 0, and can be brought
into the standard form (3a) using state augmentation
formulated by Rawlings and Mayne (2009).

We use umin = 0 and a large umax such that the upper
bound is never active. We do the optimisation in a 24
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Fig. 4. Penalty as a function of the blood glucose con-
centration. The green shaded area is an interval of
acceptable glucose concentrations. The target glucose
concentration is 5 mmol/L. Blood glucose concen-
trations less than 3 mmol/L is very undesirable as
people may fall into coma at this low blood glucose
concentration.

hour window, i.e. t0 = 0 min and tf = 24 · 60 min, using a
sampling time of Ts = 5 min. In the scenario considered,
the simulated 70 kg subject has a 62 g CHO meal at 6:00,
a 55 g CHO meal at 12:00, and a 50 g CHO meal at 18:00.
To ensure an optimal blood glucose profile, a prediction
horizon of six hours, i.e., N = 6 · 12 = 72 samples, is
employed in the receding horizon strategy.

5. SIMULATION RESULTS

In this Section, we use the model developed by Hovorka
et al. (2004) and the developed multiple shooting SQP al-
gorithm for (1) to compute insulin administration profiles
for people with type 1 diabetes.

Fig. 5 illustrates an optimal insulin administration profile
for the described scenario in the case where the controller
knows the size and time of all meals in advance. Knowing
the meal times and sizes allows the controller to deliver
anticipatory insulin to pre-empt postprandial hypergly-
caemia. However, the assumption that the patient would
know in advance - and with accuracy - the meal times and
sizes is not practical. Safety considerations would preclude
significant amounts of insulin from being delivered prior to
mealtime (as in this ideal scenario).

Fig. 6 shows the simulation results for the case in which
the meals are announced to the MPC only at mealtime.
Thus, the controller can deliver no anticipatory insulin
prior to meals. The limitations for this case force the
subject into (mild) hyperglycaemia, but hypoglycaemia
is avoided. The insulin delivery profile for this case looks
quite similar to bolus delivery of insulin by a pen; most of
the meal-related insulin is delivered in bolus form in the
few samples after the meals are taken (and announced).
Simulated optimal bolus treatment with a pen provides
glucose profiles comparable to the glucose profile in Fig.
6.



Fig. 5. Glucose profile (top), meal disturbances (middle)
and optimal insulin administration profile (bottom)
for the case with meal announcement in advance of
the meal. Most insulin is taken before the meals.

Fig. 6. Glucose profile (top), meal disturbances (middle)
and optimal insulin administration profile (bottom)
with meal announcement at meal time. Most insulin
is taken in bolus like form at meal time.

These results demonstrate that for realistic cases, i.e.,
cases for which meal information is unknown until meal-
time, reasonably good control can still be obtained. Per-
haps more importantly, the bolus like nature of the insulin
profile in this case suggests that a pen-based system may
be able to achieve control comparable to that of a pump.

6. CONCLUSION

In this paper, we described a multiple shooting SQP
algorithm for solution of a bound constrained continuous-
time Bolza problem. Based on the model developed by
Hovorka et al. (2004) for people with type 1 diabetes,
we use our optimal control algorithm to compute insulin
administration profiles for the cases with and without
meal announcement in advance. The insulin profile for the
realistic case with announcement of meals at mealtime is
bolus like. This suggests that insulin treatment based on
pen-systems may be nearly as effective as insulin treatment
based on pump systems.
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F. Allgöwer (eds.), Nonlinear Model Predictive Con-
trol. Towards New Challenging Applications, 391–417.
Springer, Berlin, Germany.

Dormand, J.R. and Prince, P.J. (1980). A family of em-
bedded runge-kutta formulae. Journal of Computational
and Applied Mathematics, 6(1), 19 – 26.

Gustafsson, K. (1992). Control of Error and Convergence
in ODE Solvers. Ph.D. thesis, Department of Automatic
Control, Lund Institute of Technology.

Hovorka, R., Canonico, V., Chassin, L.J., Haueter, U.,
Massi-Benedetti, M., Federici, M.O., Pieber, T.R.,
Schaller, H.C., Schaupp, L., Vering, T., and Wilinska,
M.E. (2004). Nonlinear model predictive control of
glucose concentration in subjects with type 1 diabetes.
Physiological Measurement, 25, 905–920.

Jørgensen, J.B. (2005). Moving Horizon Estimation and
Control. Ph.D. thesis, Department of Chemical Engi-
neering, Technical University of Denmark.

Klonoff, D.C., Cobelli, C., Kovatchev, B., and Zisser,
H.C. (2009). Progress in development of an artificial
pancreas. Journal of Diabetes Science and Technology,
3, 1002–1004.

Rao, C.V., Wright, S., and Rawlings, J.B. (1998). Ap-
plication of interior-point methods to model predictive
control. Journal of Optimization Theory and Applica-
tions, 99(3), 723 – 757.

Rawlings, J.B. and Mayne, D.Q. (2009). Model Predictive
Control: Theory and Design. Nob Hill Publishing,
Madison, Wisconsin, USA.

World Health Organization (2009). Diabetes (fact sheet
no. 312). WHO Web site:
http://www.who.int/mediacentre/factsheets/fs312/en/.





APPENDIX D
Paper C

Optimal insulin administration for People with Type 1
Diabetes

Authors:

Dimitri Boiroux, Daniel Aaron Finan, John Bagterp Jørgensen, Niels Kjøl-
stad Poulsen, and Henrik Madsen

Published in:

Proceedings of the 9th International Symposium on Dynamics and Control
of Process Systems (DYCOPS 2010), pages 234-239, 2010.

151



Optimal Insulin Administration

for People with Type 1 Diabetes

Dimitri Boiroux ∗ Daniel A. Finan ∗ John Bagterp Jørgensen ∗

Niels Kjølstad Poulsen ∗ Henrik Madsen ∗

∗ Department of Informatics and Mathematical Modeling,
Technical University of Denmark, DK-2800 Kgs Lyngby, Demmark

(e-mail: {dibo,dafi,jbj,nkp,hm}@imm.dtu.dk)

Abstract: In this paper we apply receding horizon constrained optimal control to the
computation of insulin administration for people with type 1 diabetes. The study is based on the
Hovorka model, which describes a virtual subject with type 1 diabetes. First of all, we compute
the optimal insulin administration for the linearized system using quadratic programming
(QP) for optimization. The optimization problem is a discrete-time problem with soft state
constraints and hard input constraints. The computed insulin administration is applied to the
nonlinear model, which represents the virtual patient. Then, a nonlinear discrete-time Bolza
problem is stated and solved using sequential quadratic programming (SQP) for optimization
and an explicit Dormand-Prince Runge-Kutta method (DOPRI54) for numerical integration
and sensitivity computation. Finally, the effects of faster acting insulin on the postprandial
(i.e., post-meal) blood glucose peak are discussed.
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1. INTRODUCTION

The World Health Organization (2008) estimates that 180
million people worldwide have diabetes. This number is
predicted to double by 2030. In the USA, the budget for
diabetes alone represents 10% of the health care budget, or
more than 130 billion dollars (132 billion dollars in 2002).

In people without diabetes, the blood glucose is controlled
tightly around 90 mg/dL (∼5 mmol/L). Type 1 diabetes
is a chronic disease characterized by an insufficient (ef-
fectively nonexistent) endogenous production of insulin,
which leads to poor regulation of glucose concentrations
in the blood. In particular, the deficiency of insulin causes
sustained high glucose levels (hyperglycemia) that result in
serious long-term health problems like eye, nerve, and kid-
ney disease. On the other hand, too much insulin can result
in very low glucose levels (hypoglycemia) which can pose
immediate health risks. Exogenous insulin, then, must be
injected to regulate the blood glucose concentration as
tightly as possible.

Usually, insulin treatment consists of the administration of
rapid acting insulin through boluses (i.e., discrete insulin
administration) at the time of meals. The size of the bolus
is based on a measurement of the current blood glucose at
mealtime and the (estimated) size of the meal. However,
having measurements only at mealtime does not provide
enough information about blood glucose. Hypoglycemic
and hyperglycemic events can go unobserved due to the in-
frequent blood glucose measurements. In addition, such a
measurement process does not give any information about
the dynamic trend of the blood glucose. Consequently,
⋆ Funding for this research as part of the DIACON project from the
Danish Council for Strategic Research is gratefully acknowledged.

Fig. 1. Closed-loop glucose control. Glucose is measured
subcutaneously using a continuous glucose monitor
(CGM). Insulin is dosed either continuously by an
insulin pump or discretely using an insulin pen.

people with diabetes often tolerate hyperglycemia in order
to avoid hypoglycemia and its immediate effects.

Continuous glucose monitors (CGM) can help to provide a
better control of blood glucose. They measure the glucose
concentration in the subcutaneous depot. Insulin pumps
that continuously inject fast acting insulin have also been
developed. Combining a CGM with an insulin pump can
enable automatic insulin administration for people with
type 1 diabetes. Such a medical device is called an artificial
pancreas and is illustrated in Fig. 1. Several research
groups work on aspects of control algorithms integrating
the CGM and the insulin pump to automatically adjust
insulin administration for people with type 1 diabetes (see
e.g. Klonoff et al. (2009)).

In this paper we describe the Hovorka model and use this
description to point to the factors limiting ideal glucose
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Fig. 2. Diagram of the Hovorka model.

control by insulin administration. One factor limiting the
performance is the relative long absorption time of insulin.
Using open-loop NMPC we describe quantitatively the
maximal postprandial glucose in relation to the insulin
absorption rate.

The paper is structured as following. Section 2 presents
the model developed by Hovorka et al. (2004). Section
3 states an optimal control problem in the linear case.
Section 4 presents the nonlinear optimal control problem
and discusses the benefits of having faster-acting insulin.
Conclusions are provided in Section 5.

2. MODEL

For the study of insulin administration and its effect
on glucose concentrations we use a model developed by
Hovorka et al. (2002, 2004). The model consists of a
submodel describing food absorption, a submodel describ-
ing subcuteneous-to-intravenous absorption of insulin, a
simple lumped model describing the glucose dynamics,
and simple lumped models describing insulin dynamics
and action mechanisms. In the following we describe these
models.

2.1 Food Absorption

Food absorption models have been considered by a number
of authors (Elashoff et al., 1982; Lehmann and Deutsch,
1992; Dalla Man et al., 2006; Goetze et al., 2007) and it has
been observed that people with diabetes has abnormally
slow gastric emptying (Horowitz et al., 2002).

In this paper, we consider a two-compartment model
describing carbohydrate (CHO) absorption and conversion
to glucose. The model describes the effect of orally ingested
carbohydrates on the rate of appearance of glucose in the
blood stream. The model is

dD1

dt
(t) = AGD(t) −

1

τD

D1(t) (1a)

dD2

dt
(t) =

1

τD

D1(t) −
1

τD

D2(t) (1b)

in which D(t) [mmol/min] is the amount of oral carbohy-
drate intake at any time expressed as glucose equivalents,
AG is a factor describing the utilization of carbohydrates

to glucose, τD [min] is the time constant, D1(t) [mmol]
and D2(t) [mmol] are the states describing the amount of
glucose in the two compartments. The rate of appearance
of absorption of glucose in the blood stream is described
by

UG(t) =
1

τD

D2(t) (2)

UG(t) [mmol/min] is the glucose absorption rate. The
carbohydrate input rate, D(t) [mmol/min], may be related
to the carbohydrate input rate, d(t) [g/min], by

D(t) =
1000

MwG

d(t) (3)

in which MwG [g/mol] is the molecular weight of glucose.

2.2 Insulin Absorption

Insulin is administered subcutaneously. A number of mod-
els to describe the absorption rate of subcutaneously in-
jected short acting insulin in the blood stream are available
(Wilinska et al., 2005).

In this paper we consider a two compartment model de-
scribing the absorption rate of subcutaneously adminis-
tered short acting insulin. The model is

dS1

dt
(t) = u(t) −

1

τS

S1(t) (4a)

dS2

dt
(t) =

1

τS

S1(t) −
1

τS

S2(t) (4b)

in which u(t) [mU/min] is the amount of insulin injected,
τS [min] is the time constant, S1(t) [mU] and S2(t) [mU]
are the amounts of insulin in the two compartments. The
absorption rate of insulin in the blood stream is

UI(t) =
1

τS

S2(t) (5)

in which UI(t) [mU/min] is the absorption rate.

2.3 Glucose Subsystem

The blood glucose dynamics are modeled with two com-
partments. The two state variables are Q1(t) [mmol] and
Q2(t) [mmol]. Q1(t) represents glucose in the main blood
stream, while Q2(t) represents glucose in peripheral tissue
such as muscles.

The model describing evolution of glucose in the main
blood stream

dQ1

dt
(t) = UG(t) − F01,c(t) − FR(t)

− x1(t)Q1(t) + k12Q2(t)

+ EGP0(1 − x3(t))

(6)

includes absorption from the gut, UG(t) [mmol/min], con-
sumption of glucose by the central nervous system, F01,c

[mmol/min], the renal excretion of glucose in the kid-
neys, FR(t) [mmol/min], the insulin dependent uptake
of glucose in muscles, x1(t)Q1(t) [mmol/min], transfer of
glucose from peripheral tissue such as muscle to the blood,
k12Q2(t), and endogenous release of glucose by the liver,
EGP0(1−x3(t)). The uptake of glucose in muscles depends
on insulin. x1(t) is a state representing insulin in muscle
tissue. Release of glucose from the liver is also controlled
by insulin. High concentrations of insulin suppress glucose
release. x3(t) is used to model insulin in the liver.
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Glucose in peripheral tissue such as muscle is modeled by
the differential equation

dQ2

dt
(t) = x1(t)Q1(t) − (k12 + x2(t))Q2(t) (7)

in which x1(t)Q1(t) [mmol/min] is the transport of glucose
from the main blood stream to the muscles, k12Q2(t)
[mmol/min], is transport of peripheral glucose to the
main blood stream, and x2(t)Q2(t) [mmol/min] is the
insulin dependent disposal of glucose in the muscle cells.
It depends on insulin modeled by x2(t).

The glucose concentration is

y(t) = G(t) =
Q1(t)

VG

(8)

y(t) = G(t) is the glucose concentration [mmol/L] and
VG is the glucose distribution volume. It depends on body
weight, BW [kg], of the individual.

The consumption of glucose by the central nervous systems
is modeled as

F01,c(t) =

{

F01 G(t) ≥ 4.5 mmol/L

F01G(t)/4.5 otherwise
(9)

At low glucose concentrations the consumption, F01,c

[mmol/min], is proportional to the glucose concentration,
G(t), while it is constant when the glucose concentration
is not low.

The excretion rate of glucose in the kidneys is zero unless
the glucose concentration is high (G(t) ≥ 9 mmol/L).
In this case it is affine in the glucose concentration.
Consequently, the glucose excretion rate, FR [mmol/min],
is modeled as

FR(t) =

{

0.003(G(t) − 9)VG G(t) ≥ 9 mmol/L

0 otherwise
(10)

2.4 Insulin Subsystem

Then the plasma insulin concentration, I(t) [mU/L],
evolves according to

dI

dt
(t) =

UI(t)

VI

− keI(t) (11)

The insulin action is governed by influence on transport
and distribution x1(t), utilization and phosphorylation of
glucose in adipose tissue x2(t), and endogenous production
in the liver x3(t). These quantities are described by the
differential equations

dx1

dt
(t) = −ka1x1(t) + kb1I(t) (12a)

dx2

dt
(t) = −ka2x2(t) + kb2I(t) (12b)

dx3

dt
(t) = −ka3x3(t) + kb3I(t) (12c)

2.5 Parameters

The parameters in the Hovorka model (1)-(12) are listed
in Table 1. The parameters kb,i are related to the insulin
sensitivities, SI,i, by

kb,i = SI,ika,i i = 1, 2, 3 (13)

Table 1. Parameters in the Hovorka Model.

Symbol Value Unit

Transfer rate k12 0.066 1/min

Deactivation rate ka1 0.006 1/min

Deactivation rate ka2 0.06 1/min

Deactivation rate ka3 0.03 1/min

Insulin elimination rate ke 0.138 1/min

CHO absorption constant τD 40 min

Insulin absorption constant τS 55 min

CHO utilization AG 0.8 -

Transport insulin sensitivity SI,1 51.2 · 10−4 L/mU

Disposal insulin sensitivity SI,2 8.2 · 10−4 L/mU

EGP insulin sensitivity SI,3 520 · 10−4 L/mU

Insulin distribution volume VI

BW
0.12 L/kg

Glucose distribution volume VG

BW
0.16 L/kg

Liver glucose production EGP0

BW
0.0161 mmol

min
/kg

CNS glucose consumption F01

BW
0.0097 mmol

min
/kg

Some parameters are related to the body weight, BW [kg],
of the individual being considered. For a 70 kg person
(BW = 70 kg), these parameters are

VI = 0.12 L/kg · 70 kg = 8.4 L (14a)

VG = 0.16 L/kg · 70 kg = 11.2 L (14b)

EGP0 = 0.0161
mmol

min
/kg · 70 kg = 1.1270

mmol

min
(14c)

F01 = 0.0097
mmol

min
/kg · 70 kg = 0.6790

mmol

min
(14d)

The European unit for glucose concentration is mmol/L
and the American unit is mg/dL. One can convert be-
tween these units using the molecular weight of glucose
(C6H12O6): MwG = 180.1577 g/mol.

3. LINEAR MODEL PREDICTIVE CONTROL

In this section, we formulate and discuss the linearized
optimal control problem. Let x(t) ∈ Rnx be the state
vector, u(t) ∈ Rnu be the manipulated inputs, and d(t) ∈
Rnd be known disturbances.

A zero-order hold parametrization for the manipulated
variables function u and the disturbance function d is used.
We divide the time interval, [t0, tf ], into N equidistant
intervals, each of length Ts. We denote
N = {0, 1, ..., N − 1} and tk = t0 + kTs for k ∈ N . The
zero-order hold restrictions on d and u imply

u(t) = uk tk ≤ t < tk+1 k ∈ N (15a)

d(t) = dk tk ≤ t < tk+1 k ∈ N (15b)

3.1 Hard Output Constraints

Using the zero-order hold parametrization (15), the linear
discrete-time optimal control problem may be expressed
as
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min
{uk}

N−1

k=0

φ = φ
(

{uk, yk+1, rk+1}
N−1

k=0

)

(16a)

s.t. xk+1 = Axk + Buk + Edk (16b)

yk = Cxk (16c)

umin ≤ uk ≤ umax (16d)

∆umin ≤ ∆uk ≤ ∆umax (16e)

ymin ≤ yk ≤ ymax (16f)

in which xk ∈ Rnx is the state vector at time tk, and yk is
the measured output at time tk. The manipulated inputs
uk and the difference ∆uk = uk+1 − uk must lie in the
interval [umin, umax] and [∆umin, ∆umax] respectively.

The objective function φ is in the form

φ =
1

2

N−1
∑

k=0

‖yk+1 − rk+1‖
2
2 + λ‖∆uk‖

2
2 (17)

Furthermore, the measured output yk must lie in the in-
terval [ymin, ymax]. In the insulin administration problem,
it means that the blood glucose at sample times must be
kept in the normoglycemic range (60-140 mg/dL or 3.3-7.8
mmol/L).

However, infeasibility of (16) might arise due to the hard
constraints on the measured output yk. Consequently, it is
preferable to replace the hard constraints (16f) with soft
output constraints.

3.2 Soft Output Constraints

The hard constraints (16f) are replaced by soft constraints
using the slacks variables vk and wk. The new objective
function is

φ =
1

2

N−1
∑

k=0

‖yk+1 − rk+1‖
2
2 + λ‖∆uk‖

2
2+

κ1‖vk‖
2
2 + κ2‖wk‖

2
2

(18)

The two new terms κ1‖vk‖2
2 + κ2‖wk‖2

2 correspond to
penalty costs for hyperglycemia and hypoglycemia respec-
tively.

The linear discrete-time optimal control problem with soft
constraints that has to be solved may be expressed as

min
{uk,vk,wk}

N−1

k=0

φ = φ
(

{uk, yk+1, rk+1, vk, wk}
N−1

k=0

)

(19a)

s.t. xk+1 = Axk + Buk + Edk (19b)

yk = Cxk (19c)

umin ≤ uk ≤ umax (19d)

∆umin ≤ ∆uk ≤ ∆umax (19e)

ymin − yk ≤ wk (19f)

yk ≤ ymax + vk (19g)

vk ≥ 0 (19h)

wk ≥ 0 (19i)

in which the hard output constraint (16f) has been re-
placed with penalty terms in the objective function (18)
and the inequality constraints (19f - 19i).

3.3 Linear simulation results

We use the Hovorka et al. (2004) model linearized at the
steady state corresponding to the target blood glucose

Fig. 3. MPC with soft output constraints on glucose con-
centration. The small meal case. Upper left corner:
Blood glucose concentration. Upper right corner: In-
sulin concentration. Lower left corner: Disturbance
(Meals). Lower right corner: Injected insulin

concentration Ḡ = 5 mmol/L to compute the optimal
insulin administration profiles. Then, we apply this profile
to the Hovorka et al. (2004) model.

The objective of the insulin administration is to compen-
sate glucose excursions caused by meals and variations in
endogenous glucose production and utilization. We use a
penalty function defined by (18). yk is the blood glucose
concentration, rk = 5 mmol/L is the target value for
the blood glucose concentration, ymin = 4 mmol/L is a
lower acceptable limit on the glucose concentration, and
ymax = 8 mmol/L is an upper acceptable limit on the
blood glucose concentration. The weights κ1 and κ2 are
used to balance the desirability of different deviations
from the target. As hypoglycemia is considered a more
immediate danger than hyperglycemia, κ1 < κ2.

The choice of the weight λ should not change the shape
of the optimal blood glucose profile. It is used to avoid
ill-conditioning of the problem. For all the simulations, we
use λ = 10−2.

We use umin = 0 and a large umax such that the upper
bound is never active. We do the optimization in a 24
hour window, i.e. t0 = 0 min and tf = 24 · 60 min, using
a sampling time of Ts = 5 min. In the three scenarios
considered, the simulated 70 kg subject has a meal at
6:00. The meal sizes for each scenario are 25 g CHO,
50 g CHO and 100 g CHO, respectively. We compute
the optimal insulin administration using the linearized
model, and simulate a virtual patient using this sequence
of insulin administration on the Hovorka model (Hovorka
et al. (2004)).

Fig. 3 illustrates an optimal insulin administration profile
for the case where the meal size is relatively small. Having
a small meal implies a small deviation to the steady state.
Consequently, the linear and nonlinear solutions are quite
similar.
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Fig. 4. MPC with soft output constraints on glucose
concentration. The normal-sized meal case.

Fig. 5. MPC with soft output constraints on glucose
concentration. The large meal case.

Fig. 4 illustrates an optimal insulin administration profile
for the case where the meal size is normal. Although the
mismatch between the linear and the nonlinear model
becomes more evident, hypoglycemia is avoided.

Fig. 5 illustrates an optimal insulin administration profile
for the case where the meal size is large. A hypoglycemic
event occurs when the computed insulin is injected to the
virtual patient.

4. NONLINEAR MODEL PREDICTIVE CONTROL

In this section, we state and discuss the continuous-
time nonlinear optimal control problem that we use to
compute the insulin injection profiles for people with
type 1 diabetes. The bound-constrained continuous-time
optimal control problem

min
{uk}

N−1

k=0

φ = φ
(

{u(t), y(t), r(t)}
t=tf

t=t0

)

(20a)

s.t. x(t0) = x0 (20b)

ẋ(t) = f(x(t), u(t), d(t)) (20c)

y(t) = g(x(t)) (20d)

u(t) = uk tk ≤ t < tk+1 (20e)

umin ≤ uk ≤ umax (20f)

∆umin ≤ ∆uk ≤ ∆umax (20g)

is used to compute the optimal insulin administration.
x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the vector
of manipulated inputs for tk ≤ t < tk+1, y(t) ∈ Rny

is the vector of measured outputs and d(t) ∈ Rnd are
known disturbances. ẋ(t) = f(x(t), u(t), d(t)) represents
the model equations. The initial time, t0, and the final
time, tf , are specified parameters. The initial state, x0,
is a known parameter in (20). The inputs are bound-
constrained and must lie in the interval [umin, umax], and
the difference ∆uk = uk+1 − uk must lie in the interval
[∆umin, ∆umax].

The objective of the insulin administration is to mitigate
glucose excursions caused by meals and variations in
endogenous glucose production and utilization. We use a
penalty function defined as

φ =
1

2

N−1
∑

k=0

[
∫ tk+1

tk

(y(t) − rk+1)
2+

κ1‖max{ymin − y(t), 0}‖2
2+

κ2‖max{y(t) − ymax, 0}‖
2
2

]

dt + λ‖∆uk‖
2
2

(21)

4.1 Optimal insulin administration

Fig. 6 illustrates an optimal insulin administration profile
in the case where the controller knows the size and time
of all meals in advance. Computing the solution using the
nonlinear model allows the controller to avoid mismatches.
However, the assumption that the patient would know
in advance the meal times and sizes is not practical.
Safety considerations would preclude significant amounts
of insulin from being delivered prior to mealtime.

Fig. 7 shows the simulation results for the case in which the
meals are announced to the MPC only at mealtime. Thus,
the controller can deliver no anticipatory insulin prior to
meals. The limitations for this case force the subject into
hyperglycemia, but hypoglycemia is avoided.

Fig. 8 shows the maximum blood glucose versus the insulin
time constant τs for small-sized meals (25 g CHO), normal-
sized meals (50 g CHO) and large-sized meals (100 g
CHO) if the meal is announced only at mealtime. A
faster insulin reduces the peak of glucose. For normal-sized
meals, having an insulin absorption time constant at least
equal to the glucose absorption time constant (i.e. τs = 40
minutes) avoids hyperglycemic events.

5. CONCLUSION

In this paper, we described a model developed by Hovorka
et al. (2004) to study the effects of insulin administration
on glucose concentration for people with type 1 diabetes.
Based on a linearized version of this model, we use an

Copyright held by the International Federation of Automatic Control 238



0 10 20
0

5

10

15

Time [hr]

G
 (

m
m

o
l/
L
)

0 10 20
0

10

20

30

40

Time [hr]

I 
(m

U
/L

)

0 10 20
0

5

10

15

20

25

Time [hr]

d
 (

g
/m

in
)

0 10 20
0

50

100

Time [hr]

u
 (

m
U

/m
in

)

Fig. 6. Optimal insulin administration profile obtained
using NMPC.

Fig. 7. Optimal insulin administration with meal an-
nouncement at meal time.

optimal control algorithm to compute insulin adminis-
tration profiles for the case with meal announcement in
advance. The insulin profile simulated on the nonlinear
model does not match the optimal insulin administration
for the linearized model only if the meal is too large.

We use our optimal control algorithm to compute insulin
administration profiles for the cases with and without
meal announcement in advance, and we also compute the
maximum blood glucose versus the insulin time constant
for small-, normal- and large-sized meals. The results
suggest that having faster acting insulin can significantly
increase the control quality of blood glucose.
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Abstract: In this paper we apply receding horizon constrained nonlinear optimal control to
the computation of insulin administration for people with type 1 diabetes. In particular, the
sizes and the times of the meals are assumed to be unknown, and have to be estimated using
a continuous-discrete extended Kalman filter (EKF). The optimization problem is a discrete-
time Bolza problem with soft state constraints and hard input constraints. This problem is
solved using a sequential quadratic programming (SQP) algorithm. An explicit Dormand-Prince
Runge-Kutta method (DOPRI54) is used for numerical integration, including integration of the
mean-covariance pair, and sensitivity computation. The study is based on the Hovorka model,
which is a continuous-time physiological model describing a virtual subject with type 1 diabetes.
The paper describes the key aspects of the numerical implementation and provides quantitative
insight into the factors limiting the achievement of acceptable closed-loop performance.

Keywords: Model predictive control, biomedical systems, type 1 diabetes mellitus, extended
Kalman filter.

1. INTRODUCTION

Insulin is a hormone that reduces the glucose concentra-
tion in blood. It facilitates the uptake of glucose into cells
(adipose tissues, muscles, etc.) and the storage of glucose
in the liver. In people without diabetes, the blood glucose
is tightly regulated around 90 mg/dL (or 5 mmol/L).
Diabetes is a disease characterized by an insufficient pro-
duction of insulin, a decrease in its effectiveness, or both.
Thus, the most common consequence of the disease is
having blood glucose levels that are too high, but blunted
counterregulatory responses also result in levels that are
too low.

Type 1 (also known as insulin-dependent) diabetes—the
most severe form of the disease—is characterized by total
lack of insulin production. Exogenous insulin must be
injected to keep the glucose concentration in the normal
(i.e., normoglycemic) range (say, 60-140 mg/dL or 3.3-
7.8 mmol/L). If the glucose concentration falls below the
normoglycemic range (hypoglycemia), the subject may
suffer seizures, fall into a coma or even die. On the other
hand, a blood glucose concentration chronically above
the normoglycemic range (hyperglycemia) has long-term
complications like vascular, nerve, eye and kidney diseases.

A basal infusion of insulin is necessary to counterbalance
the continuous production of glucose by the liver. Glucose
production from the liver is a two-part process: glycogenol-
ysis (breakdown of glycogen to glucose) and gluconeoge-
nesis (synthesis of glucose from amino acids). The main
disturbances affecting the blood glucose levels are meal

⋆ Funding for this research as part of the DIACON project from the

Danish Council for Strategic Research is gratefully acknowledged.

carbohydrates (CHO) absorbed in the gut, physical activ-
ity (Breton (2008)), and variations in insulin sensitivity.

Today, proper treatment for people with type 1 diabetes
involves at least 3–4 blood glucose measurements per day.
It is common to take these measurements shortly before
meal times. It is also common to inject rapid acting insulin
at meal time in order to compensate for ingested meal
CHO, thus regulating the blood glucose level. Digestion
and absorption of CHO from the gastrointestinal tract
to the blood is generally faster than absorption of sub-
cutaneously injected insulin into the blood. Furthermore,
the glucose-insulin dynamics are complex and nonlinear.
Consequently, the ability to control the blood glucose using
the conventional insulin therapy is limited. The outcome
of a conventional insulin therapy is illustrated in Fig. 1.

The amount of injected insulin is based on the current
blood glucose and a (rough) estimation of the amount
of CHO in the meal. However, discrete measurements
of blood glucose do not account for its local trend, and
estimating the carbohydrates of a meal may be difficult.
The conception and development of continuous glucose
monitors (CGMs), and continuous subcutaneous insulin
infusion (CSII) pumps, have improved considerably the
insulin therapy for people with type 1 diabetes. Moreover,
these technologies can be used in an artificial pancreas,
which will automatically adjust the insulin dosage to
control blood glucose. Several research groups work on
aspects of control algorithms integrating the CGM and
the insulin pump; see, e.g. Klonoff et al. (2009), Cobelli
et al. (2009) and Magni et al. (2009).
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Fig. 1. Glucose concentration tracings in an individual
with type 1 diabetes for five consecutive days using
conventional insulin therapy based on discrete glucose
measurements and discrete insulin injections. The
green-shaded area corresponds to the normoglycemic
range.

However, the quality of the controller is limited by the
lag associated with the subcutaneous injection of insulin.
In the Hovorka et al. (2004) model, the absorption and
transport of subcutaneously injected insulin to systemic
circulation in the blood is modeled as a two-compartment
model with time constants of τS = 55 min. The absorption
of meal CHO is also modeled as a two-compartment model,
but with time constants of τD = 40 min. The difference in
these lags limits the quality of the closed-loop control.

In this paper, we use constrained nonlinear optimal control
theory to compute the optimal insulin injection rates
during a day. We compare the blood glucose profiles in
the cases where A) full state information is available
(meals are announced to the controller at meal time),
and B) meals are not announced to the controller. In
the case where full state information is not available, the
state is reconstructed by the continuous-discrete EKF.
In particular, we try to estimate the glucose rate of
appearance accurately. Furthermore, we assume that the
measured glucose is subject to noise.

The paper is structured as follows. The continuous-discrete
time extended Kalman filter (EKF) is presented in section
2. Section 3 states and discusses the constrained nonlin-
ear program (NLP) which determines the optimal insulin
profiles. Section 4 presents the algorithm for filtering and
prediction, and the scheme used for numerical integration.
Section 5 applies the continuous-discrete EKF algorithm
to compute insulin administration profiles for virtual sub-
jects with type 1 diabetes in the case where meals are not
announced to the controller, or in the case where the meal
is announced with an overestimated meal size. Conclusions
are provided in Section 6.

2. THE CONTINUOUS-DISCRETE EKF

In this section, we introduce the extended Kalman filter
(EKF) for continuous-discrete stochastic nonlinear sys-
tems (Jazwinski, 1970; Nørgaard et al., 2000; Jørgensen
et al., 2007). The EKF is used to estimate the state of
the system given a stochastic continuous-time model and
measurements at discrete times, i.e.

dx(t) = f(t,x(t), u(t))dt+ σdω(t) (1a)

yk = h(tk,x(tk)) + vk (1b)

in which {ω(t), t ≥ 0} is a standard Wiener process, i.e.
a process with covariance Idt (intensity I). The matrix σ
is time-invariant. The measurement noise vk is normally
distributed, vk ∼ Niid(0, Rk). We assume that the initial
state x0 is normally distributed with a known mean and
covariance, x0 ∼ N(x̂0|−1, P0|−1).

2.1 Filtering

Given an observation, yk, at time tk, the filtering in the
EKF describes the steps used to compute the filtered state
x̂k|k and the corresponding covariance Pk|k. The filter step
assumes availability of the one-step predicitons, x̂k|k−1 and
Pk|k−1.

The filter gain is computed by

Ck =
∂h

∂x
(tk, x̂k|k−1) (2a)

Rk|k−1 = CkPk|k−1C
′
k +Rk (2b)

Kk = Pk|k−1C
′
k

(

Rk|k−1

)−1
(2c)

and the innovation is obtained by

ek = yk − ŷk|k−1 = yk − h(tk, x̂k|k−1) (3)

The filtered state x̂k|k and its covariance Pk|k are given by

x̂k|k = x̂k|k−1 +Kkek (4a)

Pk|k = Pk|k−1 −KkRk|k−1K
′
k (4b)

2.2 Prediction

Given the observations Yk = {y0, y1, . . . , yk}, the pre-
dicted state vector x̂k+1|k = x̂k(tk+1) and its associated
covariance Pk+1|k = Pk(tk+1) are computed as the so-
lutions to the system of ordinary differential equations
(Jørgensen et al. (2007))

dx̂k(t)

dt
= f(t, x̂k(t), uk) (5a)

dPk(t)

dt
= Ak(t)Pk(t) + Pk(t)Ak(t)

′ + σσ′ (5b)

with

Ak(t) = A(t, x̂k(t), uk) =
∂f

∂x
(t, x̂k(t), uk) (6)

and the initial conditions

x̂k(tk) = x̂k|k (7a)

Pk(tk) = Pk|k (7b)

The numerical integration of (5) is computed using an
explicit DOPRI54 method described in Section 4.1.

3. THE OPTIMAL CONTROL PROBLEM

At each time sample, Nonlinear Model Predictive Control
solves an open-loop optimal control problem. We consider
the continuous-time optimal control problem

min
x(·),u(·)

φ =

∫ tk+T

tk

g(x(t), u(t))dt +
1

2

k+N−1
∑

i=k

‖∆ui‖
2
2,S

(8a)

s.t. x(tk) = x̂k|k (8b)

ẋ(t) = f(t, x(t), u(t)) t ∈ [tk, tk + T [ (8c)

umin ≤ u(t) ≤ umax t ∈ [tk, tk + T [ (8d)
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parameterized using a zero-order hold

u(t) = uk tk ≤ t < tk+1 (9)

such that ∆uk = uk − uk−1 is well defined. The systems
is discretized by ti+1 = ti + Ts with Ts being the sample
time. The control horizon, T , and the sample time, Ts, are
related by T = NTs.

The optimal control problem (8) is solved using a multiple
shooting algorithm (Bock and Plitt, 1984; Binder et al.,
2001; Diehl et al., 2009). Our implementation of the mul-
tiple shooting algorithm is based on sequential quadratic
programming (SQP) for optimization and an explicit
Dormand-Prince Runge-Kutta method (DOPRI54) for nu-
merical integration and sensitivity computation (Boiroux
et al., 2009a). DOPRI54 is described in Section 4.1.

The objective of the insulin administration is to mitigate
glucose excursions caused by meals and variations in
endogenous glucose production and utilization. We use a
penalty function defined as

g(x(t), u(t)) =
κ1

2
|max{0, G(t)− Ḡ}|2

+
κ2

2
|max{0, Ḡ−G(t)}|2

+
κ3

2
|max {0, G(t)−GU}|

2

+
κ4

2
|max {0, GL −G(t)}|2

(10)

G(t) is the blood glucose concentration, Ḡ = 5 mmol/L
is the target value for the blood glucose concentration,
GL = 4 mmol/L is a lower acceptable limit on the glucose
concentration, and GU = 8 mmol/L is an upper acceptable
limit on the blood glucose concentration. The weights
κ1-κ4 are used to balance the desirability of different
deviations from the target. As hypoglycemia is considered
a more acute threat than hyperglycemia, κ1 < κ2 and
κ3 < κ4.

We call the second term of the objective function (8a)
a regularization term. This term is used to smooth the
solution and avoid too sudden variations in the insulin
administration. For the simulations we use S = 10−2.

4. NUMERICAL IMPLEMENTATION

In this section we describe our algorithm for output based
Nonlinear Model Predictive Control. We also introduce the
numerical method used for integration of the systems of
differential equations arising in output based Nonlinear
Model Predictive Control. The numerical integration is an
important part of the continuous-discrete EKF as well as
the optimal control problem.

4.1 The DOPRI54 Method

The Hovorka model is a non-stiff system of differential
equations. Therefore, we use an embedded explicit Runge-
Kutta scheme derived by Dormand and Prince (1980)
(DOPRI54) for the solution of the model equations, the
sensitivity computation and the computation of the mean-
covariance pair in the extended Kalman filter. Explicit
Runge-Kutta schemes are described in Gustafsson (1992).
They are characterized by a Butcher tableau as given in
Table 1. The Dormand-Prince Runge-Kutta Integration

Table 1. Butcher tableau for an explicit Runge-
Kutta method

0

c2 a2,1

c3 a3,1 a3,2

.

.

.
.
.
.

. . .

cs as,1 · · · · · · as,s−1

x b̂1 · · · · · · · · · b̂s

x̂ b1 · · · · · · · · · bs

e b1 − b̂1 · · · · · · · · · bs − b̂s

Table 2. Butcher tableau for the DOPRI54
method

0 0 0 0 0 0 0 0
1

5

1

5
0 0 0 0 0 0

3

10

3

40

9

40
0 0 0 0 0

4

5

44

55

−56

15

32

9
0 0 0 0

8

9

19372

6561

−25360

2187

64448

6561

−212

729
0 0 0

1 9017

3168

−355

33

46732

5247

49

176

−5103

18656
0 0

1 35

384
0 500

1113

125

192

−2187

6784

11

84
0

x
5179

57600
0 7571

16695

393

640

−92097

339200

187

2100

1

40

x̂
35

384
0 500

1113

125

192

−2187

6784

11

84
0

e
71

57600
0 −71

16695

71

1920

−17253

339200

22

525

−1

40

scheme (DOPRI54) is an explicit Runge-Kutta scheme
with s = 7 stages. Asymptotically, the numerical solu-
tion generated by DOPRI54 has order 5, while the error
estimate has order 4.

Consider the system of ordinary differential equations

ẋ(t) = f(t, x) x(t0) = x0 (11)

The main numerical steps in DOPRI54 for solution of (11)
are

Ti = tn + cihn i = 1, 2, ..., s (12a)

Xi = xn + hn

s
∑

j=1

ai,jf(Tj, Xj) i = 1, 2, ..., s (12b)

xn+1 = xn + hn

s
∑

j=1

bjf(Tj , Xj) (12c)

en+1 = hn

s
∑

j=1

djf(Tj, Xj) (12d)

hn is the step size. The step size is chosen adaptively using
a PI-controller such that the resulting error estimate, en+1,
meets the specifications (Gustafsson, 1992).

The coefficients ai,j , bj , cj and dj for DOPRI54 are given
by the Butcher tableau in Table 2.

The DOPRI54 method for numerical solution of (11) is
modified and tailored to the solution of (5) as well as for
the numerical integration computations in the multiple-
shooting method for the optimal control problem (Boiroux
et al., 2009a).

In summary, we apply a high-order explicit Runge-Kutta
method (DOPRI54) with an embedded error estimate and
a PI step size controller. The DOPRI54 scheme is used
both for numerical integration of the mean-covariance
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Fig. 2. Diagram of the Hovorka model.

pair and for the numerical integration and sensitivity
computation in the multiple shooting algorithm.

4.2 NMPC Algorithm

Algorithm 1 provides the steps in the Nonlinear Model
Predictive Controller (NMPC). The algorithm combines
the continuous-discrete Extended Kalman Filter for state
estimation with a continuous-time optimal control prob-
lem for the regulation problem.

The algorithm is initialized by the mean and covariance
of the initial state, x̂0|−1 and P0|−1, as well as the first
measurement, y0. They are used to compute the one step
prediction of the mean state and its covariance, x̂1|0 and
P1|0, as well as the first control, u0. At time step tk,
the algorithm requires (yk, x̂k|k−1, Pk|k−1) and computes
(uk, x̂k+1|k, Pk+1|k).

In the case where one observation yk is missing, we can
update the state and the covariance using

x̂k|k = x̂k|k−1 (13a)

Pk|k = Pk|k−1 (13b)

The main computational effort in Algorithm 1 is in solving
the optimal control problem.

5. SIMULATION RESULTS

In this section, we use the model developed by Hovorka
et al. (2004) and also described in Boiroux et al. (2009b)
to simulate a subject with type 1 diabetes. A diagram of
this model is provided in Fig. 2. This model consists of a
submodel describing CHO absorption, a submodel describ-
ing subcutaneous-to-intravenous absorption of insulin, a
simple lumped model describing the glucose dynamics,
and simple lumped models describing insulin dynamics
and action mechanisms. We use an implementation of
Algorithm 1 to compute the ideal insulin administration
profile.

As we want to use the continuous-discrete extended
Kalman filter only to estimate the meal size, we choose
the variance for the first compartment in the glucose
absorption subsystem D1 as Var[D1] = 52 g2. This value is
a compromise between two contradictory goals: peak de-
tection corresponding to meals intakes (which is improved

Algorithm 1 Nonlinear Model Predictive Controller

Require: yk, x̂k|k−1, Pk|k−1

Return: uk, x̂k+1|k, Pk+1|k

Filtering:
Compute

Ck =
∂h

∂x
(tk, x̂k|k−1)

Rk|k−1 = CkPk|k−1C
′
k +Rk

Kk = Pk|k−1C
′
k

(

Rk|k−1

)−1

Compute the innovation

ek = yk − h(tk, x̂k|k−1)

Compute the filtered state and covariance

x̂k|k = x̂k|k−1 +Kkek

Pk|k = Pk|k−1 −KkRk|k−1K
′
k

Optimal Control Problem:
Solve the optimal control problem

min
x(·),u(·)

φ =

∫ tk+T

tk

g(x(t), u(t))dt +
1

2

k+N−1
∑

i=k

‖∆ui‖
2
2,S

s.t. x(tk) = x̂k|k

ẋ(t) = f(t, x(t), u(t)) t ∈ [tk, tk + T [

umin ≤ u(t) ≤ umax t ∈ [tk, tk + T [

using a zero-order hold parametrization, {ui}
k+N−1
i=k , of

the control profile, [u(t)]tk+T
tk

. Let u(t) = uk be the
optimal control for t ∈ [tk, tk+1[.

One-Step Prediction:
Using DOPRI54, compute

x̂k+1|k = x̂k(tk+1)

Pk+1|k = Pk(tk+1)

by solution of the ODE system

dx̂k(t)

dt
= f(t, x̂k(t), uk), x̂k(tk) = x̂k|k

dPk(t)

dt
= Ak(t)Pk(t) + Pk(t)Ak(t)

′ + σσ′, Pk(tk) = Pk|k

with

Ak(t) =
∂f

∂x
(t, x̂k(t), uk)

if Var[D1] is big), and sensitivity to measurement noise
(the controller is less sensitive to noise if Var[D1] is small).
We assume that the glucose sensor variance is Rk = 0.12

(mmol/L)2. The initial state is assumed to be known by
the controller.

We do the optimization in a 24 hour window, i.e. t0 = 0
min and tf = 24 · 60 min, using a sampling time of
Ts = 5 min. In the scenario considered, the simulated 70
kg subject has a 62 g CHO meal at 6:00, a 55 g CHO meal
at 12:00, and a 50 g CHO meal at 18:00.

Fig. 3 shows the simulation results for the case in which
the meals are announced to the MPC at mealtime. Hypo-
glycemia is avoided and only mild hyperglycemic events
occur. Insulin related to the meals is delivered at meal-
times following a bolus-like profile. However, the fact that
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Fig. 3. Optimal insulin administration with meal an-
nouncement at meal time.

Fig. 4. Optimal insulin administration with meal an-
nouncement at meal time. Meal size is overestimated
by 50%.

the subject knows with accuracy the meal size is not
practical.

Fig. 4 shows the simulation results for the case in which
the meals are announced to the MPC at mealtime, but
the meal size is overestimated by 50%. The glucose profile
looks similar to the one in Fig. 3. However, the insulin
profile shows a big bolus instead of two smaller consecutive
boluses.

Fig. 5 shows the actual and the estimated values for
the two compartments in the CHO absorption subsystem
D1 and D2. Although the peaks corresponding to the
meal intakes are overestimated for D1, the EKF allows
to reconstruct the correct profile for D2.

Fig. 6 shows the simulation results for the case in which the
meals are not announced. Hypoglycemia is still avoided.
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Fig. 5. Actual (dash-dotted line) and reconstructed (solid
line) profiles for the two compartments in the CHO
absorption subsystem. Meal size is overestimated by
50%.

However, the hyperglycemic events are more important.
Insulin delivery is more spread out over time than in the
case where the meals are announced. Consequently, the
performance of the controller is compromised, but still
satisfactory.

Fig. 7 shows the actual and the estimated values for the
two compartments in the CHO absorption subsystem D1

and D2 for the case in which the meals are not announced.
Although the peaks for the the first compartment D1

are not correctly reconstructed by the continuous-discrete
extended Kalman filter, it is possible to reconstruct—with
some lag—the profile for D2. Peak reconstruction could be
improved by having a higher value for the variance ofD1 in
the EKF, but it would also make the reconstruction more
sensitive to noise. This tradeoff, i.e., peak detection and
sensitivity to noise, limits the performance of the controller
in the case where the meals are not announced.

These results show that it is possible to obtain reasonably
good control if the meals are announced only at mealtimes,
but it is obvious that the performance of the controller
suffers if the meals are not announced. Performance can
be improved if the meal (but not the meal size) is an-
nounced in advance by the subject. It would allow the
administration of a preemptive insulin bolus prior to the
meal.

6. CONCLUSION

In this paper we described a nonlinear model predictive
control (NMPC) algorithm based on a continuous-discrete
extended Kalman filter for state estimation and a multiple
shooting for solving the optimal control problem (OCP).
This algorithm is used to compute the optimal insulin
administration. This filter uses the DOPRI54 for numer-
ical computation of the meal-covariance pair. Numerical
simulations have been performed in the case where the
exact meal sizes are announced, in the case where erro-
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Fig. 6. Optimal insulin administration without meal an-
nouncement at meal time.
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Fig. 7. Actual (dash-dotted line) and reconstructed (solid
line) profiles for the two compartments in the CHO
absorption subsystem for the case in which the meals
are not announced.

neous (overestimated) meal sizes are announced, and in the
case where the meals are not announced to the controller.
The results provide a practical upper-bound of the control
quality to be expected for these three cases.
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Abstract: In this paper we apply a robust feedforward-feedback control strategy to people with
type 1 diabetes. The feedforward controller consists of a bolus calculator which compensates
the disturbance coming from meals. The feedback controller is based on a linearized description
of the model describing the patient. We minimize the risk of hypoglycemia by introducing a
time-varying glucose setpoint based on the announced meal size and the physiological model
of the patient. The simulation results are based on a virtual patient simulated by the Hovorka
model. They include the cases where the insulin sensitivity changes, and mismatches in meal
estimation. They demonstrate that the designed controller is able to achieve offset-free control
when the insulin sensitivity change, and that having a time-varying reference signal enables
more robust control of blood glucose in the cases where the meal size is known, but also when
the ingested meal does not match the announced one.

1. INTRODUCTION

The World Health Organization (2009) estimates that
more than 220 million people worldwide have diabetes.
This number is likely to double by 2030. In the USA,
the budget for diabetes represents 10% of the health care
budget, i.e. more than 130 billion dollars (132 billion
dollars in 2002).

For healthy people, the blood glucose is tightly held at
around 90 mg/dL (or 5 mmol/L). Diabetes is a chronic dis-
ease characterized by an insufficient production of insulin
and/or a decrease in its effectiveness. Therefore, people
with diabetes tend to have a too high blood glucose level,
also called hyperglycemia. Long periods of hyperglycemia
can lead to complications like nerve diseases, kidney dis-
eases, or blindness. However, the dosing of insulin must be
done carefully, because a too high dosage of insulin may
lead to hypoglycemia, which has immediate effects, such
as insulin shock, coma or even death.

In particular, people with type 1 diabetes must rely on
injection of exogenous insulin to survive. The current
insulin therapy for people with type 1 diabetes consists
of the injection of slow acting insulin once a day and
fast acting insulin several times per day, usually before
mealtimes. The slow acting insulin is used to counteract
the continuous glucose production from the liver. The fast
acting insulin compensates the intake of carbohydrates
(CHO) during the meals. The decision on the amount of
short and fast acting insulin is based on 3-4 blood glucose
measurements per day.

Continuous glucose monitors (CGMs) can improve the
insulin therapy. In addition, insulin pumps can be used

? Funding for this research as part of the DIACON project from the
Danish Council for Strategic Research is gratefully acknowledged.

Fig. 1. Closed-loop glucose control. Glucose is measured
subcutaneously using a continuous glucose monitor
(CGM). Insulin is dosed either continuously by an
insulin pump or discretely using an insulin pen.

to adjust the insulin infusion rate, and insulin pens can be
used to administrate insulin boluses. These devices can
be used in an artificial pancreas, which is described in
Fig. 1. Various research groups work on aspects of control
algorithms integrating the CGM and the insulin pump;
see, e.g. Klonoff et al. (2009), Cobelli et al. (2009) and
Magni et al. (2009).

In this paper we use a feedforward-feedback controller
based on linear MPC. The feedforward controller computes
the optimal bolus size to compensate the CHO ingested
through meals. The feedback controller adjusts the basal
insulin infusion rate.

The paper is structured as follows. Section 2 introduces
the model used to simulate a virtual patient with type
1 diabetes. Section 3 describes the controller used to
compute the optimal closed-loop insulin profiles. Section
4 presents the numerical results in the cases where the
insulin sensitivity changes under fasting conditions, and
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Fig. 2. Diagram of the Hovorka model.

in the case where the patient has one 75g CHO meal.
Conclusions are provided in Section 5.

2. PHYSIOLOGICAL MODELS

Several nonlinear physiological models have been devel-
oped to simulate virtual patients with type 1 diabetes,
see e.g. Bergman et al. (1981), Hovorka et al. (2004),
Dalla Man et al. (2007) and the review article written by
Wilinska and Hovorka (2009). In this paper, we use the
Hovorka model to simulate people with type 1 diabetes.
The models for CHO absorption, subcutaneous insulin ab-
sorption and the glucose-insulin dynamics for the Hovorka
model are described in Fig. 2.

The delays associated to insulin and CHO absorption and
the nonlinearities of the model limit the control quality,
see e.g. Boiroux et al. (2010a). Indeed, the time constant
associated to CHO absorption is τG = 40 minutes, while
the one associated to insulin absorption is τI = 55 minutes.
The main source of nonlinearity in the Hovorka model
arises from the bilinear term involving the action of insulin
x1 on glucose transport and the glucose in the main
blood stream Q1. This nonlinearity leads to an inaccurate
description of linear models when the state of the system
is not close to a steady state, e.g. during meals.

An other issue is that these models may be non-identifiable
for some subjects (Pillonetto et al. (2003)).

3. CONTROLLER DESIGN

In this section we describe the feedforward-feedback con-
troller used to compute the optimal insulin administration
profiles. The controller is based on linear MPC, where the
model is a linearized version of the Hovorka model. The
reference signal is time-varying. The states of the system
are estimated using a stationary Kalman filter with an
integrated disturbance.

3.1 Linear model

We consider a system of ordinary differential equations
(ODEs) in the form

ẋ(t) = f(x(t), u(t), d(t)) (1a)

y(t) = g(x(t)) (1b)

in which x(t) ∈ Rnx describes the states of the system,
u(t) ∈ Rnu describes the manipulated variables (insulin
infusion rate) d(t) ∈ Rnd are disturbances (meals), and
y(t) depicts the measured output (blood glucose).

The system (1) can approximated by a linear state space
system at a steady state (xss, uss, dss). In this paper we
choose the target value Ḡ = 5 mmol/L. The linear state
space description in continuous time is

δẋ(t) = Acδx(t) +Bcδu(t) + Ecδd(t) (2a)

δy(t) = Ccδx(t) (2b)

In equation (2), δx(t), δu(t), δd(t) and δy(t) are deviation
variables from the steady state (xss, uss, dss), i.e.

δx(t) = x(t)− xss δu(t) = u(t)− uss (3)

δd(t) = d(t)− dss δy(t) = y(t)− Ḡ(t)

and the time-invariant matrices Ac, Bc, Ec and Cc are

Ac =
∂f

∂x
(xss, uss, dss) Bc =

∂f

∂u
(xss, uss, dss)

Ec =
∂f

∂d
(xss, uss, dss) Cc =

∂g

∂x
(xss)

(4)

We now assume a zero-order hold parametrization of the
controlled input u and the disturbance d with the sampling
time Ts = 5 min. Under this assumption, the continuous-
time linear state space system (2) is equivalent to the
deterministic linear discrete-time state space description

δxk+1 = Āδxk + B̄δuk + Ēδdk (5a)

δyk = C̄δxk (5b)

3.2 Time-varying reference signal

Boiroux et al. (2010b) demonstrates that a constant glu-
cose reference signal usually leads to an overdose of insulin
when the meal size becomes too large. A time-varying glu-
cose setpoint has been extensively used to reduce the risk
of hypoglycemia, see e.g. Marchetti et al. (2006), Garcia-
Gabin et al. (2008) and Eren-Oruklu et al. (2009). It has
also been noticed that the optimal insulin administration
profile in the case where the meals are announced at
mealtime only is close to a bolus-like profile (see Boiroux
et al. (2010c) and Fig. 3). Consequently, the insulin ad-
ministration can be separated between

• The basal insulin, which must compensate for en-
dogenous glucose production. It must be adjusted to
reject disturbances caused by changes in physiologi-
cal parameters, e.g. changes in the insulin sensitivity
(feedback control)
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Fig. 3. Glucose profile (top), meal disturbances (middle)
and optimal insulin administration profile (bottom)
with meal announcement at meal time. Most insulin
is taken in bolus like form at meal time.

• Insulin boluses, which are used to limit postprandial
hyperglycemic event. The size of the bolus depends on
the meal size announced by the patient (feedforward
control)

The control strategy described above is a feedforward-
feedback control strategy similar to the one described in
Marchetti et al. (2008). When a meal is announced to the
controller, the optimal bolus and the optimal postprandial
blood glucose trajectory are computed by solving the
univariate constrained optimization problem

min
ubolus

ψ =
1

2

N−1∑
k=0

‖y0k+1 − Ḡ‖22 (6a)

s.t. ẋ0(t) = f(x0(t), uk, dk) t ∈ [tk, tk+1[ (6b)

x00 = xss (6c)

u00 = uss + ubolus (6d)

u0k = uss, k = 1, 2, . . . , N − 1 (6e)

y0k = Cxk (6f)

y0k ≥ Ḡ (6g)

In other words, we want to find the optimal bolus such
that the reference signal is above the desired glucose target
Ḡ = 5 mmol/L for all times. In this case, the predictions
on the future states of the system are made using the
continuous-time nonlinear model.

The solution of (6) gives the reference insulin profile u0k,
the reference states x0k and the reference blood glucose
setpoint y0k. Thus, we introduce the deviation variables
from the reference state δyk, δxk and δuk such that

yk = y0k + δyk xk = x0k + δxk uk = u0k + δuk (7)
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Fig. 4. Example of time-varying reference signal for the
blood glucose. The meal size is 50g CHO.

Fig. 4 gives an example of reference signal in the case where
the patient has a 50g CHO meal.

3.3 Offset-free MPC

Accordingly to Pannocchia and Rawlings (2003), offset-
free control can be achieved by augmenting the state
vector with an integrated disturbance zk. In a fasting state,
the stochastic linear discrete-time augmented state space
description is

[
δx
z

]
k+1

=

[
Ā Bz

0 I

] [
δx
z

]
k

+

[
B̄
0

]
δuk +

[
ξ
ζ

]
k

(8a)

δyk =
[
C̄ Cz

] [δx
z

]
k

+ wk (8b)

in which Bz ∈ Rnx×nz , and Cz ∈ Rny×nz . The processes
ξk, ζk and wk are zero-mean white noise processes, and we
assume that ξk and ζk are uncorrelated. For convenience,
we will denote

A =

[
Ā Bz

0 I

]
B =

[
B̄
0

]
E =

[
Ē
0

]
C =

[
C̄ Cz

]
δxk =

[
δx
z

]
k

(9)

and we define the time-invariant covariance matrices

R1 = Cov

([
ξ
ζ

]
k

)
R2 = Cov (vk) (10)

We set Var[ξk] = 0. Hence, the variances of the white
noise processes ζk and vk are tuning parameters. For the
simulations we set

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

3767



Var[ζk] = 0.72 R2 = 0.52 (11)

The integrated disturbance process zk can be added either
to the insulin infusion, or to the meal ingestion, or the the
blood glucose measurements. In this paper, we choose to
add the disturbance to the insulin infusion, i.e.

Bz = B̄, Cz = 0 (12)

It must be pointed out that the reference glucose trajec-
tory determined in section 3.2 already includes the effects
of the meal intake and the associated bolus. Consequently,
the one-step ahead prediction for the state vector δx̂k+1|k
is

δx̂k+1|k = Aδx̂k|k +Bδuk (13)

and the filtered state δx̂k+1|k+1 is computed as

ek+1 = δyk+1 − Cδx̂k+1|k (14a)

δx̂k+1|k+1 = δx̂k+1|k +Kek+1 (14b)

in which K is the stationary Kalman gain. The one-step
ahead prediction and the filtering step are expressed in
terms of deviation variables from the reference signal.

3.4 Linear MPC with soft output constraints

At each time sample, it is required to solve an open-
loop constrained optimization problem. Let N be the
prediction horizon length. The linear problem with hard
input constraints and soft output constraints at time tk is
formulated as

min
{ui,vi}N−1

i=0

φ =
1

2

N−1∑
i=0

‖δŷk+i+1|k‖22+

λ‖∆uk+i‖22 + κ‖vi‖22 (15a)

s.t. δx̂k+i+1|k = Aδx̂k+i|k +Bδuk+i (15b)

δŷk+i|k = Cδx̂k+i|k (15c)

umin ≤ δuk+i ≤ umax (15d)

∆umin ≤ ∆δuk+i ≤ ∆umax (15e)

ymin − y0k+i − δŷk+i|k ≤ vi (15f)

vi ≥ 0 (15g)

The slack variables vi are introduced to penalize hypo-
glycemia. The hard input constraints (15d-15e) limit the
insulin infusion rate and the increment of the insulin infu-
sion rate respectively. The penalty term κ‖vi‖22 is used
to avoid hypoglycemia and the penalty term λ‖∆ui‖22
prevents the insulin infusion rate from varying too aggres-
sively.

For the simulations we choose N = 120, i.e. a 10 hour
prediction horizon, such that the computed optimal insulin
profile is similar to the one in the case where the prediction
horizon is infinite. Thus, the prediction horizon is not

considered as a tuning parameter. The tuning parameters
of (15) are the weights λ and κ.

For the simulations we choose

umin = −uss
2
, λ = 400, κ = 100 (16)

The choice of umin = −uss
2

instead of umin = −uss does

not allow the controller to switch off the insulin pump.
Instead, switching off the pump can be implemented as a
safety layer in case of an (upcoming) hypoglycemic event.

4. NUMERICAL RESULTS

In this section, we use the Hovorka model and the de-
scribed linear MPC algorithm to compute the optimal
insulin administration profiles for people with type 1 dia-
betes. We consider two cases:

• A 36 hour simulation with a decrease in insulin
sensitivity by 50% under fasting conditions. We both
consider the case where the sensor is noise-free, and
the case where the sensor is affected by white noise.

• A 24 hour simulation with one 75g CHO meal. The
meal is given 6 hours after the beginning of the simu-
lation. We consider the cases where the correct meal
size is announced, the meal size is underestimated by
50%, the meal size is overestimated by 50% and the
meal is not announced at all.

For the first case, the insulin sensitivity is changed by
modifying the insulin sensitivities for the three insulin
action compartments after 1 hour. The insulin sensitivities
are described by the parameters SI,1, SI,2 and SI,3 in the
Hovorka model (the model is described in Hovorka et al.
(2004) and Boiroux et al. (2010b)). A decrease by 33% of
these parameters will give a new insulin infusion basal rate

ũss = 1.5uss (17)

We assume that the noise process of the glucose sensor is
a zero-mean white noise process which follows a Gaussian
distribution with the standard deviation

σ = 0.5 mmol/L (18)

Fig. 5 illustrates the blood glucose and the insulin profiles
in the case where a change in the insulin sensitivity occurs
while the patient is fasting, with and without sensor noise
(5(a) and 5(a)). The insulin infusion rate increases to
reject the disturbance caused by the decrease in insulin
sensitivity. In the uncontrolled case where the basal insulin
infusion rate is not adjusted, the blood glucose tends to a
new steady state in the hyperglycemic range.

Fig. 6 shows the insulin and blood glucose profiles in the
case where the patient has a 75g CHO meal, but the meal
is not announced to the controller. In that case, a severe
hypoglycemia cannot be avoided. A similar hypoglycemic
event occurs if we allow to switch off the insulin pump and
if we use noise-free blood glucose measurements instead
(results not shown).
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(a) Noise-free sensor
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(b) Noisy sensor

Fig. 5. Insulin and blood glucose profile in the case where
the insulin sensitivity decreases by 50% after 1 hour.

Fig. 7 illustrates the blood glucose and the insulin profiles
in the case where the patient has a 75g CHO meal. For
the case where the exact meal size is announced (Fig.
7(a)), the insulin infusion rate remains close to the basal
rate. Consequently, the blood glucose follows tightly the
glucose setpoint. For the case where the meal size is
underestimated (Fig. 7(b)), the basal rate increases after
the mealtime to compensate for the too low bolus. For
the case where the meal size is overestimated (Fig. 7(c)),
the insulin infusion rate is at the minimum after the meal
to compensate for the too high bolus. No hypoglycemic
events occur when a meal is announced. However, the
postprandial blood glucose excursion is bigger when the
meal size is underestimated by the patient.
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Fig. 6. Blood glucose and insulin profiles in the case where
the meal is not announced.

These results show that reasonably good control can be
obtained when a feedforward-feedback strategy is used.
However, the main limitation of this strategy is that a
fairly good nonlinear model description of the patient must
be available.

5. CONCLUSION

In this paper, we described a feedforward-feedback pre-
dictive control. The feedback part of the controller is a
model predictive controller based on a linearized version
of the Hovorka model. The state is augmented with an
integrated disturbance to ensure an offset-free control of
the blood glucose. We used the feedforward-feedback con-
trol algorithm to compute insulin administration profiles
in the cases where the insulin sensitivity decreases by 50%,
and in the case where the patient has one 75g CHO meal.
In the case where the patient has a meal, we consider the
cases where the correct meal size is announced, the meal
size is underestimated, the meal size is overestimated, and
the meal is not announced at all. The results demonstrate
that the control of blood glucose can be achieved without
offset, and that a feedforward-feedback control strategy is
superior to a feedback control only, assuming that a good
model description of the patient can be obtained.
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(a) Correct meal size
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(b) Meal size underestimated by 50%
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(c) Meal size overestimated by 50%

Fig. 7. Blood glucose and insulin profiles for the 24 hour
simulations with one 75g CHO meal.
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Abstract 
In this paper, we apply model predictive control (MPC) for control of blood glucose in 
people with type 1 diabetes. The two first control strategies are based on nonlinear 
model predictive control (NMPC). The first control strategy is based on meal 
announcement in advance, while the second one considers meal announcement at 
mealtimes only. They give a quantitative upper bound on the achievable control 
performance. The third control strategy is a feedforward-feedback control strategy. This 
strategy uses a time-varying setpoint to reduce the risk of hypoglycemia. The feedback 
controller computes the optimal basal insulin infusion rate. The feedforward controller 
consists of a bolus calculator. It computes the optimal bolus, along with the time-
varying glucose setpoint. We test these three strategies on a virtual patient with type 1 
diabetes. The numerical results demonstrate the robustness of the last control strategy 
with respect to changes in the model parameters and incorrect meal announcement. 
 
Keywords: Type 1 diabetes, Nonlinear model predictive control, feedforward-feedback 
control 

1. Introduction 
The World Health Organization (WHO) estimates that more than 220 million people 
worldwide have diabetes. This number is likely to double by 2030. In the USA, the 
budget for diabetes represents 10% of the health care budget, i.e. more than 130 billion 
dollars (132 billion dollars in 2002). 
In people without diabetes, the blood glucose is controlled tightly around 90 mg/dL (5 
mmol/L). Type 1 diabetes is a chronic disease characterized by an insufficient 
(effectively nonexistent) endogenous production of insulin, which leads to poor 
regulation of glucose concentrations in the blood. In particular, the deficiency of insulin 
causes sustained high glucose levels (hyperglycemia) that result in serious long-term 
health problems like eye, nerve, and kidney disease. On the other hand, too much 
insulin can result in very low glucose levels (hypoglycemia) which can pose immediate 
health risks. Consequently, exogenous insulin must be injected to regulate the blood 
glucose concentration as tightly as possible. 
Usually, insulin treatment consists of the administration of rapid acting insulin through 
boluses (i.e., discrete insulin administration) at the time of meals. The size of the bolus 
is based on a measurement of the current blood glucose at mealtime and the (estimated) 
size of the meal. However, having measurements only at mealtime does not provide 
enough information about blood glucose. Consequently, people with diabetes often 
tolerate hyperglycemia in order to avoid hypoglycemia and its immediate effects. 
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Continuous glucose monitors (CGM) can help to provide a better control of blood 
glucose. They measure the glucose concentration in the subcutaneous depot. Insulin 
pumps that continuously inject fast acting insulin have also been developed. Combining 
a CGM with an insulin pump can enable automatic insulin administration for people 
with type 1 diabetes. Such a medical device is called an artificial pancreas, and its 
principle is illustrated in Fig. 1. Several research groups work on aspects of control 
algorithms integrating the CGM and the insulin pump to automatically adjust insulin 
administration for people with type 1 diabetes, such as Cobelli et al. (2009) and Klonoff 
et al. (2009). 
In this paper we use the model developed by Hovorka et al. (2004) and described in 
Boiroux et al. (2010b) to simulate a patient with type 1 diabetes. In the Hovorka model, 
the quality of the glucose control is limited by the time lag associated with 
subcutaneous-to-intravenous insulin absorption. This system property fundamentally 
limits the control quality that can be achieved in closed-loop insulin administration, as 
demonstrated in Boiroux et al. (2010a). 

2. Nonlinear Model Predictive Control 
In this section, we state the continuous-time optimal control problem and apply it to the 
computation of the optimal insulin profiles for people with type 1 diabetes. The optimal 
insulin administration is formulated as a bound constrained continuous-time Bolza 
problem  

 
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in which xntx R)(  is the state vector, untu R)(   is the vector of manipulated inputs 

(insulin injection), and dntd R)(  is the vector of known disturbances (meals). We 

assume the state vector x(t) and the input vector u(t) to be constant between the 
sampling times and a constant sampling time 5sT min. Thus, we can use the multiple-

Fig. 1. Closed-loop glucose control. Glucose is measured subcutaneously using a continuous 
glucose monitor (CGM). Insulin is dosed either continuously by an insulin pump or discretely 
using an insulin pen 
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shooting based algorithm described in Boiroux et al. (2009a) to solve the nonlinear 
program (1). 
In the scenario considered, the simulated 70 kg subject has a 62 g CHO meal at 6:00, a 
55 g CHO meal at 12:00, and a 50 g CHO meal at 18:00. Fig. 2 illustrates an optimal 
insulin administration profile for the described scenario in the case where the controller 
knows the size and time of all meals in advance. Knowing the meal times and sizes 
allows the controller to deliver anticipatory insulin to avoid postprandial 
hyperglycaemia. However, the assumption that the patient would know in advance - and 
with accuracy - the meal times and sizes is not practical. Safety considerations would 
preclude significant amounts of insulin from being delivered prior to mealtime (as in 
this ideal scenario). 
Fig. 3 shows the simulation results for the case in which the meals are announced to the 
MPC only at mealtime. Thus, the controller can deliver no anticipatory insulin prior to 
meals. The limitations for this case force the subject into (mild) hyperglycaemia, but 
hypoglycaemia is avoided. The insulin delivery profile for this case looks quite similar 
to bolus delivery of insulin by a pen; most of the meal-related insulin is delivered in 
bolus form in the few samples after the meals are taken (and announced). 

3. Bolus calculator and control 

In this section we describe an offset-free feedforward-feedback controller to compute 
optimal insulin profiles. Garcia-Gabin et al (2008) and Marchetti et al. (2008) 
established that a time-varying glucose setpoint can reduce the risk of hypoglycemia. 
The feedforward controller consists of a bolus calculator. It computes the optimal bolus 
size and the glucose setpoint, based on the meal size announced by the patient. The 
feedback controller adjusts the basal insulin infusion rate to compensate for mismatches 
in meal announcement and variations in the physiological parameters of the patient. The 
calculation of the basal insulin is based on a linear MPC algorithm. 
We use the Hovorka model and the offset-free linear MPC algorithm developed in 
Boiroux et al. (2011) to compute the optimal insulin administration profiles for people 
with type 1 diabetes. In the scenario considered, the glucose sensor provides a signal 
perturbated by a normally distributed white noise. We consider two cases. In the first 
case, we decrease the insulin sensitivity by 50% under fasting conditions. In the second 

Fig. 2. Glucose profile (top), meal disturbances 
profile (middle) and insulin administration 
profile with meal announcement in advance. 

Fig. 3. Glucose profile (top), meal disturbances 
profile (middle) and insulin administration 
profile with meal announcement at mealtime. 
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case, the patient has one 75g CHO meal 6 hours after the beginning of the simulation. In 
the case where the patient has a meal, we consider the cases where the correct meal size 
is announced, the meal size is underestimated by 50% and the meal size is 
overestimated by 50%. 
Fig. 4 illustrates the blood glucose and the insulin profiles in the case where a change in 
the insulin sensitivity occurs while the patient is fasting, with sensor noise. The insulin 
infusion rate increases to reject the disturbance caused by the decrease in insulin 
sensitivity. In the uncontrolled case where the basal insulin infusion rate is not adjusted, 
the blood glucose tends to a new steady state in the hyperglycemic range. 
For the case where the exact meal size is announced (Fig. 5), the insulin infusion rate 
remains close to the basal rate. Consequently, the blood glucose follows tightly the 
glucose setpoint. For the case where the meal size is underestimated (Fig. 6), the basal 
rate increases after the mealtime to compensate for the too low bolus. For the case 
where the meal size is overestimated (Fig. 7), the insulin infusion rate is at the minimum 
after the meal to compensate for the too high bolus. No hypoglycemic events occur 
when a meal is announced. However, the postprandial blood glucose excursion is bigger 
when the meal size is underestimated by the patient. 
These results show that reasonably good control can be obtained when a feedforward-
feedback strategy is used, even for uncertain systems. However, the main limitation of 
this strategy is that a fairly good nonlinear model description of the patient must be 
available. 

4. Conclusion 

In this paper we applied nonlinear model predictive control to compute the optimal 
insulin profiles for people with type 1 diabetes. These profiles give an upper-bound on 
the maximal achievable performance in the cases where the meals are announced 
beforehand, and in the case where meals are announced at mealtimes only. We utilized 
the bolus-like nature of the optimal insulin profile to design an offset-free feedforward-
feedback controller. The feedforward part is a model-based bolus calculator, while the 

Fig. 5. Blood glucose (top) and insulin 
administration (bottom) profile in the case where 
the right meal size is announced 
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feedback part adjusts the basal insulin infusion rate. The numerical results demonstrate 
that a rather good control of blood glucose can be obtained, assuming that a fairly good 
physiological model of the patient can be identified. 
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Fig. 6. Blood glucose profile(top) and insulin 
profile (bottom). Meal size underestimated by 
50%. 

Fig. 7. Blood glucose profile(top) and insulin 
profile (bottom). Meal size overestimated by 
50%. 
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Model Predictive Control Based on ARX Model for People with type 1
Diabetes

Dimitri Boiroux, Niels Kjølstad Poulsen, Henrik Madsen and John Bagterp Jørgensen

Abstract— In this paper we describe and test a controller
for regulation of blood glucose in people with type 1 diabetes.
The purpose of the controller is to stabilize the overnight
blood glucose. The controller is a model predictive controller
(MPC) based on a low-order extended ∆ARX (autoregressive
with exogenous input) model. We robustify the controller by
introducing a time-varying glucose setpoint based based on
an estimation of the current blood glucose. The feedback is
provided by a noisy glucose sensor. The controller is tested on
a cohort of seven patients simulated by the Hovorka model. The
numerical simulations demonstrate the ability of the controller
to handle variations in the insulin sensitivity that can occur
during the night.

I. INTRODUCTION

Type 1 diabetes is an autoimmune disease caused by
destruction of the beta-cells in the pancreas. The most
important consequence for people with type 1 diabetes is
an elevated blood glucose. Blood glucose values in non-
diabetics will stay in the range 4.0-8.0 mmol/l. Long periods
of too high blood glucose (also called hyperglycemia) can
lead to complications like nerve diseases, kidney diseases,
or blindness. However, the dosing of insulin must be done
carefully, because a too high dosage of insulin may lead to a
too low blood glucose (hypoglycemia), which has immediate
effects, such as insulin shock, coma or even death.

The current insulin therapy for people with type 1 diabetes
consists of the injection of slow acting insulin once a day
and fast acting insulin several times per day, usually before
mealtimes. The slow acting insulin is used to counteract the
continuous glucose production from the liver. The fast acting
insulin compensates the intake of carbohydrates (CHO) dur-
ing the meals. The decision on the amount of short and fast
acting insulin is based on 3-4 blood glucose measurements
per day.

Continuous glucose monitors (CGMs) can improve the
insulin therapy by providing more frequent blood glucose
measurements. In addition, insulin pumps can be used to
adjust the insulin infusion rate, and insulin pens can be
used to administrate insulin boluses. These devices can
be used in an artificial pancreas, which is described in
Fig. 1. Various research groups work on aspects of control
algorithms integrating the CGM and the insulin pump [1],
[2], [3].

Although insulin pumps and CGMs can improve blood
glucose control quality overnight, nocturnal hypoglycemia
is still common [4]. For instance, alcohol consumption at

Technical University of Denmark, DTU Informatics, Richard Petersen’s
Plads, Building 321, DK-2800 Kgs Lyngby, Denmark.
Corresponding author: jbj@imm.dtu.dk

Fig. 1. Closed-loop glucose control. Glucose is measured subcutaneously
using a continuous glucose monitor (CGM). Insulin is dosed either contin-
uously by an insulin pump or discretely using an insulin pen.
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Fig. 2. Diagram of the Hovorka model [7].

dinner have been identified as responsible for nocturnal hy-
poglycemia [5]. Nocturnal hyperglycemia (also called dawn
effect) may also occur.

In this paper we use a controller based on a low order
extended ∆ARX model. We test the controller in silico
on a cohort of seven virtual patient with type 1 diabetes.
The simulations imitate an overnight protocol to stabilize
overnight blood glucose in people with type 1 diabetes [6].
In these simulations we assume that the insulin sensitivity of
the subjects varies during the night.

The paper is structured as follows. Section 2 introduces
the model used to simulate the virtual patients with type 1
diabetes. Section 3 describes the controller used to compute
the optimal closed-loop insulin profiles. Section 4 presents
the numerical results in the cases where the insulin sensitivity
changes overnight. Conclusions are provided in Section 5.



TABLE I
PARAMETERS FOR THE SEVEN PATIENTS [14].THE UNITS ARE: EGP0 IN

µmol/kg/min, F01 IN µmol/kg/min, k12 (×10−2 UNITLESS), ka1 IN 10−3

min−1 , ka2 IN 10−3 min−1 , ka3 IN 10−3×min−1 , S f
IT = kb1/ka1 IN

10−4/min/mU/L, S f
ID = kb2/ka2 IN 10−4/min/mU/L, S f

IE = kb3/ka3 IN

10−4/mU/L, ke IN min−1 , VI IN L/kg, VG IN L/kg, τI IN min, τG IN min

AND BW IN kg

Subject 1 2 3 4 5 6 7
EGP0 14.8 14.3 15.6 21.3 20.0 10.5 16.1
F01 12.1 7.5 10.3 11.9 7.1 9.2 9.7
k12 3.43 8.71 8.63 9.68 3.90 4.58 6.49
ka1 3.1 15.7 2.9 8.8 0.7 1.7 5.5
ka2 75.2 23.1 49.5 30.2 163.1 68.9 68.3
ka3 47.2 14.3 69.1 11.8 11.4 28.5 30.4
S f

IT 29.4 18.7 81.2 86.1 72.4 19.1 51.2
S f

ID 0.9 6.1 20.1 4.7 15.3 2.2 8.2
S f

IE 401 379 578 720 961 81 520
ke 0.138 0.138 0.138 0.138 0.138 0.138 0.138
VI 0.18 0.13 0.22 0.14 0.14 0.13 0.16
VG 0.18 0.13 0.22 0.14 0.14 0.13 0.12
τI 55 55 55 55 55 55 55
τG 40 40 40 40 40 40 40
BW 70 70 70 70 70 70 70

II. PHYSIOLOGICAL MODELS

Several nonlinear physiological models have been devel-
oped to simulate virtual patients with type 1 diabetes [7],
[8], [9], [10], [11]. However, even the simplest nonlinear
physiological models, such as the minimal model developed
by Bergman et al. may present identifiability issues [12]. In
this paper, we use the Hovorka model to simulate people with
type 1 diabetes. The models for CHO absorption, subcuta-
neous insulin absorption and the glucose-insulin dynamics
for the Hovorka model are described in Fig. 2.

As the time constants associated to insulin absorption can
vary from individual to individual (inter-patient variability)
and even for the same person at different times (intra-patient
variability), there is no doubt that the quality control is
limited by these lags [13]. Furthermore, the complexity of the
physiological mechanisms associated to the glucose-insulin
dynamics make predictions of the blood glucose inaccurate
when the state of the system is not close to the steady state,
e.g. during meals.

III. CONTROLLER SETUP

In this section we describe the controller used to compute
the optimal insulin administration profiles. The controller
is based on an extended ∆ARX MPC, where the model
is rewritten in the state space innovation form. We use a
time-varying glucose setpoint based on an estimation of
the current blood glucose. The optimal control problem is
formulated as a convex quadratic program with soft output
constraints.

A. ARX model

In this paper we use the following discrete-time, linear
ARX model

A(q−1)y(t) = q−nk B(q−1)u(t)+ ε(t) (1)

where q−1 is the backward shift operator, ε(t) ∼
Niid(0,σ2) and A and B are polynomials of degree na and
nb respectively, i.e.

A(q−1) = 1+a1q−1 + ...+anaq−na

B(q−1) = b1q−1 + ...+bnbq−nb
(2)

The ARX model (1) may be realized as a stationary state
space model in innovation form

xk+1 = Axk +Buk +Kεk (3)
yk =Cxk + εk (4)

where the matrices A, B, C and K are written in the
canonical form

A =




−a1 1 0 · · · 0
−a2 0 1 · · · 0

...
...

...
. . .

...
−an−1 0 0 · · · 1
−an 0 0 0 0




B =




b1
b2
...

bn−1
bn




K =




−a1
−a2

...
−an−1
−an




C =
[
1 0 · · · 0

]

(5)

It must be pointed out that the process noise and the
measurement noise are completely correlated.

Consequently, the one-step ahead predictions of the states
and the outputs are

x̂k+1|k = Ax̂k|k +Buk|k +Kεk (6a)

ŷk+1|k =Cx̂k+1|k (6b)

in which εk is the innovation term

εk = yk−Cx̂k|k−1 (7)

Similarly, the j + 1 steps ahead predictions of the states
and the outputs are

x̂k+ j+1|k = Ax̂k+ j|k +Buk+ j|k (8a)

ŷk+ j+1|k =Cx̂k+ j+1|k (8b)

B. Extended ∆-ARX

We now assume that the process noise ε(t) is an integrated
white noise, i.e.

ε(t) =
1−αq−1

1−q−1 e(t) (9)

, the extended ∆-ARX model is

Ā(q−1)y(t) = B̄(q−1)u(t)+(1−αq−1)e(t) (10)
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Fig. 3. Example of time-varying reference signal for different values of
the time constant τ .

where e(t) is a white noise process and

Ā(q−1) = (1−q−1)A(q−1) (11)

B̄(q−1) = (1−q−1)B(q−1) (12)

(1−αq−1)e(t) = (1−q−1)ε(t) (13)

The extended ∆-ARX model (10) is able to provide offset-
free tracking due to the integrator [15]. The choice of the
tuning parameter α ∈ [0;1] determines the aggressiveness of
the controller. α = 0 corresponds to the pure ∆ARX model,
and α = 1 is equivalent to the ARX model without the
integrator (1). Larger values of α decrease the input and
output variance, but provide a slower disturbance rejection.

In this paper, the input u(t) is the deviation of insulin
infusion rate from the steady state uss and the output y(t) is
the deviation of blood glucose from the steady state Ḡ. For
the numerical simulations, we choose Ḡ = 6 mmol/L.

We still can use the innovation form (3) for the realization
of the extended model (10) by substracting α to the first row
in K.

C. Time-varying glucose setpoint

The glucose trajectory is exponentially decreasing when
the blood glucose is above the target, which robustifies the
controller with respect to plant-model mismatches. Conse-
quently, the reference blood glucose is

r̂k+ j|k(t) = ŷk|k exp
(
− t j

τ

)
(14)

The choice of the tuning parameters τ has an influence
on the rapidness and the robustness of the controller. Small
values of τ provide a faster return to the euglycemic range,
while larger values of τ ensure a more robust control. The
glucose setpoint profiles for different values of the time
constant τ are shown in Fig. 3.

D. Model Predictive Control with Soft Constraints

At the time tk, the open loop convex quadratic program
solved is

min
{uk+ j,v j}N−1

j=0

φ =
1
2

N−1

∑
j=0
‖ŷk+ j+1|k− r̂k+ j+1|k‖2

2+

λ‖∆uk+ j‖2
2 +κ1‖vk+ j‖2

2 (15a)

s.t. x̂k+1|k = Ax̂k|k−1 +Buk +Kek (15b)

ŷk+1|k =Cx̂k+1|k (15c)

x̂k+ j+1|k = Ax̂k+ j|k +Buk (15d)

ŷk+ j+1|k =Cx̂k+ j+1|k (15e)

umin ≤ uk+ j ≤ umax (15f)
∆umin ≤ ∆uk+ j ≤ ∆umax (15g)
Gmin− yk+1 ≤ vk+ j (15h)
v j ≥ 0 (15i)

in which x̂k|k−1 and ek = yk−Cx̂k|k−1 are given. umin and
umax are the minimum and the maximum insulin infusion
rates allowed by the pump. ∆uk+ j = uk+ j − uk+ j−1 is the
variation in the insulin infusion rate. Gmin depicts the lower
bound on blood glucose.

The slack variables v j are introduced to penalize hypo-
glycemia. The hard input constraints (15f-15g) limit the
insulin infusion rate and the increment of the insulin infusion
rate respectively. The penalty term κ‖vk+ j‖2

2 is used to avoid
hypoglycemia and the penalty term λ‖∆uk+ j‖2

2 prevents the
insulin infusion rate from varying too aggressively.

For the simulations we choose N = 120, i.e. a 10 hour
prediction horizon, and

umin =−uss, umax = uss, λ =
10
u2

ss
, κ = 500 (16)

We remind here that the input avariables are deviation
variables from the steady state uss. Consequently, the choice
of umin =−uss allows the controller to switch off the insulin
pump, and umax = uss prevents the pump from overdosing
the insulin.

IV. NUMERICAL RESULTS

In this section, we use a cohort of seven virtual pa-
tients and the controller presented above to compute insulin
and blood glucose profiles. We illustrate both overnight
simulations and 36 hour simulations without meals. For
overnight simulations we consider the case where the insulin
sensitivity decreases during the night (also called dawn
phenomenon) and the case where the insulin sensitivity
increases, which might cause nocturnal hypoglycemia. We
compare the closed-loop controller where the patient wears
a blood glucose sensor with open-loop simulations where the
insulin infusion remains constant during the night.



TABLE II
CONTROLLER PARAMETERS FOR THE SEVEN PATIENTS.

Subject a1 b1 (×10−3)
1 -0.9995 -7.7
2 -0.9966 -13.4
3 -0.9961 -12.9
4 -0.9974 -25.9
5 -0.9944 -23.5
6 -0.9984 -3.3
7 -0.9958 -20.7

A. Clinical protocol

The clinical protocol for the seven patients is the follow-
ing:
• The patient arrives at 17:00 at the clinic.
• The patient gets a 70 g CHO dinner and an insulin bolus

at 18:00.
• The closed loop starts at 22:00.
• The insulin sensitivity varies by ±30% at 02:00.
• The patient gets a 50 g CHO breakfast and an insulin

bolus at 08:00. The closed-loop controller is switched
off.

• The patient leaves the clinic at 12:00.
The insulin sensitivity is changed by modifying the insulin

sensitivities for the three insulin action compartments at
3AM. The insulin sensitivities are described by the param-
eters SI,1, SI,2 and SI,3 in the Hovorka model (the model is
described in [7] and [16]) accordingly. The bolus sizes are
provided by a bolus calculator.

For the simulations, we assume that the sensor noise is a
white noise with the standard deviation σ = 0.2mmol/L

B. Model for the patients

The model is a low order ARX model with na = nb = 1,
nk = 0

(1+a1q−1)∆y(t) = b1∆u(t)+(1−αq−1)ε(t) (17)

in which we choose α = 0.99. This choice of α will make
the disturbance rejection slow, however smaller values of α
would make the controller unstable.

The two parameters a1 and b1 have been identified off-line
and are individualized for each patient. The parameters for
each patient are shown on Table II.

C. Fasting simulation results

Fig. 4 illustrates the blood glucose and the insulin profiles
in the case where the insulin sensitivity decreases by 30%
while the patient is fasting. In the controlled case (Fig. 4(b)),
the insulin infusion rate increases to reject the disturbance.
In the uncontrolled case where the basal insulin infusion rate
is not adjusted (Fig. 4(a)), the blood glucose tends to a new
steady state in the hyperglycemic range for all the patients.

Fig. 5 illustrates the blood glucose and the insulin profiles
in the case where the insulin sensitivity increases by 30%
while the patient is fasting. In the controlled case (Fig. 5(b)),
the insulin infusion rate decreases to avoid hypoglycemia.
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Fig. 4. Insulin and blood glucose profile in the case where the insulin
sensitivity decreases by 30% after one hour.

In the uncontrolled case where the basal insulin infusion
rate is not adjusted (Fig. 5(a)), all the subjects fall into
mild hypoglycemia, and some of them fall into severe
hypoglycemia.

These simulations demonstrate that the controller is able
to avoid prolonged periods of hypoglycemia and hyper-
glycemia. They also show that the controller can achieve
offset-free control in the case where the insulin sensitivity
varies.

D. Overnight simulation results

Fig. 6 illustrate the blood glucose and the insulin profiles
in the case where the insulin sensitivity does not vary during
the night. The blood glucose remains within the euglycemic
range during the whole night.

Fig. 7(a) and 7(b) depict the blood glucose and the insulin
profiles in the case where an increase by 30% in the insulin
sensitivity occurs during the night. The insulin infusion rate
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(b) Closed-loop

Fig. 5. Insulin and blood glucose profile in the case where the insulin
sensitivity increases by 30% after during the night.
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Fig. 6. Insulin and blood glucose profile in the case where the insulin
sensitivity does not change during the night.

decreases to reject the disturbance caused by the change
in insulin sensitivity. In the case where the insulin infusion
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(b) Closed-loop

Fig. 7. Insulin and blood glucose profile in the case where the insulin
sensitivity increases by 30% during the night.

rate does not vary during the night (Fig. 7(a)), most of the
patients fall into hypoglycemia. Hypoglycemic events can be
avoided for all the subjects when the closed-loop controller
is active (Fig. 7(b)). Therefore, it can be concluded that
the closed-loop controller can reduce the risk of nocturnal
hypoglycemia.

Fig. 8(a) and 8(b) depict the blood glucose and the insulin
profiles in the case where a decrease by 30% in the insulin
sensitivity occurs during the night. It can be seen that the
blood glucose before the breakfast is closer to the euglycemic
range for the closed-loop controller than for the open-loop
one. Even more important, the postprandial blood glucose
excursions are smaller when the closed-loop controller is
active.

V. CONCLUSION

In this paper we described and tested a controller for
regulation of blood glucose in people with type 1 diabetes.
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Fig. 8. Insulin and blood glucose profile in the case where the insulin
sensitivity decreases by 30% during the night.

The controller is based on a low-order extended ∆ARX
model of the patient. We considered the cases where the
dawn phenomenon occurs during the night, and the case
where the blood glucose suddenly decreases. The numerical
results demonstrate that a closed loop controller based on
MPC can significantly reduce the risk of hypoglycemia and
hyperglycemia during the night. Closed-loop controllers can
also reduce the amplitude of the postprandial blood glucose
excursion in the case where the blood glucose increases
during the night.
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Abstract:
Since continuous glucose monitoring (CGM) technology and insulin pumps have improved recent
years, a strong interest in a closed-loop artificial pancreas for people with type 1 diabetes has
arisen. Presently, a fully automated controller of blood glucose must face many challenges, such
as daily variations of patient’s physiology and lack of accuracy of glucose sensors. In this paper
we design and discuss an algorithm for overnight closed-loop control of blood glucose in people
with type 1 diabetes. The algorithm is based on Model Predictive Control (MPC). We use an
offset-free autoregressive model with exogenous input and moving average (ARMAX) to model
the patient. Observer design and a time-varying glucose reference signal improve robustness of
the algorithm. We test the algorithm in two clinical studies conducted at Hvidovre Hospital.
The first study took place overnight, and the second one took place during daytime. These trials
demonstrate the importance of observer design in ARMAX models and show the possibility of
stabilizing blood glucose during the night.

1. INTRODUCTION

Type 1 diabetes is a disease caused by destruction of the
insulin producing beta-cells in the pancreas. Therefore,
patients with type 1 diabetes must rely on exogenous in-
sulin administration in order to tightly regulate their blood
glucose. Blood glucose should preferably be kept in the
range 4.0-8.0 mmol/l. Long periods of high blood glucose
(hyperglycemia) can lead to long-term complications like
nerve diseases, kidney diseases, or blindness. However, the
dosing of insulin must be done carefully, because a too
high dosage of insulin may lead to a too low blood glucose
(hypoglycemia). Low blood glucose has immediate effects,
such as coma or even death.

The conventional insulin therapy for people with type 1
diabetes consists of the injection of slow acting insulin
once a day and rapid acting insulin several times per
day. The slow acting insulin is used to counteract the
continuous glucose production from the liver. The fast
acting insulin compensates the intake of carbohydrates
(CHO) during the meals. The decision on the dosage of
short and fast acting insulin is based on several blood
glucose measurements per day.

However, an increasing number of patients with type
1 diabetes use an intensive insulin therapy based on
continuous glucose monitors (CGMs) and insulin pumps

? Funding for this research as part of the DIACON project from
the Danish Council for Strategic Research (NABIIT project 2106-
07-0034) is gratefully acknowledged.

instead of the conventional therapy described above. This
regime can reduce the risk of complications. CGMs can
provide more frequent blood glucose measurements. In
addition, insulin pumps can adjust to daily variations in
insulin needs.

Nevertheless, the patients still need to be constantly in-
volved in their decisions on the insulin treatment based on
their CGMs and/or fingersticks measurements. A system
consisting of a CGM, an insulin pump and a control
algorithm that computes the insulin dose based on glucose
measurements is called an artificial pancreas. The artificial
pancreas provides closed-loop control of the blood glucose
by manipulation of the insulin injection. The artificial
pancreas has the potential to ease the life and reduce
complications for people with type 1 diabetes. Its principle
is illustrated in Fig. 1. Several review papers about closed-
loop control of blood glucose for people with type 1 dia-
betes have been published (Hovorka et al. (2006), Cobelli
et al. (2011), Bequette (2011)).

Previous publications have proven that model predictive
control (MPC) has great potential for design of an artificial
pancreas. Magni et al. (2009) established that MPC could
reduce oscillatory behaviors compared to proportional
integral derivative (PID) controllers. Boiroux et al. (2010)
applied open-loop constrained nonlinear optimal control.
Hovorka et al. (2010) tested an MPC-based controller on
children and adolescents with type 1 diabetes.

In this paper we focus on overnight blood glucose control
for people with type 1 diabetes using a CGM, an insulin
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Fig. 1. Closed-loop glucose control. Glucose is measured
subcutaneously using a continuous glucose monitor
(CGM). Insulin is dosed by an insulin pump.

Fig. 2. Picture of the pilot trial.

pump, and a controller based on MPC. Many factors, such
as meal intake, physical exercise, stress, illness, alcohol
consumption etc. affect insulin needs. Also, hormone re-
lease during the night may cause elevated blood glucose in
the early morning. This particular phenomenon is called
the dawn phenomenon. The main goal of a closed-loop
controller is to compensate these effects by adjusting the
amount of injected insulin based on frequent glucose mea-
surements coming from a CGM.

The paper is structured as following. Section 2 describes
the material and methods used for the studies. We dis-
cuss the design of the controller in Section 3. Section 4
shows the results for the two clinical studies conducted at
Hvidovre Hospital. Conclusions are provided in Section 5.

2. METHODS AND MATERIAL

This section describes the clinical protocol and the inter-
nally developed graphical user interface for the clinical
studies.

2.1 Clinical protocol

The clinical trial consists of a randomized cross-over study
including 12 patients with type 1 diabetes. The goal is
to compare overnight glucose control during open-loop
and closed-loop insulin administration. We investigate the
cases where

Open - Loop

Closed - Loop

Open - Loop

Closed - Loop

6 patients

3

3

1 night 1 night1-4 weeks

Fig. 3. Study design.

• The insulin bolus matches the evening meal (6 pa-
tients in total)

• The insulin bolus is underdosed (6 patients in total)

The study design for the 2 cases is illustrated in Fig. 3.

The scenario during the clinical studies is the following:

• The patient arrives at 16:00.
• A meal is consumed at 18:00 and an insulin bolus

is administrated. The meal size is determined by the
weight of the patient. The bolus size depends on the
patient and the scenario (meal with the correct bolus
or underbolused meal).

• The loop is closed at 22:00 (for closed-loop studies
only).

• The closed-loop ends at 07:00 the following day (for
closed-loop studies only).

The purpose of the first part of the study (when the insulin
bolus matches the evening meal) is to validate the ability
of the controller to compensate for overnight physiological
changes in patients. The second part of the study (when
meals are underbolused) must ensure that the controller
can bring and keep blood glucose in the range 4.0-8.0
mmol/L.

The patient is equipped with 2 Dexcom Seven Plus CGMs
and a Medtronic Paradigm insulin pump. The CGMs pro-
vide glucose measurements every 5 minutes. The clinician
decides on the sensor used by the controller, based on the
accuracy of the sensor during the days before the study.
The other CGM can be used as a backup device. Insulin is
administrated to the patient through small discrete insulin
injections (also called microboluses) every 15 minutes.

It must be pointed out that the pump used for the trials
has discrete increments of 0.025U for the microboluses,
and a minimum continuous insulin injection (or basal rate)
of 0.025 U/hr. The controller handles these restrictions by
using hard constraints on the minimal insulin infusion rate
and by rounding the suggested microbolus to the nearest
0.025U (see Section 3.6).

In addition, blood samples are taken every 30 minutes in
order to measure more accurately the blood glucose (in
case of prolonged period of low blood glucose, the sampling
time is set to 15 minutes). The blood glucose was measured
by Hemocue and after the trial by YSI. These values are
not provided to the controller.

The clinician has the authority to prevent severe hypo-
glycemia by injection of intravenous glucose. Such a deci-
sion is based on the glucose history.



Fig. 4. Graphical User Interface screenshot

2.2 Graphical User Interface

Fig 4 provides an overview of the graphical user interface
developed for the artificial pancreas. The glucose sensor
provides a glucose measurement every 5 minutes. The
glucose measurements are transmitted from the sensor to
the software via a wireless receiver.

The graphical user interface returns a new insulin mi-
crobolus suggestion every 15 minutes. At these times, it
also returns the glucose prediction and insulin prediction
profiles. The decision on the insulin microbolus can be
overruled if there is a safety risk for the patient. The exact
time before the next microbolus suggestion is provided by
the graphical user interface.

It is also possible to add comments if necessary. These com-
ments have no influence on the microboluses computation,
but are stored.

3. CONTROLLER DESIGN

This section presents the detailed description of the con-
troller. The controller computes a discrete-time offset-free
ARMAX model. This model is then used to optimize
the future injections of insulin. The controller must be
designed in a robust and safe way for the patient, especially
regarding low blood glucose. We use here a time-varying
glucose setpoint to avoid insulin overdose.

3.1 Model computation

Several research groups investigated low-order models
to describe glucose-insulin dynamics. Kirchsteiger et al.
(2011) used a third order transfer function, Finan et al.
(2009) identified ARX models and Percival et al. (2010)
applied a first order transfer function with a delay. In this
paper we use a Single Input-Single Output (SISO) second
order continuous-time transfer function

Y (s) = G(s)U(s), G(s) =
K

(τs+ 1)2
(1)

The input U(s) is the insulin intake and the output Y (s)
is the blood glucose, both expressed in terms of deviation
variables from a steady state, K is the static gain and τ
is the time constant. The gain and the time constant are
computed from known patient-specific parameters. These
parameters are the insulin action time and the insulin

sensitivity factor (ISF). They can be estimated for each
individual patient by looking at the impulse response for a
small insulin bolus. The insulin action time τ corresponds
to the time that blood glucose takes to reach its minimum.
The insulin sensitivity factor (ISF) corresponds to the
maximum decrease in blood glucose per unit of insulin
bolus. These parameters are empirically estimated by the
patient and his/her physician. However, these parameters
may dramatically vary from day to day for a given patient.

The impulse response in the temporal domain of the
transfer function (1) is

y(t) = K
t

τ2
exp(−t/τ) (2)

We shall now relate the insulin sensitivity factor and the
insulin action time to the gain K and the time constant
τ in (2). The insulin action time corresponds to the time
to reach the minimum blood glucose, it is therefore equal
to τ . We find K by computing the output of the impulse
response (2) at its minimum, i.e. at time t = τ . It gives

y(τ) = −ISF =
K

τ
exp(−1) (3)

Isolating K in the above equation yields to

K = −τ exp(1)ISF (4)

The transfer function (1) can be reformulated as a discrete-
time transfer function model in the form

y(t) = G(q−1)u(t), G(q−1) =
B̄(q−1)

Ā(q−1)
(5)

which is equivalent to

Ā(q−1)y(t) = q−nkB̄(q−1)u(t) (6)

Ā(q−1) and B̄(q−1) are

Ā(q−1) = 1 + ā1q
−1 + ā2q

−2 (7a)

B̄(q−1) = b̄1q
−1 + b̄2q

−2 (7b)

Fig 5 depicts the exact impulse response and its second
order approximation for a virtual patient. This patient is
simulated using the model developed by Hovorka et al.
(2004). The figure demonstrates that a second order model
can provide a fairly good approximation of a patient with
type 1 diabetes. Current insulin, such as the Novorapid
insulin documented in Nov (2002) has a similar impulse
response shape, but can provide even faster action (the
minimum in glucose is reached in 60-90 minutes).

3.2 Observer design for the first study

Odelson et al. (2006), Jørgensen and Jørgensen (2007)
and Åkesson et al. (2008) proposed several methods for
Kalman filter tuning. In our controller we use the following
discrete-time, linear ARMAX model
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Fig. 5. Example of second order approximation compared
to the exact impulse response. The bolus size is here
0.1U. The parameters are: τ=4 hours and ISF = 4
mmol/L/U.

A(q−1)y(t) = q−nkB(q−1)u(t) + C(q−1)ε(t) (8)

A, B and C are polynomials, and q−1 is the backward
shift operator. We assume that ε(t) ∼ Niid(0, σ). In the
first pilot study we used the following ARMAX model
description

A(q−1)y(t) = B(q−1)u(t) + (1− αq−1)e(t) (9)

in which

A(q−1) = (1− q−1)Ā(q−1) (10)

B(q−1) = (1− q−1)B̄(q−1) (11)

The model (9) is able to provide offset-free tracking due
to the integrator. The parameter α ∈ [0; 1] is a tuning
parameter. α = 0 corresponds to an integrated ARX
model, while α = 1 corresponds to an ARX model without
integrator. For further details about the choice of α, see
e.g. Huusom et al. (2010).

The ARX model (9) may be realized as a stationary state
space model in innovation form

xk+1 = Axk +Buk +Kεk (12)

yk = Cxk + εk (13)

The matrices A, B, C and K are written in the canonical
form

A =

[−a1 1 0
−a2 0 1
−a3 0 0

]
B =

[
b1
b2
b3

]

K =

[−α− a1
−a2
−a3

]
C = [1 0 0]

(14)

Fig. 6 shows the glucose and insulin predictions for the
first study. It can be noticed that the prediction is mostly
based on the two previous observations (which show an
increasing blood glucose) rather than on the global trend
(which shows a decreasing blood glucose).
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Fig. 6. Example of blood glucose prediction for the first
study. It can be seen that the controller relies more
on the local trend than on the global trend.

3.3 Observer design for the second study

In this section we consider the general ARMAX model (8)
in which we assume

C(q−1) = 1 + c1q
−1 + c2q

−2 + c3q
−3 (15)

and

A(q−1) = (1− q−1)Ā(q−1) (16)

B(q−1) = (1− q−1)B̄(q−1) (17)

in order to preserve the offset-free control property. There-
fore, the Kalman gain K in equation (14) becomes

K =

[
c1 − a1
c2 − a2
c3 − a3

]
(18)

(the matrices A, B and C remain unchanged). The design
of observer consists of setting the eigenvalues of A −
KC. Having the eigenvalues close to 0 makes the state
estimation error rapidly vanish, but on the other hand
the observer will be more sensitive to noise. Having the
eigenvalues close to 1 makes the observer less sensitive to
noise (and therefore more relying on the global trend) but
introduces a delay in the predictions. It can be shown that
these eigenvalues are the roots of the polynomial

χ(z) = z3 + c1z
2 + c2z + c3 (19)

χ(z) is the characteristic polynomial of A−KC, and the
coefficients ci, i = 1, 2, 3 are the same as the ones in
equations (15) and (18). Let α, β1 and β2 be the roots
of (19). We assume that α ∈ R, and that β1 and β2 are
either real or complex conjugate. Furthermore, these roots
must all lie inside the unit circle.

As for the first study, we fixed α = 0.99. The choice
of β1 and β2 has been made using data from the first
pilot study. For modeling purpose, we considered the
stochastic continuous-time model and measurements at
discrete times, i.e.
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Fig. 7. Example of blood glucose prediction for the first
study with the new observer. The controller is able to
predict more accurately the blood glucose trend.

dx(t) = f(t, x(t), u(t))dt+ σdω(t) (20a)

yk = h(tk, x(tk)) + vk (20b)

x(t) are the system states, u(t) are the known inputs (in-
sulin injections, meals and intravenous glucose injections)
and yk are discrete outputs (CGM measurements). The
function f is a continuous-time state-space description of
the transfer function (1).

We used the internally developed software ”Continuous
Time Stochastic Modelling” (CTSM) to estimate the vari-
ances (variance of process noise and measurement noise)
with the maximum likelihood method. We took these
variances to compute the predictive Kalman gain K, and
hence β1 and β2. The computation of β1 and β2 yielded

β1,2 = 0.8078± 0.1581i (21)

These roots give

c1 = −2.6056 c2 = 2.2770 c3 = −0.6708 (22)

Fig. 7 illustrates an other example of blood glucose and
insulin prediction. We have generated these prediction
plots by taking the same data sequence in which we
designed the observer. Unlike the previous case in Fig. 6,
the controller is able to predict more accurately the blood
glucose trend.

3.4 Computing the j-steps ahead predictions

If the k-th glucose measurement yk is available, the one-
step ahead prediction of the states and outputs is

x̂k+1|k = Ax̂k|k +Buk|k +Kεk (23a)

ŷk+1|k = Cx̂k+1|k (23b)

εk is the innovation term

εk = yk − Cx̂k|k−1 (24)

In the case where the k-th glucose measurement yk is not
available, the one-step ahead prediction of the states and
outputs is
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Fig. 8. Example of time-varying reference signal for differ-
ent values of the time constant τr.

x̂k+1|k = Ax̂k|k +Buk|k (25a)

ŷk+1|k = Cx̂k+1|k (25b)

Similarly, the j + 1 steps ahead predictions of the states
and the outputs for j = 1, 2, ... are

x̂k+j+1|k = Ax̂k+j|k +Buk+j|k (26a)

ŷk+j+1|k = Cx̂k+j+1|k (26b)

3.5 Time-varying glucose setpoint

The glucose trajectory is exponentially decreasing when
the blood glucose is above the target, which robustifies
the controller with respect to plant-model mismatches.
Consequently, the reference blood glucose is

r̂k+j|k(t) = ŷk|k exp

(
− tj
τr

)
(27)

The choice of the tuning parameters τr has an influence on
the rapidness and the robustness of the controller. Small
values of τr provide a faster return to the euglycemic range,
while larger values of τ ensure a more robust control. The
glucose setpoint profiles for different values of the time
constant τr are shown in Fig. 8.

3.6 Model Predictive Control with Soft Constraints

At the time tk, the open loop convex quadratic program
solved online is

min
{uk+j,vj}N−1

j=0

φ =
1

2

N−1∑

j=0

‖ŷk+j+1|k − r̂k+j+1|k‖22+

λ‖∆uk+j‖22 + κ‖vk+j‖22 (28a)

s.t. x̂k+1|k = Ax̂k|k−1 +Buk +Kek (28b)

ŷk+1|k = Cx̂k+1|k (28c)

x̂k+j+1|k = Ax̂k+j|k +Buk (28d)

ŷk+j+1|k = Cx̂k+j+1|k (28e)

umin ≤ uk+j ≤ umax (28f)

Gmin − yk+1 ≤ vk+j (28g)

vj ≥ 0 (28h)



in which x̂k|k−1 and ek = yk−Cx̂k|k−1 are given. umin and
umax are the minimum and the maximum insulin infusion
rates allowed by the pump. ∆uk+j = uk+j − uk+j−1 is
the variation in the insulin infusion rate. Gmin depicts
the lower bound on blood glucose. The reference signal
r̂k+j+1|k is time-varying and its computation is given in
section 3.5.

The slack variables vj are introduced to penalize hypo-
glycemia. The hard input constraints (28f) limit the insulin
infusion rate. The penalty term κ‖vk+j‖22 is used to avoid
hypoglycemia and the penalty term λ‖∆uk+j‖22 prevents
the insulin infusion rate from varying too aggressively.

For the study we choose N = 120, i.e. a 10 hour prediction
horizon, and

umin = −uss + 0.025, umax = uss,

λ =
10

u2ss
, κ = 1000

(29)

We remind here that the input variables are deviation
variables from the steady state uss. Consequently, the
choice of umin = −uss + 0.025 allows the controller to
deliver the minimum basal rate (0.025U/hr), and umax =
uss prevents the pump from overdosing the insulin. The
high value of κ makes hypoglycemia undesirable.

4. STUDIES RESULTS

In this section we discuss the two studies conducted at
Hvidovre Hospital on the same patient. The patient has
an insulin sensitivity factor equal to 5 mmol/L/U and an
insulin action time equal to 5 hours. Her basal insulin is
uss = 0.85 U/hr.

4.1 Pilot studies results

Fig. 9 depicts the blood glucose and insulin profiles for
the first pilot study. The study started at 17:30. A meal
has been consumed at 18:00. An insulin overdosing led to
severe hypoglycemia and an intravenous glucose injection
at approximately 00:00. A microbolus decision has been
overruled at 01:30.

Fig. 10 depicts the blood glucose and insulin profiles for the
second pilot study. Intravenous glucose has been admin-
istrated at 10:00 and 12:00 to compensate for a too high
insulin sensitivity. The sensor has to be calibrated at 12:15
and 14:45. In despite of these disturbances, the controller
was able to keep the blood glucose within the range 4.0-
8.0 mmol/L after the second glucose administration. In
addition, the intravenous glucose is not included in the
model, and therefore can be considered as an unknown
disturbance. However, it can be noticed that insulin is still
slightly overdosed.

5. CONCLUSION

This contribution presents a closed-loop controller for
people with type 1 diabetes. We described a practical
way of computing the glucose-insulin dynamics model. The
controller has been tested two times on the same patient.
The most noticeable difference between the two studies

was the observer design. The trial results illustrated the
importance of observer design in state space models in
innovation form, and how modelling based on prior data
can be used to design the observer. Improvements are
being implemented on the controller in order to ensure
a more robust control of blood glucose and avoid the
observed insulin overdosing during the second pilot study.
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Fig. 9. Blood glucose and insulin profiles for the first pilot study. The insulin infusion rates are computed based on the
right CGM (green curve).
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Abstract:
In this paper, we develop and test a Model Predictive Controller (MPC) for overnight
stabilization of blood glucose in people with type 1 diabetes. The controller uses glucose
measurements from a continuous glucose monitor (CGM) and its decisions are implemented by
a continuous subcutaneous insulin infusion (CSII) pump. Based on a priori patient information,
we propose a systematic method for computation of the model parameters in the MPC. Safety
layers improve the controller robustness and reduce the risk of hypoglycemia. The controller is
evaluated in silico on a cohort of 100 randomly generated patients with a representative inter-
subject variability. This cohort is simulated overnight with realistic variations in the insulin
sensitivities and needs. Finally, we provide results for the first tests of this controller in a real
clinic.

1. INTRODUCTION

People with type 1 diabetes need several blood measure-
ments and insulin injections per day to regulate their
blood glucose properly. Too small doses of insulin result in
high blood glucose (hyperglycemia), which has long-term
complications such as nerve diseases, kidney diseases, and
blindness. In contrast, too high doses lead to low blood
glucose (hypoglycemia) with immediate adverse effects
such as seizure, coma or even death.

Closed-loop control of blood glucose, also known as the
artificial pancreas (AP), has been suggested to overcome
the burden and complications associated with manage-
ment of the blood glucose level in people with type 1
diabetes. An AP using subcutaneous (sc) measurements
and subcutaneous delivery consists of a continuous glucose
monitor (CGM), a control algorithm, and a continuous
subcutaneous insulin infusion (CSII) pump. Fig. 1 illus-
trates the principal components of an AP. It has been
a subject of interest for almost 40 years (Albisser et al.
(1974)) and is still an active field of research (Cobelli et al.
(2011), Nicolao et al. (2011)).

Model Predictive Control is a useful control method for
the AP due to its ability to handle constraints and out-of-
zone glucose levels in a systematic and proactive fashion.
Prototypes of AP using MPC have been successfully tested

? Funding for this research as part of the DIACON project from
the Danish Council for Strategic Research (NABIIT project 2106-
07-0034) is gratefully acknowledged.
Corresponding author: J.B. Jørgensen, jbj@imm.dtu.dk

Continuous Glucose 
Monitor (CGM)

Insulin PumpControl Algorithm

Artificial Pancreas

Fig. 1. Closed-loop glucose control. Glucose is measured
subcutaneously using a continuous glucose monitor
(CGM). Insulin is dosed by an insulin pump.

both in silico (Magni et al., 2009) and in vivo (Hovorka
et al., 2010).

In this paper we implement an AP using a CGM for
glucose feedback, an insulin pump and a control algorithm
based on MPC. We present a method exploiting a priori
available patient information for computing a personalized
set of model parameters. In the considered setup, the
patient information required by the controller is: The basal
insulin infusion rate, the insulin sensitivity factor (also
called the correction factor), and the insulin action time.
Safety layers limit the occurrence of hypoglycemic events.
The controller is tested in silico on a cohort of 100 patients.
We simulate an overnight clinical trial and induce realistic
variations in insulin needs. We also present glucose and



Table 1. Parameters and distribution for the
simulated cohort.

Parameter Unit Distribution

EGP0 mmol/kg/min EGP0 ∼ N(0.0161, 0.00392)
F01 mmol/kg/min F01 ∼ N(0.0097, 0.00222)
k12 min−1 k12 ∼ N(0.0649, 0.02822)
ka1 min−1 ka1 ∼ N(0.0055, 0.00562)
ka2 min−1 ka2 ∼ N(0.0683, 0.05072)
ka3 min−1 ka3 ∼ N(0.0304, 0.02352)

SfIT min−1/(mU/L) SfIT ∼ N(51.2, 32.092)

SfID min−1/(mU/L) SfID ∼ N(8.2, 7.842)

SfIE L/mU SfIE ∼ N(520, 306.22)
ke min−1 ke ∼ N(0.14, 0.0352)
VI L/kg VI ∼ N(0.12, 0.0122)
VG L/kg exp(VG) ∼ N(ln(0.15), 0.232)

τI min 1
τI

∼ N(0.018, 0.00452)

τG min 1
ln(τG)

∼ N(−3.689, 0.252)

Ag Unitless Ag ∼ U(0.7, 1.2)
BW kg BW ∼ U(65, 95)

insulin profiles from an initial test of the controller in a
real clinic.

This paper is structured as follows. In Section 2 we de-
scribe the model and the methods used to simulate a
cohort of patients with type 1 diabetes. Section 3 presents
a procedure for computation of the MPC model param-
eters from prior patient information. Section 4 describes
the controller. In Section 5 we evaluate and discuss the
controller performance on a cohort of 100 patients and
provide in vivo test results. Conclusions are provided in
Section 6.

2. PHYSIOLOGICAL MODELS FOR PEOPLE WITH
TYPE 1 DIABETES

Several physiological models have been developed to sim-
ulate virtual patients with type 1 diabetes (Hovorka et al.
(2004); Bergman et al. (1981); Dalla Man et al. (2007)).
They describe subcutaneous insulin transport, intake of
carbohydrates through meals and include a model of
glucose-insulin dynamics.

In this paper, we use the Hovorka model to simulate
people with type 1 diabetes. Using the parameters and
distribution provided in Hovorka et al. (2002) and Wilinska
et al. (2010), we generate a cohort of 100 patients. These
parameters and their distribution are summarized in Table
1.

In addition, we use a CGM for glucose feedback in our con-
troller setup. For the numerical simulations, we generate
noisy CGM data based on the model and the parameters
determined by Breton and Kovatchev (2008). This model
consists of two parts. The first part describes the glucose
transport from blood to interstitial tissues. The second
part models non-Gaussian sensor noise.

3. PREDICTION OF SUBCUTANEOUS GLUCOSE

In this section, we derive a prediction model for subcuta-
neous glucose, y(t). The model has a deterministic part
describing the effect of sc injected insulin, u(t), and a
stochastic part describing the effect of other unknown fac-
tors. The prediction model is an autoregressive integrated
moving average with exogenous input (ARIMAX) model

A(q−1)y(t) = B(q−1)u(t) +
C(q−1)

1− q−1 ε(t) (1)

The ARIMAX model structure is used do have offset free
control when the filter and predictor of this model are
used in an MPC. A and B are individualized and derived
from known patient information. C is identified from data
for one real patient and this C is used for the cohort
of virtual and real patients. This model identification
technique turns out to give a good compromise between
data requirements, performance and robustness of the
resulting controller for the overnight study described in
this paper.

3.1 Deterministic Model

All the physiological models presented in Section 2 contain
a large number of parameters, and even the minimal
model developed by Bergman et al. (1981) may be difficult
to identify (Pillonetto et al., 2003). To overcome this
issue, we use a low-order linear model to describe the
glucose-insulin dynamics. Similar approaches have been
investigated previously. Kirchsteiger et al. (2011) used a
third order transfer function and Percival et al. (2010)
applied a first order transfer function with a time delay. In
this paper we use a continuous-time second order transfer
function

G(s) =
Y (s)

U(s)
=

Ku

(τs+ 1)2
(2)

to model the effect of sc injected insulin on sc glucose. The
gain, Ku, and the time constant, τ , are computed from
known subject-specific parameters; the insulin action time
and the insulin sensitivity factor (ISF).

The insulin action time and the insulin sensitivity factor
are related to the response of blood glucose to an insulin
bolus. If we assume that blood glucose is approximately
identical to sc glucose, this is the impulse response of (2).
The insulin action time is the time for blood glucose to
reach its minimum. The ISF corresponds to the maximum
decrease in blood glucose per unit of insulin bolus. These
parameters are empirically estimated by the patient and
his/her physician. These parameters may vary from day to
day for a given patient but gives an estimate of the effect
of insulin on blood glucose and sc glucose.

In the temporal domain, the impulse response of (2) is
described by

y(t) = Ku
t

τ2
exp(−t/τ) (3)

The insulin action time corresponds to the time to reach
the minimum blood glucose. Consequently, this insulin
action time is equal to τ . We determine Ku using (3) and
the fact that the insulin sensitivity factor is equal to the
minimal blood glucose (sc glucose), y(τ) = −ISF , such
that

Ku = −τ exp(1)ISF (4)

Using a zero-order-hold insulin profile, the continuous-time
transfer function (2) may be used to determine the A and
B polynomials in the ARIMAX model (1). They are

A(q−1) = 1 + a1q
−1 + a2q

−2 (5a)

B(q−1) = b1q
−1 + b2q

−2 (5b)
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Fig. 2. Impulse responses for a second order model and
the nonlinear Hovorka model. The bolus size is 0.1U
and the parameters for the second order model are:
τ=4 hours and ISF = 0.4 mmol/L/0.1 U = 4.0
mmol/L/U.

with the coefficients a1, a2, b1 and b2 computed as

a1 = −2 exp(−Ts/τ) (6a)

a2 = exp(−2Ts/τ) (6b)

b1 = Ku(1− exp(−Ts/τ)(1 + Ts/τ)) (6c)

b2 = Ku exp(−Ts/τ)(−1 + exp(−Ts/τ) + Ts/τ) (6d)

Ts is the sample time.

Fig 2 depicts the impulse response for a virtual patient
with type 1 diabetes and its second order approximation
(2). This patient is simulated using the model developed
by Hovorka et al. (2004). The figure demonstrates that a
second order model provides an acceptable approximation
of a patient with type 1 diabetes.

3.2 Stochastic Model

The stochastic part, C(q−1), of the ARIMAX model (1) is
assumed to be a third order polynomial of the form

C(q−1) = 1 + c1q
−1 + c2q

−2 + c3q
−3

= (1− αq−1)(1− β1q−1)(1− β2q−1)
(7)

α = 0.99 is a fixed parameter. It has been determined
based on performance studies of the resulting MPC. β1 and
β2 are determined from clinical data for one real patient
(Boiroux et al., 2012).

We compute β1 and β2 by estimating the process and mea-
surement noise characteristics, σ and r, in the following
continuous-discrete stochastic linear model

dx(t) = (Acx(t) +Bcu(t))dt+ σdω(t) (8a)

yk = h(tk, x(tk)) + vk (8b)

Ac and Bc are realizations of (2). ω(t) is a standard Wiener
process. The matrix σ is time-invariant and the measure-
ment noise vk is normally distributed, i.e. vk ∼ Niid(0, r2).
We estimate, σ and r, using a maximum likelihood criteria
for the one-step prediction error (Kristensen et al., 2004;
Jørgensen and Jørgensen, 2007). By zero-order hold (zoh)
discretization, Kalman filter design, and z-transformation,
(8) may be represented as

yk = G(q−1)uk +H(q−1)εk (9)

with

G(q−1) = B(q−1)/A(q−1) (10a)

H(q−1) = C̃(q−1)/A(q−1) (10b)

The parameters, β1 and β2, in

C̃(q−1) = (1− β1q−1)(1− β2q−1) (11)

are extracted from H(q−1). The coefficients β1 and β2
computed in this way are β1,2 = 0.81± 0.16i.

The difference equation (9) corresponding to the SDE (8)
is related to the ARIMAX model (1) by

εk =
1− αq−1
1− q−1 εk (12)

This specification introduces a model-plant mismatch. εk
is white noise in (9) while (12) models εk as filtered
integrated white noise. This model-plant mismatch is nec-
essary to have offset free control in the resulting predictive
control system. (12) implies that

C(q−1) = (1− αq−1)C̃(q−1) (13)

such that c1 = −2.61, c2 = 2.28 and c3 = −0.67.

3.3 Realization and Predictions with ARIMAX Models

The ARIMAX model (1) with A, B and C given by (5)
and (7) may be represented as a discrete-time state space
model in innovation form

xk+1 = Axk +Buk +Kεk (14a)

yk = Cxk + εk (14b)

with the observer canonical realization

A =

[
1− a1 1 0
a1 − a2 0 1
a2 0 0

]
B =

[
b1

b2 − b1
−b2

]
K =

[
c1 + 1− a1
c2 + a1 − a2
c3 + a2

]

C = [1 0 0]

The innovation of (14) is

ek = yk − Cx̂k|k−1 (15)

and the corresponding predictions are (Jørgensen et al.,
2011)

x̂k+1|k = Ax̂k|k−1 +Bûk|k +Kek (16a)

x̂k+1+j|k = Ax̂k+j|k +Bûk+j|k, j = 1, . . . , N − 1 (16b)

ŷk+j|k = Cx̂k+j|k, j = 1, . . . , N (16c)

The innovation (15) and the predictions (16) constitute
the feedback and the predictions in the model predictive
controller.

4. MODEL PREDICTIVE CONTROL

Control algorithms for glucose regulation in people with
type 1 diabetes must be able to handle intra- and inter-
patient variability. In addition, the controller must ad-
ministrate insulin in a safe way to minimize the risk of
hypoglycemia. Due to the nonlinearity in the glucose-
insulin interaction the risk of hypoglycemic episodes as
consequence of too much insulin is particular prominent.

In this section we describe an MPC formulation with soft
output constraints and hard input constraints. This formu-
lation is based on the individualized prediction model for
glucose computed in Section 3. Along with other features



we introduce a modified time-varying reference signal to
robustify the controller and mitigate the effect of glucose-
insulin nonlinearities and model-plant mismatch in the
controller action.

The MPC algorithm computes the insulin dose by solution
of an open-loop optimal control problem. Only the control
action corresponding to the first sample interval is imple-
mented and the process is repeated at the next sample
interval. This is called a moving horizon implementation.
The innovation (15) provides feedback from the CGM, yk,
and the open-loop optimal control problem solved in each
sample interval is the convex quadratic program

min
{ûk+j|k,v̂k+j+1|k}N−1

j=0

φ (17a)

s.t. (16) (17b)

umin ≤ ûk+j|k ≤ umax (17c)

ŷk+j+1|k ≥ ymin − v̂k+j+1|k (17d)

v̂k+j+1|k ≥ 0 (17e)

with the objective function φ defined as

φ =
1

2

N−1∑

j=0

‖ŷk+j+1|k − r̂k+j+1|k‖22

+ λ‖∆ûk+j|k‖22 + κ‖v̂k+j+1|k‖22

(18)

N is the control and prediction horizon. We choose a
prediction horizon equivalent to 10 hours, such that the
insulin profile of the finite horizon optimal control prob-
lem (17) is similar to the insulin profile of the infinite
horizon optimal control problem, (17) with N → ∞.
‖ŷk+j+1|k − r̂k+j+1|k‖22 penalizes glucose deviation from
the time-varying glucose setpoint and aims to drive the
glucose concentration to 6 mmol/L. λ‖∆uk+j|k‖22 is a
regularization term that prevents the insulin infusion rate
from varying too aggressively. For the simulations and the
in vivo clinical studies we set λ = 100/u2ss. The soft output
constraint (17d) penalizes glucose values below 4 mmol/L.
Since hypoglycemia is highly undesirable, we choose the
weight on the soft output constraint to be rather high i.e.
κ = 100.

To guard against model-plant mismatch we modify the
maximal allowable insulin injection, umax, and let it de-
pend on the current glucose concentration. If the glucose
concentration is low (below the target of 6 mmol/L) we
prevent the controller from taking future hyperglycemia
into account by restricting the maximal insulin injection.
If the glucose concentration is high (4 mmol/L above the
target) we increase the maximal allowable insulin injection
rate. In the range 0 - 4 mmol/L above target we allow the
controller to double the basal insulin injection rate. These
considerations lead to

umax =





1.5uss 4 ≤ yk ≤ ∞
uss 0 ≤ yk ≤ 4

0.5uss −∞ ≤ yk ≤ 0

(19)

in which uss is the basal insulin infusion rate. Due to pump
restrictions, the minimum insulin injection rate, umin, is a
low value but not exactly zero.

Garcia-Gabin et al. (2008) and Eren-Oruklu et al. (2009)
use a time-varying glucose reference signal to robustify the
controller and reduce the risk of hypoglycemic events. In
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Fig. 3. Time-varying reference signals for glucose above
(blue curve) and below (green curve) the target of 6
mmol/L.

this paper, we use an asymmetric time-varying glucose
reference signal. The idea of the asymmetric reference
signal is to induce safe insulin injections in hyperglycemic
periods and fast recovery in hypoglycemic and below
target periods. The asymmetric time-varying setpoint is
given by

r̂k+j|k(t) =

{
yk exp

(
−tj/τ+r

)
yk ≥ 0

yk exp
(
−tj/τ−r

)
yk < 0

(20)

Since we want to avoid hypoglycemia, we make the con-
troller react more aggressively if the blood glucose level is
below 6 mmol/L, so we choose τ−r = 15 min and τ+r = 90
min. Fig 3 provides an illustration of the time-varying
reference signal.

5. NUMERICAL RESULTS AND DISCUSSION

In this section we discuss the performance of the MPC
for a randomly generated cohort of 100 patients. The 100
patients are generated from the probability distribution
presented in Section 2. We compare the performance of
the controller with simulated conventional insulin therapy
in which the basal insulin infusion rate remains constant
during the night. Variations in metabolism and insulin
need is simulated by a sudden change in the insulin
sensitivity parameters of the Hovorka model.

The clinical protocol for the 100 in silico patients is:

• The patient arrives at the clinic at 17:00.
• The patient gets a 75 g CHO dinner and an insulin

bolus at 18:00.
• The closed loop starts at 22:00.
• The insulin sensitivity is modified by ±30% at 01:00.
• The patient gets a 60 g CHO breakfast and an insulin

bolus at 08:00. The controller is switched off.

The MPC is individualized using the insulin basal rate
(uss), the insulin sensitivity factor (ISF), and the insulin
action time for each individual patient. In the virtual clinic
these numbers are computed from an impulse response
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Fig. 4. CVGA (Magni et al. (2008)) plot of the 100 in silico
patients. White: Without MPC. Black: With MPC.

starting at a steady state. The meal boluses are determined
using a bolus calculator similar to the one presented in
Boiroux et al. (2011). The glucose is provided to the
controller every 5 minutes by a noise-corrupted CGM. The
pump insulin infusion rate is changed every 5 minutes.

Fig. 4 shows the control variability grid analysis (CVGA)
of the period between 22:00 and 08:00 for the case with-
out MPC (white circles) and the case with MPC (black
circles). In Fig. 4(a) we depict the case where the insulin
sensitivity is increased by 30%, and in Fig. 4(b) we depict
the case where the insulin sensitivity is decreased by 30%.
These figures show that our control algorithm reduces the
risk of nocturnal hypoglycemia. Although the improve-
ment is less significant, they also show that it can slightly
reduce the risk of nocturnal hyperglycemia. Fig. 5 depicts
the mean, standard deviation and minimum/maximum
blood glucose and insulin profiles for the closed-loop simu-
lations. In the case where insulin sensitivity is increased by
30% (Fig. 4(a) and 5(a)), mild hypoglycemic events occur
for some of the patients. However, no severe hypoglycemia
(i.e. blood glucose concentrations below 50 mg/dL) is
observed, and the choice of the tuning parameters in the
controller allows for a fast recovery. In the case where
insulin sensitivity is decreased by 30% (Fig. 4(b) and 5(b)),
all the patients are well controlled during the study period.
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Fig. 5. Glucose and insulin profiles envelopes. Closed-loop
control takes place between the 2 vertical black lines.
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Fig. 6. Glucose and insulin profiles for an in vivo clinical
study. Glucose input is provided by a CGM (blue
curve). Closed-loop control takes place between the
2 vertical black lines.

Fig. 6 illustrates the glucose and insulin profiles for a real
clinical test of the MPC. The glucose input is provided by
a CGM (blue curve). Actual blood glucose measurements
are provided by a glucose analyzer of blood samples
(YSI). Although a mild hyperglycemic event occurred at
approximately 23:00 and a few CGM values are below



4 mmol/L at approximately 03:00 and 04:00, this study
shows the capability of the controller to stabilize blood
glucose during the study night. Currently, the controller is
being tested in a real clinical study.

6. CONCLUSION

This paper presents a subject-specific MPC controller
designed for overnight stabilization of blood glucose in
people with type 1 diabetes. The model parameters in the
MPC are personalized based on easily available patient
information. The main advantage of this method is its
ease of implementation in real clinical studies due to the
moderate model parameter requirement. The design of the
controller allows for both a conservative control strategy in
case of high glucose values, and a more aggressive control
strategy in case of low glucose values. The controller is
tested in silico on a cohort of 100 patients with temporal
insulin sensitivity variations. A single test study from a
real clinic is also presented. The proposed MPC is able to
stabilize blood glucose overnight and reduces the risk of
nocturnal hypoglycemia and hyperglycemia.
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Abstract

This paper investigates overnight blood glucose stabilization in people with type 1 diabetes using a Model Predictive Controller
(MPC). We compute the model parameters in the MPC in a systematic way based on a priori available patient information. The
controller uses frequent glucose measurements from a continuous glucose monitor (CGM) and its decisions are implemented by
a continuous subcutaneous insulin infusion (CSII) pump. Safety layers improve the controller robustness and reduce the risk of
hypoglycemia. We validate the controller on a cohort of 100 randomly generated virtual patients with a representative inter-subject
variability. Finally, we provide preliminary results of this controller in a real overnight clinical study.

Keywords: Model Predictive Control, Glucose control, Artificial pancreas, Type 1 diabetes, Closed-loop control

1. Introduction

Diabetes is a disease characterized by blood glucose con-
centrations outside the safe range (4.0-8.0 mmol/l). In 2010,
approximately 280 million people suffered from diabetes, and
this number is expected to increase by 150 million by 2030 [1].
Type 1 diabetes represent 5-10% of diabetes. In addition, the
global health care expenditure to treat long-term complications
related to diabetes is also going to significantly increase within
the next years [2].

In people with type 1 diabetes, the pancreas does not produce
insulin. Patients with type 1 diabetes need exogenous insulin
administration in order to tightly regulate their blood glucose.
However, the dosage of insulin must be done carefully. An in-
sulin overdose may lead to low blood glucose (hypoglycemia).
Hypoglycemia has immediate effects, such as seizures, coma or
even death. In contrast, prolonged periods of too high blood
glucose (hyperglycemia) has long-term clinical complications,
such as blindness, nerve diseases or kidney diseases.

The conventional insulin therapy for people with type 1 di-
abetes consists of the injection of slow acting insulin once or
twice a day and rapid acting insulin several times per day, usu-
ally before mealtimes. The slow acting insulin is used to coun-
teract the continuous glucose production from the liver. The
rapid acting insulin reduces postprandial glucose excursions
by increasing acutely peripheral glucose uptake in the skele-
tal muscles and inhibiting glucose production. The decision on
the amount of short and fast acting insulin is based on several
finger stick blood glucose measurements per day.

An increasing number of patients with type 1 diabetes use an
intensive insulin therapy based on continuous glucose monitors

∗Corresponding author. E-mail: jbj@imm.dtu.dk

Continuous Glucose 
Monitor (CGM)

Insulin PumpControl Algorithm

Artificial Pancreas

Figure 1: Closed-loop glucose control. Glucose is measured subcutaneously us-
ing a continuous glucose monitor (CGM). Insulin is dosed by an insulin pump.

(CGMs) and continuous subcutaneous insulin infusion (CSII)
pumps instead of the conventional therapy described above.
This regime can reduce the risk of complications significantly
[3]. CGMs provide more frequent subcutaneous (sc) glucose
measurements. In addition, insulin pumps can be adjusted to
daily variations in insulin needs.

Closed-loop control of blood glucose, also known as the arti-
ficial pancreas (AP), has been a subject of interest for almost 40
years [4, 5] and is still an active field of research [6, 7, 8, 9, 10].
An AP consists of a CGM, a control algorithm and a CSII
pump. It has the potential to ease the life and reduce the bur-
den and complications for people with type 1 diabetes. Fig. 1
illustrates the principle of an AP.

Several research groups worked on the implementation of
APs both on virtual patients [11, 12, 13] and on human clin-
ical studies [14, 15, 16]. Currently, the most popular control

Preprint submitted to Computer Methods and Programs in Biomedicine October 4, 2012



algorithms are proportional integral derivative (PID) control
[17, 18], model predictive control (MPC) [19, 20, 21], sliding
mode control [22], fuzzy logic [23, 24] and H∞ control [25].
Nevertheless, the performance of current APs is limited by sev-
eral factors, such as the intra- and inter-patient variability, along
with the lags and delays associated to the choice of sc route for
glucose monitoring and insulin administration [26].

MPC is one of the most commonly used methods for the AP.
The main advantages of MPC are the ability to handle con-
straints both on input and output variables in a systematic way.
An MPC controller with insulin on board (IOB) constraints can
reduce the risk of overdosing insulin due to nonlinearities in
glucose-insulin dynamics [27]. Feedforward-feedback control
strategies can reduce the postprandial glucose peak by admin-
istrating meal boluses in anticipation of meals [28, 29].

In this paper, we present an AP using a CGM for glucose
feedback, an insulin pump and a control algorithm based on
MPC. The method described in this article exploits a priori
available patient information for computing a personalized set
of model parameters. In the considered setup, the patient in-
formation required by the controller is: The basal insulin infu-
sion rate, the insulin sensitivity factor (also called the correc-
tion factor), and the insulin action time. Safety layers limit the
occurrence of hypoglycemic events and improve the controller
robustness. The controller is tested in silico on a cohort of 100
patients. These simulations mimic an overnight clinical trial
and induce realistic variations in insulin needs.

The paper is structured as follows. In Section 2 we describe
the model and the methods used to simulate a cohort of pa-
tients with type 1 diabetes. Section 3 describes the material
and the software used for the in vivo clinical studies. Section
4 presents a procedure for computation of the MPC model pa-
rameters from prior patient information. Section 5 describes the
controller. In Section 6 we evaluate and discuss the controller
performance on a cohort of 100 virtual patients and also pro-
vide in vivo test results. Conclusions are provided in Section
7.

2. Physiological models for people with type 1 diabetes

Several physiological models have been developed to simu-
late virtual patients with type 1 diabetes [30, 31, 32]. They de-
scribe subcutaneous insulin transport, intake of carbohydrates
through meals and include a model of glucose-insulin dynam-
ics.

In this paper, we use the model developed by Hovorka et al.
to simulate people with type 1 diabetes. Using the parameters
and distributions provided in [33, 26] and [34], we generate
a cohort of 100 virtual patients. These parameters and their
distribution are summarized in Table 1.

2.1. CGM Model
In addition, we use a CGM for glucose feedback in our con-

troller setup. For the numerical simulations, we generate noisy
CGM data based on the model and the parameters stated in [35].
This model consists of two parts. The first part describes the
glucose transport from blood to interstitial tissues, which is

Table 1: Parameters and distribution for the simulated cohort.
Parameter Unit Distribution
EGP0 mmol/kg/min EGP0 ∼ N(0.0161, 0.00392)
F01 mmol/kg/min F01 ∼ N(0.0097, 0.00222)
k12 min−1 k12 ∼ N(0.0649, 0.02822)
ka1 min−1 ka1 ∼ N(0.0055, 0.00562)
ka2 min−1 ka2 ∼ N(0.0683, 0.05072)
ka3 min−1 ka3 ∼ N(0.0304, 0.02352)
S f

IT min−1/(mU/L) S f
IT ∼ N(51.2, 32.092)

S f
ID min−1/(mU/L) S f

ID ∼ N(8.2, 7.842)
S f

IE L/mU S f
IE ∼ N(520, 306.22)

ke min−1 ke ∼ N(0.14, 0.0352)
VI L/kg VI ∼ N(0.12, 0.0122)
VG L/kg exp(VG) ∼ N(ln(0.15), 0.232)
τI min 1

τI
∼ N(0.018, 0.00452)

τG min 1
ln(τG) ∼ N(−3.689, 0.252)

Ag Unitless Ag ∼ U(0.7, 1.2)
BW kg BW ∼ U(65, 95)

Table 2: Parameters for the CGM model [35].
Parameter Value
τsub 15 min
λ 15.96
ξ -5.471
δ 1.6898
γ -0.5444

dGsub

dt
=

1
τsub

(G(t) −Gsub(t)) (1)

Gsub(t) is the subcutaneous glucose and G(t) is the blood glu-
cose. τsub is the time constant associated to glucose transport
from blood to subcutaneous tissues.

The second part models non-Gaussian sensor noise. It is
given by


e1 = v1

ek = 0.7(ek−1 + vn)
(2)

vk ∼ Niid(0, 1) (3)

ηk = ξ + λ sinh
(ek − γ

δ

)
(4)

Consequently, the glucose value returned by the CGM is

GCGM(tk) = Gsub(tk) + ηk (5)

3. Methods and material

This section describes the clinical protocol and the developed
graphical user interface for the clinical studies.
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3.1. Clinical protocol

The patient is equipped with two Dexcom Seven Plus CGMs
and a Medtronic Paradigm Veo insulin pump. The CGMs pro-
vide glucose measurements every 5 minutes. The clinician de-
cides on the sensor used by the controller, based on the accuracy
of the sensor during the days before the study. The other CGM
can be used as a backup device. Insulin is administrated to the
patient through small discrete insulin injections (also called mi-
croboluses) every 15 minutes.

The pump used for the clinical studies has discrete incre-
ments of 0.025U, and a minimum continuous insulin injection
(or basal rate) of 0.025 U/hr. The controller handles these re-
strictions by using hard constraints on the minimal insulin in-
fusion rate and by rounding the suggested microbolus to the
nearest 0.025U.

In addition, blood samples are taken at least every 30 min-
utes in order to measure the blood glucose. In case of a pro-
longed period of low blood glucose, the sampling time is set
to 15 minutes. The blood glucose was measured by Hemocue
and after the study by YSI. These values are not provided to the
controller.

The clinician has the authority to prevent severe hypo-
glycemia by injection of intravenous glucose. Such a decision
is based on the glucose history.

3.2. Graphical User Interface

Fig 2 provides an overview of the graphical user interface of
our controller developed for the artificial pancreas. The glucose
sensor provides a glucose measurement every 5 minutes. The
glucose measurements are transmitted from the sensor to the
software via a wireless receiver.

The graphical user interface returns a new insulin microbolus
suggestion every 15 minutes. At these times, it also returns the
glucose prediction and insulin prediction profiles. The decision
on the insulin microbolus can be overruled if there is a safety
risk for the patient. The exact time before the next microbolus
suggestion is provided by the graphical user interface.

The clinician also has the possibility to add comments if
needed. These comments have no influence on the microboli
computations.

4. Prediction of Subcutaneous Glucose

In this section, we derive a prediction model for subcuta-
neous glucose, y(t). The model has a deterministic part describ-
ing the effect of sc injected insulin, u(t), and a stochastic part
describing the effect of other unknown factors. The prediction
model is an autoregressive integrated moving average with ex-
ogenous input (ARIMAX) model

A(q−1)y(t) = B(q−1)u(t) +
C(q−1)
1 − q−1 ε(t) (6)

The ARIMAX model structure (6) is used to achieve offset-free
control when the filter and predictor of this model are used in
an MPC. A and B are individualized and derived from known
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Figure 3: Impulse responses for a second order model and the nonlinear Hov-
orka model. The bolus size is 0.1U and the parameters for the second order
model are: τ=4 hours and IS F = 0.4 mmol/L/0.1 U = 4.0 mmol/L/U.

patient information. C is identified from data for one real pa-
tient and this C is used for the entire cohort of virtual and real
patients. This model identification technique turns out to give a
good compromise between data requirements, performance and
robustness of the resulting controller for the overnight study de-
scribed in this paper.

4.1. Deterministic Model
All the physiological models mentioned in Section 2 contain

a large number of parameters, and even the minimal model de-
veloped by Bergman et al. [31] may be difficult to identify [36].
To overcome this issue, we use a low-order linear model to de-
scribe the glucose-insulin dynamics. Similar approaches have
been investigated previously. Kirchsteiger et al. [37] used a
third order transfer function and Percival et al. [38] applied a
first order transfer function with a time delay. In this paper we
use a continuous-time second order transfer function

G(s) =
Y(s)
U(s)

=
Ku

(τs + 1)2 (7)

to model the effect of sc injected insulin on sc glucose. The
gain, Ku, and the time constant, τ, are computed from known
subject-specific parameters; the insulin action time and the in-
sulin sensitivity factor (ISF).

Fig 3 depicts the impulse response for a virtual patient with
type 1 diabetes and its second order approximation (7). This pa-
tient is simulated using the model developed by [30]. The figure
demonstrates that a second order model provides an acceptable
approximation of a patient with type 1 diabetes.

The insulin action time and the insulin sensitivity factor are
related to the response of blood glucose to an insulin bolus. If
we assume that blood glucose is approximately identical to sc
glucose, this is the impulse response of (7). The insulin action
time is the time for blood glucose to reach its minimum. The
ISF corresponds to the maximum decrease in blood glucose per

3



Figure 2: Graphical User Interface screenshot. The left panel provides the glucose and insulin history. The middle panel displays the current CGM value and
insulin microbolus and the comments. The right panel indicates the time before the next microbolus administration, the time before the next CGM measurement,
the duration of closed-loop and the total study duration. The plot depicts the glucose and insulin profiles (solid lines) and the predictions for glucose and insulin
(dashed lines).

unit of insulin bolus. These parameters are empirically esti-
mated by the patient and his/her physician. These parameters
may vary from day to day for a given patient but gives an esti-
mate of the effect of insulin on blood glucose and sc glucose.

In the temporal domain, the impulse response of (7) is de-
scribed by

y(t) = Ku
t
τ2 exp(−t/τ) (8)

The insulin action time corresponds to the time to reach the
minimum blood glucose. Consequently, this insulin action time
is equal to τ. We determine Ku using (8) and the fact that the
insulin sensitivity factor is equal to the minimal blood glucose
(sc glucose), y(τ) = −IS F, such that

Ku = −τ exp(1)IS F (9)

Using a zero-order-hold insulin profile, the continuous-time
transfer function (7) may be used to determine the A and B poly-
nomials in the ARIMAX model (6). They are

A(q−1) = 1 + a1q−1 + a2q−2 (10a)

B(q−1) = b1q−1 + b2q−2 (10b)

with the coefficients a1, a2, b1 and b2 computed as

a1 = −2 exp(−Ts/τ) (11a)
a2 = exp(−2Ts/τ) (11b)
b1 = Ku(1 − exp(−Ts/τ)(1 + Ts/τ)) (11c)
b2 = Ku exp(−Ts/τ)(−1 + exp(−Ts/τ) + Ts/τ) (11d)

Ts is the sample time.

4.2. Stochastic Model
The stochastic part, C(q−1), of the ARIMAX model (6) is

assumed to be a third order polynomial of the form

C(q−1) = 1 + c1q−1 + c2q−2 + c3q−3

= (1 − αq−1)(1 − β1q−1)(1 − β2q−1)
(12)

α = 0.99 is a fixed parameter. α has been determined based
on performance studies of the resulting MPC. β1 and β2 are
determined from clinical data for one real patient [15, 39].

We compute β1 and β2 by estimating the process and mea-
surement noise characteristics, σ and r, in the following
continuous-discrete stochastic linear model

dx(t) = (Acx(t) + Bcu(t))dt + σdω(t) (13a)
yk = h(tk, x(tk)) + vk (13b)

Ac and Bc are realizations of (7). ω(t) is a standard Wiener pro-
cess. The matrix σ is time-invariant and the measurement noise
vk is normally distributed, i.e. vk ∼ Niid(0, r2). We estimate,
σ and r, using a maximum likelihood criteria for the one-step
prediction error [40, 41]. By zero-order hold (zoh) discretiza-
tion, Kalman filter design, and z-transformation, (13) may be
represented as

yk = G(q−1)uk + H(q−1)εk (14)

with

G(q−1) = B(q−1)/A(q−1) (15a)

H(q−1) = C̃(q−1)/A(q−1) (15b)
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The parameters, β1 and β2, in

C̃(q−1) = (1 − β1q−1)(1 − β2q−1) (16)

are extracted from H(q−1). The coefficients β1 and β2 computed
in this way are β1,2 = 0.81 ± 0.16i.

The difference equation (14) corresponding to the Stochas-
tic Differential Equation (SDE) (13) is related to the ARIMAX
model (6) by

εk =
1 − αq−1

1 − q−1 εk (17)

This specification introduces a model-plant mismatch. εk is
white noise in (14) while (17) models εk as filtered integrated
white noise. This model-plant mismatch is necessary to have
offset free control in the resulting predictive control system.
(17) implies that

C(q−1) = (1 − αq−1)C̃(q−1) (18)

such that c1 = −2.61, c2 = 2.28 and c3 = −0.67.

4.3. Realization and Predictions with ARIMAX Models

The ARIMAX model (6) with A, B and C given by (10) and
(12) may be represented as a discrete-time state space model in
innovation form

xk+1 = Axk + Buk + Kεk (19a)
yk = Cxk + εk (19b)

with the observer canonical realization

A =


1 − a1 1 0
a1 − a2 0 1

a2 0 0

 B =


b1

b2 − b1
−b2

 K =


c1 + 1 − a1
c2 + a1 − a2

c3 + a2



C =
[
1 0 0

]

The innovation of (19) is

ek = yk −Cx̂k|k−1 (20)

and the corresponding predictions are [42]

x̂k+1|k = Ax̂k|k−1 + Bûk|k + Kek (21a)
x̂k+1+ j|k = Ax̂k+ j|k + Bûk+ j|k, j = 1, . . . ,N − 1 (21b)

ŷk+ j|k = Cx̂k+ j|k, j = 1, . . . ,N (21c)

The innovation (20) and the predictions (21) constitute the
feedback and the predictions in the model predictive controller.

5. Model Predictive Control

Control algorithms for glucose regulation in people with type
1 diabetes must be able to handle intra- and inter-patient vari-
ability. In addition, the controller must administrate insulin in
a safe way to minimize the risk of hypoglycemia. Due to the

nonlinearity in the glucose-insulin interaction, the risk of hypo-
glycemic episodes as consequence of too much insulin is par-
ticularly prominent.

In this section we describe an MPC formulation with soft
output constraints and hard input constraints. This formula-
tion is based on the individualized prediction model for glucose
computed in Section 4. Along with other features we introduce
a modified time-varying reference signal to robustify the con-
troller and mitigate the effect of glucose-insulin nonlinearities
and model-plant mismatch in the controller action.

The MPC algorithm computes the insulin dose by solution of
an open-loop optimal control problem. Only the control action
corresponding to the first sample interval is implemented and
the process is repeated at the next sample interval when a new
glucose measurement arrives. This is called a moving horizon
implementation. The innovation (20) provides feedback from
the CGM, yk, and the open-loop optimal control problem solved
in each sample interval is the convex quadratic program

min
{ûk+ j|k ,v̂k+ j+1|k}N−1

j=0

φ (22a)

s.t. (21) (22b)
umin ≤ ûk+ j|k ≤ umax (22c)
ŷk+ j+1|k ≥ ymin − v̂k+ j+1|k (22d)
v̂k+ j+1|k ≥ 0 (22e)

with the objective function φ defined as

φ =
1
2

N−1∑

j=0

‖ŷk+ j+1|k − r̂k+ j+1|k‖22

+ λ‖∆ûk+ j|k‖22 + κ‖v̂k+ j+1|k‖22
(23)

N is the control and prediction horizon. We choose a prediction
horizon equivalent to 10 hours, such that the insulin profile of
the finite horizon optimal control problem (22) is similar to the
insulin profile of the infinite horizon optimal control problem,
i.e. (22) with N → ∞. ‖ŷk+ j+1|k−r̂k+ j+1|k‖22 penalizes glucose de-
viation from the time-varying glucose setpoint and aims to drive
the glucose concentration to 6 mmol/L. λ‖∆uk+ j|k‖22 is a regular-
ization term that prevents the insulin infusion rate from varying
too aggressively. For the simulations and the in vivo clinical
studies we set λ = 100/u2

ss. The soft output constraint (22d)
penalizes glucose values below 4 mmol/L. Since hypoglycemia
is highly undesirable, we choose the weight on the soft output
constraint to be rather high i.e. κ = 100. The penalty function
profile is illustrated in Fig. 4.

To guard against model-plant mismatch we modify the max-
imal allowable insulin injection, umax, and let it depend on the
current glucose concentration. If the glucose concentration is
low (below the target of 6 mmol/L) we prevent the controller
from taking future hyperglycemia into account by restricting
the maximal insulin injection. If the glucose concentration is
high (4 mmol/L above the target) we increase the maximal al-
lowable insulin injection rate. In the range 0 - 4 mmol/L above
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Figure 4: The penalty function

target we allow the controller to double the basal insulin injec-
tion rate. These considerations lead to

umax =



1.5uss 4 ≤ yk ≤ ∞
uss 0 ≤ yk ≤ 4
0.5uss −∞ ≤ yk ≤ 0

(24)

in which uss is the basal insulin infusion rate. Due to pump
restrictions, the minimum insulin injection rate, umin, is a low
value but not exactly zero.

[22] and [11] use a time-varying glucose reference signal to
robustify the controller and reduce the risk of hypoglycemic
events. In this paper, we use an asymmetric time-varying glu-
cose reference signal. The idea of the asymmetric reference sig-
nal is to induce safe insulin injections in hyperglycemic periods
and fast recovery in hypoglycemic and below target periods.
The asymmetric time-varying setpoint is given by

r̂k+ j|k(t) =


yk exp

(
−t j/τ

+
r

)
yk ≥ 0

yk exp
(
−t j/τ

−
r

)
yk < 0

(25)

Since we want to avoid hypoglycemia, we make the controller
react more aggressively if the blood glucose level is below 6
mmol/L, so we choose τ−r = 15 min and τ+

r = 90 min. Fig 5
provides an illustration of the time-varying reference signal.

6. Numerical results and discussion

In this section, we discuss the performance of the MPC for
a randomly generated cohort of 100 virtual patients. These 100
virtual patients are generated from the probability distribution
presented in Section 2. We compare the performance of the
controller with simulated conventional insulin therapy in which
the basal insulin infusion rate remains constant during the night.
The change in insulin sensitivity is simulated by a step change
in the insulin sensitivity parameters of the Hovorka model. We
also provide glucose and insulin profiles for a test clinical study
using the same MPC controller and the setup presented in Sec-
tion 3.

The clinical protocol for the 100 in silico patients is:
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Figure 5: Time-varying reference signals for glucose above (blue curve) and
below (green curve) the target of 6 mmol/L.

• The patient arrives at the clinic at 17:00. The Kalman filter
is activated.

• The patient gets a 75 g CHO dinner and an insulin bolus at
18:00.

• The closed loop starts at 22:00. In addition to the Kalman
filter, the MPC is activated.

• The insulin sensitivity is modified by ±30% at 01:00.

• The patient gets a 60 g CHO breakfast and an insulin bolus
at 08:00. The controller is switched off.

The MPC is individualized using the insulin basal rate (uss),
the insulin sensitivity factor (ISF), and the insulin action time
for each individual patient. In the virtual clinic these numbers
are computed from an impulse response starting at a steady
state. The meal boluses are determined using a bolus calculator
similar to the one presented in [21]. The glucose is provided to
the controller every 5 minutes by a noise-corrupted CGM. The
pump insulin infusion rate is changed every 5 minutes.

Fig. 6 depicts the mean blood glucose and insulin profiles,
along with blood glucose and insulin profiles for 3 representa-
tive patients. It shows a well-controlled patient (black curve),
a decently controlled patient (purple curve) and a badly con-
trolled patient (red curve), both in the case where insulin sensi-
tivity increases (Fig. 6(a)) and in the case where insulin sensi-
tivity decreases (Fig. 6(b)).

Fig. 7 shows the control variability grid analysis (CVGA) of
the period between 22:00 and 08:00 for the case without MPC
(white circles) and the case with MPC (black circles). In Fig.
7(a) we depict the case where the insulin sensitivity is increased
by 30%, and in Fig. 7(b) we depict the case where the insulin
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(b) Insulin sensitivity decreases by 30%

Figure 6: Glucose and insulin profiles for 3 representative patients.

sensitivity is decreased by 30%. These figures show that our
control algorithm reduces the risk of nocturnal hypoglycemia.
Although the improvement is less significant, they also show
that it can slightly reduce the risk of nocturnal hyperglycemia.

In the case where insulin sensitivity is increased by 30% (Fig.
7(a)), mild hypoglycemic events occur for some of the patients.
However, only few hypoglycemc events (i.e. blood glucose
concentrations below 3.5 mmol/L) are observed, and the choice
of the tuning parameters in the controller allows for a fast re-
covery. In the case where insulin sensitivity is decreased by
30% (Fig. 7(b)), all the patients are well controlled during the
study period.

Table 3 provides the percentage of time spent in various
glycemic regimes in the period between 22:00 and 08:00 for
the 100 simulated patients. These glycemic ranges are the eu-
glycemic range (3.9-8 mmol/L), hyperglycemia(>10 mmol/L),
slight hypoglycemia(<3.9 mmol/L) and severe hypoglycemia
(<3.5 mmol/L). This table show that MPC reduces the risk of
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Figure 7: CVGA ([43]) plot of the 100 in silico patients. White: Without MPC.
Black: With MPC.

hyperglycemia and significantly reduces the time spent in hy-
poglycemia in the case where the insulin sensitivity increases
during the night.

Fig. 8 illustrates the glucose and insulin profiles for a real
clinical test of the MPC. The glucose input is provided by a
CGM (blue curve). Actual blood glucose measurements are
provided by a glucose analyzer of blood samples (YSI). Al-
though a mild hyperglycemic event occurred at approximately
23:00 and a few CGM values are below 4 mmol/L at approx-
imately 03:00 and 04:00, this study shows the capability of
the controller to stabilize blood glucose during the study night.
Currently, the controller is being tested in an in vivo clinical
study.
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Table 3: Evaluation of the MPC versus constant insulin infusion rate.
Blood Glucose (mmol/L) w/o. MPC -30% w. MPC -30% w/o. MPC +30% w. MPC +30%
% BG ≥ 10 2.2 <0.01 <0.01 <0.01
% 5 ≤ BG ≤ 10 97.9 99.9 53.2 83.1
% 3.9 ≤ BG ≤ 5 0 <0.01 30.7 16.0
% BG ≤ 3.9 0 0 16.1 0.9
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Figure 8: Glucose and insulin profiles for an in vivo clinical study. Glucose
input is provided by a CGM (blue curve). Closed-loop control takes place be-
tween the 2 vertical black lines.

7. Conclusion

This paper presents a personalized controller designed for
overnight stabilization of blood glucose in people with type 1
diabetes. The controller is tested on a cohort of 100 virtual pa-
tients with insulin sensitivity variations. Due to the low number
of required model parameters, this controller can easily be im-
plemented in real clinical studies. The controller both allows for
safe control of blood glucose in case of high glucose and a more
aggressive control strategy in case of low blood glucose. This
controller is tested on 100 virtual patients with a representative
parameter distribution, where we simulate an insulin sensitivity
variation. Results from a clinical study is also presented. These
results demonstrate that the proposed control strategy has the
potential to ensure a better stabilization of overnight blood glu-
cose in people with type 1 diabetes.
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Abstract

In this paper, we discuss overnight blood glucose stabilization in people with type 1 diabetes using a Model Predictive Controller
(MPC). We compute the model parameters in the MPC using a simple and systematic way based on a priori available patient
information. We describe and compare 3 different model structures. The first one is an autoregressive integrated moving average
with exogenous input (ARIMAX) structure. The second one is an autoregressive moving average with exogenous input (ARMAX)
model, ie. without integrator. The third one is an adaptive ARMAX model in which we use a Recursive Least Square (RLS) method
to estimate parameters of the stochastic part. Safety layers improve the controller robustness and reduce the risk of hypoglycemia.
We test and compare our control strategies on a virtual clinic of 100 randomly generated patients with a representative inter-
subject variability. This virtual clinic is based on the Hovorka model. We consider the case where only half of the meal bolus is
administrated at mealtime, and the case where the insulin sensitivity increases during the night.

Keywords: Model Predictive Control, Glucose control, Artificial pancreas, Type 1 diabetes, Closed-loop control

1. Introduction

Type 1 diabetes is a metabolic disease characterized by a
destruction of the insulin-producing β-cells in the pancreas.
Therefore, patients with type 1 diabetes need exogenous insulin
administration in order to survive. However, the dosage of in-
sulin must be done carefully. An insulin overdose may lead to
low blood glucose (hypoglycemia). Hypoglycemia has imme-
diate effects, such as seizures, coma or even death. In contrast,
prolonged periods of too high blood glucose (hyperglycemia)
has long-term clinical complications, such as blindness, nerve
diseases or kidney diseases.

The conventional insulin therapy for people with type 1 dia-
betes consists of the injection of slow acting insulin once a day
and rapid acting insulin several times per day, usually before
mealtimes. The slow acting insulin is used to counteract the
continuous glucose production from the liver. The rapid acting
insulin compensates the intake of carbohydrates (CHO) during
the meals. The decision on the amount of short and fast act-
ing insulin is based on several blood glucose measurements per
day.

An increasing number of patients with type 1 diabetes use an
intensive insulin therapy based on continuous glucose monitors
(CGMs) and continuous subcutaneous insulin infusion (CSII)
pumps instead of the conventional therapy described above.
This regime can reduce the risk of complications significantly.
CGMs provide more frequent subcutaneous (sc) glucose mea-

∗Corresponding author. E-mail: jbj@imm.dtu.dk

Continuous Glucose 
Monitor (CGM)

Insulin PumpControl Algorithm

Artificial Pancreas

Figure 1: Closed-loop glucose control. Glucose is measured subcutaneously us-
ing a continuous glucose monitor (CGM). Insulin is dosed by an insulin pump.

surements. In addition, insulin pumps can be adjusted to daily
variations in insulin needs.

Closed-loop control of blood glucose, also known as the arti-
ficial pancreas (AP) has the potential to ease the life and reduce
the burden and complications for people with type 1 diabetes.
It has been a subject of interest for almost 40 years [1, 2] and is
still an active field of research [3, 4, 5, 6, 7]. An AP consists of
a CGM, a control algorithm and a CSII pump. Fig. 1 illustrates
the principle of an AP.

Several research groups worked on the implementation of
APs both on virtual patients [8, 9, 10] and on in vivo clin-
ical studies [11, 12]. Currently, the most popular control
algorithms are proportional integral derivative (PID) control

Preprint submitted to Elsevier February 12, 2013



[13, 14], model predictive control (MPC) [15, 16], sliding mode
control [17], fuzzy logic [18, 19] and H∞ control [20]. Never-
theless, the performance of current APs is limited by several
factors, such as the intra- and inter-patient variability, along
with the lags and delays associated to the choice of sc route
for glucose monitoring and insulin administration [21].

MPC is one of the most commonly used methods for the AP.
The main advantages of MPC are the ability to handle con-
straints both on input and output variables in a systematic way.
An MPC controller with insulin on board (IOB) constraints can
reduce the risk of overdosing insulin due to nonlinearities in
glucose-insulin dynamics [22]. Feedforward-feedback control
strategies can reduce the postprandial glucose peak by admin-
istrating meal boluses in anticipation of meals [23, 24].

In this paper, we describe an AP using a CGM for glucose
feedback, an insulin pump and a control algorithm based on
MPC. The considered control strategy requires a priori avail-
able patient information for computing a subject-specific set of
parameters. The required information is: The basal insulin in-
fusion rate, the insulin sensitivity factor (also called the cor-
rection factor), and the insulin action time. We discuss three
different model structures for the stochastic part. The first one
is an autoregressive integrated moving average with exogenous
input (ARIMAX) structure. The second one is an autoregres-
sive moving average with exogenous input (ARMAX) model,
ie. without integrator. The third one is an adaptive ARMAX
model in which we use a Recursive Least Square (RLS) method
to estimate parameters of the stochastic part. The controller is
tested on a cohort of 100 virtual patients.

The paper is structured as follows. In section 2, we describe
the model and the methods used to simulate a cohort of pa-
tients with type 1 diabetes and noise-corrupted CGM measure-
ments. Section 3 presents a procedure for computation of the
MPC model parameters from prior patient information, which
is common to the three control strategies. In section 4, we state
the three choices for the stochastic part. In section 6, we eval-
uate and discuss the controller performance on a cohort of 100
virtual patients. We consider the case where half of the ideal
meal bolus is administrated at mealtime, and the case where the
insulin sensitivity increases during the night. Conclusions are
provided in section 7.

2. Physiological models for people with type 1 diabetes

Several physiological models have been developed to simu-
late virtual patients with type 1 diabetes [25, 26, 27]. They de-
scribe subcutaneous insulin transport, intake of carbohydrates
through meals and include a model of glucose-insulin dynam-
ics.

In this paper, we use the Hovorka model to simulate people
with type 1 diabetes. Using the parameters and distributions
provided in [28, 21] and [29], we generate a cohort of 100 vir-
tual patients. The Hovorka model is illustrated in Fig. 2. The
parameters and their distribution are summarized in Table 1.

D1

d(t)
D2 Q1 Q2

S1

u(t)
S2 I

x1x3 x2

SC Insulin Absorption

CHO Absorption

Gluco-Regulatory System

G(t)

I(t)

EGP

FR
F01

UG

UI

Figure 2: The Hovorka model.

Table 1: Parameters and distribution for the simulated cohort.
Parameter Unit Distribution
EGP0 mmol/kg/min EGP0 ∼ N(0.0161, 0.00392)
F01 mmol/kg/min F01 ∼ N(0.0097, 0.00222)
k12 min−1 k12 ∼ N(0.0649, 0.02822)
ka1 min−1 ka1 ∼ N(0.0055, 0.00562)
ka2 min−1 ka2 ∼ N(0.0683, 0.05072)
ka3 min−1 ka3 ∼ N(0.0304, 0.02352)
S f

IT min−1/(mU/L) S f
IT ∼ N(51.2, 32.092)

S f
ID min−1/(mU/L) S f

ID ∼ N(8.2, 7.842)
S f

IE L/mU S f
IE ∼ N(520, 306.22)

ke min−1 ke ∼ N(0.14, 0.0352)
VI L/kg VI ∼ N(0.12, 0.0122)
VG L/kg exp(VG) ∼ N(ln(0.15), 0.232)
τI min 1

τI
∼ N(0.018, 0.00452)

τG min 1
ln(τG) ∼ N(−3.689, 0.252)

Ag Unitless Ag ∼ U(0.7, 1.2)
BW kg BW ∼ U(65, 95)

2.1. CGM Model

In addition, we use a CGM for glucose feedback in our con-
troller setup. For the numerical simulations, we generate noisy
CGM data based on the model and the parameters determined
by [30]. This model consists of two parts. The first part de-
scribes the glucose transport from blood to interstitial tissues,
which is

dGsub

dt
=

1
τsub

(G(t) −Gsub(t)) (1)

Gsub(t) is the subcutaneous glucose and G(t) is the blood glu-
cose. τsub is the time constant associated to glucose transport
from blood to subcutaneous tissues.

The second part models non-Gaussian sensor noise. It is
given by
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Table 2: Parameters for the CGM model [30].
Parameter Value
τsub 15 min
λ 15.96
ξ -5.471
δ 1.6898
γ -0.5444
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Figure 3: Example of a CGM noise realization.


e1 = v1

ek = 0.7(ek−1 + vn)
(2)

vk ∼ Niid(0, 1) (3)

ηk = ξ + λ sinh
(ek − γ

δ

)
(4)

Fig. 3 provides an example of a CGM noise sequence ηk.
The glucose value returned by the CGM is

GCGM(tk) = Gsub(tk) + ηk (5)

3. Modeling of Glucose-Insulin Dynamics

In this section, we derive a prediction model for subcuta-
neous glucose, y(t). The model has a deterministic part de-
scribing the effect of sc. injected insulin, u(t), and a stochastic
part describing the effect of other unknown factors. This model
identification technique turns out to give a good compromise
between data requirements, performance and robustness of the
resulting controller.

3.1. Choice of the deterministic model
All the physiological models listed in section 2 contain a

large number of parameters, and even the minimal model may
be difficult to identify [31]. To overcome this issue, we use a
low-order linear model to describe the glucose-insulin dynam-
ics. Similar approaches have been investigated previously. [32]
used a third order transfer function with an integrator, [33] used
a third order discrete transfer function model and [34] applied a
first order transfer function with a time delay. In this thesis we
use a continuous-time second order transfer function

G(s) =
Y(s)
U(s)

=
Ku

(τs + 1)2 (6)

to model the effect of sc injected insulin on sc glucose. The
gain, Ku, and the time constant, τ, are computed from known
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Figure 4: Impulse response for the nonlinear Hovorka model. The bolus size is
0.1U.

subject-specific parameters; the insulin action time and the in-
sulin sensitivity factor (ISF).

The insulin action time and the insulin sensitivity factor are
related to the response of blood glucose to an insulin bolus. If
we assume that blood glucose is approximately identical to sc
glucose, this is the impulse response of (6). The insulin action
time is the time for blood glucose to reach its minimum. The
ISF corresponds to the maximum decrease in blood glucose per
unit of insulin bolus. These parameters are empirically esti-
mated by the patient and his/her physician. These parameters
may vary from day to day for a given patient but gives an es-
timate of the effect of insulin on blood glucose and sc glucose.
An illustration of the ISF and the insulin action time is provided
in Fig. 4.

Fig 5 depicts the impulse response for a virtual patient with
type 1 diabetes and its second order approximation (6). This pa-
tient is simulated using the model developed by [25]. The figure
demonstrates that a second order model provides an acceptable
approximation of a patient with type 1 diabetes.

In the temporal domain, the impulse response of (6) is de-
scribed by

y(t) = Ku
t
τ2 exp(−t/τ) (7)

The insulin action time corresponds to the time to reach the
minimum blood glucose. Consequently, this insulin action time
is equal to τ. We determine Ku using (7) and the fact that the
insulin sensitivity factor is equal to the minimal blood glucose
(sc glucose), y(τ) = −IS F, such that

Ku = −τ exp(1)IS F (8)

We discretize the transfer function (6) in the form

y(t) =
B(q−1)
A(q−1)

u(t) (9)
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Figure 5: Impulse responses for a second order model and the nonlinear Hov-
orka model. The bolus size is 0.1U and the parameters for the second order
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Using a zero-order-hold insulin profile, the continuous-time
transfer function (6) may be used to determine the A and B poly-
nomials in the model (9). They are

A(q−1) = 1 + a1q−1 + a2q−2 (10a)

B(q−1) = b1q−1 + b2q−2 (10b)

with the coefficients a1, a2, b1 and b2 computed as [35]

a1 = −2 exp(−Ts/τ) (11a)
a2 = exp(−2Ts/τ) (11b)
b1 = Ku(1 − exp(−Ts/τ)(1 + Ts/τ)) (11c)
b2 = Ku exp(−Ts/τ)(−1 + exp(−Ts/τ) + Ts/τ) (11d)

Ts is the sample time.

4. Stochastic Model

We take into account the process and measurement noise by
adding a term describing the effect of unknown factors to the
discrete-time model (9). We assume the model describing the
glucose-insulin dynamics to be in the form

A(q−1)y(t) = B(q−1)u(t) +
C(q−1)
D(q−1)

ε(t) (12)

The model (12) has a deterministic part describing the effects of
insulin injections u(t) and a stochastic part. We assume either
D(q−1) = 1 − q−1, which turns the model (12) into an ARI-
MAX model or D(q−1) = 1, which turns the model (12) into an
ARMAX model.

In this section we propose and discuss three different choices
for the stochastic model in (12). The two first choices estimate
the C(q−1) based on a previous clinical study, while the last
method estimate it recursively using a Recursive Least Square
(RLS) algorithm.

4.1. ARIMAX modeling

The stochastic part, C(q−1), of the ARIMAX model

A(q−1)y(t) = B(q−1)u(t) +
C(q−1)
1 − q−1 ε(t) (13)

is assumed to be a third order polynomial of the form

C(q−1) = 1 + c1q−1 + c2q−2 + c3q−3

= (1 − αq−1)(1 − β1q−1)(1 − β2q−1)
(14)

α = 0.99 is a fixed parameter. α has been determined based on
performance studies of the resulting MPC. The choice of α is
discussed in [36]. β1 and β2 are determined from clinical data
for one real patient [37, 38].

We compute β1 and β2 by estimating the process and mea-
surement noise characteristics, σ and r, in the following
continuous-discrete stochastic linear model

dx(t) = (Acx(t) + Bcu(t))dt + σdω(t) (15a)
yk = h(tk, x(tk)) + vk (15b)

Ac and Bc are realizations of (6). ω(t) is a standard Wiener pro-
cess. The matrix σ is time-invariant and the measurement noise
vk is normally distributed, i.e. vk ∼ Niid(0, r2). We estimate,
σ and r, using a maximum likelihood criteria for the one-step
prediction error [39, 40]. By zero-order hold (zoh) discretiza-
tion, Kalman filter design, and z-transformation, (15) may be
represented as

yk = G(q−1)uk + H(q−1)εk (16)

with

G(q−1) = B(q−1)/A(q−1) (17a)

H(q−1) = C̃(q−1)/A(q−1) (17b)

The parameters, β1 and β2, in

C̃(q−1) = (1 − β1q−1)(1 − β2q−1) (18)

are extracted from H(q−1). The coefficients β1 and β2 computed
in this way are β1,2 = 0.81 ± 0.16i.

The difference equation (16) corresponding to the SDE (15)
is related to the ARIMAX model (13) by

εk =
1 − αq−1

1 − q−1 εk (19)

This specification introduces a model-plant mismatch. εk is
white noise in (16) while (19) models εk as filtered integrated
white noise. This model-plant mismatch is necessary to have
offset free control in the resulting predictive control system.
(19) implies that

C(q−1) = (1 − αq−1)C̃(q−1) (20)

such that c1 = −2.61, c2 = 2.28 and c3 = −0.67.
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4.2. ARMAX modeling
The stochastic part, C(q−1), of the ARMAX model

A(q−1)y(t) = B(q−1)u(t) + C(q−1)ε(t) (21)

is now assumed to be a second order polynomial of the form

C(q−1) = 1 + c1q−1 + c2q−2

= (1 − β1q−1)(1 − β2q−1)
(22)

We use the same way as in Section 4.1 for computing β1 and
β2, i.e. β1,2 = 0.81 ± 0.16i. This yields

C(q−1) = 1 − 1.62q−1 + 0.68q−2 (23)

Unlike the ARIMAX model structure described in Section 4.1,
this model structure does not ensure offset-free control. How-
ever, it does not introduce a supplementary model-plant mis-
match.

4.3. Adaptive control
Here, we consider again the ARMAX model structure (21).

A similar approach has been proposed by [8].
The parameters c1 and c2 are estimated at each iteration using

the recursive least square (RLS) method

yk = φ′kθ̂k−1 + εk (24a)

Kk =
Pk−1φk

µ + φ′kPk−1φk
(24b)

θ̂k = θ̂k−1 + Kk

(
yk − φ′kθ̂k−1

)
(24c)

Pk =
1
µ

(
Pk−1 −

Pk−1φkφ
′
kPk−1

µ + φ′kPk−1φk

)
(24d)

φk is a vector of past observations

φk =
[
yk−1 yk−2 uk−1 uk−2 ek ek−1

]
(25)

θk is a vector of model parameters

θk =
[
−a1 −a2 b1 b2 c1 c2

]′
(26)

Pk is the model parameters covariance matrix. Since we want
to estimate c1 and c2 only, we initialize it with

P0 = diag(0, 0, 0, 0, 100, 100) (27)

Finally, µ is the forgetting factor. This parameter has an in-
fluence on the weight of previous observations. When µ = 1,
all the past observations are equally weighted. Smaller values
of µ give more importance to recent observations [41].

An approximation of the memory length (in time samples) is

1
1 − µ (28)

In this Chapter, we chose µ = 0.95, ie. the corresponding
memory length is approximately 1/(1 − 0.95) = 20 time sam-
ples, or 100 minutes.

This model structure allows for a personalized stochastic
model description.

4.4. Realization and predictions
The ARIMAX model (13) and the ARMAX model (21) may

be represented as a discrete-time state space model in innova-
tion form

xk+1 = Axk + Buk + Kεk (29a)
yk = Cxk + εk (29b)

The observer canonical realization for the ARMAX model
(21) is

A =

[−a1 1
−a2 0

]
B =

[
b1
b2

]
K =

[
c1 − a1
c2 − a2

]

C =
[
1 0

]

and the observer canonical realization for the ARIMAX
model (13) is

A =


1 − a1 1 0
a1 − a2 0 1

a2 0 0

 B =


b1

b2 − b1
−b2

 K =


c1 + 1 − a1
c2 + a1 − a2

c3 + a2



C =
[
1 0 0

]

The innovation of (29) is

ek = yk −Cx̂k|k−1 (30)

and the corresponding predictions are [42]

x̂k+1|k = Ax̂k|k−1 + Bûk|k + Kek (31a)
x̂k+1+ j|k = Ax̂k+ j|k + Bûk+ j|k, j = 1, . . . ,N − 1 (31b)

ŷk+ j|k = Cx̂k+ j|k, j = 1, . . . ,N (31c)

The innovation (30) and the predictions (31) constitute the
feedback and the predictions in the model predictive controller.

5. Model Predictive Control

Control algorithms for glucose regulation in people with type
1 diabetes must be able to handle intra- and inter-patient vari-
ability. In addition, the controller must administrate insulin in
a safe way to minimize the risk of hypoglycemia. Due to the
nonlinearity in the glucose-insulin interaction, the risk of hypo-
glycemic episodes as consequence of too much insulin is par-
ticularly prominent.

In this section we describe an MPC formulation with soft out-
put constraints and hard input constraints. This formulation is
based on the individualized prediction model for glucose com-
puted in Section 4.2. Along with other features, we introduce
a modified time-varying reference signal to robustify the con-
troller and mitigate the effect of glucose-insulin nonlinearities
and model-plant mismatch in the controller action.

The MPC algorithm computes the insulin dose by solution
of an open-loop optimal control problem. Only the control ac-
tion corresponding to the first sample interval is implemented
and the process is repeated at the next sample interval. This is
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Figure 6: The penalty function ρ = ‖y − r‖22 + κ‖min{y − ymin, 0}‖22.

called a moving horizon implementation. The innovation (30)
provides feedback from the CGM, yk, and the open-loop opti-
mal control problem solved in each sample interval is the con-
vex quadratic program

min
{ûk+ j|k ,v̂k+ j+1|k}N−1

j=0

φ (32a)

s.t. (31) (32b)
umin ≤ ûk+ j|k ≤ umax (32c)
ŷk+ j+1|k ≥ ymin − v̂k+ j+1|k (32d)
v̂k+ j+1|k ≥ 0 (32e)

with the objective function φ defined as

φ =
1
2

N−1∑

j=0

‖ŷk+ j+1|k − r̂k+ j+1|k‖22

+ λ‖∆ûk+ j|k‖22 + κ‖v̂k+ j+1|k‖22
(33)

N is the control and prediction horizon. We choose a prediction
horizon equivalent to 10 hours, such that the insulin profile of
the finite horizon optimal control problem (32) is similar to the
insulin profile of the infinite horizon optimal control problem,
(32) with N → ∞. ‖ŷk+ j+1|k − r̂k+ j+1|k‖22 penalizes glucose devi-
ation from the time-varying glucose setpoint and aims to drive
the glucose concentration to 6 mmol/L. λ‖∆uk+ j|k‖22 is a regular-
ization term that prevents the insulin infusion rate from varying
too aggressively. For the simulations and the in vivo clinical
studies we set λ = 100/u2

ss. The soft output constraint (32d)
penalizes glucose values below 4 mmol/L. Since hypoglycemia
is highly undesirable, we choose the weight on the soft output
constraint to be rather high, i.e. κ = 100. The penalty function
profile is illustrated in Fig. 6.

To guard against model-plant mismatch we modify the max-
imal allowable insulin injection, umax, and let it depend on the
current glucose concentration. If the glucose concentration is
low (below the target of 6 mmol/L), we prevent the controller
from taking future hyperglycemia into account by restricting
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Figure 7: Time-varying reference signals for glucose above (blue curve) and
below (green curve) the target of 6 mmol/L.

the maximal insulin injection. If the glucose concentration is
high (4 mmol/L above the target) we increase the maximal al-
lowable insulin injection rate. In the range 0 - 4 mmol/L above
target we allow the controller to double the basal insulin injec-
tion rate. These considerations lead to

umax =



1.5uss 4 ≤ yk ≤ ∞
uss 0 ≤ yk ≤ 4
0.5uss −∞ ≤ yk ≤ 0

(34)

in which uss is the basal insulin infusion rate. Due to pump
restrictions, the minimum insulin injection rate, umin, is a low
value but not exactly zero.

[17] and [8] use a time-varying glucose reference signal to
robustify the controller and reduce the risk of hypoglycemic
events. In this paper, we use an asymmetric time-varying glu-
cose reference signal. The idea of the asymmetric reference sig-
nal is to induce safe insulin injections in hyperglycemic periods
and fast recovery in hypoglycemic and below target periods.
The asymmetric time-varying setpoint is given by

r̂k+ j|k(t) =


yk exp

(
−t j/τ

+
r

)
yk ≥ 0

yk exp
(
−t j/τ

−
r

)
yk < 0

(35)

Since we want to avoid hypoglycemia, we make the controller
react more aggressively if the blood glucose level is below 6
mmol/L, so we choose τ−r = 15 min and τ+

r = 90 min. Fig 7
provides an illustration of the time-varying reference signal.

6. Comparison between ARIMAX, ARMAX and adaptive
ARMAX model structures

In this section we compare three different versions of our
Model Predictive Controller on a cohort of 100 virtual patients.
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These three versions are the ARIMAX formulation presented
in Section 4.1, the ARMAX formulation presented in Section
4.2 and the adaptive ARMAX model formulation presented in
Section 4.3. We compare the performance of the controllers for
the case where the meal is underbolused and the case where the
insulin sensitivity is increased by 30% during the night. The
change in insulin sensitivity is simulated by a step change in
the insulin sensitivity parameters of the Hovorka model.

The ARMAX based controllers do not contain an integrator
and cannot guarantee steady-state offset-free control. However,
the tuning of the MPC based ARMAX models may be simpler
than the tuning of the MPC based on the ARIMAX model. The
reason is that no artificial model-plant mismatch is introduced
in the MPC based on ARMAX models, while the ARIMAX
based controller deliberately include such a mismatch to ensure
steady-state offset free control.

The MPC is individualized using the insulin basal rate (uss),
the insulin sensitivity factor (ISF), and the insulin action time
for each individual patient. In the virtual clinic these numbers
are computed from an impulse response starting at a steady
state. The meal boluses are determined using a bolus calculator
similar to the one presented in [16]. The glucose is provided to
the controller every 5 minutes by a noise-corrupted CGM. The
pump insulin infusion rate is changed every 5 minutes.

The clinical protocol for the 100 in silico patients is:

• The patient arrives at the clinic at 17:00. The Kalman filter
is activated.

• The patient gets a 75 g CHO dinner and an insulin bolus at
18:00.

• The closed loop starts at 22:00. In addition to the Kalman
filter, the MPC is activated.

• The patient gets a 60 g CHO breakfast and an insulin bolus
at 08:00. The controller is switched off.

6.1. Underbolused meal

Fig. 9 shows the CVGA plot for the three different strate-
gies in the case where only 50% of the meal bolus is adminis-
trated at mealtime. The control strategy based on an ARIMAX
model shows several cases of mild hypoglycemia due to an in-
sulin overdose. The two control strategies based on an ARMAX
model are able to avoid this undershoot.

Table 3 shows the time spent in the euglycemic range, hy-
poglycemia and hyperglycemia for the three different strategies
in the case where only 50% of the meal bolus is administrated
at mealtime. The results show that the control strategy based
on an ARIMAX model structure reduce the time spent in hy-
perglycemia. The adaptive ARMAX model structure shows
the best compromise between the time spent in euglycemia and
safety concerning the risk of insulin overdose.

6.2. Change in insulin sensitivity

Fig. 10 shows the CVGA plot for the three different strate-
gies for the case where the insulin sensitivity is increased by
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Figure 9: Control Variability Grid Analysis (CVGA) plot for the three different
stochastic model structures. 50% of the meal bolus is administrated at meal-
time. Black: ARIMAX. Red: ARMAX. White: Adaptive ARMAX.

Table 3: Evaluation of the controller for the different control strategies in the
case where only 50% of the meal bolus is administrated at mealtime. The num-
bers show the total percentage of time spent in different glucose ranges for the
100 virtual patients during the period 22:00 - 08:00.

Glucose (mmol/L) ARIMAX ARMAX Adaptive ARMAX
G > 10 17.8 23.9 20.8
G > 8 31.6 58.1 42.2
3.9 ≤ G ≤ 10 82.1 76.1 79.2
3.9 ≤ G ≤ 8 68.3 41.9 57.8
G < 3.9 0.1 0 0
G < 3.5 0 0 0
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Figure 8: Glucose and insulin profiles of a specific patient for the different control strategies. The patients gets half of the optimal bolus at mealtime.
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Figure 10: Control Variability Grid Analysis (CVGA) plot for the three different
stochastic model structures in the case where the insulin sensitivity is increased
by 30% during the night. Black: ARIMAX. Red: ARMAX. White: Adaptive
ARMAX.

30% during the night. Table 4 shows the time spent in the eu-
glycemic range, hypoglycemia and hyperglycemia for the three
different strategies in the case where the insulin sensitivity is in-
creased by 30% during the night. The control strategies based
on an ARMAX model structure, i.e. the controllers without the
integrator, reduces the occurrences of hypoglycemia, and avoid
severe hypoglycemia (ie. glucose values below 3.5 mmol/L).

Table 4: Evaluation of the controller for the different control strategies in the
case where the insulin sensitivity is increased by 30% during the night. The
numbers show the total percentage of time spent in different glucose ranges for
the 100 virtual patients during the period 22:00 - 08:00.

Glucose (mmol/L) ARIMAX ARMAX Adaptive ARMAX
G > 10 <0.1 <0.1 <0.1
G > 8 3.2 2.5 2.2
3.9 ≤ G ≤ 10 99.1 99.4 99.7
3.9 ≤ G ≤ 8 95.9 96.9 97.5
G < 3.9 0.9 0.6 0.3
G < 3.5 0.2 0 0

7. Conclusion

This paper presents subject-specific control strategies de-
signed for overnight stabilization of blood glucose in people
with type 1 diabetes. This controller is tested on 100 virtual
patients with a representative parameter distribution, where we
simulate an underbolused meal or an insulin sensitivity varia-
tion. The choice of the model structure for the stochastic part
is a tradeoff between offset-free control and model-plant mis-
match. In our case, the ARMAX and the adaptive ARMAX
formulations presented in this paper have the potential to im-
prove the controller performance, but would need a further in-
vestigation before being tested on real patients.
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proved PID switching control strategy for type 1 diabetes, in: 2006 Inter-
national Conference of the IEEE Engineering in Medicine and Biology

Society, New York City, USA, 2006, pp. 5041–5044.
[14] S. Weinzimer, G. Steil, K. Swan, J. Dziura, N. Kurtz, W. Tamborlane,

Fully automated closed-loop insulin delivery versus semiautomated hy-
brid control in pediatric patients with type 1 diabetes using an artificial
pancreas, Diabetes Care 31 (5) (2008) 934 – 939.

[15] E. Dassau, C. Palerm, H. Zisser, B. Buckingham, L. Jovanovič, , F. Doyle
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