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ABSTRACT

KEYWORDS: MPC ; Cement Mill; Moving Horizon; constraints.

The present work considers the control of ball mill grinding circuits which are

characterized by non-linearities and disturbances. The disturbances are due to

large variations and heterogeneities in the feed material. Thus the models obtained

by simple tests on these mills are subject to large uncertainties which may result

in poor performance of conventional control solutions.

A regularized ℓ2-norm based �nite impulse response (FIR) predictive controller

with input and input-rate constraints is developed. The estimator used is based

on a simple constant output disturbance �lter. The FIR based regulator problem

is solved by convex quadratic program (QP) by converting the objective function

into a standard form. The QP is solved using an algorithm based on interior point

method. The model used here is single input- single output SOPDT with a zero

transfer function model. The performance of the predictive controller in the face

of plant-model mismatch is investigated by simulations.

In order to improve the performance of MPC, a moving horizon constrained reg-

ularized ℓ2 estimator based on impulse response models is developed. Here the

estimator is used to estimate the unknown disturbance by solving the optimization

problem. By using a SOPDT with a zero transfer function model, the performance

of the estimator with measurement noise is provided. Also the closed loop perfor-

mance of a MPC with moving horizon estimator with SISO system is investigated.

The predictive controller is equipped with soft output constraints that are used

to have robustness against plant-model mismatch. Soft output constraints are

the limits around the set point, where the errors are penalized minimum within a

dead band called soft limits and penalized heavily as soon as the error exceeds the
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band. By simulation �rst with SISO system and then with 2 × 2 MIMO system,

the performance of the proposed controller and conventional predictive controller

is investigated. For MIMO system, the input vectors are Elevator Load, Fineness

and the output vectors are Feed rate, Separator speed. In case of plant-model

mismatch more than 50 %, the conventional MPC response become oscillatory,

whereas the soft MPC provides lesser variations in output resulting in much stable

response.

The Model Predictive Controller (MPC) with soft constraints is used for regula-

tion of a cement mill circuit. The uncertainties in the cement mill model are due to

heterogeneities in the feed material as well as operational variations. The uncer-

tainties are characterized by the gains, time constants, and time delays in a transfer

function model. The controllers are compared using a rigorous cement mill circuit

simulator. The simulations reveal that compared to conventional MPC, soft MPC

regulates cement mill circuits better by reducing the variations in manipulated

variables by 50%.

The performance of MPC with soft constraints is also compared with existing

Fuzzy Logic controller implemented in a real time plant with closed circuit ce-

ment ball mill. The real time results show that the standard deviation of manip-

ulated variables and the controlled variables are reduced with the soft MPC. The

reduction in standard deviation in quality is 23%.

The performance of the same controller (MPC) applied to a cement ball milling

circuit with large measurement sample delay is investigated. Usually �neness is

measured hourly by sample analysis in the laboratory. The predictive controller

designed with the model from fast sample data (1 min sample) when applied to

control with hourly sampled measurements, the controller is to be re-tuned. The

parameters needed to be re-tuned are weight for penalties on measurement error

(Qz), weights of penalties on manipulated variables (S) and rate of change of

manipulated variables (R). Also the hard constraints on input- rate movements

are to be re-tuned to reduce the variations in the controller. In this work, the

controller model is added with half the sample delay of measurement to improve

the performance of the controller with one time tuning.
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CHAPTER 1

Introduction

Model predictive control (MPC) has become a standard technology in the high

level control of chemical processes. MPC or receding horizon control is a form of

control in which the control action is obtained by solving on-line, at each sampling

instant, a �nite open-loop optimal control problem, using the current state of the

plant as the initial state; the optimization yields an optimal control sequence in

which the �rst control move is applied to the plant.

However, only very little guidelines are available regarding tuning methodologies

of such controllers in the face of the inevitable plant-model mismatch. The closed-

loop performance of nominal linear model predictive control can be quite poor

when the models are uncertain. Consequently, some years after commissioning,

many high-level control systems are turned o� due to poor closed-loop perfor-

mance. This is often due to changes in the plant dynamics caused by wear and

tear combined with lack of the necessary human resources at the plant to re-tune

and maintain the MPC.

Using soft output constraints along with hard constraints in a novel way, the poor

performance of predictive control in the case of plant-model mismatch can be im-

proved signi�cantly. Constraints are physical limitations the control system must

take into consideration when implementing control actions. Usually constraints

to the controllers are of two types, hard constraints and soft constraints. Hard

constraints are those which are need to be necessarily satis�ed, whereas soft con-

straints can be violated but penalized heavily whenever violated. A constrained

optimization problem is one in which there are inequality or equality constraints

that are imposed while seeking to maximize an objective function.

Alternatively, a constrained optimization problem can be de�ned as a regular

constraint satisfaction problem augmented with a number of "local" cost functions.
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The aim of constrained optimization is to �nd a solution to the problem whose

cost, evaluated as the sum of the cost functions, is minimized. Excellent review on

Model predictive control and optimization methods are available on Maciejowski

(2002), Camacho and Bordons (2004) and Rossiter (2003).

The cement mill circuit requires many soft output constraints to be considered

in a MPC formulation of the control problem. It is one of the best examples of

highly non-linear system to be controlled by a linear model. The uncertainties in

the system are large enough to cause the plant-model mismatch quite often.

Further, Comminution is a major unit operation in a cement plant, accounting

for about 50 - 75 % of the total plant energy consumption. Comminution can

be of two types, ball mill grinding and vertical roller mill grinding. Nevertheless

when grinding is required the ball mill is the most accepted element in the cement

grinding. The reasons are high reliability, the good possibility of gypsum dehy-

dration, simple operation (does not necessarily mean e�cient) and the easy to

maintain construction. Finish grinding based on ball mill operation in general is

extremely ine�cient. Just 4 % of energy available is e�ciently used for grinding.

Loading the cement mill too little results in early wear of the steel balls and a very

high energy consumption per tonnes cement produced. Conversely, loading the

mill too much results in ine�cient grinding such that the product quality cannot

be met. Cement quality is measured by its chemical composition and its particle

size distribution. Blaine is an aggregate number for the particle size distribution

measuring the speci�c surface area of the cement powder.

Loading the cement mill too much, may even result in a phenomena called plugging

such that the plant must be stopped and plugged material removed from the mill.

Consequently, optimization and control of their operation are very important for

running the cement plant e�ciently, i.e. minimizing the speci�c power consump-

tion and delivering consistent product quality meeting speci�cations. New control

methodologies are proposed for improving the performance of such process. The

improved operation resulting from these controllers can potentially lead to large

energy savings and at the same time provide a more consistent product quality.
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1.1 Motivation

Extensive research is being conducted for improving the performance of di�erent

modules in the cement process. The control of ball mill grinding circuit is con-

sidered as the most important and di�cult control problem. E�cient control is

required in order to reduce the speci�c production costs while maintaining the

product quality, at an acceptable level. The control philosophy for cement mill

thus remains challenging.

Conventionally, the grinding circuits are controlled by multi-loop PID controllers,

but these controllers generally have drawbacks, such as input/output pairing prob-

lems and hard tuning work. For grinding circuits characterized by large time

delays, a predictive control is more suitable in this case (Chen et al., 2009).

Rajamani and Herbst (1991a) have proposed feedback and optimal control meth-

ods for optimizing ball mill grinding circuits. But the controller does not consider

the constraints in the real time system thus the controller may attain unstable

operating ranges quite often.

Van Breusegem et al. (1994) and de Haas et al. (1995) have developed an LQ

controller for the cement mill circuit. This controller was based on a �rst order

2×2 transfer function model identi�ed from step response experiments. Ramasamy

et al. (2005) have developed constrained MPC using MATLAB toolbox based on

input/output models for the control of cement mill circuit.

From the above studies, it is evident that the model predictive controller are

commonly used because of its robustness and handling of constraints. But the

performance of the controller mainly depends on model developed in each of the

methods. Normally cement mills have large uncertainties and there will always be

plant mode mismatch. The above works on cement mill control use linear models

and do not take care of uncertainties in the system. Also considering the hard

constraints in the controller the solution becomes infeasible and also the controller

reaches saturation quite often.

When non-linear control algorithms are considered, Magni et al. (1999) and Grog-
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nard et al. (2001) have developed a Nonlinear Model Predictive Control algorithm

based on a lumped nonlinear model of the cement mill circuit. But these works are

based on neural network modeling and cannot extrapolate the conditions when op-

erating ranges shift. Also they are computationally complex and the models have

to be reduced to be used in control algorithm which results in infeasible control

actions.

Scokaert and Rawlings (1999) have proposed a state based soft constraint ap-

proach for handling the infeasibility with respect to conventional predictive con-

trol approach. They illustrated by using a non- minimum phase system that state

constraints will be included when the solution becomes infeasible. The main draw-

back of such controllers are they require larger QP solutions resulting in slower

response which may not be feasible in real time.

Another method on range control, Roubal and Havlena (2005) have provided a soft

limit band for the output where the controller does not react for change in output

within the region, such methods always leave o�set like a normal dead band con-

troller. A hard constrained MPC is converted into soft constrained by introducing

a slack variable (Kerrigan and Maciejowski, 2000), here the slack variable will be

included in the objective function when the controller solutions become infeasible

during the hard constraint approach.

The estimator design for such constrained MPC has been one of the most area of

research as it helps in determining the unknown disturbances for providing e�cient

control solutions. Based on linear state space models, Muske and Rawlings (1993a)

have presented a moving horizon estimator and used input or output disturbances

to have steady state o�set free control. Here the estimator is used to determine

the unknown disturbances in the system based on state space method.

Boyd and Vandenberghe (2004) have used Finite Impulse Response models for

robust linear programming. The main advantage of using FIR models is that they

are in a form that can be easily applied to robust linear programming like second

order cone programming and also can be useful for parametrization of the system

with missing observations.
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The research works referred above have been proven theoretically and no steps have

been taken to use the methods in real time. Based on the research works cited

above and by considering the issues involved in the cement mill control because

of uncertainties present, a robust model predictive controller is necessary which

can handle the variations in cement mill control because of such uncertainties and

also computationally simple.

1.2 Objectives

The main objectives of the investigations in this thesis are:

1. (a) To develop a predictive controller based on FIR models with 'ℓ2' regres-
sion norm along with input and input-rate constraints with a simple
estimator and to evaluate the performance of the controller related to
the uncertainty of impulse response co-e�cients.

(b) To develop a regularized l2 moving horizon estimator based on �nite
impulse response (FIR)models with input and input-rate constraints
and to evaluate the closed loop performance of the above estimator
with a predictive regulator.

2. (a) To develop a robust soft constraints based predictive controller with
simple estimator for linear systems.

(b) To compare the performance of the constrained controller with nominal
predictive controller by simulation.

3. (a) To implement the soft MPC in a real time cement mill circuit and
compare the performance with that of the other controllers

(b) To evaluate by simulation the performance of soft MPC handling the
large sample delay measurements

The organization of the thesis is as follows:

Chapter 2 provides the basic motivation of the work with a detailed literature

survey on model predictive controllers with hard and soft constraints and control

strategies for cement mill circuit.

Chapter 3 provides the discussion on Model Predictive Control Based on Finite

Impulse Response Models with simple estimator. This chapter also presents the
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details on deriving a Moving Horizon Estimation. Also this chapter presents the

details on Model Predictive Control with Soft Output Constraints is provided.

Chapter 4 gives Comparison of Soft MPC with conventional MPC using simula-

tion. First the controllers are compared with simple SISO system. Then a model

of cement mill is considered for comparing the closed loop performance of the

controllers using Matlab.

Chapter 5 gives the basics on Cement Manufacturing Process and Cement Milling

circuit. Also the basic control strategy of cement mill circuit is discussed.

In Chapter 6 applications of Soft MPC to Cement Mill Circuit are discussed. A

transfer function model of cement mill obtained and the controller is implemented

in the simulator. The performance of the controller is then compared with con-

ventional MPC in simulator. The soft MPC is then implemented in real plant and

the performance of the controller is compared with already existing Fuzzy Logic

controller.

Chapter 7 provides the detailed study on Implementation of MPC to a Large Sam-

ple Delay System. Here the controller performance is investigated using the cement

mill simulator �rst with every minute sample and then with model including the

sample delay.

Summary and Conclusions are given in Chapter 8.

Appendix A gives the formulation of Quadratic program for FIR based MPC,

MHE and Soft Constraints based MPC.

Appendix B gives the �ow chart for the MPC execution in MATLAB.

Appendix C gives the generalized form of deriving Quadratic program

Appendix D provides the basic algorithm of Interior point methods.

Appendix E provides the Matlab codes for design of soft MPC and simulation in

closed loop.

Appendix F gives a brief description of ECS/CEMulator system where the per-

formance of the controllers are compared.
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CHAPTER 2

Literature Survey

In this chapter, the published literature is reviewed on the model predictive con-

trollers generally used in industries and the MPC with hard constraints. A brief

review of soft constraint based MPC and controller for cement industries is also

presented.

Excellent review on model predictive control is available. Reviews on stability of

model predictive control are given by Mayne et al. (2000), Zheng (1998), Zheng and

Morari (1995) and Limon et al. (2006) and a review on tuning methods have been

provided by Garriga and Soroush (2010). Detailed survey reports on industrial

applications of model predictive control are given by Bemporad and Morari (1999)

and Morari and Lee (1999) and Qin and Badgwell (2003) and Bemporad and

Morari (1999). Garcia et al. (1989) have discussed the basic theory on model

predictive control .

2.1 Model Predictive Control in Industries

There are many control strategies in use today like intelligent control, adaptive

control, stochastic control, optimal control etc. Optimal control is such a control

technique in which we minimize certain cost index to achieve desired performance.

The two types of optimal control techniques are

• Linear Quadratic Gaussian (LQG)

• Model Predictive Control (MPC)

Model Predictive Control technique is the most widely used technique in industry

as opposed to LQG based controllers. The LQG controllers were termed as failure

and the reasons for this failure are given by Garcia et al. (1989) and Richalet
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et al. (1976). They have provided the reasons that the LQG controllers are not

successful because they cannot handle the following:

• constraints

• process nonlinearities

• model uncertainty (robustness)

• unique performance criteria

Further, MPC is classi�ed into Linear MPC and Non-Linear MPC depending on

the speci�c problem statement. Both linear and nonlinear systems have speci�c

problem statements and utilize di�erent optimization methods. Non- Linear MPC

uses non-linear models for prediction and it requires iterative solution of optimal

control problems on a �nite prediction horizon. But non-linear MPC cannot be

solved as convex optimization problem. Some of the work on non-linear MPCs are

given by Miller et al. (2000) and Santos et al. (2008). They have provided a tool

to analyze the stability of constrained non-linear model predictive control.

Linear MPCs are most commonly used techniques in industry because of compu-

tational simplicity and faster solutions in solving real time optimization problems.

Further, linear MPC used in real time applications can be classi�ed into following

types

• Dynamic Matrix Control (DMC)

• IDCOM (Identi�cation- Command)

• General Predictive Control (GPC)

• Moving Horizon Control (MHC)

These major classi�cation of MPC is based on the type of algorithm used for

solving optimization problem. While the MPC paradigm encompasses several

di�erent variants, each one with its own special features, all MPC systems rely on

the idea of generating values for process inputs as solutions of an on-line (real-time)

optimization problem.
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2.2 Model Predictive Control

Model Predictive Control, or MPC, is an advanced method of process control

that has been in use in the process industries such as chemical plants and oil

re�neries since the 1980s. MPC as the name suggests use explicit models of the

plant to predict the future behavior of the controlled variables. Based on the

prediction, the controller calculates the future moves on manipulated variables by

solving the optimization problem online. Here the controller tries to minimize the

error between predicted and the actual value over a control horizon and the �rst

control action is being implemented. Model predictive controllers rely on dynamic

models of the process, most often linear empirical models obtained by system

identi�cation. MPC is also referred to as receding horizon control or moving

horizon control (Qin and Badgwell, 2003).

Figure 2.1: Model Predictive Control Scheme.

9



Figure 2.1 also makes it clear, that the behavior of an MPC system can be quite

complicated, because the control action is determined as the result of the on-

line optimization problem. The problem is constructed on the basis of a process

model and process measurements. Process measurements provide the feedback

(and, optionally, feed-forward) element in the MPC structure. Figure 2.1 shows

the structure of a typical MPC system. Normally di�erent types of MPCs provide

di�erent approaches in handling the following.

• Input-output model,

• disturbance prediction,

• objective function,

• measurement,

• constraints, and

• sampling period (how frequently the on-line optimization problem is solved).

Regardless of the particular choice made for the above elements, on-line optimiza-

tion is the common thread tying them together.

2.2.1 Elements of MPC

All the MPC algorithms possess common elements and di�erent options can be

chosen for each element giving rise to di�erent algorithms. These elements are

• Prediction Model

• Objective Function and

• Control Law

Prediction Model

The model is the cornerstone of MPC; a complete design should include the neces-

sary mechanisms for obtaining the best possible model, which should be complete

enough to fully capture the process dynamics and allow the predictions to be cal-

culated, and at the same time to be intuitive and permit theoretic analysis. The
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use of the process model is determined by the necessity to calculate the predicted

output at future instants. The di�erent strategies of MPC can use various mod-

els to represent the relationship between the outputs and the measurable inputs,

some of which are manipulated variables and others are measurable disturbances

which can be compensated by feed forward actions. Some of the available types

of models are

• Finite impulse response model

• Step response model

• State space model

• Transfer function descriptions like AR(MA)X models

• Auto- Regression with external input (ARX) model

Various types of models are used with MPC, with the FIR (Finite Impulse Re-

sponse) or Step response models and ARX (Auto-Regressive with eXternal inputs)

models being the most common in industrial practice. Step or impulse response

models are non- parametric models that are widely used in industries. The advan-

tage of such models are, they reveal plant time constant, gain and delay directly

from the process graphs. Also FIR models requires less prior information than

transfer function models.Also FIR models need the information of only settling

time which can be easily attained. These are the main advantages of using FIR

models where the plant has many input- output variables and has complicated

dynamic responses due to interactions.

But the disadvantages of FIR models are that they can be used for only stable

systems and is di�cult to be used in identifying processes with slow dynamics.

In such cases, transfer functions models are used where the dynamics are slow

and can be converted into any form like ARX for linear systems and ARMAX

model for non-linear applications. But the model mismatch could cause bias in

the estimated parameters.

State space model formulation can be used to augment the model easily with

additional states to represent the e�ect of disturbances. Also it can be provided

in both linear and non-linear form. These are easy to determine the system both
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in continuous form and discrete form but it is quite di�cult to determine the state

space models in real time.

Objective Function

The various MPC algorithm propose di�erent cost functions for obtaining the

control law. The general aim is that the future output on the considered horizon

should follow a determined reference signal and at the particular constraint. The

objective functions are either minimization or maximization problems depending

on the application. Normally cost functions used in process controls are minimiza-

tion functions with some inequality constraints.

Obtaining the Control Law

In order to obtain values it is necessary to minimize the functional part of the ob-

jective function. To do this, the values of the predicted outputs are calculated as

a function of past values of inputs and outputs and future control signals making

use of the model chosen and substituted in the cost function, obtaining an expres-

sion whose minimization leads to the looked for values. An analytical solution

can be obtained for the quadratic criterion if the model is linear and there are no

constraints, otherwise an iterative method of optimization is used.

2.2.2 Dynamic Matrix Control

Dynamic Matrix Control (DMC) was the �rst Model Predictive Control (MPC)

algorithm introduced in early 1980s. Nowadays, DMC is available in almost all

commercial industrial distributed control systems and process simulation software

packages. The original work on DMC have been proposed by Cutler and Ramakar

(1980). A detailed review on DMC control techniques have been provided by

Camacho and Bordons (1999, 2004). DMC control is based on a discrete time

step response model that calculates a desired value of the manipulated value that

remains unchanged during the next time step. The new value of the manipulated

variable is calculated to give the smallest sum of squares error between the set

point and the predicted value of the controlled variable. The number of time

12



steps the DMC uses for its prediction is called the "Prediction Horizon".

Prediction:

A brief overview of Dynamic Matrix Control has been given by Chidambaram

(2003). The dynamic model used to predict the future values of the controlled

variable is represented by a vector, A, whose elements are de�ned as

ai =
∆y(ti)
∆u(t0)

where ∆y(ti) = y(ti)− y(t0),

y(t) is the value of the controlled variable at time t

∆u(t0) is the change in manipulated variable at t0. The prediction values along

the horizon will be

yk =
N∑
1

[ai∆u(k − i)] + aNu(k −N − 1) + d(k) (2.1)

The present value of disturbance is estimated by the di�erence between present

measurement output and the e�ects of past inputs is calculated as

d(k) = ymeas(k)−
N∑
1

[ai∆u(k − i)]− aNu(k −N − 1) (2.2)

Thus the linear estimate of the future output can be written in a matrix notation

ylin = ypast + A∆u+ d

where ylin = [y(k + 1), y(k + 2), . . . y(k + p)]T and

d = [d(k + 1), d(k + 2), . . . d(k + p)]T

Since future values of d(k+i) are not available, the above estimate is used and it is

assumed to the same over the future sampling instants. A more accurate estimate

of the d(k+i) is possible, provided the load disturbance is measured and a reliable

load disturbance to measured output model is available.

The e�ects of the known past inputs on the future output is de�ned by the vector

ypast. A is the dynamic matrix composed of step response coe�cients as explained

above. P denotes the length of prediction horizon and M is the moving horizon
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of the number of future moves ∆u(k), . . . ,∆u(k +m− 1) calculated by the DMC

algorithm. With these de�nitions, the future output is predicted for any given

vector of future control moves ∆u.

For calculating the control inputs the following control objective is used

min
∆u

E
P∑
i=1

γ2(i)[ysp(k + i)− ylin(k + i)]2 +
M∑
j=1

λ2[∆u(K +M − j)]2 (2.3)

where γ and λ are time varying weights in the output error and on change in

input, respectively. The least square solution for the above problem is given by

∆u = [ATΓTΓA+ ΛTΛ]−1ATΓTΓ(ysp − ypast − d) (2.4)

usually the �rst calculated ∆u is implemented and the calculations are repeated

at the next sampling instant.

2.2.3 DMC tuning strategy

Since most of the process are represented by FOPDT models. The tuning method

(Shridhar and Cooper, 1997) suggested as below.

1. It is assumed the system is of the form

y(s)

u(s)
=

Kp

τps+ 1
e−θps (2.5)

2. With the above transfer function model, �rst the sampling time is decided
by satisfying T ≤ 0.1τp and T ≤ 0.5θp

3. Then the discrete dead time is calculated as k = θp
T
+ 1

4. The prediction horizon and the model horizon as the process settling time
in samples is calculated as P = N = 5τp

T
+ k

5. The control horizon M is an integer in the range of 1 to 6

6. The move suppression coe�cient is given by
f = 0 M = 1
f = M

500
(3.5τp

T
) + 2− (M−1)

2
M > 1
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7. Implement DMC using the traditional step response matrix of the actual
process and the following parameters computed in steps 1-5:

• sample time, T

• model horizon (process settling time in samples), N

• prediction horizon (optimization horizon), P

• control horizon (number of moves), M

• move suppression coe�cient, λ

Tuning of unconstrained SISO DMC is challenging because of the number of ad-

justable parameters that a�ect closed-loop performance. Practical limitations of-

ten restrict the availability of sample time, T, as a tuning parameter.

Nevertheless moving horizon principle is the widely used technique in real time

control.

2.2.4 Principle of moving horizon MPC

An excellent overview of the state of the art on moving horizon based MPC is

given by Garcia et al. (1989), Camacho and Bordons (2004) and Goodwin et al.

(2004). Model predictive control systems consists of an estimator and a regulator

as illustrated in Figure 2.2. The inputs to the MPC are the target values, r, for

the process outputs, z, and the measured process outputs, y. The output from

the MPC is the manipulated variables, u.

MPC

y

ur

x̂

Regulator

Estimator

Plant

Sensors,
Lab analysis

Figure 2.2: Generic model predictive control system.

The principle of moving horizon is given in Figure 2.3. MPC is based on iterative,

�nite horizon optimization of a plant model. At time t the current plant state is
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sampled and a cost minimizing control strategy is computed via a numerical mini-

mization algorithm as given in Equation (2.6) for a relatively short time horizon in

the future which is called as control horizon Nr. Speci�cally, an online calculation

is used to estimate the projected trajectory over period of prediction horizon Ne

and �nd a cost-minimizing control strategy until the length of control horizon.

Only the �rst step of the control strategy is implemented, then the plant state

is sampled again and the calculations are repeated starting from the now current

state, yielding a new control and new predicted state path. The prediction hori-

zon keeps shifting forward and for this reason this is called as receding or moving

horizon control.

Figure 2.3: Principle of Moving Horizon MPC.

Normally MPCs are equipped with constraints on the manipulated inputs and

outputs. Constraints can be of two types: Hard constraints and soft constraints.

Hard constraints represent absolute limitations imposed on the system. These

names illustrate that hard constraints are to be necessarily satis�ed and cannot

be violated. Soft constraints only express a preference of some solutions that

can be violated and is normally penalized heavily once they are violated. The

optimization methods for solving predictive control algorithms are described in

Maciejowski (2002).
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2.3 Review of MPC in industries

More than 15 years after model predictive control (MPC) appeared in industry

as an e�ective means to deal with multivariable constrained control problems, the

approach has been considered as a better way of solving industrial solutions. Be-

mporad and Morari (1999) have reported a survey on robust predictive control

techniques used in industries. The �rst MPC was based on IDCOM and Dynamic

Matrix Control(DMC) way back in 1980's. Then a concept on Generalized Pre-

dictive Control(GPC) is introduced. Identi�cation- Command (IDCOM) is based

on Model Predictive Heuristic Control (MPHC) commonly known as Model Algo-

rithmic Control (MAC). This method makes use of the truncated step response of

the process and provides a simple explicit solution in the absence of constraints.

DMC is much similar to IDCOM where the dynamic matrix is generated from

the plant step tests. The identi�cation process begins with understanding the

unit objectives and selection of Manipulated variables, controlled variables and

disturbance variables. The step tests are conducted to capture data (both numer-

ical and graphical) providing the relationship between controlled variable and the

manipulated variable. The unit step response is then used for prediction model.

The basic idea of GPC is to calculate a sequence of future control signals in such a

way that it minimizes a multistage cost functions de�ned over a prediction horizon.

The index to be optimized is the expectation of a quadratic function measuring

the distance between the predicted system output and some predicted reference

sequence over the horizon plus a quadratic function measuring the control e�ect.

Complete review of methods for solving unconstrained and constrained problems

are dealt in Maciejowski (2002). Generally optimization problems are solved nu-

merically assuming a minimization problem until one reaches a minimum. The

unconstrained optimization problems can be solved as a least squares problem.

The method of least squares is a standard approach to the approximate solution

of over-determined systems, i.e. sets of equations in which there are more equa-

tions than unknowns. "Least squares" means that the overall solution minimizes

the sum of the squares of the errors made in solving every single equation.
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The big problem with considering minima is that normally there may be many

local minima and the algorithm may stuck in one of the local minimum, unaware

of where the global minimum lies. Hence most of the optimization problems are

solved as convex problem. A convex optimization problem is one in which because

of convexity of the objective function, there is only one minimum or connected to

a set of equally good minima. Thus by solving convex problems global minimum

is always guaranteed.

Good general books and literatures on optimization are available. Fletcher (1987)

and Gill et al. (1981) have provided relevant material on optimization algorithms

especially for LP and QP methods. A whole book on using convex optimization

for control design is given in Boyd and Baratt (1991), however this book only talks

about solutions for convex optimization problems but does not deal with predictive

control. Convex problems are generally solved using quadratic program(QP). The

quadratic program is of the form

min
θ

1

2
θTΦθ + ϕT θ (2.6a)

s.t. Ωθ ≤ ω (2.6b)

Here the Φ is Hessian and normally θ is referred as error between the actual and

predicted value. If there are no constraints this is clearly convex if Hessian of the

objective function has to be positive semi-de�nite. Since the constraints are linear

inequalities, the objective function is a convex quadratic function.

A Linear Program (LP) is the special case of QP where the Hessian Φ = 0 in

Equation (2.6), so that the objective function is linear rather than quadratic. It

is also convex when Ω and ϕ are such that a minimum exists. In this case the

minimum always occurs at a vertex (or possibly an edge). Thus the constrained

objective function can be expressed as a convex object with �at surface. This is

also known as simplex method. There are large number of standard algorithms

available for solving LP, one of the methods is simplex method.

Morari and Lee (1999) have investigated the evolution of controllers in the in-

dustries with PIDs being the most commonly used as it is well proven and then
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the unconstrained control problems. When these controllers unable to handle the

complete industrial requirements, knowledge based controls and DMCs are used.

But the DMC formulation is completely deterministic and did not include any

explicit disturbance model. Then GPC is intended to o�er a new adaptive control

alternative. But such controllers are not much suitable for multi-variable con-

strained systems which are more common in industries. Thus the work reviews

use of constrained MPCs based on linear MPCs used in industrial applications.

Real time applications of constrained MPC become feasible once the formulations

are solved either by LP or QP resulting in much faster controller response. In

order to improve the stability of such constrained systems works on 'contraction

constraints' are suggested.

Miller et al. (2000) have presented a case study on control of nonlinear systems

subject to constraints. A detailed approach on implementing Lyapunov functions

based control applications on nonlinear systems and the applications with labo-

ratory experiments are de�ned. The e�ectiveness of the resulting actions are also

demonstrated.

Brosilow and Joseph (2002) have proposed economic objectives of using con-

strained MPC in the industrial applications. In many of the applications it is

proposed that when the number of manipulated variables are more when com-

pared with the control variables it is desirable from the economic point of view to

have setpoints to the manipulated variables itself. Then a real time optimizer is

used to compute the economic target values for both the output and input vari-

ables, by including a cost term for inputs in the objective function. But this may

cause a steady state error in the system. To avoid such a situation it is proposed

to use multi loop control which provides a extra degree of freedom for moving the

inputs. In this chapter, in order to analyze the performance of conventional MPC

and soft MPC,each of the plant model parameters (gain, time delay, time constant

and zero) considered are varied one by one and the controllers are simulated with

the perturbed model.

The closed-loop performance of nominal linear model predictive control can be

quite poor when the models are uncertain. Consequently, some years after com-

19



missioning, many high-level control systems are turned o� due to bad closed-loop

performance. This is often due to changes in the plant dynamics caused by wear

and tear combined with lack of the necessary human resources at the plant to re-

tune and maintain the MPC. Model predictive controllers with robust performance

against model plant mismatch is therefore crucial in long-term maintenance and

success of MPC system. Using soft output constraints in a novel way, the poor

performance of predictive control in the case of plant-model mismatch can be

improved signi�cantly.

A survey of reviews on model predictive controllers available in the industries is

given in Table 2.1
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Table 2.1  Review of Model Predictive Controllers in Industries 

S.No Author Problem Comments 

1 Bemporad 
and Morari 

(1999) 

Reported survey of robust predictive control techniques in 
industries. Advantages and disadvantages of difference 
controllers(DMC, IDCOM, GPC) discussed   

Complete review of  different 
MPCs available in industries are 
discussed.  

2 Morari and Lee 
(1999) 

Reviews use of constrained MPCs based on linear MPCs used 
in industrial applications. Difference between unconstrained 
MPC and constrained MPC provided.  Contraction constraints 
to improve stability. 

Become feasible only if solved 
through LP or QP. 

3. Miller et al., 
(2000) 

Study of non linear systems subject to constraints. Detailed 
approach on Lyapunov functions implemented on non-linear 
systems. Laboratory experiments conducted to study the 
effectiveness in the control. 

Complexity in calculation makes it 
least preferred in industrial 
applications. 

 



2.3.1 Review on Tuning of MPC

Garriga and Soroush (2010) have provided a review of tuning guidelines for model

predictive control from theoretical and practical perspectives. A detailed review of

available methods to tune on DMC, GPC and state space representations and other

formulations such as MPL-MPC. General steps involved in tuning for increasing

the controller performances are discussed. Based on the formulation of control law

the tuning parameters have been discussed. O�-line tuning methods are suggested

in which each parameters are individually tuned as given below.

• prediction horizon,

• control horizon,

• model horizon

• Weights on Outputs

• Weights on Rate of Change of Inputs

• Weights on the Magnitude of the Inputs

• Reference Trajectory Parameters

• Constraint Parameters

• Covariance Matrix and Kalman Filter Gain

Also review on auto tuning methods have been provided. The advantage of us-

ing an auto tuning is that the control engineer is not required to have a great

amount of system knowledge to initialize the tuning procedure. Also tuning pa-

rameters are update along with the optimization algorithm and thus they are set

to optimal values. Advances in covariance least- squares technology are expected

to make Kalman �ltering much more accessible by automatically identifying the

main tuning parameters.

The challenges in process control and choosing an appropriate control strategy

for the respective applications have been discussed by Rhinehart et al. (2011).

This work is an editorial based on a presentation "Advanced classical or Model

predictive control?". Some of the important factors that attribute di�culty in

industrial control like constraints, individuality of process, sensors, cause and e�ect
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relations, initial capital const are discussed in detail. Also economic bene�ts of

each controllers and usage of di�erent applications like PID, PFC, ADRC, GMC

or PMBC for each processes depending on the operating conditions are provided.

The �rst step involved in tuning is to develop an accurate process model. In all the

MPC frameworks development of perfect model will make the tuning procedure

much easier as it can be straight forward. If the controller performance is poor

then it must be considered the model is poor until proven otherwise.

2.3.2 MPC with Hard constraints

One of the advantages of using MPC over other controllers is it allows operation

closer to constraints compared with conventional controls, which leads to more

pro�table operation. Often these constraints are associated with direct costs, fre-

quently energy costs. For instance, in a manufacturing unit the power consumption

must be kept as minimum as possible with same level of production, this is a con-

straint on manufacturing process. Constraints can be present in both input as well

as output. Most commonly the input constraints on the control signals, that is

to the process or manipulated variables and rate constraints are hard constraints.

This may be because of various reasons like saturation, physical limitations etc.,

These constraints can never be violated.

For example in Equation (2.6), the inequality constraints

"Ωθ ≤ ω"

is called hard constraints as the condition needs to be strictly satis�ed when cal-

culating the optimization solution. The best example of hard constraints in real

time is the high and low limit of the manipulated variables which cannot be varied

beyond the limits because of the physical restrictions like vibrations etc.,

Clarke (1988) has proposed a generalized model predictive controller with hard

input constraints. The controller is based on the minimization of long-range cost

function. The model used for controller is CARIMA model. The closed loop

performance of the controller is investigated using simulation.
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Iino et al. (1993) have proposed a new method by modifying the Generalized

predictive control. Firstly, a Kalman �lter based predictor is introduced in order to

improve the robustness of the predictor against noises. Secondly, a time-dependent

weighting factor is introduced into the MPC's quadratic type cost function, in

order to improve the transient response characteristics. Thirdly, a parameter

tuning method is proposed that adjusts the weighting factors in the cost function

considering robust stability of the control system. Finally, the proposed MPC

method with and without constraint conditions that are the upper/lower limits

and rate limits for both manipulation variables and process control variables, is

formulated. The controller is tested in an ethylene plant's dynamic simulator. The

models are obtained by simple step tests in the plant. ARMA types of models are

used for prediction.

A design method of LQ optimal control law is considered for constrained continuous-

time systems by Kojima and Morari (2004). Here the control laws are obtained

based on quadratic programming. The control law converges to exact solutions

by introducing singular value decomposition for �nite-time horizon linear systems.

By employing the control problem to a double integrator with constraints it is clar-

i�ed that the receding horizon control is equivalent to that of the state feedback

control where the gain is calculated by a piecewise a�ne state functions.

Guzman et al. (2009) have provided a solution for output tracking problem for

uncertain systems subject to input saturation. In order to tackle constraints and

modeling errors an external supervisory control method is proposed. Thus a cas-

cade loop with any type of inner control and a GPC for outer loop is considered.

A robust constrained Linear Matrix Inequality (LMI) based approach is developed

as a solution to control such systems. The existing control loop is �rst converted

into state space representation and LMI is used to provide state space feed back

for the inner loop controller. The controller is then tested in an integrator plant

with delay with a inner loop PI controller. The inner control loop is studied with

PI controller in the presence of uncertainties and it is found that stability prob-

lems occur. Then the controller is included with the GPC for controlling the inner

loop considering input saturation and it is found that the performance results also
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ensuring constrained robust stability.

A survey of some of the reported work on the model predictive controllers with

hard constraints relevant to the present work is given in Table 2.2
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 Table 2.2  Reported work on  design and implementation of MPC with hard constraints 

S.No Author Problem Comments 

1 Clarke  and 
Tsang 
(1988) 

Generalised Predictive Control with hard  input 
constraints. Minimize long range cost function. Modeling 
the GPC - CARIMA model. 

Hard constrained MPCs may sometime 
lead to input saturation that is not 
desirable. 

2 Iino  et  al., 
(1993) 

 A new input/output MPC with frequency domain 
technique and its application to ethylene plant.  MPC 
with hard input and output constraints Techniques - 
DMC and MAC. ARMA type of model for prediction. 

Hard constrained MPCs may sometime 
lead to input saturation that is not 
desirable. 

3. Kojima and 
Morari 
(2004) 

Design method of LQ optimal control law for 
constrained continuous time domain 
Systems. Control laws based on QP. Control problem a 
double integrator with constraints. 

Receding horizon principle used. 
Results verify the control equivalent to 
state feed back with gain calculated by 
piecewise affine state functions 

4 Guzman  et al., 
(2009) 

A robust constrained reference governor approach using 
linear matrix inequalities . Two different loop controllers. 
An outer Loop MPC control with Linear Matrix 
Inequalities and local control loop for maintaining the 
variables.  

Solve a set of constraints described by 
LMI and BMI complex to be extended 
for constraints other than input 
constraints. 

 



2.3.3 Soft Constrained MPC

In many of the constraint control problems the controller solutions become infea-

sible because of the hard constraint violation problems which may be result of

various factors in real time. State and output constraints may lead to infeasibility

of the optimization problem. For example, an output disturbance may push the

output out the feasible region such that no feasible input trajectory is able to

bring in back in the constraint region. In that case the hard output constraints

can no longer be maintained. The soft constrained MPC explained above mostly

take care of the e�ects due to the disturbances of the system.

One systematic strategy for dealing with infeasibility is to soften the constraints.

That is, rather than regard the constraints as hard boundaries which can never

be crossed, to allow them to be crossed occasionally but only if necessary. Usually

input constraints are hard constraints and there is no way in which they can

be softened, like actuator limits. Maciejowski (2002) has provided a detailed

explanation of how to use soft constraints in the optimization problem. A possible

way to proceed is to discard the output constraints that cause the infeasibility.

A more subtle way that tries to bring the output back in the feasible region is the

use of a slack variable ϵ.

The slack variable is introduced to relax the constraints that cause the infeasib-

lity according to the normal hard constraint formulation Ax.b + ϵ. Additionally,

a term ϵTQ3ϵ is added to the cost function where Q3 > 0 is some positive def-

inite weighting matrix. The slack variables are treated as free variables and are

optimized such that on the one hand the infeasible constraints are relaxed and

on the other hand the constraint violation is minimized. The optimization prob-

lem remains a quadratic programming problem because the new variables ϵ are

introduced quadratically in the cost function and linearly in the constraints.

Scokaert and Rawlings (1999) have proposed a state based soft constraint approach

for handling the infeasibility with respect to conventional predictive control ap-

proach. Two types of solutions are provided for such systems, a minimal time ap-

proach and a soft constraint approach. It is illustrated by using a non- minimum
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phase system that state constraints will be included when the solution becomes

infeasible. In the �rst approach the control algorithm identi�es the smaller time

in which the state constraint can be satis�ed and in the second method a soft

constraint approach where the controller penalizes for state constraints violation.

The closed loop and open loop responses of both the approaches are investigated.

It is found that in both the cases the controller performance are close to Pareto

optimal. Also soft-constraint MPC formulations are nominally exponentially sta-

bilizing and asymptotically stabilizing under decaying perturbations. The main

drawback of such controllers are they require larger QP solutions resulting in

slower response which may not be feasible in real time.

Kerrigan and Maciejowski (2000) have proposed a MPC method, in which the

hard constrained MPC is converted into soft constrained by introducing a slack

variable on the states. A slack variable is included in the objective function with

moving horizon principle when the controller solutions become infeasible during

the hard constraint approach. The MPC problem is treated as a multi-parametric

quadratic program (mp-QP) and exact penalty functions are introduced in order to

�nd a condition on the lower bound for the violation weight. By introducing slack

variables the non-smooth, exact penalty function can be converted into a smooth,

soft-constrained QP problem. It is shown from examples that if the constraint

violation weight that is used in the soft-constrained cost function is larger than

the maximum norm, the solution is guaranteed to be equal to the hard-constrained

solution for all feasible conditions that were considered.

Bemporad et al. (2002) have proposed a feedback control law to minimize a

quadratic performance criterion. Here the control law is piecewise linear and

continuous for both the �nite horizon problem with model predictive control and

in�nite time measure for constrained linear regulation. A LQ regulator algorithm

is developed with hard constraints. But in order to avoid feasibility problem out-

put constraints are softened /relaxed. The stability of the controller is analyzed

and found satisfactory as MPC. One advantage of such technique is that it can

be implemented without any online computations, but cannot be applied for large

scale applications.
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Another method on range control explained by Roubal and Havlena (2005) and

Havlena and Lu (2005) provide a soft limit band for the output where the controller

does not react for change in output within the region. The basic idea of range

control approach is to replace the set point of controlled variable Y by a set range

which is de�ned by the sequence of low and high limits ŷL and ŷH as given in Figure

2.4. Then the optimality criterion can be expressed as a quadratic programming

Figure 2.4: Penalty function and modi�ed penalty function of Range control, ŷL =
−1 ŷH = 1 .

problem as given by Equation 2.7.

min
θ

1

2
∥ŷk − Sûk − ŵk∥2Qy

+ ∥∆û∥2Qu
(2.7a)

s.t. ŷL ≤ ŵk ≤ ŷH (2.7b)

Thus the controller acts only when the controlled variables are beyond the range

of constraints. In order to avoid steady state o�set because of no action within

the band the controller is solved by least squares solution whenever the controlled

variables are within the band. The controller is implemented in distributed pa-

rameters system which is described by a linear two-dimensional (dependent on

two spatial directions) parabolic partial di�erential equation.This partial di�eren-

tial equation is transformed to the discrete state space description using the �nite

di�erence approximation. A model with a large dimension is obtained and has to

be reduced for an advanced control design. The balanced truncation method is

used for the model dimension reduction. The challenges faced when using range
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control methods are discussed and such methods always leave o�set like a normal

dead band controller. So a modi�ed penalty function is included. Most of the soft

constraints are for state constraints where the internal state of the system gets

disturbed because of the various disturbances A detailed study on the real time

implementation of the control method in industries is made.

A survey of important work on the model predictive controllers with soft con-

straints is given in Table 2.3
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Table 2.3 Reported work on  design of soft constraint based Model Predictive Controllers 

S.No Author Problem Comments 

1 Scokaert  and 
Rawlings 

(1999) 

State soft constraint based MPC.  For achieving 
feasibility two approaches are provided. 

1. Minimal time approach 
2. Soft constraints approach. 

A minimal time approach and soft-constraints approach 
are provided.  A penalty term for compensating the 
violations. 

Only if the model of the system reflects the 
state perfectly.  Require larger QP solutions 
resulting in slower response which may not 
be feasible in real time. 

2 Kerrigan and 
Maciejowski 

(2000) 

Soft constraints based on the range of penalty function. 
Behaves as soft constrained MPC and hard constrained 
MPC on constrained violations. MPC to discrete-time 
LTI state space model, soft constraint as  slack variable 

QP  dependent on both current state, 
previous control input and reference 
trajectory. This may not be feasible all 
solutions. 

3 Bemporad, 
Morari et al., 

(2002) 

A LQ regulator algorithm with hard constraints. To avoid 
feasibility problem hard output constraints are softened  
or relaxed. 
A piecewise linear solution is provided for the linear QP. 
The feasibility of the control mainly depends on initial 
state. 

Cannot replace the large scale MPC as it 
cannot handle all the situations 
satisfactorily. 
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  Table  2.3 (contd.. ) 

4 Roubal and 
Havlena 
(2005) 

The control objective include simple range control 
objective along with other hard constraints. The 
controlled variable setpoint replaced by sequence of  low 
and high limits.  

A dead band controller based on QP. 
Can leave offset as there is no action 
for outputs within the band 

5 Havlena and 
Lu 

(2005) 

Range control for disturbance adsorption problem. A 
penalty function for the outputs within a specified range. 
Implemented in distributed parameter system described 
by two dimensional parabolic partial differential 
equation. 

Power and chemical/ refining industries 
need such integration for providing 
long term production and energy 
efficiencies. 

 

 

 

 



2.3.4 Robust Model Predictive controllers

A controller is said to be robust which are designed for a particular set of param-

eters if it would also work well with di�erent sets of parameters. Thus a robust

controller is one which can handle systems with uncertainties or disturbances ef-

fectively. Robust methods aim to achieve robust performance and/or stability in

the presence of bounded modeling errors.

Warren and Marlin (2004) have proposed controller solves a second-order cone

program (SOCP) at each execution in order to determine the set of control moves

that will optimize the expected performance of the closed-loop system while main-

taining the uncertain process outputs and inputs within their allowable bounds.

The proposed formulation uses a probabilistic, closed-loop description of system

uncertainty that is calculated o�-line. On-line, the MPC requires the solution of

a convex second-order cone program that can be e�ciently solved with existing

interior-point algorithms. The controller discussed avoids this limiting assumption

while maintaining robust output constraint handling. The process is assumed

to be linear time-invariant (LTI) within the prediction horizon. The controller

deals with plant-model uncertainty by replacing deterministic constraints. Here a

method for e�ectively handling probabilistic input constraints is proposed. Also

the system uncertainty is split into several uncertainty regions. The uncertainty

associated with each region is smaller than the total system uncertainty, allowing

each subset to approach the input constraint more quickly. This reduces the "

back-o�" caused by the probabilistic input constraints. Case studies illustrate the

improved dynamic performance of the multi-region method. The experimental

results are veri�ed using a 1st order, isothermal CSTR along with modeling error.

From experimental methods it is proven that the robust controller can handle

uncertainties quite e�ectively.

Kassmann et al. (2000) have presented a new formulation of the steady-state tar-

get calculation that explicitly accounts for model uncertainty. When model uncer-

tainty is incorporated, the linear program associated with the steady-state target

calculation can be recast as a second order cone program. Also the advantages
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of primal-dual interior-point methods in the resulting structure is discussed. The

mathematical parameterizations of possible plants is known as the uncertainty

description. It can take many di�erent forms and can be given parametrically or

statistically. A heavy oil fractionator with 2 × 2 model is taken for simulation

comparison. The closed loop comparison is made between nominal LP and robust

LP. This SOCP can greatly improve control by rigorously accounting for modeling

uncertainty. The resulting SOCP structure can be exploited to develop e�cient

numerical solutions based on primal-dual interior-point methods.

A survey of some of the important work on robust model predictive controllers

available for handling uncertainties is given in Table 2.4
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Table 2.4  Reported work  on  Robust MPC based on Second Order Cone Programming Technique 

S.No Author Problem Comments 

1 Warren 
and Marlin 

(2004) 

SOCP based MPC for handling uncertainty has been 
proposed.  Deals with probabilistic output constraints 
solved in offline. SOCP solved using efficient interior-
point algorithms. A 1st order , isothermal CSTR 
considered along with modeling error. Case studies 
illustrate the improved dynamic performance of the 
multi-region method 

 A robust MPC using SOCP implemented 
by simulation  and need to be modified to 
match the industrial approach. 

2 Kassmann 
and 

Badgwell 
(2004) 

The MPC algorithm is steady-state target  for accounting 
model uncertainty using SOCP calculation followed by 
dynamic optimization. A heavy oil fractionator with 2 x 
2  model taken for simulation comparison. 

SOCP can greatly improve control by 
rigorously accounting for modeling 
uncertainty. 

 

 



2.4 Ball Mill Control

Researchers have been working in optimizing the ball mill grinding process along

with the separation process. Various studies have been done for analyzing the

dynamics of the ball milling circuit. The electrical energy consumed in the cement

production is approximately 90 kWh/tonne. 30% of the electrical energy is used for

raw material crushing and grinding while around 40% of this energy is consumed

for grinding clinker to cement powder as given by Fujimoto (1993); Jankovic et al.

(2004). Global cement production use approximately 2% of the worlds primary

energy consumption and 5% of the total industrial energy consumption as reviewed

by Concil (1995) and Austin et al. (1984). Also ball mill is one of the di�cult

Rajamani and Herbst (1991a) have proposed feedback and optimal control meth-

ods for optimizing ball mill grinding circuits. Here the ball mill considered was an

semi-autogenous mill which is a wet method of grinding compared to normal dry

grinding circuits. Rajamani and Herbst (1991b); Herbst et al. (1992) have devel-

oped dynamic and simpli�ed models of the cement mill circuit. Based on these

modeling, two PI controllers were tuned and an optimal control was designed. The

model was developed by introducing step changes in the real time system. The pa-

rameters considered are online particle size distribution with respect to fresh feed

rate and sump level. First a feedback control based on maximization principle is

designed for increasing the feed rate and an optimal control based on minimizing

the integral square error was developed. Both the controllers were tested �rst in

simulator and then in real plant. From the real time results it was shown that the

settling time of optimal controller was around 6 min when compared with feed

back controller (26 min). Also the Feed back control exhibited oscillations with

an ISE value of particle size is 16.6 whereas optimal control had an ISE value of

8.5 which is almost half that of the Feed back control.

Van Breusegem et al. (1994) and Van Breusegem et al. (1996a) have proposed a

model based algorithm for the regulation of cement mill circuit. The controller

was based on Linear Quadratic algorithm. Here a black-box model was developed

based on the experimental data collected from the simulation. The dynamic model
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in the form of four �rst order di�erential equations were converted into state space

to be used in LQ control. Integral actions were added for making the control o�set

free. A dynamic simulator was developed based on the models and the controller

performance was compared with PI controller and from the results it was shown

that the standard deviation of quality had been reduced and also the variation in

tailings were also less.

Boulvin et al. (2003) have developed a grey box model with algebraic and par-

tial di�erential equation with unknown parameters for cement grinding process .

Through experimental data the unknown parameters were estimated and a dy-

namic simulator was developed to analyze the control and process behavior in real

time operation. Two controllers PI and LQ control developed by Van Breusegem

et al. (1994) were compared with the simulated model. Then a cascaded control

for regulating mill �ow rate and simple PI control for �neness control was ap-

plied. Incase of online measurement of recirculation �ow a Feed forward controller

was proposed. Here the feed-forward provide best results in terms of mill �ow

regulation. But since the di�culty in online measurement cascade control was

considered as best solution.

Ramasamy et al. (2005) have developed input/output models through step re-

sponse tests in simulator. Multi loop PI was designed and decoupled to account

for interaction between the control loops. The de-tuning factor was based on IAE

of output variables. The model predictive control from MATLAB was compared

with PI and from the results it was shown that the MPC achieves better decou-

pling. Then constraints were included in the model using MATLAB toolbox. From

the results it was con�rmed that the constrained MPC provides sluggish operation

than unconstrained but it provides a much better decoupling. Also the MPC was

compared with decoupled PI controllers and the results showed that PI controller

results in more oscillations and longer settling time.

Conventionally, the grinding circuits are controlled by multi-loop PID controllers,

but these controllers generally have drawbacks, such as input/output pairing prob-

lems and hard tuning work. Chen et al. (2009) have provided an adaptive DMC for

handling ball mill grinding circuit with multiple model developed based on three
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di�erent SOPDT transfer function models. The 3 × 3 MIMO transfer function

system was developed using step response test. A simple DMC objective function

was considered and the models were switched depending on the input variation

ranges. The performance of DMC compared with PI and it was found that the

quality variations were reduced by 3%

Chen et al. (2008) have developed constrained DMC for controlling ball mill pro-

cess. The real time implementation of 3× 3 MIMO transfer function model based

on step response tests. In addition to normal DMC objective function, hard con-

straints on manipulated variable, rate of change of manipulated variable and con-

trolled variable were included. The prediction horizon was selected as P = 20

and control Horizon as M = 5. From the results it was shown that the online

measurement of quality is improved from 88% to 95%.

Martin and McGarel (2001) have proposed Nonlinear MPC for controlling the real

time cement mill circuit. Here the NMPC process gains were calculated based on

model from neural networks. Data from plant was obtained to train the neural

network model and this provide non-linear process gain for NMPC. Also maxi-

mum and minimum gains were also calculated. Hard constraints on manipulated

variable and rate of change in manipulated variables were also included. From the

results it was reported with such type of control the product quality consistency

was close to 95%.

A summary of reported work on Survey on model predictive controllers available

for control of ball mill circuits is given in Table 2.5
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Table 2.5 Reported work on  Model Predictive Controllers for ball milling processes 

S.No Author Problem Comments 

1 Rajamani  and 
Herbst 
(1991a) 

Feedback and optimal control methods for optimizing 
ball mill grinding circuits.Semi-autogenous mill 
considered for control. Models developed by  Rajamani  
and Herbst (1991a) used. Optimal control based on 
minimization of ISE tested with Feedback control based 
on maximization principle.  

Optimal control perform better than 
Feedback control. Constraints not 
considered in the controllers.  

2 Van Breusegem 
et al. (1994) and 
Van Breusegem 

et al. (1996a) 

Model based algorithm for the regulation of cement mill 
circuit.  Controller based on LQ algorithm. Black-box 
model based on simulation data reduced to first order 
differential equations.  

Controller compared with PI control 
and standard deviation in quality is 
reduced. 

3 
 

Boulvin et al. 
(2003) 

Agrey box model with algebraic and partial 
differential equation with unknown parameters for 
cement grinding process. Unknown parameters estimated 
through simulation data. PI and LQ controllers compared 
with simulated model. 

feed-forward provide best results in 
terms of mill flow regulation. 
Diffculty in online measurement, so 
cascade control considered as best 
solution. 
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Table  2.5 (contd.. ) 

4 
 
 

Ramasamy et 
al. 

(2005) 

Developed input/output models through step response 
tests in simulator. Multi loop PI designed and decoupled. 
MPC compared with PI controller in MATLAB toolbox . 

Constrained MPC sluggish in 
operation but provides much better 
decoupling. PI controller results in 
more oscillations. 

5 
 
 

Chen et al. 
(2009) 

An adaptive DMC for handling ball mill grinding circuit 
with multiple model developed based on three different 
SOPDT transfer function models. This avoid input/output 
pairing problem. 

Unconstrained DMC is better than PI 
control but cannot be used interms of 
constraints and uncertainties. 

6. Chen et al. 
(2008) 

Constrained DMC for controlling ball mill process.  real 
time implementation of 3×3 MIMO transfer function 
model. Hard constraints on MVs, rate of change in MVs 
and CVs along with objective function  

Results compared with unconstrained 
DMC and found to increase the 
standard deviation in quality 
variations. Can be implemented only 
with online measurement of quality. 

7. Martin and 
McGarel 
(2001) 

Nonlinear MPC for controlling the real time cement mill 
circuit. NMPC process gains calculated based on model 
from neural networks. Data from plant obtained to train 
the neural network model and this provide non-linear 
process gain for NMPC. . Hard constraints on MVs, rate 
of change in MVs included. 

Quality consistency improved with 
such controllers. But difficult to be 
used in real time because of 
computational complexity and 
modeling  

 

 



2.4.1 Cement Mill modeling

The main problem with such control techniques are that the controller performance

degrades with plant-model mismatch. Researches have been working in the area

of modeling to improve the performance of such controls.

The closed loop ball mill-classi�er grinding circuit has been described by lumped

model (Benzer et al., 2001). Here the lumped model speci�cally includes the mill

load (amount of material inside the mill) as a state variable. Another way of

modeling the cement milling circuit is based on the input/output characteristics

of the milling process which can be considered as a black-box model as presented

by Lepore et al. (2002, 2003, 2004, 2007a,b) in their various works.

Discrete-element model techniques have been developed by Cleary (2006), Powell

and McBride (2006) and Jayasundara et al. (2008) which can be used to provide

information on the radial dynamics of the materials and also the axial distribution

of the di�erent particle sizes within the discharging ball mill. This facilitates the

clear understanding on the estimation of power draw and of liner wear inside the

ball mill.

Neural network is one of the methodology used for determining the black-box

model, the cement mill modeling based on neural networks has been developed by

Martin and McGarel (2001) and Topalov and Kaynak (2004). The main advan-

tage of using black-box model is the occurrence of non-linear behavior with the

input/output parameters considered for modeling. The non-linear behavior can be

made just complex enough for the description of the main process dynamics while

remaining tractable for control design as given by Huusom et al. (2005), Efe and

Kaynak (2002) and Grognard et al. (2001). But these models are quite di�cult

to be implemented in the real time systems, because of the complexity in design

and di�culty to be coupled with control algorithm. Thus it is required to reduce

the models to lower order to be used in control applications which will result in

loss of important dynamics in the system.
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2.5 Fuzzy Logic Controller in Cement Industries

In general, the most widely used technique in cement industries for optimization

is based on Fuzzy Logic. The control rules of the fuzzy controller are obtained

from the knowledge of the operators. These types of controllers are used in cement

plant widely because they do not require mathematical/ empirical model of the

plant and can be easily con�gured even for non-linear systems.

ZimmerMann (1996) has given an overview of current applications of Fuzzy control

to real world problems. A brief discussion of Fuzzy control systems for rotary

cement kiln has been provided. The main problem in mathematical modeling

control strategy is that the relationships between input and output variables are

complex, nonlinear. The control variables chosen are exhaust gas temperature,

burning zone temperature, oxygen percentage and liter weight. The manipulated

variables are coal feed rate, kiln fuel and induced draught fan speed. The aim

of the kiln control is to automate the routine control strategy of an experienced

operator. After discussions with operators, 75 operating conditions as fuzzy are

de�ned as drastically low, low, slightly low, ok, slightly high, high and drastically

high. Fuzzy rules are written to change the drive load, fan speed and fuel for

maintaining the above control variables.

Cao et al. (2008) have proposed a high precision sampling fuzzy logic controller

with self-optimizing to the cement ball mill circuit. This controller, based on fuzzy

control strategy, improves the control precision by a fuzzy interpolation algorithm.

The fuzzy logic controller and the self optimizing algorithm along with sampling

and interpolation algorithm are implemented in a MATLAB simulator with a

second order plus dead-time model which demonstrates the ball mill circuit. Fuzzy

rules are altered to make the control parameter reach steady state without steady

state error. In addition, the high precision sampling fuzzy logic controller has been

put into practice in the clinker cement production workshop of a cement mill. The

rules are altered as per real time and it is found that the power consumption is

decreased and the particle size distribution becomes standard.

Wardana (2004) has proposed a Fuzzy-PID controller for maintaining the under
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grate pressure by varying the grate speed. Here the classic representation of

Mamdani logic operations are applied, a 7×7 rule of fuzzy algorithm and centre of

area for defuzzi�cation are implemented. The performance of the FLC is compared

with conventional PID controller. It has been found that the standard deviation

of under grate pressure has been reduced from 50 mmH2O to 5 mmH2O and also

the temperature of clinker output is reduce from around 150oC to around 90oC.

Lin and Chin (1996) have proposed an application of fuzzy logic inference tech-

nique on a cement grinding roller control. The control of cement grinding roller is

that the oil-pressure is commanded to follow a desired setting pressure. A neural

network scheme is applied to identify the system model for establishing the sim-

ulation program for evaluating the derived control algorithm and the fuzzy rules

are proposed to infer the desired setting pressure to replace the original PI-like

method. The controller is applied in real time cement plant and it is found that the

stability of operation has been improved signi�cantly with the proposed control

technique.

The Fuzzy Logic Controller used for comparing the performance of soft MPC is

a commercial package available in FLSmidth's Process EXpert system(Automation

(2008)). It has been widely used in industries for controlling various cement plant

applications over the years. The controller is already available in the cement plant

and has been used directly for comparing the soft MPC.

From the above literatures it can be viewed that the control strategies used for

cement mill circuit are based on the models obtained from the plant and there is

no detailed study on plant-model parameter mismatch. Normally, cement circuits

are characterized by large uncertainties because of input material variations and

mechanical wear and tear over the period of time. Also the controllers consider

only online measurements and infer the quality parameters for control, which is

quite uncommon in real plant. This will a�ect the success of such controllers in real

time.The work on robust MPCs provided in the literatures have not been tried in

controlling real time cement mill circuit. Thus there is a need for design of robust

MPC and develop MPC based on soft constraints to address the uncertainties

present in the cement mill.
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CHAPTER 3

An evaluation of existing MPC tools

In this chapter, the e�ect of uncertainties on an unconstrained Dynamic ma-

trix Controller similar to the one proposed by Cutler and Ramakar (1980) is

investigated. Prasath and Jorgensen (2008) have proposed a predictive con-

troller based on FIR models with 'ℓ2' regression norm, including the regulariza-

tion weights (R and S)(denoted as regularized l2 �nite impulse response (FIR)

predictive controller) along with input and input-rate constraints. Feedback from

estimator is based on a simple constant output disturbance �lter. Prasath and

Jørgensen (2009) have proposed a moving horizon constrained regularized ℓ2 es-

timator (MHE) based on �nite impulse response models (FIR). The performance

of the controller with both the simple estimator and Moving horizon estimator

in the face of plant-model mismatch is simulated using a SOPDT with a zero

transfer function model. Then the work by GuruPrasath and Jorgensen (2009)

on the controller equipped with soft output constraints that are used to have ro-

bustness against model plant mismatch is investigated. The simulations can be

used to benchmark ℓ2 MPC against FIR based robust MPC as well as to estimate

the maximum performance improvements by robust MPC. The bench mark study

includes

• The performance of the controllers in the presence of uncertainties in the
system and the disturbances in the system

• Handling the infeasibility involved in solving the constraint problem.

3.1 Introduction

Dynamic Matrix Control (DMC) was the �rst Model Predictive Control (MPC)

algorithm introduced in early 1980s. Nowadays, DMC is available in almost all
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commercial industrial distributed control systems and process simulation software

packages.

DMC based on step response coe�cients for blast furnace has been dealt by Cutler

and Ramakar (1980). The DMC is represented with a set of numerical co-e�cients

based on step test. The technique is conjunction with minimizing the integral

of error/time curve. The controller developed is compared with existing PID

controller in the plant for handling dead time. Future moves on actuator and

the corresponding future measurements are predicted using a method similar to

moving horizon principle. Here the step response co-e�cients are used to update

the dynamic matrix and the feed back is taken from real data, but not based on

estimation.

In Prasath and Jorgensen (2008), FIR based MPC is developed for industrial

control purpose (especially with cement plant application) where the system in-

cludes both process and measurement noise, the analysis on performance of the

controllers in a stochastic system is made. Mara�oti et al. (2010) have proposed

a recursive least squares based persistently exciting MPC by referring this work

on FIR based MPC.

The e�ect of uncertain models on the performance of a regularized ℓ2 model pre-

dictive controller with input constraints, input-rate constraints and soft output

constraints have been investigated by Maciejowski (2002), Goodwin et al. (2005)

and Qin and Badgwell (2003).

In contrast to state space parameterizations, the FIR model is in a form that

can easily be applied in robust predictive control, i.e. predictive control based on

robust linear programming or second-order cone programming, the work on such

programming have been explained by Hansson (2000) and Vandenberghe et al.

(2002). The predictive control based on second-order cone programming have

been investigated by Ben-Tal and Nemirovski (2001) and Boyd and Vandenberghe

(2004).

The controller performance can be improved by using a FIR based moving hori-

zon estimator where the unmeasured disturbances are estimated based on the
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measured outputs and fed back into the controller.

The advantage of FIR parametrization is that it is both linear in parameters (im-

pulse response coe�cients) and the decision variables. In the regulation problem,

decision variables are the manipulated variables, while the decision variables in

the estimation problem are the known process disturbances. In addition, the �-

nite impulse response parametrization also yields a band structured Hessian in the

resulting quadratic program that can be used for its e�cient solution.

Based on linear models Muske and Rawlings (1993b) have used a moving hori-

zon estimator and used input or output disturbances to have a steady state o�set

free control. Robertson and Lee (1995) and Robertson et al. (1996) have pre-

sented moving horizon estimators for nonlinear systems and relate the optimization

based approach of moving horizon estimation to a probabilistic state estimation

approach. Rao et al. (2001) have proposed su�cient conditions for the stability

of moving horizon state estimation with linear models subject to constraints on

the estimate. Rao and Rawlings (2002) have illustrated using a series of example

monitoring problems, the practical advantages of MHE by demonstrating how the

addition of constraints can improve and simplify the process monitoring problem.

All these methods cited above are based on state space approach. In Prasath

and Jørgensen (2009), a method based on convolution approach is adopted for

the estimation of unknown disturbances from the measurement outputs. The

estimator produces non-smooth disturbance estimates upon which the regulator

reacts and introduces real output variations by its manipulation of the process

inputs. The simulations are used to critically address the performance limitations

in case of measurement noise.

In most of the literatures reported,the soft constraints are included in the system

when the hard constrained optimization problem has no solution because of ei-

ther process conditions or disturbances in the system. The soft constraints are

introduced as a slack variable and they become active only if the original hard

constrained solution becomes infeasible. In GuruPrasath and Jorgensen (2009),

the slack variables on soft constraints are included in the regular objective func-

46



tion and the optimization is solved in real time. Here the slack variables are used

as dead band across the reference variable, which improves the robustness of the

controller by providing two di�erent solutions one within the dead-band and the

other outside the band. This technique is similar to the technique that have been

proposed by Honeywell technologies in RMPC (Qin and Badgwell, 2003; Havlena

and Lu, 2005; Havlena and Findejs, 2005) where a funnel type objective func-

tion is solved. Compared to classical control, the use of soft constraints has some

similarities to PID control with dead zone as given by Shinskey (1988).

In this chapter, initially the performance of the controllers are simulated using a

generic SOPDT with zero transfer function model of the system for SISO case.

MIMO simulation system the model is obtained from the available cement mill

circuit simulation for which the details are given in later chapters.

3.2 Dynamic Matrix Control(DMC)

The major elements of DMC are (i) the model, (ii) estimation of the disturbance

and projection into the future and (iii) computation of control inputs. The model

used is a discrete truncated step response model. The basic formulation of DMC

has been given by Camacho and Bordons (1999). The DMC reported in section

2.2.2 is implemented on a FOPDT transfer function.

Based on the tuning methods suggested, the control parameters formulated for

the DMC are Sampling Time - 0.1, Prediction Horizon - 20, Moving Horizon

- 10, Simulation Length - 200, the smoothing factor is varied between 0.0 and

0.7 to smoothen the prediction values based on moving average and to analyze

the performance of the controller for di�erent ranges of smoothing factors. The

smoothing factors are used to smoothen the prediction, based on the moving

average principle and two values of smoothing factor α = 0 and α = 0.7 are used

to provide variations in the prediction.

First the performance of the DMC is analyzed by tuning the control weights

λ = 0.1, 1, 10, 100, 1000 as given in Figure 3.2. This is done to �nd the optimum
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Figure 3.1: Performance of Dynamic Matrix controller for step responses with dif-
ferent control weights λ = 0.1, 1, 10, 100, 1000.
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Figure 3.2: Performance of the DMC with uncertainty in delay with control weight
λ = 10.

weight for nominal model and the same weight is used for analysis of performance

of the controller during plant-model mismatch. Here the DMC is made online in

a closed loop based on the state space model obtained from the FOPDT transfer

function as in Equation 3.1.

G(s) =
1

(5s+ 1)
e−5s (3.1)

The step response coe�cients for the controller are also extracted from the same

transfer function (Equation 3.1).

From Figure 3.1, it can be observed that when the control weight is 0.1 the con-

troller is quite unstable as there is no restriction in input moves resulting in huge

variations in the output, and when the control weight is increased the input moves

of the controller are restricted and thus reduces the oscillations in the output. But
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as the control weights are extremely high the control moves become sluggish and

the output never settles when the control weight is 1000. Thus from the Figure

3.1 it is clear that when the optimum control weight for smooth performance of

DMC with the FOPDT model is λ = 10.

The performance of the DMC is then studied for the system with model uncer-

tainty. As a case study, the DMC is tested with models with time delay uncer-

tainty. Figure 3.2 shows the performance of the controller when the time delay of

plant model is same as nominal model for optimum tuning conditions. When the

time delay of plant model is di�erent from the controller model the behavior of

the MPC is seen in the Figure 3.2. For nominal model the settling time is around

60s. When the time delay of plant model is higher than the nominal model the

performance of controller completely deteriorates and the control actions become

oscillatory and the MPC becomes unstable when the plant delay becomes almost

double the time delay in nominal model. Although DMCs are quite simpler in

approach and less complex, since the extension of DMC cannot be used for robust

programming techniques and does not have constraints included in the controller,

the Model predictive control based on moving horizon principle using FIR based

models is proposed.

3.3 FIR Model Based MPC

In this section, model predictive control based on Finite Impulse Response (FIR)

models is derived and converted into standard quadratic form. The advantage

of using FIR based model is that it can be applied for getting models from ap-

plications with missing observations or lab measurements and also can be easily

used with higher order models. FIR models can only be applied to stable system.

Here the MPC with FIR based model is formulated assuming the system is lin-

ear. The cost function used is a quadratic function on measurement error and the

input-rate variations with hard constraints on input and input-rate in the form

of linear inequalities. Also it is considered that the controller and the system are

time-invariant. FIR models normally have the advantage that they can be eas-
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ily used for parameterizing system with missing observations. Also FIR models

are directly estimated from plant test data. In addition, FIR model structure re-

quires lesser prior information than the transfer function models, like FIR models

need only information of settling time in contrast to the other models where the

information about time delay, model order are required.

3.3.1 Plant and Sensors

The plant considered here is assumed to be a linear state space system

xk+1 = Axk +Buk +Bddk +Gwk (3.2a)

zk = Cxk (3.2b)

with x being the states, u being the manipulated variables (MVs), d being unmea-

sured disturbances, and w being stochastic process noise. z denotes the controlled

variables (CVs). The measured outputs, y, are the controlled outputs, z, corrupted

by measurement noise, v. Consequently

yk = zk + vk (3.3)

The initial state, the process noise, and the measurement noise are assumed to be

normally distributed stochastic vectors

x0 ∼ N(x̄0, P0) (3.4a)

wk ∼ Niid(0, Q) (3.4b)

vk ∼ Niid(0, R) (3.4c)

The measured output, y, is the signal available for feedback and used by the

estimator. u is the signal generated by the control system and implemented on

the plant. The subscript 'iid' stands for independent and identically distributed

(Shao, 2003), it is used to represent the variance of process and measurement

noise.
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3.3.2 Regulator

Stable processes can be represented by the �nite impulse response (FIR) model

zk = bk +
n∑

i=1

Hiuk−i (3.5)

in which {Hi}ni=1 are the impulse response coe�cients (Markov parameters). bk

is a bias term generated by the estimator. bk accounts for discrepancies between

the predicted output and the actual output. The output predictions used by the

regulator are based on the FIR model (Equation 3.5). Consequently, using the

FIR model in Equation 3.5, the regularized l2 output tracking problem with input

constraints may be formulated as

min
{z,u}

ϕ =
1

2

N−1∑
k=0

∥zk+1 − rk+1∥2Qz
+ ∥∆uk∥2S (3.6a)

s.t. zk = bk +
n∑

i=1

Hiuk−i k = 1, . . . , N (3.6b)

umin ≤ uk ≤ umax k = 0, . . . , N − 1 (3.6c)

∆umin ≤ ∆uk ≤ ∆umax k = 0, . . . , N − 1 (3.6d)

in which ∆uk = uk − uk−1 and Qz, S and R are the regularization weights and

∥zk+1 − rk+1∥2Qz
is the general representation of least square norms with weight.

This can be understood as

∥zk+1 − rk+1∥2Qz
= ∥zk+1 − rk+1∥Qz ∥zk+1 − rk+1∥T .

In this formulation, the control and the prediction horizon are identical. If desired,

a prediction horizon longer than the control horizon could be included in the for-

mulation. However, it is preferred instead to select the control horizon su�ciently

long such that any boundary e�ects at the end of the horizon has no in�uence on

the solution in the beginning of the horizon. Equation 3.6 can be converted to a

constrained linear-quadratic optimal control problem. E�cient algorithms exists

for the solution of such problems with long prediction horizons, N as explained by

Jørgensen et al. (2004). In this work a dense quadratic program is formulated in
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standard form that is equivalent with Equation 3.6. The derivation for formulat-

ing QP for FIR based regulator is given in Appendix A.1. Various optimization

techniques are available for solving such quadratic programs and here an opti-

mization algorithm based on interior point method is used. The �ow chart for the

MATLAB execution program and the closed loop simulation of the controller is

given in Appendix B and the interior point method algorithm for solving the QP

is given in Appendix D

The principle of moving horizon estimation and control process is illustrated in

Figure 3.3.
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Figure 3.3: The principle of moving horizon estimation and control.

3.3.3 Simple Estimator

To have o�set free steady state control when unknown step responses occur, there

must be integrators in the feedback loop. This may be achieved using a FIR model

in di�erence variables. Assume that the relation between the inputs and outputs

may be represented as

∆yk = ∆zk = ek +
n∑

i=1

Hi∆uk−i (3.7)

in which ∆ is the backward di�erence operator, i.e. ∆yk = yk − yk−1, ∆zk =

zk − zk−1, and ∆uk = uk − uk−1. This representation is identical with the FIR
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model (Equation 3.5)

yk = zk = b̂k +
n∑

i=1

Hiuk−i (3.8)

if b̂k is computed by

ek = ∆yk −
n∑

i=1

Hi∆uk−i (3.9a)

b̂k = b̂k−1 + ek (3.9b)

Note that in the regulator optimization problem b1 = b2 = . . . = bN = b̂k at each

time instant. This is based on the assumption that the disturbances enter the

process as constant output disturbances. Of course this may not be how the dis-

turbances enter the process in practice, and signi�cant performance deterioration

may result as a consequence of this representation.

3.4 E�ect of Parameter Uncertainty in the System

In this Section the plant is considered of the form

Z(s) = Y (s) = G(s)U(s) +Gd(s)D(s) (3.10)

with the transfer functions

G(s) =
K(βs+ 1)

(τ1s+ 1)(τ2s+ 1)
e−τs (3.11a)

(3.11b)

Gd(s) =
Kd(βds+ 1)

(τd1s+ 1)(τd2s+ 1)
e−τds (3.11c)

The disturbance model, Gd(s), is kept �xed at its nominal value, while the transfer

function, G(s), from U(s) varies around its nominal value. This is used to illustrate

the consequence of model uncertainty on the MPC closed-loop performance. The

nominal system considered here is K = Kd = 1, τ1 = τ2 = τd1 = τd2 = 5,

β = βd = 2, and τ = τd = 5. The system is converted to discrete time using a
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sample time of Ts = 1 and a zero-order-hold assumption on the inputs.

The predictive controller is based on the impulse response coe�cients of the fol-

lowing system

Ẑ(s) = Ŷ (s) = Ĝ(s)U(s) (3.12)

in which Ĝ(s) is equal to the nominal system of G(s). The simple estimator

described in Section 3.3.3 is used for bias estimation. The input limits are umin =

−1, umax = 1, ∆umin = −0.2, and ∆umax = 0.2. The horizon of the impulse

response model is n = 40 and the control horizon is N = 120. The MPC is tuned

with Qz = 1 and S = 10−3.
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Figure 3.4: Disturbance used for the simulations.

The performance of the controller on the di�erent plants, G(s), is evaluated using

the disturbance function in Figure 3.4. This is an unmeasured disturbance and it

is unknown to the controller.

3.4.1 E�ect of Uncertainty in Gain

The e�ect of uncertainty in the gain, K is considered. The uncertainty in gain is

provided by varying the plant gain as K = 0.5 and K = 1.5 to the nominal gain

K = 1. The impulse responses of the system with the with di�erent gains are

illustrated in Figure 3.5. The corresponding closed-loop performance of the MPC

is illustrated in Figure 3.6.
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Figure 3.5: Impulse responses for di�erent gains, K, in (3.19a).
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Figure 3.6: Closed-loop MPC performance with gain uncertainty.

In Figure 3.5, it is evident that the gain uncertainty a�ect the impulse responses

signi�cantly. Consequently, there is a performance degradation of the closed-loop

MPC response. This is evident in Figure 3.6. The steady state o�set for the case

K = 0.5 in the period 50− 100 is due to an infeasible set point. The MV rides its

lower limit and is too small (in an absolute sense) to reject the disturbance. For

the case K = 1.5, the peak overshoot value is 0.32 when compared with nominal

model where the peak overshoot is 0.35. The settling time for the gains K = 1.0

and K = 1.5 are same i.e., 40 s, but the manipulated variable oscillates more in

case of K = 1.5, as it is more aggressive which is not desirable in real time control.
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3.4.2 E�ect of Uncertainty in Time Constant

The uncertainty in the time constant, τ1, of the system in the Equation 3.19a is

considered. The impulse responses for di�erent time constants, τ1 = 3.5, τ1 = 5

and τ1 = 6.5 are illustrated in Figure 3.7. The corresponding closed-loop perfor-

mance of the MPC is illustrated in Figure 3.8.
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Figure 3.7: Impulse responses for di�erent time constants, τ1, in Equation 3.19a.
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Figure 3.8: Closed-Loop performance with uncertainty in one of the time con-
stants, τ1.

The peak overshoot of the impulse response with time constant, τ1 = 3.5 is 0.18

and τ1 = 6 is 0.07, when compared to the impulse response with nominal value

0.08. However, the degradation in the closed-loop MPC performance due to vari-

ations in the time constant, τ1, is modest, i.e the settling time of the controller for

the di�erent values of time constants is 50−60s approximately. Thus it is evident
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that the closed loop performance of the controller with varying time constants are

almost equal.

3.4.3 E�ect of Uncertainty in zero β

The impulse responses for di�erent values of β are illustrated in Figure 3.9. This is

related to an uncertainty in the zero of the system. It is evident that the impulse

response with β = 4 is 0.15 which is much more di�erent from the nominal impulse

response (β = 2) where amplitude of the response is 0.08. The impulse response

with β = 0 is 0.07 which is much closer to nominal response. From Figure 3.10, it

is seen that β = 0 has higher overshoot of 0.35 when compared with β = 4 where

amplitude is 0.25, but has lesser oscillations and settles with a settling time of

75. It is evident from Figure 3.10, the closed loop performance for the case β = 4

becomes oscillatory and variations in U are quite high when compared with the

performance of the controller having β = 0.
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Figure 3.9: Impulse responses for di�erent values of β in (3.19a).

3.4.4 E�ect of Uncertainty in Time Delay

The e�ect of variations in the time delay, τ , of Equation 3.19a on the impulse

responses is illustrated in Figure 3.11. The nominal value of time delay is τ = 5.0

and the time delay considered in plant model are τ = 3.0 and τ = 7.0. The
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Figure 3.10: Closed-loop MPC response for uncertain values of zero β in the plant
(3.19a).

peak amplitude of the impulse response are shifted horizontally which occurs ar

di�erent time instants. However, the closed loop response degrades considerably

with τ = 3.0 and τ = 7.0, as both the responses reach sustained oscillations when

compared with nominal delay. Accordingly, this situation with variations in the

time delay corresponds to signi�cant impulse response uncertainty.
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Figure 3.11: Impulse responses for di�erent time delays, τ , in Equation 3.19a.

From the variations in impulse response coe�cients it is seen that the degradation

of the closed-loop MPC performance is signi�cant as shown in Figure 3.12. The

controller response becomes oscillatory when the uncertainty in the time delay of

the system becomes more than 40 % of the nominal value and the actuator reaches

sustained oscillations and even with τ = 3.0, it reaches the saturation limit.
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Figure 3.12: Closed-loop MPC performance for uncertainties in plant time delays.

Thus it can be seen that the uncertainty of the impulse response coe�cients are

well suited to measure the resulting closed-loop MPC performance degradation.

3.4.5 E�ect of Measurement Noise and Process Noise

The e�ect of process noise and measurement noise as well as model uncertainty

on the closed-loop MPC performance is investigated in this section.
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Figure 3.13: Top: Deterministic disturbance function(D) with added process noise.
Bottom: Measurement noise(v).

It is assumed that the process noise enters the system in the same way as the

unmeasured disturbance, i.e. G = Bd. The simulations in this section are based

on the process noise and measurement noise illustrated in Figure 3.13. The signals

are generated using a process noise variance of Q = 0.012 and a measurement noise
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Figure 3.14: Closed-loop MPC performance for the nominal system - Stochas-
tic Case, Top: Output with noise (blue) and Filtered value of out-
put(green).
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Figure 3.15: Closed-loop MPC performance with plant gain K = 1.5 compared
to nominal gain K = 1.0 with noise included in the process, Top:
Output with noise (blue) and Filtered value of output (green).

variance of R = 0.0052. The steady state (x0 = 0) is used as the initial state for

the simulations.

The closed-loop MPC performance in the case, when the process model equals the

nominal model used for controller design is illustrated in Figure 3.14. Obviously,

the performance is degraded compared to the deterministic case. As is evident in

Figure 3.15, the closed-loop performance degrades and becomes quite oscillatory

in the case when there is a gain mismatch (K = 1.5). This is because of the

actuator reactions for smaller variations in the output which is actually because

of the noise present in the system and when the plant gain becomes 1.5 times
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Figure 3.16: Closed-loop MPC performance for τ1 = 6.5 with noise included in the
process (nominal value τ1 = 5), Top: Output with noise (blue) and
Filtered value of output (green).

greater than the controller gain, the performance of the controller still degrades

and becomes unstable.
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Figure 3.17: Closed-loop MPC performance for β = 4 with noise included in the
process (nominal value β = 2), Top: Output with noise (blue) and
Filtered value of output (green).

The e�ect of a time constant mismatch (τ1 = 6.5) is illustrated in Figure 3.16.

In this case the performance degradation compared to the nominal case is less

pronounced. Thus the closed loop performance does not degrade signi�cantly

with uncertainty in time constant as in the deterministic case but the controller

provides variation in the actuator because of the noise present in the process.

As provided in Figure 3.17, the closed-loop response degrades signi�cantly and
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Figure 3.18: Closed-loop MPC performance for uncertainty in delay τd = 7 with
noise included in the process.

becomes quite oscillatory, when the plant has a zero (β = 4) when compared to

the nominal value, i.e., β = 2. For this realization of the stochastic signals the

e�ect of a zero mismatch (when it is double the nominal value), results in the

largest performance degradation.

The controller performance in case of time- delay mismatch (τd = 7) of the system,

with the nominal value of delay τ = 5.0, the closed loop performance of the

controller is similar to deterministic case and the controller variations are really

because of the noise present in the system. This is clearly illustrated in Figure

3.18.

It is seen that the closed-loop MPC performance degradation due to plant-model

mismatch is tightly related to the uncertainty of the impulse response coe�cients.

The a�ne nature of the FIR model implies that it can be directly applied in

predictive controllers based on robust linear programming as well as predictive

controllers based on second-order cone programming.

In order to improve the performance of the predictive controller, the constant

output disturbance �lter is replaced with a moving horizon estimator. The advan-

tage of using moving horizon estimator is that the unmeasured disturbance will

be estimated over the prediction horizon based on the measured outputs instead

of assuming it to be a constant value.
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3.5 Moving Horizon Estimation

Figure 3.19 illustrates the estimation and regulation problem.The estimator must

select a disturbance sequence such that historical measurements are reconciled,

while regulator must select manipulated variables such that the distance of the

predicted outputs to the set-points is minimized. This control law is implemented

in a moving horizon such that only the �rst MV in this sequence is implemented

on the plant. At the next sample time the procedure is repeated.

Figure 3.19: Moving horizon estimation and regulation.

3.5.1 Model used by Regulator and Estimator

The plant and sensors are assumed as in section 3.3 to be a linear state space

system. The model used in the estimation problem is a �nite impulse response

(FIR) model

zk = bk +
n∑

i=1

Hu,iuk−i +
n∑

i=0

Hd,idk−i (3.13)

in which {Hu,i}ni=1 are the impulse response coe�cients from the manipulated

variables(or known process inputs) to the outputs, while {Hd,i}ni=0 are the impulse

response coe�cients from the unknown process disturbances denoted by dk. The

process disturbances, dk, are assumed to consist of a deterministic and a stochastic

component, i.e. dk =
[
d̂′k ŵ′

k

]′
. It is assumed that there is no immediate e�ect

from the control inputs to the outputs, i.e. Hu,0 = 0. In contrast, the unknown

disturbances may have a direct in�uence on the outputs i.e. in general Hd,0 ̸= 0.
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This parametrization allows unknown input as well as output disturbances. bk is

the bias term that may be used to account for the mean of zk.

In this work, the moving horizon estimator is based on the FIR model as in Equa-

tion 3.13. The simple estimator in section (3.3.3) used by the model predictive

controller in the previous chapter, is replaced by the following set of equations,

the controller part of the calculation is similar to Equation 3.6a.

min
{z,d}

ϕ =
1

2

Ne∑
k=0

∥zk − yk∥2Qz
+ ∥∆dk∥2S + ∥dk∥2R (3.14a)

s.t. zk = b̄k +
n∑

i=0

Hd,idk−i (3.14b)

dmin ≤ dk ≤ dmax k = 0, . . . , Ne (3.14c)

∆dmin ≤ ∆dk ≤ ∆dmax k = 0, . . . , Ne (3.14d)

where b̄k = bk +
n∑

i=1

Hu,iuk−i k = 1, . . . , Ne (3.14e)

It is assumed that {di}−n
i=−1 are disturbance values �xed at their previous estimates

such that the real decision variables in Equation (3.14e), are {dk}Ne

k=0. The decision

variables are normally split into a slow varying component (level), dk and a rapid

varying component (process noise), wk, thus the unknown disturbance can be

given as dk = d̄k + wk.

3.5.2 Regulator

For the regulator the current time is indexed as k = 0 as in Figure 3.19. The out-

put predictions used by the regulator are based on the FIR model with the past un-

known disturbances �xed at their last estimated values,

{
dk = d̂k =

[
ˆ̄ ′
dk ŵk

′
]′}0

k=−Ne

,

and the predicted future disturbances are equal to the estimated current mean dis-

turbance value, i.e.

{
dk =

[
ˆ̄ ′
d0 0′

]′}Nr

k=1

. This implies that the output prediction
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in the regulator becomes

zk = b̄k +
n∑

i=1

Hi,uuk−i (3.15)

with

b̄k = bk +
n∑

i=0

Hd,idk−i (3.16)

in which {Hi}ni=1 are the impulse response coe�cients (Markov parameters). bk is

a bias term generated by the estimator. bk accounts for discrepancies between the

predicted output and the actual output. In this paper, the output predictions used

by the regulator are based on the FIR model as in Equation (3.15). Consequently,

using the FIR model in Equation (3.15), the regularized l2 output tracking problem

with input constraints may be formulated as

min
{z,u}

ϕ =
1

2

Nr−1∑
k=0

∥zk+1 − rk+1∥2Qz
+ ∥∆uk∥2S (3.17a)

s.t. zk = bk +
n∑

i=1

Hiuk−i k = 1, . . . , N (3.17b)

umin ≤ uk ≤ umax k = 0, . . . , N − 1 (3.17c)

∆umin ≤ ∆uk ≤ ∆umax k = 0, . . . , N − 1 (3.17d)

in which∆uk = uk−uk−1. Here we are more concerned with the design of estimator

rather than a regulator, so we adopt a standard approach for formulation of moving

horizon estimation as in Appendix A.2.

3.6 Simulation

In this Section the plants are considered of the form

Z(s) = Y (s) = G(s)U(s) +Gd(s)D(s) (3.18)
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with the transfer functions

G(s) =
K(βs+ 1)

(τ1s+ 1)(τ2s+ 1)
e−τs (3.19a)

(3.19b)

Gd(s) =
Kd(βds+ 1)

(τd1s+ 1)(τd2s+ 1)
e−τds (3.19c)

The disturbance model, Gd(s), is kept �xed at its nominal value, while the transfer

function, G(s), from U(s) varies around its nominal value. This is used to illustrate

the consequence of model uncertainty on the MPC closed-loop performance. The

nominal system considered here is K = Kd = 1, τ1 = τ2 = τd1 = τd2 = 5,

β = βd = 2, and τ = τd = 5. The system is converted to discrete time using

a sample time of Ts = 1 and a zero-order-hold assumption on the inputs and

corrupted by normally distributed measurement noise.

y(tk) = z(tk) + v(tk)v(tk) ∼ Niid(0, r
2) (3.20)

The nominal model used by estimator and regulator is

Ẑ(s) = Ĝ(s)U(s) + Ĝd(s)(D̄(s) +W (s)) (3.21)

with Ĝ(s) = G(s) and Ĝd(s) = Gd(s) for the nominal parameters.

Here the performance of regulator is evaluated with MHE by introducing an un-

known step disturbance and try to estimate the disturbance and use it as a feed

back to the MPC. The output are measured at discrete times ( Sample Interval

Ts = 1 ) and corrupted by normally distributed measurement noise.

The constraint limits are d̄min = −10, d̄max = 10, ∆d̄min = −1, ∆d̄max = 1,

wmin = −0.5, wmax = 0.5, ∆wmin = −2 and ∆wmax = 2. The horizon of the FIR

model is n = 50 and the estimation window has size Ne = 200.

A. Batch Estimation :

In batch estimation, the outputs are generated by disturbance scenario. The
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manipulated inputs are zero in this scenario. The disturbance is given as step

up and step down, this disturbance is unknown to the estimator. The measured

outputs are corrupted by measurement noise.
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Figure 3.20: Batch estimation with no measurement noise. Top: Measured Out-
put Bottom: Actual and Estimated disturbance Low regularization
weights (Sd = 0.1 and Rw = 0.01).
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Figure 3.21: Batch estimation with measurement noise and (Sd = 0.1 , Rw =
0.01). Top: Measured Output Z (solid line)and Output with noise Y
(Dots). Bottom: Actual Disturbance (Dotted lines), the estimated
deterministic disturbance(blue) and the total disturbance(with the
stochastic component added)(green).

In Figure 3.20, the upper plot is the measured output Z (solid line) and output with

measurement noise Y(dots), generated by the unknown disturbance. The lower

plot is the actual disturbance(red dotted line) and the estimated disturbance(blue

solid line). In the simulation of stochastic disturbance, it is considered that the
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measured output is corrupted by normally distributed measurement noise that

has a standard deviation, r = 0.2. The most important tuning parameters in the

estimator are the regularization weights Sd and Rw.
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Figure 3.22: Batch estimation with measurement noise. Medium regularization
weights (Sd = 1 and Rw = 0.1), (Legends : As in Figure 3.21).
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Figure 3.23: Batch estimation with measurement noise. High regularization
weights (Sd = 5 and Rw = 0.5), (Legends : As in Figure 3.21).

The task of the estimator is to reconstruct the unknown disturbance, D, from the

measured outputs. It can also be called as the smoother. In case of the system with

no measurement noise, the estimated disturbance can be reconstructed arbitrarily

accurately by lowering the regularization weights. This is illustrated in Figure

3.20. Figure 3.21 provides the details of both deterministic component of the

estimated disturbance and the sum of the estimated deterministic and stochastic

component. The blue curve in the lower part of the �gure is the deterministic
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component of the estimated disturbance and the green curve is the sum of the

estimated and stochastic disturbance.

From Figures 3.21, 3.22 and 3.23, it can be noted that the inclusion of measure-

ment noise disturbs the estimation to a large extent. It can be seen that with lower

regularization the variations of the estimated unknown disturbance exactly follows

the measurement noise. In the Figure it can be seen that the measurement noise

has a standard deviation r = 0.2 and with low regularization the standard devia-

tion of estimated disturbance is 0.18. The frequency variations in the estimated

disturbance components can be attenuated only by increasing the regularization

weights in the estimation as shown in Figures 3.21- 3.23. But the increase in

regularization will a�ect the estimator performance.

B. Moving Horizon Estimation:

When the estimator in Equation A.13, is implemented in a moving horizon manner

for the unknown disturbance with the inclusion of measurement noise that has a

standard deviation r = 0.2, the result illustrated in Figure 3.24 is obtained.
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Figure 3.24: Moving Horizon Estimation with measurement noise (r = 0.2) and
(Sd = 1 and Rw = 0.1), (Legends : As in Figure 3.21)

By increasing the regularization weights, high frequency variations in the esti-

mated disturbance is attenuated. But this will result in the slower adjustment

in estimating the deterministic change in the real disturbance. The estimated

disturbance lags the real disturbance due to the time delay in the model. Thus

it is seen from the �gures that by determining the proper regularization weights
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on the parameters a better disturbance estimate can be provided. This estimated

disturbance can then be used as a feed back to the regulator.

C. Closed Loop Simulation:

Let Qz = 1, S = 0.1, umin = −1, umax = 1, ∆umin = −0.2, ∆umax = 0.2 and Nr =

200 in the predictive regulator. The closed loop performance of MPC with moving

horizon estimator is shown in Figures 3.26 - 3.28. Figure 3.25 shows the response

obtained in the case of no measurement noise. This response illustrates the ideal

behavior of the system. In particular, the achievable estimated disturbance. The

actuator variations in the controller are also quite smoother but still provides

delayed settling time because of the time delay in the model.
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Figure 3.25: Closed-loop MPC simulation without measurement noise. Bottom:
Actual disturbance (red dotted line) and the estimated disturbance
(blue). Regularization (Sd = 0.1 and Rw = 0.01).

As a case study, the closed loop performance of the estimator is analyzed when

MHE is made in closed loop with the MPC with measurement noise. The mea-

surement noise is included with the standard deviation r = 0.2. The performance

of the estimator is investigated with di�erent regularization from the objective

function as in Equation A.13. When the regularization weight of the MHE has

been made very low, the estimation just follows the measurement noise and the

actuator reacts following the measurement noise providing real output variations

by manipulating the process input as shown in Figure 3.26. From Figure 3.28,

it is observed that as the regularization weight is increased the estimation does

not follow the measurement noise but the estimation becomes sluggish. Thus the
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Figure 3.26: Closed-loop MPC simulation with measurement noise (r = 0.2). Low
regularization (Sd = 0.1 and Rw = 0.01), Legends as in Figure 3.25.

0 50 100 150 200
−1

0

1

O
ut

pu
t

0 50 100 150 200
−1

0

1

In
pu

t (
M

V
)

0 50 100 150 200
−1

0

1

2

Time

D
is

tu
rb

an
ce

Figure 3.27: Closed-loop MPC simulation with measurement noise (r = 0.2).
Medium regularization (Sd = 1 and Rw = 0.1), Legends as in Figure
3.25.

controller manipulates the process input with regards to slower variations in the

disturbances. But the output variations become sluggish, along with variations

because of measurement noise and hence the closed loop performance becomes

poor.

The results obtained from closed loop performance of MPC with MHE show that

the MHE produces non-smooth disturbance estimates upon which the regulator

reacts and introduces real output variations by its manipulation of the process

input. By increasing the regularization weights in the estimator, the introduced

process variations are slightly reduced at the expense of slower disturbance rejec-
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Figure 3.28: Closed-loop MPC simulation with measurement noise (r = 0.2). High
regularization (Sd = 5 and Rw = 0.5), Legends as in Figure 3.25.

tion. These results indicate that MHE is no panacea to MPC. The improvements

can be made by considering other norms, convex formulations (e.g. l1 or l2 with

dead zone). In an unconstrained case a �nite horizon LQG controller can be repre-

sented with an unstructured disturbance model in the present work. For the case

Nr = Ne → ∞ it approaches a stationary LQG controller with an unstructured

disturbance model for o�set free control. In the next chapter, in order to improve

the robustness incase of plant-model mismatch, a soft constraint is included in the

predictive controller with a simple estimator. It is assumed that the same results

would be obtained using a state- space model based predictive control system, but

the advantage of FIR based model is that future predictions are governed by past

disturbances, which results in better closed loop performance.

3.7 Soft Constrained MPC

The soft constraints can be used to tune and improve the performance of linear

model predictive control. Speci�cally, the e�ect of uncertain models on the per-

formance of a regularized l2 model predictive controller with input constraints,

input-rate constraints and soft output constraints is investigated in this chapter.

The estimator used here is simple estimator. The reason for using simple estima-

tion instead of MHE is that, the moving horizon estimator are computationally
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complex and the algorithm needs to solve both regulation and estimation problem

simultaneously.

Here the objective function of the MPC is similar to that of FIR based MPC, but

it includes quadratic and linear weights on soft output constraints with respect

to the reference parameter along with normal deviation and actuator objective

functions as given below

min
{z,u,η}

ϕ =
1

2

N−1∑
k=0

∥zk+1 − rk+1∥2Qz
+ ∥∆uk∥2S

+
N∑
k=1

1

2
∥ηk∥2Sη

+ s′ηηk (3.22a)

subject to the constraints

zk = bk +
n∑

i=1

Hiuk−i k = 1, . . . N (3.22b)

umin ≤ uk ≤ umax k = 0, . . . N − 1 (3.22c)

∆umin ≤ ∆uk ≤ ∆umax k = 0, . . . N − 1 (3.22d)

zk ≤ zmax,k + ηk k = 1, . . . N (3.22e)

zk ≥ zmin,k − ηk k = 1, . . . N (3.22f)

ηk ≥ 0 k = 1, . . . N (3.22g)

in which ∆uk = uk − uk−1 and ηk is the slack for soft limits around the reference

variable. Sη and s′η are weights on the slack variables. The derivation for formu-

lating QP from the Equation 3.22 is given in Appendix A.3. The general form of

the derivation for all the Quadratic program equations is given in Appendix C.

3.7.1 Soft Constraint Principle

The basic principle of soft constraint based MPC is shown in Figure 3.29. This

illustrates the basic stage cost function for ℓ2 model predictive control (conven-
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Figure 3.29: The principle of soft constraint MPC and conventional MPC(Error,e
Vs Penalty Function, ρ).

tional MPC) and ℓ2 predictive control with a dead zone (soft MPC). The stage

cost function, or the penalty function, is plotted as function of the set point error,

e = z − r.

The penalty function of the conventional MPC is a quadratic function. The plot

shows the variation of penalty function against reference output error. For MPC

without soft output constraints, the penalty function is quadratic with respect

to the output as given by the solid parabolic line in Figure 3.29. The penalty

function shown in Figure 3.29 is denoted by ρ for conventional controller and the

controller with soft constraints. The penalty function of the soft constrained MPC

is constructed in such a way that it is zero or almost zero within the dead zone

between the soft limits and grows quadratically when the set point error exceeds

the soft limits.

In order to make the controller o�set free, a small quadratic penalization is in-

cluded when the error is inside the limits shown as solid parabolic red line in

Figure 3.29. The small penalty within the soft limits ensures that the controller

produces a steady state o�set free response. By having the penalty small within

the soft constraints, the controller does not react much to small errors. In this

way the signi�cant real disturbances to the process is avoided by the controller

because it does not react to measurement noise or plant-model mismatch. Outside
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the soft limits, it is assumed that the deviation from target is due to a real process

disturbance, and the soft MPC may be designed to react in the same way as the

conventional MPC. The standard form of Quadratic algorithm for solving the soft

constraint formulation is given in Appendix A.3

The matlab codes for designing a soft MPC and closed loop simulation of the

system in given in Appendix E.

3.7.2 Selection of Soft Limits

The soft output limits considered in the controller is a limit or band around the

reference target of the controlled variable. The performance of the MPC is deter-

mined based on the selection of limits around the reference target. Too wide limit

can cause the controller performance sluggish and even it may lead to steady state

o�set. Selecting the soft limits very close to the reference can cause the controller

behave like a conventional MPC and will reduce the robustness of the controller.

Figure 3.30 provides the method for choosing the soft limits. The two curves in

the �gure are the linear and quadratic term of the soft constraint. The upper plot

in the �gure is the measurement noise over a time horizon and the lower plot is the

response of the linear and quadratic term of the soft constraints for the system

with measurement noise. It is seen from the �gure, that the controller almost

rejects the noise and acts only with respect to the process variations.

The soft limits must be selected in a way, such that the controller does not react to

the unnecessary parameter variations because of the measurement noise, process

noise and also the real process variation is considered. In Figure 3.30 it is seen

that for the measurement noise with variance σ2 = 2.5, the soft limits chosen here

is zmax = 2, zmin = −2, so that the controller reacts very less on noise and control

aggressively for real disturbance in the process parameter. Thus the soft limits

must be chosen by considering the variance of the noise (measurement noise as

well as process noise) in the system. In this way the controller can be made to

react only to the real process disturbance and avoid unnecessary actions for the

noise or plant-model mismatch. Thus as a thumb rule it can be de�ned that when
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Figure 3.30: Linear (green) and Quadratic term (pink) of the soft constraint.

the variance of the measurement noise in the system σ2 = N . Then the soft limits

to be chosen for the process zmax, zmin must be 0.8− 0.9N . In the next chapter,

the performance of the developed soft MPC is compared with the conventional

MPC to analyze the robustness of the controllers during plant-model mismatch.

3.8 Conclusion

Based on �nite impulse response predictions, a regularized l2 predictive controller

with input and input-rate constraints is analyzed. It is veri�ed by simulations

that the closed-loop MPC performance degradation due to plant-model mismatch

is tightly related to the uncertainty of impulse response coe�cients. The closed

loop performance of the controller is good when the uncertainty in each of the

parameters (separately in gain, zero and time delay) are smaller(upto 40 % incase

of time delay, 50 % in gain and twice incase zero) with the nominal model. The

controller performance reaches sustained oscillations when the uncertainty in each

of these parameters exceeds the above these values. Also presence of noise in

the system further degrades the closed loop performance of the controller. By

MATLAB simulations, the closed loop behavior of moving horizon estimation and

model predictive control for a system with measurement noise is provided. It is
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evaluated that the closed loop response of the model predictive controller has a

strong correlation to the magnitude of the measurement noise i.e., the quality of

the sensor. However, signi�cant process variations results from the control systems

due to non-smooth disturbance estimates. These results are not due to the fact

that the regulator and estimator are based on a FIR model.

Then the model predictive controller equipped with soft output constraints along

with input and input - rate constraints is developed. The prediction is based on

the Finite impulse response model, and the feedback is based on simple constant

output disturbance �lter.
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CHAPTER 4

Comparison of Soft MPC with Nominal MPC

Using Simulation

In this chapter, the controllers with and without soft constraints are compared

both for SISO and MIMO cases. By MATLAB simulation, the performance of

the new robust constrained predictive controller is compared with a conventional

predictive controller both in nominal case and in uncertainty conditions. The

model considered here is a SOPDT transfer function model with a zero. It is

assumed that the disturbance in the model enters in the same way as the plant

model. The performance of the controllers with process noise and measurement

noise is also studied.

4.1 Introduction

Model predictive controllers with robust performance against plant-model mis-

match is crucial in long-term maintenance and success of MPC system. Using

soft output constraints in a novel way, it is demonstrated that the poor perfor-

mance of predictive control in the case of plant-model mismatch can be improved

signi�cantly. The soft constraints create a dead zone around the set point and

by simulation it is demonstrated, that the performance of such an MPC does not

degrade much in the nominal case but improves signi�cantly in the case of plant-

model mismatch. This technique is similar but not identical to the funnels used

by Honeywell in RMPC (Qin and Badgwell, 2003; Havlena and Lu, 2005; Havlena

and Findejs, 2005). Normally in classical process control, PID control with dead

zones (Shinskey, 1988) have been used in a similar way like soft output constraints

based MPC. The soft output constraint included in the MPC acts as a dead zone

to the controller to reduce its sensitivity to noise and uncertainty when the process
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output is close to its target. This use of soft constraints for robustness is new,

simple, and gives good performance. Bemporad and Morari (1999) have provided

an excellent survey of methodologies for robust model predictive control.

4.2 Simulation

Here the plant is considered of the form

Z(s) = Y (s) = G(s)U(s)y(tk) = z(tk) + v(tk) (4.1a)

with the transfer functions

G(s) =
K(βs+ 1)

(τ1s+ 1)(τ2s+ 1)
e−τs (4.2a)

(4.2b)

Gd(s) =
Kd(βds+ 1)

(τd1s+ 1)(τd2s+ 1)
e−τds (4.2c)

The nominal system is K = Kd = 1, τ1 = τ2 = τd1 = τd2 = 5, β = βd = 2, and

τ = τd = 5. The system is converted to discrete time using a sample time of

Ts = 1 and a zero-order-hold assumption on the inputs.

The predictive controller is based on the impulse response coe�cients of the fol-

lowing system

Ẑ(s) = Ŷ (s) = Ĝ(s)U(s) (4.3)

in which Ĝ(s) is equal to the nominal system of G(s).

The simple estimator in section 3.3.3 is used for estimation. The input limits

are umin = −1, umax = 1,∆umin = −0.2, and ∆umax = 0.2. The horizon of the

impulse response model, n = 40 and the control horizon, N = 120. The MPC is

tuned withQz = 1 and S = 10−3. The unknown deterministic process disturbance,

D(s), the stochastic process disturbances, W(s) or wk, and the measurement noise,

v(tk) = vk, are used in the simulations. The stochastic process disturbances is

wk ∼ N(0, 0.01), and the stochastic measurement noise is vk ∼ N(0, 0.01).

80



4.3 Soft constraints in MPC

A comparison on the performance of the MPC with soft constraints and the con-

ventional MPC is made in deterministic case as well as when the process is per-

turbed by stochastic noises. In cases where noise variance is large, the MPC

without soft constraints reacts to the noise variations resulting in oscillatory per-

formance of the system. So the soft limit is included to penalize heavily only when

it violates the limit and a very little action to drive the output to target with zero

o�set within the limit. This way of control relatively gives much stable operation

avoiding unnecessary �uctuations in the input.

4.3.1 E�ect of including noise in the system

To study the e�ectiveness of soft constraints, a simple case of second order system

with a zero and input delay is considered as given in Equation (4.2a). The model

used by the controller is identical to the deterministic part of the plant model.

However, the plant has in addition to the deterministic part stochastic process

disturbances and stochastic measurement noise as illustrated in Figure 4.1.
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Figure 4.1: External signals used in simulation: Disturbance (dk) measurement
noise (v) and process noise(w).

First, a case is considered, in which the system is perturbed by measurement

noise with variance Qv = 0.01 and process noise with variance Qw = 0.01 and it

is assumed that there is no external disturbance D(s) = 0. The normal weight
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on measurement error Qz = 0.001 incase of soft MPC and Qz = 1.0 in case of

conventional MPC. The comparison on the open loop performance of MPC for

stochastic system with and without soft constraints is given in Figure 4.2. In

this Figure, the variations of controller input when there is noise in the output is

studied, but the values are not given back to the plant for control actions.
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Figure 4.2: Comparison of Open loop performance of conventional and soft
MPC,with nominal models applied to a stochastic system with no
deterministic disturbance (Conventional MPC = blue, Soft MPC =
red).

Though the output variations in both the controller are similar, the input varia-

tions shows the MPC without soft constraints acts even for noise variation. Thus

the input variance of the soft MPC is much smaller than the input variance of

the nominal MPC. Due to the low penalties within the soft limits, the soft MPC

does not react to measurement noise and do not need to compensate such previous

erroneous measurement noise induced input moves. The closed loop performance

further degrades when there is a plant-model mismatch. Further, this can be illus-

trated clearly the system is simulated with plant-model mismatch to be discussed

in the following sections.

4.4 E�ect of uncertainties in the model

A deterministic system without process noise or measurement noise is considered.

However, the model used by the controllers is di�erent from the plant model. The
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process is perturbed by an unknown deterministic disturbance, D(s), as illustrated

in Figure 4.1. The performance of the conventional MPC and the soft MPC

for model-plant mismatches de�ned by the time delay, τd, the gain K, the time

constant τ1, and the zero β are compared.

4.4.1 E�ect of uncertainty in Delay

The e�ect of uncertainty in Delay τd is considered for comparing the performances

of conventional MPC and soft MPC. The performance of both the MPCs and

their corresponding input variations for the deterministic case are illustrated in

Figure 4.3 and Figure 4.4. When the delay τd of the plant model varies with the

controller model there is a reasonable performance degradation in the close loop

control. Here when the plant delay is either higher or lower than the model delay,

it a�ects the performance considerably.
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Figure 4.3: Closed-loop MPC performance with uncertainty in time delay, τd = 3,
in Equation (4.2a)(Conventional MPC = blue, Soft MPC = red).

The uncertainty in time delay, τd = 3.0 and τd = 7.0 is considered here. It

can be seen that when compared to the controller variations with nominal delay

τd = 5.0 the MPC without soft constraints manipulates the control input for small

variations in output, resulting in instability, where as soft MPC does not react to

the small output variations resulting in faster stabilization. It can be seen that

in case of soft MPC, the controller settles within a period of 30s where as the
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conventional MPC results in sustained oscillations.
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Figure 4.4: Closed-loop MPC performance with higher plant time delay , τd = 7,
in Equation (4.2a)(Conventional MPC = blue, Soft MPC = red).

4.4.2 E�ect of uncertainty in gain

The e�ect of uncertainty in the gain, K is considered. The comparison on the

performance of both the MPCs and their corresponding input variations for the

deterministic case is illustrated in Figure 4.5.

When the gain of the process is on the higher side, i.e., K = 2 or more when

compared with the controller model gain K = 1 the closed loop performance of

MPC without soft constraints degrades as it starts acting to variations in output

aggressively, resulting in sustained oscillations. This again makes the output os-

cillatory as shown in the Figure 4.5. But in case of soft MPC the controller does

not react to small variations within the soft limits providing better stability. Here

even the soft MPC has output variations getting oscillatory but settles faster (in

60s) , whereas MPC without soft constraints oscillates the manipulated variable

continuously resulting in continuous oscillations. Incase of plant gain on the lower

side or slightly higher than the controller model gain, the controller will normally

behave sluggish both in conventional MPC and soft MPC, so both the controllers

behave in similar way resulting in stable operation.
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Figure 4.5: Closed-loop MPC performance with gain uncertainty, K = 2, in Equa-
tion (4.2a)(Conventional MPC = blue, Soft MPC = red).

4.4.3 E�ect of uncertainty in Time Constant

In case of uncertainty in time constant, τ1 of the system.

When one of the time constants of the system, τ = 2.0 or less when compared to

the nominal time constant τ = 5, the output performance degrades as the input

starts reacting to the variations resulting in sustained oscillations. As referred in

chapter 4, the e�ect of time constant in all the other cases will remain same as

they do not have signi�cant impact on the stability.
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Figure 4.6: Closed-loop MPC performance with uncertain time constant, τ1, in
Equation (4.2a)(Conventional MPC = blue, Soft MPC = red).

85



The comparison on performance of both the MPCs with the uncertainty in time

constant is illustrated in Figure 4.6. It can be seen that when the time constant

of the plant is close to the sampling time i.e., 2s or less the controller performance

degrades in case of conventional MPC as it provides continuous oscillations, but

soft MPC provides stable variation even with time constants closer to the sampling

time.

4.4.4 E�ect of uncertainty in Zero

The uncertainty in the zero β of the system is considered as given in the Figure

4.7.

The plant having the value of zero β = 4.5 or more when considered with nominal

model β = 2 the performance of the conventional MPC degrades with increased

oscillation in the output, where as the soft MPC performs in a much stabilized

way as shown. This behavior is almost similar to that of the uncertain gain model,

but soft MPC settles much faster in this case (settling time of 40s).
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Figure 4.7: Closed-loop MPC performance with uncertain zero, β, in Equation
(4.2a)(Conventional MPC = blue, Soft MPC = red).

In all of these cases only the deterministic part of the process is considered, the

closed loop performance can be a�ected considerably when process noise and mea-

surement noise are included into the system.
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4.5 E�ect of Process noise and Measurement noise

From the previous section, on comparing the performance of MPC with and with-

out soft output constraints for a deterministic model, it is observed that the un-

certainty in any of the parameters of the model degrades the performance of con-

ventional MPC considerably than the MPC with soft constraints.

The e�ect of process noise and the measurement noise on the closed loop perfor-

mance is investigated. It is assumed that the process noise enters the same way

as the unmeasured disturbance, i.e. G = Bd.

For simulation purpose, we generate the signals with the process noise variance of

Qw = 0.012 and the measurement noise variance of Qv = 0.012. The steady state

(x0 = 0) is used as the initial state for the simulations.

The closed loop performance of the conventional MPC and the soft MPC is com-

pared with the nominal model and inclusion of the measurement noise . The

closed loop performance is as shown in Figure 4.8. It can be seen that the con-

ventional MPC reacts for small variations in output which is because of the noise

perturbations in the system. This makes the inputs from the controller oscillatory

resulting in unstable operation. In this case, the controlled variable, Y (or Z), of

the two controllers are similar while the manipulated variable, U, of the soft MPC

has signi�cantly less variance than the manipulated variable, U, of the nominal

MPC.

The closed loop performance of a conventional MPC and a soft MPC applied to

the system with the external signals in Figure 4.1 and a plant-model mismatch in

the gain is compared. The plant gain is K = 2 and the controller gain is K = 1.

As evident in Figure 4.9, the closed-loop performance of the conventional MPC

degrades and becomes quite oscillatory in the case when there is a gain mismatch

(K = 2.0). It is seen that the performance of the soft MPC is signi�cantly

better than the performance of the conventional MPC. The superior performance

is achieved by having a small set point deviation penalty within the soft constraints

such that the controller does not react aggressively when close to the set point.
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Figure 4.8: Comparison of normal and soft MPC with nominal models applied to
a stochastic system with an unknown deterministic disturbance (Con-
ventional MPC = blue, Soft MPC = red).

In this way it avoids perturbing the system due to stochastic measurement noise

and plant-model mismatch.
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Figure 4.9: Closed-loop MPC performance with noise and gain uncertainty, The
plant gain is K = 2 and the model gain is K = 1(Conventional MPC
= blue, Soft MPC = red).

4.6 Simulation of MIMO System

The performance of the controllers for MIMO case is simulated using Matlab. The

model considered here is taken from the cement mill circuit from the chapter 5.4.
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The controlled variables are

ElevatorLoad
Fineness

 and the manipulated variables are

U(s) =

 Feed

Separatorspeed

. The �neness measurement to be obtained from online

analyzers (continuous sample data). The details of getting the models from the

cement mill circuit is explained in Chapter 5. The main control strategy of cement

mill involves controlling of product �neness(blaine) and load on the mill (elevator

power) by manipulating feed and separator speed. Grindability is taken as the

disturbance parameter.

The transfer function model for cement mill relating controlled and manipulated

variables based on the step test in the simulator can be given by G(s) = Y (s)
U(s)

G(s) =

 0.62
(45s+1)(8s+1)

e−5s 0.29(8s+1)
(2s+1)(38s+1)

e−1.5s

(−15)
(60s+1)

e−5s 5
(14s+1)(s+1)

e−0.1s

 (4.4)

where

Y (s) =

ElevatorLoad
Fineness

 and U(s) =

 Feed

Separatorspeed


The transfer function model in Equation 4.4 is fed to the controller.

The hardness of the clinker(grindability) entering the mill is considered as a dis-

turbance model and an approximate model is derived for the transfer function

between the hardness and the output, Y (s) as given in equation 4.5.

Gd(s) =

 −1
(32s+1)(21s+1)

e−3s

(60)
(30s+1)(20s+1)

 (4.5)

The performance of the controllers is studied by introducing a step change in the

disturbance model as shown in Figure 4.10.

The input limits considered for normal actions are based on trial and error method

and the limits are

umin =

−7
−4

 ,
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Figure 4.10: Disturbance Model as in Equation (4.5) with no process noise and
measurement noise.

umax =

7
4

 ,
∆umin =

−1.5
−0.3

 , and
∆umax =

1.5
0.3

 . The horizon of the impulse response model is n = 75 and the

control horizon is N = 225. The weightage parameters for conventional MPC are

�xed considering the controller to be aggressive for variations in output thus the

values

Qz =

8 0

0 0.2

 and

S =

10−8 0

0 1

 are �xed. Similarly soft MPC is tuned with

Qzs =

0.08 0

0 0.01

 and

Ss =

10−2 0

0 1

 for providing the same e�ectiveness in control actions during

normal conditions.
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The performance of the conventional MPC is slightly better than the MPC with

soft constraints for nominal cases as shown in Figure 4.11. This is because the

soft MPC does not react aggressively when the outputs are within the soft limits.
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Figure 4.11: Variation of controllers Nominal Case, as in Equation (4.4) (Conven-
tional MPC = blue, Soft MPC = red).

4.6.1 E�ect of uncertainty in gain

The cement mill model is simulated using MATLAB by introducing uncertainty

in the model gain using single value decomposition (SVD) method. The original

gain of the system are decomposed using SVD as Gain,

K =

 1.6866 1.4240

−14.9812 5.0200

 and then fed as a new model to the controller.

The comparison of the controllers with the new gain is given in Figure 4.12. As the

uncertainty in gain increases, the normal controller becomes aggressive resulting

in oscillatory behavior. Since the weight on deviation of Y1 is more than Y2 the

controller reacts more for maintaining the parameter(Y1) resulting in sustained

oscillations, when compared to Y2. In case of soft MPC it can be seen that

both the control parameters settle before 75% of the control horizon resulting

in stable operation. These features are expected to contribute to better closed

loop performance, easier maintenance, easier tuning, and longer lifetime of model

predictive controllers for chemical processes.

In the next chapter, the performance of both the controllers when applied to a

cement mill circuit which is subjected to large number of uncertainties is studied.
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Figure 4.12: Comparison of Conventional MPC and Soft MPC in case of Uncer-
tainty in Gain, K (MIMO), in Equation (4.4)(Conventional MPC =
blue, Soft MPC = red).

4.7 Conclusion

It is veri�ed by simulations that the soft MPC provides much robust performance

in the face of plant-model mismatch than conventional MPC. In nominal case,

it can be seen that the performance of conventional MPC is slightly better than

the soft MPC. This is because in soft MPC, the controller actions are very small

whenever the error is closer to target(within the soft band) resulting in sluggish

performance. In SISO case with uncertain system, it can be seen that soft MPC

stabilizes the system faster than conventional MPC. The performance of both the

controllers are similar, with the uncertainty condition when the plant gain and

zero is lesser than the controller gain and zero, also with plant having higher time

constant values than the controller model. When there is uncertainty in time delay

(both higher and lower values) of the system the soft MPC settles in 50s. But in

case of uncertainty in gain it can be seen that the soft MPC is little oscillatory

and settles much slower. For the MIMO case, with uncertainty in the model gain,

the conventional MPC results in sustained oscillations where as in soft MPC the

oscillations are suppressed completely and the system settles before 75% of the

control horizon.
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CHAPTER 5

Cement Manufacturing Process

In this chapter, a brief overview of the cement plant architecture is given, in

which the developed robust MPC is to be implemented. Also the importance of

cement mill operation in the cement plant a and the need for control of cement

mill circuit is discussed. A transfer function model for the cement mill circuit is

developed from the data obtained from the cement mill simulation system through

step response tests. The transfer function of the system is a 2 × 2 system with

Feed rate and separator speed as manipulated variables and Elevator load and

Fineness as controlled variables.

5.1 Introduction

The annual world consumption of cement is around 1.7 billion tonnes and is in-

creasing at about 1% a year. The electrical energy consumed in the cement produc-

tion is approximately 110 kWh/tonne. 30% of the electrical energy is used for raw

material crushing and grinding while around 40% of this energy is consumed for

grinding clinker to cement powder (Fujimoto, 1993; Jankovic et al., 2004). Hence,

global cement production uses 18.7 TWh which is approximately 2% of the worlds

primary energy consumption and 5% of the total industrial energy consumption.

The cement manufacturing process is illustrated in Figure 5.1.

PROCESS DESCRIPTION

Cement industries typically produce portland cement, although they also produce

masonry cement (which is also manufactured at portland cement plants). Portland

cement is a �ne, typically gray powder comprised of dicalcium silicate, tricalcium

silicate, tricalcium aluminate, and tetracalcium aluminoferrite, with the addition

of forms of calcium sulfate. Di�erent types of portland cements are created based
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Figure 5.1: Cement plant (FLSmidthA/S (2004)).

on the use and chemical and physical properties desired. Portland cement types

I - V are the most common. Portland cement plants can operate continuously for

long time periods (i.e., 6 months) with minimal shut down time for maintenance.

The air pollution problems related to the production, handling, and transporta-

tion of portland cement are caused by the very �ne particles in the product. The

stages of cement production at a portland cement plant are:

a. Procurement of raw materials

b. Raw Milling - preparation of raw materials for the pyroprocessing system

c. Pyroprocessing - pyroprocessing raw materials to form portland cement clinker

d. Cooling of portland cement clinker

e. Storage of portland cement clinker

f. Finish Milling

g. Packing and loading

a. Raw Material Acquisition

Most of the raw materials used are extracted from the earth through mining and

quarrying and can be divided into the following groups: lime (calcareous), silica

(siliceous), alumina (argillaceous), and iron (ferriferous). Since a form of calcium

carbonate, usually limestone, is the predominant raw material, most plants are

situated near a limestone quarry or receive this material from a source via inex-

pensive transportation. The plant must minimize the transportation cost since

one third of the limestone is converted to CO2 during the pyroprocessing and
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is subsequently lost. Quarry operations consist of drilling, blasting, excavating,

handling, loading, hauling, crushing, screening, stockpiling, and storing.

b. Raw Milling

Raw milling involves mixing the extracted raw materials to obtain the correct

chemical con�guration, and grinding them to achieve the proper particle-size to

ensure optimal fuel e�ciency in the cement kiln and strength in the �nal concrete

product. Three types of processes may be used: the dry process, the wet process,

or the semidry process. If the dry process is used, the raw materials are dried

using impact dryers, drum dryers, paddle-equipped rapid dryers, air separators,

or autogenous mills, before grinding, or in the grinding process itself. In the wet

process, water is added during grinding. In the semidry process the materials are

formed into pellets with the addition of water in a pelletizing device.

c. Pyroprocessing

In pyroprocessing, the raw mix is heated to produce portland cement clinkers.

Clinkers are hard, gray, spherical nodules with diameters ranging from 0.32 - 5.0

cm (1/8 - 2") created from the chemical reactions between the raw materials.

The pyroprocessing system involves three steps: drying or preheating, calcining

(a heating process in which calcium oxide is formed), and burning (sintering).

The pyroprocessing takes place in the burning/kiln department. The raw mix

is supplied to the system as a slurry (wet process), a powder (dry process), or

as moist pellets (semidry process). All systems use a rotary kiln and contain

the burning stage and all or part of the calcining stage. For the wet and dry

processes, all pyroprocessing operations take place in the rotary kiln, while drying

and preheating and some of the calcination are performed outside the kiln on

moving grates supplied with hot kiln gases.

d. Clinker Cooling

The clinker cooling operation recovers up to 30% of kiln system heat, preserves

the ideal product qualities, and enables the cooled clinker to be maneuvered by

conveyors. The most common types of clinker coolers are reciprocating grate,

planetary, and rotary. Air sent through the clinker to cool it is directed to the ro-
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tary kiln where it nourishes fuel combustion. The fairly coarse dust collected from

clinker coolers is comprised of cement minerals and is restored to the operation.

Based on the cooling e�ciency and desired cooled temperature, the amount of air

used in this cooling process is approximately 1-2 kg/kg of clinker. The amount of

gas to be cleaned following the cooling process is decreased when a portion of the

gas is used for other processes such as coal drying.

e. Clinker Storage

Although clinker storage capacity is based on the state of the market, a plant can

normally store 5 - 25% of its annual clinker production capacity. Equipment such

as conveyors and bucket elevators is used to transfer the clinkers from coolers to

storage areas and to the �nish mill. Gravity drops and transfer points typically

are vented to dust collectors.

f. Finish Milling

During the �nal stage of portland cement production known as �nish milling, the

clinker is ground with other materials (which impart special characteristics to the

�nished product) into a �ne powder. Up to 5% gypsum and/or natural anhydrite

is added to regulate the setting time of the cement. Other chemicals, such as

those which regulate �ow or air entrainment, may also be added. Many plants use

a roll crusher to achieve a preliminary size reduction of the clinker and gypsum.

These materials are then sent through ball or tube mills (rotating, horizontal steel

cylinders containing steel alloy balls) which perform the remaining grinding. The

grinding process occurs in a closed system with an air separator that divides the

cement particles according to size. Material that has not been completely ground

is sent through the system again.

g. Packing and Loading

Once the production of portland cement is complete, the �nished product is trans-

ferred using bucket elevators and conveyors to large, storage silos in the shipping

department. Most of the portland cement is transported in bulk by railway, truck,

or barge, or in 43 kg (94 pound) multiwalled paper bags. Bags are used primarily

to package masonry cement. Once the cement leaves the plant, distribution ter-
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Figure 5.2: Cement mill grinding circuit (FLSmidthA/S (2004)).

minals are sometimes used as an intermediary holding location prior to customer

distribution. The same types of conveyor systems used at the plant are used to

load cement at distribution terminals.

5.2 Cement Ball Mill Process

The �nish milling circuit consumes signi�cant amounts of energy: throughput is

high (generally in the range 120 t/h to 150 t/h) and the target particle size is

relatively �ne. Typically, �nished cement is produced using ceramic ball mills,

although roller mills are becoming increasingly popular. With either mill it is

common for a dynamic separator to take a �ne product cut, coarse material being

recycled to the mill for further grinding.

Figure 5.2 illustrates a rotating cement ball mill in a closed loop with a separator.

The ball mills used for grinding cement have usually two chambers separated by

a metallic diaphragm as shown in Figure 5.3. The �rst compartment is �lled

with bigger balls and lifting liners and is supposed to do coarse grinding. The

second compartment is the �ne grinding chamber and is equipped with a smaller

ball charge and classifying liners. Classifying liners ensure, that the ball charge is

segregated and bigger balls accumulate at the beginning of the compartment and

smaller balls toward the end. The feed materials (Clinker,Gypsum and Fly Ash)

are fed to the �rst chamber of the mill where they are broken into smaller powder

by the impact of falling balls. Then the particles pass through metallic diaphragm
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Figure 5.3: Ball mill(FLSmidthA/S (2004)).

into the second chamber. The second chamber consists of much smaller balls for

making the particles �ner.

The �ne ground particles are then lifted by a bucket elevator and sent to a air

classi�er shown in Figure 5.4. A classi�er is essential to the clicker grinding process

in order to remove coarse particles, which require further grinding, from the �ne

particles, which meet speci�cation.

In the classi�er, the milled powder is suspended in the air stream. Air is sucked

from the bottom of the classi�er forcing coarse particles impact on the walls of

the classi�er. These coarse particles can then be collected as they drop down due

to gravity through cone shaped cyclones; whereas �nes particles are transported

away in the air stream towards the center of the classi�er. The rejects are then

recirculated to the mill for further grinding. The �ner particles then are collected

as �nal product in cement silos. The classi�er and the ball mill e�ciency can

be improved by maintaining a constant recirculation ratio (rejects to main feed

ratio), which in-turn provide a consistent product quality.

5.2.1 Tromp Curves

The e�ciency of a classi�er must be determined to make sure that no oversized

particles are present in the �nal product and that �ne particles are not processed
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Figure 5.4: Classi�er(FLSmidthA/S (2004)).

any further. This can be measured by plotting Tromp curves as shown in Figure

5.5. These plots show the probability that a particle of a particular size is sepa-

rated into coarse (over�ow) fraction. Exact critical examination of the classi�er

e�ciency (sharpness of separation) takes place on the basis of the Tromp curve.

This curve is calculated from the percentages by weight of the individual grain

size fractions in the three classi�er material �ows: feed, tailings and �nes. The

result of the calculation is a selectivity factor (weight by %) for a speci�c grain

fraction. From the entered quantity of points, the function shown in the diagram:

"selectivity factor (%) as a function of the grain size (m)" is obtained.

5.3 Cement Mill Control Strategy

The ball mill control is considered to be a very di�cult control problem. The main

reason for this is the presence of non-linearities and uncertainties in the system.

The model predictive control without soft constraints is more e�ective when the

plant model matches with the controller model. Physical and chemical properties
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Figure 5.5: Tromp Curve(FLSmidthA/S (2004)).

of the raw material, mechanical wear and tear and various other factors deterio-

rates the model in long run. This model mismatch is considered for designing a

controller which neglects the small variations and acts only to the large process

disturbances. Stabilizing cement ball mill involves maintaining load on the mill

and the �neness of the product. The mill loading can be represented by di�er-

ent parameters like Sound inside the mill created by collision of metal balls, mill

main motor drive power and bucket elevator power. Normally elevator power is

considered as the most reliable parameter as it indicates exact amount of ground

material coming out of the mill. The amount of feed entering the mill and classi-

�er speed for separating the �ne and coarse particles are varied for controlling the

above parameters.

5.4 Cement Mill Model

The transfer function model for cement mill relating controlled and manipulated

variables is obtained using a simulation software called ECS/CEMulator. The

ECS/CEMulator, re�ects most of the real time conditions and hence the model
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can be considered to match a real plant. A detailed description of CEMulator

is given in Appendix F. The models are obtained by varying the manipulated

variables in step and observe the variations of controlled variables with respect

to the step change. Di�erent step sizes in each of the manipulated variables are

given in order to get the exact impact on the controlled variables on the actuators.

Also the variations in the controlled variables are obtained for di�erent step sizes

of Feed and Separator speed in the CEMulator as given in Figures 5.6 and 5.7.

In the �gure it can be seen that the step disturbances on Feed rate and Elevator

load are given in both the directions with 5 % and 10 % variations and also for

di�erent operating conditions (Grindability of 28 and 36).

5.4.1 Step Test Procedure

The test procedures speci�ed in the following sections describes the experiments

needed obtain the data used for construction of a �nite impulse response (FIR)

model. Ideally, a model should be established for each operating point

The general principle in the model construction phase is to stabilize the system

around its desired operating point and then perturb the system with a step change

of each of the process inputs. The responses of the output (measurement) variables

are recorded. The process inputs must be perturbed individually. By the data

obtained by this procedure a model describing the in�uence of the process inputs

on the process outputs can be constructed. The controller uses this model for

computation of the control actions

The cement mill has to process inputs that must be perturbed. The fresh feed

�ow rate and the separator speed. In principle all possible variables should be

recorded. Of particular importance are the Blaine (or residue, on-line as well

as lab measurements), Folaphone, Elevator Power (or current), Mill Power and

Reject Flow Rate as given in Table 5.1.

Based on these step response results an approximate model is identi�ed, by plot-

ting a step response curve with the transfer function models in the MATLAB as

shown in Figure 5.8.
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Figure 5.6: Step Response results for di�erent operating conditions(di�erent
Grindability factors ) and with di�erent step sizes of Feed(+5 %, -
5 % ..).
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Figure 5.8: Model identi�cation based on the plots obtained from the step response
co-e�cient(CEMulator data).
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Table 5.1: Cement Plant Variables

Process Inputs Process Outputs
Fresh Feed Rate Blaine (lab or online analyzer)
Separator Speed Elevator Power

- Folaphone
- Mill Power
- Reject Flow Rate

The transfer function model for cement mill relating controlled and manipulated

variables based on the step test in the simulator can be given by G(s) = Y (s)
U(s)

G(s) =

 0.62
(45s+1)(8s+1)

e−5s 0.29(8s+1)
(2s+1)(38s+1)

e−1.5s

(−15)
(60s+1)

e−5s 5
(14s+1)(s+1)

e−0.1s

 (5.1)

where

Y (s) =

ElevatorLoad
Fineness

 and U(s) =

 Feed

Separatorspeed


The transfer function model in Equation 5.1 is fed to the controller. The time

constants and time delay values are in minutes. The model developed is used as

the case study for controller performances using �rst the Matlab simulation and

by running the controller online in the CEMulator. The main control strategy of

cement mill involves controlling of product �neness(blaine) and load on the mill

(elevator power) by manipulating feed and separator speed.

5.5 Conclusion

The need for control of cement ball mill grinding circuit and the di�culties involved

in control are discussed. Also the cement mill transfer function model is obtained

using ECS/CEMulator tool by conducting step tests on the manipulated variables

and get the response of the controlled variables. A 2×2 transfer function model is

developed in which Feed rate and Separator speed are the manipulated variables

and Elevator load and Fineness are the controlled variables.
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CHAPTER 6

Applications of Soft MPC to Cement Mill Circuit

In this chapter, the robust MPC developed in chapter 3.7 is used for regulation

of a cement mill circuit. The MPC uses soft constraints (soft MPC) to robustly

address the large uncertainties present in models that can be identi�ed for cement

mill circuits. First the robust MPC is compared with the conventional MPC in a

CEMulator system. The soft MPC is also implemented in a real time cement ball

mill grinding circuit. The model is obtained from the real plant by conducting step

tests in the plant in the same way as done in simulation system. The controller

performance is compared with that of the Fuzzy logic control already running in

the plant.

6.1 Introduction

In the cement industry, the clinker grinding step consumes about one-third of the

power required to produce 1 ton of cement (Touil et al., 2008). Grinding is a

high-cost operation consuming approximately 60% of the total electrical energy

expenditure in a typical cement plant. 30% of the electrical energy is used for raw

material crushing and grinding while around 40% of this energy is consumed for

grinding clinker to cement powder (Fujimoto, 1993; Jankovic et al., 2004). Hence,

global cement production uses 18.7 TWh which is approximately 2% of the worlds

primary energy consumption and 5% of the total industrial energy consumption.

Consequently, optimization and control of their operation are very important for

running the cement plant e�ciently, i.e. minimizing the speci�c power consump-

tion and delivering consistent product quality meeting speci�cations.

The MPC algorithm uses soft constraints to create a piecewise quadratic penalty

function in such a way that the closed loop system is less sensitive to model un-

certainties than conventional MPC with a quadratic penalty function. Predictive
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models for cement mills are very uncertain. Variations and heterogeneities of the

cement clinker feed a�ects the gains, time constants, and time delays of the cement

mill circuit. To avoid the MPC being turned o� shortly after commissioning due

to bad closed-loop behavior, it is important that these unmeasurable uncertainties

are accounted for. The developed soft MPC controls elevator power and blaine

of the cement (product quality) by manipulating the fresh feed �ow rate and the

separator speed. The elevator power can be measured in almost all cement mill

circuits. Blaine can either be measured by online particle size analyzers or esti-

mated using soft sensors. The models relating the manipulated variables to the

controlled variables are identi�ed from step response experiments on the cement

mill circuit.

Van Breusegem et al. (1994, 1996b,a) and de Haas et al. (1995) have developed

an LQG controller for the cement mill circuit. This controller was based on a

�rst order 2×2 transfer function model identi�ed from step response experiments.

Magni et al. (1999), Wertz et al. (2000), and Grognard et al. (2001) have developed

a Nonlinear Model Predictive Control algorithm based on a lumped nonlinear

model of the cement mill circuit. All these controllers controlled the product

and recycle �ow rate by manipulating the fresh feed �ow rate and the separator

speed. Efe and Kaynak (2002) have used the same lumped nonlinear model for

nonlinear model reference control. Lepore et al. (2002, 2003, 2004, 2007a) as well

as Boulvin et al. (1998, 1999, 2003) have applied a distributed reduced order model

for Nonlinear Model Predictive Control of a cement mill circuit. They controlled

the particle size distribution of the cement product by manipulating the fresh feed

�ow rate and the separator speed. Martin and McGarel (2001) have used a neural

network model for Nonlinear Model Predictive Control of the cement mill circuit.

6.2 Cement Mill control Simulation results

The controllers are being compared by simulating using a tool called CEMulator,

which represents the real time cement plant. FLSmidth Automation has developed

the product which is an absolute realistic simulator of cement plant processes. The
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models are obtained by conducting step tests on the manipulated variables in the

CEMulator as given in chapter 5.

The controllers are simulated in the CEMulator in the same way as MATLAB

simulation as given in chapter 4.6. The major di�erence in CEMulator simulation

is that the process reaction time in the CEMulator are similar to the real plant

and hence the simulation has to be carried out for a longer period (in hours). Also

the CEMulator model is a non-linear model in which the linear controller is tested.

In case of MATLAB simulations, the controller is simulated at much faster rate

(in seconds) and the plant model assumed is a linear state space model. Also the

disturbances in the MATLAB simulations are given as simple step disturbances.

These disturbances are deterministic, simpler and is assumed to have the same

transfer function as the plant model. In case of CEMulator, the disturbances are

uncertain as in the real plant. Thus the simulation environment for comparing

both the controllers are entirely di�erent in CEMulator with respect to MATLAB

simulation.

Figure 6.1: Performance of MPC with grindability factor of 36 without measure-
ment noise(Sepax Power Changed from 330-360 Kw - Green line).
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Initially the performance of the MPC is tested by varying the grindability of the

material fed into the cement mill. Grindability is the measure of hardness of

the clinker used as the raw material for grinding. Increasing the grindability will

make the clinker soft and can be easily ground. Also this will change the operating

conditions of the cement mill as the e�ciency of the grinding will be increased with

increase in grindability and also the reverse case. First as a study of robustness

the model obtained from step response test from the simulator as explained in

the previous chapter is taken as the controller model. The grindability factor

of clinker for the model in the previous chapter is 33, which is considered to be

the nominal value. In Figure 6.1, the controller is made online by increasing the

grindability factor from 33 to 36. Also the measurement noise is removed from

the simulation. It can be seen that even with di�erent operating conditions the

controller performance remains almost constant stabilizing the system within 30

min from the disturbance.

In order to analyze the performance of the controller with lower grindability or

hard clinker and also with measurement noise, the controller is made online with

grindabilty factor of 28. Along with such a disturbance the sepax separator fan

power is varied from 390 Kw to 300 Kw and again brought back to 300 Kw. This

will in-turn directly a�ect the �neness of the �nal product as the fan power is

used to lift the material from the separator. It can be seen from Figure 6.2 the

controller stabilizes the system without much variation in the output for di�erent

operating conditions.

The simulation is carried for a minimum of 8 hours to observe the exact variations

in the system when the controllers are running. This provides a very good compar-

ison. The disturbances and the measurement noise are included in the simulation

in the same way as it occurs in the real time system.

As discussed earlier, the performance of the controller in real time situations pro-

vide signi�cant comparison. Here a case of uncertainty is considered for comparing

the performance of the controller. The uncertainties of the system can be repre-

sented in terms of gain and time delay of the system. Thus based on experiments
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Figure 6.2: Performance of MPC with grindability factor of 28 and sepax power
changed from 390- 300 KW(Green Line).

the system transfer function in Equation 4.4 is modi�ed as

G(s) =

 0.2
(45s+1)(8s+1)

e−5s 0.12(8s+1)
(2s+1)(38s+1)

e−1.5s

(−8)
(60s+1)

e−5s 2
(14s+1)(s+1)

e−0.1s

 (6.1)

The time constants and time delay values are in minutes. A normal MPC with an

ℓ2 penalty function and a Soft MPC using an ℓ2 penalty function with an almost

dead zone as illustrated in Figure 3.29 are designed. The control targets are same

for both the controllers. The target for Elevator Load is 30 and Fineness is 3100.

The soft limits for Elevator Load are Zmin = 28 and Zmax = 32, and for Fineness

the soft limits are Zmin = 3000 and Zmax = 3200. Also both the controllers start

from the same steady state operating point as seen in Figure 6.3. The steady state

values for the manipulated variables are Feed = 126 tonnes/hour, Separator speed

= 70 % and for the controlled variables are Elevator Load = 26 and Fineness

= 3100. Thus both the controllers are kept in same operating conditions to have
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a fair comparison.

0 2 4 6 8 10 12 14 16
25

30

35

time (hours)

E
le

va
to

r 
lo

ad

0 2 4 6 8 10 12 14 16
2900

3000

3100

3200

3300

time (hours)

Fi
ne

ne
ss

0 2 4 6 8 10 12 14 16
25

30

35

time (hours)

E
le

va
to

r 
lo

ad

0 2 4 6 8 10 12 14 16
2900

3000

3100

3200

3300

time (hours)

Fi
ne

ne
ss

0 2 4 6 8 10 12 14 16
110

120

130

140

150

time (hours)

Fe
ed

(T
PH

)

0 2 4 6 8 10 12 14 16
65

70

75

80

85

time (hours)

Se
pa

ra
to

r 
Sp

ee
d(

%
)

0 2 4 6 8 10 12 14 16
110

120

130

140

150

time (hours)

Fe
ed

(T
PH

)

0 2 4 6 8 10 12 14 16
65

70

75

80

85

time (hours)

Se
pa

ra
to

r 
Sp

ee
d(

%
)

Figure 6.3: Conventional MPC(left) and Soft MPC(right) applied to a rigorous
nonlinear cement mill simulator. The disturbances (change in hardness
of the cement clinker) are introduced at time 1.35 hour (green line) and
the controllers are switched on at time 2 hour (purple line) The soft
constraints are indicated by the dashed lines.

The plant is considered to be stable, except the mismatch in the model parameters

with reference to the controller model. This enables to compare the performance

of the controllers with reference to only the model uncertainty. Using ECS/CEM-

ulator from a steady state, a signi�cant change in hardness of the cement clinker

(as disturbance) is introduced at time 1.35 hr, and the controllers are switched

on at time 2.0 hr. The resulting closed loop pro�les for the Normal MPC and

Soft MPC are illustrated in Figure 6.3. It is evident by the simulations that the

variation of the output variables are more or less comparable for the two MPCs,

but the Soft MPC manipulates the MVs in a more plant friendly manner than the
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Normal MPC. The unnecessary actuator variations are reduced to large extent in

case of MPC with soft constraints resulting in better stability of the system. Also

the variance of feed rate and separator speed seems to be high incase of MPC

without soft constraints when compared with soft MPC. It can be seen from Fig-

ure 6.3, the variation of Feed rate is from 140 tonnes/hour to 110 tonnes/hour in

case of conventional MPC , whereas in case of soft MPC the maximum variation

in Feed rate is 138 tonnes/hour and minimum 125 tonnes/hour which is almost

15 tonnes/hour (approximately 10%) lesser than conventional MPC. In case of

separator speed it is up to 84% in conventional MPC whereas the separator speed

varies only a little around the steady state value in soft MPC. Thus, these varia-

tions in manipulated variables will disturb the process signi�cantly in real time.

The optimization of the cement mill circuit with minimum separator variation is

considered as e�cient. This is because frequent variation in separator will disturb

the recycle load, which will in-turn a�ect the e�ciency of the ball mills. Also fre-

quent variation in separator motor can cause mechanical/ electrical wear reducing

the rate of separation. This will result in huge variation in Final product residue.

(based on 22 micron sieve). Consequently, most practitioners would prefer the

Soft MPC to the Normal MPC as it gives rise to less plant wear.

6.3 Real Time implementation

The controller is tested in a real time plant and compared with that of the already

running high level controller based on Fuzzy logic principle.

The cement mill present in the plant is a closed circuit ball mill with two chambers.

The cement ball mill has a design capacity of 150 tonnes/hour with sepax separa-

tor. The recirculation ratio of the circuit is 1.5 %. The �nal product recipes are

Ordinary Portland Cement (OPC) and Puzzalona Portland cement (PPC). Since

the plant where the controller is implemented in an independent grinding unit,

the clinker produced from various other plants are transported through wagon

for grinding. Thus the quality variations in the clinker are very large depending

on the supplier. This results in continuous operational variations in the cement
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mill circuit. Also depending on the dispatch requirements the cement mill grind-

ing recipes of �nal products need to be changed resulting in frequent shifting of

operating points of the controller.

All the signals coming from the sensors of the grinding process are collected in a

ECS SCADA (Supervisory Control And Data Acquisition of FLSmidth) system.

The measurement data is obtained from PLC and logged every 10 seconds in the

system. The quality measurement data (Fineness/Blaine) is sampled every hour

using the samples collected through Auto- Sampling system.

The real time implementation of soft MPC application is done using a high level

expert system tool developed by FLSmidth. The execution interval of MPC will

be 1 min and the data update in the expert tool will be 30 seconds.

To have a common platform for comparison, the FLC and soft MPC are made

online in similar operating conditions and the adaptive feature was made common

for both the controllers. Here the adaptive controller changes the target on Ele-

vator load which is considered to be the primary controlled variable, based on the

quality variations in the output. Here Fuzzy calculation engine also executes every

30 seconds. The measurement data obtained from the PLC through input/output

modules in the �eld is �ltered, scaled and validated before used in the controller.

The output from the controller is also scaled and con�gured for bumpless transfer

when it is made online, this is important in order to have smoother transition of

set points when the controller is shifted from manual to auto control loop. Inter-

locks are included incase of emergency shut down during abnormal conditions like

power failure etc.

The models of the system are taken by doing step response tests in the real time

system open loop. The main di�erence between the models obtained in real time

with that of the ECS/CEMulator system as in chapter 5 is that the model from

the real plant are uncertain and it is quite di�cult to obtain a proper response

on input and output. So a number of step tests are conducted with each of the

manipulated variables and the responses are plotted to obtain an approximate

model.
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The general principle in the model construction phase is to stabilize the system

around its desired operating point and then perturb the system with a step change

of each of the process inputs. The responses of the output (measurement) variables

are recorded. The process inputs must be perturbed individually. By the data

obtained by this procedure a model describing the in�uence of the process inputs

on the process outputs can be constructed. The controller uses this model for

computation of the control actions.

Here, the feed, separator speed are perturbed and all the possible values of mea-

surements are obtained. The lab measurement (Fineness) is modeled by increasing

the frequency of sample collection i.e., collecting samples for every 15min and then

generating a model based on the data. Based on these step response results an ap-

proximate model is identi�ed, by plotting a step response curve with the transfer

function models in the MATLAB as shown in Figure 5.8

We consider 2× 2 MPC controllers based on the models Y (s) = G(s)U(s) with Y

(s) = [Elevator Load; Fineness] and U(s) = [Feed Rate; Separator Speed]. Based

on the tests we identify the system transfer function as in (Equation 6.2)

G(s) =

 (0.47)(2s+1)
(17s+1)(15s+1)

e−4s 1
12s+1

e−3s

(−0.9)
(10s+1)(12s+1)

e−5s 2.5
(4s+1)

 (6.2)

Since the quality of the feed material vary frequently, we include target adaptation

for improving the grinding e�ciency of the ball mill. Thus the target of elevator

load considered for controlling will be changing depending on the quality of the

�ne material. This is mainly to achieve optimum production while achieving the

desired �neness.

The controller is made online with Feed and Separator Speed controlling Elevator

Load and Fineness. First the system is made online with Fuzzy controller and

then with soft MPC when the cement mill was running continuously in a single

recipe, here it was producing PPC where Gypsum, Clinker and Fly Ash are the

feed materials. This is just to have a basic comparison to be in same operating

conditions. The following tuning and weighting factors are used while applying
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Figure 6.4: Model identi�cation from the plant data from step response tests. The
identi�ed model is yellow solid line. The other lines indicate plot of
real time data with various step tests conducted. The yellow line is
based on the identi�cation of the model with the other data plotted.
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Figure 6.5: Comparison of Soft MPC (left) with the High Level controller (right)
implemented in a closed loop cement mill Target (Red), Actual value
(Blue), High and Low Limits(dashed line).

the soft MPC scheme to control the grinding circuit: Prediction horizon Np = 300,

control horizon N = 100, The weights on the errors are

Qz =

0.005 0

0 0.000025

, the weights on the manipulated variables

S =

500 0

0 250000

 and the quadratic soft constraint weights are

Sη =

9000 0

0 500

. Here we consider the linear soft constraint weight to be

zero.

The weight on Fineness is small when compared to elevator load, as the �neness is

a hourly sampled data and less reliable when compared with elevator load. Also

the weight on separator speed is set to a large value because it is not permitted

to move too freely in order to maintain a relatively stable operation.

From Figure 6.5, it is seen that the above soft MPC has the abilities of prediction
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and coordination, which could lead to much smoother responses of manipulated

variables while maintaining the controlled variables stable. However in Figure

6.5, the controller runs at its high limits and hence the actuator movements are

restricted to move on the higher side. These conditions occur because of the

conditions in the plant where there is inconsistency in quality variations of the

raw material fed into the mill . Even then, because of the smaller variations in the

separator speed the standard deviation of the �neness has improved signi�cantly

incase of soft MPC when compared with the Fuzzy logic control. This is achieved

because of the smoother variations in both the actuators.

Separator speed has been given higher priority in the soft MPC, the main reason

is, that the separator cannot be varied frequently because it's a LT motor device,

frequent variations in separator will result in reduced life time, also it results higher

variation in residue of the �nal product which is not measured frequently but has

to be maintained within the band as per the quality norms. The variations in

separator speed also a�ect the recycle load which has a very big impact on the

performance of the ball mill. Thus such variations in separator will reduce the

e�ciency of the ball mill in longer time.
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Figure 6.6: Actuator (left) and measurement (right) variations in soft MPC when
the control parameters are inside and outside the soft constraint limits
(dotted lines) when made online with the cement mill recipe changed
to OPC (pink line)(Real Time Results).

Figure 6.6 gives the performance of soft MPC, where there is large margin for

the controller to adjust its actuator to maintain the desired target of controlled

variables. Here the soft MPC controller moves the actuator very little within the
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soft constraints and takes aggressive actions outside the soft limit band resulting

in better stability and optimization of the cement mill circuit. The performance

of the soft MPC has been signi�cantly better for the changes in operating regions

and also the quality variations.

The main di�erence in controlling the cement mill through a CEMulator and

real plant is, the CEMulator is a non-linear simulation tool that includes all the

dynamics of the system but the disturbances can be �xed and recorded. Also there

is no uncertainty considered in the simulation and the system behavior is similar

in all the situations. In real plant, the uncertainty in the process is common.

This is because of the changes in operating conditions due to variations in the raw

materials, wear and tear of the mechanical devices and various other reasons. In

the next chapter, the performances of such controllers when applied to a cement

mill with large sample delay in the �neness measurement is studied.

6.4 Conclusion

By simulation, using a rigorous process simulator and also implementing the con-

troller in a real time plant, it is demonstrated how the Soft MPC is used to im-

plement this control strategy despite the signi�cant plant-model mismatch which

is unavoidable in the control of cement mill circuits. When the controllers are

compared with the cement mill simulation system it is seen that variations in

output variables are similar in both the controllers, but the soft MPC achieves

the variation with smaller actuator moves. The standard deviation of feed rate in

conventional MPC is 4.4258 and separator speed is 2.4149.The standard deviation

of feed rate in soft MPC is 3.269 and separator speed is 0.0878. Also the initial

variation in feed rate and separator speed are high in case of conventional MPC

when compared with soft MPC. It is observed that when both the controllers are

made online in a real time cement mill circuit with similar process conditions and

in the same recipe, the standard deviation in the quality parameter (i.e Fineness

of the product) is reduced by around 23% with soft MPC when compared with

that of FLC in the plant.
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CHAPTER 7

Implementation of Soft MPC to a Large Sample

Delay System

In this chapter, the performance of a model predictive controller (MPC) applied to

a cement ball milling circuit with large measurement sample delay is investigated

GuruPrasath et al. (2011). Maintaining �neness quality of the cement produced

is important in the design of such controllers. Usually �neness is measured hourly

by sample analysis in the laboratory. The predictive controller designed with the

model from fast sample data (1 min sample) when applied to control with hourly

sampled measurements, the controller is to be re-tuned a number of times (at

least 3 - 4 times) for improving the performance of the controller. The parameters

needed to be re-tuned are weight for penalties on measurement error (Qz), weights

of penalties on manipulated variables (S) and rate of change of manipulated vari-

ables (R). Also the hard constraints on input- rate movements are to be re-tuned

to reduce the variations in the control actions. In this work, the controller model

is added with half the sample delay of measurement to improve the performance

of the controller with one time tuning.

7.1 Introduction

In all the discussions in previous chapters, the process is assumed to have all

the measurements continuously available at each sampling instant. But most of

the real time systems do not have continuous measurement for certain important

parameters like quality. Usually quality parameters are results of analysis being

done in the lab and will be available only when the lab analysis is completed. This

may take several minutes to hours depending on the type of analysis.

For grinding circuits characterized by large time delays, a predictive control is more

suitable in this case (Chen et al., 2009). Conventionally, predictive controllers are
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more accepted in real time control of cement mill circuits because of their proven

control methodology and robustness. Usually, the models used in the controller are

obtained from continuous measurements obtained by step tests on the cement mill

system. In the real plant, the elevator load is a continuous measurement where as

the quality measurement Fineness or Blaine is collected every 1 hour using auto

sampler, analyzed and entered as o�-line measurement. This may result in getting

a measurement every hour after the sample is analyzed and this will be available

for control. Thus, when conventional controller applied to such measurement the

controller parameters need to be re-tuned quite often to improve the controller

performance.

A �nite impulse response (FIR) model based MPC is considered for controlling the

cement mill circuit. The cement mill control involves the control of mill loading

and �neness. The main measure of �neness is speci�c surface. Because cement

particles react with water at their surface, the speci�c surface area is directly re-

lated to the cement's initial reactivity. By adjusting the �neness of grind, a range

of products can be produced from a single clinker. Tight control of �neness is

necessary in order to obtain cement with the desired consistent day-to-day perfor-

mance. Thus �neness control is one of the most important parameter in cement

mill control circuit. Fineness values can be obtained approximately once in an

hour as it is measured in lab by sample analysis. But the models on elevator load

representing the loading on the mill and �neness for the controller are obtained at

each sampling instant from step response experiments conducted on the cement

mill simulation circuit. When such controllers are taken online to control hourly

sampled measurements the control performance becomes poor and the control pa-

rameters need to be re-tuned as discussed above. These kind of problems can

be solved as an multi-rate control problem. But here the problem is considered

as a sample measurement delay problem and a method is proposed to e�ectively

address the large sample delay measurements which signi�cantly improve the per-

formance of the controllers without much e�ort on tuning the system.

A method is proposed, in which the controller model is added with half the sample

delay of the measurement and the performance of the controller is analyzed.

120



Figure 7.1: Operator station of High Level Control for closed loop cement mill
FLSmidthA/S (2004).

7.2 System Implementation

The schematic diagram of ball mill control is shown in Figure 7.1.

The controllers are designed for handling di�erent recipes where the operating

parameters/ targets will be changed depending on the type of recipe. The main

control loops considered are Feed rate and Fineness control. In addition for im-

proving the performance of cement mill operation and to achieve better stability

in the system, some of the control variables like di�erential pressure across the

diaphragm, outlet temperature of the material and load on the separator fan are

to be controlled. These variables even though do not contribute in cement mill

performance signi�cantly, the �uctuations in these variables cause the mill to be

unstable. Such control variables can be handled by simple SISO control/ PID

loops.

As discussed, the most important parameters that determine the performance of

the mill is the amount of material loading inside the mill and the quality of cement

being produced. Quality of �nal product in the cement ball mill remains one of the

challenging and important parameter to be controlled. The quality is measured in
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terms of �neness of the cement by collecting samples from the �nal product and

entered manually every hour in the supervisory system. A 2 × 2 MPC system is

considered based on the models as given in section 5.4. The controller actions can

be tuned from the tool available in the SCADA, called as Process Expert tool.

This is a visual basic programming environment interfaced with other tools like

Matlab, Excel etc., In this tool the tuning parameters can be directly entered from

the available ECS/SCADA and the values can be taken to the PLC for overwriting

the manual actions. Most important tuning parameters in the MPC are penalty

on the actuator movements to restrict the amount of control actions and weight

on the measurements to make the controlled variables to reach the desired targets.

The controller with model obtained from continuous sample data is made online in

the ECS/CEMulator system with Feed and Separator Speed controlling Elevator

Load and Fineness. Fineness of the cement controlled here is assumed to be hourly

sample collected from the �nal product belt through an auto- sampler or manual

spot collection and the samples are analyzed and entered from the quality lab.

Thus the �neness value is updated in the system with a delay of one hour.

The following tuning and weighting factors are used, while applying the MPC to

control the grinding circuit when the �neness measured using an online analyzer:

Prediction horizon Np = 250, control horizon N = 50, The penalties on the errors

are

Qz =

0.5 0

0 0.015

, the penalties on the manipulated variables are

S =

100 0

0 1000

.
When the above tuning parameters are used for controlling, the hourly �neness

data the performance of the controller degrades, thus for improving the perfor-

mance of the MPC the control weights are needed to be re-tuned by trial and error

after a number of times (here the stable operating parameters are obtained after

4 trials) as
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Qz =

0.1 0

0 0.001

, the weights on the manipulated variables

S =

100 0

0 10000

.
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Figure 7.2: Variations in MPC with nominal models when applied to measure-
ments having large sample delays, Target(Red), Actual Value(Blue).
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Figure 7.3: Variations in MPC with models including sample delay added to con-
tinuous model and taken online for controlling the large sample delay
parameters(Fineness), Target(Red), Actual Value(Blue).

These tuning values are obtained by trial and error method, depending on the

control actions of the controller. It can be seen that the penalty on Fineness is

very small, this is because the �neness is a hourly sampled data and less reliable

when compared with elevator load. Also the penalty on separator speed moves is

set to a large value because varying the separator continuously causes wear in the

separator blades thus reducing the separation e�ciency in the long time. Thus the

control actions become less aggressive as the penalty on the actuator movement
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(especially separator speed) is increased. This results in slower control actions on

both �neness and elevator load making the controller sluggish. From Figure 7.2,

it is seen that the controlled variable Elevator load settles at approximately 3.5

hours and there is an steady state o�set in case of Fineness measurement. The

actuator variations are also undesirable as it is quite oscillatory.

In order to avoid such a situation, the controller model for Fineness versus Feed and

separator speed are added with time delay which is considered to be approximately

half the sample delay of Fineness measurement. For example, with an hourly

sample measurement of �neness we include a delay of 30 min in the �neness model

of the controller as in Equation 7.1

G(s) =

 0.62
(45s+1)(8s+1)

e−5s 0.29(8s+1)
(2s+1)(38s+1)

e−31.5s

(−15)
(60s+1)

e−35s 5
(14s+1)(s+1)

e−0.1s

 (7.1)

When the predictive controller uses the model as in Equation 7.1, the performance

of the controller signi�cantly improve. The comparison of the controller with inclu-

sion of half the sample delay in the model with that of the conventional controller

is shown in Table 7.1. Also the proposed controller stabilizes the process much

faster when compared to the conventional predictive controller. The penalties on

the actuator and the control weights are kept the same that is used for nominal

model. Thus the tuning of the control weights is done only once in this case. From

Figure 7.3 it is seen that the Elevator load settles approximately in an hour and

the standard deviation of Fineness is close to zero. Thus it is observed that the

inclusion of half the sample delay in the controller model signi�cantly reduces the

tuning of system and also improves the stabilization of the process.

7.3 Conclusion

A method to use the MPC in an e�cient way, for handling the large sample

delay cement mill systems is provided. When both the controllers are applied for

the control on cement mill using CEMulator with large delay measurements, the
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Conventional Control(MPC) MPC with Sample Delay
1. Model from CEMulator used for
real-time control

1. Model is added with approxi-
mately half the sample delay

2. Controller need to be retuned for
parameters like actuator movement
weight(S), weight on measurement
error (Qz) etc., for each of the con-
trolled variables and the parameters
are to be re-tuned based on trial and
error method

2. Only the transfer function to be
changed and no further tuning re-
quired. This alters the bias term in
the estimator used as controller feed-
back

3. Provide sluggish operation or act
every hour

3. Changes in model a�ect the FIR
co-e�cients and prediction calcula-
tions GuruPrasath and Jorgensen
(2009), by altering the hessian ma-
trix values in the optimization solu-
tion.

Table 7.1: Comparison of Conventional control and Controller with sample Delay.

controller with continuous sample model needs to be re-tuned a number of times (

3−4 times in this case) in order to improve the controller performance on di�erent

conditions. The settling time is approximately 3.5 hours in case of Elevator load

and results in steady state o�set of Fineness. By applying the proposed method

in which half the sample delay is included with the existing delay in the model, a

signi�cant performance improvement is obtained in terms of stability and settling

time of the process(a settling time of around 1 hour for Elevator load and almost

zero standard deviation for Fineness) with little tuning (the tuning is done only

once in this case).
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CHAPTER 8

Summary and Conclusions

This work focusses on design of Finite Impulse Response based MPC for uncer-

tain systems. Further, a simple moving horizon estimator is designed to improve

the performance of the controller. Finally a soft constraint based MPC is devel-

oped and experimentally implemented on a cement mill circuit. Also an improved

method of MPC design for large sample delay systems is proposed and imple-

mented in a simulator. The results obtained in each section are summarized as

below

8.1 An evaluation of existing MPC tools

Based on �nite impulse response predictions, a regularized l2 predictive controller

with input and input-rate constraints is analyzed. An estimator based on a simple

constant output disturbance �lter is developed for the feed back. The FIR based

regulator problem is solved by convex quadratic program (QP) by converting the

objective function into a standard form. The QP is solved using an algorithm

based on interior point method. Illustrative examples are given to understand the

e�ect of uncertainties in the model based controllers. The results are veri�ed by

testing the controller with scalar SOPDT with a zero transfer function model.

A moving horizon estimator based on Finite impulse response models is developed.

The estimator is used to estimate the unknown disturbance by solving the objective

function. The estimated disturbance is then used as a feedback to the controller.

The objective function solved for estimation is convex QP similar to the regulator

problem. To improve the performance of the MPC, the estimator is then made

closed loop with the regulator by replacing the simple integrator developed in

the previous section. By using a SOPDT with a zero transfer function model
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the performance of the estimator with measurement noise is provided. Also the

closed loop performance of a model predictive controller consisting of a predictive

regulator and estimator with SISO system is investigated.

A ℓ2 regularized predictive controller with soft output constraints along with hard

input and input-rate constraints is developed and the e�cient application of this

controller to uncertain stochastic systems is demonstrated. The predictive con-

troller is equipped with soft output constraints that are used in a novel way to

have robustness against model plant mismatch. The QP is solved similar to the

standard form. The estimator used here is the simple output disturbance �lter.

The control algorithm designed is then solved using interior point algorithm.

8.2 Comparison of soft MPC with conventional

MPC

By simulation, �rst with SISO system and then with 2X2 MIMO system, the

performance of the new robust constrained predictive controller to a conventional

predictive controller is investigated. Finite impulse response coe�cients for the

models are obtained with step tests conducted on a simulated cement mill circuit.

Improved performances are obtained with the soft MPC developed than that of

the conventional MPC when the controllers are taken in closed loop simulation.

8.3 Application of Soft MPC in cement mill circuit

The proposed model predictive controller which includes the soft output con-

straints is made online with the cement mill circuit using a simulator. The con-

troller is mainly used to control elevator power and �neness of the cement mill as

they contribute to production and quality. Step response tests are conducted in

the cement mill circuit and a SOPDT with a zero transfer function model is de-

veloped. Grindability is taken as the disturbance parameter. Uncertainties in the

simulator are generated by changing the grindability of the input feed material.
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The controller performance is compared in the simulator by running the controllers

online for 16 hours each. The conditions for the simulations are kept similar both

in conventional MPC and soft MPC to have a perfect comparison. This is done by

creating simulation tutorials where the disturbances are given exactly at the same

time for both the controllers after taken online. The performance of the soft MPC

is better than the conventional MPC with uncertainties present in the system.

Real time implementation

The proposed controller is applied to a real time cement plant. The controller is

compared with Fuzzy logic controller available in plant. The controller is interfaced

with the real time ECS/SCADA so that the set points generated by the controller

are directly entered into the �eld PLC. The controllers are designed for handling

di�erent recipes where the operating parameters will be changed depending on

the type of recipe. The main control loops considered are Feed and Fineness

control. The simple loops in the circuit are controlled with the PIDs available in

the PLC. This is to improve the stability of the circuit and have same conditions

for comparing both the controllers. Quantitative performance improvements of

soft MPC over the fuzzy logic controller are obtained.

8.4 Implementation of Soft MPC to a Large Sam-

ple Delay System

A method to design the MPC more robust in handling the large sample delay ce-

ment mill systems is provided. By simulation for MIMO systems the performance

of soft MPC and conventional MPC with models obtained from continuous sam-

pling of data are compared. The controllers are tested in cement mill simulator

circuit as in the previous section. Elevator power and Fineness are the controlled

variables. Feed rate and separator speed are the manipulated variables. The pre-

dictive controller designed with the model from fast sample data (1 min sample)

when applied to control with hourly sampled measurements, the controller is to be

re-tuned. The parameters needed to be re-tuned are weight for penalties on mea-
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surement error (Qz), weights of penalties on manipulated variables (S) and rate

of change of manipulated variables (R). Also the hard constraints on input- rate

movements are to be re-tuned to reduce the variations in the controller. In this

work, the controller model is added with half the sample delay of measurement to

improve the performance of the controller with one time tuning.

8.5 Conclusions

The following conclusions are drawn based on the above investigations:

1. It is veri�ed by simulations that the closed-loop MPC performance degrada-

tion due to plant-model mismatch is tightly related to the uncertainty of impulse

response coe�cients. The closed loop performance of the controller is good when

the uncertainty in each of the parameters (separately in gain, zero and time delay)

are smaller(upto 40 % incase of time delay, 50 % in gain and twice incase zero)

with that of the nominal model. The controller performance reaches sustained

oscillations when the uncertainty in each of these parameters exceeds the above

these values. Also presence of noise in the system further degrades the closed loop

performance of the controller. The simulations in the present work provide as the

potential as well as expected limits on the performance improvement that can be

achieved by robust MPC, i.e. an upper limit on the potential performance is the

performance of the nominal model.

2. The performance of soft MPC is compared with conventional MPC through

simulations. From the simulations it is observed that with the uncertainties of the

model parameters, the conventional MPC provides sustained oscillations when the

model mismatch becomes twice(in-terms of gain, time delay and time constants at

each instant) that of the nominal model. In case of soft MPC the oscillations are

suppressed completely and the system settles before 75% of the control horizon.

Thus the soft MPC provides much better performance improvement in the face of

plant-model mismatch than the conventional MPC.

3. The performance of the proposed controllers are evaluated by simulation using

129



the transfer functions on MIMO models. It is observed that the soft MPC varies

the actuator very little when the controlled variables are within the soft limits. In

case of conventional MPC the controller makes aggressive moves on the actuator

for settling the output variables which is an undesirable action especially in real

time plants. The variations in the output variables are similar in both the con-

trollers, but soft MPC achieves the variation with smaller actuator moves. The

standard deviation of feed rate in conventional MPC is 4.4258 and separator speed

is 2.4149.The standard deviation of feed rate in soft MPC is 3.269 and separator

speed is 0.0878. Also the initial variation in feed and separator speed are high in

case of conventional MPC when compared with soft MPC. Thus soft MPC pro-

vides lesser actuator variations which is mostly preferred in plant when compared

with the conventional MPC.

4. The proposed controller with soft output constraints for handling the uncer-

tainties of the cement mill circuit is implemented in a real plant. The predictive

controller is compared with the high level Fuzzy Logic controller existing in the

plant. It is observed that when both the controllers are made online with similar

process conditions and in the same recipe, the standard deviation in the quality

parameter (i.e Fineness of the product) is reduced by around 23% with soft MPC

when compared with that of FLC in the plant. Also the stability of the system

is improved with much simpler and smaller actuator variations in soft MPC when

compared with the FLC.

5. The proposed controller is tested with cement mill simulator with large sample

delay. It is observed that incase of plant-model mismatch, the soft MPC sup-

presses the sustained oscillations by smaller actuator moves when compared to

the conventional MPC. The same MPC when applied for cement mill control with

large sample delay measurements the regularization weights (R and S)need to be

re-tuned a number of times (at least 3 to 4 times in this case) to improve the

performance of the controller. In this case the regularization weights are increased

for making the controller actions sluggish. This results in longer settling time (ap-

proximately 3.5 hours in case of Elevator load and steady state o�set of Fineness)

of the controlled variables. By simulations, it is demonstrated that the proposed
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method gives a signi�cant improvement in the stability of the process, (a settling

time of around 1 hour for Elevator load and almost zero standard deviation for

Fineness).

Future Scope

The estimation in the MPC proposed can be further improved by using standard

time series models like ARMA, ARMAX etc., which can be obtained using stan-

dard identi�cation techniques and the controller performance can be investigated

with the inclusion of such estimators.

In real time comparison of the soft MPC with other controllers, the performance

of both the controllers can be done by keeping certain operating conditions like

comparison with respect to same settling time of output etc., This will provide a

platform in which the best tuned controllers are compared for a given condition.

The research can be further extended in developing a robust controller based on

Second Order Cone Programming (SOCP) technique which can inherently handle

uncertainties and disturbances in the system.
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APPENDIX A

Quadratic Program Formulation

A.1 Quadratic program for FIR based MPC

De�ne the vectors Z, R, and U as

Z =


z1

z2
...

zN

 R =


r1

r2
...

rN

 U =


u0

u1
...

uN−1

 (A.1)

Then the predictions by the impulse response model in Equation 3.6b may be

expressed as

Z = c+ ΓU (A.2)

For the case N = 6 and n = 3, Γ is assembled as

Γ =



H1 0 0 0 0 0

H2 H1 0 0 0 0

H3 H2 H1 0 0 0

0 H3 H2 H1 0 0

0 0 H3 H2 H1 0

0 0 0 H3 H2 H1


(A.3)

and c is

c =



c1

c2

c3

c4

c5

c6


=



b1 + (H2u−1 +H3u−2)

b2 + (H3u−1)

b3

b4

b5

b6


(A.4)
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Similarly, for the case N = 6, de�ne the matrices Λ and I0 by

Λ =



I 0 0 0 0 0

−I I 0 0 0 0

0 −I I 0 0 0

0 0 −I I 0 0

0 0 0 −I I 0

0 0 0 0 −I I


I0 =



I

0

0

0

0

0


(A.5)

and

Qz =


Qz

Qz

. . .

Qz

S =


S

S
. . .

S

 (A.6)

The objective function in Equation 3.6a may be expressed as

ϕ =
1

2

N−1∑
k=0

∥zk+1 − rk+1∥2Qz
+ ∥∆uk∥2S

=
1

2
∥Z −R∥2Qz

+
1

2
∥ΛU − I0u−1∥2S

=
1

2
∥c+ ΓU −R∥2Qz

+
1

2
∥ΛU − I0u−1∥2S

=
1

2
U ′ (Γ′QzΓ + Λ′SΛ)U

+ (Γ′Qz(c−R)− Λ′SI0u−1)
′
U

+

(
1

2
∥c−R∥2Qz

+
1

2
∥I0u−1∥2S

)
=

1

2
U ′HU + g′U + ρ

(A.7)

in which

H = Γ′QzΓ + Λ′SΛ (A.8a)

g = Γ′Qz(c−R)− Λ′SI0u−1 (A.8b)

ρ =
1

2
∥c−R∥2Qz

+
1

2
∥u−1∥2S (A.8c)
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Consequently, the FIR based MPC regulator problem in Equation 3.6 can be

solved by �nding the solution of the following convex quadratic program

min
U

ψ =
1

2
U ′HU + g′U (A.9a)

s.t. Umin ≤ U ≤ Umax (A.9b)

bl ≤ ΛU ≤ bu (A.9c)

in which

Umin =


umin

umin

...

umin

 Umax =


umax

umax

...

umax

 (A.10)

and

bl =


∆umin + u−1

∆umin

...

∆umin

 bu =


∆umax + u−1

∆umax

...

∆umax

 (A.11)

In a model predictive controller only the �rst vector, u∗0, of U
∗ =

[
(u∗0)

′ (u∗1)
′ . . . (u∗N−1)

′
]′
,

is implemented on the process. At the next sample time the open-loop optimiza-

tion is repeated with new information due to a new measurement.

A.2 Quadratic Program formulation for Estimator

Estimation problem can be formulated by considering a �nite impulse response

(FIR) model

zk = bk +
n∑

i=0

Hiuk−i +
n∑

i=1

Hiddk−i (A.12)

in which {Hi}ni=0 are the impulse response coe�cients. Here the moving horizon

estimator are based on the FIR model.

Using the transfer function model, the estimation problem can be formulated as
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min
{z,d}

ϕ =
1

2

Ne∑
k=0

∥zk − yk∥2Qz
+ ∥∆dk∥2S + ∥dk∥2R (A.13a)

s.t. zk = b̄k +
n∑

i=0

Hd,idk−i (A.13b)

dmin ≤ dk ≤ dmax k = 0, . . . , Ne (A.13c)

∆dmin ≤ ∆dk ≤ ∆dmax k = 0, . . . , Ne (A.13d)

where b̄k = bk +
n∑

i=1

Hu,iuk−i k = 1, . . . , Ne (A.13e)

It is assumed that {di}−n
i=−1 are disturbance values �xed at their previous estimates

such that the real decision variables in Equation A.13e are {dk}Ne

k=0. The decision

variables are normally split into a slow varying component (level), dk and a rapid

varying component (process noise), wk, the constraints will have the following

interpretation,

dk =

 d̄k
wk

, dmin =

 d̄min

wmin

, dmax =

 d̄max

wmax


∆dmin =

∆d̄min

∆wmin

 and ∆dmax =

∆d̄max

∆wmax


Typically ∆wmin = −∞, ∆wmax =∞ and ∆wk is not penalized in the objec-

tive function in order not to restrict the movements of rapid varying component

of the unknown disturbance. However the size of wk may be constrained and pe-

nalized in the objective function. Oppositely only the rate of movement of the

slowly varying component is penalized. Consequently the weight matrices S and

R have the structure

S =

Sd 0

0 0

 , R =

0 0

0 Rw

 (A.14)

The typical case with Hd,i =
[
Hd̄,i Hw,i

]
and Hd̄,i = Hw,i corresponds to an

unknown disturbance of the form dk = d̄k + wk.
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Here an approach to formulate a dense quadratic program in standard form equiva-

lent with Equation (A.13a) is provided. This is done by elimination of the outputs,

{zk}Ne

k=0 from the optimization problem (Equation A.13a).

De�ne the vectors Z, Y , and D as

Z =


z1

z2
...

zN

 Y =


y1

y2
...

yN

 D =


d0

d1
...

dN−1

 (A.15)

Then the predictions by the impulse response model (Equation A.13b) may be

expressed as

Z = c+ ΓD (A.16)

For the case N = 6 and n = 3, Γ is assembled as

Γ =



Hd,0 0 0 0 0 0 0

Hd,1 Hd,0 0 0 0 0 0

Hd,2 Hd,1 Hd,0 0 0 0 0

Hd,3 Hd,2 Hd,1 Hd,0 0 0 0

0 Hd,3 Hd,2 Hd,1 Hd,0 0 0

0 0 Hd,3 Hd,2 Hd,1 Hd,0 0

0 0 0 Hd,3 Hd,2 Hd,1 Hd,0


(A.17)

and c is

c =



c0

c1

c2

c3

c4

c5

c6


=



b̄0 +
∑3

i=1Hu,iu0−i +
∑3

i=1Hd,id0−i

b̄1 +
∑3

i=1Hu,iu1−i +
∑3

i=2Hd,id1−i

b̄2 +
∑3

i=1Hu,iu2−i +
∑3

i=3Hd,id2−i

b̄3 +
∑3

i=1Hu,iu3−i

b̄4 +
∑3

i=1Hu,iu4−i

b̄5 +
∑3

i=1Hu,iu5−i

b̄5 +
∑3

i=1Hu,iu6−i


(A.18)
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Similarly, for the case N = 6, de�ne the matrices Λ and I0 by

Λ =



I 0 0 0 0 0

−I I 0 0 0 0

0 −I I 0 0 0

0 0 −I I 0 0

0 0 0 −I I 0

0 0 0 0 −I I


I0 =



I

0

0

0

0

0


(A.19)

and

Qz =


Qz

Qz

. . .

Qz

S =


S

S
. . .

S

 (A.20)

Then the objective function in Equation (A.13a) may be expressed as

ϕ =
1

2

N−1∑
k=0

∥zk+1 − yk+1∥2Qz
+ ∥∆dk∥2S + ∥dk∥2R

=
1

2
∥Z − Y ∥2Qz

+
1

2
∥Λd− I0d−1∥2S +

1

2
∥D∥2R

=
1

2
∥c+ ΓD − Y ∥2Qz

+
1

2
∥ΛD − I0d−1∥2S +

1

2
∥D∥2R

=
1

2
D′ (Γ′QzΓ + Λ′SΛ +R)D

+ (Γ′Qz(c− Y )− Λ′SI0d−1)
′
D

+

(
1

2
∥c− Y ∥2Qz

+
1

2
∥I0d−1∥2S

)
=

1

2
D′HD + g′D + ρ

(A.21)

in which

H = Γ′QzΓ + Λ′SΛ +R (A.22a)

g = Γ′Qz(c− Y )− Λ′SI0d−1 (A.22b)

ρ =
1

2
∥c− Y ∥2Qz

+
1

2
∥d−1∥2S (A.22c)
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Consequently, the FIR based Estimator problem can be solved by the solution of

the following convex quadratic program

min
D

ψ =
1

2
D′HD + g′D (A.23a)

s.t. Dmin ≤ D ≤ Dmax (A.23b)

bl ≤ ΛD ≤ bu (A.23c)

in which

Dmin =


dmin

dmin

...

dmin

 Dmax =


dmax

dmax

...

dmax

 (A.24)

and

bl =


∆dmin + d−1

∆dmin

...

∆dmin

 bu =


∆dmax + d−1

∆dmax

...

∆dmax

 (A.25)

A.3 Quadratic Program formulation for Soft MPC

De�ne the vectors Z, R, and U as

Z =


z1

z2
...

zN

 R =


r1

r2
...

rN

 U =


u0

u1
...

uN−1

 (A.26)

Then the predictions by the impulse response model in Equation (3.22) may be

expressed as

Z = c+ ΓU (A.27)
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For the case N = 6 and n = 3, Γ is assembled as

Γ =



H1 0 0 0 0 0

H2 H1 0 0 0 0

H3 H2 H1 0 0 0

0 H3 H2 H1 0 0

0 0 H3 H2 H1 0

0 0 0 H3 H2 H1


(A.28)

and c is

c =



c1

c2

c3

c4

c5

c6


=



b1 + (H2u−1 +H3u−2)

b2 + (H3u−1)

b3

b4

b5

b6


(A.29)

Similarly, for the case N = 6, de�ne the matrices Λ and I0 by

Λ =



I 0 0 0 0 0

−I I 0 0 0 0

0 −I I 0 0 0

0 0 −I I 0 0

0 0 0 −I I 0

0 0 0 0 −I I


I0 =



I

0

0

0

0

0


(A.30)

De�ne sη =
[
sη1

′ sη1
′ . . . sηN

′
]′
and

Qz =


Qz

Qz

. . .

Qz

S⟩ =

Si

Si

. . .

Si

 (A.31)
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with i = {u, η}. Then the objective function in Equation (3.22) may be expressed

as

ϕ =
1

2

N−1∑
k=0

∥zk+1 − rk+1∥2Qz
+ ∥∆uk∥2S +

1

2
∥ηk+1∥2Sη

+ s′ηk+1
ηk+1

=
1

2
∥Z −R∥2Qz

+
1

2
∥ΛU − I0u−1∥2S +

1

2
∥η∥2Sη

+ s′ηη

=
1

2
∥c+ ΓU −R∥2Qz

+
1

2
∥ΛU − I0u−1∥2S

+
1

2
∥η∥2Sη

+ s′ηη

=
1

2
U ′ (Γ′QzΓ + Λ′SΛ)U

+ (Γ′Qz(c−R)− Λ′SI0u−1)
′
U

+

(
1

2
∥c−R∥2Qz

+
1

2
∥I0u−1∥2S

)
+

1

2
η′Sηη + s′ηη

=
1

2
U ′HU + g′U + ρ+

1

2
η′Sηη + s′ηη

=
1

2
x′H̄x+ ḡ′x+ ρ

(A.32)
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in which

H = Γ′QzΓ + Λ′SΛ (A.33a)

g = Γ′Qz(c−R)− Λ′SI0u−1 (A.33b)

ρ =
1

2
∥c−R∥2Qz

+
1

2
∥u−1∥2S (A.33c)

x =

U
η

 (A.33d)

H̄ =

H 0

0 Sη

 (A.33e)

ḡ =

 g
sη

 (A.33f)

Consequently, we may solve the FIR based MPC regulator problem in Equation

(3.22) by solution of the following convex quadratic program

min
x

ψ =
1

2
x′H̄x+ ḡ′x (A.34a)

s.t. xmin ≤ x ≤ xmax (A.34b)

bl ≤ Āx ≤ bu (A.34c)

in which

A =


Λ 0

Γ −I

Γ I

 (A.35a)

xmin =

Umin

0

 xmax =

Umax

∞

 (A.35b)

where

Umin =


umin

umin

...

umin

 Umax =


umax

umax

...

umax

 (A.36)
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and

bl =


∆Umin

−∞

Zmin − c

 bu =


∆Umax

Zmax − c

∞

 (A.37)

In a model predictive controller only the �rst vector,

u∗0, of U
∗ =

[
(u∗0)

′ (u∗1)
′ . . . (u∗N−1)

′
]′
, is implemented on the process. At the

next sample time the open-loop optimization is repeated with new information

due to a new measurement.
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APPENDIX B

Flow Diagram for MPC Design

Figure B.1: Program Flow for MPC Design

143



APPENDIX C

General Form of Quadratic Program

C.1 Quadratic Program Formulation

De�ne the vectors Z, R, and U as

Z =


z1

z2
...

zN

 R =


r1

r2
...

rN

 U =


u0

u1
...

uN−1

 (C.1)

Then the predictions by the impulse response model in Equation (3.22) may be

expressed as

Z = c+ ΓU (C.2)

In the general form Γ is assembled as

Γ =



H1 0 0 0 0 0

H2 H1 0 0 0 0
... H2 H1 0 0 0

H(N − n) . . . H2 H1 0 0

0 H(N − n) . . . H2 H1 0

0 0 H(N − n) . . . H2 H1


(C.3)
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and c is

c =



c1

c2

c3

c4

c5
...

cN


=



b1 + (H2u−1 +H3u−2)

b2 + (H3u−1)

b3

b4
...

b5

bN


(C.4)

Similarly, de�ne the matrices Λ and I0 by

Λ =



I 0 0 0 0 0

−I I 0 0 0 0

0 −I I 0 0 0

0 0 −I I 0 0

0 0 0 −I I 0

0 0 0 0 −I I


N×N

I0 =



I

0

0

0

0

0


N×1

(C.5)

De�ne sη =
[
sη1

′ sη1
′ . . . sηN

′
]′
and

Qz =


Qz

Qz

. . .

Qz

S⟩ =

Si

Si

. . .

Si

 (C.6)

with i = {u, η}. Then the objective function in Equation (3.22) may be derived

as in Appendix A.3, then converted to the general convex quadratic program

min
x

ψ =
1

2
x′H̄x+ ḡ′x (C.7a)

s.t. xmin ≤ x ≤ xmax (C.7b)

bl ≤ Āx ≤ bu (C.7c)
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in which

A =


Λ 0

Γ −I

Γ I

 (C.8a)

xmin =

Umin

0

 xmax =

Umax

∞

 (C.8b)

where

Umin =


umin

umin

...

umin

 Umax =


umax

umax

...

umax

 (C.9)

and

bl =


∆Umin

−∞

Zmin − c

 bu =


∆Umax

Zmax − c

∞

 (C.10)

In a model predictive controller only the �rst vector,

u∗0, of U
∗ =

[
(u∗0)

′ (u∗1)
′ . . . (u∗N−1)

′
]′
, is implemented on the process. At the

next sample time the open-loop optimization is repeated with new information

due to a new measurement.
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APPENDIX D

Interior Point Method Algorithm

D.1 Interior Point Method Algorithm

Interior point methods are used to solve linear and nonlinear convex optimization

problem. These algorithms have been inspired by Karmarkar's algorithm, devel-

oped by Karmarkar (1984) for linear programming. The basic elements of the

method consists of a self-concordant barrier function used to encode the convex

set. Contrary to the simplex method, it reaches an optimal solution by traversing

the interior of the feasible region. Mehrotra (1992) has provided a primal- dual

path- following technique which is the basis for most of the implementations. The

main advantage of interior point methods is that their computational complexity

(number of iterations, time to complete,. . . ) is no worse than some polynomial

function of parameters such as the number of constraints or the number of vari-

ables, where as complexity of other well known approaches, including Active Set

methods, can be exponential in these parameters in the worst case.

The algorithm for interior point method for solving linear quadratic program is

given below

The linear program can be formulated as

min
x∈Rn

g′x (D.1)

s.t. Ax = b (D.2)

x ≥ 0 (D.3)
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The Lagrangian function can be given as

L(x,µ,λ) = g′x− µ′(Ax− b)− λ′x (D.4)

The optimality conditions are

∇xL(x,µ,λ) = g −A′µ− λ = 0 (D.5)

Ax = b (D.6)

x ≥ 0 (D.7)

λ ≥ 0 (D.8)

xiλi = 0, i = 1, 2, . . . ,mC (D.9)

These can be expressed as

rL = ∇xL = g −A′µ− λ = 0 (D.10a)

rA = Ax− b = 0 (D.10b)

XΛe = 0 (D.10c)

x ≥ 0 (D.10d)

λ ≥ 0 (D.10e)

Thus the optimality conditions in matrix form is

F (x,µ,λ) =


g −A′µ− λ

Ax− b

XΛe

 =


0

0

0

 = 0 (D.11a)

These conditions can thus be solved using Newton like method after forming the

matrix as shown below
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F(x, µ, λ) =


0 −A′ −I

A 0 0

Λ 0 X




∆x

∆µ

∆λ

 = −


rL

rA

rC

 ,
x ≥ 0, λ ≥ 0.

where: 
x

µ

λ

←


x

µ

λ

+ α


∆x

∆µ

∆λ


For solving the above matrix �rst we have to de�ne the a�ne direction (∆xaff ,∆µaff ,∆λaff)T

by solving
0 −A′ −I

A 0 0

Λ 0 X




∆xaff

∆µaff

∆λaff

 = −


g −A′µ− λ

Ax− b

XΛe

 = −


rL

rA

rC

 (D.12)

Then we have to �nd the largest a�ne step

αaff and βaff such that

x+ αaff∆xaff ≥ 0, λ+ βaff∆λaff ≥ 0 (D.13)

Compute the a�ned duality gap

saff = (x+ αaff∆xaff)′(λ+ βaff∆λaff)/n (D.14)

where n is the dimension of x.

Thus for center step we have to introduce a duality measure :

s =
x′λ

n
,

and the centering parameter
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σ = (saff/s)3,

We solve the �nal equation after improving it by a corrector step and computing

the centering parameter as


0 −A′ −I

A 0 0

Λ 0 X




∆x

∆µ

∆λ

 = −


rL

rA

rC +∆Xaff∆Λaffe− σse

 ,

Further we compute the largest step length α and β such that

x+ α∆x ≥ 0, λ+ β∆λ ≥ 0 (D.15)

and update x, µ and λ by 
x

µ

λ

←


x+ ηα∆x

µ+ ηβ∆µ

λ+ ηβ∆λ

 (D.16)

Thus by improving corrector step and computing the centering parameter, the

total step for solving next iteration is obtained.

The algorithm is speci�ed here as below:
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Predictor-Corrector Algorithm for QP

Compute (x0, µ0, λ0)

for k = 0, 1, 2, . . .

Set (x, µ, λ) = (xk, µk, λk) and solve (D.12)

for (∆xaff ,∆µaff ,∆λaff);

Calculate α̂affandβ̂aff as in (D.13);

Calculate saff = (x+ α̂aff∆xaff)T (λ+ β̂aff∆λaff)/n;

Set centering paramenter to σ = (saff/s)
3;

Solve (D.1) for (∆x,∆µ,∆λ);

Calculate α̂affandβ̂aff as in (D.15);

Set (xk+1) = (xk) + α̂(∆x);

Set (µk+1, λk+1) = (µk, λk) + β̂(∆µ,∆λ);

end
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APPENDIX E

Matlab Program for Soft MPC design

E.1 Initialization of MPC

%echo on

% Program f o r gene ra t ing the Simulat ion response f o r the

% So f t MPC with F in i t e Impulse Response Methods f o r

%second order Trans fe r Function with de lay time

%

% System De f i n i t i o n :

%

%Trans fe r Function Parameters

%

% K− Gain o f the system

% T1 ,T2− Time cons tant s

% beta − zero o f the system

% Td − Time delay o f the system

%

% Ts− Sampling Time

% Nsim − Simulat ion hor i zon

%

% Normal_MPC − Function f o r computing the con t r o l sequence

% us ing MPC without i n c l ud ing s o f t c on s t r a i n t l im i t s

% Soft_MPC − Function f o r MPC with s o f t Const ra in t s

%

% U − c on t r o l input to the system

% D − Disturbance in the system

% Y − Output o f the system inc l ud ing s t o c h a s t i c n o i s e s
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% v − Measurement Noise

% w − Process Noise

% System De f i n i t i o n

c l o s e a l l

c l e a r a l l

c l c

% Parameters

K = [ 0 . 6 2 0.29;−15 5 ]

T1 = [45 2 ;60 14 ]

T2 = [8 38 ;0 1 ]

Td = [5 3 1 . 5 ; 5 3 0 . 1 ]

beta = [0 8 ;0 0 ]

t o l=1e−12;

%%%%

% K = [ 1 . 0 0 ;0 1 ]

% T1 = [5 0 ;0 5 ]

% T2 = [5 0 ;0 5 ]

% Td = [5 0 ;0 5 ]

% beta = [2 0 ;0 2 ]

%%%%

[ nz , nu]= s i z e (K)

dTs = 1 . 0 ;

n = 50 ;

Fs=18;

%% Design and Simulat ion o f MPC Parameters

Nsim = 500 ;

N = 2∗n ;

% Noise sequence
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Qv=[0.00 0 ; 0 0 . 0 0 ] ;

Qw=[0.00 0 ;0 0 . 0 0 ] ;

%% Input Limits

umin = [−15;−30] ;

umax = [ 1 5 ; 3 0 ] ;

dumin = [ −1 .5 ; −0 .3 ] ;

dumax = [ 1 . 5 ; 0 . 3 ] ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Normal MPC Parameters

Qz = [8 0 ;0 1 . 0 ]

S = [ 1 . 0 e−8 0 ;0 1 .0 e−1]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Sof t MPC Parameters

Qzs = [ 1 . 8 0 ; 0 0 .0000000002 ] ;

Ss = [8000 0 ;0 40000 ] ;

Sn =[9000 0 ;0 250 ] ; % Quadratic weight on So f t Limits

s n l i n = [ 0 ; 0 ] ; % Linear Weight on So f t Limits

%% System Model

[Uk, Sk ,Vk]= svd (K)

Skmod= [1∗ Sk ( 1 , : ) ; 1 . 0 ∗ Sk ( 2 , : ) ]

Knew=Uk∗Skmod∗Vk'

[ Ut , St , Vt]= svd (T1)
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Stmod= [ 1 . 0 ∗ St ( 1 , : ) ; 1 . 0 ∗ St ( 2 , : ) ]

T1new=Ut∗Stmod∗Vt '

[Ud, Sd ,Vd]= svd (Td)

Sdmod= [1∗Sd ( 1 , : ) ; 1 . 0 ∗ Sd ( 2 , : ) ]

Tdnew=Ud∗Sdmod∗Vd'

%%

Knew=K

K1 = Knew%+[ 0 .4 0 .3 ;−8 4 ]

T11 = T1%+[ −15 −2 ; 0 0 ]

T21 = T2

Td1 = Td +[0 0 ; 0 0 ] %[ 5 −0.5 ; 6 1]%Tdnew

beta1 = beta%+[−0 ; 0 ]

%%

[A,B,C,D,H1]=MIMOSSModel( nz , nu ,N, Nsim ,K1, T11 , T21 , beta1 ,

Td1 , dTs , t o l ) ;

Bd=B;

Nx = s i z e (A, 1 ) ;

Nu = s i z e (B, 2 ) ;

Ny = s i z e (C, 1 ) ;

Nd= s i z e (Bd , 2 ) ;

%% MPC d e f i n i t i o n

% Parameters

Khat = K∗1 ;

T1hat = T1∗1 ;

T2hat = T2∗1 ;

Tdhat = Td∗1 ;
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betahat = beta ∗1 ;

% Extract Impulse Response C o e f f i c i e n t s (SISO) f o r system

[ Ahat , Bhat , Chat , Dhat ,Himp]=MIMOSSModel( nz , nu ,N, Nsim , Khat ,

T1hat , T2hat , betahat , Tdhat , dTs , t o l ) ;

%% Noise and d i s turbance Generation

R = ones (Ny, Nsim+1)∗0;

[ v ,w] =MPC_noise(Qv,Qw,Nd,Ny, Nsim ) ;

D= 0∗ ones (Nd, Nsim ) ;

D( : , 2 1 : end ) = 3∗ ones ( 2 , 480 )∗1 ;

Dw = D +w;

x0 = ze ro s (Nx, 1 ) + 0∗ ones (Nx , 1 ) ;

%%% Sof t Limits

zmin = [0 −0 .8 ;0 −50 .0 ] ;

zmax = [0+0 . 8 ; 0+50 . 0 ] ;

%% Sof t MPC

[Y2 ,U2 ,R,FIRMPC2]=Soft_MPC_MIMO(Himp ,A,B,Bd ,C, Qzs , Ss ,

Sn , sn l i n ,R,Dw, v , x0 , umin , umax ,

dumin , dumax , zmin , zmax ,N,Nx,Nu,Ny, Nsim ) ;

%% Plot Resu l t s

f i g u r e (1 )

subplot (211)

s e t ( gca , ' FontName ' , ' Times ' , ' FontSize ' , Fs ) ;

p l o t ( 0 : Nsim ,Y2 ( 1 , : ) , ' r ' , ' l inewidth ' , 2 )
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hold on

s t a i r s ( 0 : Nsim ,R( 1 , : ) , 'm−− ' , ' l inewidth ' , 2 )

p l o t ( [ 0 Nsim ] , [ zmax ( 1 , : ) zmax ( 1 , : ) ] , 'm−− ' , ' l inewidth ' , 1 ) ;

p l o t ( [ 0 Nsim ] , [ zmin ( 1 , : ) zmin ( 1 , : ) ] , 'm−− ' , ' l inewidth ' , 1 ) ;

y l ab e l ( 'Y1 ' )

% x l ab e l ( ' time ' )

subplot (212)

s e t ( gca , ' FontName ' , ' Times ' , ' FontSize ' , Fs ) ;

p l o t ( 0 : Nsim ,Y2 ( 2 , : ) , ' r ' , ' l inewidth ' , 2 )

hold on

s t a i r s ( 0 : Nsim ,R( 2 , : ) , 'm−− ' , ' l inewidth ' , 2 )

p l o t ( [ 0 Nsim ] , [ zmax ( 2 , : ) zmax ( 2 , : ) ] , 'm−− ' , ' l inewidth ' , 1 ) ;

p l o t ( [ 0 Nsim ] , [ zmin ( 2 , : ) zmin ( 2 , : ) ] , 'm−− ' , ' l inewidth ' , 1 ) ;

y l ab e l ( 'Y2 ' )

f i g u r e (2 )

subplot (211)

s e t ( gca , ' FontName ' , ' Times ' , ' FontSize ' , Fs ) ;

s t a i r s ( 0 : Nsim , [ U2 ( 1 , : ) U2(1 , end ) ] , ' r ' , ' l inewidth ' , 2 )

hold on

p lo t ( [ 0 Nsim ] , [ umin ( 1 , : ) umin ( 1 , : ) ] , 'm−− ' , ' l inewidth ' , 2 ) ;

p l o t ( [ 0 Nsim ] , [ umax ( 1 , : ) umax ( 1 , : ) ] , 'm−− ' , ' l inewidth ' , 2 ) ;

ax i s ( [ 0 Nsim 1.2∗umin ( 1 , : ) 1 .2∗umax ( 1 , : ) ] )

y l ab e l ( 'U1 ' )

subplot (212)

s e t ( gca , ' FontName ' , ' Times ' , ' FontSize ' , Fs ) ;

s t a i r s ( 0 : Nsim , [ U2 ( 2 , : ) U2(2 , end ) ] , ' r ' , ' l inewidth ' , 2 )

hold on

p lo t ( [ 0 Nsim ] , [ umin ( 2 , : ) umin ( 2 , : ) ] , 'm−− ' , ' l inewidth ' , 2 ) ;

p l o t ( [ 0 Nsim ] , [ umax ( 2 , : ) umax ( 2 , : ) ] , 'm−− ' , ' l inewidth ' , 2 ) ;

ax i s ( [ 0 Nsim 1.2∗umin ( 2 , : ) 1 .2∗umax ( 2 , : ) ] )

y l ab e l ( 'U2 ' )
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x l ab e l ( ' time ' )

f i g u r e (3 )

subplot (311)

s e t ( gca , ' FontName ' , ' Times ' , ' FontSize ' , Fs ) ;

s t a i r s ( 0 : Nsim , [D( 1 , : ) D(1 , end ) ] , ' b ' , ' l inewidth ' , 2 )

s t a i r s ( 0 : Nsim , [D( 2 , : ) D(2 , end ) ] , ' r ' , ' l inewidth ' , 2 )

y l ab e l ( 'D' )

subplot (312)

s e t ( gca , ' FontName ' , ' Times ' , ' FontSize ' , Fs ) ;

p l o t ( 0 : Nsim , v ( 1 , : ) , ' b ' , ' l inewidth ' , 2 )

y l ab e l ( ' v ' )

subplot (313)

s e t ( gca , ' FontName ' , ' Times ' , ' FontSize ' , Fs ) ;

p l o t ( 1 : Nsim ,w( 1 , : ) , ' b ' , ' l inewidth ' , 2 )

y l ab e l ( 'w' )

x l ab e l ( ' time ' )

E.2 Soft MPC

f unc t i on [Y,U,R,FIRMPC]=Soft_MPC_MIMO(Himphat ,A,B,Bd ,C,Qz ,

S , Sn , sn l i n ,R,Dw, v , x0 , umin , umax ,

dumin , dumax , zmin , zmax ,N,Nx,Nu,Nz ,Np)

%Soft_MPC− Program f o r computation and s imu la t i on o f MPC

% with s o f t c on s t r a i n t s

% The func t i on i s used to des ign , compute and s imulate MPC with

%s o f t c on s t r a i n t s us ing F in i t e Impulse Response co−e f f i c i e n t s

%

%

% Himp − Impulse Response Co e f f i c i e n t

%

% MPC_noise − Function f o r gene ra t ing measurement and proce s s n o i s e s
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% DesignConstMPC − Function f o r i n i t i a l i s i n g and de s i gn ing the

% weightage matr i ce s used f o r MPC computation

% ClosedLoopSimulationConstMPC − Function f o r s imu la t ing the

% c l o s ed loopper formance o f the system f o r MPC with s o f t

% output c on s t r a i n t s

% U − c on t r o l input to the system

% D − Disturbance in the system

% Z− Output o f the system without no i s e

% Y − Output o f the system inc l ud ing s t o c h a s t i c n o i s e s

% v − Measurement Noise

% w − Process Noise

%% Design and Simulat ion o f the MPC system %%%%%

MPCDataRegSpec=s t r u c t ( 'Q' ,Qz , ' S ' , S , 'A' ,A, 'B' ,B, 'C' ,C, 'Himp ' , Himphat , . . .

' umin ' , umin , ' umax ' , umax , ' dumin ' , dumin , ' dumax ' , dumax , . . .

' zmin ' , zmin , ' zmax ' , zmax , ' Sn ' , Sn , ' sn l i n ' , sn l i n , . . .

'N' ,N, 'Np' ,Np, ' nx ' ,Nx, ' nu ' ,Nu, ' nz ' , Nz ) ;

[FIRMPC,FIRMPCmem] = DesignConstMPC_MIMO(Himphat ,Qz , S , Sn , sn l i n ,N,

umin , umax , dumin , dumax , zmin , zmax ) ;

[Y, Z ,U,dU]= ClosedLoopSimulationConstMPC_MIMO(R,Dw, x0 ,A,B,Bd ,C,

v ,FIRMPC,FIRMPCmem) ;

E.3 MPC Design

f unc t i on [FIRMPC,FIRMPCmem]=DesignConstMPC_MIMO(Himp ,Qz , S , Sn , sn l i n ,

N, umin , umax , dumin , dumax , zmin , zmax)

[ nz , nu , n]= s i z e (Himp ) ;

Gamma = ze ro s ( nz∗N, nu∗N) ;
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f o r i =1:n

A = diag ( ones (N+1−i ,1) ,1− i ) ;

B = Himp ( : , : , i ) ;

Gamma = Gamma + kron (A,B) ;

end

Qzcal = kron ( diag ( ones (N, 1 ) , 0 ) ,Qz ) ;

Sncal = kron ( diag ( ones (N, 1 ) , 0 ) , Sn ) ; % Weight Matrix on So f t l im i t s

v = 2∗ ones (N, 1 ) ;

v (N, 1 ) = 1 ;

Hs = kron ( diag (v , 0 ) , S ) . . .

− kron ( diag ( ones (N−1 ,1) ,−1) , S ) . . .

− kron ( diag ( ones (N−1 ,1) , 1 ) , S ) ;

Mr = Gamma'∗Qzcal ;

H = Mr∗Gamma + Hs ;

%% Inc l u s i o n o f s o f t c on s t r a i n t weights in H matrix

Hn = [H ze ro s ( l ength (H( : , 1 ) ) ) ; z e r o s ( l ength (H( 1 , : ) ) ) Sncal ] ;

Hn = 0 .5∗ (Hn+Hn) ;

sizHn=s i z e (Hn) ;

Lambda = kron ( diag ( ones (N, 1 ) , 0 ) , eye (nu ) )

−kron ( diag ( ones (N−1 ,1) ,−1) , eye (nu ) ) ;

s i z lam=s i z e (Lambda ) ;

Abar = [ Lambda ze ro s (N∗nu ,N∗nz ) ; Gamma −eye (N∗nz ) ;

Gamma eye (N∗nz ) ] ;

s izAb=s i z e (Abar ) ;

%% s t ru c tu r i n g the va lue s

FIRMPC = s t ru c t ( . . .
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'H' , H, . . .

'Hn' , Hn, . . .

'Mr' , Mr, . . .

'Lambda ' , Lambda , . . .

' umin ' , umin , . . .

'umax ' , umax , . . .

' zmin ' , zmin , . . .

' zmax ' , zmax , . . .

' dumin ' , dumin , . . .

'dumax ' , dumax , . . .

'Himp ' , Himp , . . .

'Qz ' , Qz , . . .

'S ' , S , . . .

' Sn ' , Sn , . . .

' sn l i n ' , sn l i n , . . .

'N' , N, . . .

' nz ' , nz , . . .

' nu ' , nu , . . .

'Abar ' , Abar , . . .

'n ' , n ) ;

FIRMPCmem = s t r u c t ( . . .

'U0 ' , z e r o s (nu ,N) , . . .

' Uold ' , z e r o s (nu , n+1) , . . .

'um1' , z e r o s (nu , 1 ) , . . .

'ym1 ' , z e r o s ( nz , 1 ) , . . .

' b0 ' , z e r o s ( nz , 1 ) , . . .

'E0 ' , z e r o s (nu ,N) ) ;

E.4 Closed Loop Simulation

f unc t i on [Y, Z , Uarray , dUarray ]= ClosedLoopSimulationConstMPC_MIMO
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(R,D, x0 ,A,B,Bd ,C, v ,FIRMPC,FIRMPCmem)

Nsim = s i z e (D, 2 ) ;

Z = ze ro s (FIRMPC. nz , Nsim+1);

Y = ze ro s (FIRMPC. nz , Nsim+1);

Uarray = ze ro s (FIRMPC. nu , Nsim ) ;

b i gva l = 1e21 ;

x = x0 ;

dUarray = ze ro s (FIRMPC. nu , Nsim ) ;

um1 = FIRMPCmem.um1 ;

UFlagGui=1;

yFlagVec=1;

f o r i =1:Nsim

Z ( : , i ) = C∗x ;

Y( : , i ) = Z ( : , i )+v ( : , i ) ;

rArray = repmat (R( : , i ) , 1 ,FIRMPC.N) ;

[ u0 , in fo ,FIRMPCmem] = ComputeFIRMPC_MIMO(Y( : , i ) ,um1,

rArray , b igva l ,FIRMPC,FIRMPCmem) ;

dU=u0−um1 ;

um1 = u0 ;

Uarray ( : , i ) = u0 ;

dUarray ( : , i ) = dU;

x = A∗x+B∗u0+Bd∗D( : , i ) ;

end

Z ( : , Nsim+1) = C∗x ;

Y( : , Nsim+1) = Z ( : , Nsim+1)+ v ( : , Nsim+1);
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APPENDIX F

CEMulator

F.1 Application

ECS/CEMulator is a high technological breakthrough in development of an ad-

vanced environment for training of process operators and engineers in the ce-

ment industry. Combining decades of process design and operation experience of

FLSmidth, an extensive theoretical insight on process dynamics, and the latest

software technology, FLSmidth Automation has developed an absolute realistic

simulator of cement plant processes. The complete details of the ECS/CEMulator

package has been given in FLSmidth.

F.1.1 Background

Contrary to most cement process simulators, ECS/CEMulator is developed on

a full functional control systems platform enabling the complete set of functions

and features of a modern control system environment for the users. Having a

skilled team of operators plays a crucial role in bene�cial and safe operation of

industrial plants. Especially in the cement industry, with the signi�cant high

cost of investment, practical knowledge and experience of plant operation have

a direct e�ect on production economy. Insu�cient insight in process dynamics

and interactions, high stress factors in real time operation conditions, and lack of

adequate experience in utilizing the existing control system are typical reasons for

incorrect operator actions. The consequences of this may result in low production

quality, production interrupts, and equipment damage, in worst case risk on human

safety. The increasing demand on production sustainability in the recent years has

resulted in requirements of which the degree of ful�llment is e�ected by the level

of skills of plant operators and engineers.
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F.1.2 Bene�ts

ECS/CEMulator is an advanced and user-friendly cement process simulator which

aims at:

• Process operator training in an absolutely realistic and risk-free environment

• Increasing operator skills in reaching pre-de�ned production quantity and
quality targets

• Operator performance evaluation

• Increasing operator skills for optimal utilisation of a modern control system

• Enabling process engineers and designers to test their ideas before practical
implementations

ECS/CEMulator combines two main data-engines for complete process unit

simulation: I) thousands of mathematical model equation are solved to visualize

the process dynamics and evolutions, and II) an actual Soft PLC containing a

complete process unit PLC program is utilized to enable full digital I/O and

sequence control and interlocking in the various groups of the process unit.

F.1.3 Limitations

• CEMulator data engine can be simulated only upto 20 times the real time
speed, thus the immediate results on the simulation cannot be obtained

• Since its a property of FLSmidth its not possible to get the internal model
design of the software

• The simulation can be only used with ECS SCADA package and cannot be
used independently
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