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Summary

This dissertation concerns numerical procedures for the problems arising in
moving horizon estimation and control. Moving horizon estimation and con-
trol is also referred to as model predictive control as well as receding horizon
estimation and control. Model predictive control is the most successful and ap-
plied methodology beyond PID-control for control of industrial processes. The
main contribution of this thesis is introduction and definition of the extended
linear quadratic optimal control problem for solution of numerical problems aris-
ing in moving horizon estimation and control. An efficient structure-employing
methodology for solution of the extended linear quadratic optimal control prob-
lem is provided and it is discussed how this solution is employed in solution
of constrained model predictive control problems as well as in the solution of
nonlinear optimal control and estimation problems.

Chapter 1 motivates moving horizon estimation and control as a paradigm
for control of industrial processes. It introduces the extended linear quadratic
control problem and discusses its central role in moving horizon estimation and
control. Introduction, application and efficient solution of the extended linear
quadratic control problem is the key contribution of this thesis. In addition
chapter 1 provides a comprehensive survey of existing methods for model pre-
dictive control.

Chapter 2 discusses computational methods and inherent approximations in
model predictive control. By considering the stochastic optimal control prob-
lem, the approximations and assumptions of model predictive control are pin-
pointed. In an ad hoc fashion the separation principle and certainty-equivalence
are assumed to prevail, such that the stochastic optimal control problem may
be separated into an estimation problem and a deterministic optimal control
problem. Both the estimation problem and the obtained deterministic opti-
mal control problem are demonstrated to be instances of a constrained non-
linear optimal control problem. In the sequential quadratic programming al-
gorithm for solution of constrained nonlinear optimal control problems, the
quadratic subproblem generated at each iteration is shown to be a constrained
linear-quadratic optimal control problem. Procedures for generation of the
constrained linear-quadratic optimal control problem and its data from the
nonlinear estimation problem, the nonlinear control problem, the linear mov-
ing horizon estimator, and the linear moving horizon controller are provided.
The significance of these conversions to constrained linear-quadratic optimal
control problems is that the entire model predictive control problem can be
solved efficiently by having efficient algorithms tailored for solution of the con-
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strained linear-quadratic optimal control problem. The major intention in this
chapter is to emphasize the central role of the constrained linear-quadratic op-
timal control problem in model predictive control such that tailored algorithms
for the constrained linear-quadratic optimal control problem is motivated and
justified.

Chapter 3. A primal active set, a dual active set, and an interior point algo-
rithm for solution of the constrained linear quadratic optimal control problem
are outlined. The major computational effort in all these algorithms reduces to
solution of certain unconstrained linear quadratic optimal control problems, i.e.
the extended linear quadratic control problem. A Riccati recursion procedure
for effective solution of such unconstrained problems is stated.

Chapter 4. Based on dynamic programming, Riccati recursion procedures for
the linear-quadratic optimal control problem as well as the extended linear-
quadratic optimal control problem are developed. Compared to alternative
solution procedures such as control vector parameterization by elimination of
the states, the Riccati based procedure is highly efficient for long prediction
horizons. The extended linear-quadratic optimal control problem may also be
regarded as an equality constrained quadratic program with special structure.
The computation of the optimal solution-Lagrange multiplier pair for a convex
equality constrained quadratic program is specialized to the extended linear-
quadratic optimal control problem treated as a quadratic program. Efficient
solution of the highly structured KKT-system corresponding to the extended
linear-quadratic optimal control problem is facilitated by the Riccati recursion
developed by dynamic programming.

Chapter 5 presents the principles for efficient solution of unconstrained non-
linear optimal control problems described by ordinary differential equations.
These principles are presented through numerical solution of a continuous-time
nonlinear optimal control problem of the Bolza form. To focus on the basic prin-
ciples involved and for illustrative purposes, the continuous-time Bolza problem
is discretized by the explicit Euler method. The discrete-time nonlinear opti-
mal control problem of the Bolza form is solved by different SQP methods and
an algorithm based on the discrete maximum principle. The SQP algorithms
presented are implementations based on open- and closed-loop feasible path
control vector parameterizations as well as an infeasible path simultaneous
procedure. Two procedures for solution of the quadratic programs are pre-
sented. In the first procedure, the structure of the quadratic programs arising
in the solution of the nonlinear optimal control problem is utilized by a Riccati
iteration based factorization of the resulting KKT-system. In the second proce-
dure, an efficient procedure for elimination of the states and solution of a dense
reduced space quadratic program is presented. These methods are compared
for a simple process example operated around an unstable equilibrium. The
infeasible path and the closed-loop feasible path algorithms converge for this
example. The implemented open-loop feasible path algorithms are not able
to converge to an unstable equilibrium. The Riccati based solution procedure
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enables implementation of the stabilized infeasible path SQP algorithm as well
as the closed-loop feasible path SQP algorithm. The methods are presented in
a framework that is easily extended to constrained nonlinear optimal control
problems. Such extensions and methodologies for efficient integration of the or-
dinary differential equations as well as the corresponding sensitivity equations
are discussed.

Chapter 6 summarizes the main contribution of this thesis. It briefly discusses
the pros and cons of using the extended linear quadratic control framework for
solution of deterministic optimal control problems.

Appendices. Appendix A demonstrates how quadratic programs arise in se-
quential quadratic programming algorithms. Appendix B uses a control vec-
tor parameterization approach to express various extended constrained linear
quadratic optimal control problems as standard quadratic programs. Appendix
C discuss construction of maximal output admissible sets. It provides an algo-
rithm for computation of the maximal output admissible set for linear model
predictive control. Appendix D provides results concerning linear regression.
Appendix E discuss prediction error methods for identification of linear models
tailored for model predictive control.
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Dansk Resumé

Denne afhandling omhandler numeriske metoder til løsning af de opgaver der
opst̊ar i rullende horisonts estimering og styring. Rullende horisonts estimer-
ing og styring kaldes ogs̊a model prædiktiv regulering. Udover PID-regulering
er model prædiktiv regulering den mest succesfulde og anvendte reguleringste-
knologi til styring af industrielle processer. Hovedbidraget i denne afhandling
er indførsel og definition af det udvidede lineære kvadratiske styrings problem til
løsning af numeriske opgaver, der opst̊ar indenfor rullende horisonts estimering
og styring. En effektiv struktur-udnyttende metode til løsning af det udvidede
lineære kvadratiske styrings problem udledes, og det diskuteres, hvordan denne
løsning anvendes til s̊avel løsning af model prædiktive reguleringsopgaver med
begrænsninger som ulineære optimale styrings og estimeringsopgaver. Den ef-
fektive struktur-udnyttende løsningsmetode er baseret p̊a Riccati iterationer.
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1

Introduction

Faced with the increased global competition, cost competitiveness of the pro-
cess industries is not just a mean to achieve a competitive advantage, it is a
prerequisite for survival and profitability. In spite of the market pressure to re-
duce costs of operation, the market simultaneously seems to demand products
of improved quality as well. This double quest for better products at lower
costs has forced the process industries to reduce the variability of key prod-
uct quality parameters while simultaneously minimizing the energy and raw
materials needed for the production and maximizing asset utilization. Some
ways to increase the asset utilization are to reduce start-up, shut-down, and
product grade transition times. Other ways include increasing the throughput
as a consequence of less recycle and tighter product quality control.

Dynamic optimization implemented in a moving horizon manner has success-
fully been applied to a number of industrial processes in order to realize the
ambitions of lowering production costs, increasing asset utilization, and improv-
ing product quality by reducing the variability of key process quality indicators.
The ability of dynamic optimization to directly link a company’s business and
economic objectives to its operations has made dynamic optimization one of
the fastest growing technologies in the automation industry. Dynamic opti-
mization is one of the most efficient ways to achieve optimal asset utilization
and performance, as it is often aimed directly at improving plant profitabil-
ity in an immediately quantifiable way. Almost all processes can benefit from
online dynamic optimization in some way - i.e. by increased yield and through-
put, limited off-spec production, reduced down-time, and lowered energy costs.
In mathematical terms, dynamic optimization is referred to as a deterministic
open-loop optimal control problem.

The benefits of dynamic optimization are typically realized by on-line moving
horizon implementation of dynamic optimization. A moving horizon imple-
mentation means that the dynamic optimization calculations are repeated and
conducted on-line each time new information such as process measurements
become available. At each sample, the dynamic optimization considers a fixed
window of past measurements to estimate the current state of the system. This
estimated state is used along with the model to forecast the process behavior
for a fixed time-window into the future. The dynamic optimization computes
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the optimal sequence of manipulable variables such that the predicted process
behavior is as desirable as possible subject to the physical and operational
constraints of the system. Only the first element in the sequence of optimal
manipulable variables is implemented on the process. As new information be-
comes available the horizons of the estimator and the regulator are shifted one
sample forward and the procedure is repeated. This control methodology is re-
ferred to as model predictive control. Due to the way the prediction horizon is
shifted by the controller, this methodology is also referred to as moving horizon
control or receding horizon control. The corresponding estimation procedure
is called moving horizon estimation or receding horizon estimation.

The essential feature of model predictive control, is that the control problem
is formulated as a dynamic optimization problem which is repeatedly solved
online. While this is by itself hardly a new idea, it constitutes one of the first
examples of large-scale dynamic optimization applied routinely in real-time in
the process industries. The optimization formulation allows for direct and sys-
tematic incorporation of inequality constraints in the control formulation. The
constraint handling ability of model predictive controllers was one of the main
reasons for their introduction in the oil industry in the 1970s. The economic
optimal point of operation is often located at the intersection of constraints. In
the face of disturbances and inaccurate models, operation at the mathematical
optimum will lead to frequent violation of the constraints. To avoid constant
violation of these constraints with the possible associated emergency shut down
of facilities, the targeted operating point back-offs from the constraints (Loe-
blein and Perkins, 1999a). The less back-off required the smaller the economic
penalty associated with not being able to operate at the mathematical opti-
mum. To reduce the back-off and associated economic penalty with not being
able to operate at the mathematical optimum, it is essential that the controller
is able to handle constraints. Before the advent of model predictive control,
constraints were handled by augmenting single loop controllers by various se-
lectors and overrides (Shinskey, 1988; Seborg et al., 1989). Model predictive
control technology clearly outperformed these technologies as it in addition to
handle constraints in a systematic and transparent manner was directly appli-
cable to multi-variable, time-delay, and inverse response systems. Despite these
additional benefits, a contributor to the industrial success of model predictive
control is undoubtedly, that model predictive control techniques provide the
only methodology to handle constraints in a systematic way during the design
and implementation of the controller.

Being model based is both the strength and the weakness of model predictive
controllers. The strength of being model based is that the model allows the
controller to compensate for time-delays and interactions. The weakness is
that a model is needed. Provided, the computational infrastructure for model
predictive control is in place, identification of the model is often the major
task in a model predictive control project. For industrial processes, it is often
the case, that the physical phenomena occurring in the process are not even
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known qualitatively and certainly not known quantitatively. This implies that
physically based models can only be established at high costs. For processes
adequately described by linear models, empirical models can be identified. The
systematic methodologies for obtaining empirical linear models have had an
enormous impact on the wide-spread application of linear model predictive
control. The identification of nonlinear empirical models is much less well-
developed and perhaps one of the major bottlenecks for wide-spread application
of nonlinear model predictive control.

By being an optimization based controller, model predictive control can account
for constraints in an optimal way as well as minimize some objective. The
objective may be based on economic considerations, statistical considerations,
or being an ad hoc expression constructed to penalize deviations from a nominal
trajectory.

Global competition and liberalization of markets has led to a demand for tech-
nologies such as model predictive control that can contribute to efficient, con-
sistent and agile manufacturing. On the supply side, the two main driving
forces in advancing model predictive control technology are on the one side
algorithms and computing technology for dynamic optimization and on the
other side modeling capabilities. General purpose modeling software such as
gProms facilitates creation of dynamic models based on physical principles.
The technology for solution of dynamic optimization is required for estimation
of parameters as well as state estimation and computation of the optimal con-
trol sequence. For nonlinear model predictive control, the major computational
tasks in dynamic optimization are numerical solution of the ordinary differen-
tial or differential algebraic equations constituting the model along with their
sensitivities and an optimization. The optimization computes the best trajec-
tory subject to the physical and operational constraints. The optimization is
typically accomplished using a sequential quadratic programming (SQP) al-
gorithm. Besides evaluation of the model functions, the main computational
effort of sequential quadratic programming concerns solution of the quadratic
programs generated. For linear model predictive control, the computational
effort is exclusively associated with the solution of a single quadratic program.
The need for solution of a quadratic program does not only arise in the solution
of the nonlinear and linear moving horizon control problem, but does also arise
in the solution of the nonlinear and linear moving estimation problem as well
as in the solution of the parameter estimation problem.

The quadratic programs arising for constrained moving horizon estimation and
control comprise a constrained linear-quadratic optimal control problem. The
constrained linear-quadratic optimal control problem is a quadratic program
with special structure. This structure can be utilized in algorithms tailored for
the constrained linear-quadratic optimal control problem. Utilization of the
structure implies that tailored algorithms for solution of constrained linear-
quadratic optimal control problem are much faster than general purpose QP
solvers applied to the constrained linear-quadratic optimal control problem.
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The tailored algorithms are based on solution of the first order necessary and
sufficient optimality conditions by Riccati iteration. The Riccati iteration based
QP solver for constrained linear-quadratic optimal control problems is particu-
larly efficient for problems with long control horizons, whereas techniques based
on state elimination and solution of the resulting dense QP are more efficient
for problems with short horizons. From a stability and robustness point of
view, the application of a long control horizon in model predictive control is
desirable as the deviation between the computed open loop response and the
nominal closed loop response decreases by the length of the control horizon.
As the open loop response predicted by the controller approaches the resulting
closed loop response as a consequence of long control- and prediction horizons,
the tuning of the controller becomes intuitive. In contrast, short horizons with
significant deviation between the open loop predictions and the resulting closed
loop trajectory may lead to counter intuitive tuning and performance may de-
teriorate. These properties of model predictive controllers necessitates efficient
algorithms for solution of long-horizon constrained linear-quadratic optimal
control problems.

As has recently been explained independently by Goodwin (2002) and Binder
(2002), inverse problems are germane to almost all algorithmic problems in
signal processing, telecommunications, and control. Inverse problems tend to
be difficult to solve, when they are ill-conditioned or when the inverse must
satisfy constraints. Ill-conditioned problems are typically solved using regu-
larization (Hansen, 1997). Constraints are added to the inverse problems for
stability and robustness reasons as well as to provide an accurate description of
the physical system modeled. Constrained inverse problems with linear models
are quadratic programs. In estimation and control of linear dynamic systems,
the quadratic programs that constitute the inverse problems are both instances
of linear-quadratic optimal control problems. Linear-quadratic optimal control
problem may be solved efficiently using Riccati-iteration based procedures. The
analogue of constrained inverse problem for linear dynamic systems is a con-
strained linear-quadratic optimal control problem. Similarly, the analogue of
an unconstrained inverse problem is a linear-quadratic optimal control problem.
These observations emphasize that the linear-quadratic optimal control prob-
lem and the constrained linear-quadratic optimal control problem are germane
in algorithmic control and estimation problems.

The linear-quadratic optimal control problem is an extension of the LQ-problem
typically considered in the control systems literature (Kwakernaak and Sivan,
1972; Rugh, 1996; Franklin et al., 1998). The classic time invariant LQ-problem
is

min
{δxk+1,δuk}

N−1
k=0

φ = 1
2

(
N−1∑

k=0

δx′
kQδxk + δu′

kRδuk

)

+ 1
2δx′

NPNδxN (1.1a)

s.t. δxk+1 = Aδxk + Bδuk k = 0, 1, . . . , N − 1 (1.1b)
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in which δxk and δuk are deviation variables

δxk = xk − xs (1.2a)

δuk = uk − us (1.2b)

around some steady state (xs, us). The classic time-invariant LQ-problem has
an objective function in which the stage costs contain quadratic terms only. The
stage costs do not contain quadratic cross terms even though these could be in-
cluded. The state transition equation of the classic time-invariant LQ-problem
is linear in the deviation variables. All matrices in the classic time-invariant
LQ problem are invariant of time. The linear-quadratic optimal control prob-
lem is an extension of the classic time-invariant LQ-problem. Therefore, it
is occasionally called the extended linear-quadratic optimal control problem.
The linear-quadratic optimal control problem is time variant and not neces-
sarily formulated in deviation variables. The linear-quadratic optimal control
problem is

min
{xk+1,uk}

N−1
k=0

φ =
N−1∑

k=0

lk(xk, uk) + lN (xN ) (1.3a)

s.t. xk+1 = A′
kxk + B′

kuk + bk k = 0, 1, . . . , N − 1 (1.3b)

in which the stage costs

lk(xk, uk) = 1
2 (x′

kQkxk + 2x′
kMkuk + u′

kRkuk) + q′kxk + r′kuk + fk (1.4a)

lN (xN ) = 1
2x′

NPNxN + p′NxN + γN (1.4b)

have quadratic terms including quadratic cross terms as well as linear terms.
The state transition equations (1.3b) in the linear-quadratic optimal control
problem are affine rather than linear in the decision variables.

The unconstrained linear-quadratic optimal control problem and the LQ-problem
are equivalent. The solution of an unconstrained linear-quadratic optimal con-
trol problem in isolation is often obtained most efficiently by solution of the
equivalent LQ problem. However, the solution of nonlinear moving horizon
estimation and control problems is facilitated by the linear-quadratic optimal
control problem (1.3). The linear-quadratic optimal control problem (1.3) turns
out to be a surprisingly effective framework for analysis and formulation of
moving horizon estimation and control problems. The solution of linear model
predictive control problems with pre-specified time variant reference and load
trajectories is facilitated by the linear-quadratic optimal control formulation.

The main contribution of this thesis it to demonstrate the usefulness and ap-
plication of the extended linear quadratic optimal control problem (1.3).
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1.1 Models for Predictive Control

The model used for the predictions and the mechanism used for generating
the feedback are the main features that distinguish various model predictive
control methodologies. Cutler and Ramaker (1979, 1980) apply step response
models for the prediction and incorporates feedback by update of a bias term.
Richalet et al. (1976, 1978) apply impulse response models for the prediction
and also compensates for unmeasured disturbances and plant model mismatch
by update of a bias term. Feedback by update of a bias term corresponds to
output disturbance models in which the disturbance is assumed to be a step.
This feedback mechanism is able to achieve steady state offset free control.
Greco et al. (1984) and Mosca (1995) apply ARX as well as ARMAX mod-
els for the prediction. Kalman filters are used to obtain feedback and steady
state offset control is assured by using a velocity ARMAX formulation. Clarke
et al. (1987a,b) as well as Bitmead et al. (1990) also use velocity form AR-
MAX models for prediction and feedback. Muske and Rawlings (1993a) apply
discrete-time state space models for control and assure steady state offset free
control by disturbance modelling (Muske and Badgwell, 2002; Pannocchia and
Rawlings, 2003). Nørgaard et al. (2000) apply a neural network for predictions.
Allgöwer et al. (1999), Allgöwer and Zheng (2000), Betts (2001) Grötschel et al.
(2001), and Tenny (2002) discuss predictive control based on nonlinear state
space models. In the following, we provide an overview of various forms of
predictive control.

1.1.1 Linear Time Invariant Model Representations

In this subsection, linear time invariant models that are used for predictive
control are informally introduced.

The discrete linear time-invariant state space model

xk+1 = Axk + Buk + wk (1.5a)

yk = Cxk + vk (1.5b)

with stochastic process noise, wk, and measurement noise, vk is for many sit-
uations the most convenient way to represent multiple time series yk ∈ R

p

influenced by some signals uk ∈ R
m which can be manipulated.

The state, xk, may be represented in terms of the initial state x0, the past
inputs, {ui}k−1

i=0 , and the past process noise, {wi}k−1
i=0

xk = Akx0 +
k−1∑

i=0

Ak−1−iBui +
k−1∑

i=0

Ak−1−iwi (1.6)

By this expression for the state, it is obvious that the output, yk, may be
related to the initial state, x0, the past inputs, {ui}k−1

i=0 , the past process noise,
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{wi}k−1
i=0 , and the current measurement noise, vk, by

yk = CAkx0 +

k−1∑

i=0

CAk−1−iBui +

k−1∑

i=0

CAk−1−iwi + vk

= CAkx0 +

k−1∑

i=0

CAiBuk−1−i +

k−1∑

i=0

CAiwk−1−i + vk

= CAkx0 +

k−1∑

i=0

CAiBuk−1−i + nk

(1.7)

in which the measured output noise, nk, is a combination of past process noise
and current measurement noise

nk =

k−1∑

i=0

CAiwk−1−i + vk (1.8)

The state space formulation (1.5) and associated output prediction (1.7) may
be expressed as

yk = CAkx0 +

k∑

i=1

Hiuk−i + nk (1.9)

in which Hi are the impulse response coefficients defined by

Hi = CAi−1B i = 1, 2, . . . , k (1.10)

For strictly stable systems and sufficiently large values of i, say i > N , the
impulse response coefficient vanishes. Similarly, for k sufficiently large the
term associated with the initial state vanishes. Therefore, the output response
of linear time invariant system may be characterized by a finite number of
impulse response coefficients, {Hi}N

i=1, as in

yk =

N∑

i=1

Hiuk−i + nk FIR (1.11)

Conceptually, in a noise free environment, nk = 0, the impulse response coef-
ficients, {Hi}N

i=1, may be obtained by monitoring the outputs, {yk}N
k=1, after

adding a unit impulse, u0 = 1, to each input in succession.

The step response coefficients, Si, of the linear time invariant system (1.5) are
defined as

S0 = 0 (1.12a)

Si =

i∑

j=1

CAj−1B =

i∑

j=1

Hj i = 1, 2, . . . , k (1.12b)
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Let the initial state be x0 = 0 and let the system be noise free, i.e. wk = 0
and vk = 0. Then the step response coefficients, Si, may be obtained by
observing the output of a step response experiment for each input in succession.
The impulse response coefficients, Hi, may be obtained from the step response
coefficients, Si, by

Hi = Si − Si−1 i = 1, 2, . . . , k (1.13)

Define ∆uk = uk − uk−1. The output, yk, of the linear time invariant state
space model (1.5) given by (1.7) as well as by (1.9) may be expressed as

yk = CAkx0 + Sku0 +

k−1∑

i=1

Si∆uk−i + nk (1.14)

using the step response coefficients, Si. For strictly stable systems, sufficiently
large k, and sufficiently long horizon, N , the step response model may be
approximated by a finite set of step response coefficients, {Si}N

i=1, as indicated
by the expression

yk = SNuk−N +

N−1∑

i=1

Si∆uk−i + nk FSR (1.15)

Another useful specialization of the general state space model is the state space
model in innovations form. For stochastic stationary system, the state space
model (1.5) may be represented as

xk+1 = Axk + Buk + Kek (1.16a)

yk = Cxk + ek (1.16b)

in which ek is the innovations. Kailath et al. (2000) provide a detailed descrip-
tion about the merits of the innovations form of the state space model.

The models used by the predictive controller is obtained by system identifica-
tion. System identification is a very important aspect of predictive control, but
is not the main topic of this thesis. Appendix D describes regression techniques
that may be used to obtain impulse and step response models as well as ARX
models. Appendix E describes prediction error methods aimed at obtaining
models for linear model based predictive control.

1.1.2 Process Control Literature

Model algorithmic control (MAC) and its commercial implementation, IDCOM
(identification and command) has along with DMC (dynamic matrix control)
had a tremendous influence on the reputation of model predictive control. Moti-
vated by the lack of sufficiently accurate models in the process industries, both
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the IDCOM algorithm and the DMC algorithm are based on linear empiri-
cal non-parametric models; IDCOM is based a finite impulse response model
while DMC is based on a finite step response model. Garcia et al. (1989),
Qin and Badgwell (1996, 2000), Camacho and Bordons (1999), and Allgöwer
et al. (1999) discuss the evolution of model predictive control in the process
industries.

1.1.2.1 IDCOM Algorithms

IDCOM applies a finite impulse response (FIR) model as its predictor and a
quadratic objective function (Richalet et al., 1976, 1978; Rouhani and Mehra,
1982). The original IDCOM algorithm (Richalet et al., 1976) solved the open-
loop optimal control problem using a least-squares algorithm applied to the
equality constrained problem and treated the constraints in a heuristic man-
ner. Richalet et al. (1976) noted that the control problem is the dual of the
model identification (parameter estimation) problem for finite impulse response
models. In a modern interpretation, the IDCOM algorithm may be regarded
as a moving horizon controller that at each sample instant solves the following
open-loop optimal control problem

min
{uk+j|k}Np

j=0

φ =

Np∑

j=0

||ŷk+j|k − wk+j ||2Q + ||uk+j|k−us||2R (1.17a)

s.t. ŷk+j|k =

N∑

i=1

Hiuk+j−i|k + n̂k+j|k, j = 0, 1, . . . , Np (1.17b)

umin ≤ uk+j|k ≤ umax j = 0, 1, . . . , Np (1.17c)

− ∆u ≤ uk+j|k − uk+j−1|k ≤ ∆u j = 0, 1, . . . , Np (1.17d)

ymin ≤ ŷk+j|k ≤ ymax j = 0, 1, . . . , Np (1.17e)

The reference trajectory, wk+j , used in the objective function is computed
as a first order process from the current output, yk, to the desired set-point,
rk+j = r

wk = yk (1.18a)

wk+j = αwk+j−1 + (1 − α)rk+j j = 1, 2, . . . Np (1.18b)

α ∈ [0, 1[ is a tuning parameter used to specify the desired speed of response.
The closer α is to 1 the slower the response to set-point deviations. The
disturbances, n̂k+j|k, can either be estimated as constant disturbances

n̂k+j|k = n̂k|k = yk −
N∑

i=1

Hiuk−i j = 0, 1, 2, . . . , Np (1.19)
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or as smooth first order filtered disturbances (Garcia et al., 1989)

n̂k|k = 0 (1.20a)

n̂k+j+1|k = βn̂k+j|k + (1 − β)

(

yk −
N∑

i=1

Hiuk−i

)

(1.20b)

with 0 ≤ β < 1. The penalty term on uk+j|k in the MAC controller has
been suggested by Garcia et al. (1989) as it simplifies the treatment of non-
minimum phase systems. us may be computed as the solution of a static target
calculation (c.f. Muske and Rawlings, 1993a; Muske, 1995). Alternatively, the
objective function may be changed slightly

φ =

Np∑

j=0

||ŷk+j|k − wk+j ||2Q + ||∆uk+j|k||2S (1.21)

in which ∆uk+j|k = uk+j|k − uk+j−1|k for j = 0, 1, . . . , Np. By the objective
function, (1.21), excessive control movements may be penalized without sac-
rificing offset free behavior and without solving a static target compensation
problem.

The IDCOM algorithm was further developed by Adersa and Setpoint, Inc.
Adersa marketed the new algorithm as HIECON (Hierarchical Constraint Con-
trol) and Setpoint marketed it as IDCOM-M (Grosdidier et al., 1988; Qin and
Badgwell, 1996). Like IDCOM, IDCOM-M is based on an impulse response
model. However, IDCOM-M is able to handle integrating processes by consid-
ering variables in the ∆-domain (i.e. ∆yk = yk − yk−1 and ∆uk = uk − uk−1).
Unlike the previous industrial implementations, IDCOM-M first solve a prob-
lem with only the outputs in the objective function and subsequently if ad-
ditional degrees of freedom exists an objective function with only the inputs.
For cases, when the objective function in the inputs only are solved, they
are sought driven as close as possible to ideal resting values which may come
from a steady-state optimizer. The constraints in IDCOM-M are divided into
soft and hard constraints. Hard constraints are ranked in order of priority.
When the quadratic program constituting the moving horizon controller be-
comes infeasible, the lowest priority hard constraint is dropped and the cal-
culation is repeated. Further, IDCOM-M includes a controllability supervisor
used to determine online which outputs can be independently controlled. In
short, IDCOM-M is regarded as third generation MPC technology which can
represent and control integrating processes, allow for a control structure that
changes online, distinguish between several levels of constraints (hard, ranked,
soft), and provide some mechanism to recover from an infeasible solution.

The distinguishing feature characterizing the IDCOM class of moving horizon
controllers is that a finite impulse response model is used to predict the future
system behavior. By being based on finite impulse response models this class
of moving horizon controllers are limited to stable processes or in the case of
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velocity models (delta domain models) stable processes with integrators. As
the FIR model may be realized as a state space model this class of controllers
is really just a special instant of linear state space model predictive controllers.

1.1.2.2 DMC Algorithms

Model predictive control was developed by Shell Oil in the early 1970’s and
an initial application in 1973. These developments had a particular significant
influence on the application of model predictive control technology in the pro-
cess industries. Shell called this control technology dynamic matrix control
(DMC). Dynamic matrix control is an unconstrained multivariable control al-
gorithm whose details was first presented by Cutler and Ramaker (1979, 1980).
DMC was based on a linear step response model for the plant, a quadratic
performance objective over a finite prediction horizon, and the future plant
behavior was specified by trying to follow a setpoint as closely as possible. In
the original DMC algorithm the optimal inputs are computed as the solution
a least-squares problem. Prett and Gillette (1979, 1980) described an applica-
tion of DMC in which the algorithm was modified to handle constraints and
nonlinearities. The constraint handling in Prett and Gillette (1979, 1980) was
somewhat ad hoc. Morshedi et al. (1985) handled constraints in a systematic
way by posing the control problem to be solved in the DMC algorithm as a lin-
ear program. The resulting controller was called LDMC. Garcia and Morshedi
(1986) retained the quadratic objective of the DMC algorithm and handled
constraints in a systematic manner by formulating the problem as a quadratic
program. This controller was called QDMC. In addition Garcia and Morshedi
(1986) discussed the role of output constraints. They argued, that for some
systems the hard output constraints are required to be satisfied only at portions
of the horizon; called the constraint window. The constraint window typically
starts at some point in the future and continues on to steady state. The soft
constraint concept was also applied by Garcia and Morshedi (1986) and they
described an approximate implementation.

The key distinguishing feature of the DMC class of algorithms is that their
predictions are are based on step response models. The quadratic program
constituting the open-loop optimal control problem in the DMC implementa-
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tion of moving horizon control is

min
{∆uk+j|k}M−1

j=0

φ =

Np∑

j=0

||ŷk+j|k − rk+j ||2Qj
+

M−1∑

j=0

||∆uk+j|k||2Sj
(1.22a)

s.t. ŷk+j|k =

N∑

i=1

Si∆uk+j−i|k+ SNuk+j−N |k + n̂k+j|k (1.22b)

j = 0, 1, . . . , Np

umin ≤ uk+j|k ≤ umax j = 0, 1, . . . ,M − 1 (1.22c)

− ∆u ≤ ∆uk+j|k ≤ ∆u j = 0, 1, . . . ,M − 1 (1.22d)

∆uk+j|k = 0 j = M,M + 1, . . . , Np (1.22e)

ymin ≤ ŷk+j|k ≤ ymax j = 0, 1, . . . , Np (1.22f)

in which ∆uk+i|k = uk+i|k − uk+i−1|k and

uk+j|k = uk−1|k +

j
∑

i=0

∆uk+i|k (1.23)

The disturbance is estimated as a constant output disturbance

n̂k+j|k = n̂k|k = yk −
N∑

i=1

Si∆uk−i|k + SNuk−N |k (1.24)

Dynamic matrix control distinguishes between a control horizon, M , and a pre-
diction horizon, Np > M . The input movements, ∆uk, can change within the
control horizon, i.e. k = 0, 1, . . . ,M − 1, but are fixed beyond the control hori-
zon, i.e. ∆uk = 0 for k = M,M + 1, . . . , Np. The prediction horizon is longer
than the control horizon and chosen such that the open-loop response computed
as the solution of (1.22) for long control horizons resembles the closed-loop re-
sponse.

Soft constraints are incorporated in the QDMC formulation (1.22) by introduc-
tion of slack variables, pj and qj , and replacement of the hard output constraints
(1.22f) by the constraints

ŷk+j|k + pj ≥ ymin j = 0, 1, . . . , Np (1.25a)

ŷk+j|k − qj ≤ ymax j = 0, 1, . . . , Np (1.25b)

pj ≥ 0 j = 0, 1, . . . , Np (1.25c)

qj ≥ 0 j = 0, 1, . . . , Np (1.25d)

as well as substitution of the objective function (1.22a) by

φ =

Np∑

j=0

||ŷk+j|k − rk+j ||2Qj
+

M−1∑

j=0

||∆uk+j|k||2Sj
+

Np∑

j=0

||pj ||2Wj
+ ||qj ||2Wj

(1.26)
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As the prediction in the DMC algorithms are based on finite step response
models, they are limited to stable processes in case when the outputs of the
model are the variables yk. If the model is identified in the delta-domain, i.e.
the outputs are ∆yk = yk − yk−1 the DMC algorithms may be used to control
processes with integrators. The DMC algorithms are special cases of state
space based model predictive controllers as the step response model may be
converted to a state space model.

1.1.3 Generalized Predictive Control

Clarke et al. (1987a,b) presented an alternative predictive control methodology
that they called generalized predictive control (GPC). The generalized predic-
tive control methodology had its origins in self-tuning control community as
and was supposed to replace generalized minimum variance control and pole
placement. GPC has found a market niche in providing a justifiable, sophisti-
cated yet flexible and comprehensible adaptive controller design platform.

The generalized predictive controller is based on an ARMAX model for pre-
diction of the future evolution of the system. The ARMAX model used is
also referred to as a controlled auto regressive and integrated moving average
model (CARIMA) or auto-regressive integrated moving-avarage exogoneous in-
put (ARIMAX) model. This model has the structure

A(q−1)yk = B(q−1)uk + C(q−1)ek (1.27)

in which A and B are polynomials in the backward shift operator, q−1. A is a
monic polynomial and the model is integrated as C has the structure

C(q−1) =
T (q−1)

1 − q−1
(1.28)

in which T is a monic polynomial in the backward shift operator q−1. The
operator, ∆ = 1 − q−1, is used to achieve offset free regulation when step
output disturbances occur. This model is equivalent to the following model in
the ∆-domain

A(q−1)∆yk = B(q−1)∆uk + T (q−1)ek (1.29)

or as
Ã(q−1)yk = B̃(q−1)uk + C̃(q−1)ek (1.30)

in which

Ã(q−1) = (1 − q−1)A(q−1) (1.31a)

B̃(q−1) = (1 − q−1)B(q−1) (1.31b)

C̃(q−1) = T (q−1) (1.31c)

For this class of input-output models, the GPC and systems identification liter-
ature (c.f. Clarke, 1994; Ljung, 1999), there has been a tradition of formulating



14 Introduction

the predictors in terms of backward shift operators. Another approach is to
convert the input-output model (1.30) to state space form and derive the pre-
dictors from the state space model. Consider one input-output pair of (1.30)

Ã(q−1) = 1 + ã1q
−1 + ã2q

−2 + . . . + ãnq−n (1.32a)

B̃(q−1) = b̃0 + b̃1q
−1 + b̃2q

−2 + . . . + b̃nq−n (1.32b)

C̃(q−1) = 1 + c̃1q
−2 + c̃2q

−2 + . . . + c̃nq−n (1.32c)

for which the state space model

xk+1 = Axk + Buk + Kek (1.33a)

yk = Cxk + Duk + ek (1.33b)

in observer canonical realization is (c.f. Poulsen, 1995a; Goodwin and Sin, 1984)

A =








−ã1 1 . . . 0
...

. . .

−ãn−1 0 . . . 1
−ãn 0 . . . 0








B =








b̃1 − ã1b̃0

b̃2 − ã2b̃0

...

b̃n − ãnb̃0








K =








c̃1 − ã1

c̃2 − ã2

...
c̃n − ãn








(1.34a)

C =
[
1 0 . . . 0

]
D = b̃0 (1.34b)

The observer canonical realization (1.34) is simplified and identical to (1.5) in
some sense when b̃0 = 0 as is often the case in discrete time systems. Fur-
thermore, the expression for the B-matrix simplifies considerably when b̃0 = 0.
The realization, (1.33) and (1.34), is extended to the MISO case by having a
column in the B and D matrix for each input constructed in the way indicated
above. The MIMO model is constructed by stacking the MISO realizations
for each output. These models are not necessarily minimal. A minimal real-
ization may be obtained by construction of the associated Markov parameters
and realization of the state space model from these parameters. A realization
of (1.30) in state space innovations form

xk+1 = Axk + Buk + Kek (1.35a)

yk = Cxk + Duk + ek (1.35b)

in which ek is a white noise sequence with covariance E{eke′k} = R may be
used to form the Kalman filter estimate of the current state and the Kalman
prediction of the future evolution of the system. This way of approaching GPC
is untraditional as the predictors are typically realized through Diophantine
equations and input-output operators rather than through state space predic-
tion employing Kalman’s methods. The Kalman filter for the state space model
in innovations form and a certain initial state (i.e. we know the past measured
outputs and inputs exactly) is particularly simple. The filtered state estimate,
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x̂k|k, is x̂k|k = x̂k|k−1 and the innovations εk are computed by

ŷk|k−1 = Cx̂k|k−1 + Dûk|k−1 (1.36a)

εk = yk − ŷk|k−1 (1.36b)

The innovations εk, x̂k|k−1, and
{
ûk+j|k

}
are used to compute the optimal

state predictions
{
x̂k+j|k

}

x̂k+1|k = Ax̂k|k−1 + Bûk|k + Kεk (1.37a)

x̂k+j+1|k = Ax̂k+j|k + Bûk+j|k j = 1, 2, . . . (1.37b)

The optimal predictions
{
ŷk+j|k

}
of the outputs {yk+j} are computed by

ŷk+j|k = Cx̂k+j|k + Dûk+j|k j = 1, 2, . . . (1.38)

Consequently, the predictions
{
ŷk+j|k

}
may be computed from the state space

system constituted by (1.37) and (1.38). The optimal output predictions,
{
ŷk+j|k

}N2

j=N1
, of this system may be expressed explicitly as function of the

predicted state, x̂k|k−1, the innovation εk, and the predicted outputs
{
ûk+j|k

}

as

ŷk+j|k = CAj x̂k|k−1 + CAj−1Kεk +

j−1
∑

i=0

CAj−1−iBûk+i|k + Dûk+j|k (1.39)

for j = N1, N1 + 1, . . . , N2.

The objective minimized by the generalized predictive controller consist of term
accounting for setpoint deviations and a term penalizing excessive control move-
ments

φ = 1
2

N2∑

j=N1

(ŷk+j|k −rk+j)
′Qj(ŷk+j|k −rk+j)+ 1

2

Nu∑

j=0

∆û′
k+j|kSj∆ûk+j|k (1.40)

in which ∆ûk+j|k = ûk+j|k − ûk+j−1|k. The horizons, N1, N2, and Nu are
used as tuning parameters. However, the effect of these parameters are non-
intuitive. Current knowledge suggests, that N1 = 0 and N2 = Nu = ∞ if
nominal stability is to be guaranteed. A practical and common approach is to
select N2 and Nu as large integer values and such that N2 > Nu.

The mathematical program solved online at each sampling instant in the gen-
eralized predictive control methodology is

min
{ûk+j|k}

φ (1.41a)

s.t. ŷk+j|k computed by (1.39) j = N1, N1 + 1, . . . , N2 (1.41b)

umin ≤ ûk+j|k ≤ umax j = 0, 1, . . . , Nu − 1 (1.41c)

− ∆u ≤ ∆ûk+j|k ≤ ∆u j = 0, 1, . . . , Nu − 1 (1.41d)

∆ûk+j|k = 0 j = Nu + 1, . . . , N2 (1.41e)
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The main point to be emphasized regarding the mathematical program (1.41)
is that although the predictions are stated explicitly and arise from an input-
output model (1.27), the predictions may be stated in terms of a state space
model (1.37)-(1.38). Consequently, for long prediction horizons, the solution
of of (1.41) may be conducted efficiently using algorithms utilizing the state
space structure. The conventional approach in GPC is to construct a dense
quadratic program and compute the predicted optimal controls as the solution
of that program. Feedback is achieved using the Kalman filter. For state space
systems in innovations form this is conducted by updating the memory, x̂k+1|k

and ûk+1|k, of the controller using (1.37a) and ûk+1|k computed as part of
the solution to (1.41). At the next sample time, i.e. k + 1, the measurement
yk+1 and the memory are used to compute the innovation εk+1. With the
innovation εk+1 as well as the memory, x̂k+1|k and ûk+1|k, the new control

profile
{
ûk+1+j|k+1

}
may be computed and the first control in this sequence

implemented on the process, i.e. uk+1 = ûk+1|k+1. It should also be stressed
that a central premise of this controller is that it is based on a process model
augmented with a constant output disturbance model.

The generalized predictive controller (1.41) may be extended by output con-
straints

ymin ≤ ŷk+j|k ≤ ymax (1.42)

These constraints may render the mathematical program constituting the gen-
eralized predictive controller, i.e. (1.41)-(1.42), infeasible. To overcome such
problems, the controller must have some mechanism of relaxing the mathema-
tical program (1.41)-(1.42). This may be achieved by soft constraints.

Generalized predictive control has enjoyed popularity in the adaptive control
community as it is based on input-output models of the ARMAX type which are
parameterizations with the fewest possible parameters. Generalized predictive
control has been discussed extensively by Bitmead et al. (1990), Soeterboek
(1992), Mosca (1995), Martin-Sanchez and Rodellar (1996), and Camacho and
Bordons (1999).

Hallager et al. (1984), Hallager (1984), and Brabrand (1991) developed a mul-
tivariable self tuning controller (MIMOSC) which is similar to the generalized
predictive control methodology. MIMOSC models the system using multivari-
able ARMAX models estimated recursively and designs the controller as an
LQ controller. Input constraints are handled by clipping. MIMOSC has been
applied to control of a fixed bed reactor (Hallager et al., 1984; Hallager, 1984;
Brabrand, 1991) as well as in the control of a heat-integrated distillation col-
umn (Andersen, 1989; Nielsen, 1990; Fikar and Jørgensen, 1994; Koggersbøl,
1995; Andersen, 2002).
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1.1.4 Discrete-Time State Space Models and Kalman

The IDCOM, the DMC and the GPC class of predictive controllers all have
their roots and formulation in the associated model identification algorithm
such that the connection and fitting to the data of the specific process is
straightforward. IDCOM is based on an impulse response representation of
the plant, the prediction in DMC is based on a step response model, and GPC
applies an integrated ARMAX model to predict the evolution of the plant. The
possibility of matching the model based on data to the specific process con-
sidered has been a significant factor for the popularity of the above predictive
control methods. The impulse response model, the step response model, and
the integrated ARMAX model may all be represented as state space models (Li
et al., 1989; Lee et al., 1992, 1994). This representation may be stated explic-
itly through the parameters of the input-output models or may be constructed
through the Hankel matrix of the system.

At the conception of the above predictive control techniques, they were con-
sidered different from the linear-quadratic regulation methodology developed
by Kalman (Kalman, 1960a,b; Kalman and Bertram, 1960). In the process
industries linear-quadratic regulation was considered impractical as it was not
obvious how to obtain the models used by the Kalman-filter and in the linear-
quadratic regulator. Though theoretically possible, development of nonlinear
first principles process models, linearization and discretization was neither an
efficient nor a practical method meeting the accuracy requirements in control-
ling industrial processes. The strength of the state space method advocated
by Kalman is its versatility, its direct and straightforward implementation in
software, and its value as a framework for analyzing properties such as stability.
For these reasons and the fact that input-output models may be represeted as
state space models, contemporary practice is to discuss model predictive control
in terms of state space models. The state space models applied may be ob-
tained from non-linear process models through linearizaion and discretization,
as realizations of input-output models, or identified directly as in the subspace
methods (van Overschee and de Moor, 1996; Larimore, 1983).

Shell (France) has developed third generation MPC technology called SMOC
which is similar to modern model predictive control implementations (Marquis
and Broustail, 1988). SMOC is based on state space models which can represent
both stable and unstable models. Feedback is achieved by full state estima-
tion from the outputs; constant output disturbances is simply a special case in
this methodology. Further, SMOC distinguishes between controlled variables
that are in the control objective function and feedback variables that are used
for state estimation. This distinction of variables may be used in the imple-
mentation of inferential control. As an example of inferential control, consider
distillation composition control which may be realized by having the prod-
uct compositions in the objective function even though feedback is based on
temperature and pressure measurements. The compositions are the controlled
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variables while the temperature and pressures are the feedback variables. How-
ever, during model identification samples of the compositions must be analyzed
to establish the correlation between the measured and the controlled variables.
During normal operation with this controller, infrequent compositions samples
may also be helpful in regular calibration of the composition model. SMOC
handles input and output constraints through a QP-formulation of the con-
troller.

Based on a state-space representation, Bortolotto (1985) and Bortolotto and
Jørgensen (1986) showed that the predictive controller may be solved as a dense
quadratic program. Li et al. (1989) as well as Lee et al. (1992, 1994) demon-
strated how step-response models may be represented as state space models.
Ricker (1990) developed a finite-horizon predictive controller and applied dense
quadratic programming algorithms for its solution (Ricker, 1985). Even though
Ricker (1990) is aware of the possibility of feedback by Kalman filtering as de-
scribed in Li et al. (1989), he rejects this solution and essentially constructs
feedback based on a constant output disturbance model. The motivation for
doing so is that sufficiently accurate covariance matrices needed for the Kalman
filter are seldom available according to Ricker (1990). Based on a state-space
model representation, Muske and Rawlings (1993a) provided an extraordinary
nice discussion of model predictive control and showed how nominally stabi-
lizing predictive controller may be constructed. Muske and Rawlings (1993a)
had feedback by employment of a static Kalman filter. Scokaert and Rawlings
(1998) extended the results of Muske and Rawlings (1993a) and provided a
better and more efficient parameterization of the predictive controller.

The model used for prediction in linear state space based predictive con-
trollers is a linear discrete time state space model which may be determin-
istic or stochastic. However, the deterministic model is typically augmented by
stochastic terms to facilitate feedback by application of a Kalman filter. For
these reasons, we consider the predictive control based on discrete-time state
space models for the stochastic model

xk+1 = Axk + Buk + wk (1.43a)

yk = Cxk + vk (1.43b)

in which [
wk

vk

]

∈ Niid

([
0
0

]

,

[
Q S
S′ R

])

(1.44)

Let x0 ∈ N(x̂0|−1, P0|−1) be independent of {wk} and {vk}. The theory of
linear estimation (Kailath et al., 2000) may be used to construct the optimal

predictors for this model based on the past measurements {yj}k
j=0 and past

control actions {uj}k−1
j=0 . The optimal predictors are themselves generated by

a deterministic linear state space model.

As a new measurement, yk, at discrete time k is fed into the estimator, the
optimal estimate, x̂k|k, of the current state is obtained by first computing the
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innovation, ek, according to

ŷk|k−1 = Cx̂k|k−1 (1.45a)

ek = yk − ŷk|k−1 (1.45b)

and subsequently computing the Kalman filter gain, Kf,k according to

Re,k = CPk|k−1C
′ + R (1.46a)

Kf,k = Pk|k−1C
′R−1

e,k (1.46b)

With the innovation, ek, and the Kalman filter gain, Kf,k, available, the current
state estimate x̂k|k and the associated covariance, Pk|k, may be obtained by

x̂k|k = x̂k|k−1 + Kf,kek (1.47a)

Pk|k = Pk|k−1 − Kf,kRe,kK ′
f,k (1.47b)

Similarly, the current estimate, ŵk|k, of the process noise and its associated
covariance may be computed as

ŵk|k = SR−1
e,kek (1.48a)

Qk|k = Q − SR−1
e,kS′ (1.48b)

In cases when the process and measurement noise, i.e. wk and vk, are uncor-
related (S = 0), the process noise estimate is ŵk|k = 0 and Qk|k = Q.

The estimates, x̂k|k and ŵk|k, are used to form the optimal predictions of the
future evolution of the system. The corresponding covariances are used to
form the covariances associated with the predictors. As the system is linear
and normally distributed these properties provide a complete characterization
of the stochastic system. The optimal one-step predictor of the states and its
covariance are computed by

x̂k+1|k = Ax̂k|k + Bûk|k + ŵk|k (1.49a)

Pk+1|k = APk|kA′ + Qk|k − AKf,kS′ − SK ′
f,kA′ (1.49b)

These expressions simplify in the case when the process and measurement noise
are uncorrelated as S = 0, Qk|k = Q, and ŵk|k = 0. The covariance matrix
Pk+1|k converges to the matrix P under the assumption that (A,C) is de-
tectable and (A − SR−1C,Q − SR−1S′) is stabilizable. The matrix P may be
computed as the solution of the Riccati equation

P = Q + APA′ − (APC ′ + S)(CPC ′ + R)−1(APC ′ + S)′ (1.50)

which may subsequently be used to compute the following matrices

Re = CPC ′ + R (1.51a)

Kf = PC ′R−1
e = PC ′(CPC ′ + R)−1 (1.51b)

Kw = SR−1
e = S(CPC ′ + R)−1 (1.51c)
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Re and Kf are the converged equivalents of Re,k and Kf,k, respectively. Under
the assumption that the Kalman filter has converged, the computation of the
optimal estimates, x̂k|k and ŵk|k, may be simplified to the expressions

ek = yk − Cx̂k|k−1 (1.52a)

x̂k|k = x̂k|k−1 + Kfek (1.52b)

ŵk|k = Kwek (1.52c)

Whether x̂k|k and ŵk|k are computed by the dynamic or the static Kalman
filter, they can be used to form the one-step prediction in (1.49a). The one-
step predictor and its associated covariance, Pk+1|k (or P in the static case),
are the starting point for the j-step predictor of the states and its associated
covariance

x̂k+j+1|k = Ax̂k+j|k + Bûk+j|k j = 1, 2, . . . (1.53a)

Pk+j+1|k = APk+j|kA′ + Q j = 1, 2, . . . (1.53b)

The predictions of the future measurements and their covariances are computed
by

ŷk+j|k = Cx̂k+j|k j = 1, 2, . . . (1.54a)

Λk+j|k = CPk+j|kC ′ + R j = 1, 2, . . . (1.54b)

In many practical situations, such as inferential control, a distinction is made
between the measurement variables, yk, used for feedback and the variables,
say zk, controlled. Let the controlled variables be related to the states by

zk = Exk (1.55)

Then the optimal predictions, ẑk+j|k, and the associated covariances, Wk+j|k,
of the controlled variables are given by the expressions

ẑk+j|k = Ex̂k+j|k j = 0, 1, 2, . . . (1.56a)

Wk+j|k = EPk+j|kE′ j = 0, 1, 2, . . . (1.56b)

(1.49a), (1.53a), and (1.56a) are used to compute the future predictions. When
S = 0, ŵk|k = 0 and these predictors may be thought of as generated by a
standard deterministic state space model

xk+1 = Axk + Buk (1.57a)

zk = Exk (1.57b)

Influenced by Muske and Rawlings (1993a), the state space model (1.57) has
been used extensively to discuss model predictive control and develop nominally
stabilizing predictive controllers for systems modeled by linear state space mod-
els. However, the predictor system (1.57) is just a special case of the general
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optimal predictor, i.e. (1.49a), (1.53a), and (1.56a), of the linear discrete-time
stochastic system (1.43,1.55). In fact, as the general optimal predictor turns
out to be an affine system; this general case is therefore in itself a motivation
for introducing the affine state space models and develop optimal control algo-
rithms for this class of systems. This topic is addressed in this dissertation by
constructing algorithms for (1.3) and related problems.

The quality of a given predicted trajectory may be evaluated through the fol-
lowing objective function

φ = 1
2

Np∑

j=0

(ẑk+j|k − rk+j)
′Ξj(ẑk+j|k − rk+j) + 1

2

N−1∑

j=0

∆û′
k+j|kΘj∆ûk+j|k (1.58)

in which the first part penalizes predicted deviations from the reference trajec-
tory {rk+j} and the second part penalizes excessive control movements. The
computation of this objective function requires computation of the predicted
outputs, ẑk+j|k, which are evaluated through (1.49a), (1.53a), and (1.56a). The
weights, Ξj , in the first part of the objective function are often a constant ma-
trix selected through manual tuning. However, it might also be selected as
Ξj = W−1

k+j|k such that this part of the objective has minimum predicted vari-

ance. This selection is in accordance with the theory of stochastic least squares
optimization (Kailath et al., 2000). Alternatively, in light of the moving horizon
implementation these weights could be selected as Ξj = W−1

k+1|k. The selection

of the horizons Np and N has been subject of extensive research (Muske and
Rawlings, 1993a; Scokaert and Rawlings, 1998; Mayne et al., 2000).

As other controllers solved by online optimization and implemented in a moving
horizon manner, predictive controllers in state space form may be equipped
with hard constraints on the actuator values as well as hard constraints on the
actuator rate of movements

umin ≤ ûk+j|k ≤ umax (1.59a)

− ∆u ≤ ∆ûk+j|k ≤ ∆u (1.59b)

The predicted outputs may also be constrained

zmin ≤ ẑk+j|k ≤ zmax (1.60)

This constraint may, however, render the predictive controller mathematical
program infeasible. Therefore, output constraints must be associated with some
relaxation mechanism if they are impossible to satisfy (Scokaert and Rawlings,
1999).

The control calculation in the predictive controller based on a discrete time
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state space models is achieved by solution of the quadratic program

min
{ûk+j|k}Np

j=0

φ (1.61a)

s.t. x̂k+1|k = Ax̂k|k + Bûk|k + ŵk|k (1.61b)

x̂k+j+1|k = Ax̂k+j|k + Bûk+j|k j = 1, 2, . . . , Np − 1 (1.61c)

ẑk+j|k = Ex̂k+j|k j = 0, 1, . . . , Np (1.61d)

umin ≤ ûk+j|k ≤ umax j = 0, 1, . . . , N − 1 (1.61e)

− ∆u ≤ ∆ûk+j|k ≤ ∆u j = 0, 1, . . . , N − 1 (1.61f)

∆ûk+j|k = 0 j = N,N + 1, . . . , Np (1.61g)

zmin ≤ ẑk+j|k ≤ zmax j = 0, 1, . . . , Np (1.61h)

(1.61) is a finite-horizon predictive controller as Np > N is finite. The parame-
terization applied, i.e. (1.61g), allows the actuator variables to vary during the
first N samples after which it is fixed for the remaining part of the prediction
horizon. The merit of this parameterization is that it is particularly simple to
implement. Muske and Rawlings (1993a) have extended this parameterization
to an infinite prediction horizon, Np = ∞, and shown how to compute the
solution of the associated infinite-dimensional quadratic program.

Deterministic Continuous-Time State Space Model

The deterministic model linear discrete-time state space model may be obtained
from a nonlinear model based on physical principles. Such a model may be
stated in terms of ordinary differential equations

ẋ(t) = f(x(t), u(t)) (1.62a)

y(t) = g(x(t)) (1.62b)

for which the corresponding linearized dynamics around the equilibrium point
(xs, us, ys) is

δx(t) = Fδx(t) + Gδu(t) (1.63a)

δy(t) = Cx(t) (1.63b)

with δx(t) = x(t) − xs, δu(t) = u(t) − us, and δy(t) = y(t) − ys. The linear
state space matrices F , G, and C are

F = ∇xf(xs, us)
′ (1.64a)

G = ∇uf(xs, us)
′ (1.64b)

C = ∇xg(xs)
′ (1.64c)

The discretized linearized system (in deviation variables) is

xk+1 = Axk + Buk (1.65a)

yk = Cxk (1.65b)
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and the state space matrices A and B are given by

A = A(Ts) = exp (FTs) (1.66a)

B = B(Ts) =

∫ Ts

0

exp (Fs)Gds (1.66b)

and may be computed using the matrix exponential function

exp

([
F G
0 0

]

Ts

)

=

[
A(Ts) B(Ts)

0 I

]

(1.67)

Stochastic Continuous-Time State Space Model

The stochastic discrete-time linear state space model may be derived from the
linear stochastic differential equation

dx(t) = (Fx(t) + Gu(t)) dt + Hdβ(t) (1.68a)

y(tk) = Cx(tk) + v(tk) (1.68b)

in which β(t) is a standard Wiener process (Jazwinski, 1970; Åström, 1970b)
and v(tk) ∈ Niid(0, R) is independent identically normally distributed mea-
surement noise. The corresponding discrete-time state space model describing
evolution of the mean value and used in the implementation of state space
based predictive controllers may be denoted

xk+1 = Axk + Buk + wk (1.69a)

yk = Cxk + vk (1.69b)

in which the measurement noise vk ∈ Niid(0, R) and process noise wk ∈
Niid(0, Q) are both normally distributed. The matrices A, B, and Q may
be expressed as

A = A(Ts) = exp(FTs) (1.70a)

B = B(Ts) =

∫ Ts

0

exp(Fs)Gds (1.70b)

Q = Q(Ts) =

∫ Ts

0

exp(Fs)HH ′ exp(F ′s)ds (1.70c)

and computed efficiently using the matrix exponential

exp









−F HH ′ 0
0 F ′ I
0 0 0



 t



 =





F1(t) G1(t) H1(t)
0 F2(t) G2(t)
0 0 F3(t)



 (1.71)

and the relations (Moler and Van Loan, 1978; Van Loan, 1978; Sidje, 1998;
Kristensen et al., 2002)

A = A(Ts) = F2(Ts)
′ (1.72a)

B = B(Ts) = G2(Ts)
′G (1.72b)

Q = Q(Ts) = F2(Ts)
′G1(Ts) (1.72c)
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Disturbance Modeling and Offset-Free Control

Closed-loop performance of model predictive control is directly related to model
accuracy. Unmeasured disturbances and modeling error can lead to steady-
state offset unless the predictive control algorithm is designed for these types
of plant-model mismatch. Elimination of steady state offset is achieved in two
ways. The first method is inspired by PI-control and involves modifying the
controller objective to include an integral of the tracking error in the objective
function (Kwakernaak and Sivan, 1972; Franklin et al., 1998). This method of
achieving offset free control leaves the estimator unaffected while the controller
is modified to include an integral term. This method implicitly assumes that the
measured and tracked signals are identical. The second method to eliminate
offset in a system controlled by a predictive controller involves augmenting
the process model by a step disturbance model (Kwakernaak and Sivan, 1972;
Joseph and Brosilow, 1978; Morari and Stephanopoulos, 1980; Franklin et al.,
1998; Muske and Badgwell, 2002; Pannocchia and Rawlings, 2003). In this
approach, the estimator attempts to estimate the system states as well as the
disturbances. Knowledge of the disturbances are applied in the controller to
force a zero steady state tracking error whenever possible.

Consider the discrete-time stochastic linear model

xk+1 = Axk + Buk + wk (1.73a)

yk = Cxk + vk (1.73b)

for which the optimal filter is given by (1.47a) and (1.48a). The optimal state
predictor is given by (1.49a) and (1.53a). Define the tracking error as ek =
yk − rk and the sum of the tracking error, Ik, as

Ik =
k−1∑

j=0

ej (1.74)

which may be expressed recursively as

Ik+1 = Ik + ek I0 = 0 (1.75)

The optimal prediction of the integral of the tracking error is

Îk|k = Ik (1.76a)

Îk+1|k = Ik + ek (1.76b)

Îk+j+1|k = Ik+j|k + (Cx̂k+j|k − r̂k+j|k) j ≥ 1 (1.76c)

and may be used in evaluating the objective function of the predictive controller
augmented by an integral term

φ = 1
2

Np∑

j=0

ê′k+j|kQêk+j|k + 1
2

Np∑

j=0

Î ′k+j|kQI Îk+j|k + 1
2

N−1∑

j=0

∆û′
k+j|kS∆ûk+j|k

(1.77)
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When this objective is applied in a predictive controller, the first term gives
rise to the proportional part of the controller, while the second term in the
objective function gives rise to the integral part of the controller. The third
term in this objective function is used to make the controller well-conditioned.
The predictor applied in this controller has the structure (for j ≥ 1)

[
x̂k+j+1|k

Îk+j+1|k

]

=

[
A 0
C I

] [
x̂k+j|k

Îk+j|k

]

+

[
B
0

]

ûk+j|k +

[
0
−I

]

r̂k+j|k (1.78a)

ŷk+j|k =
[
C 0

]
[
x̂k+j|k

Îk+j|k

]

(1.78b)

êk+j|k = ŷk+j|k − r̂k+j|k (1.78c)

which is particularly simple when r̂k+j|k = 0. Hence, the model predictive
controller with an integral term is implemented by estimating the states of
the nominal model employing a Kalman filter. The integral state update is
computed directly as Ik+1 = Ik + (yk − rk). The predictive controller employs
prediction of the augmented model to compute the optimal controls. The main
disadvantages of the applying integrating states to achieve offset free control
is that extra tuning parameters are introduced and that an anti-windup algo-
rithm may be needed to prevent an unnecessary performance penalty. This
controller fits directly into the structure of the extended linear-quadratic opti-
mal controller.

Prett and Garcia (1988), Muske and Rawlings (1993b), and Muske (1995) sug-
gest a velocity form model predictive controller to achieve offset free control.
They state the velocity model predictive controller for the deterministic system

xk+1 = Axk + Buk (1.79a)

yk = Cxk (1.79b)

as a controller based on the predictor
[
∆xk+1

zk+1

]

=

[
A 0

CA I

] [
∆xk

zk

]

+

[
B

CB

]

∆uk (1.80a)

yk =
[
0 I

]
[
∆xk

zk

]

(1.80b)

and the objective function

φ = 1
2

Np∑

k=0

(yk − rk)′Q(yk − rk) + 1
2

N−1∑

k=0

∆u′
kS∆uk (1.81)

This controller has a similar structure to the model predictive controller with
an integral error term and will obtain offset free control for systems with step
disturbances. In this controller both the state estimator and the regulator are
based on the augmented model. However, from a theoretical perspective this
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construction is problematic as the velocity form of the equivalent stochastic
model (1.73) would be

[
∆xk+1

zk+1

]

=

[
A 0

CA I

] [
∆xk

zk

]

+

[
B

CB

]

∆uk +

[
I 0
C I

] [
∆wk

∆vk+1

]

(1.82a)

yk =
[
0 I

]
[
∆xk

zk

]

(1.82b)

In this model, the process noise at sample k is certainly not independent from
previous or future process noise. Consequently, the standard Kalman filter
would not apply as an optimal estimator and this procedure should just be
considered as an ad hoc methodology for achieving offset free model predictive
control. Pannocchia and Rawlings (2001) list the advantages and disadvantage
of velocity based model predictive control.

The other approach to eliminating steady-state offset involves augmenting the
process model to include a constant step disturbance. The disturbance, which is
estimated from the measured process variables, is generally assumed to remain
constant. Closed-loop model predictive control performance is directly related
to how accurately the disturbance model represents the actual disturbance
entering the process (Francis and Wonham, 1976). Muske and Badgwell (2002)
discuss offset free model predictive control by state augmentation using the
structured disturbance model





xk+1

dk+1

pk+1



 =





A Gd 0
0 I 0
0 0 I









xk

dk

pk



 +





B
0
0



 uk +





wk

ξk

ζk



 (1.83a)

yk =
[
C 0 Gp

]





xk

dk

pk



 + vk (1.83b)

In this model, xk is the states of the process model, dk is used to model input
and state disturbances, and pk is used to model output disturbances. Similarly,
Pannocchia and Rawlings (2003) discuss offset free model predictive control by
disturbance estimation in the unstructured disturbance augmented model

[
xk+1

dk+1

]

=

[
A Bd

0 I

] [
xk

dk

]

+

[
B
0

]

uk +

[
wk

ξk

]

(1.84a)

yk =
[
C Cd

]
[
xk

dk

]

+ vk (1.84b)

One condition for offset free control by disturbance estimation is that the aug-
mented model is detectable such that the Kalman-estimates of the process
states as well as the disturbances approach the true states and disturbances. If
the augmented system is not detectable, offset free control cannot be guaranteed
in general. It should be noted that the results of Muske and Badgwell (2002) as
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well as Pannocchia and Rawlings (2003) are derived for infinite-horizon predic-
tive controllers with a target calculator. As the disturbance dynamics cannot
be affected by the regulator, only the process model is used as predictor in the
regulator part of the predictive controller and the disturbances are taken as con-
stants. This situation is another case in which the extended linear quadratic
regulator formulation (1.3) with linear terms in the objective function and affine
terms in the state dynamics facilitates a transparent implementation.

The disturbance models may be identified as part of the process. However, it
is often better to regard them as a controller device used to have offset free
predictive control. The disadvantage of requiring offset free model predictive
control is that the system may be destabilized in face of uncertain process
models (c.f. Pannocchia and Rawlings, 2003). Furthermore, there is no general
method to guarantee offset free inferential control unless the inferred variables
are known deductively to be in the subspace of the measured variables.

1.1.5 Continuous-Time State Space Models

Predictive control based on nonlinear physical based models have appeared in
recent years (Leineweber, 1999; Qin and Badgwell, 2000; Diehl et al., 2001;
Binder, 2002; Tenny, 2002). The application of nonlinear physical based mod-
els is facilitated by advances in modeling, experimental planning, and model
identification as well as improved algorithms for estimation and predictive con-
trol of nonlinear models enabling real-time solutions. The success of each class
of models for predictive control is to a large extent determined by the ease
and state-of-art of modeling, experimental planning, identification, parame-
ter estimation, state estimation, and control for a particular model class. For
continuous-time systems integration software is needed for computation of the
predictions as well. Therefore, the availability of such algorithms and software
also influences the extent to which predictive control can be applied to these
type of models (Young, 1981).

A large class of physical systems may be modeled deductively using systems of
ordinary differential equations. The measurement of these systems is sampled
at discrete-times such the system may be represented as

ẋ(t) = f(x(t), u(t), θ) (1.85a)

yk = g(xk, θ) + ek (1.85b)

in which ek may be interpreted as measurement noise as well residual due to
system-model mismatch. The parameters in such systems are obtained using
nonlinear regression (Bard, 1974; Seber and Wild, 1989), while the state es-
timation and predictive control may be employed using SQP algorithms for
dynamic nonlinear optimization (Tenny, 2002).

Chemical systems which are partially governed by equilibrium processes are
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more conveniently modeled deductively by DAE system of index one

ẋ(t) = f(x(t), z(t), u(t), θ) (1.86a)

0 = h(x(t), z(t), θ) (1.86b)

yk = g(xk, zk, θ) + ek (1.86c)

rather than ordinary differential equations. Software has appeared for para-
meter estimation and optimal control of index one DAE systems (Leineweber,
1999; Diehl et al., 2001). In the ODE models as well as the DAE models the
stochastics seems to be restricted to residuals, ek, obtained when fitting the
model to data.

To overcome such shortcomings, Melgaard (1994) and Kristensen (2002) sug-
gested an approach in which the dynamic evolution of the system is described
by stochastic ordinary differential equations

dxt = f(xt, ut, θ)dt + σ(ut, θ)dwt (1.87a)

yk = g(xk, uk, θ) + vk (1.87b)

Kristensen et al. (2002) provide software for parameter estimation in this class
of models. This software is able to compute maximum a posteriori estimates
of the parameters based on an extended Kalman filter predictor compatible
with the continuous-discrete stochastic system (1.87). While the maximum a
posteriori estimate based on the extended Kalman filter is not the true poste-
riori estimate of the stochastic system (1.87), Kristensen (2002) argue that it
is a good approximation. In relation to predictive control, it is good prediction
capabilities of the estimator and predictor that is of prime importance. The
true system parameters are of less interest as long the as estimator has good
prediction capabilities.

However, at present nonlinear stochastic predictive control is limited to being a
research topic with challenges such as real-time computability. The parameter
estimation in stochastic differential equations has been reviewed by Nielsen
et al. (2000).

1.1.6 Neural Network Models

Fundamental continuous-time models tend to be very expensive to construct for
most industrial processes. Therefore, in light of the success of linear empirical
models for predictive control, it seems natural to consider black-box empirical
models for nonlinear model predictive control (Sjöberg et al., 1995; Lee, 2000).
The empirical black box model may be denoted as

yk+1 = F (φk, θ) + ek (1.88)

in which yk is the measured output at time index k, φk is a regressor at time
k, θ is the parameter vector, and ek is the residuals. {ek} is usually assumed
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to be white noise. F is the nonlinear empirical model. The regressor, φk, may
as in ARX-models consist of past measurements and inputs

φk =
[
y′

k y′
k−1 . . . y′

k−ny
u′

k u′
k−1 . . . u′

k−nu

]′
(1.89a)

or of past measurements, inputs, and residuals

φk =
[
y′

k . . . y′
k−ny

u′
k . . . u′

k−nu
e′k . . . e′k−ne

]′
(1.89b)

as in ARMAX models. The predictor given by these models is

ŷk+1|k = F (φk, θ) (1.90a)

ŷk+j+1|k = F (φ̂k+j|k, θ) j = 1, 2, . . . (1.90b)

in which the predicted regression vector, φ̂k+j|k, is given by the predicted mea-
surements and inputs as well as past measurements and inputs. In example,
for the NARMAX structure

φ̂k+j|k =
[

ŷ′
k+j|k . . . ŷ′

k+j−ny|k
û′

k+j|k . . . û′
k+j−nu

ê′k+j|k . . . ê′k+j−ne|k

]′ (1.91)

in which1

ŷk+i|k = yk+i i ≤ 0 (1.92a)

ûk+i|k = uk+i i ≤ 0 (1.92b)

êk+i|k =

{

yk+i+1 − F (φk+i, θ) i < 0

0 i ≥ 0
(1.92c)

For the multilayer perceptron neural network with one hidden layer, the em-
pirical nonlinear function, F (φk, θ) =

[
F1(φk, θ) F2(φk, θ) . . . Fp(φk, θ)

]′
,

is given by (Nørgaard et al., 2000)

xj(φ(k), θ) = χj

( nφ∑

t=1

w′
jtφt(k) + wj0

)

j = 1, 2, . . . , nh

(1.93a)

Fi(φ(k), θ) = αiχi





nh∑

j=1

Wijxj(φ(k), θ) + Wi0



 + βi i = 1, 2, . . . , p (1.93b)

in which φ(k) = φk ∈ R
nφ , the parameter vector θ consists of the weights, wjt

and Wij , as well as αi and βi. nh is the number of hidden layers. The basis

1This is an ad hoc predictor and not a general optimal predictor for (1.88). However, the
idea is to estimate the parameters θ such that the estimated structure is the predictor (1.91)
rather than the model.
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functions used to model the perceptrons in the neural network is usually the
sigmoid function

χ(x) =
1

1 + exp(−x)
(1.94)

or the hyperbolic tangent function

χ(x) = tanh(x) =
exp(x) − exp(−x)

exp(x) + exp(−x)
(1.95)

The neural network model is able to provide excellent control when the operat-
ing space explored by the controller is within the operating space on which the
neural network has been trained. However, in cases for which the controller
drives the system to an operating space on which the model has not been
trained, the neural network model generally has poor predictive performance.

Piché et al. (2000) have implemented and commercialized a neural network
predictive controller different from the neural network predictive controller de-
scribed above. Their predictive controller applies a neural network trained on
historical data to predict the steady states. The prediction applied by the pre-
dictive controller is based on a linear input-output model gain-scheduled with
the static neural network model (Qin and Badgwell, 2000).

1.2 Prediction Horizons and Stability

Stability issues have motivated formulation of model predictive controllers using
an infinite horizon. Mayne et al. (2000) summarize the major nominally stabi-
lizing formulations of model predictive control and show that the infinite hori-
zon approximation is an important ingredient in these formulations. LaSalle
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Figure 1.1. Some basis functions used in neural networks. Left: f(x) = 1/(1+e−x).
Right: f(x) = tanh(x)
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(1976, 1986) and Vidyasagar (1993) provide an introductory description of the
stability issues and methods for stability analysis. Scokaert et al. (1997) pro-
vide a nice collection of discrete-time stability results of relevance to model
predictive control.

In this section, the major state-space formulations of model predictive control
for linear systems are summarized. The formulations with guaranteed nom-
inal stability attempts to approximate the constrained infinite horizon linear
quadratic regulation problem.

1.2.1 Finite-Horizon Optimal Regulation and Control

The finite horizon model predictive controller expressed by state space models
may be expressed as (Bortolotto, 1985; Bortolotto and Jørgensen, 1986)

min φ = 1
2

M∑

k=0

x′
kQxk + u′

kRuk + 1
2

N∑

k=M+1

x′
kQxk (1.96a)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . ,M (1.96b)

Cxk + Duk ≥ b k = 0, 1, . . . ,M (1.96c)

xk+1 = Axk k = M + 1,M + 2, . . . , N − 1 (1.96d)

Cxk ≥ b k = M + 1,M + 2, . . . , N (1.96e)

This program is a finite-dimensional quadratic program and may be solved
using standard software for quadratic programs. However, the application of
this model predictive controller can destabilize stable systems if the prediction
horizon, N (N > M), is too short.

1.2.2 Infinite-Horizon Optimal Regulation

Kalman (1960a) demonstrated that optimality is not sufficient for stability.
Rather, under certain conditions (stabilizability and detectability) infinite hori-
zon optimal controllers are stabilizing. An appropriate Lyapunov function for
establishing stability is the value function associated with the infinite horizon
optimal control problem. The infinite horizon linear quadratic optimal control
problem

min φ = 1
2

∞∑

k=0

x′
kQxk + u′

kRuk (1.97a)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . (1.97b)

has the optimal solution

uk = Kxk (1.98)
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in which the gain K is computed using the Riccati equation (Bittani et al.,
1991)

Π = Q + A′ΠA − A′ΠB(R + B′ΠB)−1B′ΠA (1.99a)

K = −(R + B′ΠB)−1B′ΠA (1.99b)

The optimal value of (1.97) is

V (x0) =

{

1
2

∞∑

k=0

x′
k(Q + K ′RK)xk : xk+1 = (A + BK)xk

}

= 1
2x′

0Πx0

(1.100)

The stabilizing property of the infinite horizon linear quadratic optimal con-
troller has motivated study of an infinite horizon constrained linear quadratic
optimal controller

min φ = 1
2

∞∑

k=0

x′
kQxk + u′

kRuk (1.101a)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . (1.101b)

Cxk + Duk ≥ b k = 0, 1, . . . (1.101c)

This controller is stabilizing under certain conditions (Mayne et al., 2000).
However, (1.101) is an infinite dimensional quadratic program which is not
amenable to direct numerical solution. To be numerically solvable it must
be transformed to an equivalent finite dimensional quadratic program. The
transformation of the infinite stage objective function to a finite state objective
function is facilitated by the solution of the unconstrained linear quadratic
optimal control problem. The infinite number of constraints may be represented
by a finite number of constraints using the theory of maximal output admissible
sets developed by Gilbert and Tan (1991).

The maximal output admissible set defined as

O∞(A,C, b) = {x0 ∈ R
n|xk+1 = Axk, Cxk ≥ b, k = 0, 1, . . .} (1.102)

may be represented by a finite set of constraints (Gilbert and Tan, 1991)

O∞(A,C, b) = Ot(A,C, b)

= {x0 ∈ R
n|xk+1 = Axk, Cxk ≥ b, k = 0, 1, . . . , t} (1.103)

if origo is in the interior of Y = {x ∈ R
n : Cx ≥ b}, Y is bounded, A is stable,

and (A,C) is observable. The maximal output admissible set and the theory
for its construction facilitates a finite representation of an infinite number of
constraints. It may therefore be applied in construction of an approximate
numerical solution of the infinite horizon constrained linear quadratic optimal



1.2. Prediction Horizons and Stability 33

controller (1.101). The different approximations of the infinite horizon con-
strained linear quadratic optimal controller differ in the way they parameterize
the tail, {xk+1, uk}∞k=N , of the state-control trajectory {xk, uk}∞k=0. This influ-
ences how the cost-to-go

1
2

∞∑

k=N

x′
kQxk + u′

kRuk

of the objective function

φ = 1
2

∞∑

k=0

x′
kQxk + u′

kRuk

= 1
2

N−1∑

k=0

x′
kQxk + u′

kRuk + 1
2

∞∑

k=N

x′
kQxk + u′

kRuk

is computed. The chosen parameterization also affects the representation of the
maximal output admissible set. Different parameterizations that have appeared
in the literature are presented in the following sections.

1.2.2.1 MPC with a Terminal Equality Constraint

Keerthi (1986) and Keerthi and Gilbert (1988) constructed an approximate
solution to the infinite horizon constrained linear quadratic regulation problem
(1.97) by employing the parameterization

xN = 0 (1.104a)

uk = 0 k = N,N + 1, . . . (1.104b)

In this parameterization, the endpoint, xN , is fixed at the steady state. This
implies that the states at all subsequent time points remain at the steady state

xk = 0 k = N + 1, N + 2, . . . (1.105)

With this parameterization, the infinite horizon linear quadratic regulation
problem (1.97) may be formulated as the finite dimensional quadratic program

min
{xk+1,uk}

N−1
k=0

φ = 1
2

N−1∑

k=0

x′
kQxk + u′

kRuk (1.106a)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . , N − 1 (1.106b)

Cxk + Duk ≥ b k = 0, 1, . . . , N − 1 (1.106c)

xN = 0 (1.106d)
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In contrast to the infinite horizon constrained linear quadratic regulation prob-
lem (1.97), the endpoint constrained model predictive control problem is com-
putable. Furthermore, this predictive controller is nominally stabilizing if a
feasible solution exists (Keerthi and Gilbert, 1988). A feasible solution exists,
provided that the horizon, N , is selected sufficiently long and a feasible solution
exists to the infinite horizon constrained linear quadratic regulation problem
exists.

The feasibility issue is also a major bottleneck for the implementation of the
end-point constrained model predictive controller (1.106). For a given N , the
problem (1.106) may be infeasible and the controller must be equipped with
the appropriate logic to handle such situations and increase N or relax the
problem formulation.

The main advantage of the predictive controller (1.106) is its conceptual and
computational simple construction. Opposed to other infinite horizon predic-
tive controllers, neither the maximal output admissible set nor the cost-to-go
matrix need to be computed. As N → ∞ the solution of (1.106) approaches the
solution of the infinite horizon constrained linear quadratic regulation problem
(1.97). The simple formulation of the predictive controller (1.106) comes at
the price of loosing the optimal control problem structure. (1.106) is not a
standard optimal control problem. Rather, it is a two-point boundary value
problem.

1.2.2.2 Muske-Rawlings Parameterization

For stable systems, Muske and Rawlings (1993a) applied the parameterization

uk = 0 k = N,N + 1, . . . (1.107)

such that the infinite horizon constrained linear quadratic regulation problem
(1.101) can be formulated as

min φ = 1
2

(
N−1∑

k=0

x′
kQxk + u′

kRuk

)

+ 1
2

∞∑

k=N

x′
kQxk (1.108a)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . , N − 1 (1.108b)

xk+1 = Axk k = N,N + 1, . . . (1.108c)

Cxk + Duk ≥ b k = 0, 1, . . . , N − 1 (1.108d)

Cxk ≥ b k = N,N + 1, . . . (1.108e)

The end predictions, xk+1 = Axk for k ≥ N , implies xk = Ak−NxN for k ≥ N
such that

∞∑

k=N

x′
kQxk = x′

N

(
∞∑

k=N

(Ak−N )′QAk−N

)

xN = x′
NPxN (1.109)
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in which P may be computed from the Lyapunov equation (Gajic and Qureshi,
1995)

P =
∞∑

k=N

(A′)k−NQAk−N =
∞∑

j=0

(A′)jQAj = Q + A′PA (1.110)

Consequently, for stable systems, the objective function of (1.101) may be
represented as a finite sum. Similarly, the constraints xk+1 = Axk and Cxk ≥ b
for k ≥ N is equivalent with the maximal output admissible set, O∞(A,C, b) =
Ot(A,C, b) such that the constrained infinite horizon linear quadratic regulation
problem (1.108) may be expressed as a finite dimensional quadratic program

min
{xk+1,uk}

N−1
k=0

φ = 1
2

(
N−1∑

k=0

x′
kQxk + u′

kRuk

)

+ 1
2x′

NPxN (1.111a)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . , N − 1 (1.111b)

Cxk + Duk ≥ b k = 0, 1, . . . , N − 1 (1.111c)

xN ∈ O∞(A,C, b) (1.111d)

The solution of the infinite horizon linear quadratic optimal control problem
may for stable systems be approximated by solution of (1.108) which is obtained
by solution of the finite dimensional quadratic program (1.111).

For unstable systems, the infinite horizon controller using the parameterization
uk = 0 for k ≥ N must be modified slightly. A real Schur decomposition of the
state transition matrix, A, may be used to decompose the system into a stable
and an unstable subsystem. Let the real Schur decomposition of A be

Z ′AZ =

[
Ās Ā12

0 Āu

]

Z =
[
Zs Zu

]
(1.112)

in which Z is an orthogonal matrix produced in the real Schur decomposition
of A (Golub and Van Loan, 1996). Using the eigenvalues produced by the real
Schur decomposition, the matrices resulting from the Schur decomposition is
partitioned such that one block is associated with the stable subsystem and
another block is associated with the unstable subsystem.

Using the similar transformation xk = Zzk and the convention zk =

[
zs
k

zu
k

]

implies that the system dynamics may be expressed as

[
zs
k+1

zu
k+1

]

=

[
Ās Ā12

0 Āu

] [
zs
k

zu
k

]

+

[
B̄s

B̄u

]

uk (1.113)

in which [
Ās Ā12

0 Āu

]

= Z ′AZ

[
B̄s

B̄u

]

= Z ′B (1.114)



36 Introduction

The transformed state space system along with the parameterization

zu
N = 0 (1.115a)

uk = 0 k = N,N + 1, . . . (1.115b)

implies zu
k = 0 for k ≥ N . This parameterization is called the Muske-Rawlings

parameterization for unstable systems. With this parameterization, the ap-
proximation of the infinite-horizon constrained linear quadratic regulation prob-
lem becomes

min φ = 1
2

N−1∑

k=0

[
zs
k

zu
k

]′ [
Q̄ss Q̄su

Q̄us Q̄uu

] [
zs
k

zu
k

]

+ u′
kRuk + 1

2

∞∑

k=N

(zs
k)′Q̄ssz

s
k (1.116a)

s.t.

[
zs
k+1

zu
k+1

]

=

[
Ās Ā12

0 Āu

] [
zs
k

zu
k

]

+

[
B̄s

B̄u

]

uk k = 0, 1, . . . , N − 1 (1.116b)

zs
k+1 = Āsz

s
k k = N,N + 1, . . . (1.116c)

[
C̄s C̄u

]
[
zs
k

zu
k

]

+ Duk ≥ b k = 0, 1, . . . , N − 1 (1.116d)

C̄sz
s
k ≥ b k = N,N + 1, . . . (1.116e)

zu
N = 0 (1.116f)

in which

[
C̄s C̄u

]
= CZ

[
Q̄ss Q̄su

Q̄us Q̄uu

]

= Z ′QZ (1.117)

Assume that origo is in the interior of the set
{
C̄sz

s
k ≥ b

}
, i.e. that b < 0. Then

the infinite dimensional mathematical program (1.116) may be represented as
a finite dimensional mathematical program

min φ = 1
2

N−1∑

k=0

x′
kQxk + u′

kRuk + 1
2x′

NPxN (1.118a)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . , N − 1 (1.118b)

Cxk + Duk ≥ b k = 0, 1, . . . , N − 1 (1.118c)

Z ′
sxN ∈ O∞(Z ′

sAZs, CZs, b) (1.118d)

Z ′
uxN = 0 (1.118e)

in which

P =

[
P̄ 0
0 0

]

P̄ = Q̄ss + Ā′
sP̄ Ās (1.119)

P̄ is computed from the Lyapunov equation associated with the stable subspace.

The Muske-Rawlings parameterized model predictive controller for linear sta-
ble and unstable systems are nominally stabilizing (Rawlings and Muske, 1993;
Muske and Rawlings, 1993a,b). The Muske-Rawlings parameterization for un-
stable systems may be thought of as a combination of the terminal constrained
MPC and the Muske-Rawlings MPC for stable systems.
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1.2.2.3 Dual Mode Parameterization

Another and often applied parameterization of the tail trajectory is

uk = Lxk k = N,N + 1, . . . (1.120)

in which L is some matrix that stabilizes xk+1 = Axk + Buk. In this case, the
constrained optimal control problem may be expressed by the infinite dimen-
sional mathematical program

min φ = 1
2

(
N−1∑

k=0

x′
kQxk + u′

kRuk

)

+ 1
2

∞∑

k=N

x′
k(Q + L′RL)xk (1.121a)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . , N − 1 (1.121b)

xk+1 = (A + BL)xk k = N,N + 1, . . . (1.121c)

Cxk + Duk ≥ b k = 0, 1, . . . , N − 1 (1.121d)

(C + DL)xk ≥ b k = N,N + 1, . . . (1.121e)

The maximal output admissible set

O∞((A + BL), (C + DL), b) =

{xN ∈ R
n : xk+1 = (A + BL)xk, (C + DL)xk ≥ b, k = N,N + 1, . . .}

(1.122)

may be represented by a finite set of constraints (Gilbert and Tan, 1991). The
solution, P , of the Lyapunov equation

P = (Q + L′RL) + (A + BL)′P (A + BL) (1.123)

can be used to compute the cost-to-go as

{
∞∑

k=N

x′
k(Q + L′RL)xk : xk+1 = (A + BL)xk

}

= x′
NPxN (1.124)

Consequently, the infinite dimensional program (1.121) may be represented by
the equivalent finite dimensional quadratic program

min φ = 1
2

(
N−1∑

k=0

x′
kQxk + u′

kRuk

)

+ 1
2x′

NPxN (1.125a)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . , N − 1 (1.125b)

Cxk + Duk ≥ b k = 0, 1, . . . , N − 1 (1.125c)

xN ∈ O∞((A + BL), (C + DL), b) (1.125d)

As (1.125) is finite dimensional it can be solved using quadratic programming
solution techniques. The parameterization (1.120) of (1.121) has been referred
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to as a dual-mode controller (Mayne and Michalska, 1990). A special and
important case of the dual mode parameterization is to select the matrix L as
the solution, K, of the LQR problem, i.e.

uk = Kxk (1.126)

With this parameterization, the infinite horizon linear quadratic regulation
problem (1.101) may be expressed as

min φ = 1
2

(
N−1∑

k=0

x′
kQxk + u′

kRuk

)

+ 1
2

∞∑

k=N

x′
k(Q + K ′RK)xk (1.127a)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . , N − 1 (1.127b)

xk+1 = (A + BK)xk k = N,N + 1, . . . (1.127c)

Cxk + Duk ≥ b k = 0, 1, . . . , N − 1 (1.127d)

(C + DK)xk ≥ b k = N,N + 1, . . . (1.127e)

and converted to a finite dimensional quadratic program

min φ = 1
2

(
N−1∑

k=0

x′
kQxk + u′

kRuk

)

+ 1
2x′

NΠxN (1.128a)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . , N − 1 (1.128b)

Cxk + Duk ≥ b k = 0, 1, . . . , N − 1 (1.128c)

xN ∈ O∞((A + BK), (C + DK), b) (1.128d)

using the maximal output admissible set and the fact that the cost-to-go matrix,
P , in this special case equals the solution, Π, of the Riccati equation (1.99a)
due to the selection of K.

1.2.2.4 Constrained Linear Quadratic Regulation

The solutions of the finite dimensional mathematical programs (1.111), (1.125),
and (1.128) are all approximations to the solution of the infinite horizon con-
strained linear quadratic regulation problem (1.101). Chmielewski and Manou-
siouthakis (1996) and Scokaert and Rawlings (1998) independently developed
numerical solution procedures for the exact solution of the infinite horizon
constrained linear quadratic regulation problem (1.101). The procedure of
Scokaert and Rawlings (1998) for solution of (1.101) requires construction of
the maximal output admissible set O∞((A + BK), (C + DK), b) in which
K is the gain computed as part of the solution of the unconstrained LQR
problem (1.97). As the procedure requires the maximal output admissible
set O∞((A + BK), (C + DK), b) this set must be computable. As explained
by Gilbert and Tan (1991) this set is computable if origo is in the interior
of Y = {x ∈ R

n : (C + DK)x ≥ b}, Y is bounded, A + BK is stable, and
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((C + DK), (A + BK)) is observable. Under these assumptions, Scokaert and
Rawlings (1998) noted that if x0 ∈ O∞((A + BK), (C + DK), b) then the so-
lution of the infinite horizon constrained linear quadratic regulation problem
(1.101) is identical to the solution of the infinite horizon unconstrained linear
quadratic regulation problem (1.97). Consequently, the solution of the finite
dimensional mathematical program

min φ = 1
2

(
N−1∑

k=0

x′
kQxk + u′

kRuk

)

+ 1
2x′

NΠxN (1.129a)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . , N − 1 (1.129b)

Cxk + Duk ≥ b k = 0, 1, . . . , N − 1 (1.129c)

with the implicit tail parameterization

uk = Kxk k = N,N + 1, . . . (1.130)

is identical to the solution of the infinite horizon constrained linear quadratic
regulation problem (1.101) provided x∗

N ∈ O∞((A + BK), (C + DK), b). Fur-
thermore, Scokaert and Rawlings (1998) proved that there exists a finite N
such that x∗

N ∈ O∞((A+BK), (C +DK), b) provided origo is in the interior of
the maximal output admissible set. By these observations, the infinite horizon
constrained linear quadratic regulation problem (1.101) may be solved by the
procedure in the following proposition

Proposition 1.2.1 (Constrained LQR Solution Algorithm)
1. Compute Π and K using (1.99).

2. Construct a finite representation of O∞((A + BK), (C + DK), b) using the
algorithm of Gilbert and Tan (1991).

3. Choose a finite horizon N0. Set N = N0.

4. Solve (1.129). Denote the corresponding optimal solution π∗
N .

5. If x∗
N ∈ O∞((A+BK), (C +DK), b) then stop. The optimal solution of (1.101)

is π∗
N .

6. Increase N and go to step 4.

1.2.2.5 Active Steady State Constraints

The algorithm proposed by Scokaert and Rawlings (1998) presumes that origo
is in the interior of the feasible region, Y. This assumption precludes systems
with constraints active at steady state. When state constraints are active at
steady state, arbitrarily small constant disturbances would render the hard
constrained problem infeasible, which means that there is no feasible sequence
that brings the system to the origin without persistently violating the active
constraints permanently. Therefore it seems reasonable by definition of the
control problem to assume that state constraints are not active at steady state.
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However, input constraint are frequently active at steady state in order to re-
ject large disturbances and maximize production. Rao and Rawlings (1999)
constructed suboptimal solutions for situations with active steady state con-
straints. The inputs at a steady state constraint was fixed at their bounds in
computation of the cost-to-go and associated gain matrix. Pannocchia et al.
(2002) provided a rigorous solution of the infinite horizon constrained linear
quadratic optimal regulation problem without the assumption that the steady
inputs are in the interior of the feasible region. This implies that they can
handle the situation with active input constraints rigorously. General con-
straints are still not allowed to be active at steady state. Pannocchia et al.
(2002) developed their algorithm for the following infinite horizon constrained
linear quadratic regulation problem

min φ = 1
2

∞∑

k=0

x′
kQxk + u′

kRuk (1.131a)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . (1.131b)

Cxk + Duk ≥ b k = 0, 1, . . . (1.131c)

uk ≥ 0 k = 0, 1, . . . (1.131d)

This program includes an explicit representation (1.131d) of input constraints.
Denote the feasible region of (1.131) as Ω. An upper bound, φ∗

u(N) ≥ φ∗, of
the value function of (1.131) may be generated by solution of

min φu(N) = 1
2

∞∑

k=0

x′
kQxk + u′

kRuk (1.132a)

s.t. xk+1 = Axk + Buk (1.132b)

Cxk + Duk ≥ b (1.132c)

uk ≥ 0 (1.132d)

Euk = 0 k = N,N + 1, . . . (1.132e)

as the feasible region, Ωu(N), of (1.132) is a subset of the feasible region, Ω, of
(1.131). The matrix E is selected such that all inputs whose bounds are active
at steady state are zeroed. The infinite-dimensional mathematical program
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(1.132) may be formulated as

min φu(N) = 1
2

N−1∑

k=0

x′
kQxk + u′

kRuk + 1
2

∞∑

k=N

x′
kQxk + ū′

kR̄ūk (1.133a)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . , N − 1 (1.133b)

xk+1 = Axk + B̄ūk k = N,N + 1, . . . (1.133c)

Cxk + Duk ≥ b k = 0, 1, . . . , N − 1 (1.133d)

Cxk + D̄ūk ≥ b k = N,N + 1, . . . (1.133e)

uk ≥ 0 k = 0, 1, . . . , N − 1 (1.133f)

ūk ≥ 0 k = N,N + 1, . . . (1.133g)

in which the barred quantities are associated with the inputs whose bounds are
not active at steady state. This program may be solved using the algorithm
of Scokaert and Rawlings (1998) for constrained linear quadratic regulation
problems with origo in the interior of the feasible region. By construction of
ūk and by assumption with respect to the constraints Cxk + Duk ≥ b, origo
is in the interior of the feasible region of (1.133) such that the prerequisites
for applying the Scokaert-Rawlings algorithm are indeed met. A conceptual
alternative for solution of (1.132) is presented by Rao and Rawlings (1999).

A lower bound, φ∗
l (N) ≤ φ∗, of the value function of (1.131) may be obtained

by solution of

min φl(N) = 1
2

∞∑

k=0

x′
kQxk + u′

kRuk (1.134a)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . (1.134b)

Cxk + Duk ≥ b k = 0, 1, . . . , N − 1 (1.134c)

uk ≥ 0 k = 0, 1, . . . , N − 1 (1.134d)

as the feasible region, Ωl(N), of (1.134) is related to the feasible region, Ω, of
(1.131) by: Ωl(N) ⊃ Ω. Numerically, the solution of (1.134) is obtained by
solution of the equivalent finite dimensional quadratic program

min φl(N) = 1
2

N−1∑

k=0

x′
kQxk + u′

kRuk + 1
2x′

NΠxN (1.135a)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . , N − 1 (1.135b)

Cxk + Duk ≥ b k = 0, 1, . . . , N − 1 (1.135c)

uk ≥ 0 k = 0, 1, . . . , N − 1 (1.135d)

in which Π is computed as the solution of the discrete-time Riccati equation
(1.99a). The sequence {φ∗

l (N)} is a non-decreasing sequence that approaches
φ∗ as N → ∞. Similarly, the sequence {φ∗

u(N)} is a non-increasing sequence
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that approaches φ∗ as N → ∞. The convergence of φ∗
l (N) and φ∗

u(N) to φ∗

and the convexity of the involved optimization problems are used to establish a
guaranteed accuracy on the input signal u∗

0(N) computed by solution of (1.132).
The accuracy of u∗

0(N) compared to the optimal solution u∗
0 is given by the

expression

‖u∗
0(N) − u∗

0‖ ≤ 2

α
(φ∗

u(N) − φ∗
l (N)) (1.136)

in which α is a positive constant: α ≥ λmin(R) > 0.

1.2.3 Transcription to the Regulation Problem

Most process control applications are not only regulation problems but in ad-
dition to being regulation problems also either target tracking problems or
disturbance rejection problems. In the target tracking problem, the actuators
{uk} are computed such that a given reference signal {rk} is tracked. In the
disturbance rejection problem, the actuators {uk} is computed to compensate
for estimated or measured disturbances {dk}. The target tracking problem as
well as the disturbance rejection problem contain the regulation problem as
well. Qualitatively, the regulation problem can be regarded as selection of the
actuator values {uk} such that a perturbed state x0 is brought back to origo.
The general infinite-horizon linear-quadratic optimal control problem contain-
ing the regulation problem, the target tracking problem and the disturbance
rejection problem may be formulated as

min φ = 1
2

∞∑

k=0

(yk − rk)′Qy(yk − rk) + (uk − ū)′R(uk − ū) (1.137a)

s.t. xk+1 = Axk + Buk + Edk (1.137b)

yk = Cxk (1.137c)

Fxk + Guk + Hdk ≥ b (1.137d)

in which {rk} is a specified set of output targets and {dk} is a given estimated
sequence of disturbances. It is assumed that the the output reference trajectory
reaches some constant value, rs, and that the disturbance trajectory reaches
some constant value, ds

{rk} = {r0, r1, . . . , rN−1, rs, rs, . . .} (1.138a)

{dk} = {d0, d1, . . . , dN−1, ds, ds, . . .} (1.138b)

The stage costs of the objective function are also denoted

gk(yk, uk) = 1
2 (yk − rk)′Qy(yk − rk) + (uk − ū)′R(uk − ū) (1.139)

such that we may express the objective function as

φ =

∞∑

k=0

gk(yk, uk) (1.140)
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The solution of the general infinite-horizon linear quadratic optimal control
problem (1.137) is solved by decomposing the problem into a steady-state prob-
lem and a regulation problem (Muske and Rawlings, 1993a; Muske, 1997; Rao
and Rawlings, 1999; Jørgensen and Rawlings, 2000). The steady-state problem
of (1.137) may be formulated as (Muske, 1997)

min
us,xs,ys

gs(ys, us) = 1
2 (ys − rs)

′Qy(ys − rs) + 1
2 (us − ū)′R(us − ū) (1.141a)

s.t. xs = Axs + Bus + Eds (1.141b)

ys = Cxs (1.141c)

Fxs + Gus + Hds ≥ b (1.141d)

rs and ds are the given steady state output reference and disturbance, respec-
tively. Given the optimal steady state values (us, xs, ys) and the steady state
disturbance, ds, the deviation variables may be defined as

wk = xk − xs (1.142a)

vk = uk − us (1.142b)

zk = yk − ys (1.142c)

ξk = dk − ds (1.142d)

Define the quantities q̄k and sk as

q̄k = Qy(ys − rk) (1.143a)

sk = R(us − ū) (1.143b)

and observe that they are completely known when the steady state problem
(1.141) has been solved. Using the deviation variables as well as q̄k and sk, the
objective function, φ, of (1.137) may be expressed as

φ = 1
2

∞∑

k=0

(yk − rk)′Qy(yk − rk) + (uk − ū)′R(uk − ū)

= 1
2

∞∑

k=0

[(yk − ys) + (ys − rk)]′Qy[(yk − ys) + (ys − rk)]

+ [(uk − us) + (us − ū)]′R[(uk − us) + (us − ū)]

= 1
2

∞∑

k=0

[z′kQyzk + v′
kRvk + 2q̄′kzk + 2s′kvk

+ (ys − rk)′Qy(ys − rk) + (us − ū)′R(us − ū)]

=

∞∑

k=0

[
1
2 (z′kQyzk + v′

kRvk + 2q̄′kzk + 2s′kvk) + gs(ys, us)
]

(1.144)

This objective function may be infinite for all feasible control trajectories. How-
ever, by subtracting the optimal steady-state costs it is conjectured that it can
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be made finite at least for the optimal solution (Carlson et al., 1991; Jørgensen
and Rawlings, 2000; Bonné et al., 2003)

φ̃ =

∞∑

k=0

gk(yk, uk) − gs(ys, us)

= 1
2

∞∑

k=0

z′kQyzk + v′
kRvk + 2q̄′kzk + 2s′kvk

= 1
2

∞∑

k=0

w′
kQwk + v′

kRvk + 2q′kwk + 2s′kvk

(1.145)

in which we have applied the parameter definitions

Q = C ′QyC qk = C ′q̄k (1.146)

In terms of deviation variables, the general infinite horizon linear quadratic
optimal control problem (1.137) may be expressed as

min φ =
∞∑

k=0

[
1
2 (w′

kQwk + v′
kRvk + 2q′kwk + 2s′kvk) + gs(ys, us)

]
(1.147a)

s.t. wk+1 = Awk + Bvk + Eξk (1.147b)

Fwk + Gvk + Hξk ≥ 0 (1.147c)

The objective function in this problem may be infinite for all admissible tra-
jectories (Jørgensen and Rawlings, 2000). It is conjectured that the costs are
finite if the optimal steady state value are subtracted from the stage costs in
the above objective function. This conjecture requires that the optimal solu-
tion of the general infinite horizon linear quadratic optimal control problem
converges sufficiently fast towards the optimal steady state. The subtraction of
a constant, in this case gs(ys, us), at each stage in the objective function does
not influence the solution of the dynamic regulation problem. By application
of the solution of the steady state problem, the deviation variables are formed
such that the regulation problem may be formulated as

min φ̃ = 1
2

∞∑

k=0

w′
kQwk + v′

kRvk + 2q′kwk + 2s′kvk (1.148a)

s.t. wk+1 = Awk + Bvk + Eξk (1.148b)

Fwk + Gvk + Hξk ≥ 0 (1.148c)

Consider the case in which the output reference is constant, rk = rs for all
k, and the disturbance is constant, ξk = ds − ds = 0 for all k. For the case
in which no inequality constraints are active at steady state, the linear terms
in the objective function of (1.148) vanishes at the optimal solution. As illus-
trated in figure 1.2, the linear terms may either vanish because ys = rs and
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Figure 1.2. Illustration of the 3 different principle situations determining the ex-
istence of linear terms in the infinite horizon general linear quadratic optimal
control problem. The first axis until the gray shaded area represents the admis-
sible space. The crosses represents set-points which may be unreachable. In the
left figure, the setpoint is reachable and the linear terms vanish as target value
equals the reached value at steady state. In the middle figure, the set point is
unreachable. However, at the optimal solution no constraints are active at steady
state and therefore the setpoint error vector is orthogonal (conjugate) to the op-
timal solution. This orthogonality (conjugacy) implies that the linear terms do
not have any practical effect on the solution as they will be zero at the optimal
solution. In the third case, illustrated by the right figure, the set point is not
reachable and a constraint is active at steady state. This implies that the linear
terms in the objective function will be non-zero at the optimal solution and have
an effect on the optimal solution.

us = ū such that the coefficients of the linear terms are zero, or due to the or-
thogonality property of optimal solutions in Hilbert spaces (Luenberger, 1969).
The tracking error vector will only be orthogonal to the optimal solution if no
constraints are strictly active at steady state. In these situations at which the
linear terms in the objective function vanish, the dynamic regulation problem
is equal to the standard infinite horizon constrained regulation problem (1.148)

min φ̃ = 1
2

∞∑

k=0

w′
kQwk + v′

kRvk (1.149a)

s.t. wk+1 = Awk + Bvk (1.149b)

Fwk + Gvk ≥ 0 (1.149c)

and may be solved employing the techniques for solution of infinite horizon
constrained problems for which origo is in the interior of the feasible region.

For the case when constraints are active at steady state, the linear terms in
the objective function of (1.148) do not vanish and it is important for the
qualitative properties of the solution that they are retained in the formulation of
the quadratic program (Jørgensen and Rawlings, 2000). Due to the linear terms
and active steady state constraints implying that origo is on the boundary of the
feasible region, (1.148) can be solved approximately by the techniques of Rao
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and Rawlings (1999) and Pannocchia et al. (2002). With some modifications
these techniques are applicable to the problem with linear terms in the objective
function, even though neither Rao and Rawlings (1999) nor Pannocchia et al.
(2002) included linear terms in their solution procedures for infinite horizon
constrained linear quadratic regulation problems. Active constraints at steady
state may for instance arise in situations at which a large disturbance makes it
impossible to keep the process at the specified set point.

1.2.4 Infinite-Horizon Optimal Control

The procedures proposed in the literature for solution of the infinite-horizon
optimal control problem are developed mainly for the regulation problem and
require construction of the maximum output admissible set. In contrast to
the pure regulation problem, the maximum output admissible set cannot be
constructed off-line for the general optimal control problem but must be con-
structed on-line for the actual disturbances estimated. This construction may
be computational expensive. An alternative approach may be to solve a finite
horizon optimal control problem with a sufficient long horizon and rely on con-
vergence of the finite horizon program towards the infinite horizon program.
For some systems having the turnpike property this convergence may be de-
tected by monitoring whether the solution stays close to the optimal steady
state for an extended period of time. This section describes the turnpike prop-
erty concept as well as optimality definitions for general infinite horizon optimal
control problems.

For stability reasons, the model predictive control problem has been formulated
as infinite-horizon optimal control problems (Mayne et al., 2000)

min φ =

∞∑

k=0

g(xk, uk) (1.150a)

s.t. xk+1 = f(xk, uk) (1.150b)

x0 = a (1.150c)

uk ∈ U(xk) (1.150d)

The admissible state-control trajectories of this infinite horizon optimal control
are denoted by the set

A∞ = {{xk, uk}∞k=0 : x0 = a, xk+1 = f(xk, uk), uk ∈ U(xk)}
In the formulation of the infinite-horizon optimal control problem constituting
the model predictive controller, it has commonly been either tacitly or explic-
itly assumed that there exist admissible state-control sequences such that the
objective function

φ =

∞∑

k=0

g(xk, uk) {xk, uk}∞k=0 ∈ A∞
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is finite or that an equivalent regulation problem with finite cost may be con-
structed. In the Muske-Rawlings approach (Muske and Rawlings, 1993b), this
regulation problem is constructed by computation of the solution (x∗

ss, u
∗
ss) of

the associated steady state problem

min
x,u

g(x, u) (1.151a)

s.t. x = f(x, u) (1.151b)

u ∈ U(x) (1.151c)

and construction of the modified infinite-horizon optimal control problem

min φ̃ =
∞∑

k=0

g̃(xk, uk) =
∞∑

k=0

[g(xk, uk) − g(x∗
ss, u

∗
ss)] (1.152a)

s.t. xk+1 = f(xk, uk) (1.152b)

x0 = a (1.152c)

uk ∈ U(xk) (1.152d)

The motivation for this construction is ad hoc and seems to rely on the conjec-
ture that the optimal state-control trajectory {xk, uk}∞k=0 converges sufficiently
fast to the optimal steady state (x∗

ss, u
∗
ss). Sufficiently fast convergence means

that the convergence of the stage cost g(x∗
k, u∗

k) towards g(x∗
ss, u

∗
ss) is such that

the objective function is finite

φ̃∗ =
∞∑

k=0

g̃(x∗
k, u∗

k) =
∞∑

k=0

[g(x∗
k, u∗

k) − g(x∗
ss, u

∗
ss)] < ∞

Consider the stabilizable and detectable linear-quadratic control problem with
constraints. If no constraints are strictly active at steady state, the costs are
finite as this is essentially a linear-quadratic regulation problem after some finite
transition period at which the inequalities may be active. In this situation, the
obtained modified infinite-horizon optmal control problem is similar to (1.149).
In the case, when inequality constraints are strictly active at steady state the
obtained infinite-horizon optimal control problem is of the type (1.148)2.

While the stability properties of the infinite horizon regulation problem are well-
studied by the model predictive control community (Mayne et al., 2000), the
properties and concepts of the general infinite-horizon optimal control problem
remain to be explained in relation to model predictive control. Carlson and
Haurie (1987) and Carlson et al. (1991) provide a comprehensive treatment
of the continuous-time infinite-horizon optimal control problem. Weizsäcker
(1965), Halkin (1974), Brock and Haurie (1976), Haurie (1976, 1980), Fein-
stein and Luenberger (1981), Stern (1984), Takayama (1985), Artstein and

2It remains to be established that the optimal objective function of this program is finite.
However, under fairly mild conditions the optimal state-control trajectory converges to the
optimal steady state (Bonné et al., 2003).
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Leizarowitz (1985), Leizarowitz (1987a,b), Carlson (1986a,b,c, 1987, 1990),
Carlson et al. (1987), Barbieri and Alba-Flores (2000), and Blot and Hayek
(2001) describe issues related to general infinite-horizon optimal control prob-
lems.

One issue that need to be addressed in the exploration of general infinite hori-
zon optimal control problems is the definition of optimality (Weizsäcker, 1965;
Hammond and Mirrless, 1973; Hammond and Kennan, 1979; Haurie and Sethi,
1984; Stern, 1984; Carlson, 1990). It is not possible in general to extent the
optimality definition of finite dimensional nonlinear programs to infinite hori-
zon optimal control problems as the problem may be well defined even though
the cost is infinite for all admissible state-control trajectories (Jørgensen and
Rawlings, 2000). This observation calls for weaker optimality notions than
employed when a finite optimal cost exists.

Definition 1.2.2 (Infinite Horizon Optimal Control Optimality Concepts)
Let (x, u) = {xk, uk}∞k=0, let the admissible set be

A∞ =
{
{xk, uk}∞k=0 : x0 = a, xk+1 = f(xk, uk), uk ∈ U(xk)

}
(1.153)

and consider the mathematical program

φN (x∗, u∗) = min
(x,u)

{

φN (x, u) =

N−1∑

k=0

g(xk, uk) : (x, u) ∈ A∞

}

(1.154)

which is identical to (1.150) except that it has a finite dimensional objective function.

An admissible pair (x∗, u∗) ∈ A∞ is called

1. Strongly optimal of (1.150) if

φ∞(x∗, u∗) = lim
N→∞

φN (x∗, u∗) is finite (1.155a)

∀(x, u) ∈ A∞∃N̂(x, u) ≥ 0 : ∀N ≥ N̂(x, u) : φN (x∗, u∗) ≤ φN (x, u) (1.155b)

2. Overtaking optimal (catching up optimal) of (1.150) if, for all ε > 0 and
(x, u) ∈ A∞ there exists a N̂ = N̂(ε, x, u) ≥ 0 such that for all N ≥ N̂ :

φN (x∗, u∗) ≤ φN (x, u) + ε (1.156)

3. Weakly overtaking optimal (sporadically catching up optimal) of (1.150) if,
for all ε > 0, (x, u) ∈ A∞, and N̂ ≥ 0, there exists a N(ε, x, u) ≥ N̂ such that

φN (x∗, u∗) ≤ φN (x, u) + ε (1.157)

Overtaking optimality and weakly overtaking optimality do not require the
optimal value of the objective function to be finite, while strong optimality
does. Strong optimality is equivalent to the usual finite dimensional optimality
notion and may be denoted

φ∞(x, u) ≥ φ∞(x∗, u∗) ∀(x, u) ∈ A∞ (1.158)
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which is equivalent to

lim
N→∞

φN (x, u) − lim
N→∞

φN (x∗, u∗) ≥ 0 ∀(x, u) ∈ A∞ (1.159)

under the assumption that φ∞(x∗, u∗) = limN→∞ φN (x∗, u∗) is finite. For
comparison, the notion of overtaking optimality may be expressed as

lim
N→∞

[

inf
n≥N

{φn(x, u) − φn(x∗, u∗)}
]

≥ 0 ∀(x, u) ∈ A∞ (1.160)

Similarly, the notion of weakly overtaking optimality is equivalent to

lim
N→∞

[

sup
n≥N

{φn(x, u) − φn(x∗, u∗)}
]

≥ 0 ∀(x, u) ∈ A∞ (1.161)

The turnpike property for some infinite horizon optimal control problems was
first discovered in the context of optimal growth models by Samuelson (1966).
A system is said to have the turnpike property if the optimal state-control tra-
jectory of an optimal control problem with either a finite or an infinite horizon
stays close to the corresponding optimal steady state for much of the time.
Hence, the optimal state-control trajectory of a finite horizon optimal control
problem has the turnpike property if it after some initial transient approaches
the optimal steady state and only diverges from this steady state close to the
terminal time. An infinite horizon optimal control problem has the turnpike
property if the optimal state-control trajectory converges asymptotically to-
wards the optimal steady state-control pair. The turnpike property is desir-
able, as it indicates that the initial part of the solution of the infinite-horizon
optimal control problem may be obtained at arbitrary precision by solving a
finite horizon optimal control problem and verifying that the state-control tra-
jectory remains in the vicinity of the corresponding optimal steady state for
some time. If the infinite-horizon optimal control problem has the turnpike
property, then the corresponding finite-horizon optimal control problem will
also have the turnpike property for a sufficient long horizon.

Bonné et al. (2003) apply a methodology proposed by Brock and Haurie (1976)
to convex discrete-time infinite-horizon optimal control problems. Prelimi-
nary results suggest that an overtaking minimizer of a convex infinite-horizon
optimal control problems has the turnpike property. The constrained linear
quadratic regulation problem with possible steady state active constraints is
a convex infinite-horizon optimal control problem which may have unbounded
optimal cost. Hence, this problem may most likely be efficiently solved in gen-
eral by utilization of the turnpike property. The exact strategy for exploitation
of the turnpike property remains an open question.
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1.3 Constraints

The industrial success of model predictive control has to a large extent been
attributed to its ability to incorporate constraints in a rigorous way. This an
important ability for control of industrial processes as the optimal point of op-
eration tends to be in the vicinity of constraints. Model predictive control is the
only control methodology that is able to cope with constraints in a systematic
manner. There are two major types of constraints in model predictive control:
Hard constraints and soft constraints.

1.3.1 Hard Constraints

One class of hard constraints is constraints that can never be violated due to
physical limitations of the equipment. These constraints are typically actuator
constraints also called input constraints. In example, the out flow from a
pump must be between a lower limit (say zero) and the maximum capacity of
the pump, the valve opening must be between zero and one, and so on. In the
mathematical program constituting the model predictive controller, they are
represented by bounds of the type

umin ≤ uk ≤ umax (1.162)

Quite often, actuator equipment is not only limited by the range in which it
can operate but also by the rate at which it can change value within this range.
Neither a pump nor a valve can instantaneously change from its lower limit to
its upper limit. Such rate-of-change limitations on the actuator equipment is
modeled by inequalities of the type

−∆ ≤ ∆uk ≤ ∆ (1.163)

in which ∆uk = uk − uk−1. The limit, ∆, on the rate of change may also be
applied as a tuning parameter preventing the controller from making abrupt
changes in the input variables. If the rate of change is physically motivated
and the maximum rate of change in continuous time is given by the vector δ,
then the rate of change in the discrete time setting is obtained as: ∆ = Tsδ in
which Ts is the sampling period.

The main characteristic feature of input constraints and input rate-of-change
constraints is that they are always feasible. This implies that the mathematical
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program

min φ = 1
2

∞∑

k=0

(yk − r)′Q(yk − r) + u′
kRuk + ∆u′

kΦ∆uk (1.164a)

s.t. xk+1 = Axk + Buk (1.164b)

yk = Cxk (1.164c)

umin ≤ uk ≤ umax (1.164d)

− ∆ ≤ ∆uk ≤ ∆ (1.164e)

constituting the model predictive controller with hard input constraints is guar-
anteed to be feasible. The quadratic program (1.164) will therefore always have
a solution. This property is compatible with the physically motivated fact that
input constraints must be satisfied.

Output constraints and general state constraints associated with the dynamic
system

xk+1 = Axk + Buk (1.165a)

yk = Cxk (1.165b)

are of a different nature and may be infeasible for all admissible control se-
quences {uk}. Output constraints and state constaints may be used to repre-
sent desirable operating regions, safety constraints, and constraints imposed by
environmental regulations. As an example consider a storage tank for a liquid.
The volume of liquid in the tank must be between an upper and a lower limit.
The absolute lower limit is zero. Physics dictates that this limit never will be
violated. An absolute upper limit for the volume of liquid in the tank is the
capacity of the tank. However, this constraint may be violated with the result
of the tank flowing over. Therefore, it is desirable to impose the constraint
that the volume of liquid in the tank should be less than its capacity. This is
an example of an output constraint motivated by a desirable operating regime.

Plain output constraints of this system are modeled as

ymin ≤ yk ≤ ymax (1.166)

while general state constraints are expressed by the inequality

Gxk + Huk ≥ b (1.167)

If the output and state constraints are modeled as hard constraints, the mathe-
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matical program constituting the model predictive controller becomes

min φ = 1
2

∞∑

k=0

(yk − r)′Q(yk − r) + u′
kRuk + ∆u′

kΦ∆uk (1.168a)

s.t. xk+1 = Axk + Buk (1.168b)

yk = Cxk (1.168c)

umin ≤ uk ≤ umax (1.168d)

− ∆ ≤ ∆uk ≤ ∆ (1.168e)

ymin ≤ yk ≤ ymax (1.168f)

Gxk + Huk ≥ b (1.168g)

The disadvantage of having hard output and state constraints in the model
predictive controller is that the mathematical program (1.168) may become in-
feasible. Hence, model predictive controllers with output and state constraints
have to have some mechanism to recover from situations with infeasible output
and state constraints. Of course, one element of such a recovery procedure
could be to throw an alarm. In safety critical situations it could even be to
start a plant shut-down procedure. Another element of the recovery proce-
dure could and often is to reformulate the mathematical program such that the
model predictive controller takes the in some sense best possible action in face
of not being able to meet all output constraints.

1.3.2 Soft Constraints Motivated by Infeasibilities

The situation with infeasible output constraints has been addressed by essen-
tially three different approaches. The first approach is the minimum time ap-
proach in which the duration of the infeasible output constraints is minimized
(Rawlings and Muske, 1993; Muske and Rawlings, 1993b; Scokaert and Rawl-
ings, 1999). The second approach is the soft constraint approach in which some
measure of the size of the output constraint violations is minimized (Ricker
et al., 1988; de Oliveira and Biegler, 1994; Zheng and Morari, 1995; Scokaert
and Rawlings, 1999; Rao and Rawlings, 1999; Rawlings, 1999, 2000; Kerrigan
and Maciejowski, 2000; Pannocchia et al., 2001, 2002). The third major class
of approaches is the prioritized output constraint approach (Tyler and Morari,
1999; Vada et al., 1999; Vada, 2000; Strand, 2003). In this method, the output
constraints are prioritized according to their importance. If an infeasible situ-
ation occur, the output constraints are relaxed in succession according to their
importance using the soft constraint approach until a feasible mathematical
program is constructed.

For convenience, we will denote output and state constraints as

Cxk + Duk ≥ b (1.169)

in the following discussion.
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Rawlings and Muske (1993) demonstrated that there exists a minimum time,
κ(x0), dependent on the initial state, x0, such that the output constraints in
the mathematical program

min
{xk,uk}

φ = 1
2

∞∑

k=0

x′
kQxk + u′

kRuk (1.170a)

s.t. xk+1 = Axk + Buk (1.170b)

Cxk + Duk ≥ b k = κ(x0), κ(x0) + 1, . . . (1.170c)

uk = Kxk k = N,N + 1, . . . (1.170d)

constituting the model predictive controller will be feasible on an infinite hori-
zon. This is the minimum-time approach to recover from infeasibilities. In this
predictive controller, the output constraints are discarded until time κ(x0).
Rawlings and Muske (1993) provide a method to compute an upper bound on
κ(x0). An alternative method for computing an upper bound for κ(x0) is to
detect the times for which the MPC without output constraints violates them.
Starting from this bound κ(x0) is decreased until the following LP becomes
infeasible

min ψ = s′ε (1.171a)

xk+1 = Axk + Buk (1.171b)

Cxk + Duk ≥ b − ε k = 0, 1, . . . , κ(x0) − 1 (1.171c)

Cxk + Duk ≥ b k = κ(x0), κ(x0) + 1, . . . (1.171d)

uk = Kxk k = N,N + 1, . . . (1.171e)

The value of κ(x0) computed in this way is subsequently used in the construc-
tion and solution of (1.170). If the optimal value of (1.171) for any proposed
value of κ(x0) becomes zero, then κ(x0) = 0 and the output constraints are
feasible. The slack variables ε represent the maximum constraint violation but
are not used directly in (1.170). Scokaert and Rawlings (1999) proposed to use
the optimal value of the slack variables, ε∗, such that the size of the minimal
duration output constraint violation is minimized. This predictive controller is
called the optimized minimal-time MPC and its quadratic program is

min φ = 1
2

∞∑

k=0

x′
kQxk + u′

kRuk (1.172a)

s.t. xk+1 = Axk + Buk (1.172b)

Cxk + Duk ≥ b − ε∗ k = 0, 1, . . . , κ(x0) − 1 (1.172c)

Cxk + Duk ≥ b k = κ(x0), κ(x0) + 1, . . . (1.172d)

uk = Kxk k = N,N + 1, . . . (1.172e)

which is always feasible due to the construction of ε∗. The pros and cons of this
constraint relaxation procedure has been discussed by Scokaert and Rawlings
(1999).
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The soft constraint approach is another methodology to relax output con-
straints and avoid infeasible mathematical programs. Ricker et al. (1988) as
well as Zheng and Morari (1995) relaxed the output constraints by introduc-
tion of slack variables, ε, and penalized the maximal violation of the output
constraints as indicated in the following mathematical program

min
{xk,uk},ε

φ = 1
2

(
∞∑

k=0

x′
kQxk + u′

kRuk

)

+ 1
2ε′Sε (1.173a)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . (1.173b)

Cxk + Duk ≥ b − ε k = 0, 1, . . . (1.173c)

ε ≥ 0 (1.173d)

The output constraint relaxation procedure allows violation of the output con-
straints but penalizes them to avoid such violations if possible. However, the
output constraints may be violated in this formulation even if that could be
avoided. In addition to this disadvantage, penalizing the peak violation intro-
duces a mismatch between the open-loop predictions and the actual closed-loop
behavior (Scokaert and Rawlings, 1999). This leads to counter-intuitive behav-
ior and degrades performance.

Violation of the output constraints due to the softening when they are fea-
sible can be avoided by application of exact soft constraints (Fletcher, 1987;
de Oliveira and Biegler, 1994; Kerrigan and Maciejowski, 2000). In this ap-
proach, a linear term, s′ε, in the slack variables, ε, is added to the objective
function

min
{xk,uk},ε

φ = 1
2

(
∞∑

k=0

x′
kQxk + u′

kRuk

)

+ 1
2ε′Sε + s′ε (1.174a)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . (1.174b)

Cxk + Duk ≥ b − ε k = 0, 1, . . . (1.174c)

ε ≥ 0 (1.174d)

If the coefficients, s > 0, are selected sufficiently large (larger than the maximal
Lagrange multipliers) the linear term guarantees that the output constraints
are not violated if that can be avoided. In practice, S as well as s should be
regarded as tuning knobs that should chosen large enough to efficiently penalize
any output constraint violation.

The mismatch between the open-loop predictions and the closed-loop behavior
observed for soft constraints penalizing the peak violation can be avoided by
penalizing the sum of violations instead (Scokaert and Rawlings, 1999). In this
case, the mathematical program constituting the model predictive controller
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may be expressed as

min
{xk,uk,εk}

φ =

∞∑

k=0

1
2 (x′

kQxk + u′
kRuk + ε′kSεk) + s′εk (1.175a)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . (1.175b)

Cxk + Duk ≥ b − εk k = 0, 1, . . . (1.175c)

εk ≥ 0 k = 0, 1, . . . (1.175d)

By introducing the variables

vk =

[
uk

εk

]

B̄ =
[
B 0

]
C̄ =

[
C
0

]

D̄ =

[
D I
0 I

]

R̄ =

[
R 0
0 S

]

s̄ =

[
0
s

]

q = 0

(1.175) may be reformulated as a standard constrained linear quadratic regu-
lation problem

min
{xk,vk}

φ =

∞∑

k=0

1
2

(
x′

kQxk + v′
kR̄vk

)
+ q′xk + s̄′vk (1.176a)

s.t. xk+1 = Axk + B̄vk k = 0, 1, . . . (1.176b)

C̄xk + D̄vk ≥ b̄ k = 0, 1, . . . (1.176c)

which due its construction is guaranteed to be feasible. First of all, note that
(1.176) illustrates the need for linear terms in the objective function even when
the basic problem has its dynamics and objective function described in the
standard LQR fashion. Secondly, note that the introduction of slack variables
{εk} increases the size of the mathematical program (1.175) considerably. How-
ever, the special optimal control problem structure can be efficiently exploited
in the structure utilizing solution procedures.

Next we consider the formulation of a practical model predictive controller
with soft constraints. For setpoint tracking model predictive controllers, the
objective function is often expressed as

φ =

∞∑

k=0

1
2 ((yk − r)′Qy(yk − r) + u′

kRuk + ∆u′
kΦ∆uk + ε′kSεk)+ s′εk (1.177)

For this case with pure output constraints, we may formulate the mathematical
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program constituting the model predictive controller with soft constraints as

min
{xk,uk,εk}

φ (1.178a)

s.t. xk+1 = Axk + Buk (1.178b)

yk = Cxk (1.178c)

umin ≤ uk ≤ umax (1.178d)

− ∆u ≤ ∆uk ≤ ∆u (1.178e)

ymin − εk ≤ yk ≤ ymax + εk (1.178f)

εk ≥ 0 (1.178g)

1.4 The Control Problem

In the process industries, the control problem for continuous processes occurs in
two main forms. One control problem concerns the switch of product or quality
produced. In this case, the objective is usually to minimize the transition time
such that off-spec product produced is minimized and such that more product
is produced. Application of nonlinear model predictive control is one promising
methodology for minimizing this transition time between recipes. The other
major control problem in the process industries concerns keeping the process
at a set point. This set point may be the result of a steady state optimization.
The optimal operating point at which the process is operated is often located
in the vicinity of output constraints. Due to random disturbances entering the
process, these constraints would be frequently violated if the set point specified
is at the constraints or very close them. Therefore, depending on the variance
of the output variables, it is necessary to back-off from the constraints such
that they are respected with a certain probability, say 99%. As explained by
Richalet et al. (1978), the economic value of advanced regulation is not the
variance reduction in itself, but rather the reduced production costs stemming
from the ability of being able to move closer to some constraint due to the
variance reduction. This effect is illustrated in figure 1.3.

The dynamic economic effect of applying model predictive control in conjunc-
tion with real time optimization has been studied by Loeblein and Perkins
(1999a,b). They applied the economic dynamic concept introduced by Nar-
raway et al. (1991) and also explained by Heath (1996). In their approach,
marginal distributions of the output variables in an unconstrained model pre-
dictive controller is computed. These marginal distributions are used in com-
puting the approximate back-off such that the output constraints are satisfied
with a given probability. Kassmann et al. (2000) applied some of the same
concepts in robust computation of the steady-state target for model predic-
tive control. Loeblein and Perkins (1999a) computed the back-off for an un-
constrained Muske-Rawlings model predictive controller. A similar procedure
may be applied to the LQG controller which is the unconstrained version of
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Figure 1.3. The necessary back-off from a lower bound on the output. The plot
shows the probability distribution of two normally distributed variables with dif-
ferent variance and mean. The distributions are constructed such the correspon-
ding stochastic variables each satisfy the constraint x ≥ 0 with a probability of
99%. The variable with greater variance need a larger back-off from the lower
limit which translates into a higher production cost. One motive of advanced
control is to reduce this variance such that the back-off is reduced and with lower
production cost as result.

the constrained linear quadratic controller. In this procedure it can be utilized
that the involved distributions are Gaussian. The variance of the closed loop
system may be computed and analyzed using an eigenvalue decomposition of
the covariance matrix (Poulsen, 1995a, chap. 3).

The next two examples show the variance reducing effect of one type of LQG
control which is one type of model predictive control.

Example 1.4.1 (Closed Loop Properties of a LQG System)
In this example the above procedure is illustrated for a LQG system. The derivations
and principles employed are adopted from Söderström (2002) and Poulsen (1995b).

Consider the system

xk+1 = Axk + Buk + Gwk (1.179a)

yk = Cxk + vk (1.179b)

zk = Dxk (1.179c)

in which [
wk

vk

]

∈ Niid

([
0
0

]

,

[
Q S
S′ R

])

x0 ∈ N(x̂0|−1, P0|−1) (1.180)
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xk is the states, uk the controls, yk the measurements, and zk the outputs to be
controlled.

Provided the system is stable the asymptotic open loop covariance, Pol, of the state
vector may be computed as the solution of the discrete Lyapunov equation

Pol = APolA
′ + GQG (1.181)

From the covariance of the states, the measurement covariance, Λol, and the output
covariance, Γol, may be computed by the expressions

Λol = CPolC
′ + R (1.182a)

Γol = DPolD
′ (1.182b)

The open loop is characterized by uk = 0. Then for stable systems in the limit k → ∞
the mean evolution of the system may be expressed as

x̂k+1 = Ax̂k → 0 (1.183a)

ŷk = Cx̂k → 0 (1.183b)

ẑk = Dx̂k → 0 (1.183c)

and the distribution of the states, the measurements and the outputs are normal.
Hence, in the open loop case

k → ∞ : xk ∈ N(0, Pol) yk ∈ N(0, Λol) zk ∈ N(0, Γol)

The LQG controller of (1.179) is the solution the stochastic optimization problem
which may loosely be stated as

min
{xk,uk,zk}∞

k=0

E

{

1
2

∞∑

k=0

z′
kQzzk

}

(1.184a)

s.t. xk+1 = Axk + Buk + Gwk (1.184b)

yk = Cxk + vk (1.184c)

zk = Dxk (1.184d)

for which it is understood that that the measurements arrive sequentially and the op-
timal control is causal. Under mild conditions such as stabilizability and detectability,
the solution to this problem may be derived analytically and given by separation into
a controller and an estimator.

The controller is given by

uk = Lx̂k|k (1.185)

in which x̂k|k = E {xk|Ik} is the conditional mean with the information vector given
as Ik = {y0, u0, . . . , yk−1, uk−1, yk}. The gain L is computed as part in the solution
of a Riccati equation

Plq = A′PlqA + D′QzD − A′PlqB(B′PlqB)−1B′PlqA (1.186a)

L = −(B′PlqB)−1B′PlqA (1.186b)
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The estimator, considered in the limit k → ∞ is the static Kalman filter

x̂k|k = x̂k|k−1 + Kf (yk − Cx̂k|k−1) (1.187a)

ŵk|k = Kw(yk − Cx̂k|k−1) (1.187b)

x̂k+1|k = Ax̂k|k + Buk + Gŵk|k (1.187c)

with the gains computed by the expressions

Pp = APpA′ + GQG′ − (APpC′ + GS)(CPpC′ + R)−1(APpC′ + GS)′ (1.188a)

Re = CPpC′ + R (1.188b)

Kf = PpC′R−1
e (1.188c)

Kw = SR−1
e (1.188d)

Pp is obtained as solution of the stated discrete-time Riccati equation. In the limit
k → ∞, the state estimate conditioned on the information Ik|k is normally distributed
with mean x̂k|k and covariance

Pf = Pp − KfR−1
e K′

f (1.189)

Hence
k → ∞ : xk|Ik ∈ N(x̂k|k, Pf ) (1.190)

Furthermore
k → ∞ : xk|Ik−1 ∈ N(x̂k|k−1, Pp) (1.191)

Define the predictive state estimation error, x̃k|k−1, as

x̃k|k−1 = xk − x̂k|k−1 (1.192)

Then x̃k|k−1 is normally distributed (Poulsen, 1995b)

k → ∞ : x̃k|k−1 ∈ N(0, Pp) (1.193)

and x̃k|k−1 is independent of x̂k|k−1. This independence is easily memorized using the
inner product approach described by Kailath et al. (2000) and the fact that the error
vector, x̃k|k−1, and the optimal estimate, x̂k|k−1, are orthogonal. The orthogonality
implies that x̃k|k−1 and x̂k|k−1 are uncorrelated. Normally distributed vectors that
are uncorrelated are also independent.

Using the system dynamics, the dynamics for the estimator, the controller equation,
and the definition of the estimation error, x̃k|k−1, it is possible to derive the following
expression
[

xk+1

x̃k+1|k

]

=

[
A + BL BL(KfC − I)

0 A − (AKf + GKw)C

] [
xk

x̃k|k−1

]

+

[
G BLKf

G −(AKf + GKw)

] [
wk

vk

]

(1.194)
for the evolution of the closed loop system. This system may be expressed as

x̄k+1 = Āx̄k + Ḡw̄k (1.195)

in which the variables x̄k and w̄k are defined as

x̄k =

[
xk

x̃k|k−1

]

w̄k =

[
wk

vk

]

(1.196)
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The matrices Ā and Ḡ are defined as

Ā =

[
A + BL BL(KfC − I)

0 A − (AKf + GKw)C

]

Ḡ =

[
G BLKf

G −(AKf + GKw)

]

(1.197)

Then the stationary variance of the vector x̄k may be computed as the solution of
the Lyapunov equation

P̄ = ĀP̄ Ā′ + ḠQ̄Ḡ′ (1.198)

in which the matrix P̄ is partitioned as

P̄ =

[
Pcl P12

P21 Pp

]

(1.199)

Pcl is the stationary covariance of the state vector xk obtained in closed loop with
the estimator and regulator. The corresponding covariances of the measurement, yk,
and the output, zk, are

Λcl = CPclC
′ + R (1.200a)

Γcl = DPclD
′ (1.200b)

The effect of control can be evaluated by comparing the open loop stationary co-
variance, Γol, of the outputs, zk, and the closed loop stationary covariance, Γcl, of
the outputs. The variance may be analyzed in terms of their principal components
by a singular-value decomposition or an eigenvalue decomposition of the covariance
matrices (chap. 3, Poulsen, 1995a). Using the orthogonality properties of the optimal
estimate and its error, it is possible to show P12 = P21 = Pp and that Pcl may also
be computed directly from the Lyapunov equation

Pcl = (A + BL)Pcl(A + BL)′ + Φ (1.201)

in which

Φ = (BL(KfC − I))Pp(BL(KfC − I))′

+ (A + BL)Pp[BL(KfC − I)]′ + [BL(KfC − I)]Pp(A + BL)′

+
[
G BLKf

]
[
Q S
S′ R

]
[
G BLKf

]′
(1.202)

¤

Example 1.4.2 (Closed Loop Properties for a Simple System)
To illustrate the ideas proposed in example 1.4.1, consider the system

xk+1 = 0.9xk + uk + wk (1.203a)

yk = xk + vk (1.203b)

zk = xk (1.203c)

in which the process and measurement noise, wk and vk, are distributed as
[
wk

vk

]

∈ Niid

([
0
0

]

,

[
Q S
S′ R

]) [
Q S
S′ R

]

=

[
1 0
0 0.1

]

(1.204)

The initial state, x0, is specified exactly as x0 = 0.
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An LQG controller for this system with the objective

φ = E

{

1
2

∞∑

k=0

z′
kQzzk

}

Qz = 100 (1.205)

is given by

x̂k|k = x̂k|k−1 + 0.91483 (yk − x̂k|k−1) (1.206a)

uk = −0.9 x̂k|k (1.206b)

x̂k+1|k = 0.9 x̂k|k + uk (1.206c)

For one realization of {wk, vk}, the open loop outputs, zk, as well as the closed loop
inputs, uk, and outputs, zk, are plotted in figure 1.4. By inspection, it is obvious that
the variance of the closed loop systems is much smaller than the variance of the open
loop system. Therefore, closed loop operation enables closer operation at a constraint
in the outputs, zk, with the possibility of lower production costs.

In the limit, k → ∞, the stationary distribution of the outputs, zk, in the open loop
system is

k → ∞ : zk ∈ N(0, Γol) Γol = 5.2632 (1.207)

In the closed loop situation the corresponding distribution of the outputs, zk, is

k → ∞ : zk ∈ N(0, Γcl) Γcl = 1.0741 (1.208)

The error function, erf(x), is

erf(x) =

{
2√
π

∫ x

0
exp(−t2)dt x ≥ 0

− 2√
π

∫ −x

0
exp(−t2)dt x < 0

(1.209)

and its inverse, erfinv(y), is denoted

erfinv(y) = erf−1(y) (1.210)

A scalar normally distributed variable

X ∈ N(µ, σ2) (1.211)

has the density function

φ(x) =
1√

2πσ2
exp

(

−
(

x − µ√
2σ2

)2
)

(1.212)

Consider the situation, in which the variance, σ2, of X is given and the mean, µ, is
to be determined such that X is greater than xmin with probability α, i.e.

P{X ≥ xmin} = α (1.213)

which may be expressed as the condition

∫ xmin

−∞

1√
2πσ2

exp

(

−
(

x − µ√
2σ2

)2
)

dx = 1 − α (1.214)
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Figure 1.4. The effect of control. The upper plot is the open loop output sequence
and the middle plot shows the LQG closed loop sequence for the same realization
of the process and measurement noise. The lower plot shows the actuator position
used in the closed loop situation. The variance of the open loop output sequence
is 5.26, while the variance of the closed loop output sequence is reduced to 1.07
by the feedback action.

and is equivalent to

1√
π

∫ xmin−µ√
2σ2

−∞
exp(−t2)dt = 1 − α (1.215)

Therefore, µ may be obtained by the expression

µ = xmin −
√

2σ2 erfinv(1 − 2α) (1.216)

Note that the stationary variances of the open and closed loop linear systems are
independent of the mean values. They are only dependent on the covariances and the
system matrices. Consider the case, in which we relax the output constraint zk ≥ −1
by saying that zk should be greater than −1 99% of the time.

In the open loop case, the mean value, z̄ol, of the output variable should be

z̄ol = −1 −
√

2 · 5.2632 erfinv(1 − 2 · 0.99) = 4.337
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to satisfy the constraint zk ≥ −1 with a probability of 99%. This is realized by letting
uk = 0.4337.

In the closed loop case, the mean, z̄cl, of the output variable, zk, should be

z̄cl = −1 −
√

2 · 1.0741 erfinv(1 − 2 · 0.99) = 1.411

to satisfy the constraint zk ≥ −1 99% of the time. Consequently, the back-off required
in the closed loop case is considerably lower than the back-off required in the open
loop case. This would in most cases translate into lower cost of production and be a
measure of the economic value generated by the controller. ¤

As the preceding examples have demonstrated predictive control has the ability
to reduce the output variance and this reduction has a certain economic value.
However, whether this variance reduction is possible or not depends on the
ratio of process and measurement variance. In addition it is important that
covariance information used by the predictor and filter in the controller corre-
sponds to the covariance of the process. Appendix E provides one method to
obtain adequate covariance information along with identification of the model.
Odelson (2003) provides a recent discussion of covariance estimation.

1.5 Thesis Organization

This survey of topics within predictive control provides a solid basis for un-
derstanding the main topic of the thesis: Application of the extended linear
quadratic optimal control problem and its solution for numerical problems in
moving horizon estimation and control. The rest of the thesis is organized as
follows.

Chapter 2 discusses computational methods and inherent approximations in
model predictive control. By considering the stochastic optimal control prob-
lem, the approximations and assumptions of model predictive control are pin-
pointed. In an ad hoc fashion the separation principle and certainty-equivalence
are assumed to prevail, such that the stochastic optimal control problem may
be separated into an estimation problem and a deterministic optimal control
problem. Both the estimation problem and the obtained deterministic opti-
mal control problem are demonstrated to be instances of a constrained non-
linear optimal control problem. In the sequential quadratic programming al-
gorithm for solution of constrained nonlinear optimal control problems, the
quadratic subproblem generated at each iteration is shown to be a constrained
linear-quadratic optimal control problem. Procedures for generation of the con-
strained linear-quadratic optimal control problem and its data from the non-
linear estimation problem, the nonlinear control problem, the linear moving
horizon estimator, and the linear moving horizon controller are provided. The
significance of these conversions to constrained linear-quadratic optimal con-
trol problems is that the entire model predictive control problem can be solved
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efficiently by having efficient algorithms tailored for solution of the constrained
linear-quadratic optimal control problem. The major intention in this chapter
is to emphasize the central role of the constrained linear-quadratic optimal con-
trol problem in model predictive control such that tailored algorithms for the
constrained linear-quadratic optimal control problem is motivated and justified.

Chapter 3. A primal active set, a dual active set, and an interior point algo-
rithm for solution of the constrained linear quadratic optimal control problem
are outlined. The major computational effort in all these algorithms reduces to
solution of certain unconstrained linear quadratic optimal control problems, i.e.
the extended linear quadratic control problem. A Riccati recursion procedure
for effective solution of such unconstrained problems is stated.

Chapter 4. Based on dynamic programming, Riccati recursion procedures for
the linear-quadratic optimal control problem as well as the extended linear-
quadratic optimal control problem are developed. Compared to alternative
solution procedures such as control vector parameterization by elimination of
the states, the Riccati based procedure is highly efficient for long prediction
horizons. The extended linear-quadratic optimal control problem may also be
regarded as an equality constrained quadratic program with special structure.
The computation of the optimal solution-Lagrange multiplier pair for a convex
equality constrained quadratic program is specialized to the extended linear-
quadratic optimal control problem treated as a quadratic program. Efficient
solution of the highly structured KKT-system corresponding to the extended
linear-quadratic optimal control problem is facilitated by the Riccati recursion
developed by dynamic programming.

Chapter 5 presents the principles for efficient solution of unconstrained non-
linear optimal control problems described by ordinary differential equations.
These principles are presented through numerical solution of a continuous-time
nonlinear optimal control problem of the Bolza form. To focus on the basic prin-
ciples involved and for illustrative purposes, the continuous-time Bolza problem
is discretized by the explicit Euler method. The discrete-time nonlinear opti-
mal control problem of the Bolza form is solved by different SQP methods and
an algorithm based on the discrete maximum principle. The SQP algorithms
presented are implementations based on open- and closed-loop feasible path
control vector parameterizations as well as an infeasible path simultaneous
procedure. Two procedures for solution of the quadratic programs are pre-
sented. In the first procedure, the structure of the quadratic programs arising
in the solution of the nonlinear optimal control problem is utilized by a Riccati
iteration based factorization of the resulting KKT-system. In the second proce-
dure, an efficient procedure for elimination of the states and solution of a dense
reduced space quadratic program is presented. These methods are compared
for a simple process example operated around an unstable equilibrium. The
infeasible path and the closed-loop feasible path algorithms converge for this
example. The implemented open-loop feasible path algorithms are not able
to converge to an unstable equilibrium. The Riccati based solution procedure
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enables implementation of the stabilized infeasible path SQP algorithm as well
as the closed-loop feasible path SQP algorithm. The methods are presented in
a framework that is easily extended to constrained nonlinear optimal control
problems. Such extensions and methodologies for efficient integration of the or-
dinary differential equations as well as the corresponding sensitivity equations
are discussed.

Chapter 6 summarizes the main contribution of this thesis. It briefly discusses
the pros and cons of using the extended linear quadratic control framework for
solution of deterministic optimal control problems.

Appendices. Appendix A demonstrates how quadratic programs arise in se-
quential quadratic programming algorithms. Appendix B uses a control vec-
tor parameterization approach to express various extended constrained linear
quadratic optimal control problems as standard quadratic programs. Appendix
C discuss construction of maximal output admissible sets. It provides an algo-
rithm for computation of the maximal output admissible set for linear model
predictive control. Appendix D provides results concerning linear regression.
Appendix E discuss prediction error methods for identification of linear models
tailored for model predictive control.
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The Computational

Principles of Model

Predictive Control

The computational methods and inherent approximations of model predictive
control are discussed. By considering the stochastic optimal control problem,
the approximations and assumptions of model predictive control are pinpointed.
Industrial practiced model predictive is a mathematical tractable but subopti-
mal solution to the stochastic optimal control problem. In an ad hoc fashion
the separation principle and certainty-equivalence are assumed to prevail, such
that the stochastic optimal control problem may be separated into an estima-
tion problem and a deterministic optimal control problem. Both the estimation
problem and the obtained deterministic optimal control problem are demon-
strated to be instances of a constrained nonlinear optimal control problem.
In the sequential quadratic programming algorithm for solution of constrained
nonlinear optimal control problems, the quadratic subproblem generated at
each iteration is shown to be a constrained linear-quadratic optimal control
problem. Procedures for generation of the constrained linear-quadratic opti-
mal control problem and its data from the nonlinear estimation problem, the
nonlinear control problem, the linear moving horizon estimator, and the linear
moving horizon controller are provided. The significance of these conversions to
constrained linear-quadratic optimal control problems is that the entire model
predictive control problem can be solved efficiently by having efficient algo-
rithms tailored for solution of the constrained linear-quadratic optimal control
problem. The major intention in this chapter is to emphasize the central role
of the constrained linear-quadratic optimal control problem in model predic-
tive control such that tailored algorithms for the constrained linear-quadratic
optimal control problem is motivated and justified.
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2.1 Introduction

Model predictive control is the predominant paradigm of advanced control in
the process industries. An important reason of this dominance is that the model
predictive framework is sufficiently versatile such that it readily includes moni-
toring and fault diagnosis, as well as the classical control topics such as system
identification, state estimation, and regulation. Model predictive control pro-
vides a systematic and scientific sound methodology, directly aimed at cutting
operating costs, improving product quality by variance reduction, and satis-
fying any environmental and safety constraint of industrial processes. These
features along with a very impressive documented industrial track record (c.f.
Clarke, 1988; Richalet, 1993; Qin and Badgwell, 1996, 2000) have made model
predictive control an established and routinely practiced technology for opti-
mizing industrial processes in several industrial sectors.

Model predictive control consists of a very broad class of control systems that
compute the control strategies such that the outcome predicted by a model of
the system is as favorable as possible according to some criterion. This concept
of model predictive control is sufficiently broad to include almost any classical
optimal control scheme. Hence, the scope is limited to focus mainly on model
predictive control of constrained systems implemented by online optimization.
In fact the main ingredients distinguishing model predictive control from other
control techniques is that it explicitly uses a model to predict the future evo-
lution of the system. In current industrial practice, this prediction is used to
compute the solution of an open-loop optimal control problem on-line. The
solution to this open-loop optimal control problem is a sequence of open-loop
optimal control inputs. The first control input in the obtained sequence is
implemented on the process and the procedure is repeated as new informa-
tion becomes available for the controller. This type of control is called moving
horizon control as well as receding horizon control.

2.1.1 Organization and Purpose

The approximations invoked in implementable moving horizon estimation and
control when applied for a stochastic optimal control problem are discussed in
this chapter. Contrary to the common naive belief, industrial practiced moving
horizon estimation and control is not the best possible controller in a theoretical
sense just because the estimator and the controller are posed as optimization
problems. The estimator and controller may be optimal for the determinis-
tic problem but that does not make them optimal for the stochastic problem.
They are merely suboptimal practical solutions of the stochastic optimal con-
trol problem as they account for uncertainty in an ad hoc fashion. The explicit
discussion of these approximations suggests how some of the approximations
imposed for establishing a real-time computational procedure may be relaxed,
modified or lifted to have model predictive controllers with even better perfor-
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mance than realized in current industrial practice. The result of this discussion
is a statement of the mathematical problems that must be solved in moving
horizon estimation and control for suboptimal stochastic control.

While the discussion of the stochastic optimal control problem provides an
answer to which problems to solve, the issues of how to solve then still re-
main undetermined. The main purpose of this chapter is then to establish and
explain the key role of the linear-quadratic optimal control problem in imple-
mentation of nonlinear as well as linear moving horizon estimation and control.
The linear-quadratic optimal control problem is distinguished from the clas-
sic finite horizon LQ problem by the facts that it contains affine terms in the
state dynamics and linear terms in the stage costs. These apparently innocent
modifications have a tremendous impact as they in a transparent and straight-
forward way enables numerical solution of essentially all problems within model
predictive control by solution of linear-quadratic optimal control subproblems.
This central and important role of the linear-quadratic optimal control problem
is explained by introducing the problem and then demonstrate how it arises
as the quadratic subproblem in the solution of nonlinear optimal control prob-
lem. Though efficient solution methods for the linear-quadratic optimal control
problem are outlined, the purpose is not to provide a detailed discussion of this
topic as this discussion is provided in the remaining part of this dissertation. It
is merely to outline how the linear-quadratic optimal control problem arises as
a subproblem in the solution of moving horizon estimation and control prob-
lems. By this approach one can subsequently focus on the efficient solution
of the generic linear-quadratic optimal control problem without regard to its
specific origin.

The linear-quadratic optimal control problem is demonstrated as the quadratic
programming subproblem for the constrained general nonlinear optimal con-
trol problem as well as the constrained least-squares nonlinear optimal control
problem when these problems are solved by sequential quadratic programming.
Next, the nonlinear moving horizon estimation problem is demonstrated to be
an instance of the constrained least-squares nonlinear optimal control problem.
Using the same technique as for the constrained nonlinear moving horizon es-
timator, the constrained linear moving horizon estimator is transformed to a
constrained linear-quadratic optimal control problem. The transformation of
the moving horizon estimation problems to nonlinear optimal control problems
includes a discussion of how to obtain offset free estimates and the influence of
such a requirement on the model formulations. This treatment discusses the
transformation of the mathematical program constituting the moving horizon
estimator to an optimal control problem. However, it does not discuss how to
select the horizon nor how to compute the cost-to-arrive matrices. These issues
are treated by Rao and Rawlings (2000), Rao (2000), and Tenny (2002).

The nonlinear as well as the linear moving horizon controller are stated as
infinite-horizon mathematical programs. By a decomposition, which in general
is suboptimal, the solution of the infinite horizon moving horizon controllers
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are computed by solution of a static optimization problem (the target problem)
and a finite horizon optimal control problem. The solution of the general infi-
nite horizon moving horizon control problem is established heuristically as the
solution of a general static optimization problem and a constrained nonlinear
optimal control problem. In its full generality, this procedure for obtaining the
solution to an infinite horizon optimal control problem is an approximation
(c.f. Carlson and Haurie, 1987; Carlson et al., 1991). However, if the horizon
of the finite-horizon optimal control problem is selected sufficiently long, the
closed-loop solution obtained by this procedure is expected to approximate the
actual infinite-horizon solution well due to the moving horizon implementation.

A similar decomposition is described for the case of infinite horizon moving
horizon control with linear models. In this case, the finite horizon model predic-
tive control approximation is transformed to a linear-quadratic optimal control
problem. However, even in the linear case, the proposed decomposition proce-
dure in which the infinite horizon problem is approximated by a finite horizon
problem will only be exact for cases in which the steady-state target computed
by the static optimization is in the interior of the maximal output admissible
set (c.f. Scokaert and Rawlings, 1998; Gilbert and Tan, 1991). For problems
with infeasible targets and the steady-state target being on the boundary of
the maximal output admissible set, the linear terms in the stage costs of the
constrained linear-quadratic optimal control problem are indispensible in gen-
erating good approximations to the infinite-horizon moving horizon control
problem.

Finally, the linear terms of the stage costs and the affine terms of the state
dynamics distinguishing the linear-quadratic optimal control problem from the
classic LQ control problem facilitates anticipatory control. Anticipatory control
is a generalization of feed forward control in which the controller at some time
is provided information about future values of the set-points as well as future
values of the loads. The application of the linear-quadratic optimal control
paradigm for such problems is briefly discussed. It also briefly mentioned that
the anticipatory controller is instrumental in some realizations of coordinated
decentralized model predictive controllers.

2.1.2 Literature Review

Advanced control in the process industries as it is practiced today is almost
synonymously with model predictive control. The papers by Richalet et al.
(1976, 1978) and Cutler and Ramaker (1980) have been particularly influential
and are often regarded as the origins of model predictive control.

The connections between the closely related optimal minimum time problem
and linear programming were recognized first by Zadeh and Whalen (1962).
Propoi (1963) proposed the moving horizon approach to this problem. Exper-
imental implementation of the constrained time optimal controllers was first
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reported by Knudsen (1975) for a pilot plant evaporator. This development
has been reviewed by Gutman (1982) and its connection to model predictive
control discovered by Chang and Seborg (1983).

Model predictive control has been reviewed from a theoretical point of view
by Garcia et al. (1989), Rawlings et al. (1994), Lee and Cooley (1997), Morari
and Lee (1999), Mayne et al. (2000). Froisy (1994) provides a vendor’s perspec-
tive on industrial MPC technology and summarizes likely future developments.
Qin and Badgwell (1996, 2000) describe industrial model predictive control
implementations. Rawlings (2000) provides a short tutorial on the essential
principles of nonlinear model predictive control. Mayne (1995, 1997) gives an
overview of different nonlinear model predictive controllers. The computational
principles for solution of nonlinear model predictive control problems have been
described by Biegler (1998), Allgöwer et al. (1999), and Binder et al. (2001a).
Clarke (1994), Kantor et al. (1997), Allgöwer and Zheng (2000) are conference
proceedings devoted to model predictive control and related areas. The col-
lections edited by Bulirsch and Kraft (1994), Henson and Seborg (1997), and
Grötschel et al. (2001) are related to model predictive control and real-time
optimization.

2.1.2.1 Numerical Methods

The major operation in model predictive control concerns solution of a discrete-
time optimal control problem in real time. The main purpose of this chapter is
to formulate the problems in model predictive control as optimal control prob-
lems, but not to provide detailed solution algorithms. However, the formulation
of the problems to be solved are to some extent determined by the solution
algorithms available. We will therefore briefly survey the major algorithms
for solution of the deterministic discrete-time optimal control problem. The
major algorithm classes for solution of the discrete-time optimal control prob-
lem are maximum principle algorithms, differential dynamic programming, and
methods based on mathematical programming. In contemporary practice, the
optimal control problems are solved by mathematical programming. However,
the development of the optimal control theory and mathematical programming
took place as separate developments.

One class of algorithms for solution of discrete-time optimal control problems is
the maximum principle algorithms. These algorithms are based on the Hamil-
tonian of the optimal control problem. The classical maximum principle as-
sert that at the optimal solution, the controls, uk, maximize the Hamiltonians
and there exist adjoint variable equal to the state derivative of the Hamilto-
nians at the optimal solution. Pontryagin et al. (1962) proposed a solution
method for the continuous time optimal control problem using the maximum
principle. Shortly after the discovery of the maximum principle algorithm
for continuous optimal control problems, a weak maximum principle was de-
veloped for discrete-time systems by Katz (1962a,b). The weak maximum
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principle algorithm states that the Hamiltonian takes a stationary value with
respect to uk rather than a maximum. However, the relation to the continuous-
time maximum principle algorithm was not straightforward and Fan and Wang
(1964) concluded incorrectly that the maximum part of the maximum princi-
ple algorithm holds under the same fairly weak conditions as in the continuous
case. Horn and Jackson (1965) as well as Jackson and Horn (1965) discussed
and concluded correctly that the maximum principle is not generally valid for
discrete-time optimal control problems, although it is valid for discrete-time
linear systems. Propoi (1965) and Halkin (1966) discussed in geometric terms
the existence of adjoint variables. The concept of directional convexity was
introduced by Holtzman (1966a,b) and Holtzman and Halkin (1966). They
used that to sharpen the formulation concerning existence of adjoint variables
at the optimum. The general maximum principle algorithm was presented by
Nahorski et al. (1984). It applied the optimal value function calculated for-
ward. Vidal (1987) formulated the sufficient maximum principle. Hartl et al.
(1995) surveys the different maximum principle algorithms for continuous sys-
tems. Ravn (1999) provides a nice survey of the development of discrete-time
maximum principle algorithms. Everett (1963) provided an interesting inter-
pretation of the maximum principle algorithm for discrete-time systems as a
Lagrange decomposition. In retrospect, it is clear that the maximum principle
for discrete-time systems is just a special formulation of the KKT first-order
conditions. The maximum principle algorithms are special methods for solving
these systems of equations.

The second major practical approach to the solution of deterministic discrete-
time optimal control problems is differential dynamic programming. Differen-
tial dynamic programming is inspired by dynamic programming. Differential
dynamic programming proceeds much like the traditional formal dynamic pro-
gramming algorithm, except that at each stage, the optimal return function
from the next stage onward as well as the cost from that stage are replaced
by their quadratic approximations about the current controls and states. The
curse of dimensionality associated with dynamic programming, is overcome by
differential dynamic programming by constructing linear-quadratic approxima-
tions of the optimal value function and associated dynamics at each stage of the
backward recursion in dynamic programming. The main motivation for apply-
ing differential dynamic programming to the nonlinear discrete-time optimal
control problem has been that its computational cost is O(Nm3) in which m is
the dimension of the controls (i.e. uk ∈ R

m) and N is the horizon. The com-
putational expense in conventional application of Newton’s method by elimi-
nation of the states is O(N3m3). However, Jonson (1983), Pantoja (1988), and
Dunn and Bertsekas (1989) have independently demonstrated that Newton’s
method may also be applied to solve the deterministic optimal control problem
in computational cost O(Nm3). In this approach, both the states and the con-
trols are treated as decision variables and the transition equations are left as
constraints. Differential dynamic programming is not identical with Newton’s



2.1. Introduction 73

method for optimal control problems. The backward recursion using dynamic
programming is identical for Newton’s method and differential dynamic pro-
gramming. However, in the forward recursion Newton’s method generates the
state trajectory using the linearization of the transition equations while dif-
ferential dynamic programming applies the transition equations themselves for
generation of the state trajectory. In that respect, differential dynamic pro-
gramming may be regarded as a feasible path SQP method for unconstrained
optimal control problems. Mayne (1966), Jacobson and Mayne (1970), and
Dyer and McReynolds (1970) suggested differential dynamic programming al-
gorithms for locally unconstrained optimal control problems. Ohno (1978a),
Murray and Yakowitz (1979), and Yakowitz (1986) applied differential dynamic
programming techniques to the solution of constrained optimal control prob-
lems. Murray and Yakowitz (1984) examined differential dynamic program-
ming and Newton’s method for optimal control problems. They showed that
these methods are not identical and that differential dynamic programming has
a quadratic rate of convergence. Liao and Shoemaker (1991) provided a more
direct proof for the quadratic convergence of differential dynamic program-
ming. Yakowitz and Rutherford (1984) developed computational techniques
such that differential dynamic programming to generic optimal control prob-
lems. They also provided line search methods and criteria to ensure global
convergence. Differential dynamic programming requires first as well as second
derivatives of the stage cost as well as the state transition equations. This
computational burden was removed by Sen and Yakowitz (1987) and Rakshit
and Sen (1990) who devised quasi-Newton methods for differential dynamic
programming. The developed stage wise rank-one updates require the first
derivatives of the stage cost and the state transition at each stage. Yakowitz
(1988, 1989) reviews theoretical and computational aspects of differential dy-
namic programming. Ravn (1999) provides a recent introduction to differential
dynamic programming and compares differential dynamic programming with
Newton’s method. Practical implementations and applications of differential
dynamic programming have been described in Murray and Yakowitz (1979),
Yakowitz and Rutherford (1984), Liao and Shoemaker (1991). Ohno (1978b)
and Murray and Yakowitz (1981) demonstrated that separable mathematical
programs could be formulated as optimal control problems and solved efficiently
using differential dynamic programming. In retrospect, differential dynamic
programming may be regarded as a feasible path solution method that utilizes
a Riccati recursion for discrete-time optimal control problems.

The third technique for solution of optimal control problems is mathematical
programming. Currently, mathematical programming is the most popular and
commonly applied technique for solution of optimal control problems. How-
ever, the development of optimal control theory and mathematical program-
ming took place as separate activities. In the mainstream control community
at the early days of the optimal control development, it was not at all obvious
how to formulate optimal control problems as mathematical programs. Lee
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and Markus (1968), Canon et al. (1970), and Tabak and Kuo (1971) are early
textbooks treating the optimal control problem as a mathematical program.
Luenberger (1972) and Polak (1973) also describes the formulation of opti-
mal control problems as mathematical programs. Recent books dealing with
formulation of optimal control problems as mathematical programs includes
Bertsekas (1995b), Polak (1997), and Betts (2001). Nocedal and Wright (1999)
provide a very nice introduction to the numerical techniques employed in solv-
ing mathematical programs. Powell (1977) was the first to present a numerical
efficient sequential quadratic programming algorithm for solution of nonlinear
programs. The solution of optimal control problems as mathematical programs
is typically accomplished using sequential quadratic programming (SQP) algo-
rithms as they require far fewer function evaluations than gradient methods.
The main differences of the SQP algorithms applied for solution of optimal con-
trol problems concerns 1) how the quadratic program subproblems are solved,
2) whether a line-search or trust region strategy is used to select the step size,
and 3) whether the intermediate iterates generated are enforced to be feasible
or allowed to be infeasible such that only the final optimal iterate is feasible.
The quadratic subproblems may be solved by active set algorithm or interior-
point algorithms. Both active set and interior-point algorithms may utilize the
structure of the linear-quadratic optimal control problem or they may be dense
quadratic programs obtained after elimination of the states. The solution of
the quadratic program corresponding to the linear-quadratic optimal control
problem has been discussed by Wright (1996) and Allgöwer et al. (1999).

Jonson (1983), Pantoja and Mayne (1989), and Dunn and Bertsekas (1989) in-
dependently solved unconstrained discrete-time optimal control problems uti-
lizing the special structure of the control problem. The resulting solution
procedure is based on Riccati recursions such that the linear-quadratic op-
timal control problem structure is utilized. Dohrmann and Robinett (1997)
extended the method of Dunn and Bertsekas (1989) to discrete-time optimal
control problems with equality constraints and allowed for free final time as
well.

Wright (1993), Steinbach (1994, 1995), Rao et al. (1998), and Tenny (2002)
solved constrained discrete-time optimal control problems by interior-point
methods. By retaining the states as decisions variables and leaving the state
transition equations as constraints, the essential linear algebra operation in
the interior-point algorithms is the just mentioned Riccati recursion for solving
unconstrained linear-quadratic optimal control problems. By this method the
computational cost of solving the optimal control problem by mathematical
programming is O(Nm3). The alternative methods based on state elimination
has computational complexity O(N3m3).

Wright and Tenny (2002) developed a feasible path trust-region sequential
quadratic programming algorithm for general nonlinear programs. Tenny et al.
(2002) applied that algorithm for the solution of nonlinear optimal control
problems in a model predictive control context using a Riccati iteration based
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interior point algorithm. Tenny (2002) describes application of this algorithm
to moving horizon estimation and control problems. In a model predictive
control context, the advantage of feasible path methods is that the algorithm
may terminate early due to the real-time constraint and still provide a feasi-
ble solution to be implemented. As discussed by Scokaert et al. (1999) such
methods are stabilizing as reduction of the value function is sufficient for sta-
bility. Leineweber (1995, 1999), Bock et al. (2000), and Diehl et al. (2001)
have developed a multiple shooting algorithm for nonlinear optimal control
problems. This algorithm employs a line-search methodology to ensure global
convergence. The multiple-shooting algorithm is an infeasible path approach
as the state transition equations are enforced within each shooting interval but
not between the shooting intervals. Diehl et al. (2002) applied this algorithm
in nonlinear model predictive control of a distillation column. Biegler (1998,
2000) provides an overview of optimization techniques for dynamic optimiza-
tion. General sparse equation solvers are considered for the solution of the
structured optimality conditions for the dynamic optimization problem.

Vassiliadis et al. (1994a,b) and Feehery and Barton (1998) studied continuous
time optimal control problems with the purpose of generating optimal trajec-
tories.

Binder et al. (2000, 2001b,c) consider iterative adaptive refinement of the mesh
on which the nonlinear optimal control and estimation problem are solved. By
this procedure the mesh is fine in time intervals at which the trajectories change
drastically and coarse in other intervals.

2.1.2.2 Control Approaches

Industrial implementations of model predictive control has typically invoked
the separation principle as well as the certainty equivalence principle. In this
framework, the regulation problem may be treated as a deterministic problem.
Feedback has either been obtained by assuming a constant output disturbance
as the cause of any mismatch between predictions and observed outputs or by
using a Kalman type filter (c.f. Qin and Badgwell, 1996, 2000; Allgöwer et al.,
1999). By this approach, it is tacitly assumed that the system is essentially
deterministic and that the effect of any uncertainties can be efficiently elimi-
nated by the use of feedback. The types of optimal control has been described
by Dreyfus (1964). Arrow et al. (1949) and Arrow (1951) discuss various prob-
abilistic and min-max criteria in optimal decision making. Kalman (1960a,b)
and Kalman and Bertram (1960) developed the principles for optimal control
of linear-quadratic systems. The work by Kalman is a basis for unconstrained
optimal control of linear-quadratic systems.

Loeblein and Perkins (1999a,b) address the effect of uncertainties on the steady-
state economics on model predictive controller using the concept of back-off.
Schwarm and Nikolaou (1999) treat the output constraints as chance con-
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straints. By this method they implicitly back-off from the optimal deterministic
steady-state operating point. Kassmann et al. (2000) incorporate the uncer-
tainty description in the formulation of the target problem and show that the
resulting problem is a second order cone program. The second order cone
program is efficiently solved using primal-dual interior point algorithms.

Bar-Shalom (1981) considers the stochastic optimal control problem and apply
the concepts of caution and probing introduced by Feldbaum (1965) to demon-
strate that the objective of a stochastic optimal control problem is due to a
deterministic effect, an effect due to uncertain parameters, and an effect due
to external stochastic disturbances. Lee and Cooley (1998) derive the optimal
controllers linear systems in which the parameters are uncertain and indepen-
dently distributed. Bitmead et al. (1990) provide a description of adaptive
model based predictive controllers in the framework of input-output models
(see also Clarke, 1994). Dollar et al. (1993) provide a description of an indus-
trial adaptive model predictive controller.

Eaton and Rawlings (1992) and Mosca and Casavola (1995) discuss an ex-
tension of model predictive control in which future set-point trajectories and
disturbances are provided to the controller. This form of control is a general-
ization of feed forward control and is called anticipatory control.

2.2 Model Predictive Control

Various model predictive controllers for solution of the stochastic optimal con-
trol problem will be discussed. These controllers differ by the way they treat the
uncertainties of the prediction due to the stochastics of the system and whether
they treat the parameters of the system as perfectly known or as uncertain and
specified by some stochastic distribution.

The dynamic programming optimal controller reside in one end of this spec-
trum of controllers discussed. It handles the uncertainties of the predictions in
a stochastic optimal way. The mathematical ideality of this controller comes at
the price of very expensive and demanding computations for almost all practical
problems. Therefore, the dynamic optimal controller is hardly implementable
for any practical system. The unconstrained linear-quadratic Gaussian stochas-
tic optimal control problem is the much celebrated exception.

At the other extreme of this spectrum is the moving horizon estimators and
controllers that are typically considered for industrial model predictive control.
Motivated by the stochastic optimal separation of estimation and control for
unconstrained linear-quadratic Gaussian systems and the certainty equivalence
principle, this type of control of nonlinear stochastic systems decompose the
computations into estimation of the current state and computation of the future
control input values by solution of deterministic optimal control problem in
which the stochastic variables are replaced by their mean values.
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2.2.1 Stochastic Optimal Control

To understand the approximations inherent in the model predictive controller
typically applied in the process industries, we consider a discrete-time stochas-
tic optimal control problem with imperfect information. For simplicity let the
horizon of this stochastic control problem be finite, say N .

The dynamics of the system considered is determined by the stochastic differ-
ence equation

xk+1 = gk(xk, uk,wk) k = 0, 1, . . . , N − 1 (2.1)

in which {wk}N−1
k=0 is a sequence of independent stochastic variables. xk is the

state of the system and uk is the controlled input to the system. These inputs
are restricted to be in a non-empty possibly state-dependent subset

uk ∈ Uk(xk) (2.2)

This type of constraint is sufficiently general to include constraints of the type
hk(xk, uk) for k = 0, 1, . . . , N − 1 and hN (xN ). Let the measurement equation
be the stochastic equation

yk = ϕk(xk) + vk k = 0, 1, . . . , N − 1 (2.3)

in which {vk}N−1
k=0 is a sequence of stochastic independent variables representing

the measurement noise. Let the set of collected measurements, Yk, and the set
of applied inputs, Uk, be defined as

Uk = {u0, u1, . . . , uk} U−1 = ∅ (2.4a)

Yk = {y0, y1, . . . , yk} (2.4b)

Then the information available to the controller, µk, at stage k is

Ik = {Uk−1,Yk} (2.5)

The controller, µk, at stage k is a function that maps the information Ik into
an admissible process input

uk = µk(Ik) (2.6)

Let π denote the sequence of controllers, i.e. functions, mapping the informa-
tion available into a process input

π = {µ0(I0), µ1(I1), . . . , µN−1(IN−1)} (2.7)

The controllers π are selected among the admissible controllers such that the
expected cost

φ = E x0,wk,vk
k=0,1,...,N−1

{
N−1∑

k=0

fk(xk, µk(Ik),wk) + fN (xN )

}

(2.8)
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is minimized. The optimal sequence of controllers π of this problem may be
determined by dynamic programming (c.f. Bertsekas, 1995a). It is important
to observe that this optimization is conducted over function spaces and that
the sequential availability of information is accounted for by the definition of
the controllers µk(Ik). The resulting functions µk(Ik) are called the optimal
feedback controllers.

Algorithm 1 (Optimal Feedback Controller)
The control input applied by the optimal feedback controller at each time k is deter-
mined by

1. Let the information vector Ik = {Yk,Uk} be given and note that this vector
may be considered as a state of the stochastic system that evolves according to

Ik+1 = (Ik, uk, yk+1) (2.9)

2. Compute

VN−1(IN−1) = min
uN−1∈UN−1

[
ExN−1,wN−1{fN−1(xN−1, uN−1, wN−1)

+fN (gN−1(xN−1, uN−1, wN−1))|IN−1, uN−1}]
(2.10)

and set µN−1(IN−1) = u∗
N−1 for all IN−1. For i = N − 2, N − 3, . . . , k + 1, k

compute recursively

Vi(Ii) = min
ui∈Ui

[
Exi,wi,yi+1{fi(xi, ui, wi) + Vi+1(Ii, ui, yi+1))|Ii, ui}

]

(2.11)

for all possible future information vectors, Ii.

3. Apply the control: uk = µk(Ik)

For general problems in which the states are discretized, the complexity of com-
puting the optimal feedback controllers grows exponentially with the number
of states, i.e. it has at least complexity O(Ndn) in which d is the number of
discretization intervals and n is the state dimension. Hence, in practice this
approach is in general not feasible. Bellman and Dreyfus (1962) called this the
curse of dimensionality. The case in which the objective function is quadratic,
the state transition equation is linear, and no further constraints exist is a
much celebrated exception. For this system an analytical solution exists. The
optimal controller is a composite function, µk(Ik) = µk (E {xk|Ik}) = µk(x̂k|k)
in which x̂k|k = E {xk|Ik}. The inner function, x̂k|k = E {xk|Ik}, is the con-
ditional mean state which is an optimal estimation of the state. The outer
function, µk(x̂k|k), is an optimal solution to the equivalent optimal stochastic
control problem in which perfect state information prevails. This separation
of the stochastic optimal control problem with imperfect state estimation to
an optimal estimation problem and a stochastic optimal control problem with
perfect state information is known as the separation principle (c.f. Striebel,
1965; Wonham, 1968; Witsenhausen, 1971). Furthermore, as observed by Si-
mon (1956) (see also Theil, 1957; Joseph and Tou, 1961; Gunckel and Franklin,
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1963), the solution of the stochastic linear-quadratic optimal control problem
with perfect state information is equivalent to the deterministic linear quadratic
optimal control problem in which the stochastic process disturbances wk are
replaced by their mean values w̄k = E {wk}. This is called the certainty equiv-
alence principle. Consequently, the stochastic linear-quadratic optimal control
problem may be solved exactly by solving an optimal linear quadratic estima-
tion problem and a deterministic linear-quadratic optimal control problem.

2.2.2 Suboptimal Controllers

The properties of the optimal controller for linear-quadratic stochastic systems
have guided the construction of suboptimal controllers for the general stochastic
optimal control problem. The separation principle is applied in the computa-
tion of most suboptimal controllers such that the controller is decomposed into
a state estimation problem and an optimal control problem.

The certainty equivalent controller estimates the state and applies at each stage
the control that would be optimal if the stochastic quantities were fixed at
their expected values. It acts as if a form of the certainty equivalence princi-
ple applies. Dreyfus (1964) call this controller the open-loop-optimal feedback
controller while Bertsekas (1976) refer to it as the naive feedback controller as
well as the certainty equivalent controller.

Algorithm 2 (CEF Controller)
The control input uk = µ̃k(Ik) applied by the certainty equivalent controller at each
time k is determined by

1. Given the information vector Ik, compute x̂k|k = E {xk|Ik}.
2. Solve the deterministic optimal control problem

min φ̃ =

N−1∑

i=k

fi(xi, ui, w̄i) + fN (xN ) (2.12a)

s.t. xk = x̂k|k (2.12b)

xi+1 = gi(xi, ui, w̄i) i = k, . . . , N − 1 (2.12c)

ui ∈ Ui(xi) (2.12d)

for {ũk, ũk+1, . . . , ũN−1} using w̄i = E {wi}.
3. Apply the control input: µ̃k(Ik) = ũk.

Step (1) of the certainty equivalent controller computes online an optimal esti-
mate of the state. Step (2) solves online a deterministic optimal control problem
and applies the first control action ũk. The stated algorithm for the certainty
equivalent controller computes online the control action ũk for the state x̂k|k

actually estimated. This is in contrast to offline computation of a control law,
i.e. a function, for all possible states. However, this is an implementation
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related matter and it is for some systems both possible and preferable to com-
pute the optimal controller, µ̃k(Ik) = µd

k(x̂k|k), offline. The controller µd
k may

be obtained by solving the deterministic optimal control problem (2.20) using
dynamic programming or sensitivity analysis for constrained linear-quadratic
systems (c.f. Bertsekas, 1995a; Bemporad et al., 2002). The conception and jus-
tification of the certainty equivalent controller dates to the origins of feedback
theory when feedback was employed as a device that compensated for uncer-
tainties and noise in the system. The classic design of feedback controllers
tacitly assumes away uncertainties of the stochastic system by fixing stochas-
tic variables at their typical values, and compute the control law based on
the deterministic system and considerations such as stability, optimality, and
robustness. Like the classic feedback controller, the certainty equivalent con-
troller does not explicitly take uncertainties into account but relies on the feed-
back mechanism to compensate for uncertainties and noise in the system. For
unconstrained linear-quadratic systems, the certainty equivalent controller is
optimal. However, for general systems this is a suboptimal feedback controller,
but in practice it typically performs well and gives near-optimal policies. Thau
and Witsenhausen (1966) give an interesting example in which the certainty
equivalent controller has worse performance than the open-loop controller re-
ceiving no feedback but taking the uncertainties into account. Witsenhausen
(1969, 1970) provides results about how well the cost of suboptimal controllers
approximate the optimal feedback controller. Malinvaud (1969) provides a
sensitivity property for the certainty equivalent controller.

The open-loop-optimal (OLO) controller and the open-loop-optimal feedback
(OLOF) controller are similar to the certainty equivalent controller and the
certainty equivalent feedback controller, respectively. The open-loop-optimal
controller receives no feedback, while the open-loop-optimal feedback controller
receives feedback at each stage and computes open-loop-optimal control laws
based on the information received. The difference between the certainty equi-
valent controllers and the open-loop-optimal controllers is that the open-loop-
optimal controllers take into account the uncertainty about the initial state and
process noise in the computation the control laws. The open-loop-optimal feed-
back controller considers the uncertainties of x̂k|k, wk,wk+1, . . . ,wN−1 when
computing the control law µ̄k(Ik) to be applied at time k.

Algorithm 3 (OLOF Controller)
The control input uk = µ̄k(Ik) applied by the open-loop-optimal feedback controller
at each time k is determined by

1. Given the information vector Ik, compute the conditional probability distribu-
tion P (xk|Ik).

2. Let

φ̄ = E xk,{wi}
i=k,...,N−1

{
N−1∑

i=k

fk(xi, ui,wi) + fN (xN )|Ik

}

(2.13)
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Compute a control sequence {ūk, ūk+1, . . . , ūN−1} that solves

min φ̄ (2.14a)

s.t. xi+1 = gi(xi, ui,wi), i = k, . . . , N − 1 (2.14b)

ui ∈ Ui(xi), i = k, . . . , N − 1 (2.14c)

3. Apply the control input
µ̄k(Ik) = ūk (2.15)

The open-loop-optimal feedback uses the measurements Yk to compute the
conditional probability distribution P (x̂k|Ik). However, the open-loop-optimal
feedback controller selects the control input µ̄k(Ik) = ūk as if no further mea-
surements will be received. In contrast, the optimal feedback controller, µk(Ik),
obtained by dynamic programming takes into account that the controller will
receive further measurements in the future. A comparison of the certainty
equaivalent feedback controller, the open-loop-optimal feedback controller, and
the optimal feedback controller reveals: 1) the certainty equivalent feedback
controller is too aggressive because it neglects uncertainties and assumes per-
fect information about the future, 2) the open-loop-optimal feedback controller
is too cautious as it accounts for the uncertainties but neglects the informa-
tion received in the future, and 3) the optimal feedback controller strikes the
right balance of caution as it considers the uncertainties and takes into ac-
count that new information will be received in the future and thus reducing
the uncertainty. The control problem (2.28) of the open-loop-optimal feed-
back controller may be solved using stochastic programming (c.f. Birge and
Louveaux, 1997). The practical problem with such an approach is that the
stochastic variables must be discretized and the size of the resulting mathe-
matical program becomes easily very large as it grows exponentially with the
number of independent stochastic variables.

2.2.3 State Estimation

The certainty equivalent feedback controller assumes that the expected state
conditioned on the current information can be computed, x̂k|k = E {xk|Ik},
and the open-loop-optimal feedback controller requires the entire conditional
probability distribution, P (xk|Ik). Except for special cases, computation of
the conditional expectation and the conditional probability distribution re-
quires the conditional probability density distribution, p(xk|Ik). As explained
by Jazwinski (1970), computation of the conditional probability density in-
volves solving the Chapman-Kolmogorov equation in the discrete-time case
and solution of Kolmogorov’s forward equation (also known as the Fokker-
Planck equation) when the underlying system is continuous and described by
stochastic differential equations. In general, solution of either the Chapman-
Kolmogorov equation or Kolmogorov’s forward equation is a formidable task
which can seldom be conducted and certainly not in real-time.
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In principle, Monte Carlo simulation is one alternative to the probabilistic
approach of state estimation, i.e. computation of the exact evolution of the
conditional probability density. In the Monte Carlo approach, a large collec-
tion of realizations of the independent stochastic variables are generated by a
random number generator, and the corresponding realizations of the dependent
state variables are computed and used to construct an approximate conditional
probability density. This approximate conditional probability density can be
used for computing the conditional mean state as well as the conditional co-
variance. Even though the computational demand is reduced compared to the
exact probabilistic approach, the requirement of a large number of simulation
samples limits the practical use of the Monte Carlo method for real-time state
estimation.

The third and most practical method for state estimation is the statistical
method, which unfortunately is a suboptimal procedure. In this method, the
state estimation problem is formulated as a deterministic optimization problem
that given the information Ik = {Yk,Uk−1} selects the states {xi}k

i=0, the

process noise {wi}k−1
i=0 , and the measurement noise {vi}k

i=0 such that state
transition equations and the measurement equations are satisfied, and such
that some objective function, ψ, is minimized

min
xi,wi,vi

ψ (2.16a)

s.t. xi+1 = gi(xi, ui, wi) i = 0, . . . , k − 1 (2.16b)

yi = ϕi(xi) + vi i = 0, . . . , k (2.16c)

In a pure statistical approach, no probabilistic information concerning the dis-
tribution of x0, {wi}k−1

i=0 , and {vi}k
i=0 is available and the selection of the

objective function is somewhat arbitrary. Originated by Legendre and Gauss,
the objective function has in such situations been selected as a quadratic func-
tion such that (2.16) becomes a least-squares problem minimizing the error
between the observations and the predicted observations. Later it has been ex-
tended such that it is the deviation of the independent variables x0, {wi}k−1

i=0 ,

and {vi}k
i=0 from some nominal variables x̄0, {w̄i}k−1

i=0 , and {v̄i}k
i=0 that is

minimized. One such objective function is

ψ = 1
2 (x0 − x̄0)

′P−1
0 (x0 − x̄0)

+ 1
2

k−1∑

i=0

(wi − w̄i)
′Q−1

i (wi − w̄i)

+ 1
2

k∑

i=0

(vi − v̄i)
′R−1

i (vi − v̄i)

(2.17)

For this particular objective the weights, P0, {Qi}k−1
i=0 , and {Ri}k

i=0, are ar-
bitrary and the function constructed such that the overall weight matrix is
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block-diagonal. The state part of the solution of (2.16) is denoted
{
x̂i|k

}k

i=0
and called the smoothed state estimate (c.f. Meditch, 1973; Kailath, 1975). x̂k|k

is called the filtered state and is an approximation of the conditional mean state
needed in step (1) of the certainty equivalent feedback controller. The opti-
mization problem (2.16) with the objective (2.17) may under the assumption of
x0 ∈ N(x̄0, P0), wi ∈ N(w̄i, Qi), vi ∈ N(v̄i, Ri), and stochastic independence

of these stochastic variables be interpreted as selection of the estimate
{
x̂i|k

}k

i=0

such that the conditional density, p({xi}k
i=0 |Ik), is maximized. Hence, with

proper selection of the objective function the statistical method with a least
squares objective corresponds to computation of a maximum likelihood esti-
mate. In a Bayesian sense this is the maximum a posteriori estimate as a priori
information about the means, i.e. x̄0, {w̄i}k−1

i=0 , and {v̄i}k
i=0, is utilized and the

covariances are assumed known exactly. When the probability density function
is symmetric, the maximum likelihood estimate is identical with the correspon-
ding mean value and minimum variance estimate of the stochastic variable. In
contrast, when the probability density function is a non-symmetric truncation
of the Gaussian probability density, the maximum likelihood estimate does not
have any other probabilistic properties than being the most likely realization of
the stochastic variable being estimated. This difference between the mean value
and the maximum likelihood estimate is illustrated in figure 2.1 for a stochas-
tic variable with a truncated Gaussian probability density function. Further,
in the case of non-Gaussian distribution of any of the exogeneous stochastic
variables, i.e. x0, {wi}k−1

i=0 , or {vi}k
i=0, the objective function (2.17) gives no

other significance to (2.16) than being a least-squares objective (c.f. Deutsch,
1965; Jazwinski, 1970). To retain the maximum likelihood interpretation of the
estimated states in the case of non-Gaussian exogeneous stochastic variables,
the objective function of (2.16) may be selected as the joint probability density
function corresponding to the distribution of the exogeneous stochastic vari-
ables. Like the linear-quadratic control problem, the Gaussian linear-quadratic
estimation problem has some special features that may be guiding principles
for construction of suboptimal estimators for general nonlinear systems. The
particular feature of linear systems with Gaussian external uncertainties, i.e.
x0, {wi}, and {vi} are stochastic normally distributed variables, is that all
stochastic variables in the linear model are normally distributed. The proba-
bility density function and the conditional probability density function of joint
normally distributed stochastic variables are completely characterized by their
mean value and their covariance. Furthermore, by 1) the Gaussian interpre-
tation of x0, {wi}, and {vi}, 2) linearity of the state transition equation and
the linearity of the measurement equation, and 3) under the assumption of
stochastic independence of x0, {wi}, and {vi}, the conditional mean value
of the states and the corresponding conditional covariances may be computed
by simple recursions (c.f. Kailath et al., 2000). The recursive formulas for for
covariances may be extended to the nonlinear case to provide some ad hoc
approximation for the dispersion of the estimated states.
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Figure 2.1. Truncated normal probability density for illustrating the difference be-
tween the truncated mean value and the truncated maximum likelihood estimate.

Sayed (2001) discuss state estimation in linear models with uncertain param-
eters and provide recursions in 1) time- and measurement-update form, 2)
prediction form, and 3) information form (see also Hassibi et al., 1999). The
structure of these recursions is similar to the corresponding forms of the Kalman
filter.

2.2.4 Moving Horizon Estimation and Control

Except for the optimal feedback controller, the suboptimal controllers for stochas-
tic systems employ the separation principle, such that the control system is
decomposed into an estimator and a controller. This is illustrated in figure
2.2 for a model predictive controller. The controller in the model predictive
controller studied in this paper and illustrated in figure 2.2 consists of a tar-
get calculator and a regulator. The estimator may in principle be any of the
estimators described in the preceding section. However, to make the implemen-
tation practically feasible for non-trivial processes the estimator considered is a
least squares estimator (2.16) and (2.17) with additional inequality constraints

on the states, {xi}k
i=0, and the process noise, {wi}k−1

i=0 . The controller em-
ployed assumes certainty equivalence and may consequently be characterized
as a certainty-equivalent feedback controller. When new measurements be-
come available to the estimator, it computes a smoothed estimate of the states
{
x̂i|k

}k

i=0
and the exogeneous inputs

{
ŵi|k

}k

i=0
. The filtered state, x̂k|k, is ap-

plied as an approximation of the conditional mean and used by the regulator.
In addition to estimation of states of the system being controlled, the state es-
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timator may also estimate the states of a disturbance model in order to get an
estimate of the influence of past, current, and future exogeneous variables on
the system (c.f. Muske and Badgwell, 2002). It is assumed that the exogeneous
variables approaches a limit. This limit is used by the target calculator while
the regulator applies the entire trajectory of exogeneous variables. The target
calculator was introduced by Muske and Rawlings (1993a) to handle control
problems with infinite horizons. It computes the optimal steady state, assum-
ing such a state exists, by solving a constrained static optimization problem.
The regulator solves a constrained dynamic optimization problem (2.20) and
obtains an optimal certainty-equivalent trajectory. The computed open-loop
control trajectory is applied on the process until new information become avail-
able. By the arrival of new information the entire sequence of calculations is
repeated.

Motivated by mathematical tractability for non-trivial practical processes, the
model predictive controller applies the separation principle. The estimator is a
least-squares estimator while the controller is a certainty equivalent controller.
For continuous processes the horizon, N , is extremely long and often conceptu-
alized as being infinite. The size of the estimation problem (2.16) grows linearly
with the time index and as this index becomes large the estimation problem
becomes large. With an infinite horizon, or at least an extremely large finite
horizon, the control problem (2.20) is also very large. Both the estimation
problem and the control problem are constrained optimization problems which
must be solved in real-time. To accomplish that, it is desirable that their size
is as small as possible. Hence, yet another approximation is introduced to limit
the size of the mathematical programs constituting the estimator and regula-
tor, respectively. The estimator considers only a limited horizon of past data,
while the regulator considers only a limited horizon into the future. This is
illustrated in figure 2.3 and bounds the size of the mathematical programs that
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Figure 2.2. Block diagram of a model predictive controller.
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must be solved in real-time. As new information becomes available the horizon
of the estimator and the regulator is moved as illustrated by 2.4. Therefore,
this estimation and control methodology is called moving horizon estimation
and control.

In figure 2.3 and figure 2.4, the estimation and the regulation horizons are
fixed. In practice, they are often selected adaptively such that the solutions
of the mathematical programs of limited size approximates the solution of the
corresponding full horizon problems. Further, the information in the past data
outside the estimation window is not discarded but approximated by a cost-to-
arrive function, just as a cost-to-go function is used to approximately account
for the future outside the regulator window (c.f. Muske and Rawlings, 1993a;
Scokaert and Rawlings, 1998; Rao and Rawlings, 1999, 2000; Tenny and Rawl-
ings, 2002; Pannocchia et al., 2002). To have good performance and stability of
the model predictive controller implemented in a moving horizon fashion it is
often necessary to apply quite long estimation- and regulation-horizons. This
implies that the size of the mathematical programs constituting the estima-
tor and the regulator may be large even though their sizes are bounded and
reduced by the moving horizon approximation.
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Figure 2.3. Moving horizon estimation and control.
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Figure 2.4. Online optimization.

2.2.5 Stochastic Optimal Control of Uncertain Systems

Tacitly, we have assumed that the models considered and their parameters
are known precisely. This is never the case for practical control systems in
which the parameters, θ, of the model are determined by estimation of noisy
measurements and therefore uncertain. Such a model may be described as

xk+1 = gk(xk, uk,wk, θ) k = 0, 1, . . . , N − 1 (2.18)

The parameter vector θ is assumed to be fixed and deterministic in the true
model of the system. However, the parameter vector in the model used by
the controller is a stochastic parameter as it is estimated. The model with
an unknown parameter may be formulated as model the standard state space
format by augmenting the state vector with the parameters. The resulting
model equivalent to (2.18) becomes

xk+1 = gk(xk, uk,wk, θk) k = 0, 1, . . . , N − 1 (2.19a)

θk+1 = θk k = 0, 1, . . . , N − 1 (2.19b)

with θ0 = θ. As will be demonstrated, the advantage of the formulation (2.19)
compared to (2.18) is that it has the state space structure. Therefore, the
case of uncertain models may just be considered as a particular example of
a stochastic optimal control problem (c.f. Bertsekas, 1976, 1995a). However,
features such as probing and caution are illustrated and explained particularly
well using the uncertain model (2.18) which is equivalent to (2.19).
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Feldbaum (1961a,b, 1965) first recognized that for stochastic dynamic systems,
the control action has a dual effect: It has direct affect on the state of the system
but it also affects the uncertainty of the state. If the state-vector is augmented
with the parameters, this observation by Feldbaum implies that the control
action may be used to reduce the parameter uncertain and thus the controller’s
knowledge about the system. Due to the multi stage nature of the stochastic
optimal control problem, it may be optimal for the controller to perturb the
system to affect the states such that current system performance is degraded
because these perturbations will lead to reduced parameter uncertainty and
therefore improved future systems performance. This effect is called probing.

The existence of uncertainty in the system may have another effect. In general
the existence of uncertainty in the system will increase the expected perfor-
mance cost. The controller should therefore be cautious not to increase further
the effect of the existing uncertainties on the cost. Compared to a determinis-
tic controller, this will make the stochastic optimal controller cautious and less
aggressive.

Bar-Shalom (1981) showed that the expected cost of the stochastic optimal
control problem can be decomposed into a a term due to deterministic effect,
a term related to the effect of exogenous stochastic variables, and a terms due
to the uncertainties about the states (including uncertain parameters). When
the effect of uncertainties dominate this cost one can distinguish two cases. In
one case, the term related to the effect of exogenous variables dominate the
expected cost. This situation corresponds to a highly uncertain model which
cannot be improved during the control period. There is not much one can do
to improve the control except being cautious and not being too confident in
the model predictions. In the other uncertain case, when the dominating term
in the expected objective function is due to the effect of uncertainties in the
states and parameters, the controller may employ the dual action of control to
reduce the uncertainties about the augmented state and thereby increase the
future performance of the system. When the dominating term of the expected
cost is related to deterministic effects, the controller can be of the certainty-
equivalence type as it is approximately a deterministic problem.

As the uncertain stochastic dynamic system (2.18) may be interpreted as the
stochastic dynamic system (2.19), we may apply the suboptimal controller dis-
cussed previously to the system (2.18) as well. These type of controllers are
adaptive as they estimate the states of the system as well as the parameters in
the model. The adaptive certainty equivalent controller applied to a stochastic
optimal control problem with uncertain parameters may be stated as

Algorithm 4 (Adaptive CEF Controller)
The control input uk = µ̃k(Ik) applied by the certainty equivalent controller at each
time k is determined by

1. Given the information vector Ik, compute x̂k|k = E {xk|Ik} and θ̂k = E {θ|Ik}



2.2. Model Predictive Control 89

2. Solve the deterministic optimal control problem

min φ̃ =

N−1∑

i=k

fi(xi, ui, w̄i) + fN (xN ) (2.20a)

s.t. xk = x̂k|k (2.20b)

xi+1 = gi(xi, ui, w̄i, θ̂k) i = k, . . . , N − 1 (2.20c)

ui ∈ Ui(xi) (2.20d)

for {ũk, ũk+1, . . . , ũN−1} using w̄i = E {wi}.
3. Apply the control input: µ̃k(Ik) = ũk.

Seborg et al. (1986) as well as Ydstie (1997) have reviewed the application
of adaptive certainty equivalent control to chemical processes. The solution of
(2.20) is obtained as the solution of a standard optimal control problem for fixed
parameters. The remaining issue in applying the adaptive certainty equivalent
feedback controller concerns computation of the initial state estimate x̂k|k and

the parameter estimate θ̂k. In the algorithm these estimates are stated as
the conditional means. However just as in the state estimation problem these
estimates are more conveniently computed as either the maximum-a-posteriori
(MAP) estimate (c.f. Melgaard, 1994; Seber and Wild, 1989) or as the least-
squares estimate. The least squares estimate is obtained as the solution to the
optimization problem

min
θ,xi,ui,wi

ψ (2.21a)

s.t. xi+1 = gi(xi, ui, wi, θ) i = 0, . . . , k − 1 (2.21b)

yi = ϕi(xi) + vi i = 0, . . . , k (2.21c)

in which the objective function ψ is computed by

ψ = 1
2 (θ − θ̄)′Π−1(θ − θ̄)

+ 1
2 (x0 − x̄0)

′P−1
0 (x0 − x̄0)

+ 1
2

k−1∑

i=0

(wi − w̄i)
′Q−1

i (wi − w̄i)

+ 1
2

k∑

i=0

(vi − v̄i)
′R−1

i (vi − v̄i)

(2.22)

The formulation (2.21) is easily extended with bounds on the states, xk, es-
timated process noise, wk, and the parameters, θ, while bounds on the mea-
surement noise vk cannot be recommended. The mathematical program (2.21)
can be solved by a general sparse solver for nonlinear programs. However, the
structure as an optimal control problem is lost as the parameters θ affect the
state dynamics at every time step. Therefore the state vector is augmented
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with the parameters such that the dynamics of the augmented system may be
represented as

xk+1 = gk(xk, uk, wk, θk) (2.23a)

θk+1 = θk (2.23b)

Consequently, the least squares estimator (2.21) may be expressed as

min
zi,ui,wi

ψ (2.24a)

s.t. zi+1 = g̃i(zi, ui, wi) i = 0, . . . , k − 1 (2.24b)

yi = ϕ̃i(zi) + vi i = 0, . . . , k (2.24c)

in which the objective function is

ψ = 1
2 (z0 − z̄0)

′P̃−1
0 (z0 − z̄0)

+ 1
2

k−1∑

i=0

(wi − w̄i)
′Q−1

i (wi − w̄i)

+ 1
2

k∑

i=0

(vi − v̄i)
′R−1

i (vi − v̄i)

(2.25)

and the augmented state zk and other quantities used are

zi =

[
xi

θi

]

z̄0 =

[
x̄0

θ̄0

]

(2.26a)

P̃0 =

[
P0 0
0 Π

]

(2.26b)

g̃i(zi, ui, wi) =

[
gi(xi, ui, wi, θi)

θi

]

(2.26c)

ϕ̃i(zi) = ϕi(xi) (2.26d)

It is immediately apparent that (2.24) has the same structure as (2.16). These
problems do have the structure of an optimal control problem and may as
a consequence be solved very efficiently by algorithms specialized to optimal
control problems.

Using the state augmented representation (2.19) of the uncertain system (2.18)
it may be regarded as the stochastic dynamic system discussed previously even
though some of the states are parameters. Hence, in addition to the certainty
equivalent feedback controller any of the other controllers for suboptimal solu-
tion of the stochastic optimal control problem may be applied to control of the
stochastic dynamic system with uncertain parameters. The open-loop-optimal
feedback controller for control of the uncertain system is called an adaptive
open-loop-optimal feedback (OLOF) controller as it re-estimates (or adapt)
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the parameters as well as the initial state as new information becomes avail-
able to the controller. The adaptive open-loop-optimal feedback controller may
be stated as

Algorithm 5 (Adaptive OLOF Controller)
The control input uk = µ̄k(Ik) applied by the adaptive open-loop-optimal feedback
controller at each time k is determined by

1. Given the information vector Ik, compute the conditional probability distribu-
tions P (xk|Ik) and P (θ|Ik).

2. Let

φ̄ = E xk,θ,{wi}
i=k,...,N−1

{
N−1∑

i=k

fi(xi, ui,wi) + fN (xN )|Ik

}

(2.27)

Compute a control sequence {ūk, ūk+1, . . . , ūN−1} that solves

min φ̄ (2.28a)

s.t. xi+1 = gi(xi, ui,wi, θ), i = k, . . . , N − 1 (2.28b)

ui ∈ Ui(xi), i = k, . . . , N − 1 (2.28c)

3. Apply the control input
µ̄k(Ik) = ūk (2.29)

The conditional probability distributions in step 1 of the adaptive open-loop-
optimal feedback controller may be computed approximately to the second or-
der by computation of the conditional mean values and the conditional covari-
ances. In practice the conditional mean values and the conditional covariances
may be obtained as the optimal estimate and the associated sensitivities, re-
spectively, of a least-squares problem. They may also be computed by solution
of an appropriate maximum-a-posteriori (MAP) problem.

As previously discussed the open-loop-optimal feedback controller may suffer
from the turn-off effect. The open-loop-optimal feedback controller accounts for
future uncertainties but does not take future information into account. There-
fore, it may be too cautious compared to the stochastic optimal controller.

2.3 Linear Quadratic Optimal Control

The model predictive controller described has been motivated and justified
as being a mathematically tractable suboptimal controller for non-trivial pro-
cesses. Yet, the requirement of on-line solution of the mathematical programs
constituting the estimator and the regulator, respectively, limits the size of
processes to which such a controller can be applied. To reduce this barrier, we
describe in this chapter how the computationally intensive part of mathemati-
cal programs constituting the regulator and the estimator may be expressed as
a structured constrained quadratic program for which highly efficient solution
methods exist (c.f. Jørgensen et al., 2004).
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For notational convenience, let N = {0, 1, . . . , N − 1} and consider the discrete-
time constrained linear quadratic optimal control problem of the Bolza type
(c.f. Betts, 2001) represented by the quadratic program

min
{xk+1,uk}k∈N

φ =
∑

k∈N

lk(xk, uk) + lN (xN ) (2.30a)

s.t. xk+1 = A′
kxk + B′

kuk + bk, k ∈ N (2.30b)

C ′
kxk + D′

kuk + ck ≥ dk, k ∈ N (2.30c)

C ′
NxN + cN ≥ dN (2.30d)

in which x0 is a parameter and the stage costs are given by

lk(xk, uk) =
1

2
(x′

kQkxk + 2x′
kMkuk + u′

kRkuk)

+ q′kxk + r′kuk + fk k ∈ N
(2.31a)

lN (xN ) =
1

2
x′

NPNxN + p′NxN + γN (2.31b)

For convex problems, the matrices R0,

[
Qk Mk

M ′
k Rk

]

for k = 1, 2, . . . , N − 1, and

PN are symmetric positive semi-definite matrices. Furthermore, a sufficient
condition for the linear-quadratic optimal control problem to be strictly convex
is that the matrices {Rk}N−1

k=0 are positive definite. However, this restriction is
not necessary but merely sufficient for strict convexity of the linear-quadratic
optimal control problem.

The corresponding unconstrained linear quadratic optimal control problem is

min
{xk+1,uk}k∈N

φ =
∑

k∈N

lk(xk, uk) + lN (xN ) (2.32a)

s.t. xk+1 = A′
kxk + B′

kuk + bk, k ∈ N (2.32b)

It is important to note that the state transition equation (2.32b) is affine as it
has the term bk. The stage costs are general quadratic functions with quadratic
terms as well as linear and zero order terms. Compared to the classic uncon-
strained linear quadratic control problem as it is typically described in text-
books, the formulation (2.32) with the stage costs (2.31) has an affine term bk

in the state transition equation and linear terms in the stage costs, i.e. q′kxk,
r′kuk, and p′NxN , as well as inconsequential zero order terms in the stage costs.
The affine term in (2.32b) and the linear terms in (2.31) are important and arise
naturally when the quadratic program is constructed from an unconstrained
nonlinear optimal control problem as in sequential quadratic programming (c.f.
Wright, 1993; Allgöwer et al., 1999). Similarly, in the constrained case these
terms as well as the affine terms in (2.30c)-(2.30d) are necessary in construc-
tion of the quadratic program used to compute the search direction in solution
of the constrained nonlinear optimal control problem using an SQP algorithm
(see appendix A).



2.3. Linear Quadratic Optimal Control 93

The traditional formulation of the linear quadratic optimal control problem
by control engineers has been in terms of deviation variables and with only
quadratic terms in the objective function. The formulation in deviation vari-
ables implies that the affine term in (2.30b) vanishes. Similarly, for feasible set
points the linear terms arising in the objective function from a least squares ob-
jective vanishes due the deviation variable formulation. Even when the setpoint
is unreachable the linear terms of the unconstrained optimal control problem
are inconsequential as they vanish for the optimal solution due orthogonality
in Hilbert spaces between the optimal solution and its corresponding setpoint-
error (c.f. Luenberger, 1969). However, expression of the classic LQ tracking
or disturbance rejection problem as well as extensions such as the anticipatory
control problem are facilitated by the formulation including linear terms in the
stage costs and affine terms in the state transition equation. In the constrained
case, the affine and linear terms may become indispensible in situations where
the setpoint is infeasible and inequality constraints are active.

2.3.1 Numerical Methods

Jørgensen et al. (2004) provide an overview of efficient solution method for
the linear quadratic optimal control problem. These methods has been tai-
lored such that they utilize the structure of the linear-quadratic optimal con-
trol problem. This solution procedure factorizes the arising KKT-matrices
using Riccati iteration. In an interior-point context, Steinbach (1994), Rao
et al. (1998), and Tenny and Rawlings (2002) considered solution of the linear-
quadratic optimal control problem by Riccati iteration. Bartlett et al. (2000)
compared interior-point methods and active set methods for nonlinear model
predictive control. They did not use Riccati iteration solver but applied general
sparse as well as dense solvers for solution of the KKT-systems associated with
the linear-quadratic optimal control problem. Diehl (2001) mentions dense as
well as interior-point algorithms for solution of the quadratic programs arising
in algorithms for nonlinear model predictive control.

The purpose of this section is merely to outline the major computational op-
erations used in solving constrained linear-quadratic optimal control problems.
This serves to motivate specially tailored algorithms for constrained linear-
quadratic optimal control problems. As outlined in chapter 3, the constrained
linear-quadratic optimal control problem (2.30) may be solved efficiently solving
a sequence of unconstrained linear-quadratic optimal control problems (2.32).
The Lagrangian of (2.32) may be expressed as

L(x, u, π) =
∑

k∈N

lk(xk, uk) + lN (xN )

−
∑

k∈N

π′
k (xk+1 − (A′

kxk + B′
kuk + bk))

(2.33)
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and the corresponding first order Karush-Kuhn-Tucker conditions are

Qkxk + Mkuk + qk − πk−1 + Akπk = 0 k ∈ N \ {0} (2.34a)

M ′
kxk + Rkuk + rk + Bkπk = 0 k ∈ N (2.34b)

PNxN + pN − πN−1 = 0 (2.34c)

xk+1 = A′
kxk + B′

kuk + bk k ∈ N (2.34d)

For the case N = 3, the KKT conditions (2.34) may be stated as the following
symmetric structured linear system of equations
















R0 B0

Q1 M1 −I A1

M ′
1 R1 B1

Q2 M2 −I A2

M ′
2 R2 B2

P3 −I
B′

0 −I
A′

1 B′
1 −I

A′
2 B′

2 −I

































u0

x1

u1

x2

u2

x3

π0

π1

π2

















= −

















r0 + M ′
0x0

q1

r1

q2

r2

p3

b0 + A′
0x0

b1

b2

















(2.35)
which may be rearranged to the symmetric block-diagonal system of equations
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(2.36)
The solution of the KKT-system (2.36) may be accomplished by a general
sparse symmetric solver (Biegler, 2000), by a block-diagonal solver (Wright,
1996), or by a Riccati iteration based solver. However, general dense solvers
are unsuitable for solution of systems of the type (2.36) as they easily become
large for moderate to large values of the horizon, N . The Riccati iteration based
solver is a solution procedure particularly developed for solution of the uncon-
strained linear-quadratic optimal control problem (2.32). As a consequence
it is also very efficient for solution of linear systems of the type (2.36). The
Riccati based factorization procedure for solution of the unconstrained linear-
quadratic optimal control problem and system of the type (2.36) is stated in
the following proposition.

Proposition 2.3.1 (Optimal Solution)
The optimal primal-dual solution, {xk+1, uk, πk}N−1

k=0 , of the linear-quadratic optimal
control, (2.32) with the stage costs (2.31), may be obtained by the following procedure
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1. Compute

Kk = −(Rk + BkPk+1B
′
k)−1(M ′

k + BkPk+1A
′
k) (2.37a)

ak = −(Rk + BkPk+1B
′
k)−1(rk + Bk(Pk+1bk + pk+1)) (2.37b)

Pk = Qk + AkPk+1A
′
k + (Mk + AkPk+1B

′
k)Kk (2.37c)

pk = (Ak + K′
kBk)(Pk+1bk + pk+1) + qk + K′

krk (2.37d)

for k = N − 1, N − 2, . . . , 0.

2. Compute the primal solution {uk, xk+1}N−1
k=0 for k = 0, 1, . . . , N − 1 by

uk = Kkxk + ak (2.38a)

xk+1 = A′
kxk + B′

kuk + bk (2.38b)

3. Obtain the dual solution {πk}N−1
k=0 by computing

πN−1 = PNxN + pN (2.39a)

πk−1 = Akπk + Qkxk + Mkuk + qk (2.39b)

for k = N − 1, N − 2, . . . , 1.

Proof. See chapter 4. ¤

Remark 2.3.2
{Kk, Pk}N−1

k=0 may be regarded as a factorization of the KKT matrix of (2.36). This

factorization does not change as long as the matrices in {Ak, Bk, Qk, Mk, Rk}N−1
k=0 ∪

{PN} do not change.

Remark 2.3.3
The computational complexity of the Riccati iteration based solution procedure stated
in proposition 2.3.1 is O(Nm3). Alternative solution procedures based on elimination
of the states has either computational complexity O(N3m3) or O(N2m2) depending
on the method of implementation. For long prediction horizons, N , the Riccati based
solution procedure is at least one order of magnitude faster than alternative solution
procedure based on solution of dense quadratic programs.

Along with the computation of the optimal solution by proposition 2.3.1, the
optimal cost-to-go at each stage may be computed cheaply. The basis for this
computation is stated in the following proposition.

Proposition 2.3.4 (Optimal Value)
The optimal value φ∗ = V (x0) of the unconstrained linear-quadratic optimal control
problem, (2.32) with stage costs (2.31), is a function of the initial stage given by

φ∗ = V (x0) = 1
2
x′

0P0x0 + p′
0x0 + γ0 (2.40)

in which P0 and p0 are computed by the recursion (2.37) and γ0 is computed by the
recursion

γk = γk+1 + fk + p′
k+1bk + 1

2
b′kPk+1bk

− 1
2

(rk + Bk(Pk+1bk + pk+1))
′ (Rk + BkPk+1B

′
k)−1 (rk + Bk(Pk+1bk + pk+1))

(2.41)
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for k = N − 1, N − 2, . . . , 1, 0.

Proof. See chapter 4. ¤

Remark 2.3.5
The optimal cost-to-go at each stage is

Vk(xk) = 1
2
x′

kPkxk + p′
kxk + γk (2.42)

Remark 2.3.6
By proposition 2.3.4, the optimal value φ∗ = V0(x0) = V (x0) = 1

2
x′

0P0x0 + p′
0x0 +

γ0 of the unconstrained linear-quadratic optimal control problem may be computed
in advance of the optimal solution {x∗

k+1, u
∗
k, π∗

k}N−1
k=0 . This implies that we may

know the value of the unconstrained linear-quadratic optimal control problem without
knowing its solution.

The constrained linear-quadratic optimal control problem (2.30) may also be
solved by elimination of the states using the state transition equations. The re-
sulting problem is a dense quadratic program with the control inputs, {uk}N−1

k=0 ,
as decision variables. This quadratic program may be solved by either a pri-
mal active set quadratic program algorithm (c.f. Gill and Murray, 1978; Gill
et al., 1991, 1995), a dual active set quadratic program algorithm (c.f. Gold-
farb and Idnani, 1983; Schmid and Biegler, 1994; Bartlett et al., 2000), or an
interior-point algorithm for convex quadratic programs (c.f. Mehrotra, 1992,
1993; Wright, 1997; Nocedal and Wright, 1999).

2.4 Nonlinear Optimal Control

Consider the discrete-time finite horizon constrained nonlinear optimal control
problem

min
{xk+1,uk}k∈N

φ =
∑

k∈N

fk(xk, uk) + fN (xN ) (2.43a)

s.t. xk+1 = gk(xk, uk) k ∈ N (2.43b)

hk(xk, uk) ≥ dk k ∈ N (2.43c)

hN (xN ) ≥ dN (2.43d)

in which the initial state x0 ∈ R
n is assumed specified and N = {0, 1, . . . , N − 1}.

The functions fk : R
n ×R

m 7→ R for k ∈ N , fN : R
n 7→ R, gk : R

n ×R
m 7→ R

n

for k ∈ N , hk : R
n × R

m 7→ R
pk for k ∈ N , and hN : R

n 7→ R
pN are assumed

to be sufficiently smooth. This problem arises, for instance in the discretiza-
tion of a corresponding continuous time optimal control problem (c.f. Betts,
2001; Martinsen et al., 2002). With this origin, the involved functions are
the combined result of the particular discretization applied and the underlying
continuous time physics of the system.
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As is evident by the discussion in appendix A, the sequential quadratic pro-
gramming algorithm solves nonlinear programs by computing a sequence of
search directions as the solution of some quadratic programs. The constraints
of these quadratic programs are linearizations of the constraints in the nonlinear
program around the current iterate. The gradient of the objective function in
the quadratic program is the gradient of the objective function in the non-linear
program at the current iterate. The Hessian matrix in the quadratic program is
some approximation of the Hessian of the Lagrangian of the nonlinear program
at the current iterate.

To construct the quadratic programs used in an SQP algorithm for solution of
(2.43), the constraints (2.43b)-(2.43d) must be linearized. This linearization is
stated in the following lemma.

Lemma 2.4.1
Let x0 be given. Let

{
x0

k+1, u
0
k

}N−1

k=0
be some given nominal trajectory of the nonlinear

optimal control problem (2.43).

Then the equations

∆xk+1 = A′
k∆xk + B′

k∆uk + bk k ∈ N (2.44a)

C′
k∆xk + D′

k∆uk + ck ≥ dk k ∈ N (2.44b)

C′
N∆xN + cN ≥ dN (2.44c)

are a linearization of the constraints (2.43b)-(2.43d) in the nonlinear optimal control
problem (2.43). The initial state, ∆x0, in (2.44a) is

∆x0 = 0 (2.45)

and the matrices at time index k = 0 are

A0 = ∇x0g0(x0, u
0
0) C0 = ∇x0h0(x0, u

0
0) (2.46a)

B0 = ∇u0g0(x0, u
0
0) D0 = ∇u0h0(x0, u

0
0) (2.46b)

b0 = g0(x0, u
0
0) − x0

1 c0 = h0(x0, u
0
0) (2.46c)

The matrices at time k = 1, 2, . . . , N − 1 are

Ak = ∇xk
gk(x0

k, u0
k) Ck = ∇xk

hk(x0
k, u0

k) (2.47a)

Bk = ∇uk
gk(x0

k, u0
k) Dk = ∇uk

hk(x0
k, u0

k) (2.47b)

bk = gk(x0
k, u0

k) − x0
k+1 ck = hk(x0

k, u0
k) (2.47c)

and the matrices associated with the final time k = N are

CN = ∇xN
hN (x0

N ) cN = hN (x0
N ) (2.48)

Proof. Follows directly by linearization of (2.43b)-(2.43d) around
{
x0

k+1, u
0
k

}N−1

k=0
and with x0 specified as a parameter. ¤
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Remark 2.4.2
In equation (2.46a), A0 and C0 are defined as the derivatives of g and h, respectively,
with respect to x0. As ∆x0 = 0, the matrices A0 and C0 have no influence on the
state dynamics. Therefore, they are not used in actual computations and do not need
to be evaluated. Alternatively, they could be defined as A0 = 0 and C0 = 0. They are
included in the formulation of (2.44) such that this formulation is compatible with
the equations (2.43b)-(2.43d).

As discussed in appendix A, the objective function

ψ(η) = 1
2η′Wη + t′η (2.49)

of the quadratic program used in an SQP algorithm, is constructed such that
coefficients of the linear term, t, is the gradient of the nonlinear objective
function evaluated at the current iterate. The Hessian matrix, W , is selected
as some approximation of the Hessian of the Lagrangian with respect to the
primal variables.

The Lagrangian, L, of the nonlinear optimal control problem (2.43) is

L =
∑

k∈N

fk(xk, uk) + fN (xN )

−
∑

k∈N

π′
k(xk+1 − gk(xk, uk))

−
∑

k∈N

λ′
k(hk(xk, uk) − dk)

− λ′
N (hN (xN ) − dN )

(2.50)

The gradients of the Lagrangian with respect to the primal variables are

∇xk
L = ∇xk

fk(xk, uk) − πk−1

+ ∇xk
gk(xk, uk)πk −∇xk

hk(xk, uk)λk

(2.51a)

∇xN
L = ∇xN

fN (xN ) − πN−1 −∇xN
hN (xN )λN (2.51b)

∇uk
L = ∇uk

fk(xk, uk) + ∇uk
gk(xk, uk)πk

−∇uk
hk(xk, uk)λk

(2.51c)

From these expressions, it is evident that the gradients are separable with
respect to the primal variables, {xk+1, uk}N−1

k=0 . They are separable in the
sense that the gradients with respect to the primal variables (xk, uk) depend
on the primal variables (xk, uk) associated with the time index k, but not on
the primal variables (xj , uj) associated with other time indices, i.e. j 6= k.
Consequently, the Hessian matrix of the Lagrangian with respect to the primal
variables, {xk+1, uk}N−1

k=0 , is block-diagonal, as the Lagrangian gradients (2.51)
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are separable with respect to the primal variables. The diagonal blocks are

∇2
xk,xk

L = ∇2
xk,xk

fk(xk, uk)

−
n∑

i=1

(πk)i∇2
xk,xk

(gk)i(xk, uk)

−
p

∑

i=1

(λk)i∇2
xk,xk

(hk)i(xk, uk)

(2.52a)

∇2
xk,uk

L = ∇2
xk,uk

fk(xk, uk)

−
n∑

i=1

(πk)i∇2
xk,uk

(gk)i(xk, uk)

−
p

∑

i=1

(λk)i∇2
xk,uk

(hk)i(xk, uk)

(2.52b)

∇2
uk,uk

L = ∇2
uk,uk

fk(xk, uk)

−
n∑

i=1

(πk)i∇2
uk,uk

(gk)i(xk, uk)

−
p

∑

i=1

(λk)i∇2
uk,uk

(hk)i(xk, uk)

(2.52c)

at times k = 0, 1, . . . , N − 1 and

∇2
xN ,xN

L = ∇2
xN ,xN

fN (xN )

−
p

∑

i=1

(λN )i∇2
xN ,xN

(hN )i(xN )
(2.52d)

at the final time k = N . Let

wk =

[
xk

uk

]

k = 0, 1, . . . , N − 1 (2.53a)

wN = xN (2.53b)

and

w =








w0

w1

...
wN








π =








π0

π1

...
πN−1








λ =








λ0

λ1

...
λN








(2.54)

Then the objective function ψ = ψ(∆w) of the quadratic program in the SQP
algorithm for the nonlinear optimal control problem becomes

ψ = 1
2∆w′∇2

wwL(w, π, λ)∆w + ∇φ(w)′∆w

=

N∑

k=0

1
2∆w′

k∇2
wkwk

L(w, π, λ)∆wk + ∇wk
φ(w)′∆wk

(2.55)
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in which Hessian matrix W of the quadratic program is chosen to be the Hessian
of the Lagrangian, i.e. W = ∇2

wwL(w, π, λ). The second equality in (2.55) is
obtained using the block-diagonal structure of the Hessian matrix.

Lemma 2.4.3 states a quadratic approximation of the Lagrangian of the non-
linear optimal control problem with respect to the states, {xk}N

k=0, and the
control inputs, {uk}N−1

k=0 . In conjunction with lemma 2.4.1, this result is used
in proposition 2.4.4 to state the quadratic program used for computing the
search direction in a sequential quadratic programming algorithm based on
the exact Hessian of the Lagrangian. The resulting quadratic program is a
constrained linear-quadratic optimal control problem.

Lemma 2.4.3
Let x0 be given. Let

{
x0

k+1, u
0
k

}N−1

k=0
be the trajectory corresponding to the current

iterate of an SQP algorithm. Let
{
π0

k

}N−1

k=0
and

{
λ0

k

}N

k=0
be the associated trajectories

of the dual variables of (2.43). Let the Hessian of the quadratic program in an
SQP algorithm be equal to the Hessian of the Lagrangian with respect to the primal
variables of (2.43).

Then the objective function of the quadratic program is

ψ =

N−1∑

k=0

lk(∆xk, ∆uk) + lN (∆xN ) (2.56)

in which

lk(∆xk, ∆uk) = 1
2
∆x′

kQk∆xk + ∆x′
kMk∆uk

+ 1
2
∆u′

kRk∆uk + q′k∆xk

+ r′k∆uk + fk k ∈ N
(2.57a)

lN (∆xN ) = 1
2
∆x′

NPN∆xN + p′
N∆xN + γN (2.57b)

and ∆x0 = 0. The parameters at k = 0 are computed by

Q0 = ∇2
x0,x0

L(x0, u
0
0, π

0
0 , λ0

0) (2.58a)

M0 = ∇2
x0,u0

L(x0, u
0
0, π

0
0 , λ0

0) (2.58b)

R0 = ∇2
u0,u0

L(x0, u
0
0, π

0
0 , λ0

0) (2.58c)

q0 = ∇x0f0(x0, u
0
0) (2.58d)

r0 = ∇u0f0(x0, u
0
0) (2.58e)

f0 = f0(x0, u
0
0) (2.58f)

Similarly, the parameters at k = 1, 2, . . . , N − 1 are computed by

Qk = ∇2
xk,xk

L(x0
k, u0

k, π0
k, λ0

k) (2.59a)

Mk = ∇2
xk,uk

L(x0
k, u0

k, π0
k, λ0

k) (2.59b)

Rk = ∇2
uk,uk

L(x0
k, u0

k, π0
k, λ0

k) (2.59c)

qk = ∇xk
fk(x0

k, u0
k) (2.59d)

rk = ∇uk
fk(x0

k, u0
k) (2.59e)

fk = fk(x0
k, u0

k) (2.59f)
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Finally, the parameters at k = N are

PN = ∇2
xN ,xN

L(x0
N , λ0

N ) (2.60a)

pN = ∇xN
fN (x0

N ) (2.60b)

γN = fN (x0
N ) (2.60c)

Proof. The result follows directly by a specialization of (2.55). ¤

Proposition 2.4.4
Let x0 be given. Let

{
x0

k+1, u
0
k

}N−1

k=0
be the trajectory corresponding to the current

iterate of an SQP algorithm applied to (2.43). Let
{
π0

k

}N−1

k=0
and

{
λ0

k

}N

k=0
be the

associated trajectories of the dual variables of (2.43). Let the Hessian of the quadratic
program in an SQP algorithm be equal to the Hessian of the Lagrangian with respect
to the primal variables, {xk+1, uk}N−1

k=0 , of (2.43).

Then the quadratic program for computation of the search direction in an SQP algo-
rithm applied to (2.43) is

min
{∆xk+1,∆uk}

ψ =

N−1∑

k=0

lk(∆xk, ∆uk) + lN (∆xN ) (2.61a)

s.t. ∆xk+1 = A′
k∆xk + B′

k∆uk + bk (2.61b)

C′
k∆xk + D′

k∆uk + ck ≥ dk (2.61c)

C′
N∆xN + cN ≥ dN (2.61d)

in which the objective function is computed according to lemma 2.4.3 and the con-
straints are computed according to lemma 2.4.1. The initial state is ∆x0 = 0.

Proof. The result is valid for SQP algorithms that construct the quadratic
programs using the exact Hessian of the Lagrangian function. Therefore, the
result follows straightforwardly from lemma 2.4.1 and 2.4.3. The initial state
in the constrained linear-quadratic optimal control problem is ∆x0 = 0 as x0

is a parameter and not a decision variable in the nonlinear optimal control
problem. ¤

The matrices

[
Qk Mk

M ′
k Rk

]

, PN , and Rk in proposition 2.4.4 are obtained as

the exact Hessian of the Lagrangian, i.e. as the secondary derivatives of the
Lagrangian. These matrices are not necessarily positive definite or even positive
semi-definite. They may be indefinite. Most current quadratic programming
solvers are limited to convex or strictly convex quadratic programs. Hence, they
cannot be applied for solving the constrained linear-quadratic optimal control
problem stated in proposition 2.4.4. However, the primal active set quadratic
programming algorithm described by Gill and Murray (1978) and Gill et al.
(1991, 1995) is applicable to indefinite as well as convex quadratic programs.



102 The Computational Principles of Model Predictive Control

2.4.1 BFGS Approximation

In the solution of general nonlinear programs with the SQP algorithm, quasi-
Newton methods are employed when the exact Hessian computationally is too
expensive to evaluate or a strictly positive definite Hessian is demanded due to
the method used for solving the quadratic program (c.f. Nocedal and Wright,
1999; Dennis and Schnabel, 1996). The most popular quasi-Newton method
employs the damped BFGS update of the Hessian matrix.

Let v be the vector of decision variables in the nonlinear optimal control prob-
lem (2.43)

v =














u0

x1

u1

x2

...
uN−1

xN














(2.62)

Then as described in appendix A, the damped BFGS update is obtained by
the recursion

W (i+1) = W (i) − W (i)ss′W (i)

s′W (i)s
+

rr′

s′r
(2.63a)

in which

s = v(i+1) − v(i) (2.63b)

y = ∇vL(v(i+1), π, λ) −∇vL(v(i), π, λ) (2.63c)

r = θy + (1 − θ)W (i)s (2.63d)

and

θ =

{

1 s′y ≥ 0.2s′W (i)s
0.8s′W (i)s

s′W (i)s−s′y
s′y < 0.2s′W (i)s

(2.63e)

The Hessian matrix, W (i), obtained at iteration i by this method is obviously
dense. This implies that the objective function

ψ(∆v) = 1
2∆v′W (i)∆v + ∇φ(v)′∆v (2.64)

is not partially separable as (2.55). Consequently, an approximation of the
Hessian based on (2.63) will be computationally inefficient as it does not retain
the structure of a linear quadratic optimal control problem and has all the
states as well as the inputs as decision variables.

To overcome this computational deficiency of the standard damped BFGS up-
date, Bock et al. (2000) suggested to modify the update to each block of de-
cision variables such that the approximated Hessian has the same structure as
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the Hessian computed by lemma 2.4.3. In the context of unconstrained op-
timization of partially separable functions, such an approach had previously
been proposed by Griewank and Toint (1982). Rakshit and Sen (1990) consid-
ered the structured update of the Hessian matrix in the context of differential
dynamic programming. The block diagonal Hessian matrix, W , is

W =










W0

W1

. . .

WN−1

WN










(2.65)

The block-diagonal structure of the Hessian matrix, W , implies that the ob-
jective function of the quadratic program in an SQP algorithm becomes

ψ(∆v) = 1
2∆v′W∆v + ∇φ(v)′∆v

=

N∑

k=0

1
2∆vkWk∆vk + ∇vk

φ(v)′∆vk

(2.66)

in which

v0 = u0 (2.67a)

vk =

[
xk

uk

]

k = 1, 2, . . . , N − 1 (2.67b)

vN = xN (2.67c)

The function in (2.66) has the same partially separable structure as the func-
tion in (2.55). The only difference is that the parameter x0 is left out in the
specification of (2.66).

Let L(i) = L(v(i), π, λ) and L(i+1) = L(v(i+1), π, λ), in which π = π(i+1) and
λ = λ(i+1). For k = 0, 1, . . . , N , each diagonal block Wk of the The Hessian
matrix W is approximated by the damped BFGS recursion

W
(i+1)
k = W

(i)
k − W

(i)
k sks′kW

(i)
k

s′kW
(i)
k sk

+
rkr′k
s′krk

(2.68a)

in which

rk = θkyk + (1 − θk)W
(i)
k sk (2.68b)

and

θk =







1 s′kyk ≥ 0.2s′kW
(i)
k sk

0.8s′
kW

(i)
k

sk

s′
k
W

(i)
k

sk−s′
k
yk

s′kyk < 0.2s′kW
(i)
k sk

(2.68c)
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The vectors used for updating the Hessian block corresponding to time index
k = 0 are computed by

s0 = u
(i+1)
0 − u

(i)
0 (2.68d)

y0 = ∇u0
L(i+1) −∇u0

L(i) (2.68e)

Similarly, the vectors used for updating the Hessian diagonal block correspon-
ding to time indices k = 1, 2, . . . , N − 1 are computed by

sk =

[

x
(i+1)
k − x

(i)
k

u
(i+1)
k − u

(i)
k

]

(2.68f)

yk =

[
∇xk

L(i+1) −∇xk
L(i)

∇uk
L(i+1) −∇uk

L(i)

]

(2.68g)

By an analogous recipe, the vectors for computing the Hessian diagonal block
corresponding to time index k = N are obtained by the equations

sN = x
(i+1)
N − x

(i)
N (2.68h)

yN = ∇xN
L(i+1) −∇xN

L(i) (2.68i)

The just discussed procedure for computing a positive definite quadratic ap-
proximation of the Hessian of the Lagrangian around the current iterate may
be applied for computing a quadratic approximation of the Lagrangian. This
quadratic approximation is the objective function of the quadratic program
used for computing the search direction in line-search SQP algorithms. The
construction of the objective function in the quadratic program by the struc-
tured BFGS update is summarized in the following lemma.

Lemma 2.4.5
Let x0 be given. Let

{

x
(i+1)
k+1 , u

(i+1)
k

}N−1

k=0
and

{

x
(i)
k+1, u

(i)
k

}N−1

k=0
be trajectories at

two subsequent iterations of an SQP algorithm applied to (2.43). Let {πk}N−1
k=0 =

{

π
(i+1)
k

}N−1

k=0
and {λk}N

k=0 =
{

λ
(i+1)
k

}N

k=0
be the associated trajectories of the dual

variables of (2.43). Let the Hessian matrix of the quadratic program be computed by
the structured damped BFGS procedure (2.68).

The the objective function of the quadratic program in the SQP algorithm for genera-

tion of the search direction {∆xk+1, ∆uk}N−1
k=0 =

{

∆x
(i+1)
k+1 , ∆u

(i+1)
k

}N−1

k=0
at iteration

i + 1 is

ψ =

N−1∑

k=0

lk(∆xk, ∆uk) + lN (∆xN ) (2.69)

in which the stage costs are

lk(∆xk, ∆uk) = 1
2
∆x′

kQk∆xk + ∆x′
kMk∆uk

+ 1
2
∆u′

kRk∆uk

+ q′k∆xk + r′k∆uk + fk, k ∈ N
(2.70a)

lN (∆xN ) = 1
2
∆x′

NPN∆xN + p′
N∆xN + γN (2.70b)
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and ∆x0 = 0. The quadratic weight matrices are given by

R0 = W
(i+1)
0 Q0 = 0 M0 = 0 (2.71a)

[
Qk Mk

M ′
k Rk

]

= W
(i+1)
k k = 1, 2, . . . , N − 1 (2.71b)

PN = W
(i+1)
N (2.71c)

in which the matrices W
(i+1)
k are computed by (2.68). The parameters related to first

and zero order terms of (2.70a) at time index k = 0 are computed by

q0 = 0 (2.72a)

r0 = ∇u0f0(x0, u
(i+1)
0 ) (2.72b)

f0 = f0(x0, u
(i+1)
0 ) (2.72c)

Similarly, the parameters associated with the first and zero order terms of (2.70a) at
time indices k = 1, 2, . . . , N − 1 are

qk = ∇xk
fk(x

(i+1)
k , u

(i+1)
k ) (2.73a)

rk = ∇uk
fk(x

(i+1)
k , u

(i+1)
k ) (2.73b)

fk = fk(x
(i+1)
k , u

(i+1)
k ) (2.73c)

The first and zero order parameters for the stage cost (2.70b) are

pN = ∇xN
fN (x

(i+1)
N ) (2.74a)

γN = fN (x
(i+1)
N ) (2.74b)

Proof. The result follows by simple algebraic manipulations of (2.66). ¤

Remark 2.4.6
The matrices R0,

[
Qk Mk

M ′
k Rk

]

for k = 1, 2, . . . , N − 1, and PN computed according to

lemma 2.4.5 are all positive definite.

Combination of lemma 2.4.5 and lemma 2.4.1 may be used to formulate the
quadratic programs for the SQP algorithm based on structured BFGS approxi-
mations of the Hessian matrix. This quadratic program is a constrained linear-
quadratic optimal control problem as stated in the following proposition.

Proposition 2.4.7
Apply an SQP algorithm using a structured damped BFGS approximation (2.68) of
the Hessian to the nonlinear optimal control problem (2.43).

Then the quadratic program for computation of the search direction in the SQP
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algorithm applied to (2.43) is

min
{∆xk+1,∆uk}

ψ =

N−1∑

k=0

lk(∆xk, ∆uk) + lN (∆xN ) (2.75a)

s.t. ∆xk+1 = A′
k∆xk + B′

k∆uk + bk (2.75b)

C′
k∆xk + D′

k∆uk + ck ≥ dk (2.75c)

C′
N∆xN + cN ≥ dN (2.75d)

in which the initial state is ∆x0 = 0. The objective function is computed according
to lemma 2.4.5 and the constraints are computed according to lemma 2.4.1.

Proof. Lemma 2.4.1 provides a linearization of the constraints in the nonlinear
optimal control problem. Lemma 2.4.5 provides a quadratic approximation of
the Lagrangian associated with the nonlinear control problem. The Hessian
matrix in this quadratic approximation is a structured BFGS approximation
of the Hessian of the Lagrangian of the nonlinear optimal control problem.
Consequently, the quadratic program providing the search direction at each
iteration of the SQP problem is the stated constrained linear-quadratic optimal
control problem. The initial state in the constrained linear-quadratic optimal
control problem is ∆x0 = 0 as x0 is a parameter and not a decision variable in
the nonlinear optimal control problem. ¤

Remark 2.4.8
The constrained linear-quadratic optimal control problem (2.75) is strictly convex as

the matrices R0,

[
Qk Mk

M ′
k Rk

]

for k = 1, 2, . . . , N − 1, and PN all are positive definite

by construction.

2.4.2 Least Squares Objective

In a broad and important class of nonlinear optimal control problems, the stage
costs are weighted least squares functions

fk(xk, uk) = 1
2 ||ϕk(xk, uk)||2Λk

(2.76a)

fN (xN ) = 1
2 ||ϕN (xN )||2ΛN

(2.76b)

in which Λk for k = 0, 1, . . . , N are positive semi-definite matrices.

In the classic control problem, the controls {uk}N−1
k=0 are selected such that

some output functions, say ηk(xk, uk), are as close as possible to a prescribed

output trajectory {zk}N
k=0. In this case, the functions ϕk becomes

ϕk(xk, uk) = ηk(xk, uk) − zk k ∈ N (2.77a)

ϕN (xN ) = ηN (xN ) − zN (2.77b)
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Efficient exploitation of the least squares structure of the stage costs, i.e. (2.76),
in the nonlinear optimal control problem (2.43) has been described by Biegler
(2000) and Bock et al. (2000). As in the unconstrained least squares problem
(c.f. Dennis and Schnabel, 1996), the least squares structure is exploited by
assuming that the residuals, ϕk, are small compared to their derivatives (see
appendix A). Under this assumption, the Hessian matrix of the quadratic
program in an SQP algorithm may be computed on basis of the first order
derivatives of the residuals, ∇ϕk, rather than the first order derivatives as
well as the second order derivatives, ∇2ϕk. This approximation of the Hessian
matrix for least squares problem under the assumption of small residuals is
called the Gauss-Newton approximation.

Let wk be defined by (2.53), then the stage costs (2.76) may be expressed as

fk = 1
2 ||ϕk(wk)||2Λk

k = 0, 1, . . . , N (2.78)

The first order derivatives of the objective function (2.43a) with the stage costs
(2.76) becomes using the w-notation

∇wk
φ(w) = ∇fk(wk) = ∇ϕk(wk)Λkϕk(wk) (2.79)

Invoking the Gauss-Newton approximation (see appendix A) and thereby as-
suming small residuals, the approximate Hessian matrix of the objective func-
tion (2.43a) with the weighted least squares stage costs (2.76) becomes

∇2
wkwk

φ(w) = ∇2fk(wk)

≈ ∇ϕk(wk)Λk∇ϕk(wk)′
(2.80)

The Hessian matrix ∇2φ(w) has a block diagonal structure as ∇2
wkwl

φ(w) = 0
for k 6= l. Hence, the objective function used in the quadratic program of an
SQP algorithm applying the Gauss-Newton approximation may be expressed
as

ψ = 1
2∆w′W∆w + ∇φ(w)′∆w

=

N∑

k=0

1
2∆w′

kWk∆wk + ∇fk(wk)′∆wk

(2.81)

in which the diagonal blocks of the Hessian matrix in the quadratic program
are computed as

Wk = ∇ϕk(wk)Λk∇ϕk(wk)′ (2.82)

By construction Wk is symmetric. Furthermore, Wk is positive definite, when
∇ϕk has full row rank and Λk is positive definite.

The Gauss-Newton based construction of a quadratic approximation of the
Lagrangian associated with the nonlinear optimal control problem is made
explicit in the following lemma and proposition. The procedure may be re-
garded as constructing a quadratic approximation to the objective function in
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the nonlinear optimal control problem. Lemma 2.4.9 states the expression for
the quadratic approximation of the objective function in the nonlinear optimal
control problem. This approximation is identical to the second order approxi-
mation of the Lagrangian used in the quadratic program of the SQP algorithm
under the Gauss-Newton assumption. Proposition 2.4.10 states the quadratic
program obtained by the Gauss-Newton approximation of the nonlinear opti-
mal control problem in an SQP algorithm. This problem is a linear-quadratic
optimal control problem.

Lemma 2.4.9
Let x0 be given. Let

{
x0

k+1, u
0
k

}N−1

k=0
be a trajectory at an iteration of an SQP al-

gorithm applied to (2.43). Let the Hessian of the quadratic program in the SQP
algorithm be computed using the Gauss-Newton approximation.

Then the objective function of the quadratic program in an SQP algorithm applied
to (2.43) is

ψ =

N−1∑

k=0

lk(∆xk, ∆uk) + lN (∆xN ) (2.83)

in which the stage costs are

lk(∆xk, ∆uk) = 1
2
∆x′

kQk∆xk + ∆x′
kMk∆uk

+ 1
2
∆u′

kRk∆uk

+ q′k∆xk + r′k∆uk + fk, k ∈ N
(2.84a)

lN (∆xN ) = 1
2
∆x′

NPN∆xN + p′
N∆xN + γN (2.84b)

and the initial state is ∆x0 = 0. The parameters corresponding to time index k = 0
are

Q0 = ∇x0ϕ0(x0, u
0
0)Λ0∇x0ϕ0(x0, u

0
0)

′ (2.85a)

M0 = ∇x0ϕ0(x0, u
0
0)Λ0∇u0ϕ0(x0, u

0
0)

′ (2.85b)

R0 = ∇u0ϕ0(x0, u
0
0)Λ0∇u0ϕ0(x0, u

0
0)

′ (2.85c)

q0 = ∇x0ϕ0(x0, u
0
0)Λ0ϕ0(x0, u

0
0) (2.85d)

r0 = ∇u0ϕ0(x0, u
0
0)Λ0ϕ0(x0, u

0
0) (2.85e)

f0 = 1
2
ϕ0(x0, u

0
0)

′Λ0ϕ0(x0, u
0
0) (2.85f)

Similarly, the parameters at time indices k = 1, 2, . . . , N − 1 are given by the expres-
sions

Qk = ∇xk
ϕk(x0

k, u0
k)Λk∇xk

ϕk(x0
k, u0

k)′ (2.86a)

Mk = ∇xk
ϕk(x0

k, u0
k)Λk∇uk

ϕk(x0
k, u0

k)′ (2.86b)

Rk = ∇uk
ϕk(x0

k, u0
k)Λk∇uk

ϕk(x0
k, u0

k)′ (2.86c)

qk = ∇xk
ϕk(x0

k, u0
k)Λkϕk(x0

k, u0
k) (2.86d)

rk = ∇uk
ϕk(x0

k, u0
k)Λkϕk(x0

k, u0
k) (2.86e)

fk = 1
2
ϕk(x0

k, u0
k)′Λkϕk(x0

k, u0
k) (2.86f)
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Finally, the parameters at time index k = N are

PN = ∇xN
ϕN (x0

N )ΛN∇xN
ϕN (x0

N )′ (2.87a)

pN = ∇xN
ϕN (x0

N )ΛNϕN (x0
N ) (2.87b)

γN = 1
2
ϕN (x0

N )′ΛNϕN (x0
N ) (2.87c)

Proof. A quadratic approximation of the objective function of the nonlinear
optimal problem is to be developed using the Gauss-Newton approximation.

Consequently, by the discussion in this section the quadratic approximation of
the objective function may be expressed as a separable function

ψ =
N−1∑

k=0

lk(∆xk,∆uk) + lN (∆xN ) (2.88)

in which

l0(∆x0,∆u0) = 1
2

[
∆x0

∆u0

]′ [
Q0 M0

M ′
0 R0

] [
∆x0

∆u0

]

+

[
q0

r0

]′ [
∆x0

∆u0

]

+ f0 (2.89a)

lk(∆xk,∆uk) = 1
2

[
∆xk

∆uk

]′ [
Qk Mk

M ′
k Rk

] [
∆xk

∆uk

]

+

[
qk

rk

]′ [
∆xk

∆uk

]

+ fk (2.89b)

lN (∆xN ) = 1
2∆x′

NPN∆xN + p′N∆xN + γN (2.89c)

for k = 1, . . . , N − 1.

∆x0 = as x0 is a parameter and not a decision variable in the nonlinear optimal
control problem. The parameters in the quadratic approximation at stage k = 0
of the objective function are

f0 = f0(x0, u
0
0) = 1

2 ||ϕ0(x0, u
0
0)||2Λ0

= 1
2ϕ0(x0, u

0
0)

′Λ0ϕ(x0, u
0
0) (2.90a)

and

q0 = ∇x0
φ = ∇x0

f0(x0, u
0
0) = ∇x0

ϕ0(x0, u
0
0)Λ0ϕ0(x0, u

0
0) (2.90b)

r0 = ∇u0
φ = ∇u0

f0(x0, u
0
0) = ∇u0

ϕ0(x0, u
0
0)Λ0ϕ0(x0, u

0
0) (2.90c)

The parameters associated with the quadratic term is obtained using the Gauss-
Newton assumption (see appendix A)

[
Q0 M0

M ′
0 R0

]

= W0 = ∇ϕ0(w
0
0)Λ0∇ϕ0(w

0
0)

′

=

[
∇x0

ϕ0(x0, u
0
0)

∇u0
ϕ0(x0, u

0
0)

]

Λ0

[
∇x0

ϕ0(x0, u
0
0)

∇u0
ϕ0(x0, u

0
0)

]′

=

[
∇x0

ϕ0(x0, u
0
0)Λ0∇x0

ϕ0(x0, u
0
0)

′ ∇x0
ϕ0(x0, u

0
0)Λ0∇u0

ϕ0(x0, u
0
0)

′

∇u0
ϕ0(x0, u

0
0)Λ0∇x0

ϕ0(x0, u
0
0)

′ ∇u0
ϕ0(x0, u

0
0)Λ0∇u0

ϕ0(x0, u
0
0)

′

]

(2.90d)
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The parameters associated with quadratic approximation of the stage costs at
time index k = 1, 2, . . . , N − 1 are

fk = fk(x0
k, u0

k) = 1
2 ||ϕk(x0

k, u0
k)||2Λk

= 1
2ϕk(x0

k, u0
k)′Λkϕ(x0

k, u0
k) (2.91a)

and

qk = ∇xk
φ = ∇xk

fk(x0
k, u0

k) = ∇xk
ϕk(x0

k, u0
k)Λkϕk(x0

k, u0
k) (2.91b)

rk = ∇uk
φ = ∇uk

fk(x0
k, u0

k) = ∇uk
ϕk(x0

k, u0
k)Λkϕk(x0

k, u0
k) (2.91c)

as well as the Hessian approximation obtained invoking the Gauss-Newton
assumption

[
Qk Mk

M ′
k Rk

]

= Wk = ∇ϕk(w0
k)Λk∇ϕk(w0

k)′

=

[
∇xk

ϕk(x0
k, u0

k)
∇uk

ϕk(xk, u0
k)

]

Λk

[
∇xk

ϕk(x0
k, u0

k)
∇uk

ϕk(x0
k, u0

k)

]′

=

[
∇xk

ϕk(x0
k, u0

k)Λk∇xk
ϕk(x0

k, u0
k)′ ∇xk

ϕk(x0
k, u0

k)Λk∇uk
ϕk(x0

k, u0
k)′

∇uk
ϕk(x0

k, u0
k)Λk∇xk

ϕk(x0
k, u0

k)′ ∇uk
ϕk(x0

k, u0
k)Λk∇uk

ϕk(x0
k, u0

k)′

]

(2.91d)

The parameters associated with quadratic approximation of the stage costs at
time index k = N are

γN = fN (x0
N ) = 1

2 ||ϕN (x0
N )||2ΛN

= 1
2ϕN (x0

N )′ΛNϕN (x0
N ) (2.92a)

and
pN = ∇xN

φ = ∇xN
fN (x0

N ) = ∇xN
ϕN (x0

N )ΛNϕN (x0
N ) (2.92b)

as well as the Hessian approximation obtained invoking the Gauss-Newton
assumption

PN = WN = ∇wN
ϕN (w0

N )ΛN∇wN
ϕN (w0

N )′

= ∇xN
ϕN (x0

N )ΛN∇xN
ϕN (x0

N )′
(2.92c)

¤

Proposition 2.4.10
Let x0 be given. Let {xk+1, uk}N−1

k=0 be a trajectory at an iteration of an SQP al-
gorithm applied to (2.43). Let the Hessian of the quadratic program in the SQP
algorithm be computed using the Gauss-Newton approximation.

The the quadratic program for generation of a search direction {∆xk+1, ∆uk}N−1
k=0 in

the SQP algorithm is

min
{∆xk+1,∆uk}

ψ =

N−1∑

k=0

lk(∆xk, ∆uk) + lN (∆xN ) (2.93a)

s.t. ∆xk+1 = A′
k∆xk + B′

k∆uk + bk (2.93b)

C′
k∆xk + D′

k∆uk + ck ≥ dk (2.93c)

C′
N∆xN + cN ≥ dN (2.93d)
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with the initial state ∆x0 = 0. The stage costs are computed according to lemma
2.4.9 and the constraints are computed according to lemma 2.4.1.

Proof. The result follows straightforwardly from lemma 2.4.9 and 2.4.1. ∆x0 =
0 as x0 is a parameter and not a decision variable in the nonlinear optimal
control problem. ¤

2.5 Nonlinear Moving Horizon Estimation

A generic model predictive controller consists of a state estimator, a target cal-
culator, and a regulator. Given new information, i.e. new observations of some
process output, the state estimator provides the feedback for the model predic-
tive controller by estimating the current state as well as any exogenous inputs.
The target calculator computes the target steady state given an estimate of
current exogenous inputs and thereby provides offset free control. Given the
current state and the steady state target, the regulator computes the in some
sense optimal trajectory from the current state to the target steady state. The
first input, u∗

0, of this trajectory is implemented on the plant, and the cycle is
repeated as new information become available.

Early generations of model predictive control technology employed constant or
integrating output disturbance feedback (c.f. Qin and Badgwell, 2000), while
later feedback schemes have been based on either the Kalman filter or the
extended Kalman filter. Recent approaches for state estimation in model pre-
dictive control, employ a moving horizon estimator for estimation of the current
state and exogenous inputs (c.f. Tenny and Rawlings, 2002; Binder et al., 2001a;
Rao and Rawlings, 2000; Robertson et al., 1996).

Assume in the following, that the model consists of two submodels. The first
model is a model of the process itself, while the other model is of the disturbance
dynamics. The state vector of this augmented model is the process states as
well as the states of the disturbance model. The states of the disturbance model
provides the basis for computing the exogenous inputs to the process model.
The exogenous inputs are used in the target calculator and regulator to obtain
offset free behavior of the controlled system.
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2.5.1 Basic Nonlinear Moving Horizon Estimator

The basic nonlinear moving horizon estimator solves the constrained optimiza-
tion problem

min
{xk,wk,vk}

φ = l̃0(x0) +

N∑

k=0

l̃k(wk, vk) (2.94a)

s.t. xk+1 = gk(xk, wk) (2.94b)

yk = ϕk(xk) + vk (2.94c)

hk(xk, wk) ≥ dk (2.94d)

in which the stage costs are of the weighted least squares type

l̃0(x0) =
1

2
(x0 − x̃0)

′P̃−1
0 (x0 − x̃0) (2.95a)

l̃k(wk, vk) =
1

2

[
wk − w̃k

vk − ṽk

]′ [
Q̃k M̃k

M̃ ′
k R̃k

]−1 [
wk − w̃k

vk − ṽk

]

(2.95b)

A stochastic interpretation of this objective function, its parameters and their
selection is available (c.f. Kailath et al., 2000; Jazwinski, 1970; Robertson et al.,
1996). However, this topic is outside the scope of this paper. For the purpose
of this paper, it is sufficient to note that the nonlinear moving horizon esti-
mator (2.94) selects the state x0, a sequence of process noise {wk}N

k=0 and

a sequence of measurement noise {vk}N
k=0 such that the agreement with the

measurements {yk}N
k=0 is as good as possible while still respecting the process

dynamics (2.94b), the output relation (2.94c), and the constraints (2.94d). The
criteria for goodness of fit is specified by the stage costs (2.95). (2.95a) specifies
that the state x0 should preferentially be selected as close to x̃0 as possible,
while (2.95b) specifies that the noise sequences {wk, vk}N

k=0 should be as close

to {w̃k, ṽk}N
k=0 as possible.

Let w−1 be defined by w−1 = x0− x̃0 and let x−1 = x̃0. Then, x0 may formally
be obtained by

x0 = x−1 + w−1 = g−1(x−1, w−1) (2.96)

in which g−1 is defined by this relation and x−1 = x̃0 is a known parameter.
Furthermore, define l−1(x−1, w−1) = l̃0(x0) such that

l−1(x−1, w−1) = 1
2w−1P̃

−1
0 w−1 (2.97)

Use the output relation (2.94c) to express vk as a function of xk

vk = yk − ϕk(xk) (2.98)

such that the stage costs (2.95b) may be expressed as

l̃k(wk, vk) = l̃k(wk, yk − ϕk(xk)) = lk(xk, wk) (2.99)
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By these simple rearrangements, it is apparent that the basic nonlinear moving
horizon estimator (2.94) may be expressed as

min
{xk+1,wk}

φ =

N∑

k=−1

lk(xk, wk) (2.100a)

s.t. xk+1 = gk(xk, wk) k = −1, 0, . . . , N (2.100b)

hk(xk, wk) ≥ dk k = 0, 1, . . . , N (2.100c)

This may be regarded as a nonlinear optimal control problem (2.43) in which
the initial time index has been shifted from k = 0 to k = −1, the end time is
k = N + 1 rather than k = N , and the final cost is zero, i.e. lN+1(xN+1) = 0.
Furthermore, g−1 is given by the expression (2.96) rather than by the process
dynamics (2.94b) extended to k = −1.

The next two lemmas, i.e. lemma 2.5.1 and 2.5.2, will in conjunction with the
preceding discussion be used to establish proposition 2.5.3. Proposition 2.5.3
expresses the basic nonlinear moving horizon estimator (2.94) as a constrained
nonlinear optimal control problem.

Lemma 2.5.1
Let

[
Q̃ M̃

M̃ ′ R̃

]

be symmetric and positive definite.

Then the matrices W , S, and R defined by the relation

[
W S′

S V

]

=

[
Q̃ M̃

M̃ ′ R̃

]−1

(2.101)

exist and are unique. Furhtermore, they may be computed by the expressions

W =
(

Q̃ − M̃R̃−1M̃ ′
)−1

(2.102a)

S = −R̃−1M̃ ′
(

Q̃ − M̃R̃−1M̃ ′
)−1

(2.102b)

V =
(

R̃ − M̃ ′Q̃−1M̃
)−1

(2.102c)

Proof. Existence and uniqueness as well as symmetry of the inverse (2.101) fol-

lows from the assumption of symmetry and positive definiteness of

[
Q̃ M̃

M̃ ′ R̃

]

.

(2.102) follows by application of the Schur complement formulas to (2.101) (c.f.
Kailath et al., 2000). ¤

Lemma 2.5.2
Let

[
Q̃k M̃k

M̃k R̃k

]

be symmetric and positive definite for k = 0, 1, . . . , N . Let P̃0 be

symmetric and positive definite. Let w−1 = x0 − x−1 and x−1 = x̃0. Let yk satisfy
the output relation (2.94c) of the basic nonlinear moving horizon estimator (2.94).
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Then the objective function (2.94a) of the basic nonlinear moving horizon estimator
(2.94) may be expressed as

φ =
N∑

k=−1

fk(xk, wk) + fN+1(xN+1) (2.103)

in which the stage cost is of the weighted least squares type

fk(xk, wk) = 1
2
||ψk(xk, wk)||2Λk

, k = −1, 0, . . . , N (2.104a)

fN+1(xN+1) = 1
2
||ψN+1(xN+1)||2ΛN+1

(2.104b)

The residual functions ψk are

ψ−1(x−1, w−1) = w−1 (2.105a)

ψk(xk, wk) =

[
wk − w̃k

yk − ϕk(xk) − ṽk

]

k = 0, . . . , N (2.105b)

ψN+1(xN+1) = 0 (2.105c)

with the weight matrices Λk given by

Λ−1 = P̃−1
0 (2.106a)

Λk =

[
Wk S′

k

Sk Vk

]

=

[
Q̃k M̃k

M̃ ′
k R̃k

]−1

k = 0, . . . , N (2.106b)

ΛN+1 = 0 (2.106c)

Furthermore, the block matrices Wk, Sk, and Vk are given by the relations

Wk =
(

Q̃k − M̃kR̃−1
k M̃ ′

k

)−1

(2.107a)

Sk = −R̃−1
k M̃ ′

k

(

Q̃k − M̃kR̃−1
k M̃ ′

k

)−1

(2.107b)

Vk =
(

R̃k − M̃ ′
kQ̃−1

k M̃k

)−1

(2.107c)

for k = 0, 1, . . . , N .

Proof. The mathematical program (2.100) is equivalent with the mathema-
tical program (2.94) defining the basic nonlinear moving horizon estimator.
From inspection of the mathematical program (2.100), it is obvious that the
objective function of the basic nonlinear moving horizon estimator (2.94) has
the structure

φ =
N∑

k=−1

fk(xk, wk) + fN+1(xN+1) (2.108)

in which fN+1(xN+1) = 0.

The stage cost function at time index k = −1 is

f−1(x−1, w−1) = l−1(x−1, w−1) = 1
2w−1P̃

−1
0 w−1

= 1
2w−1Λ−1w−1 = 1

2 ||w−1||2Λ−1
= 1

2 ||ψ−1(x−1, w−1)||2Λ−1

(2.109)
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in which the residual function, ψ−1, is

ψ−1(x−1, w−1) = w−1 (2.110)

and the weight function

Λ−1 = P̃−1
0 (2.111)

For k = 0, 1, . . . , N the stage cost function is

fk(xk, wk) = lk(xk, wk)

= 1
2

[
wk − w̃k

yk − ϕk(xk) − ṽk

]′ [
Q̃k M̃k

M̃ ′
k R̃k

]−1 [
wk − w̃k

yk − ϕk(xk) − ṽk

]

= 1
2

[
wk − w̃k

yk − ϕk(xk) − ṽk

]′ [
Wk S′

k

Sk Vk

] [
wk − w̃k

yk − ϕk(xk) − ṽk

]

= 1
2 ||ψk(xk, wk)||2Λk

(2.112)

in which the expression for the residual function, ψk, is

ψk(xk, wk) =

[
wk − w̃k

yk − ϕk(xk) − ṽk

]

(2.113)

The weight matrix, Λk, is

Λk =

[
Wk S′

k

Sk Vk

]

=

[
Q̃k M̃k

M̃ ′
k R̃k

]−1

(2.114)

in which the block matrices, Wk, Sk, and Vk may be expressed as

Wk =
(

Q̃k − M̃kR̃−1
k M̃ ′

k

)−1

(2.115a)

Sk = −R̃−1
k M̃ ′

k

(

Q̃k − M̃kR̃−1
k M̃ ′

k

)−1

(2.115b)

Vk =
(

R̃k − M̃ ′
kQ̃−1

k M̃ ′
k

)−1

(2.115c)

according to lemma 2.5.1. The stage cost at time index k = N + 1 is

fN+1(xN+1) = 0 = 1
2 ||ψN+1(xN+1)||2ΛN+1

(2.116)

in which ψN+1(xN+1) = 0 and ΛN+1 = 0 (or if convenient ΛN+1 = I). ¤

Proposition 2.5.3
Let

[
Q̃k M̃k

M̃ ′
k R̃k

]

be symmetric and positive definite. Let P̃0 be symmetric and positive

definite.
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Then the basic nonlinear moving horizon estimator (2.94) may be expressed as

min
{xk+1,wk}

φ =

N∑

k=−1

fk(xk, wk) + fN+1(xN+1) (2.117a)

s.t. xk+1 = gk(xk, wk) k = −1, 0, . . . , N (2.117b)

hk(xk, wk) ≥ dk k = 0, 1, . . . , N (2.117c)

The initial state, x−1, is x−1 = x̃0 and the function g−1(x−1, w−1) is defined as

g−1(x−1, w−1) = x−1 + w−1 (2.118)

The objective function and its stage costs are of the weighted least squares type and
given by the relations in lemma 2.5.2.

Proof. The result from the equivalence of (2.100) with the basic nonlinear
moving horizon estimator (2.94) and lemma 2.5.2. ¤

Remark 2.5.4
The mathematical program (2.117) has the same structure as the nonlinear optimal
control problem (2.43) with a weighted least squares objective function (2.76). Minor
differences are present between (2.117) and (2.43). The process noise wk is the input
in (2.117) while it is the actuators uk in (2.43). The initial time is k = −1 in (2.117)
while the initial time is k = 0 in (2.43). The final time is k = N + 1 in (2.117)
while the final time in (2.43) is k = N . In the nonlinear optimal control problem
(2.43), the inequality constraint, hk(xk, uk) ≥ dk, is present at the initial time k = 0,
and the inequality constraint hN (xN ) ≥ dN associated with the final time k = N
is also present. (2.117) has neither inequality constraint associated with its initial
time k = −1 nor any inequality constraint associated with its final time k = N + 1.
However, these minor differences has no implications for the interpretation of (2.117)
as a nonlinear optimal control problem (2.43). The initial and final time issue is just
a matter of shifting the index. Further, if desirable for the notation, the problem
(2.117) can be given inequality constraints at the initial and final time by defining
dummy functions h−1(x−1, w−1) = 0 ≥ −1 and hN+1(xN+1) = 0 ≥ −1.

By proposition 2.5.3, it is established that the basic nonlinear moving hori-
zon estimator (2.94) is equivalent to the mathematical program (2.117). And
(2.117) is an instance of the nonlinear optimal control problem (2.43). Conse-
quently, the basic nonlinear moving horizon estimator (2.94) is an instance of
the nonlinear optimal control problem. Furthermore, the objective function in
the basic nonlinear moving horizon estimator instance of the optimal control
problem is of the weighted least squares type as has been established by lemma
2.5.2. By these arguments it is established, that the basic nonlinear moving
horizon estimator (2.94) is an instance of a nonlinear optimal control problem
(2.43) with weighted least squares stage costs (2.104) in the objective function
(2.117a).

In solving the basic nonlinear moving horizon estimation problem (2.94) by an
SQP algorithm, the search direction in each iteration is computed by solving a
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linear quadratic optimal control problem (2.30). The linear quadratic optimal
control problem providing the search direction is derived from (2.117). The
Hessian matrix may be approximated using any of the methods described in
section 2.4, as the stage costs are of the weighted least squares type.

In summary, it has been demonstrated that computation of a solution for
the basic nonlinear moving horizon estimator (2.94) involves solving linear
quadratic optimal control problems (2.30). The objective function of the basic
nonlinear moving horizon estimator is of the least squares type. Therefore,
the Hessian matrix in the linear quadratic optimal control problem may be
computed by either the BFGS method, the method using the Gauss-Newton
approximation, or by a hybrid of these two alternatives.

2.5.2 Offset Free Nonlinear Moving Horizon Estimator

To have offset free nonlinear model predictive control, Tenny and Rawlings
(2002) augmented the model with integrating states which are disturbance
terms in either the equation for the process dynamics or the output relation.
Muske and Badgwell (2002) suggest the same method to achieve offset free
control in the context of linear model predictive control and provide a condition
under which this model predictive controller gives offset free control. One of
their sufficient conditions for achieving offset free control is that the introduced
number of integrating states equals the number of outputs. In a stochastic
setting this introduction of integrating states corresponds to letting some of
the disturbances be Wiener processes rather than just white noise as in the
basic nonlinear moving horizon estimator.

The nonlinear moving horizon estimator augmented with integrating states sk

to eliminate offset in the model predictive controller is

min
{x̄k,sk,w̄k,nk,v̄k}

φ = l̄−1(x̄0, s0) +
N∑

k=0

l̄k(w̄k, v̄k, nk) (2.119a)

s.t. x̄k+1 = ḡk(x̄k, ζk, w̄k) (2.119b)

sk+1 = sk + nk (2.119c)

ζk = G′
ksk (2.119d)

ξk = H ′
ksk (2.119e)

yk = ϕ̃k(x̄k) + v̄k + ξk (2.119f)

h̄k(x̄k, w̄k) ≥ d̄k (2.119g)

ηk(sk, nk) ≥ δk (2.119h)
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in which the stage costs of the objective function are

l̄0(x̄0, s0) = 1
2 (x̄0 − x̂0)

′P̄−1
0 (x̄0 − x̂0)

+ 1
2 (s0 − s̃0)

′Π−1
0 (s0 − s̃0)

(2.120a)

l̄k(w̄k, nk, v̄k) = 1
2

[
w̄k − ŵk

v̄k − v̂k

]′ [
Q̄k M̄k

M̄ ′
k R̄k

]−1 [
w̄k − ŵk

v̄k − v̂k

]

+ 1
2 (nk − ñk)′Ξ−1

k (nk − ñk)

(2.120b)

The barred quantities in (2.119) and (2.120) corresponds to the equivalent
quantities in the basic nonlinear moving horizon estimator (2.94). sk repre-
sents the integrated states which are disturbed by a noise term represented by
the vector nk. Some linear combination, ζk, of the integrated states, sk, inter-
acts with the original states, x̄k, through the relation x̄k+1 = ḡk(x̄k, ζk, w̄k).
These disturbances, ζk, are called input disturbances. Another, linear com-
bination, ξk, of the integrated states sk, interacts with the original variables
{x̄k, w̄k, v̄k, yk} through the output relation yk = ϕ̄k(x̄k) + v̄k + ξk. These dis-
turbances, ξk, are called output disturbances. Typically, the input and output
disturbances are complementary in the sense that the integrated states, sk,
observable by ζk are not observable by ξk and vice versa.

Proposition 2.5.5
Consider the augmented nonlinear moving horizon estimator (2.119) with the stage
costs (2.120). Let xk, wk, and vk be defined by

xk =

[
x̄k

sk

]

wk =

[
w̄k

nk

]

vk = v̄k (2.121)

Then the augmented nonlinear moving horizon estimator (2.119) with the stage costs
(2.120) may be expressed as the mathematical program

min
{xk,wk,vk}

φ = l̃−1(x0) +

N∑

k=0

l̃k(wk, vk) (2.122a)

s.t. xk+1 = gk(xk, wk) k = 0, 1, . . . , N − 1 (2.122b)

yk = ϕk(xk) + vk k = 0, 1, . . . , N (2.122c)

hk(xk, wk) ≥ dk k = 0, 1, . . . , N (2.122d)

in which the stage costs are

l̃−1(x0) = 1
2
(x0 − x̃0)

′P̃−1
0 (x0 − x̃0) (2.123a)

l̃k(wk, vk) = 1
2

[
wk − w̃k

vk − ṽk

] [
Q̃k M̃k

M̃ ′
k R̃k

]−1 [
wk − w̃k

vk − ṽk

]

(2.123b)

In the stage cost functions, the weight matrices are

P̃0 =

[
P̄0 0
0 Π0

]

(2.124a)

Q̃k =

[
Q̄k 0
0 Ξk

]

M̃k =

[
M̄k

0

]

R̃k = R̄k (2.124b)



2.5. Nonlinear Moving Horizon Estimation 119

and the parameter vectors are

x̃k =

[
x̂k

s̃k

]

w̃k =

[
ŵk

ñk

]

ṽk = v̂k (2.125)

The state transition function gk is

gk(xk, wk) =

[
g̃k(x̄k, G′

ksk, w̄k)
sk + nk

]

(2.126)

and the output map ϕk is

ϕk(xk) = ϕ̃k(x̄k) + H ′
ksk (2.127)

The function hk and the lower value dk defining the inequality constraints are

hk(xk, wk) =

[
h̄k(x̄k, w̄k)
ηk(sk, nk)

]

dk =

[
d̄k

δk

]

(2.128)

Proof. The result follows by noting that the stage costs of (2.119) may be
expressed as

l̄0(x̄0, s0) = 1
2 (x̄0 − x̂0)

′P̄−1
0 (x̄0 − x̂0) + 1

2 (s0 − s̃0)
′Π−1

0 (s0 − s̃0)

= 1
2

[
x̄0 − x̂0

s0 − s̃0

]′ [
P̄0 0
0 Π0

]−1 [
x̄0 − x̂0

s0 − s̃0

]

= 1
2 (x0 − x̃0)

′P−1
0 (x0 − x̃0) = l̃−1(x0)

(2.129)

and for k = 0, 1, . . . , N

l̄k(w̄k, nk, v̄k) = 1
2

[
w̄k − ŵk

v̄k − v̂k

]′ [
Q̃k M̃k

M̃ ′
k R̃k

]−1 [
w̄k − ŵk

v̄k − v̂k

]

+ 1
2 (nk − ñk)′Ξ−1

k (nk − ñk)

= 1
2





w̄k − ŵk

v̄k − v̂k

nk − ñk





′ 



Q̄k M̄k 0
M̄ ′

k R̄k 0
0 0 Ξk





−1 



w̄k − ŵk

v̄k − v̂k

nk − ñk





= 1
2





w̄k − ŵk

nk − ñk

v̄k − v̂k





′ 



Q̄k 0 M̄k

0 Ξk 0
M̄ ′

k 0 R̄k





−1 



w̄k − ŵk

nk − ñk

v̄k − v̂k





= 1
2

[
wk − w̃k

vk − ṽk

]′ [
Q̃k M̃k

M̃ ′
k R̃k

]−1 [
wk − w̃k

vk − ṽk

]

= l̃k(wk, vk)

(2.130)

in which

P̃0 =

[
P̄0 0
0 Π0

]

Q̃k =

[
Q̄k 0
0 Ξk

]

M̃k =

[
M̄k

0

]

R̃k = R̄k

x0 =

[
x̄0

s0

]

x̃0 =

[
x̂0

s̃0

]

wk =

[
w̄k

nk

]

w̃k =

[
ŵk

ñk

]
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The constraints

x̄k+1 = ḡk(x̄k, ζk, w̄k) (2.131a)

sk+1 = sk + nk (2.131b)

ζk = G′
ksk (2.131c)

becomes by elimination of ζk
[
x̄k+1

sk+1

]

=

[
ḡk(x̄k, G′

ksk, w̄k)
sk + nk

]

(2.132)

which may be expressed as

xk+1 = gk(xk, wk) (2.133)

in which

xk =

[
x̄k

sk

]

gk(xk, wk) =

[
ḡk(x̄k, G′

ksk, w̄k)
sk + nk

]

The output disturbance, ξk = H ′
ksk, may be used to express the measurement,

yk, as

yk = ϕ̃k(x̄k) + v̄k + ξk

= ϕ̃k(x̄k) + v̄k + H ′
ksk

= ϕk(xk) + vk

(2.134)

in which
ϕk(xk) = ϕ̃k(x̄k) + H ′

ksk (2.135)

The constraints

h̄k(x̄k, w̄k) ≥ d̄k (2.136a)

ηk(sk, nk) ≥ δk (2.136b)

may be expressed as
hk(xk, wk) ≥ dk (2.137)

in which

hk(xk, wk) =

[
h̄k(x̄k, w̄k)
ηk(sk, nk)

]

dk =

[
d̄k

δk

]

Consequently, the augmented nonlinear moving horizon estimator (2.119) may
be expressed as

min
{xk,wk,vk}

φ = l̃−1(x0) +

N∑

k=0

l̃k(wk, vk) (2.138a)

s.t. xk+1 = gk(xk, wk) k = 0, 1, . . . , N − 1 (2.138b)

yk = ϕk(xk) + vk k = 0, 1, . . . , N (2.138c)

hk(xk, wk) ≥ dk k = 0, 1, . . . , N (2.138d)

in which the quantities are defined as outlined in this proof and stated in the
proposition. ¤



2.5. Nonlinear Moving Horizon Estimation 121

By proposition 2.5.5, it is established that the augmented nonlinear moving
horizon estimator (2.119) for offset free model predictive control may be ex-
pressed as a basic nonlinear moving horizon estimator (2.94). Hence, compu-
tation of the estimate prescribed by (2.119) corresponds to solving a nonlinear
moving horizon estimation problem which in turn is equivalent to a nonlinear
optimal control problem. Solution of the nonlinear optimal control problem by
an SQP algorithm requires computation of a search direction by solution of a
linear quadratic optimal control problem (2.30). In conclusion, efficient solu-
tion of the offset free nonlinear moving horizon estimation problem by an SQP
algorithm involves solution of a constrained linear-quadratic optimal control
problem.

2.5.3 Moving Horizon Estimation

Robertson et al. (1996) provide a statistical interpretation of the moving hori-
zon estimator with linear models, and Muske and Badgwell (2002) give suffi-
cient requirements for the moving horizon estimator with linear models to yield
offset free model predictive control. The moving horizon estimator enabling off-
set free model predictive control will be called the augmented moving horizon
estimator, as the mechanism for enabling offset free model predictive control
is to augment the state vector with integrated states that are either input or
output disturbances.

The augmented moving horizon estimator with a linear model is

min
{x̄k,w̄k,v̄k,

sk,nk,ζk,ξk}

φ = l̄−1(x̄0, s0) +

N∑

k=0

l̄k(w̄k, nk, v̄k) (2.139a)

s.t. x̄k+1 = Ā′
kx̄k + B̄′

kw̄k + b̄k + ζk k ∈ NE (2.139b)

sk+1 = sk + nk k ∈ NE (2.139c)

ζk = Ḡ′
ksk k ∈ NE (2.139d)

ξk = H̄ ′
ksk k ∈ NE (2.139e)

yk = C̄ ′
kx̄k + c̄k + v̄k + ξk k ∈ NE (2.139f)

S̄′
kx̄k + T̄kw̄k + tk ≥ dk k ∈ NE (2.139g)

Ū ′
ksk + V̄ ′

knk + ρk ≥ δk k ∈ NE (2.139h)

in which NE = {0, 1, . . . , N}. In this model, the dynamics (2.139b) is aug-
mented with the dynamics (2.139c) integrating the states, sk. A linear com-
bination, ζk, of these states, sk, are input or state disturbances as they affect
the original variables through (2.139b). Another, linear combination, ξk, of
the integrated states, sk, are output disturbances as they affect the original
variables through (2.139f). The original states, x̄k, and the original process
noise, w̄k, are constrained by the inequality constraint (2.139g). In a statistical
context, these inequality constraints may be used to specify truncated proba-
bility distributions (c.f. Rao, 2000). Similar inequality constraints (2.139h) are
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introduced for the augmented states, sk, and the augmented process noise, nk.
The stage costs, l̄k, of the objective function (2.139a) are defined as

l̄−1(x̄0, s0) = 1
2 (x̄0 − x̂0)

′P̄−1
0 (x̄0 − x̂0)

+ 1
2 (s0 − s̃0)

′Π−1
0 (s0 − s̃0)

(2.140a)

l̄k(w̄k, nk, v̄k) = 1
2

[
w̄k − ŵk

v̄k − v̂k

]′ [
Q̄k M̄k

M̄ ′
k R̄k

]−1 [
w̄k − ŵk

v̄k − v̂k

]

+ 1
2 (nk − ñk)′Ξ−1

k (nk − ñk)

k ∈ NE (2.140b)

in which P̄0, Π0,

[
Q̄k M̄k

M̄ ′
k R̄k

]

, and Ξk are assumed to be symmetric and pos-

itive definite. The decision variables {x̄k, sk, w̄k, nk, v̄k, ζk, ξk} should be se-
lected such that they respect the constraints (2.139b)-(2.139h) with the given

measurements {yk}N
k=0 and such that x̄0 is close to x̂0, s0 is close to s̃0, w̄k is

close to ŵk, nk is close to ñk, and v̄k is close to v̂k. A probabilistic analysis of
the moving horizon estimation problem addresses the optimal selection of the
parameters in the stage cost functions. However, this topic is outside the scope
of this paper.

The next proposition states the augmented moving horizon estimator for linear
models (2.139) as a basic moving horizon estimator for linear models (2.142).
The estimator is equivalent to the basic nonlinear moving horizon estimator
(2.94) except that the involved equations in (2.142) are affine rather than gen-
eral functions.

Proposition 2.5.6
Consider the augmented moving horizon estimator with affine constraints (2.139).
Let

xk =

[
x̄k

sk

]

wk =

[
w̄k

nk

]

vk = v̄k (2.141)

Then the augmented moving horizon estimator with affine constraints (2.139) may
be expressed as

min
{xk,wk,vk}

φ = l̃−1(x0) +
N∑

k=0

l̃k(wk, vk) (2.142a)

s.t. xk+1 = Ã′
kxk + B̃′

kwk + b̃k k ∈ NE (2.142b)

yk = C̃′
kxk + c̃k + vk k ∈ NE (2.142c)

Ẽ′
kxk + F̃ ′

kwk + h̃k ≥ d̃k k ∈ NE (2.142d)

in which the stage costs are

l̃−1(x0) = 1
2
(x0 − x̃0)

′P̃−1
0 (x0 − x̃0) (2.143a)

l̃k(wk, vk) = 1
2

[
wk − w̃k

vk − ṽk

]′ [
Q̃k M̃k

M̃ ′
k R̃k

]−1 [
wk − w̃k

vk − ṽk

]

k ∈ NE (2.143b)
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The parameters in the stage cost functions (2.143) are

P̃0 =

[
P̄0 0
0 Π0

]

(2.144a)

Q̃k =

[
Q̄k 0
0 Ξk

]

M̃k =

[
M̄k

0

]

R̃k = R̄k k ∈ NE (2.144b)

x̃k =

[
x̂k

s̃k

]

w̃k =

[
ŵk

ñk

]

ṽk = v̂k (2.144c)

and the parameters of the constraints (2.142b)-(2.142d) are

Ã′
k =

[
Ā′

k Ḡ′
k

0 I

]

B̃′
k =

[
B̄′

k 0
0 I

]

b̃k =

[
b̄k

0

]

k ∈ NE (2.145a)

C̃′
k =

[
C̄′

k H̄ ′
k

]
c̃k = c̄k k ∈ NE (2.145b)

Ẽ′
k =

[
S̄′

k 0
0 Ū ′

k

]

F̃ ′
k =

[
T̄ ′

k 0
0 V̄ ′

k

]

h̃k =

[
tk

ρk

]

d̃k =

[
d̄k

δk

]

k ∈ NE (2.145c)

Proof. The result follows immediately by simple algebraic manipulations. The
stage cost function, l̃−1, is obtained as

l̄−1(x̄0, s0) = 1
2 (x̄0 − x̂0)

′P̄−1
0 (x̄0 − x̂0) + 1

2 (s0 − s̃0)
′Π−1

0 (s0 − s̃0)

= 1
2

[
x̄0 − x̂0

s0 − s̃0

]′ [
P̄0 0
0 Π0

]−1 [
x̄0 − x̂0

s0 − s̃0

]

= 1
2 (x0 − x̃0)

′P̃−1
0 (x0 − x̃0) = l̃−1(x0)

(2.146)

in which

P̃0 =

[
P̄0 0
0 Π0

]

x0 =

[
x̄0

s0

]

x̃0 =

[
x̂0

s̃0

]

Similarly, at time index k = NE = {0, 1, . . . , N} we obtain

l̄k(w̄k, nk, v̄k) = 1
2

[
w̄k − ŵk

v̄k − v̂k

]′ [
Q̄k M̄k

M̄ ′
k R̄k

]−1 [
w̄k − ŵk

v̄k − v̂k

]

+ 1
2 (nk − ñk)′Ξ−1

k (nk − ñk)

= 1
2





w̄k − ŵk

v̄k − v̂k

nk − ñk





′ 



Q̄k M̄k 0
M̄ ′

k R̄k 0
0 0 Ξk





−1 



w̄k − ŵk

v̄k − v̂k

nk − ñk





= 1
2





w̄k − ŵk

nk − ñk

v̄k − v̂k





′ 



Q̄k 0 M̄k

0 Ξk 0
M̄ ′

k 0 R̄k





−1 



w̄k − ŵk

nk − ñk

v̄k − v̂k





= 1
2

[
wk − w̃k

vk − ṽk

]′ [
Q̃k M̃k

M̃ ′
k R̃k

]−1 [
wk − w̃k

vk − ṽk

]

= l̃k(wk, vk)

(2.147)
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in which we have introduced and defined the quantities

wk =

[
w̄k

nk

]

w̃k =

[
ŵk

ñk

]

vk = v̄k ṽk = v̂k

Q̃k =

[
Q̄k 0
0 Ξk

]

M̃k =

[
M̄k

0

]

R̃k = R̄k

The constraints for k ∈ NE

x̄k+1 = Ā′
kx̄k + B̄′

kw̄k + b̄k + ζk (2.148a)

sk+1 = sk + nk (2.148b)

ζk = Ḡ′
ksk (2.148c)

may by substitution of the expressions for ζk in (2.148a) and subsequent vec-
torization by stacking be expressed as

[
x̄k+1

sk+1

]

=

[
Ā′

k Ḡ′
k

0 I

] [
x̄k

sk

]

+

[
B̄′

k 0
0 I

] [
w̄k

nk

]

+

[
b̄k

0

]

(2.149)

Let

xk =

[
x̄k

sk

]

(2.150)

Then (2.149) may be expressed as

xk+1 = Ã′
kxk + B̃′

kwk + b̃k k ∈ NE (2.151)

in which

Ã′
k =

[
Ā′

k Ḡ′
k

0 I

]

B̃′
k =

[
B̄′

k 0
0 I

]

b̃k =

[
b̄k

0

]

k ∈ NE

The relation for the measurement, yk, may be formulated as

yk = C̄ ′
kx̄k + c̄k + v̄k + ξk

= C̄ ′
kx̄k + c̄k + v̄k + H̄ ′

ksk

=
[
C̄ ′

k H̄ ′
k

]
[
x̄k

sk

]

+ c̄k + v̄k

= C̃ ′
kxk + c̃k + vk

k ∈ NE (2.152)

in which we have introduced and defined the quantities C̃k and c̃k by

C̃ ′
k =

[
C̄ ′

k H̄ ′
k

]
c̃k = c̄k k ∈ NE

The constraints for k ∈ NE

S̄′
kx̄k + T̄ ′

kw̄k + tk ≥ dk (2.153a)

Ū ′
ksk + V̄ ′

knk + ρk ≥ δk (2.153b)
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may be stacked to give the expression

[
S̄′

k 0
0 Ū ′

k

] [
x̄k

sk

]

+

[
T̄ ′

k 0
0 V̄ ′

k

] [
w̄k

nk

]

+

[
tk
ρk

]

≥
[
dk

ρk

]

(2.154)

that may be reformulated as

Ẽ′
kxk + F̃ ′

kwk + h̃k ≥ d̃k k ∈ NE (2.155)

by definition of the quantities

Ẽk =

[
S̄k 0
0 Ūk

]

F̃k =

[
T̄k 0
0 V̄k

]

h̃k =

[
tk
ρk

]

d̃k =

[
dk

ρk

]

k ∈ NE

¤

(2.142) is called the basic moving horizon estimator for linear models. In the
case with no inequality constraints, the problem is equivalent to the smoothing
problem. Though smoothing problems are often stated for linear rather than
affine models (c.f. Kailath et al., 2000). By proposition 2.5.6 it is established
how to convert the augmented moving horizon estimator with linear models
(2.139) to a basic moving horizon estimator for linear models (2.142).

The next proposition establishes a procedure for converting the basic moving
horizon estimator for linear models (2.142) to a least squares constrained opti-
mal control problem for linear models (2.156).

Proposition 2.5.7
Consider the basic linear moving horizon estimator (2.142). Let P̃0 and

[
Q̃k M̃k

M̃ ′
k R̃k

]

be symmetric and positive definite.

Then the basic linear moving horizon estimator (2.142) is identical with the linear
least squares constrained optimal control problem

min
{xk+1,wk}

φ =

N∑

k=−1

lk(xk, wk) + lN+1(xN+1) (2.156a)

s.t. xk+1 = A′
kxk + B′

kwk + bk k ∈ {−1} ∪ NE (2.156b)

C′
kxk + D′

kwk + ck ≥ dk k ∈ {−1} ∪ NE (2.156c)

C′
N+1xN+1 + cN+1 ≥ dN+1 (2.156d)

in which the stage costs are of the least squares type

l−1(x−1, w−1) = 1
2
||ψ−1(x−1, w−1)||2Λ−1

(2.157a)

lk(xk, wk) = 1
2
||ψk(xk, wk)||2Λk

k ∈ NE (2.157b)

lN+1(xN+1) = 1
2
||ψN+1(xN+1)||2ΛN+1

(2.157c)
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and the residual functions are

ψ−1(x−1, w−1) = w−1 (2.158a)

ψk(xk, wk) =

[
wk − w̃k

yk − C̃′
kxk − c̃k − ṽk

]

k ∈ NE (2.158b)

ψN+1(xN+1) = 0 (2.158c)

The weight matrices Λk are

Λ−1 = P̃−1
0 (2.159a)

Λk =

[
Wk S′

k

Sk Vk

]

=

[
Q̃k M̃k

M̃ ′
k R̃k

]−1

k ∈ NE (2.159b)

ΛN+1 = 0 (2.159c)

in which

Wk =
(

Q̃k − M̃kR̃−1
k M̃ ′

k

)−1

(2.160a)

Sk = −R̃−1
k M̃ ′

k

(

Q̃k − M̃kR̃−1
k M̃ ′

k

)−1

(2.160b)

Vk =
(

R̃k − M̃ ′
kQ̃−1

k M̃k

)−1

(2.160c)

for k ∈ NE . The initial state is x−1 = x̃0 and the other parameters in the state
transition equation (2.156b) are

A−1 = I B−1 = I b−1 = 0 (2.161a)

Ak = Ãk Bk = B̃k bk = b̃k k ∈ NE (2.161b)

The parameters in the inequality constraints (2.156c)-(2.156d) are

C−1 = 0 D−1 = 0 c−1 = 0 d−1 = −1 (2.162a)

Ck = Ẽk Dk = F̃k ck = h̃k dk = d̃k k ∈ NE (2.162b)

CN+1 = 0 cN+1 = 0 dN+1 = −1 (2.162c)

Proof. The basic linear moving horizon estimator is

min
{xk,wk,vk}

φ = l̃−1(x0) +

N∑

k=0

l̃k(wk, vk) (2.163a)

s.t. xk+1 = Ã′
kxk + B̃′

kwk + b̃k k ∈ NE (2.163b)

yk = C̃ ′
kxk + c̃k + vk k ∈ NE (2.163c)

Ẽ′
kxk + F̃ ′

kwk + h̃k ≥ d̃k k ∈ NE (2.163d)

in which the stage costs are

l̃−1(x0) = 1
2 (x0 − x̃0)

′P̃−1
0 (x0 − x̃0) (2.164a)

l̃k(wk, vk) = 1
2

[
wk − w̃k

vk − ṽk

]′ [
Q̃k M̃k

M̃k R̃k

]−1 [
wk − w̃k

vk − ṽk

]

(2.164b)
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Define x−1 = x̃0 and w−1 = x0 − x̃0. This implies

x0 = x̃0 + w−1 = x−1 + w−1

= A′
−1x−1 + B′

−1w−1 + b−1

(2.165)

in which
A−1 = I B−1 = I b−1 = 0 (2.166)

Furthermore

l̃−1(x0) = 1
2 (x0 − x̃0)

′P̃−1
0 (x0 − x̃0)

= 1
2w′

−1P̃
−1
0 w−1 = 1

2w′
−1Λ−1w−1

= 1
2 ||ψ−1(x−1, w−1)||2Λ−1

= l−1(x−1, w−1)

(2.167)

in which
ψ−1(x−1, w−1) = w−1 (2.168)

and Λ−1 = P̃−1
0 .

At time index k = −1 there is no inequality constraint. To keep a consistent
and simple notation, we introduce a dummy inequality constraint which is
never active. This inequality constraint may be expressed as

C ′
−1x−1 + D′

−1w−1 + c−1 ≥ d−1 (2.169)

in which
C−1 = 0 D−1 = 0 c−1 = 0 d−1 = −1 (2.170)

The measurement equation

yk = C̃ ′
kxk + c̃k + vk k ∈ NE (2.171)

may be rearranged to

vk = yk − C̃ ′
kxk − c̃k k ∈ NE (2.172)

The stage costs, l̃k, for k ∈ NE may be expressed as

l̃k(wk, vk) = 1
2

[
wk − w̃k

vk − ṽk

]′ [
Q̃k M̃k

M̃ ′
k R̃k

]−1 [
wk − w̃k

vk − ṽk

]

= 1
2

[
wk − w̃k

yk − C̃ ′
kxk − c̃k − ṽk

]′

Λk

[
wk − w̃k

yk − C̃ ′
kxk − c̃k − ṽk

]

= 1
2 ||ψk(xk, wk)||2Λk

= lk(xk, wk)

(2.173)

in which the residual function, ψk, is

ψk(xk, wk) =

[
wk − w̃k

yk − C̃ ′
kxk − c̃k − ṽk

]

(2.174)
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and the expression for Λk is

Λk =

[
Q̃k M̃k

M̃ ′
k R̃k

]−1

=

[
Wk S′

k

Sk Vk

]

(2.175)

with Wk, Sk, and Vk computed according to lemma 2.5.1

Wk =
(

Q̃k − M̃kR̃−1
k M̃ ′

k

)−1

(2.176a)

Sk = −R̃−1
k M̃ ′

k

(

Q̃k − M̃kR̃−1
k M̃ ′

k

)−1

(2.176b)

Vk =
(

R̃k − M̃ ′
kQ̃−1

k M̃k

)−1

(2.176c)

The state transition equation for k ∈ NE may be expressed as

xk+1 = Ã′
kxk + B̃′

kwk + b̃k

= A′
kxk + B′

kwk + bk

(2.177)

in which
Ak = Ãk Bk = B̃k bk = b̃k (2.178)

Similarly, the inequality constraints

Ẽ′
kxk + F̃ ′

kwk + h̃k ≥ d̃k (2.179)

at time indices k ∈ NE may be expressed as

C ′
kxk + D′

kwk + ck ≥ dk (2.180)

in which
Ck = Ẽk Dk = F̃k ck = h̃k dk = d̃k (2.181)

At time index k = N + 1

lN+1(xN+1) = 0 = 1
2 ||ψN+1(xN+1)||2ΛN+1

(2.182)

in which ΛN+1 = 0 and ψN+1(xN+1) = 0. There is no inequality constraints
associated with time index k = N+1. To keep a consistent and simple notation,
we may introduce a dummy constraint which is always inactive

C ′
N+1xN+1 + cN+1 ≥ dN+1 (2.183)

in which CN+1 = 0, cN+1 = 0, and dN+1 = −1. ¤

Proposition 2.5.8 establishes that the constrained least squares optimal con-
trol problem with linear models (2.156) is equivalent with the constrained
linear-quadratic optimal control problem (2.184). Furthermore, a procedure
for converting the least squares constrained optimal control problem with lin-
ear models (2.156) to a constrained linear quadratic optimal control problem
(2.184) is provided by proposition 2.5.8.
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Proposition 2.5.8
The constrained linear least squares optimal control problem (2.156) may be expressed
as a constrained linear quadratic optimal control problem

min
{xk+1,wk}N

k=−1

φ =
N∑

k=−1

fk(xk, wk) + fN+1(xN+1) (2.184a)

s.t. xk+1 = A′
kxk + B′

kwk + bk k ∈ {−1} ∪ NE (2.184b)

C′
kxk + D′

kwk + ck ≥ dk k ∈ {−1} ∪ NE (2.184c)

C′
N+1xN+1 + cN+1 ≥ dN+1 (2.184d)

The stage costs in the linear quadratic optimal control problem (2.184) are

fk(xk, wk) = 1
2
x′

kQkxk + x′
kMkwk + 1

2
w′

kRkwk

+ q′kxk + r′kwk + fk,
k ∈ {−1} ∪ NE (2.185a)

fN+1(xN+1) = 1
2
x′

N+1PN+1xN+1 + p′
N+1xN+1 + γN+1 (2.185b)

The stage cost parameters at time index k = −1 are

Q−1 = 0 M−1 = 0 R−1 = P̃−1
0 (2.186a)

q−1 = 0 r−1 = 0 (2.186b)

f−1 = 0 (2.186c)

For the index range k ∈ NE = {0, 1, . . . , N}, define

ỹk = yk − c̃k − ṽk (2.187)

such that the parameters of the stage costs in the index range k ∈ NE = {0, 1, . . . , N}
may be expressed as

Qk = C̃kVkC̃′
k Mk = −C̃kSk Rk = Wk (2.188a)

qk = C̃k(Skw̃k − Vkỹk) rk = S′
kỹk − Wkṽk (2.188b)

fk = 1
2
ỹ′

kVkỹk − ỹ′
kSkw̃k + 1

2
w̃′

kWkw̃k (2.188c)

The parameters associated with the final stage cost, fN+1, are

PN+1 = 0 pN+1 = 0 γN+1 = 0 (2.189)

The initial state, x−1, and the parameters of the constraints (2.184b)-(2.184d) are as
in proposition 2.5.7.

Proof. To convert the constrained linear least squares optimal control problem
(2.156) to the constrained linear quadratic optimal control problem (2.184),
we must show that the least squares stage costs (2.157) may be expressed as
(2.185).

At time index k = −1, the stage costs of (2.156) may be expressed as

l−1(w−1, x−1) = 1
2 ||ψ−1(w−1, x−1)||2Λ−1

= 1
2w−1P̃

−1
0 w−1

= 1
2x′

−1Q−1x−1 + x′
−1M−1w−1 + 1

2w′
−1R−1w−1

+ q′−1x−1 + r′−1w−1 + f−1

(2.190)
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in which

Q−1 = 0 M−1 = 0 R−1 = P̃−1
0 (2.191a)

q−1 = 0 r−1 = 0 (2.191b)

f−1 = 0 (2.191c)

For notational convenience define

ỹk = yk − c̃k − ṽk k ∈ NE (2.192)

The stage costs of (2.156) at time index k ∈ NE may be expressed as

lk(xk, wk) = 1
2 ||ψk(xk, wk)||2Λk

= 1
2

[
wk − w̃k

ỹk − C̃ ′
kxk

]′ [
Wk S′

k

Sk Vk

] [
wk − w̃k

ỹk − C̃ ′
kxk

]

= 1
2 (wk − w̃k)′Wk(wk − w̃k) + (ỹk − C̃ ′

kxk)′Sk(wk − w̃k)

+ 1
2 (ỹk − C̃ ′

kxk)′Vk(ỹk − C̃ ′
kxk)

= 1
2x′

kC̃kVkC̃ ′
kxk + x′

k(−C̃kSk)wk + 1
2w′

kWkwk

+ (w̃′
kS′

k − ỹ′
kVk) C̃ ′

kxk + (−w̃′
kWk + ỹ′

kSk)wk

+
(

1
2 w̃′

kWkw̃k − ỹ′
kSkw̃k + 1

2 ỹ′
kVkỹk

)

= 1
2x′

kQkxk + x′
kMkwk + 1

2w′
kRkwk + q′kxk + r′kwk + fk

(2.193)

in which we have introduced and defined the following quantities

Qk = C̃kWkC̃ ′
k Mk = −C̃kSk Rk = Wk (2.194a)

qk = C̃k(Skw̃k − Vkỹk) rk = S′
kỹk − Wkw̃k (2.194b)

fk = 1
2 w̃′

kWkw̃k − ỹ′
kSkw̃k + 1

2 ỹ′
kVkỹk (2.194c)

The stage cost of (2.156) at time index k = N + 1 is

lN+1(xN+1) = 1
2 ||ψN+1(xN+1)||2ΛN+1

= 0

= 1
2x′

N+1PN+1xN+1 + p′N+1xN+1 + γN+1

(2.195)

in which
PN+1 = 0 pN+1 = 0 γN+1 = 0 (2.196)

¤

Once again, by this section the central role of the constrained linear-quadratic
optimal control problem has been demonstrated. By propositions 2.5.6, 2.5.7,
and 2.5.8 a procedure for converting the augmented moving horizon estimator
with a linear model (2.139) to a constrained linear-quadratic optimal control
problem (2.184) has been established. The implication of this result is that an
efficient procedure for solving the constrained linear-quadratic optimal control
problem also may be used to efficiently solve the augmented moving horizon
estimator with a linear model.
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2.6 Moving Horizon Control

Based on the information available, the moving horizon estimator computes
an estimate of the current states. These estimated states may consist of both
the original states and some augmented states introduced to ensure offset free
control. The state vector contains the minimum information needed to predict
the future evolution of systems governed by either ordinary differential equation
systems or ordinary difference equation systems.

Given the current state, the moving horizon controller selects a sequence of
inputs {u∗

k} such that some performance measure is optimized. The sequence
of inputs {u∗

k} is obtained by solving an open-loop optimal control problem.
The forecast of the performance measure is based on the model as well as the
current state estimate. Only the first input, u∗

0, in the sequence of inputs {u∗
k}

computed by the moving horizon controller is injected to the process. Feedback
is achieved by repeating the process as new measurements become available.

2.6.1 Nonlinear Moving Horizon Control

The general nonlinear moving horizon controller is closely related to the non-
linear optimal control problem. However, moving horizon controllers are typ-
ically formulated on an infinite horizon and may involve variables of the type
∆uk = uk − uk−1. The infinite horizon formulation is made practical by solv-
ing some finite horizon problem that approximates the infinite horizon problem.
Movement variables, ∆uk, are eliminated from the formulation by augmenting
the state vector with the previous input uk−1.

To illustrate the principles in converting a moving horizon control problem to a
nonlinear optimal control problem (2.43), consider the infinite-horizon moving
horizon control problem

min
{wk+1,uk}

∞
k=0

φ =

∞∑

k=0

f̃k(wk, uk,∆uk, zk) (2.197a)

s.t. wk+1 = g̃k(wk, uk, vk) (2.197b)

h̃k(wk, uk,∆uk) ≥ dk (2.197c)

in which the state vectors, {wk+1}∞k=0, and the input vectors, {uk}∞k=0, are the
decision variables. The initial state, w0, is a parameter. Further, the exoge-
neous inputs {zk}∞k=0 and {vk}∞k=0 are parameters in (2.197). The sequence
{zk}∞k=0 may represent a specified setpoint trajectory, but it may also for in-
stance be prices associated with the objective function. As an example of the
latter, for a power consuming process, {zk}∞k=0, may represent the price of
electricity during the day or week. {vk}∞k=0 represents known disturbances.
The sequence, {vk}∞k=0 may be used to represent a scheduled change in the
raw materials fed to the system, i.e. a switch of crude oil to a refinery. For
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some systems, in which the inventory of some product is modeled, {vk}∞k=0

may represent the forecasted demand for that particular product. The stage
costs in the objective function of (2.197) has a very general structure and may
be used to represent deviations from a target as well as general economic cost
functions. When an economic cost function is employed, the optimal control
problem (2.197) is sometimes referred to as optimizing control.

The infinite horizon nonlinear moving horizon control problem is a mathema-
tical abstraction which cannot in general be solved numerically. Nominally
the infinite horizon nonlinear moving horizon controller will predict the actual
closed-loop trajectory perfectly and as a consequence be stabilizing provided
a stabilizing controller exists. Any practically implementable moving horizon
controller should mimic the infinite horizon nonlinear moving horizon controller
due to the nominal stability, excellent performance, intuitive tuning and design,
and theoretical correctness of the infinite horizon nonlinear moving horizon con-
troller. The first issue in constructing a numerically tractable approximation to
the infinite horizon moving horizon controller concerns representation of (2.197)
by a finite data set. In doing so we assume that (2.197) has a finite param-
eterization. Let the functions (f̃k, g̃k, h̃k) that constitute the infinite-horizon
moving horizon control problem (2.197) be represented by the structure

C = {Mk}∞k=0

= {M0,M1, . . . ,MN−1,M,M, . . .} (2.198)

in which Mk =
{

f̃k, g̃k, h̃k

}

and M =
{

f̃ , g̃, h̃
}

. The exogeneous parameters

of (2.197) are assumed to have the parameterization

{zk}∞k=0 = {z0, z1, . . . , zN−1, z, z, . . .} (2.199a)

{vk}∞k=0 = {v0, v1, . . . , vN−1, v, v, . . .} (2.199b)

{dk}∞k=0 = {d0, d1, . . . , dN−1, d, d, . . .} (2.199c)

The second issue in solving (2.197) concerns the construction of an approximate
solution given the finite data set representing the problem. Typically, the
approximate solution of (2.197) is computed by assuming that the optimal
solution of (2.197) converges toward an optimal steady state (c.f. Rawlings,
2000). The optimal steady state associated with (2.197) is computed as the
solution to the mathematical program

min
ws,us

f̄(ws, us, z) (2.200a)

s.t. ws = g̃(ws, us, v) (2.200b)

h̃(ws, us, 0) ≥ d (2.200c)

in which f̄ may be f̄(ws, us, z) = f̃(ws, us, 0, z) or some modification of this
expression. When the problem (2.197) is a discretization of an underlying



2.6. Moving Horizon Control 133

continuous-time problem, the optimal steady state may be found using the
continuous steady state condition rather than (2.200b).

The solution of the dynamic part of the infinite horizon moving horizon control
problem is facilitated by construction of an equivalent nonlinear optimal control
problem. The infinite horizon moving horizon control problem (2.197) may be
transformed to an infinite horizon nonlinear optimal control problem by state
augmentation. This transformation is described in the following proposition.

Proposition 2.6.1
Let the augmented state xk be

xk =

[
wk

uk−1

]

(2.201)

and let ∆uk = uk − uk−1.

Then the infinite-horizon moving horizon control problem (2.197) is equivalent to the
infinite-horizon constrained optimal control problem

min
{xk+1,uk}

φ =

∞∑

k=0

fk(xk, uk) (2.202a)

s.t. xk+1 = gk(xk, uk, vk) (2.202b)

hk(xk, uk) ≥ dk (2.202c)

in which

fk(xk, uk) = fk(xk, uk, zk) = f̃k(wk, uk, ∆uk, zk) (2.203a)

gk(xk, uk) = gk(xk, uk, vk) =

[
g̃k(wk, uk, vk)

uk

]

(2.203b)

hk(xk, uk) = h̃k(wk, uk, ∆uk) (2.203c)

Proof. Consider the infinite horizon moving horizon control problem (2.197).
Define the augmented state xk as

xk =

[
wk

uk−1

]

(2.204)

and observe that

wk =

[
I
0

]′ [
wk

uk−1

]

= Φ′xk (2.205a)

∆uk = uk − uk−1 =

[
0
−I

]′ [
wk

uk−1

]

+ uk = Γ′xk + uk (2.205b)

Then

f̃k(wk, uk,∆uk, zk) = f̃k(Φ′xk, uk,Γ′xk + uk, zk) = fk(xk, uk) (2.206)

In the expression, fk(xk, uk), zk is not included as an argument even though
the function fk(xk, uk) depends on zk. The reason is that zk is a parameter
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and not a decision variable in the infinite horizon nonlinear moving horizon
control problem (2.197). The dependence of fk(xk, uk) on zk is incorporated
by the definition of fk(xk, uk).

The augmented state transition is given by

xk+1 =

[
wk+1

uk

]

=

[
g̃k(xk, uk, vk)

uk

]

= gk(xk, uk, vk) = gk(xk, uk) (2.207)

vk is not included as an argument in the function gk(xk, uk) as vk is a parameter
and not a decision variable in the infinite horizon nonlinear optimal control
problem (2.197).

The inequality constraint function may be expressed as

h̃k(wk, uk,∆uk) = h̃k(Φ′xk, uk,Γ′xk + uk) = hk(xk, uk) (2.208)

which implies
hk(xk, uk) ≥ dk (2.209)

These expressions for the stage costs, the state transition function, and the
inequality constraints demonstrate the procedure stated in the proposition
for converting the infinite horizon nonlinear moving horizon control problem
(2.197) to an infinite horizon optimal control problem (2.202). ¤

The infinite horizion optimal control formulation (2.202) of the general nonlin-
ear moving horizion control problem (2.197) cannot in general be solved as it
has an infinite number of decision variables and in general no analytical solution
is available. Therefore, a finite-dimensional approximation

min
{xk+1,uk}

N−1
k=0

φ =

N−1∑

k=0

fk(xk, uk)+FN (xN ) (2.210a)

s.t. xk+1 = gk(xk, uk) k ∈ N (2.210b)

hk(xk, uk) ≥ dk k ∈ N (2.210c)

HN (xN ) ≥ d̄N (2.210d)

of the infinite-dimensional problem (2.202) is solved in practical moving hori-
zon controllers. The selection of the approximating functions, FN (xN ) and
HN (xN ), is outside the scope of this paper. Detailed discussions and overviews
can be found in Chen and Allgöwer (1998), Gilbert and Tan (1991), Mayne
et al. (2000), and De Nicolao et al. (2000). For the present purpose, it suffices
to observe that the terminal stage cost is often selected to have the form

FN (xN ) = 1
2 (xN − xs)

′PN (xN − xs) (2.211)

in which xs = [w′
s, u

′
s]

′ is the optimal solution of the target problem (2.200).

In this discussion, it has been argued that the practical approximate solution
of the general nonlinear moving horizon controller (2.197) may be obtained
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by solving a target problem (2.200) and a finite-dimensional nonlinear optimal
control problem (2.210). The target problem (2.200) is an instance of a general
nonlinear program and may for instance be solved by standard SQP algorithms.
The finite-dimensional nonlinear optimal control problem (2.202) is an instance
of the nonlinear optimal control problem (2.43) and may be solved applying an
SQP algorithm. The quadratic program in an SQP algorithm for the nonlinear
optimal control problem has the structure of a constrained linear quadratic
optimal control problem (2.30) provided the Hessian matrix in this quadratic
program is computed as a structured BFGS update of the Hessian matrix of
(2.43).

In conclusion, the computationally expensive part of the discrete-time general
moving horizon control is computation of the search directions in the SQP al-
gorithm. These directions are obtained by solving constrained linear quadratic
optimal control problems (2.30).

2.6.2 Least-Squares Nonlinear Moving Horizon Control

The nonlinear least-squares moving horizon control problem is the following
infinite-horizon optimal control problem

min
{wk+1,uk,yk}

φ =
∞∑

k=0

l̃k(yk,∆uk, zk) (2.212a)

s.t. wk+1 = g̃k(wk, uk, vk) (2.212b)

h̃k(wk, uk,∆uk) ≥ dk (2.212c)

yk = ϕ̃k(wk, uk) (2.212d)

with stage costs of the least-squares type

l̃k(yk,∆uk, zk) = 1
2 (yk − zk)′Λ̃k(yk − zk) + 1

2∆u′
kS̃k∆uk (2.213)

The mathematical program (2.212) is assumed to have the following finite pa-
rameterization

C = {Mk}∞k=0

= {M0,M1, . . . ,MN−1,M,M, . . .} (2.214a)

{zk}∞k=0 = {z0, z1, . . . , zN−1, z, z, . . .} (2.214b)

{vk}∞k=0 = {v0, v1, . . . , vN−1, v, v, . . .} (2.214c)

in which Mk =
{

Λ̃k, S̃k, g̃k, h̃k, dk, ϕ̃k

}

and M =
{

Λ̃, S̃, g̃, h̃, d, ϕ̃
}

. The prac-

tical nonlinear least-squares moving horizon controller obtains an approximate
solution to (2.212) by solving a target problem and a regulation problem. The
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target problem determines the optimal steady-state given the exogeneous in-
puts (z, v)

min
ws,us,ys

l̄(ys, us, z) (2.215a)

s.t. ws = g̃(ws, us, v) (2.215b)

h̃(ws, us, 0) ≥ d (2.215c)

ys = ϕ̃(ws, us) (2.215d)

The objective function of the target problem is

l̄(ys, us, z) = 1
2 (ys − z)′Λ̃(ys − z) + 1

2 (us − ū)′Rs(us − ū) (2.216)

in which Rs is selected such that the second term does not interfere with the
first term. By this choice, us is selected such that it is close to ū if the process
has excess degrees of freedom.

To solve the regulation problem, the nonlinear least-squares moving horizon
controller is converted to an optimal control problem. The first step in doing
so is to eliminate ∆uk by augmentation of the state. This conversion is stated
in the following proposition.

Proposition 2.6.2
Let

xk =

[
wk

uk−1

]

∆uk = uk − uk−1 (2.217)

The the nonlinear least-squares moving horizon control problem (2.212) may be stated
as the following infinite-horizon optimal control problem

min
{xk+1,uk}

φ =
∞∑

k=0

lk(xk, uk) (2.218a)

s.t. xk+1 = gk(xk, uk) (2.218b)

hk(xk, uk) ≥ dk (2.218c)

with least-squares stage costs

lk(xk, uk) = 1
2
||ψk(xk, uk)||2Λk

(2.219)

The residual functions ψk are

ψk(xk, uk) =

[
ϕk(xk, uk) − zk

Γ′xk + uk

]

=

[
ϕ̃k(wk, uk) − zk

∆uk

] (2.220)

in which

ϕk(xk, uk) = ϕ̃k(wk, uk) (2.221)
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and
Γ′ =

[
0 −I

]
(2.222)

The weight matrices Λk are

Λk =

[
Λ̃k 0

0 S̃k

]

(2.223)

and the constraint functions gk and hk are

gk(xk, uk) = gk(xk, uk, vk) =

[
g̃k(wk, uk, vk)

uk

]

(2.224a)

hk(xk, uk) = h̃k(wk, uk, ∆uk) (2.224b)

Proof. Consider the nonlinear least-squares moving horizon control problem
(2.212). Define the augmented state

xk+1 =

[
wk

uk−1

]

(2.225)

Then

wk =

[
I
0

]′ [
wk

uk−1

]

= Φ′xk Φ =

[
I
0

]

(2.226a)

∆uk = uk − uk−1 =

[
0
−I

]′ [
wk

uk−1

]

+ uk = Γ′xk + uk Γ =

[
0
−I

]

(2.226b)

and
yk = ϕ̃k(wk, uk) = ϕ̃k(Φ′xk, uk) = ϕk(xk, uk) (2.227)

These expressions may be used to establish that the stage costs are of the
least-squares type

l̃k(yk,∆uk, zk) = 1
2 (yk − zk)′Λ̃k(yk − zk) + 1

2∆u′
kS̃k∆uk

= 1
2 (ϕk(xk, uk) − zk)′Λ̃kϕk(xk, uk) − zk)

+ 1
2 (Γ′xk + uk)′S̃k(Γ′xk + uk)

= 1
2

[
ϕk(xk, uk) − zk

Γ′xk + uk

]′ [
Λ̃k 0

0 S̃k

] [
ϕk(xk, uk) − zk

Γ′xk + uk

]

= 1
2ψk(xk, uk)′Λkψk(xk, uk)

= 1
2 ||ψk(xk, uk)||2Λk

= lk(xk, uk)

(2.228)

in which we have introduced the residual function

ψk(xk, uk) =

[
ϕk(xk, uk) − zk

Γ′xk + uk

]

=

[
ϕ̃k(wk, uk) − zk

∆uk

]

(2.229)

and the weight matrix

Λk =

[
Λ̃k 0

0 S̃k

]

(2.230)
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The state transition equation for the augmented state, xk, is

xk+1 =

[
wk+1

uk

]

=

[
g̃k(wk, uk, vk)

uk

]

=

[
g̃k(Φ′xk, uk, vk)

uk

]

= gk(xk, uk, vk) = gk(xk, uk)

(2.231)

and the inequality constraints may be expressed as

dk ≤ h̃k(wk, uk,∆uk) = h̃k(Φ′xk, uk,Γ′xk + uk) = hk(xk, uk) (2.232)

Consequently, the nonlinear least-squares moving horizon controller (2.212)
may be expressed as (2.218). ¤

An approximate solution of (2.218) is constructed by computing the optimal
solution to a finite-horizon approximation of (2.218)

min
{xk+1,uk}

N−1
k=0

φ =

N−1∑

k=0

lk(xk, uk) + LN (xN ) (2.233a)

s.t. xk+1 = gk(xk, uk) k = 0, 1, . . . , N − 1 (2.233b)

hk(xk, uk) ≥ dk k = 0, 1, . . . , N − 1 (2.233c)

HN (xN ) ≥ d̄N (2.233d)

While the actual selection of the functions HN and LN is outside the scope of
this paper, it is important to note that LN is of the least-squares type

LN (xN ) = 1
2 (xN − xs)

′P (xN − xs)

= 1
2 ||xN − xs||2P

(2.234)

and connected to the target problem by xs = [w′
s, u

′
s]

′ as (ws, us) is the opti-
mal solution of the target problem (2.215). The finite horizon approximation
(2.233) of (2.218) is a constrained optimal control problem with least squares
stage costs. Solving this problem with an SQP algorithm involves solution of
a quadratic program with the structure of a constrained linear optimal control
problem. Due the least squares structure of the stage costs in (2.233), the Hes-
sian matrix of the quadratic program may be obtained using the Gauss-Newton
approximation, the structured BFGS update, or a hybrid method. The follow-
ing proposition specializes the quadratic program obtained in an SQP algorithm
using the Gauss-Newton approximation to the regulator problem (2.233) in the
moving horizon controller (2.212) with least squares stage costs.

Proposition 2.6.3
Consider the nonlinear least-squares moving horizon control problem (2.212). Let the
regulator part of the approximate solution to (2.212) be obtained as the solution to

(2.233). Let this solution be generated by an SQP algorithm and let
{
w0

k+1, u
0
k

}N−1

k=0
be the trajectory at an iteration in the SQP algorithm. Let

xk =

[
wk

uk−1

]

x̂k =

[
ŵk

ûk−1

]

(2.235)



2.6. Moving Horizon Control 139

and ∆uk = uk − uk−1. Let

x0
0 =

[
w0

0

u0
−1

]

=

[
w0

u−1

]

= x0 xs =

[
ws

us

]

(2.236)

in which x0 is a given parameter and xs is part of the solution of the target problem
(2.215).

Then the search direction {x̂k+1, ûk}N−1
k=0 of the SQP algorithm is obtained as the

solution of the constrained linear quadratic optimal control problem

min
{x̂k+1,ûk}

φ =

N−1∑

k=0

lk(x̂k, ûk) + lN (x̂N ) (2.237a)

s.t. x̂k+1 = A′
kx̂k + B′

kûk + bk (2.237b)

C′
kx̂k + D′

kûk + ck ≥ dk (2.237c)

C′
N x̂N + cN ≥ dN (2.237d)

in which the stage costs are

lk(x̂k, ûk) = 1
2

(
x̂′

kQkx̂k + 2x̂′
kMkûk + û′

kRkûk

)
+ q′kx̂k + r′kûk + fk (2.238a)

lN (x̂N ) = 1
2
x̂′

NPN x̂N + p′
N x̂N + γN (2.238b)

and the initial state x̂0 is a parameter with the value x̂0 = 0.

For k = 0, 1, . . . , N − 1 the auxiliary parametes y0
k and ∆u0

k defined by

y0
k = ϕ̃k(w0

k, u0
k) (2.239a)

∆u0
k = u0

k − u0
k−1 (2.239b)

are used for computing the weight matrices of the stage costs in (2.238a)

Qk =

[
∇wk

ϕ̃k(w0
k, u0

k)Λ̃k∇wk
ϕ̃k(w0

k, u0
k)′ 0

0 S̃k

]

(2.240a)

Mk =

[
∇wk

ϕ̃k(w0
k, u0

k)Λ̃k∇uk
ϕ̃k(w0

k, u0
k)

−S̃k

]

(2.240b)

Rk = ∇uk
ϕ̃k(w0

k, u0
k)Λ̃k∇uk

ϕ̃k(w0
k, u0

k)′ + S̃k (2.240c)

qk =

[
∇wk

ϕ̃k(w0
k, u0

k)Λ̃k(y0
k − zk)

−S̃k∆u0
k

]

(2.240d)

rk = ∇uk
ϕ̃k(w0

k, u0
k)Λ̃k

(
y0

k − zk

)
+ S̃k∆u0

k (2.240e)

fk = 1
2
(y0

k − zk)′Λ̃k(y0
k − zk) + 1

2
∆u0

kS̃k∆u0
k (2.240f)

as well as the equality constraint parameters

Ak =

[
∇wk

g̃k(w0
k, u0

k, vk) 0
0 0

]

(2.241a)

Bk =
[
∇uk

g̃k(w0
k, u0

k, vk) I
]

(2.241b)

bk =

[
g̃k(w0

k, u0
k, vk) − w0

k+1

0

]

(2.241c)
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and the inequality constraint parameters

Ck =

[
∇wk

h̃k(w0
k, u0

k, ∆u0
k)

−∇∆uk
h̃k(w0

k, u0
k, ∆u0

k)

]

(2.242a)

Dk = ∇uk
h̃k(w0

k, u0
k, ∆u0

k)

+ ∇∆uk
h̃k(w0

k, u0
k, ∆u0

k)
(2.242b)

ck = h̃k(w0
k, u0

k, ∆u0
k) (2.242c)

The weight matrices in the terminal cost function (2.238b) are

PN = P pN = −Pxs γN = 1
2
x′

sPxs (2.243)

and the parameters of the inequality constraint at time index k = N are

CN = ∇xN
HN (x0

N ) (2.244a)

cN = HN (x0
N ) (2.244b)

Proof. Note that the augmented state is given by

xk =

[
wk

uk−1

]

(2.245)

and that we have the relations

wk =

[
I
0

]′ [
wk

uk−1

]

= Φ′xk (2.246a)

∆uk = uk − uk−1 =

[
0
−I

]′ [
wk

uk−1

]

+ uk = Γ′xk + uk (2.246b)

Let the search direction be denoted by {x̂k+1, ûk}N−1
k=0 = {xk+1 − x0

k+1, uk −
u0

k}N−1
k=0 . Note that x̂0 = x0 − x0

0 = 0 as x0 is a parameter and not a decision
variable in the nonlinear least-squares moving horizon control problem. The
constraints of the QP used for computing the search direction in an SQP algo-
rithm are given by linearization of the nonlinear constraints around the current
trajectory, {x0

k+1, u
0
k}N−1

k=0 .

Linearization of the state transition equation

xk+1 = gk(xk, uk) (2.247)

yields

x0
k+1 + x̂k+1 = gk(x0

k, u0
k) + ∇xk

gk(x0
k, u0

k)′x̂k + ∇uk
gk(x0

k, u0
k)ûk (2.248)

which may be rearranged to

x̂k+1 = A′
kx̂k + B′

kûk + bk (2.249)
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with

Ak = ∇xk
gk(x0

k, u0
k) = ∇xk

[
g̃k(Φ′x0

k, u0
k, vk)

uk

]

=

[
∇wk

g̃k(w0
k, u0

k, vk) 0
0 0

] (2.250a)

Bk = ∇uk
gk(x0

k, u0
k) = ∇uk

[
g̃k(w0

k, u0
k, vk)

uk

]

=
[
∇uk

g̃k(w0
k, u0

k, vk) I
]

(2.250b)

bk = gk(x0
k, u0

k) − x0
k+1 =

[
g̃k(w0

k, u0
k, vk) − w0

k+1

u0
k − u0

k

]

=

[
g̃k(w0

k, u0
k, vk) − w0

k+1

0

] (2.250c)

Linearization of the inequality constraint

hk(xk, uk) ≥ dk (2.251)

with

hk(xk, uk) = h̃k(Φ′xk, uk,Γ′xk + uk) = h̃k(wk, uk,∆uk) (2.252)

may be expressed as

hk(x0
k, u0

k) + ∇xk
hk(x0

k, u0
k)′x̂k + ∇uk

hk(x0
k, u0

k)′ûk ≥ dk (2.253)

This relation may also be expressed as

C ′
kx̂k + D′

kûk + ck ≥ dk (2.254)

in which

Ck = ∇xk
hk(x0

k, u0
k) = ∇xk

h̃k(Φ′x0
k, u0

k,Γ′x0
k + uk)

= Φ∇wk
h̃k(w0

k, u0
k,∆u0

k) + Γ∇∆uk
h̃k(w0

k, u0
k,∆u0

k)

=

[
∇wk

h̃k(w0
k, u0

k,∆u0
k)

−∇∆uk
h̃k(w0

k, u0
k,∆u0

k)

] (2.255a)

Dk = ∇uk
hk(x0

k, u0
k) = ∇uk

h̃k(Φ′x0
k, u0

k,Γ′x0
k + u0

k)

= ∇uk
h̃k(w0

k, u0
k,∆u0

k) + ∇∆uk
h̃k(w0

k, u0
k,∆u0

k)
(2.255b)

ck = hk(x0
k, u0

k) = h̃k(Φ′x0
k, u0

k,Γ′x0
k + u0

k) = h̃k(w0
k, u0

k,∆u0
k) (2.255c)

The inequality constraint
HN (xN ) ≥ d̄N (2.256)

may be linearized by first order Taylor approximation

HN (x0
N ) + ∇xN

HN (x0
N )′x̂N ≥ d̄N (2.257)
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which may also be expressed as

C ′
N x̂N + cN ≥ dN (2.258)

in which

CN = ∇xN
HN (x0

N ) (2.259a)

cN = HN (x0
N ) (2.259b)

dN = d̄N (2.259c)

The objective function of the nonlinear least-squares moving horizon control
problem is

φ =

N−1∑

k=0

lk(xk, uk) + LN (xN ) (2.260)

in which the stage costs, lk(xk, uk), are of the least-squares type

lk(xk, uk) = 1
2 ||ψk(xk, uk)||2Λk

= 1
2ψk(xk, uk)′Λkψk(xk, uk) (2.261)

with the residual function, ψk(xk, uk), given by

ψk(xk, uk) =

[
ϕ̃k(wk, uk) − zk

∆uk

]

=

[
ϕ̃k(wk, uk)
uk − uk−1

]

=

[
ϕ̃k(Φ′xk, uk) − zk

Γ′xk + uk

] (2.262)

and the weight matrix Λk given by

Λk =

[
Λ̃k 0

0 S̃k

]

(2.263)

Appendix A describes the construction of the quadratic program used for gen-
erating the search direction in a sequential quadratic programming algorithm.
Under the Gauss-Newton assumption, the quadratic function generated from
the nonlinear least-squares optimal control problem will have the structure

φ =

N−1∑

k=0

lk(x̂k, ûk) + lN (x̂N ) (2.264)

in which

l̂k(x̂k, ûk) = 1
2

[
x̂k

ûk

]′ [
Qk Mk

M ′
k Rk

] [
x̂k

ûk

]

+

[
qk

rk

]′ [
x̂k

ûk

]

+ fk

= 1
2 (x̂′

kQkx̂k + 2x̂′
kMkûk + û′

kRkûk) + q′kx̂k + r′kûk + fk

(2.265)

and
lN (x̂N ) = 1

2 x̂′
NPN x̂N + p′N x̂N + γN (2.266)
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Let

y0
k = ϕ̃k(w0

k, u0
k) (2.267)

Then the zero-order term in lk(xk, uk) around the current iterate {x0
k+1, u

0
k}N−1

k=0

is

fk = lk(x0
k, u0

k) = 1
2 (y0

k − zk)′Λ̃k(y0
k − zk) + 1

2∆u0
kS̃k∆u0

k (2.268)

The first order terms are obtained as the gradients of the objective function in
the nonlinear least-squares optimal control problem. Due to the separability
of the objective function in optimal control problems and the least-squares
structure of the stage costs, the parameters associated with the first order
terms in lk(x̂k, ûk) are

qk = ∇xk
lk(x0

k, u0
k) = ∇xk

ψk(x0
k, u0

k)Λkψk(x0
k, u0

k)

=

[
∇wk

ϕ̃k(w0
k, u0

k) 0
0 −I

] [
Λ̃k 0

0 S̃k

] [
y0

k − zk

∆u0
k

]

=

[
∇wk

ϕ̃k(w0
k, u0

k)Λ̃k(y0
k − zk)

−S̃k∆u0
k

]

(2.269a)

rk = ∇uk
lk(x0

k, u0
k) = ∇uk

ψk(x0
k, u0

k)Λkψk(x0
k, u0

k)

=
[
∇uk

ϕ̃k(w0
k, u0

k) I
]
[
Λ̃k 0

0 S̃k

] [
y0

k − zk

∆u0
k

]

= ∇uk
ϕ̃k(w0

k, u0
k)Λ̃k(y0

k − zk) + S̃k∆u0
k

(2.269b)

Under the Gauss-Newton assumption, the parameters associated with the quadratic
terms of l(x̂k, ûk) may be computed by (see appendix A)

Qk = ∇xk
ψk(x0

k, u0
k)Λk∇xk

ψk(x0
k, u0

k)′

=

[
∇wk

ϕ̃k(w0
k, u0

k) 0
0 −I

] [
Λ̃k 0

0 S̃k

] [
∇wk

ϕ̃k(w0
k, u0

k) 0
0 −I

]′

=

[
∇wk

ϕ̃k(w0
k, u0

k)Λ̃k∇wk
ϕ̃k(w0

k, u0
k)′ 0

0 S̃k

]

(2.270a)

Mk = ∇xk
ψk(x0

k, u0
k)Λk∇uk

ψk(x0
k, u0

k)′

=

[
∇wk

ϕ̃k(w0
k, u0

k) 0
0 −I

] [
Λ̃k 0

0 S̃k

]
[
∇uk

ϕ̃k(w0
k, u0

k) I
]′

=

[
∇wk

ϕ̃k(w0
k, u0

k)Λ̃k∇uk
ϕ̃k(w0

k, u0
k)

−S̃k

]

(2.270b)

Rk = ∇uk
ψk(x0

k, u0
k)Λk∇uk

ψk(x0
k, u0

k)′

=
[
∇uk

ϕ̃k(w0
k, u0

k) I
]
[
Λ̃k 0

0 S̃k

]
[
∇uk

ϕ̃k(w0
k, u0

k) I
]′

= ∇uk
ϕ̃k(w0

k, u0
k)Λ̃k∇uk

ϕ̃k(w0
k, u0

k)′ + S̃k

(2.270c)
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The cost, LN (xN ), associated with the final state in the nonlinear least-squares
moving horizon control problem is

LN (xN ) = 1
2 ||xN − xs||2P = 1

2 (xN − xs)
′P (xN − xs)

= 1
2x′

NPxN − x′
sPxN + 1

2x′
sPxs

(2.271)

As this is a quadratic function itself, it is trivial to recognize that under the
Gauss-Newton assumption, the parameters in

lN (x̂N ) = 1
2 x̂NPN + p′N x̂N + γN (2.272)

are

PN = P pN = −Pxs γN = 1
2x′

sPxs (2.273)

Consequently, it has been demonstrated that the quadratic program obtained
in an SQP algorithm for the nonlinear least-squares optimal control problem
is a constrained linear-quadratic optimal control problem

min
{x̂k+1,ûk}

N−1
k=0

φ =

N−1∑

k=0

lk(x̂k, ûk) + lN (x̂N ) (2.274a)

s.t. x̂k+1 = A′
kx̂k + B′

kûk + bk k = 0, 1, . . . , N − 1 (2.274b)

C ′
kx̂k + D′

kûk + ck ≥ dk k = 0, 1, . . . , N − 1 (2.274c)

C ′
N x̂N + cN ≥ dN (2.274d)

in which the parameters are obtained by the equations derived in this proof
and stated in the proposition. ¤

By the discussions and propositions in this section, it has been demonstrated
that the major computational operation in computing the approximate control
action of the infinite-horizon optimal control problem concerns solution of a
constrained linear-quadratic optimal control problem. The data matrices in
the constrained linear-quadratic optimal control problem may under the Gauss-
Newton assumption be computed according to proposition 2.6.3.

2.6.3 Moving Horizon Control with Linear Models

An important special case of the nonlinear least-squares moving horizon con-
troller (2.212) is the linear moving horizon controller. The distinction of the lin-
ear moving horizon controller compared to the nonlinear least-squares moving
horizon controller is that the constraints in the linear moving horizon controller
are affine functions. One formulation of the linear moving horizon controller is
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min
{wk+1,vk,yk}

φ =
∞∑

k=0

lk(yk,∆vk) (2.275a)

s.t. wk+1 = Ã′
kwk + B̃′

kvk + b̃k (2.275b)

yk = C̃ ′
kwk + c̃k (2.275c)

vmin ≤ vk ≤ vmax (2.275d)

− ∆v ≤ ∆vk ≤ ∆v (2.275e)

d̃k ≤ G̃′
kwk + H̃ ′

kvk + h̃k ≤ ẽk (2.275f)

in which the stage costs are

l̃k(yk,∆vk) =
1

2
(yk − zk)′Λ̃k(yk − zk) +

1

2
∆v′

kS̃k∆vk (2.276)

Assumption 2.6.4
The linear moving horizon controller (2.275) has the following finite parameterization

C = {Mk}∞k=0

= {M0,M1, . . . ,MN−1,M,M, . . .} (2.277a)

{zk}∞k=0 = {z0, z1, . . . , zN−1, z, z, . . .} (2.277b)

in which

Mk =
{

Ãk, B̃k, b̃k, C̃k, c̃k,V, H̃k, G̃k, h̃k, ẽk, d̃k

}

(2.278a)

M =
{

Ã, B̃, b̃, C̃, c̃,V, H̃, G̃, h̃, ẽ, d̃
}

(2.278b)

and V = {vmin, vmax, ∆v}.

Assumption 2.6.5
A feasible point {wk+1, vk} of (2.275) exists.

Remark 2.6.6
Scokaert and Rawlings (1999) and Rao and Rawlings (1999) discuss situations in
which (2.275) is not feasible and relax (2.275) by introducing soft and exact soft
constraints. However, these relaxations do change the structure of the problem.

An approximate solution of (2.275) may be obtained numerically by decompos-
ing the problem into a target problem and a finite horizon regulation problem.
The target problem of the linear moving horizon controller (2.275) is

min
ws,vs,ys

φs =
1

2
(ys − z)′Λ̃(ys − z) +

1

2
(vs − v̄s)

′Rs(vs − v̄s) (2.279a)

s.t. w = Ã′w + B̃′v + b̃ (2.279b)

y = C̃ ′w + c̃ (2.279c)

vmin ≤ v ≤ vmax (2.279d)

d̃ ≤ G̃′w + H̃ ′v + h̃ ≤ ẽ (2.279e)
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Muske (1997) provides a procedure for computation of the matrix Rs such that
priority is given to meeting the target z and the auxiliary target v̄s does not
degrade the performance with respect to the primary target z. This procedure
consists of the following sequence of computations

Ñ =

[
Ñw

Ñv

]

= Null
([

I − Ã′ −B̃′
])

(2.280a)

α = Null
(

Ñ ′
wC̃C̃ ′Ñw

)

(2.280b)

Rs = R̃Ñvαα′ÑvR̃ (2.280c)

R̃ is desired weight matrix for the case of no primary target z and v̄s is the
target for the inputs. v̄s may be selected as the previous input, i.e. v̄s = v−1.

The linear least-squares moving horizon controller (2.275) may be transformed
to an infinite-horizon linear-quadratic optimal control problem with upper and
lower constraints. This transformation is described in proposition 2.6.7. Corol-
lary 2.6.8 shows that the infinite-horizon linear-quadratic optimal control prob-
lem with upper and lower constraints is equivalent with an infinite-horizon
constrained linear-quadratic optimal control problem.

Proposition 2.6.7
Let

xk =

[
wk

vk−1

]

uk = vk (2.281)

Then the linear moving horizon controller (2.275) may be expressed as the following
infinite-horizon linear quadratic optimal control problem

min
{xk+1,uk}

φ =

∞∑

k=0

lk(xk, uk) (2.282a)

s.t. xk+1 = A′
kxk + B′

kuk + bk (2.282b)

d̄k ≤ C̄′
kxk + D̄′

kuk + c̄k ≤ ēk (2.282c)

umin ≤ uk ≤ umax (2.282d)

in which the stage costs are

lk(xk, uk) = 1
2

(
x′

kQkxk + 2x′
kMkuk + u′

kRkuk

)
+ q′kxk + r′kuk + fk (2.283)

The parameters of the stage costs are

Qk =

[
C̃kΛ̃kC̃′

k 0

0 S̃k

]

Mk =

[
0

−S̃k

]

Rk = S̃k (2.284a)

qk =

[
C̃kΛ̃k(c̃k − zk)

0

]

rk = 0 (2.284b)

fk =
1

2
(c̃k − zk)′Λ̃k(c̃k − zk) (2.284c)
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The parameters of the state transition equation are

A′
k =

[
Ã′

k 0
0 0

]

B′
k =

[
B̃′

k

I

]

bk =

[
b̃k

0

]

(2.285)

The parameters of the inequality constraints are

C̄′
k =

[
G̃′

k 0
0 −I

]

D̄′
k =

[
H̃ ′

k

I

]

c̄k =

[
h̃k

0

]

(2.286a)

and

d̄k =

[
d̃k

−∆v

]

ēk =

[
ẽk

∆v

]

(2.286b)

umin = vmin umax = vmax (2.286c)

The initial state x0 is a parameter of (2.282) and is

x0 =

[
w0

v−1

]

(2.287)

Proof. Define the augmented state xk by

xk =

[
wk

vk−1

]

(2.288)

and define uk = vk. Then

wk =

[
I
0

]′ [
wk

vk−1

]

= Φ′xk (2.289a)

∆vk = vk − vk−1 =

[
0
−I

]′ [
wk

vk−1

]

+ vk = Γ′xk + uk (2.289b)

in which

Φ =

[
I
0

]

Γ =

[
0
−I

]

The relation for yk may be rearranged to

yk = C̃ ′
kwk + c̃k = C̃ ′

kΦ′xk + c̃k = C ′
kxk + ck (2.290)

in which

Ck = ΦC̃k =

[
I
0

]

C̃k =

[

C̃k

0

]

(2.291a)

ck = c̃k (2.291b)

By the above expressions for yk and ∆vk, the stage costs (2.276) of the least-
squares moving horizon control problem with linear models (2.275) may be
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rearranged as

lk(yk,∆vk) = 1
2 (yk − zk)′Λ̃k(yk − zk) + 1

2∆v′
kS̃k∆vk

= 1
2 (C ′

kxk + ck − zk)′Λ̃k(C ′
kxk + ck − zk)

+ 1
2 (Γ′xk + uk)′S̃k(Γ′xk + uk)

= 1
2x′

k

(

CkΛ̃kC ′
k + ΓS̃kΓ′

)

xk + x′
k

(

ΓS̃k

)

uk + 1
2u′

kS̃kuk

+ (ck − zk)′Λ̃kC ′
kxk + 1

2 (ck − zk)′Λ̃k(ck − zk)

= 1
2 (x′

kQkxk + 2x′
kMkuk + u′

kRkuk) + q′kxk + r′kuk + fk

= lk(xk, uk)

(2.292)

in which the parameters associated with the quadratic terms are

Qk = CkΛ̃kC ′
k + ΓS̃kΓ′ =

[

C̃k

0

]

Λ̃k

[

C̃k

0

]′

+

[
0
−I

]

S̃k

[
0
−I

]′

=

[
C̃kΛ̃kC̃ ′

k 0

0 S̃k

] (2.293a)

Mk = ΓS̃k =

[
0
−I

]

S̃k =

[
0

−S̃k

]

(2.293b)

Rk = S̃k (2.293c)

and the parameters associated with the linear terms are

qk = CkΛ̃k(ck − zk) =

[

C̃k

0

]

Λ̃k(c̃k − zk) =

[

C̃kΛ̃k(c̃k − zk)
0

]

(2.293d)

rk = 0 (2.293e)

The parameter representing the zero order term is

fk = 1
2 (c̃k − zk)′Λ̃k(c̃k − zk) (2.293f)

Using the state transition equation of (2.275)

wk+1 = Ã′
kwk + B̃′

kvk + b̃k (2.294)

we obtain the state transition equation for the augmented system

xk+1 =

[
wk+1

vk

]

=

[

Ã′
kwk + B̃′

kvk + b̃k

vk

]

=

[

Ã′
k 0

0 0

] [
wk

vk−1

]

+

[

B̃′
k

I

]

vk +

[

b̃k

0

]

= A′
kxk + B′

kuk + bk

(2.295)
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in which we have introduced the parameters

A′
k =

[

Ã′
k 0

0 0

]

B′
k =

[

B̃′
k

I

]

bk =

[

b̃k

0

]

The definition, uk = vk, implies that the constraints

vmin ≤ vk ≤ vmax (2.296)

may be expressed as

umin ≤ uk ≤ umax (2.297)

in which

umin = vmin (2.298a)

umax = vmax (2.298b)

The constraints

−∆v ≤ ∆vk ≤ ∆v (2.299a)

d̃k ≤ G̃′
kwk + H̃ ′

kvk + h̃k ≤ ẽk (2.299b)

may be expressed as

d̃k ≤
[

G̃′
k 0

]
xk + H̃ ′

kuk + h̃k ≤ ẽk (2.300a)

−∆v ≤ Γ′xk + uk ≤ ∆v (2.300b)

which is equivalent to

[

d̃k

−∆v

]

≤
[

G̃′
k 0

0 −I

]

xk +

[

H̃ ′
k

I

]

uk +

[

h̃k

0

]

≤
[

ẽk

∆v

]

(2.301)

These inequality relations may be expressed in the compact notation

d̄k ≤ C̄ ′
kxk + D̄′

kuk + c̄k ≤ ēk (2.302)

by definition of the parameters

C̄ ′
k =

[

G̃k 0
0 −I

]

D̄′
k =

[

H̃ ′
k

I

]

c̄k =

[

h̃k

0

]

(2.303)

as well as

d̄k =

[

d̃k

−∆v

]

ēk =

[
ẽk

∆v

]

(2.304)

By the above deduction, it is clear that (2.275) can be expressed as (2.282)
with the parameters computed as stated in the proposition. ¤
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Corollary 2.6.8
The infinite-horizon linear quadratic optimal control problem (2.282) is equivalent
with the following infinite-horizon linear quadratic optimal control problem

min
{xk+1,uk}

φ =

∞∑

k=0

lk(xk, uk) (2.305a)

s.t. xk+1 = A′
kxk + B′

kuk + bk (2.305b)

C′
kxk + D′

kuk + ck ≥ dk (2.305c)

in which

C′
k =







C̄′
k

0
−C̄′

k

0







D′
k =







D̄′
k

I
−D̄′

k

−I







ck =







c̃k

0
−c̃k

0







dk =







d̄k

umin

−ēk

umax







(2.306)

Proof. Follows directly by simple algebraic manipulations turning all inequal-
ity constraints into lower bounded inequality constraints. ¤

An approximate solution of the infinite-horizon linear moving horizon controller
(2.275) is obtained by computing an approximate solution to the equivalent
infinite-horizon constrained linear quadratic optimal control problem (2.305).
The approximation is constructed by selecting a sufficiently long finite horizon
N and solving the finite horizon constrained linear quadratic optimal control
problem

min
{xk+1,uk}

N−1
k=0

φ =

N−1∑

k=0

lk(xk, uk) + LN (xN ) (2.307a)

s.t. xk+1 = A′
kxk + B′

kuk + bk, k ∈ N (2.307b)

C ′
kxk + D′

kuk + ck ≥ dk, k ∈ N (2.307c)

H ′
NxN + hN ≥ gN (2.307d)

in which the final stage cost is

LN (xN ) = 1
2 (xN − xs)

′P (xN − xs)

= 1
2x′

NPNxN + p′NxN + γN

(2.308)

xs = [w′
s, v

′
s]

′ is the optimal steady-state computed as the solution of the target
problem (2.279). By this choice of LN (xN ) the parameters PN , pN , and γN

becomes

PN = P pN = −Pxs γN =
1

2
x′

sPxs (2.309)

Hence, it has been established that computing a solution to the linear moving
horizon controller involves solving a constrained linear quadratic optimal con-
trol problem (2.30). Once again, the demand for efficient numerical solution
procedures for the constrained linear-quadratic optimal control problem has
been illustrated.
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Chmielewski and Manousiouthakis (1996) as well as Scokaert and Rawlings
(1998) address the construction of the finite-horizon approximation (2.307)
of the infinite-horizon constrained linear quadratic control problem (2.305).
Under the assumption that the target (xs, ys) = (ws, vs, ys) is in the interior
of the maximal output admissible set (c.f. Gilbert and Tan, 1991; Blanchini,
1999), i.e. no inequality constraints are active at steady state, they prove that
a finite horizon N exists such that (2.307) is an exact approximation of (2.305)
when the matrix P is selected as the solution of the Riccati equation

P = Q + APA′ − (M + APB′)(R + BPB′)−1(M + APB′)′ (2.310)

in which the matrices for the particular model considered (2.275) are

Q =

[
C̃Λ̃C̃ ′ 0

0 S̃

]

M =

[
0

−S̃

]

R = S̃ (2.311a)

A =

[

Ã 0
0 0

]

B =
[

B̃ I
]

(2.311b)

For a more restricted class of problems than considered here, Chmielewski and
Manousiouthakis (1996) computes an N guaranteeing that the finite horizon
approximation is exact. Scokaert and Rawlings (1998) solves a sequence of
finite-horizon constrained linear quadratic control problems, i.e. (2.307) with-
out the final constraint (2.307d). The horizon N is sufficient for an exact ap-
proximation, when the final optimal state x∗

N belongs to the maximal output
admissible set.

Motivated by the cases presented by Rao and Rawlings (1999), Pannocchia
et al. (2002) relax the assumption that (xs, us) = (ws, vs, ys) must be in the
interior and allows input constraints to be active at steady state. In this ap-
proach, they solve two sequences of constrained linear quadratic optimal con-
trol problems (2.307) with different choices of P . These sequences provide a
converging sequence of upper and lower bounds on the value of the infinite-
horizon problem. These sequences also bound the numerical error on the com-
puted finite-horizon optimal solution compared to the infinite-horizon optimal
solution. Hence, by solving sequences of constrained linear quadratic optimal
control problems a solution to the infinite horizon problem is obtained for any
specified accuracy.

2.6.4 Anticipatory Control

Anticipatory control is an extension and generalization of feed forward con-
trol. In feedback control, the controller is provided with the current state
as estimated from the available measurements and a set-point which tacitly
is assumed to be constant. In addition a feedforward controller is given in-
formation about some current exogeneous process inputs. An anticipatory
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controller is provided information about the expected future sequence of set-
points {zk}∞k=0 as well as the expected future sequence of exogeneous process
inputs {ζk}∞k=0. Model predictive control is ideally suited for implementation
of anticipatory control and has been proposed in a number of studies (c.f. De
Keyser et al., 1988; Eaton and Rawlings, 1992; Mosca and Casavola, 1995; Zhu
et al., 2001; Bemporad et al., 2002). Provided, sufficiently accurate forecasts,
{zk}∞k=0 and {ζk}∞k=0, are available, anticipatory model predictive control is
an efficient methodology to suspend the performance limitations of feedback
control applied to processes with right half plane zeros and time-delays and
achieve nominally perfect control (c.f. Eaton and Rawlings, 1992; Morari, 1983;
Jørgensen and Jørgensen, 2000).

In a moving horizon implementation of anticipatory control, the anticipated
sequences, {zk}∞k=0 and {ζk}∞k=0, are updated at each sample time and are
conveniently specified by the finite parameterizations

{zk}∞k=0 = {z0, z1, . . . , zN−1, z, z, . . .} (2.312a)

{ζk}∞k=0 = {ζ0, ζ1, . . . , ζN−1, ζ, ζ, . . .} (2.312b)

The set point sequence {zk}∞k=0 enter the moving horizon controller through
the stage costs of the objective function. In the general nonlinear moving
horizon controller (2.197) the stage costs are specified as f̃k(wk, uk,∆uk, zk).
Similarly, in the least-squares nonlinear moving horizon controller (2.212) the
stage costs are specified as l̃k(yk,∆uk, zk) and as l̃k(yk,∆vk, zk) for the linear
moving horizon controller. Hence, the sequence {zk}∞k=0 enters naturally in the
moving horizon controller. As is evident by (2.240d), (2.240e) and (2.284b),
{zk}∞k=0 affects the coefficients qk and rk of the linear terms in the objective
function of the constrained linear quadratic control problem (2.30) that is solved
in the respective cases. Consequently, extension of the stage costs with linear
terms, i.e. q′kxk + r′kuk, facilitates anticipatory moving horizon control.

The anticipated exogeneous process input sequence, {ζk}∞k=0, enters the nonlin-
ear moving horizon controllers, (2.197) and (2.212), through the state transition
equation wk+1 = g̃k(wk, uk, ζk). Hence, in nonlinear model predictive control,
the anticipated sequence {ζk}∞k=0 enters simply in the function specifying the
state transition and does not complicate the controller much. The principle
structure of the state transition equation in a linear moving horizon controller
with known exogeneous process inputs, {ζk}∞k=0, is

xk+1 = A′
kxk + B′

kuk + b̃k + E′
kζk

= A′
kxk + B′

kuk + bk

(2.313)

in which bk = b̃k + E′
kζk. Consequently, the specification of the linear antici-

pative moving horizon controller is facilitated by having an affine term, bk, in
the state transition equation.

Anticipative model predictive control with its ability to incorporate expected
exogeneous process inputs {ζk}∞k=0 enables coordinated decentralized model
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predictive control (c.f. Zhu et al., 2000; Zhu and Henson, 2002). Coordinated
decentralized model predictive control decomposes a plant model into submod-
els each controlled by model predictive control. The coordination consists of
informing each decentral model predictive controller about the expected pro-
cess consequences of the actions of the other controllers. The coordination
procedure is a current research topic, but it is expected to be well suited for
decentralized model predictive control of integrated processing systems (see
also Garcia and Morari, 1981, 1984).

2.7 Conclusion

The moving horizon methodology embedded in model predictive control for
solution of a stochastic optimal control problem has been discussed and the
inherent assumptions pinpointed. The explicit statement and consideration
of these assumptions may be the starting point for development of numerical
tractable controllers accounting more accurately for the stochastics of process
systems than currently applied model predictive controllers. Moving horizon
estimation and control constitute a suboptimal solution to the stochastic op-
timal control problem. To obtain numerical tractability, moving horizon esti-
mation and control separates the stochastic optimal control problem into an
estimation problem and a deterministic optimal control problem. This de-
composition is based on an ad hoc application of the seperation theorem and
the certainty-equivalence principle which are valid for linear-quadratic Gaus-
sian systems. However, for general systems the separation theorem and the
certainty-equivalence principle constitute approximations which make the re-
sulting control system suboptimal.

It has been demonstrated that both the nonlinear moving horizon estimation
problem as well as the nonlinear moving horizon control problem are instances
of a deterministic constrained optimal control problem. In each iteration of the
sequential quadratic programming algorithm for solution of the deterministic
constrained optimal control problem, a constrained linear-quadratic optimal
control problem must be solved. Structured modified BFGS updates may be
used to retain the linear-quadratic optimal control structure of the quadratic-
program generated in each iteration of quasi-Newton SQP algorithms. For
least-squares problems the very efficient generation of the data for the con-
strained linear-quadratic optimal control problem under the Gauss-Newton as-
sumption has been discussed. Also in the linear case, the numerical solution
of both the moving horizon estimator and controller at each sample time must
be obtained by solving a constrained linear-quadratic optimal control problem.
In contrast to standard practice, it is important to retain the affine term in
the state transition equation as well as the linear terms in the stage costs of
the linear-quadratic optimal control problem. These developments motivates
tailored algorithms for solution of the constrained linear-quadratic optimal con-
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trol problem. The application of Riccati recursions to solve the linear-quadratic
optimal control problem efficiently has been indicated.

Finally, it has been indicated how the affine term in the state transition equa-
tion and the linear terms in the stage costs of the linear-quadratic optimal
control problem facilitates anticipatory control and coordinated decentralized
model predictive control.

The constrained linear-quadratic optimal control problem occupies a central
enabling role in numerical realization of model predictive control for large-scale
nonlinear systems.



3

Numerical Methods for

Moving Horizon Estimation

and Control

The linear moving horizon estimator and controller may both be solved by
solving a linear quadratic optimal control problem. A primal active set, a dual
active set, and an interior point algorithm for solution of the linear quadratic
optimal control problem are presented. The major computational effort in all
these algorithms reduces to solution of certain unconstrained linear quadratic
optimal control problems. A Riccati recursion procedure for effective solution
of such unconstrained problems is stated.

3.1 Introduction

Model predictive control has been established as the preferred advanced control
technology in the process industries. Its success is attributed to its ability
to handle hard constraints and its ability to use plant models identified by
standard techniques. The implementation of model predictive control systems
requires repeated on-line solution of a state estimation problem and an optimal
control problem. Both the state estimator and the optimal controller can be
formulated as constrained optimization problems (Allgöwer et al., 1999; Binder
et al., 2001a). Formulated as optimization problems and implemented in a
moving horizon manner, the estimator is called a moving horizon estimator
(MHE) and the controller is called a model predictive controller (MPC) or a
moving horizon controller. Due to the requirement of real-time solution of both
the estimation and control problem, the range and scale of processes that can
be controlled by model predictive control systems depends critically on the
ability to solve the constrained optimization problems efficiently and reliably.

In this paper we outline numerical methods for efficient solution of constrained
moving horizon estimation and control problems for systems described by affine
models and with quadratic objective functions. Both the moving horizon esti-
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mator and controller of such systems are formulated as sparse convex quadratic
programs with equality and inequality constraints. In contrast, it is possible
to eliminate the state variables by the dynamic model and obtain dense con-
vex quadratic programs with inequalities only. Both interior-point and active
set algorithms for the solution of the quadratic program corresponding to a
linear-quadratic optimal control based on a banded-matrix factorization has
been proposed for solution of the model predictive control problem (Wright,
1996). The active set algorithm suggested in Wright (1996) is of the primal
type and the linear algebra is based on updating an LU-factorization each
time a constraint is added to or removed from the current working set of ac-
tive constraints. The quadratic programs corresponding to the moving horizon
controller and estimator, respectively, have been solved by interior-point algo-
rithms using Riccati iterations for the matrix factorization (Rao et al., 1998;
Tenny and Rawlings, 2002). The Riccati facotization is very efficient for so-
lution of the KKT system as it exploits the specific block-diagonal structure
arising in the moving horizon control and estimation problem. Alternatively,
a dual active set algorithm using the Schur-complement and a general sparse
matrix factorization has been suggested for solution of the model predictive
control problem (Bartlett et al., 2000).

We show that in the primal active-set, the dual active-set, and the interior-
point algorithm for general convex quadratic programming problems, the search
direction may be computed by solving a Karush-Kuhn-Tucker (KKT) system
with the same structure as an equality constrained quadratic program. In
quadratic programs of constrained optimal control problems, the KKT-system
corresponding to the unconstrained control problem has a special structure
and may be solved efficiently by a Riccati recursion. Both the constrained
moving horizon estimation problem and the moving horizon control problem
may be formulated as an optimal control problem and solved efficiently using
the Riccati recursion.

The key contribution of this paper is a dual algorithm based on Riccati based
factorization for solution of the quadratic program constituting a constrained
linear-quadratic optimal control problem. It is demonstrated how the con-
strained linear-quadratic optimal control problem may represent a moving hori-
zon controller and a moving horizon estimator. Furthermore, the importance
and key role of the KKT-system in numerical solution of the constrained-linear
quadratic optimal control problem by the primal active set algorithm as well
as the dual active set algorithm and the interior-point algorithm is emphasized
and explained.
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3.2 Algorithms for Solution of Convex QPs

Consider the general convex quadratic program

min
x∈Rn

f(x) =
1

2
x′Gx + g′x (3.1a)

s.t. A′x = b (3.1b)

C ′x ≥ d (3.1c)

in which the Hessian matrix G ∈ R
n×n is symmetric and positive semi-definite.

Assume further that the matrix A ∈ R
n×m has full column rank and that the

KKT-matrix [
G −A

−A′ 0

]

(3.2)

is non-singular. Further let the columns of the matrix C ∈ R
n×mI be denoted

ci ∈ R
n for i ∈ I = {1, 2, . . . ,mI}. The Lagrangian of (3.1) is

L(x, π, λ) =
1

2
x′Gx + g′x − π′(A′x − b) − λ′(C ′x − d) (3.3)

and the necessary and sufficient conditions for optimality of (3.1) are

Gx + g − Aπ−
∑

i∈A(x)

ciλi = 0 (3.4a)

A′x = b (3.4b)

C ′x ≥ d (3.4c)

λi ≥ 0 i ∈ A(x) = {i ∈ I : c′ix = di} (3.4d)

λi = 0 i ∈ I \ A(x) (3.4e)

Active set algorithms for solution of (3.1) apply the conditions (3.4) in the
search for the minimizer of (3.1). A current working set W ⊂ A(x) of active
constraints is recurred and the search direction is constructed by utilizing λi = 0
for i ∈ I \ W and c′ix = di for i ∈ W and partly ignoring the remaining
inequalities.

At a primal feasible point, primal active set algorithms compute the primal
search direction p along which the objective function decreases (Gill and Mur-
ray, 1978). Along with the search direction p, the equality constraint Lagrange
multipliers π, and the Lagrange multipliers λ associated with the current work-
ing set of active constraints are computed. (p, π, λ) are computed as the solution
of 



G −A −F
−A′ 0 0
−F ′ 0 0









p
π
λ



 = −





Gx + g
0
0



 F = [ci]i∈W (3.5)

The next iterate is x̄ = x+αp in which the step length α is selected to maintain
primal feasibility, i.e. c′ix̄ ≥ di for all i ∈ I \ W. Optimality of the current
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iterate is determined by the sign of λ. The current iterate is optimal if λ ≥ 0
and p = 0. At each iteration either an inequality constraint is appended to
or removed from the current working set of active constraints. This implies
that a column is appended to the matrix F when an inequality constraint is
appended to the current working set of active constraints. A column is removed
from the matrix F when a constraint is removed from the current working set.
Accordingly, the KKT-matrix at each iteration changes by a single column
and row. Efficient active set algorithms exploit this simple modification of the
KKT-matrix such that it is not refactorized at each iteration, but rather its
factorization is updated. Initially, a primal feasible point must be provided as
primal active set algorithms proceed from primal feasible points and maintains
primal feasibility while improving the value of the program. Determination of
the feasible point, for instance by solving a phase-I linear program, may be a
substantial part of the overall computations in determining an optimal point.

Primal active set algorithms proceed by solving a sequence of equality con-
strained quadratic programs in which some of the inequality constraints are
treated as equalities. Simultaneously, these algorithms generate the iterates
such that primal feasibility is maintained. Dual active set algorithms proceed
by generating iterates such that the objective function of the dual program is
improved while maintaining dual feasibility (Goldfarb and Idnani, 1983). The
dual program of (3.1) is

max
x,π,λ

L(x, π, λ) (3.6a)

s.t. Gx − Aπ − Cλ = −g (3.6b)

λ ≥ 0 (3.6c)

Let inequality constraint r, i.e. c′rx ≥ dr, be violated. In the dual active set
algorithm, the search direction (p,w, v) along which the dual objective function
increases is computed as the solution to the KKT system





G −A −F
−A′ 0 0
−F ′ 0 0









p
w
v



 =





cr

0
0



 F = [ci]i∈W (3.7)

The next iterate (x̄, π̄, λ̄) is computed by x̄ = x + αp, π̄ = π + αw, λ̄W =
λW + αw, λ̄r = λr + α. λW is the Lagrange multipliers associated to the
inequality constraints in the current working set of primal active constraints
(and dual inactive constraints). The step length α is selected such that dual
feasibility, i.e. λ ≥ 0, is maintained. By construction of the search direction,
the constraint (3.6b) is satisfied as λi = 0 for i ∈ I \W. A particular advantage
of the dual active set algorithm, is that an initial dual feasible point is readily
available. It may be obtained as the solution to KKT-system of the equality
constrained primal program (3.1a)-(3.1b), i.e. as the solution of

[
G −A

−A′ 0

] [
x
π

]

= −
[
g
b

]

(3.8)
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Interior-point algorithms for solution of (3.1) are not based on the optimality
conditions (3.4) but on necessary and sufficient optimality conditions in the
following form

Gx + g − Aπ − Cλ = 0 (3.9a)

A′x = b (3.9b)

C ′x ≥ d (3.9c)

λ ≥ 0 (3.9d)

λi(c
′
ix − di) = 0 i ∈ I (3.9e)

Instead of the active set condition, λi ≥ 0 for i ∈ A(x) and λi = 0 for i ∈
I \ A(x), the formulation (3.9) is based on the complementarity condition
(3.9e). Introduce slack variables, t = C ′x − d ≥ 0, and the notation

T =






t1
. . .

tmI




 Λ =






λ1

. . .

λmI




 e =






1
...
1




 (3.10)

such that the conditions (3.9) may be expressed as

Gx + g − Aπ − Cλ = 0 (3.11a)

A′x − b = 0 (3.11b)

C ′x − d − t = 0 (3.11c)

TΛe = 0 (3.11d)

(t, λ) ≥ 0 (3.11e)

These conditions may be regarded as a system of nonlinear equations repre-
sented as F (x, π, λ, t) = 0 with the requirement (t, λ) ≥ 0. The Mehrotra
predictor-corrector algorithm is an interior-point method which computes the
search direction as a combination of a predictor and a corrector step (Rao
et al., 1998). At both the predictor and corrector step t and λ are maintained
in the interior, i.e. (t, λ) > 0. The predictor step is a pure Newton step for
F (x, π, λ, t), i.e. (3.11a)-(3.11d), while the corrector step is a modified Newton
step. In both cases, the structure of the equations solved in computing the
search direction is







G −A −C 0
−A′ 0 0 0
−C ′ 0 0 I

0 0 Tk Λk













∆x
∆π
∆λ
∆t







= −







rG

rA

rC

rΛ







(3.12)

3.3 KKT-Systems

The major computation in algorithms for general convex quadratic programs
(3.1) is computation of the search direction. This corresponds to solution of
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(3.5) in the primal active set algorithm, (3.7) in the dual active set algorithm,
and (3.12) in the interior point algorithm, respectively.

Consider, the equality constrained quadratic subproblem of (3.1)

min
x∈Rn

f(x) =
1

2
x′Gx + g′x (3.13a)

s.t. A′x = b (3.13b)

The solution of this program is computed as the solution of the following KKT
system

[
G −A

−A′ 0

] [
x
π

]

= −
[
g
b

]

(3.14)

The solution of (3.5), (3.7), and (3.12) may essentially be reduced to solution of
systems with the structure (3.14). This is advantageous if (3.14) has a special
structure that facilitates its efficient computation.

Proposition 3.3.1 (Schur-complement solution of KKT-system)
Let G ∈ R

n×n be symmetric positive semi-definite. Let
[
A F

]
∈ R

n×(m+mF ) have
full column rank. Let the KKT-matrix (3.2) be non-singular. Then

S =
[
F ′ 0

]
[

G −A
−A′ 0

]−1 [
F
0

]

(3.15)

is symmetric positive definite and has the Cholesky factorization S = LL′. Further-
more, the unique solution (p, s, u) of





G −A −F
−A′ 0 0
−F ′ 0 0









p
s
u



 = −





h
0
0



 (3.16)

may be obtained by solving the following sequence of equations

[
G −A

−A′ 0

] [
p0

s0

]

= −
[
h
0

]

(3.17a)

LL′u = −F ′p0 (3.17b)
[

G −A
−A′ 0

] [
∆p
∆s

]

= −
[
−Fu

0

]

(3.17c)

[
p
s

]

=

[
p0

s0

]

+

[
∆p
∆s

]

(3.17d)

Proof. See Ouellette (1981). ¤

Proposition 3.3.1 may be used for solution of (3.5) in the primal active set
algorithm and solution of (3.7) in the dual active set algorithm. In the fist case
h = Gx+g and in the latter case h = −cr. The matrix S is not computed from
scratch at each iteration. Rather, its Cholesky factorization is updated utilizing
that the matrix F changes by a single column at each iteration in the active
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set algorithms. The Cholesky factor, L, is treated as a dense matrix. Hence,
the method is most efficient when only a few inequality constraints are active
at the optimal solution. The method is only efficient, when the KKT-matrix
(3.2) has a sparse structure that can be utilized. The KKT matrix (3.2) used
in proposition 3.3.1 remains constant and need only to be factorized once.

Proposition 3.3.2 (Interior-Point KKT System)
Let G ∈ R

n×n be symmetric positive semi-definite. Let (3.2) be non-singular. Let
(tk, λk) > 0. Then the unique solution (∆x, ∆π, ∆λ, ∆t) of (3.12) may be obtained
by computation of the unique solution of

[
G + CT−1

k ΛkC′ −A
−A′ 0

] [
∆x
∆π

]

= −
[
r̃G

rA

]

(3.18a)

in which

r̃G = −rG + CT−1
k (−rΛ + ΛkrC) (3.18b)

and subsequent computation of

∆t = −rC + C′∆x (3.18c)

∆λ = T−1
k (−rΛ − Λk∆t) (3.18d)

Proof. Follows by simple rearrangement of (3.12). See Rao et al. (1998).
¤

As is evident from proposition 3.3.2, the computational burden in finding the
search direction of the interior-point algorithm is solution of (3.18a). The
structure of (3.18a) is identical to the structure of (3.14), and therefore the
computation of the search direction in the interior-point algorithm is facilitated
by efficient solution of (3.14). The KKT-matrix in (3.18a) changes as (λk, tk)
changes and must therefore be refactorized at each iteration.

3.4 Linear Quadratic Optimal Control

Proposition 3.3.1 and 3.3.2 provide methodologies for solution of inequality and
equality constrained convex quadratic programming. The efficiency of these
methods depends on the efficiency of the solution method for the corresponding
equality constrained convex quadratic program.

The unconstrained linear quadratic optimal control problem is the equality
constrained convex quadratic program

min
{xk+1,uk}

N−1
k=0

φ =

N−1∑

k=0

lk(xk, uk) + lN (xN ) (3.19a)

s.t. xk+1 = A′
kxk + B′

kuk + bk (3.19b)
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in which the stage costs of the objective function are

lk(xk, uk) =
1

2
(x′

kQkxk + 2x′
kMkuk + u′

kRkuk)

+ q′kxk + r′kuk + fk

(3.20a)

lN (xN ) =
1

2
x′

NPNxN + p′NxN + γN (3.20b)

The matrices

[
Qk Mk

M ′
k Rk

]

and PN are assumed to be symmetric positive semi-

definite and the KKT-matrix of the problem is assumed to be non-singular.

The necessary and sufficient optimality conditions for (3.19) are

Qkxk + Mkuk + qk − πk−1 + Akπk = 0 (3.21a)

M ′
kxk + Rkuk + rk + Bkπk = 0 (3.21b)

PNxN + pN − πN−1 = 0 (3.21c)

xk+1 = A′
kxk + B′

kuk + bk (3.21d)

In the case N = 2, the necessary and sufficient optimality conditions may be
expressed as the KKT-system











R0 B0

Q1 M1 −I A1

M ′
1 R1 B1

P2 −I

B′
0 −I

A′
1 B′

1 −I





















u0

x1

u1

x2

π0

π1











= −











r0 + M ′
0x0

q1

r1

p2

b0 + A′
0x0

b1











which may be rearranged to











R0 B0

B′
0 0 −I

−I Q1 M1 A1

M ′
1 R1 B1

A′
1 B′

1 0 −I
−I P2





















u0

π0

x1

u1

π1

x2











= −











r0 + M ′
0x0

b0 + A′
0x0

q1

r1

b1

p2











The necessary and sufficient conditions (5.87) for optimality of (3.19) are sparse
and highly structured. The following proposition prescribes a Riccati iteration
procedure for solution of (5.87).

Proposition 3.4.1 (Linear Quadratic Optimal Control Solution)
Let x0, {Ak, Bk, bk, Qk, Mk, Rk, qk, rk}N−1

k=0 , and {PN , pN} be given. Then the solution

{uk, πk, xk+1}N−1
k=0 of (5.87) may be obtained by the following procedure
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1. Compute

Kk = −(Rk + BkPk+1B
′
k)−1(M ′

k + BkPk+1A
′
k) (3.22a)

ak = −(Rk + BkPk+1B
′
k)−1(rk + Bk(Pk+1bk + pk+1)) (3.22b)

Pk = Qk + AkPk+1A
′
k + (Mk + AkPk+1B

′
k)Kk (3.22c)

pk = (Ak + K′
kBk)(Pk+1bk + pk+1) + qk + K′

krk (3.22d)

for k = N − 1, N − 2, . . . , 0.

2. Compute the primal solution {uk, xk+1}N−1
k=0 for k = 0, 1, . . . , N − 1 by

uk = Kkxk + ak (3.23a)

xk+1 = A′
kxk + B′

kuk + bk (3.23b)

3. Obtain the dual solution {πk}N−1
k=0 by computing

πN−1 = PNxN + pN (3.24a)

πk−1 = Akπk + Qkxk + Mkuk + qk (3.24b)

for k = N − 1, N − 2, . . . , 1.

Proof. See Rao et al. (1998) or Ravn (1999). ¤

Let x ∈ R
n and u ∈ R

m. Then this method has complexity O(N(n3 + m3))
while a dense method on the same KKT-system has complexity O(N3(n+m)3).
Corresponding dense quadratic programs obtained by elimination of the states
has complexity O(N3m3). The Riccati based factorization is thus two order of
magnitudes faster than the dense based approach when the horizon N length
is much larger than the state dimension n.

The constrained linear quadratic optimal control problem is (3.19) with the
additional constraints

C ′
kxk + D′

kuk + ck ≥ dk k = 0, 1, . . . , N − 1 (3.25a)

C ′
NxN + cN ≥ dN (3.25b)

The search direction in algorithms for solution of this problem is computed
efficiently by combination of proposition 3.4.1 and either proposition 3.3.1 or
3.3.2.

The model predictive controller and the moving horizon estimator are particular
instances of the optimal control problem, i.e. (3.19) and (3.25). For simplicity
and to focus on the essentials, this is demonstrated for the model predictive
controller and moving horizon estimator without inequality constraints. These
formulations are easily extended to the inequality constrained cases.
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3.5 Model Predictive Control

The unconstrained model predictive controller for linear systems may be ex-
pressed as

min
{yk,wk+1,uk}

∞
k=0

φ =

∞∑

k=0

l̃k(yk,∆uk) (3.26a)

s.t. wk+1 = Ã′
kwk + B̃′

kuk + b̃k (3.26b)

yk = C̃ ′
kwk + c̃k (3.26c)

in which the stage cost is

l̃k(yk,∆uk) =
1

2
(yk − zk)′Q̃k(yk − zk) +

1

2
∆ukS̃k∆uk (3.27)

The goal stated by this cost, is to keep the systems output {yk}∞k=0 close to
some prescribed trajectory {zk}∞k=0 while simultenously limiting the actuator
variation ∆uk = uk − uk−1. Let the data at stage k of this controller be

Mk =
{

Ãk, B̃k, b̃k, C̃k, c̃k, Q̃k, S̃k

}

and let M =
{

Ã, B̃, b̃, C̃, c̃, Q̃, S̃
}

. Assume

that the controller (3.26) is parameterized as

C = {Mk}∞k=0 = {M0,M1, . . . ,MN−1,M,M, . . .} (3.28)

and that the reference trajectory has the parameterization

{zk}∞k=0 = {z0, z1, . . . , zN−1, z, z, . . .} (3.29)

The optimal steady state consistent with the controller model (3.26) is obtained
by solution of the quadratic program

min
u,w,y

1

2
(y − z)′Q̃(y − z) + (u − us)

′Rs(u − us) (3.30a)

s.t. w = Ã′w + B̃′u + b̃ (3.30b)

y = C̃ ′w + c̃ (3.30c)

in which us is a target of the input if there are degrees of freedom in excess
and Rs is computed by the procedure (Muske, 1997)

Ñ = Null
([

I − Ã′ −B̃′
])

=

[
Ñx

Ñu

]

(3.31a)

α = Null
(

Ñ ′
xC̃C̃ ′Ñx

)

(3.31b)

Rs = R̃Ñuαα′Ñ ′
uR̃ (3.31c)
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When a target (u,w) has been computed the model predictive controller algo-
rithm solves the dynamic quadratic program

min φ =

N−1∑

k=0

lk(xk, uk) + lN (xN ) (3.32a)

s.t. xk+1 = A′
kxk + B′

kuk + bk (3.32b)

in which

xk =

[
wk

uk−1

]

A′
k =

[

Ã′
k 0

0 0

]

B′
k =

[

B̃′
k

I

]

bk =

[

b̃k

0

]

(3.33)

and lk(xk, uk) is of the form (3.20a) with the parameters

Qk =

[
C̃kQ̃kC̃ ′

k 0

0 S̃k

]

Mk =

[
0

−S̃k

]

Rk = S̃k (3.34a)

qk =

[

C̃kQ̃k(c̃k − zk)
0

]

rk = 0 (3.34b)

fk =
1

2
(c̃k − zk)′Q̃k(c̃k − zk) (3.34c)

Let

x =

[
w
u

]

Q =

[
C̃Q̃C̃ ′ 0

0 S̃

]

M =

[
0

−S̃

]

R = S̃ (3.35)

and compute P from the Riccati equation

P = Q + APA′

− (M + APB′)(R + BPB′)−1(M + APB′)′
(3.36)

Then the selected cost-to-go function in (3.32)

lN (xN ) =
1

2
(xN − x)′P (xN − x) (3.37)

is identical to (3.20b) with the parameters

PN = P pN = −Px γN =
1

2
x′Px (3.38)

Consequently, the dynamic quadratic program of model predictive control is
an instance of a linear quadratic optimal control problem.
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3.6 Moving Horizon Estimation

The unconstrained moving horizon estimation (MHE) problem is the convex
quadratic program

min
{xk,wk,vk}

φ = l̃0(x0) +

N∑

k=0

l̃k(wk, vk) (3.39a)

s.t. xk+1 = A′
kxk + B′

kwk + bk (3.39b)

yk = C ′
kxk + vk + ck (3.39c)

in which the stage costs are the quadratic functions

l̃0(x0) =
1

2
(x0 − x̃0)

′P̃−1
0 (x0 − x̃0) (3.40a)

l̃k(wk, vk) =
1

2

[
wk − w̃k

vk − ṽk

]′ [
Q̃k M̃k

M̃ ′
k R̃k

]−1 [
wk − w̃k

vk − ṽk

]

(3.40b)

In the MHE problem, the measurements {yk}N
k=0 are given, and the states

{xk}N+1
k=0 , the process noise {wk}N

k=0, and the measurement noise {vk}N
k=0 must

be computed by solving (3.39). This corresponds to selecting the states, the
process noise, and the measurement noise such that they in some sense give
the best fit to the measurements.

Define x−1 = x̃0 and w−1 = x0 − x̃0. This implies

x0 = x−1 + w−1 (3.41)

and further that l̃0 = l̃0(x0) may be formulated as

l̃0 =
1

2
w′

−1P̃
−1
0 w−1 = l−1(x−1, w−1) (3.42)

Using the Schur-complement, the weight matrix in (3.40b) may be expressed
as

[
Wk S′

k

Sk Vk

]

=

[
Q̃k M̃k

M̃ ′
k R̃k

]−1

=

[

∆−1

R̃k
−∆−1

R̃k
M̃kR̃−1

k

−R̃−1
k M̃ ′

k∆−1

R̃k
∆−1

Q̃k

] (3.43)

in which ∆R̃k
and ∆Q̃k

are the Schur complements of R̃k and Q̃k, respectively,
i.e.

∆R̃k
= Q̃k − M̃kR̃−1

k M̃ ′
k (3.44a)

∆Q̃k
= R̃k − M̃ ′

kQ̃−1
k M̃k (3.44b)
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Applying (3.43), the stage costs (3.40b) may be expressed as

l̃k =
1

2

[
wk − w̃k

ỹk − C ′
kxk

]′ [
Wk S′

k

Sk Vk

] [
wk − w̃k

ỹk − C ′
kxk

]

=
1

2
(x′

kCkVkC ′
kxk − 2x′

kCkSkwk + w′
kWkwk)

+ (Ck(Skw̃k − Vkỹk))′xk + (S′
kỹk − Wkw̃k)′wk

+
1

2
(w̃′

kWkw̃k − 2ỹ′
kSkw̃k + ỹkVkỹk)

= lk(xk, wk)

(3.45)

in which ỹk is defined as
ỹk = yk − ck − ṽk (3.46)

The MHE problem (3.39) is equivalent to the convex quadratic program

min
{xk+1,wk}

N−1
k=−1

φ =

N∑

k=−1

lk(xk, wk) (3.47a)

s.t. x0 = x−1 + w−1 (3.47b)

xk+1 = A′
kxk + B′

kwk + bk (3.47c)

which by inspection is recognized as a special version of the linear quadratic
optimal control problem (3.19). Consequently, the moving horizon estimation
problem (3.39) is a linear quadratic optimal control problem (3.19) with time
range k = −1 to N + 1 instead of k = 0 to N . Furthermore, at time k = −1
the matrices of the MHE-problem in the optimal control problem are

Q−1 = 0, M−1 = 0, R−1 = P̃−1
0 , q−1 = 0, r−1 = 0 (3.48a)

A−1 = I, B−1 = I, b−1 = 0 (3.48b)

At times k = 0, 1, . . . , N , the weight matrices of the optimal control formulation
of the MHE-problem are

Qk = CkVkC ′
k Mk = −CkSk Rk = Wk (3.49a)

qk = Ck(Skw̃k − Vkỹk) rk = S′
kỹk − Wkw̃k (3.49b)

in which

Wk = (Q̃k − M̃kR̃−1
k M̃ ′

k)−1 (3.50a)

Sk = −R̃−1
k M̃ ′

k(Q̃k − M̃kR̃−1
k M̃ ′

k)−1 (3.50b)

Vk = (R̃k − M̃ ′
kQ̃−1

k M̃k)−1 (3.50c)

The cost-to-go matrices of the MHE-problem formulated as an optimal control
problem are

PN+1 = 0, pN+1 = 0 (3.51)
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3.7 Conclusion

Model predictive control and moving horizon estimation with affine models are
instances of the linear quadratic optimal control problem.

The search-direction of active-set algorithms for solution of the constrained lin-
ear quadratic optimal control problems, (3.19) and the additional constraints
(3.25), may be efficiently computed using the decomposition stated in propo-
sition 3.3.1 and the Riccati iteration stated in proposition 3.4.1. When the
model parameterization is fixed a priori, as for instance for linear time invari-
ant systems, the factorization of the unconstrained linear quadartic optimal
control problem may be done off-line, and the method increases even further
in efficiency.

The search direction of the Mehrotra predictor-corrector interior-point algo-
rithm for solution of the constrained linear quadratic optimal control problem
may be efficiently computed by combination of proposition 3.3.2 specialized to
(3.19,3.25) and proposition 3.4.1.



4

Dynamic Programming for

Linear-Quadratic Optimal

Control

The deterministic linear-quadratic optimal control problem and the determin-
istic extended linear-quadratic optimal control problem are introduced and de-
fined. The deterministic linear-quadratic optimal control problem is identical
with the linear quadratic regulation (LQR) problem. The extended linear-
quadratic optimal control problem is an extension of the linear quadratic reg-
ulation problem. In addition to the quadratic terms, the objective function
of the extended linear-quadratic optimal control problem contains linear terms
and inconsequential zero order terms. Rather than being linear, the dynamics
of the extended linear-quadratic optimal control problem is described by an
affine relation. The extended linear-quadratic optimal control problem has im-
portant applications in the solution of the nonlinear optimal control problem
as well as in efficient solution algorithms for the constrained linear-quadratic
optimal control problem.

Based on dynamic programming, Riccati recursion procedures for the linear-
quadratic optimal control problem as well as the extended linear-quadratic
optimal control problem are developed. Compared to alternative solution pro-
cedures such as control vector parameterization by elimination of the states,
the Riccati based procedure is highly efficient for long prediction horizons. The
extended linear-quadratic optimal control problem may also be regarded as an
equality constrained quadratic program with special structure. The computa-
tion of the optimal solution-Lagrange multiplier pair for a convex equality con-
strained quadratic program is specialized to the extended linear-quadratic op-
timal control problem treated as a quadratic program. Efficient solution of the
highly structured KKT-system corresponding to the extended linear-quadratic
optimal control problem is facilitated by the Riccati recursion developed by
dynamic programming.
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4.1 Dynamic Programming

Dynamic programming is the essential principle applied in developing the so-
lution procedures based on Riccati recursion for the linear-quadratic optimal
control problem and the extended linear-quadratic optimal control problem.
Therefore, the dynamic programming algorithm for deterministic optimal con-
trol problem is introduced. Bertsekas (1995a) provides a comprehensive dis-
cussion of dynamic programming and its applications for optimal control.

The basic problem studied is the deterministic optimal control problem.

Problem 4.1.1 (Deterministic Optimal Control)
Let xk ∈ R

n for k = 0, 1, . . . , n. Let uk ∈ R
m for k = 0, 1, . . . , N − 1. Let fk :

R
n × R

m 7→ R
n for k = 0, 1, . . . , N − 1. Let Uk(xk) ⊂ R

m for k = 0, 1, . . . , N − 1.
Then the deterministic optimal control problem is the mathematical program

min
{xk+1,uk}N−1

k=0

φ =

N−1∑

k=0

gk(xk, uk) + gN (xN ) (4.1a)

s.t. xk+1 = fk(xk, uk) k = 0, 1, . . . , N − 1 (4.1b)

uk ∈ Uk(xk) k = 0, 1, . . . , N − 1 (4.1c)

in which x0 is a parameter. The optimal solution is {x∗
k+1, u

∗
k}N−1

k=0
= {x∗

k+1(x0), u
∗
k(x0)}N−1

k=0

and φ∗ = φ∗(x0).

The optimal solution of the deterministic optimal control problem (4.1) is spec-

ified in terms of an optimal sequence, {u∗
k}

N−1
k=0 . In dynamic programming the

optimal solution is typically not specified as a specific value but rather as a
function.

Definition 4.1.2 (Optimal Policy)
Let xk ∈ R

n. Let µ∗
k : R

n 7→ Ωk for k = 0, 1, . . . , N − 1 in which Ωk ⊂ Uk ⊂ R
m. Let

φ = φ({xk}N

k=0 , {uk}N−1
k=0 ) =

N−1∑

k=0

gk(xk, uk) + gN (xN ) (4.2)

Then π∗ defined as the sequence

π∗ = {µ∗
0(x0), µ

∗
1(x1), . . . , µ

∗
N−1(xN−1)} = {µ∗

k(xk)}N−1
k=0 (4.3)

is an optimal policy of (4.1) if

φ({x∗
k}N

k=0 , {µ∗
k(x∗

k)}N−1
k=0 ) ≤ φ({xk+1}N

k=0 , {uk}N−1
k=0 ) (4.4)

for all x∗
0 = x0, {x∗

k+1 = f(x∗
k, µ∗

k(x∗
k))}N−1

k=0
, and {xk+1 = fk(xk, uk), uk ∈ Uk(xk)}N−1

k=0 .

Remark 4.1.3
An optimal policy is a function mapping the states to the inputs such that the ob-
jective function of (4.1) is minimized for all possible values of the states.
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Proposition 4.1.4 (Principle of Optimality)
Let π∗ = {µ∗

0(x0), µ
∗
1(x1), . . . , µ

∗
N−1(xN−1)} = {µ∗

k(xk)}N−1
k=0 be an optimal policy for

(4.1).

Then {µ∗
i (xi), µ

∗
i+1(xi+1), . . . , µ

∗
N−1(xN−1)} = {µ∗

k(xk)}N−1
k=i is an optimal policy for

min
{xk+1,uk}N−1

k=i

N−1∑

k=i

gk(xk, uk) + gN (xN ) (4.5a)

s.t. xk+1 = fk(xk, uk) k = i, i + 1, . . . , N − 1 (4.5b)

uk ∈ Uk(xk) k = i, i + 1, . . . , N − 1 (4.5c)

Proof. This proposition is due to Bellman and can be established by creating
a contradiction. Let {µ∗

k(xk)}N−1
k=0 be an optimal policy for (4.1). Assume that

{κk(xk)}N−1
k=i is an optimal policy for (4.5) and assume that {κk(xk) 6= µ∗

k(xk)}N−1
k=i .

Let xi ∈ R
n be any state and let this state be reached from the initial state x0 by

application of the optimal policy {µ∗
k(xk)}i−1

k=0, i.e. {xk+1 = fk(xk, µ∗
k(xk))}i−1

k=0.
Then the cost-to-go from xi can be minimized by applying the optimal policy
{κk(xk) 6= µ∗

k(xk)}N−1
k=i . This implies that

{
µ∗

0(x0), µ
∗
1(x1), . . . , µ

∗
i−1(xi−1), κi(xi), κi+1(xi+1), . . . , κN−1(xN−1

}
(4.6)

is an optimal policy of (4.1). However, this contradicts the assumption that

{µ∗
k(xk)}N−1

k=0 is an optimal policy. Therefore {κk(xk) = µ∗
k(xk)}N−1

k=i and {µ∗
k(xk)}N−1

k=i
is an optimal policy for (4.5). ¤

Remark 4.1.5
The above proof is not completely rigorous, but the main principles of a rigorous
proof are outlined in the arguments. The main complicating issue in doing a rigorous
proof is possible non-uniqueness of an optimal policy.

The dynamic programming algorithm stated in the following proposition is
based on the principle of optimality.

Proposition 4.1.6 (Dynamic Programming)
For every initial state x0 ∈ R

n, the optimal cost φ∗(x0) to (4.1) is

φ∗(x0) = V0(x0) (4.7)

in which the value function V0(x0) is computed by the recursion

VN (xN ) = gN (xN ) (4.8a)

Vk(xk) = min
uk∈Uk(xk)

gk(xk, uk) + Vk+1(fk(xk, uk)) k = N − 1, N − 2, . . . , 1, 0

(4.8b)

Furthermore, if u∗
k = µ∗

k(xk) minimizes the right hand side of (4.8b) for each xk ∈ R
n

and k, then the policy π∗ = {µ∗
0(x0), µ

∗
1(x1), . . . , µ

∗
N−1(xN−1)} = {µ∗

k(xk)}N−1
k=0 is

optimal.
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Proof. Let πk be defined by

πk =
{
µ∗

k(xk), µ∗
k+1(xk+1), . . . , µ

∗
N−1(xN−1)

}
(4.9)

and let πk denote an optimal policy of

min
{xi+1,ui}

N−1
i=k

φk(xk) =

N−1∑

i=k

gi(xi, ui) + gN (xN ) (4.10a)

s.t. xi+1 = fi(xi, ui) i = k, k + 1, . . . , N − 1
(4.10b)

ui ∈ Ui(xi) i = k, k + 1, . . . , N − 1
(4.10c)

The value function, Vk(xk) = φk(xk) of this problem is

Vk(xk) = min

{
N−1∑

i=k

gi(xi, ui) + gN (xN ) : xi+1 = fi(xi, ui), ui ∈ Ui(xi), i = k, k + 1, . . . , N − 1

}

=

{
N−1∑

i=k

gi(xi, µ
∗
i (xi)) + gN (xN ) : xi+1 = fi(xi, µ

∗
i (xi)), i = k, k + 1, . . . , N − 1

}

(4.11)

By this definition of Vk(xk), it is clear that φ∗(x0) = V0(x0). Consequently, by
definition

VN (xN ) = gN (xN ) (4.12)

and

Vk(xk) = min

{
N−1∑

i=k

gi(xi, ui) + gN (xN ) : xi+1 = fi(xi, ui), ui ∈ Ui(xi), i = k, k + 1, . . . , N − 1

}

= min{gk(xk, uk) +

N−1∑

i=k+1

gi(xi, ui) + gN (xN ) :

xi+1 = fi(xi, ui), ui ∈ Ui(xi), i = k, k + 1, . . . , N − 1}

= min {min{
N−1∑

i=k+1

gi(xi, ui) + gN (xN ) : xi+1 = fi(xi, ui), ui ∈ Ui(xi), i = k + 1, k + 2, . . . , N − 1}

+ gk(xk, uk) : xk+1 = fk(xk, uk), uk ∈ Uk(xk)}
= min {gk(xk, uk) + Vk+1(xk+1) : xk+1 = fk(xk, uk), uk ∈ Uk(xk)}
= min

uk∈Uk(xk)
{gk(xk, uk) + Vk+1(fk(xk, uk))}

(4.13)

Furthermore, it is obvious from this derivation that

µ∗
k(xk) = arg min

uk∈Uk(xk)
gk(xk, uk) + Vk(fk(xk, uk)) (4.14)

is an optimal control law. ¤
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The dynamic programming algorithm is essential in derivation of the Riccati
recursion for linear-quadratic optimal control. In fact this application, is one of
the most important and successful applications of the dynamic programming
algorithm.

4.2 Standard Linear-Quadratic Optimal Control

In this section the solution of the time variant deterministic linear quadratic
optimal control problem is derived. The solution is given by a Riccati based
recursion. The solution and its properties facilitate establishment of correspon-
ding properties of the solution of the extended linear-quadratic optimal control
problem.

Problem 4.2.1 (Linear-Quadratic Optimal Control)
The linear-quadratic optimal control problem consists of solving the quadratic pro-
gram

min
{xk+1,uk}N−1

k=0

φ =

N−1∑

k=0

lk(xk, uk) + lN (xN ) (4.15a)

s.t. xk+1 = A′
kxk + B′

kuk k = 0, 1, . . . , N − 1 (4.15b)

with the stage costs given by

lk(xk, uk) =
1

2
x′

kQkxk + x′
kMkuk +

1

2
u′

kRkuk k = 0, 1, . . . , N − 1 (4.16a)

lN (xN ) =
1

2
x′

NPNxN (4.16b)

In (4.15), x0 is a parameter and not a decision variable. The optimal solution consists
of the minimizer (x∗, u∗) = {x∗

k+1, u
∗
k}N−1

k=0
and the optimal value φ∗ = φ(x∗, u∗).

Remark 4.2.2
The stage costs (4.16a) may also be expressed as

lk(xk, uk) =
1

2
x′

kQkxk + x′
kMkuk +

1

2
u′

kRkuk

=
1

2

(
xk

uk

)′ (
Qk Mk

M ′
k Rk

) (
xk

uk

) k = 0, 1, . . . , N − 1 (4.17)

Assumption 4.2.3 (Symmetric Positive Semi-Definiteness)
All matrices

(
Qk Mk

Mk Rk

)

(4.18)

in the sequence
{(

Qk Mk

M ′
k Rk

)}N−1

k=0

(4.19)

are symmetric positive semi-definite. PN is symmetric positive semi-definite.
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Assumption 4.2.4 (Sufficient Uniqueness and Optimility Condition)
All matrices, Rk, in the sequence of matrices {Rk}N−1

k=0 are positive definite.

Proposition 4.2.5 (Solution of the Linear-Quadratic Optimal Control Problem)
Consider the linear-quadratic optimal control problem (4.15). Let assumption 4.2.3
and 4.2.4 be satisfied.

The the unique global minimizer, {x∗
k+1, u

∗
k}N−1

k=0
, of (4.15) may be obtained by first

computing

Re,k = Rk + BkPk+1B
′
k (4.20a)

Kk = −R−1
e,k(Mk + AkPk+1B

′
k)′ (4.20b)

Pk = Qk + AkPk+1A
′
k − K′

kRe,kKk (4.20c)

for k = N − 1, N − 2, . . . , 1, 0 and subsequent computation of

u∗
k = Kkx∗

k (4.21a)

x∗
k+1 = A′

kx∗
k + B′

ku∗
k (4.21b)

for k = 0, 1, . . . , N − 1 with x∗
0 = x0. The optimal value, φ∗, of (4.15) is

φ∗ =
1

2
x′

0P0x0 (4.22)

Proof. Let Vk(xk) denote the value function

Vk(xk) = min
{xi+1,ui}

N−1
i=k

{
N−1∑

i=k

li(xi, ui) + lN (xN ) : xi+1 = A′
ixi + B′

iui i = k, k + 1, . . . , N − 1

}

(4.23)

Note that V0(x0) corresponds to the optimal value of (4.15). Vk(xk) corresponds
to the optimal value of a linear-quadratic optimal control problem starting at
stage k and with the state at stage k, xk, given. By the above definition of the
value function, it is clear that

VN (xN ) = lN (xN ) =
1

2
x′

NPNxN (4.24)

in which PN by assumption is a symmetric positive semi-definite matrix. This
implies that VN (xN ) ≥ 0 for xN ∈ R

n. By Bellman’s principle of optimality
and the dynamic programming algorithm (c.f. Bertsekas, 1995a), it is clear that
the value function Vk(xk) defined above may be expressed recursively as

Vk(xk) = min
xk+1,uk

{lk(xk, uk) + Vk+1(xk+1) : xk+1 = A′
kxk + B′

kuk}

= min
uk

{lk(xk, uk) + Vk+1(A
′
kxk + B′

kuk)}

= min
uk

φk(xk, uk)

(4.25)
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in which the function φk(xk, uk) is defined by

φk(xk, uk) = lk(xk, uk) + Vk+1(A
′
kxk + B′

kuk) (4.26)

We want to show that the value function Vk(xk) at stage k is

Vk(xk) =
1

2
x′

kPkxk (4.27)

in which Pk is a symmetric positive semi-definite matrix. This is true for k = N ,
i.e. VN (xN ) = 1

2 x′
NPNxN in which PN is a symmetric positive semi-definite

matrix. The following part of the proof is by induction. Assume that the value
function, Vk+1(xk+1), at stage k + 1 is given by

Vk+1(xk+1) =
1

2
x′

k+1Pk+1xk+1 (4.28)

in which Pk+1 is symmetric positive semi-definite. This assumption implies

φk(xk, uk) = lk(xk, uk) + Vk+1(A
′
kxk + B′

kuk)

=
1

2
x′

kQkxk + x′
kMkuk +

1

2
u′

kRkuk +
1

2
(A′

kxk + B′
kuk)′Pk+1(A

′
kxk + B′

kuk)

=
1

2
x′

k(Qk + AkPk+1A
′
k)xk + x′

k(Mk + AkPk+1B
′
k)uk +

1

2
u′

k(Rk + BkPk+1B
′
k)uk

(4.29)

The partial first and second order derivatives of this function with respect to
uk are

∇uk
φk(xk, uk) = (Mk + AkPk+1B

′
k)′xk + (Rk + BkPk+1B

′
k)uk (4.30)

and

∇2
uk,uk

φk(xk, uk) = Rk + BkPk+1B
′
k = Re,k (4.31)

Re,k is obviously symmetric as Rk is symmetric and Pk+1 is symmetric. Re,k

is also positive definite as Rk is positive definite by assumption and Pk+1 is
positive semi-definite. Consequently, the unique global minimizer, u∗

k, of

Vk(xk) = min
uk

φk(xk, uk) (4.32)

may be found by the necessary and sufficient condition

∇uk
φk(xk, u∗

k) = 0 (4.33)

which is equivalent with the expression

∇uk
φk(xk, u∗

k) = (Mk + AkPk+1B
′
k)′xk + (Rk + BkPk+1B

′
k)u∗

k = 0 (4.34)
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As Re,k = Rk +BkPk+1B
′
k is symmetric positive definite, it is also non-singular

and the unique global minimizer u∗
k may be expressed as the following function

of xk

u∗
k = −(Rk + BkPk+1B

′
k)−1(Mk + AkPk+1B

′
k)′xk

= Kkxk

(4.35)

in which Kk is defined by

Kk = −(Rk + BkPk+1B
′
k)−1(Mk + AkPk+1B

′
k)′

= −R−1
e,k(Mk + AkPk+1B

′
k)′

(4.36)

The functional relation giving the optimal control may also be denoted u∗
k =

µk(xk) = Kkxk to stresss the fact that the optimal control is a function of xk.
Applying u∗

k = Kkxk, the value function Vk(xk) may be expressed as

Vk(xk) = φk(xk, u∗
k) = φk(xk,Kkxk)

=
1

2
x′

k(Qk + AkPk+1A
′
k)xk + x′

k(Mk + AkPk+1B
′
k)Kkxk

+
1

2
x′

kK ′
k(Rk + BkPk+1B

′
k)Kkxk

=
1

2
x′

k(Qk + AkPk+1A
′
k)xk − x′

k(Mk + AkPk+1B
′
k)R−1

e,k(Mk + AkPk+1B
′
k)′xk

+
1

2
xk(Mk + AkPk+1B

′
k)R−1

e,kRe,kR−1
e,k(Mk + AkPk+1B

′
k)′xk

=
1

2
x′

k

[

Qk + AkPk+1A
′
k − (Mk + AkPk+1B

′
k)R−1

e,k(Mk + AkPk+1B
′
k)′

]

xk

=
1

2
x′

kPkxk

(4.37)

in which

Pk = Qk + AkPk+1A
′
k − (Mk + AkPk+1B

′
k)R−1

e,k(Mk + AkPk+1B
′
k)′

= Qk + AkPk+1A
′
k − (Mk + AkPk+1B

′
k)R−1

e,kRe,kR−1
e,k(Mk + AkPk+1B

′
k)′

= Qk + AkPk+1A
′
k − K ′

kRe,kKk

(4.38)
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Pk is symmetric as Qk, Pk+1, and Re,k = Rk +BkPk+1B
′
k are symmetric. Pk+1

is also positive semi-definite as

1

2
x′

kPkxk = Vk(xk)

= min
uk

{lk(xk, uk) + Vk+1(A
′
kxk + B′

kuk)}

= min
uk







1

2

(
xk

uk

)′ (
Qk Mk

M ′
k Rk

) (
xk

uk

)

︸ ︷︷ ︸

≥0

+
1

2
(A′

kxk + B′
kuk)′Pk+1(A

′
kxk + B′

kuk)
︸ ︷︷ ︸

≥0







≥ 0

(4.39)

Consequently, these fact establish the claim that the value function Vk(xk) is

Vk(xk) =
1

2
x′

kPkxk k = 0, 1, . . . , N (4.40)

in which Pk is symmetric positive semi-definite. Hence, the optimal value, φ∗,
is

φ∗ = min
{xk+1,uk}

N−1
k=0

{
N−1∑

k=0

lk(xk, uk) + lN (xN ) : xk+1 = A′
kxk + B′

kuk k = 0, 1, . . . , N − 1

}

= V0(x0) =
1

2
x′

0P0x0

(4.41)

and the global minimizer
{
x∗

k+1, u
∗
k

}N−1

k=0
is

u∗
k = Kkx∗

k (4.42a)

xk+1 = A′
kx∗

k + B′
ku∗

k (4.42b)

for k = 0, 1, . . . , N − 1 and x∗
0 = x0. By the deduction it is evident that PN is

given and Re,k, Kk, and Pk are obtained iteratively by

Re,k = Rk + BkPk+1B
′
k (4.43a)

Kk = −R−1
e,k(Mk + AkPk+1B

′
k)′ (4.43b)

Pk = Qk + AkPk+1Ak − K ′
kRe,kKk (4.43c)

for k = N − 1, N − 2, . . . , 1, 0. ¤

Remark 4.2.6
The assumption that {Rk}N−1

k=0 are positive definite is sufficient for the result in propo-
sition 4.2.5 being a solution of (4.15). However, it is not necessary. From the preceding
proof, it is obvious that a necessary and sufficient condition for {xk+1, uk}N−1

k=0 being

a unique minimizer of (4.15) is that {Re,k = Rk + BkPk+1B
′
k}N−1

k=0 is positive definite.
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Remark 4.2.7
The expressions for {Kk}N−1

k=0 and {Pk}N−1
k=0 may also be formulated as

Kk = −(Rk + BkPk+1B
′
k)−1(Mk + AkPk+1B

′
k)′ (4.44a)

Pk = Qk + AkPk+1A
′
k − (Mk + AkPk+1B

′
k)(Rk + BkPk+1B

′
k)−1(Mk + AkPk+1B

′
k)′

(4.44b)

Corollary 4.2.8
Let assumptions 4.2.3 and 4.2.4 be satisfied. Then the matrices

Pk = Qk + AkPk+1A
′
k − (Mk + AkPk+1B

′
k)(Rk + BkPk+1B

′
k)−1(Mk + AkPk+1B

′
k)′

(4.45)
in the sequence of matrices {Pk}N−1

k=0 , are all symmetric positive semi-definite.

Proof. Follows directly from the proof of proposition 4.2.5. ¤

4.3 Extended Linear-Quadratic Optimal Con-

trol

In this section, an algorithm for solving the extended linear-quadratic optimal
control problem is established. The extended linear-quadratic optimal control
problem is established in the following problem definition.

Problem 4.3.1 (Extended Linear-Quadratic Optimal Control)
The extended linear-quadratic optimal control problem consists of solving the quadratic
program

min
{xk+1,uk}N−1

k=0

φ =

N−1∑

k=0

lk(xk, uk) + lN (xN ) (4.46a)

s.t. xk+1 = A′
kxk + B′

kuk + bk k = 0, 1, . . . , N − 1 (4.46b)

with the stage costs given by

lk(xk, uk) =
1

2
x′

kQkxk + x′
kMkuk +

1

2
u′

kRkuk + q′kxk + r′kuk + fk k = 0, 1, . . . , N − 1

(4.47a)

lN (xN ) =
1

2
x′

NPNxN + p′
NxN + γN (4.47b)

In (4.46), x0 is a parameter and not a decision variable. The optimal solution consists
of the minimizer (x∗, u∗) = {x∗

k+1, u
∗
k}N−1

k=0
and the optimal value φ∗ = φ∗(x∗, u∗).

Remark 4.3.2
The stage costs (4.47a) may also be expressed as

lk(xk, uk) =
1

2
x′

kQkxk + x′
kMkuk +

1

2
u′

kRkuk + q′kxk + r′kuk + fk

=
1

2

(
xk

uk

)′ (
Qk Mk

M ′
k Rk

) (
xk

uk

)

+

(
qk

rk

)′ (
xk

uk

)

+ fk

(4.48)



4.3. Extended Linear-Quadratic Optimal Control 179

The important extensions of the extended linear-quadratic optimal control
problem compared to the linear quadratic optimal control problem are the
linear terms in the stage costs of the objective function as well as the affine
term in the dynamic equations. These terms have usually been neglected in
the classic treatment of the linear-quadratic optimal control problem. How-
ever, these terms are important in the solution of the nonlinear optimal control
problem as well as in the solution of constrained problems with a steady-state
residing on the boundary of the feasible region.

The assumptions stated next are used to guarantee that the extended linear-
quadratic optimal control problem is strictly convex such that the resulting
optimal minimizer is unique.

Assumption 4.3.3 (Symmetric Positive Semi-Definiteness)
All matrices

(
Qk Mk

M ′
k Rk

)

(4.49)

in the sequence of matrices
{(

Qk Mk

M ′
k Rk

)}N−1

k=0

(4.50)

are symmetric positive semi-definite. PN is symmetric positive semi-definite.

Assumption 4.3.4 (Sufficient Uniqueness and Optimality Condition)
All matrices, Rk, in the sequence of matrices {Rk}N−1

k=0 are positive definite.

The solution of the extended linear-quadratic optimal control problem is stated
in the following proposition.

Proposition 4.3.5 (Solution of the Extended Linear-Quadratic Optimal Control Problem)
Consider the linear-quadratic optimal control problem (4.46). Let assumptions 4.3.3
and 4.3.4 be satisfied.

Let the sequence of matrices {Re,k, Kk, Pk}N−1
k=0 be defined by

Re,k = Rk + BkPk+1B
′
k (4.51a)

Kk = −R−1
e,k(Mk + AkPk+1B

′
k)′ (4.51b)

Pk = Qk + AkPk+1A
′
k − K′

kRe,kKk (4.51c)

and let the vectors {ck, dk, ak, pk}N−1
k=0 be defined by

ck = Pk+1bk + pk+1 (4.52a)

dk = rk + Bkck (4.52b)

ak = −R−1
e,kdk (4.52c)

pk = qk + Akck + K′
kdk (4.52d)

Let the sequence of scalars {γk}N−1
k=0 be defined by

γk = γk+1 + fk + p′
k+1bk +

1

2
b′kPk+1bk +

1

2
d′

kak (4.53)
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Let x∗
0 = x0. Then the unique global minimizer {x∗

k+1, u
∗
k}N−1

k=0
of (4.46) may be

obtained by the iteration

u∗
k = Kkx∗

k + ak (4.54a)

x∗
k+1 = A′

kx∗
k + B′

ku∗
k + bk (4.54b)

The corresponding optimal value, φ∗, of (4.46) may be computed by

φ∗ =
1

2
x′

0P0x0 + p′
0x0 + γ0 (4.55)

Proof. Let Vk(xk) denote the value function defined by

Vk(xk) = min
{xi+1,ui}

N−1
i=k

{
N−1∑

i=k

li(xi, ui) + lN (xN ) : xi+1 = A′
ixi + B′

iui + bi, i = k, k + 1, . . . , N − 1

}

(4.56)
Note that V0(x0) corresponds to the optimal value of (4.46). Vk(xk) corresponds
to the optimal value of an extended linear-quadratic optimal control problem
starting at stage k with state xk given. By the above definition of the value
function, it is clear that

VN (xN ) = lN (xN ) =
1

2
x′

NPNxN + p′NxN + γN (4.57)

in which PN by assumption is a symmetric positive semi-definite matrix. By
Bellman’s principle of optimality and the dynamic programming algorithm (c.f.
Bertsekas, 1995a), the value function Vk(xk) may be expressed recursively as

Vk(xk) = min
xk+1,uk

{lk(xk, uk) + Vk+1(xk+1) : xk+1 = A′
kxk + B′

kuk + bk}

= min
uk

lk(xk, uk) + Vk+1(A
′
kxk + B′

kuk + bk)

= min
uk

φk(xk, uk)

(4.58)

in which the function φk(xk, uk) is defined by

φk(xk, uk) = lk(xk, uk) + Vk+1(A
′
kxk + B′

kuk + bk) (4.59)

To obtain the result claimed in the proposition, we want to show that

Vk(xk) =
1

2
x′

kPkxk + p′kxk + γk (4.60)

in which Pk is a symmetric positive semi-definite matrix. Hence, we want to
show that the value function Vk(xk) is a convex quadratic function. Observe
that this expression is valid for k = N as

VN (xN ) = lN (xN ) =
1

2
x′

NPNxN + p′NxN + γN (4.61)
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and PN is a symmetric positive semi-definite matrix by assumption. Vk(xk) is
proved to be a convex quadratic function by induction. Assume that

Vk+1(xk+1) =
1

2
x′

k+1Pk+1xk+1 + p′k+1xk+1 + γk+1 (4.62)

in which Pk+1 is a symmetric positive semi-definite matrix. Then

Vk+1(A
′
kxk + B′

kuk + bk) =
1

2
(A′

kxk + B′
kuk + bk)′Pk+1(A

′
kxk + B′

kuk + bk)

+ p′k+1(A
′
kxk + B′

kuk + bk) + γk+1

=
1

2
x′

kAkPk+1A
′
kxk + x′

kAkPk+1B
′
kuk +

1

2
u′

kBkPk+1B
′
kuk

+ [Ak(Pk+1bk + pk+1)]
′
xk + [Bk(Pk+1bk + pk+1)]

′
uk

+

(

γk+1 + p′k+1bk +
1

2
b′kPk+1bk

)

(4.63)

and

φk(xk, uk) = lk(xk, uk) + Vk+1(A
′
kxk + B′

kuk + bk)

=
1

2
x′

k (Qk + AkPk+1A
′
k)xk + x′

k (Mk + AkPk+1B
′
k)uk +

1

2
u′

k (Rk + BkPk+1B
′
k)uk

[qk + Ak(Pk+1bk + pk+1)]
′
xk + [rk + Bk(Pk+1bk + pk+1)]

′
uk

+

(

fk + γk+1 + p′k+1bk +
1

2
b′kPk+1bk

)

(4.64)

The value function Vk(xk) satisfies

Vk(xk) = min
uk

φk(xk, uk) (4.65)

A necessary and sufficient condition for u∗
k being a global minimizer of this

expression is
∇uk

φk(xk, u∗
k) = 0 (4.66)

as the Hessian

∇2
uk,uk

φk(xk, uk) = Rk + BkPk+1B
′
k = Re,k (4.67)

is positive definite. Re,k = Rk + BkPk+1B
′
k is symmetric positive definite as

Rk is symmetric positive definite and Pk+1 is symmetric positive semi-definite.
The necessary and sufficient optimality condition yields

∇uk
φk(xk, u∗

k) = (Mk + AkPk+1B
′
k)

′
xk+(Rk + BkPk+1B

′
k)u∗

k+[rk + Bk(Pk+1bk + pk+1)] = 0
(4.68)
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Re,k = Rk + BkPk+1B
′
k is positive definite and therefore also non-singular.

This implies that the unique global minimizer u∗
k may be expressed as

u∗
k = −(Rk + BkPk+1B

′
k)−1(Mk + AkPk+1B

′
k)′xk

− (Rk + BkPk+1B
′
k)−1(rk + Bk(Pk+1bk + pk+1))

= Kkxk + ak

(4.69)

The gain Kk and affine term ak are defined by

Kk = −(Rk + BkPk+1B
′
k)−1(Mk + AkPk+1B

′
k)′ = −R−1

e,k(Mk + AkPk+1B
′
k)′

(4.70a)

ak = −(Rk + BkPk+1B
′
k)−1(rk + Bk(Pk+1bk + pk+1)) = −R−1

e,kdk (4.70b)

in which

dk = rk + Bk(Pk+1bk + pk+1) = rk + Bkck (4.71)

and

ck = Pk+1bk + pk+1 (4.72)

Application of the result, u∗
k = Kkxk + ak, gives the following expression for

the value function

Vk(xk) = φk(xk, u∗
k) = φk(xk,Kkxk + ak)

=
1

2
x′

k (Qk + AkPk+1A
′
k)xk + x′

k (Mk + AkPk+1B
′
k) (Kkxk + ak)

+
1

2
(Kkxk + ak) (Rk + BkPk+1B

′
k) (Kkxk + ak)

+ [qk + Ak(Pk+1bk + pk+1)]
′
xk + [rk + Bk(Pk+1bk + pk+1)]

′
(Kkxk + ak)

+

(

fk + γk+1 + p′k+1bk +
1

2
b′kPk+1bk

)

=
1

2
xk (Qk + AkPk+1A

′
k + 2(Mk + AkPk+1Bk)Kk + K ′

k(Rk + BkPk+1B
′
k)Kk)xk

+ [(Mk + AkPk+1B
′
k)ak + K ′

k(Rk + BkPk+1B
′
k)ak + (qk + Ak(Pk+1bk + pk+1))

+ K ′
k(rk + Bk(Pk+1bk + pk+1))]

′xk

+

(

fk + γk+1 + p′k+1bk +
1

2
b′kPk+1bk

+[rk + Bk(Pk+1bk + pk+1)]
′ak +

1

2
a′

k(Rk + BkPk+1B
′
k)ak

)

=
1

2
xkPkxk + p′kxk + γk

(4.73)
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The quadratic weight matrix Pk is defined by

Pk = Qk + AkPk+1A
′
k + 2(Mk + AkPk+1B

′
k)Kk + K ′

k(Rk + BkPk+1B
′
k)Kk

= Qk + AkPk+1A
′
k − 2(Mk + AkPk+1B

′
k)R−1

e,k(Mk + AkPk+1B
′
k)′

+ (Mk + AkPk+1B
′
k)R−1

e,kRe,kR−1
e,k(Mk + AkPk+1B

′
k)′

= Qk + AkPk+1A
′
k − (Mk + AkPk+1B

′
k)R−1

e,k(Mk + AkPk+1B
′
k)′

= Qk + AkPk+1A
′
k − (Mk + AkPk+1B

′
k)R−1

e,kRe,kR−1
e,k(Mk + AkPk+1B

′
k)′

= Qk + AkPk+1A
′
k − K ′

kRe,kKk

(4.74)

and the linear weight matrix pk is defined by

pk = (Mk + AkPk+1B
′
k)ak + K ′

k(Rk + BkPk+1B
′
k)ak + (qk + Ak(Pk+1bk + pk+1))

+ K ′
k(rk + Bk(Pk+1bk + pk+1))

= (Mk + AkPk+1B
′
k)ak − (Mk + AkPk+1B

′
k)R−1

e,kRe,kak
︸ ︷︷ ︸

=0

+ qk + Ak(Pk+1bk + pk+1) + K ′
k(rk + Bk(Pk+1bk + pk+1))

= qk + Ak (Pk+1bk + pk+1)
︸ ︷︷ ︸

=ck

+K ′
k (rk + Bk(Pk+1bk + pk+1))
︸ ︷︷ ︸

=dk

= qk + Akck + K ′
kdk

(4.75)

Similarly, the scalar γk is defined by

γk = fk + γk+1 + p′k+1bk +
1

2
b′kPk+1bk

+ [rk + Bk(Pk+1bk + pk+1)]
′ak +

1

2
a′

k(Rk + BkPk+1B
′
k)ak

= fk + γk+1 + p′k+1bk +
1

2
b′kPk+1bk + d′kak − 1

2
a′

kRe,kR−1
e,kdk

= fk + γk+1 + p′k+1bk +
1

2
b′kPk+1bk +

1

2
d′kak

(4.76)

The matrices Pk i {Pk}N−1
k=0 are symmetric positive definite according to corol-

lary 4.2.8. Consequently, it has been established that the value function Vk(xk)
is

Vk(xk) =
1

2
x′

kPkxk + p′kxk + γk (4.77)
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for k = 0, 1, . . . , N and Pk is symmetric positive semi-definite. The optimal
value φ∗ is

φ∗ = min
{xk+1,uk}

N−1
k=0

{
N−1∑

k=0

lk(xk, uk) + lN (xN ) : xk+1 = A′
kxk + B′

kuk + bk, k = 0, 1, . . . , N − 1

}

= V0(x0) =
1

2
x′

0P0x0 + p′0x0 + γ0

(4.78)

and the global minimizer
{
x∗

k+1, u
∗
k

}N−1

k=0
is computed by

u∗
k = Kkx∗

k + ak (4.79a)

x∗
k+1 = A′

kx∗
k + B′

ku∗
k + bk (4.79b)

for k = 0, 1, . . . , N − 1. x∗
0 = x0 by convention.

By the deduction above, it has been established that

Re,k = Rk + BkPk+1B
′
k (4.80a)

Kk = −R−1
e,k(Mk + AkPk+1B

′
k)′ (4.80b)

Pk+1 = Qk + AkPk+1A
′
k − K ′

kRe,kKk (4.80c)

and

ck = Pk+1bk + pk+1 (4.81a)

dk = rk + Bkck (4.81b)

ak = −R−1
e,kdk (4.81c)

pk = qk + Akck + K ′
kdk (4.81d)

Furthermore

γk = fk + γk+1 + p′k+1bk +
1

2
b′kPk+1bk +

1

2
d′kak (4.82)

¤

Remark 4.3.6
Note that recursion for pk may be expressed as

pk = qk + Ak(Pk+1bk + pk+1) + K′
k(rk + Bk(Pk+1bk + pk+1)) (4.83)

By this formulation, it is evident that pk depends on pk+1.

As has just been established, the optimal control inputs for the extended linear-
quadratic optimal control problem are affine functions of the states. In contrast,
the optimal control inputs for the linear-quadratic optimal control problem are
linear functions of the states.
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4.3.1 Algorithms

The efficient computation of the solution of the extended linear-quadratic op-
timal control problem is facilitated by the next corollary.

Corollary 4.3.7
Let assumptions 4.3.3 and 4.3.4 be satisfied. Let {Re,k, Kk, Pk}N−1

k=0 be defined as in

proposition 4.3.5. Let {ck, dk, ak, pk}N−1
k=0 be defined as in proposition 4.3.5.

Then Re,k is positive definite and has the Cholesky factorization

Re,k = LkL′
k (4.84)

in which Lk is a non-singular lower triangular matrix.

Further, define
Yk = (Mk + AkPk+1B

′
k)′ (4.85)

and

Zk = L−1
k Yk (4.86)

zk = L−1
k dk (4.87)

Then

Pk = Qk + AkPk+1A
′
k − Z′

kZk (4.88)

pk = qk + Akck − Z′
kzk (4.89)

and uk = Kkxk + ak may be computed according to

uk = −(L′
k)−1(Zkxk + zk) (4.90)

Proof. By assumption 4.3.4, Rk is positive definite. In the proof of proposition
4.3.5 is has been established that Pk+1 is positive semi-definite for all k =
0, 1, . . . , N − 1. Therefore, Re,k = Rk + BkPk+1B

′
k is positive definite and has

the Cholesky factorization
Re,k = LkL′

k (4.91)

The matrix Yk is defined as

Yk = (Mk + AkPk+1B
′
k)′ (4.92)

and the matrix Zk is defined as

Zk = −L−1
k Yk = −L−1

k (Mk + AkPk+1B
′
k)′ (4.93)

Then

Kk = −R−1
e,k(Mk + AkPk+1B

′
k)′

= −(LkL′
k)−1Yk

= −(L′
k)−1L−1

k Yk

= −(L′
k)−1Zk

(4.94)
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Applying the deduced relations for Kk and Re,k in the recursion for Pk yields

Pk = Qk + AkPk+1A
′
k − K ′

kRe,kKk

= Qk + AkPk+1A
′
k − [−(L′

k)−1Zk]′LkL′
k[−(L′

k)−1Zk]

= Qk + AkPk+1A
′
k − Z ′

kL−1
k LkL′

k(L′
k)−1Zk

= Qk + AkPk+1A
′
k − Z ′

kZk

(4.95)

Define the vector zk as
zk = L−1

k dk (4.96)

in which dk is computed according to proposition 4.3.5. Then the recursion for
pk may be expressed as

pk = qk + Akck + K ′
kdk

= qk + Akck + [−(L′
k)−1Zk]′dk

= qk + Akck − Z ′
kL−1

k dk

= qk + Akck − Z ′
kzk

(4.97)

The expression for ak given by proposition 4.3.5 may be developed to

ak = −R−1
e,kdk

= −(L′
k)−1L−1

k dk

= −(L′
k)−1zk

(4.98)

such that uk may be computed by

uk = Kkxk + ak

= −(L′
k)−1Zkxk − (L′

k)−1zk

= −(L′
k)−1(Zkxk + zk)

(4.99)

¤

Algorithm 1 provides the major steps in factorizing and solving the extended
linear quadratic optimal control problem (4.46). This algorithm factorizes the
KKT-matrix according to the Riccati recursion and computes the minimizer
{xk+1, uk}N−1

k=0 as well as the optimal value φ of (4.46). The major computa-
tional step in this algorithm is typically the computation of the term AkPk+1A

′
k

by computation of S = AkPk+1 and SA′
k. In this computation it is important

to utilize that the matrices Pk for k = 0, 1, . . . , N are symmetric. Then only
half the entries of Pk need to be computed. Similarly, it may be utilized that
the matrices Re,k = Rk + BkPk+1B

′
k are symmetric for k = 0, 1, . . . , N − 1.

Remark 4.3.8
For cases in which symmetry of P is not utilized the algorithm may diverge due
to numerical instability. Empirical evidence suggest that algorithm is stabilized by
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Algorithm 1 Solution of the extended linear-quadratic optimal control prob-
lem.

Require: N , (PN , pN , γN ), {Qk,Mk, Rk, qk, fk, rk, Ak, Bk, bk}N−1
k=0 , and x0.

Assign P ← PN , p ← pN , and γ ← γN .
for k = N − 1 : −1 : 0 do

Compute the temporary matrices and vectors

Re = Rk + BkPB′
k (4.100a)

S = AkP (4.100b)

Y = (Mk + SB′
k)′ (4.100c)

s = Pbk (4.100d)

c = s + p (4.100e)

d = rk + Bkc (4.100f)

Cholesky factorize Re

Re = LkL′
k (4.101)

Compute Zk and zk by solving

LkZk = Y (4.102a)

Lkzk = d (4.102b)

Update P , γ, and p by

P ← Qk + SA′
k − Z ′

kZk (4.103a)

γ ← γ + fk + p′bk +
1

2
s′bk − 1

2
z′kzk (4.103b)

p ← qk + Akc − Z ′
kzk (4.103c)

end for

Compute the optimal value by

φ =
1

2
x′

0Px0 + p′x0 + γ (4.104)

for k = 0 : 1 : N − 1 do

Compute
y = Zkxk + zk (4.105)

and solve the linear system of equations

L′
kuk = −y (4.106)

for uk.
Compute

xk+1 = A′
kxk + B′

kuk + bk (4.107)

end for

Return {xk+1, uk}N−1
k=0 and φ.
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forcing symmetry of P . Hence, in the computation of the entire matrix P , it should
be computed according to

P ← Qk + SA′
k − Z′

kZk (4.108a)

P ← 1

2

(
P + P ′) (4.108b)

In some practical applications, the extended linear-quadratic optimal control
problem must be solved for different values of the data (x0, {qk, rk, bk, fk}N−1

k=0 , {pN , γN})
but unaltered values of the data ({Qk,Mk, Rk, Ak, Bk}N−1

k=0 , PN ). In such sit-
uations, it is inefficient to call algorithm 1 repeatedly to solve these problems.
Instead, one factorization, i.e. computation of {Lk, Zk, Pk}N−1

k=0 , may be com-

puted for the unaltered part of the data, i.e. ({Qk,Mk, Rk, Ak, Bk}N−1
k=0 , PN ).

This factorization is stated in algorithm 2. The computation of {Lk, Zk, Pk}N−1
k=0

is the major cost of solving the extended linear-quadratic optimal control prob-
lem. Given the factorization {Lk, Zk, Pk}N−1

k=0 , the extended linear-quadratic

optimal control problem may be solved for each data set (x0, {qk, rk, bk, fk}N−1
k=0 , {pN , γN})

by application of algorithm 3. Compared to simultaneous factorization and so-
lution of the extended linear-quadratic optimal control problem (i.e. algorithm
1), the sequential factorization and solution of the extended linear-quadratic
optimal control problem (i.e. algorithms 2 and 3) requires storage of the entire

sequence of matrices constituting the factorization, i.e. {Lk, Zk, Pk}N−1
k=0 .

The principles applied in developing an algorithm for factorization and an al-
gorithm for solution may be specialized even further for cases in which x0 is the
only changing data. This may for instance be the case in linear time-invariant
model predictive control applications.

4.4 Equality Constrained Quadratic Program

This section introduces the general equality constrained quadratic program and
describes briefly a method for its solution. The solution, in form of the opti-
mal solution-Lagrange multiplier pair, is obtained by solving the KKT-system
corresponding to the first order necessary and sufficient optimality conditions.
The computation of the minimizer and associated Lagrange multipliers of an
equality constrained quadratic program is then used as a framework for solution
of the extended linear-quadratic optimal control problem.

We formally define the equality constrained convex quadratic program by the
following problem formulation.

Problem 4.4.1 (Equality Constrained Convex Quadratic Program)
Let the matrix G ∈ R

n×n be symmetric positive semi-definite. Let g ∈ R
n and ρ ∈ R.

Let A ∈ R
n×m and b ∈ R

m.
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Algorithm 2 Factorization for the extended linear-quadratic optimal control
problem.

Require: N, PN , and {Qk,Mk, Rk, Ak, Bk}N−1
k=0 .

for k = N − 1 : −1 : 0 do

Compute the temporary matrices

Re = Rk + BkPk+1B
′
k (4.109a)

S = AkPk+1 (4.109b)

Y = (Mk + SB′
k)′ (4.109c)

Cholesky factorize Re

Re = LkL′
k (4.110)

and compute Zk by solving

LkZk = Y (4.111)

Compute
Pk = Qk + SA′

k − Z ′
kZk (4.112)

end for

Return {Pk, Lk, Zk}N−1
k=0 .

Then the equality constrained convex quadratic program is

min
y∈Rn

φ =
1

2
y′Gy + g′y + ρ (4.120a)

s.t. A′y = b (4.120b)

The solution of this program is the minimizer y∗ and the optimal value φ∗.

The solution of the equality constrained quadratic program (4.120) is obtained
using a Lagrange multiplier algorithm. This method employs the Lagrange
function of (4.120) and derives the first order necessary and sufficient conditions
in terms of this Lagrange function.

Definition 4.4.2 (Lagrangian and Lagrange Multipliers)
Let y ∈ R

n and π ∈ R
m. Let L : R

n × R
m 7→ R be defined as

L(y, π) =
1

2
y′Gy + g′y + ρ − π′ (A′y − b

)
(4.121)

L is the Lagrangian function of (4.120) and π are called the Lagrange multipliers.

Proposition 4.4.3 (Necessary and Sufficient Optimality Conditions)
Let y ∈ R

n. Let π ∈ R
m. Define the Lagrangian function L : R

n×R
m 7→ R of (4.120)

according to (4.121). Then y is a global minimizer of the equality constrained convex
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Algorithm 3 Solve a factorized extended linear-quadratic optimal control
problem.

Require: N , (PN , pN , γN ), {Qk,Mk, Rk, qk, rk, fk, Ak, Bk, bk}N−1
k=0 , x0, and

{Pk, Lk, Zk}N−1
k=0 .

Assign p ← pN and γ ← γN .
for k = N − 1 : −1 : 0 do

Compute the temporary vectors

s = Pk+1bk (4.113a)

c = s + p (4.113b)

d = rk + Bkc (4.113c)

Solve the lower triangular system of equations

Lkzk = d (4.114)

for zk.
Update γ and p by the expressions

γ ← γ + fk + p′bk +
1

2
s′bk − 1

2
z′kzk (4.115a)

p ← qk + Akc − Z ′
kzk (4.115b)

end for

Compute the optimal value

φ =
1

2
x′

0P0x0 + p′x0 + γ (4.116)

for k = 0 : 1 : N − 1 do

Compute
y = Zkxk + zk (4.117)

and solve the upper triangular system of equations

L′
kuk = −y (4.118)

for uk.
Compute

xk+1 = A′
kxk + B′

kuk + bk (4.119)

end for

Return {xk+1, uk}N−1
k=0 and φ.
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quadratic program (4.120) if and only if

∇yL(y, π) = Gy + g − Aπ = 0 (4.122a)

∇πL(y, π) = −A′y + b = 0 (4.122b)

Proof. See Nocedal and Wright (1999). ¤

The first order necessary and sufficient optimality conditions (4.122) may be
stated and solved as the KKT-system presented in the following corollary. In
practice, the optimal solution of (4.120) is obtained by solving the symmetric
indefinite system of equations constituting the KKT-system, i.e. (4.123).

Corollary 4.4.4
Let y ∈ R

n and π ∈ R
m. Then y is a global minimizer of (4.120) if and only if

(
G −A

−A′ 0

) (
y
π

)

= −
(

g
b

)

(4.123)

Proof. Follows directly from proposition 4.4.3. ¤

Remark 4.4.5
The matrix

(
G −A

−A′ 0

)

(4.124)

is called the Karush-Kuhn-Tucker (KKT) matrix of (4.120).

Proposition 4.4.6
Let the KKT-matrix of (4.120) be non-singular. Let π ∈ R

m and y ∈ R
n. Then x is

the unique global minimizer of (4.120) if and only if
(

G −A
−A′ 0

) (
y
π

)

= −
(

g
b

)

(4.125)

Proof. By corollary 4.4.4, it has been established that y is a global minimizer
of (4.120) if and only if

(
G −A

−A′ 0

)(
y
π

)

= −
(

g
b

)

(4.126)

As the KKT-matrix is non-singular, (y, π) determined by this KKT-system is
unique. Consequently, y is the unique global minimizer of (4.120). ¤

If the matrix A ∈ R
n×m does not have full column rank, then either the

constraints are too stringent such that no feasible solution exists or some of
the constraints are superfluous. In both cases the KKT-matrix is singular.
However, in the case of superfluous constraints, these can be discarded from
the problem as they are linear combinations of other constraints. Therefore
we may assume without loss of generality for feasible problems that the matrix
A ∈ R

n×m has full column rank.



192 Dynamic Programming for Linear-Quadratic Optimal Control

Proposition 4.4.7
Let A ∈ R

n×m have full column rank. Let Z ∈ R
n×(n−m) be the null space of A′.

Let G ∈ R
n×n be symmetric positive semi-definite. Then the KKT-matrix

(
G −A

−A′ 0

)

(4.127)

is non-singular if and only if Z′GZ is positive definite.

Proof. See Nocedal and Wright (1999). ¤

In summary, it has been established that if the KKT-matrix (4.124) of the
equality constrained convex quadratic program (4.120) is non-singular, then
the unique global minimizer, y, of (4.120) may be obtained as the solution of
the KKT-system (4.123).

4.4.1 Extended Linear-Quadratic Optimal Control Prob-

lem

In this subsection, we consider the extendend linear-quadratic optimal control
problem (4.46) as a convex quadratic program. The extended linear-quadratic
optimal control problem is

min
{xk+1,uk}

N−1
k=0

φ =

N−1∑

k=0

lk(xk, uk) + lN (xN ) (4.128a)

s.t. xk+1 = A′
kxk + B′

kuk + bk k = 0, 1, . . . , N − 1 (4.128b)

with the stage costs

lk(xk, uk) =
1

2
x′

kQkxk + x′
kMkuk +

1

2
u′

kRkuk + q′kxk + r′kuk + fk k = 0, 1, . . . , N − 1

(4.129a)

lN (xN ) =
1

2
x′

NPNxN + p′NxN + γN (4.129b)

In the extended linear-quadratic optimal control problem, the initial state x0

is a parameter and not a decision variable. To emphasize this fact, we may
express the stage costs as

l0(x0, u0) =
1

2
u′

0R0u0 + (M ′
0x0 + r0)

′u0 +

(
1

2
x′

0Q0x0 + q′0x0 + f0

)

(4.130a)

lk(xk, uk) =
1

2

(
xk

uk

)′ (
Qk Mk

M ′
k Rk

) (
xk

uk

)

+

(
qk

rk

)′ (
xk

uk

)

+ fk k = 1, 2, . . . , N − 1

(4.130b)

lN (xN ) =
1

2
x′

NPNxN + p′NxN + γN (4.130c)
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Similarly, the constraints may be expressed as

B′
0u0 − x1 = −(A′

0x0 + b0) (4.131a)

A′
kxk + B′

kuk − xk+1 = −bk k = 1, 2, . . . , N − 1 (4.131b)

in which the parameters are on the right hand side of the equality sign.

To illustrate the formulation of the extended linear-quadratic optimal control
problem as a quadratic program, consider the case with a horizon N = 3.
In this case, the extended linear-quadratic optimal control problem may be
formulated as an equality constrained quadratic program

min
y

φ =
1

2
y′Gy + g′y + ρ (4.132a)

s.t. A′y = b (4.132b)

with the vector of decision variables, y, given by

y =











u0

x1

u1

x2

u2

x3











(4.133)

The parameters of the objective function in (4.132) may be expressed as

G =











R0

Q1 M1

M ′
1 R1

Q2 M2

M ′
2 R2

P3











g =











r0 + M ′
0x0

q1

r1

q2

r2

p3











(4.134a)

ρ =

(
1

2
x′

0Q0x0 + q′0x0 + f0

)

+

2∑

k=1

fk + γ3 (4.134b)

Similarly, the parameters defining the equality constraints are given by the
expressions

A =











B0

−I A1

B1

−I A2

B2

−I











b = −





A′
0x0 + b0

b1

b2



 (4.135)

As the identity matrix, I, has full rank it is trivial to establish that the matrix
A has full column rank.
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With the just introduced expressions for G and A, it is clear that the KKT-
matrix of the extended linear-quadratic optimal control problem (4.46) may be
expressed as

(
G −A

−A′ 0

)

=

















R0 −B0

Q1 M1 I −A1

M ′
1 R1 −B1

Q2 M2 I −A2

M ′
2 R2 −B2

P3 I
−B′

0 I
−A′

1 −B′
1 I

−A′
2 −B′

2 I

















(4.136)
If assumption 4.3.3 is satisfied, then G of the extended linear-quadratic optimal
control problem is symmetric positive semi-definite. Furthermore, if Rk is pos-
itive definite for k = 0, 1, . . . , N − 1, i.e. assumption 4.3.4 is satisfied, then the
KKT-matrix of the extended linear-quadratic optimal control problem is non-
singular. This fact is readily established by observing the KKT-matrix. Each
block column involving a matrix Rk has full column rank due to assumption
4.3.4. All other block columns do also have full column rank as they involve
the identity matrix, I. Furthermore, due to the structure of the KKT-matrix
all block columns are linearly independent. Therefore, the KKT-matrix has
full column rank and is non-singular as it is a square matrix.

Lemma 4.4.8
Let assumptions 4.3.3 and 4.3.4 be satisfied. Then the KKT-matrix of the extended
linear-quadratic optimal control problem (4.46) is non-singular.

Proof. Follows from the preceding discussion. ¤

Remark 4.4.9
Positive definiteness of Rk for k = 0, 1, . . . , N −1 (i.e. assumption 4.3.4) is a sufficient
but not a necessary condition for non-singularity of the KKT-matrix. Using the argu-
ment from the dynamic programming approach a necessary and sufficient condition
for non-singularity of the KKT-matrix is that the matrices

Re,k = Rk + BkPk+1B
′
k k = 0, 1, . . . , N − 1 (4.137)

are non-singular.

In the following proposition we state necessary and sufficient conditions for the
characterization of a unique global minimizer of the extended linear-quadratic
optimal control problem. These conditions are based on the necessary and
sufficient conditions characterizing the unique global minimizer of a convex
quadratic program.
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Proposition 4.4.10
Let assumptions 4.3.3 and 4.3.4 be satisfied. Let πk ∈ R

n for k = 0, 1, . . . , N − 1. Let
x0 ∈ R

n be given.

Then {xk+1, uk}N−1
k=0 is the unique global minimizer of the extended linear-quadratic

optimal control problem (4.46) if and only if

M ′
kxk + Rkuk + rk − Bkπk = 0 k = 0, 1, . . . , N − 1 (4.138a)

Qkxk + Mkuk + qk − Akπk + πk−1 = 0 k = 1, 2, . . . , N − 1 (4.138b)

PNxN + pN + πN−1 = 0 (4.138c)

A′
kxk + B′

kuk + bk − xk+1 = 0 k = 0, 1, . . . , N − 1 (4.138d)

Proof. The Lagrangian of the extended linear-quadratic optimal control prob-
lem (4.46) is

L({xk+1, uk, πk}N−1
k=0 ) =

N−1∑

k=0

lk(xk, uk) + lN (xN ) −
N−1∑

k=0

π′
k (A′

kxk + B′
kuk + bk − xk+1)

=
N−1∑

k=0

1

2

(
xk

uk

)′ (
Qk Mk

M ′
k Rk

)(
xk

uk

)

+

(
qk

rk

)′ (
xk

uk

)

+ fk

+
1

2
x′

NPNxN + p′NxN + γN

−
N−1∑

k=0

π′
k(A′

kxk + B′
kuk + bk − xk+1)

=
N−1∑

k=0

1

2
(x′

kQkxk + 2x′
kMkuk + u′

kRkuk) + q′kxk + r′kuk + fk

+
1

2
x′

NPNxN + p′NxN + γN

−
N−1∑

k=0

π′
k (A′

kxk + B′
kuk + bk − xk+1)

(4.139)
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The first-order necessary and sufficient optimality conditions are

∇uk
L = M ′

kxk + Rkuk + rk − Bkπk = 0 k = 0, 1, . . . , N − 1

(4.140a)

∇xk
L = Qkxk + Mkuk + qk − Akπk + πk−1 = 0 k = 1, 2, . . . , N − 1

(4.140b)

∇xN
L = PNxN + pN + πN−1 = 0 (4.140c)

∇πk
L = − (A′

kxk + B′
kuk + bk − xk+1) = 0 k = 0, 1, . . . , N − 1

(4.140d)

Consequently, as the associated KKT-matrix is non-singular according to lemma
4.4.8 the unique global minimizer of the extended linear-quadratic optimal con-
trol problem, which is a quadratic program, is characterized by the necessary
and sufficient conditions

M ′
kxk + Rkuk + rk − Bkπk = 0 k = 0, 1, . . . , N − 1 (4.141a)

Qkxk + Mkuk + qk − Akπk + πk−1 = 0 k = 1, 2, . . . , N − 1 (4.141b)

PNxN + pN + πN−1 = 0 (4.141c)

A′
kxk + B′

kuk + bk − xk+1 = 0 k = 0, 1, . . . , N − 1 (4.141d)

¤

For illustrative and notational purposes let the prediction horizon be N = 3.
For the general convex equality constrained quadratic program, the first order
necessary and sufficient conditions may be stated as the KKT-system

(
G −A

−A′ 0

)(
y
π

)

= −
(

g
b

)

(4.142)

Under the appropriate assumptions discussed previously, the KKT-matrix is
non-singular and the unique global minimizer of (4.120) may be obtained as
part of the solution of the above KKT-system. Similarly, the first order nec-
essary and sufficient optimality conditions for the extended linear-quadratic
optimal control problem may be stated as the following KKT-system for the
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case N = 3
















R0 −B0

Q1 M1 I −A1

M ′
1 R1 −B1

Q2 M2 I −A2

M ′
2 R2 −B2

P3 I
−B′

0 I
−A′

1 −B′
1 I

−A′
2 −B′

2 I

































u0

x1

u1

x2

u2

x3

π0

π1

π2

















= −

















M ′
0x0 + r0

q1

r1

q2

r2

p3

−A′
0x0 − b0

−b1

−b2

















(4.143)

Under assumptions 4.3.3 and 4.2.4, the unique global minimizer, {xk+1, uk}N−1=2
k=0 ,

of the corresponding extended linear-quadratic optimal control problem may be
computed as part of the solution of the above highly structured KKT-system.
By appropriate reordering of the decision variables and Lagrange multipliers,
we obtain a banded KKT-system which is equivalent to (4.143)
















R0 −B0

−B′
0 0 I

I Q1 M1 −A1

M ′
1 R1 −B1

−A′
1 −B′

1 0 I
I Q2 M2 −A2

M ′
2 R2 −B2

−A′
2 −B′

2 0 I
I P3

































u0

π0

x1

u1

π1

x2

u2

π2

x3

















= −

















M ′
0x0 + r0

−A′
0x0 − b0

q1

r1

−b1

q2

r2

−b2

p3

















(4.144)
The solution of this banded system of linear equations may be accomplished
using a solver for banded systems (c.f. Golub and Van Loan, 1996). DGBSV in
LAPACK (c.f. Anderson et al., 1999) is a solver for band diagonal systems. The
method employed in DGBSV is banded LU-factorization with partial pivoting
(see also Wright, 1996).

The unique solution, {xk+1, uk, πk}N−1
k=0 , of (4.143) and (4.144) consists of the

unique global minimizer, {xk+1, uk}N−1
k=0 , of the extended linear-quadratic opti-

mal control problem (4.46) and of its associated Lagrange multipliers {πk}N−1
k=0 .

The unique global minimizer, {xk+1, uk}N−1
k=0 , of the extended linear-quadratic

optimal control problem (4.46) may be obtained by dynamic programming
as specified by proposition 4.3.5 and implemented by algorithms 1-3. Con-
sequently, the solution of (4.143) and (4.144) may be obtained by applying

proposition 4.3.5 for obtaining the primal solution {xk+1, uk}N−1
k=0 and subse-

quent application of the recursion

πN−1 = −PNxN − pN (4.145a)

πk−1 = Akπk − Qkxk − Mkuk − qk k = N − 1, N − 2, . . . , 1 (4.145b)
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for obtaining the dual solution {πk}N−1
k=0 . This is an efficient procedure for

solution of the block banded system (4.144) as it is linear in the horizon, N ,
and scales cubically with the with the size of the blocks, Ak and Bk. This
Riccati procedure explicitly utilizes the fact that the matrices connecting the
blocks are identity matrices.

Algorithm 4 summarizes the procedure for computation of the solution of the
extended linear-quadratic optimal control problem and its associated Lagrange
multipliers. The solution, {xk+1, uk, πk}N−1

k=0 , provided corresponds to the so-
lution when the extended linear-quadratic optimal control problem is regarded
as a quadratic program. Algorithm 4 may also be regarded as a Riccati based
method for factorization and solution of either (4.143) or (4.144). In this al-
gorithm, the factorization of the KKT-matrix is conducted simultaneous with
the solution of the KKT-system. This implies that the sequence of matrices,
Pk, are not stored.

Algorithm 5 is algorithm 3 extended with computation of the Lagrange mul-
tipliers {πk}N−1

k=0 according to (4.145). Application of this algorithm requires

that a factorization {Pk, Lk, Zk}N−1
k=0 of the KKT-matrix corresponding to the

extended linear-quadratic optimal control problem has already been computed.
This factorization may be conducted using algorithm 2. Algorithm 5 is sup-
posed to be used when the extended linear-quadratic optimal control problem
with constant ({Qk,Mk, Rk, Ak, Bk} , PN ) is solved several times for different

values of (x0, {qk, rk, bk}N−1
k=0 , pN ). Consequently, {Pk, Lk, Zk}N−1

k=0 in addition

with the data ({Qk,Mk, Rk, Ak, Bk}N−1
k=0 , PN ) may be regarded as a factoriza-

tion of the KKT matrix in (4.143) as well as (4.144). Algorithm 2 is constructed
for computation of this factorization. Algorithm 5 may be regarded as a proce-
dure for solving (4.143) and (4.144) when their factorization {Pk, Lk, Zk}N−1

k=0

is available.

Occasionally, it is more convenient to use the Lagrange multipliers, µk, defined
as µk = −πk rather than πk. In this case, the KKT system corresponding to
(4.143) may be expressed as

















R0 B0

Q1 M1 −I A1

M ′
1 R1 B1

Q2 M2 −I A2

M ′
2 R2 B2

P3 −I
B′

0 −I
A′

1 B′
1 −I

A′
2 B′

2 −I

































u0

x1

u1

x2

u2

x3

µ0

µ1

µ2

















= −

















M ′
0x0 + r0

q1

r1

q2

r2

p3

A′
0x0 + b0

b1

b2

















(4.165)
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Algorithm 4 Solution of the extended linear-quadratic optimal control prob-
lem as a QP.

Require: N , (PN , pN , γN ), {Qk,Mk, Rk, qk, fk, rk, Ak, Bk, bk}N−1
k=0 , and x0.

Assign P ← PN , p ← pN , and γ ← γN .
for k = N − 1 : −1 : 0 do

Compute the temporary matrices and vectors

Re = Rk + BkPB′
k (4.146a)

S = AkP (4.146b)

Y = (Mk + SB′
k)′ (4.146c)

s = Pbk (4.146d)

c = s + p (4.146e)

d = rk + Bkc (4.146f)

Cholesky factorize Re

Re = LkL′
k (4.147)

Compute Zk and zk by solving

LkZk = Y (4.148a)

Lkzk = d (4.148b)

Update P , γ, and p by

P ← Qk + SA′
k − Z ′

kZk (4.149a)

γ ← γ + fk + p′bk +
1

2
s′bk − 1

2
z′kzk (4.149b)

p ← qk + Akc − Z ′
kzk (4.149c)

end for

Compute the optimal value by

φ =
1

2
x′

0Px0 + p′x0 + γ (4.150)

for k = 0 : 1 : N − 1 do

Compute
y = Zkxk + zk (4.151)

and solve the linear system of equations

L′
kuk = −y (4.152)

for uk.
Compute

xk+1 = A′
kxk + B′

kuk + bk (4.153)

end for

Compute
πN−1 = −PN−1xN−1 − pN−1 (4.154)

for k = N − 1 : −1 : 1 do

Compute
πk−1 = Akπk − Qkxk − Mkuk − qk (4.155)

end for

Return {xk+1, uk, πk}N−1
k=0 and φ.
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Algorithm 5 Solve a factorized extended linear-quadratic optimal control
problem as a QP.

Require: N , (PN , pN , γN ), {Qk,Mk, Rk, qk, rk, fk, Ak, Bk, bk}N−1
k=0 , x0, and

{Pk, Lk, Zk}N−1
k=0 .

Assign p ← pN and γ ← γN .
for k = N − 1 : −1 : 0 do

Compute the temporary vectors

s = Pk+1bk (4.156a)

c = s + p (4.156b)

d = rk + Bkc (4.156c)

Solve the lower triangular system of equations

Lkzk = d (4.157)

for zk.
Update γ and p by the expressions

γ ← γ + fk + p′bk +
1

2
s′bk − 1

2
z′kzk (4.158a)

p ← qk + Akc − Z ′
kzk (4.158b)

end for

Compute the optimal value

φ =
1

2
x′

0P0x0 + p′x0 + γ (4.159)

for k = 0 : 1 : N − 1 do

Compute
y = Zkxk + zk (4.160)

and solve the upper triangular system of equations

L′
kuk = −y (4.161)

for uk.
Compute

xk+1 = A′
kxk + B′

kuk + bk (4.162)

end for

Compute
πN−1 = −PN−1xN−1 − pN−1 (4.163)

for k = N − 1 : −1 : 1 do

Compute
πk−1 = Akπk − Qkxk − Mkuk − qk (4.164)

end for

Return {xk+1, uk, πk}N−1
k=0 and φ.
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and the KKT-system corresponding to (4.144) may be expressed as
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(4.166)

Either (4.165) or (4.166) may be solved by computing {xk+1, uk}N−1
k=0 using the

Riccati based iteration specified in proposition 4.3.5 and subsequent computa-
tion of µk by

µN−1 = PNxN + pN (4.167a)

µk−1 = Akµk + Qkxk + Mkuk + qk k = N − 1, N − 2, . . . , 1 (4.167b)

4.5 Conclusion

The extended linear-quadratic optimal control problem (4.46) has been defined
as a finite horizon linear-quadratic program with control structure. In partic-
ular, the stage costs of the extended linear-quadratic optimal control problem
contain terms linear in the states, xk, and terms linear in the controls, uk. Fur-
thermore, the dynamic equations contain an affine term, bk. These terms are
the extensions of the extended linear-quadratic optimal control problem com-
pared to the standard linear-quadratic optimal control problem (4.15) usually
considered in the engineering control literature.

Using dynamic programming, a computational efficient Riccati based procedure
for solution of the extended linear-quadratic optimal control problem has been
developed. The developed Riccati based procedure may also be used to factor-
ize and solve the KKT-system corresponding to the extended linear-quadratic
optimal control problem.

The extended linear-quadratic optimal control problem constitute the quadratic
subproblem in SQP procedures for nonlinear optimal control. Furthermore,
the linear terms in the objective function and the affine term in the dynamic
equations are important in linear model predictive control with infeasibilities
and anticipatory linear model predictive control.
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5

Numerical Solution of

Nonlinear Optimal Control

Problems

In a tutorial fashion, the principles for efficient solution of unconstrained non-
linear optimal control problems described by ordinary differential equations
are presented. These principles are presented through numerical solution of a
continuous-time nonlinear optimal control problem of the Bolza form. To focus
on the basic principles involved and for illustrative purposes, the continuous-
time Bolza problem is discretized by the explicit Euler method. The discrete-
time nonlinear optimal control problem of the Bolza form is solved by different
SQP methods and an algorithm based on the discrete maximum principle. The
SQP algorithms presented are implementations based on open- and closed-loop
feasible path control vector parameterizations as well as an infeasible path si-
multaneous procedure. Two procedures for solution of the quadratic programs
are presented. In the first procedure, the structure of the quadratic programs
arising in the solution of the nonlinear optimal control problem is utilized by a
Riccati iteration based factorization of the resulting KKT-system. In the sec-
ond procedure, an efficient procedure for elimination of the states and solution
of a dense reduced space quadratic program is presented. These methods are
compared for a simple process example operated around an unstable equilib-
rium. The infeasible path and the closed-loop feasible path algorithms converge
for this example. The implemented open-loop feasible path algorithms are not
able to converge to an unstable equilibrium. The Riccati based solution pro-
cedure enables implementation of the stabilized infeasible path SQP algorithm
as well as the closed-loop feasible path SQP algorithm. The methods are pre-
sented in a framework that is easily extended to constrained nonlinear optimal
control problems. Such extensions and methodologies for efficient integration
of the ordinary differential equations as well as the corresponding sensitivity
equations are discussed.
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5.1 Introduction

Process optimization, and dynamic optimization in particular, is one of the
fastest growing technologies in the automation industry because of its ability to
link a company’s business and economic objectives to its operations. Dynamic
optimization is the only technology that can truly optimize state transitions
in continuous processes and it is equally applicable to batch and semi-batch
processes. Therefore, dynamic process optimization is one of the most effi-
cient ways to achieve optimal asset utilization and performance, as it is often
aimed directly at improving plant profitability in an immediately quantifiable
way. Almost all processes can benefit from dynamic optimization in some way
- by increasing yield and throughput, limiting off-spec production, reducing
downtime, and lowering energy costs.

Dynamic optimization concerns the solution of optimization problems con-
strained by systems of differential equations. This problem is also known as the
deterministic nonlinear optimal control problem, or just the nonlinear optimal
control problem. Numerical solution of the nonlinear optimal control problem
is the key enabling technique for moving horizon estimation and control. Col-
lectively, moving horizon estimation and control are known as model predictive
control, which has received wide spread industrial acceptance as the preferred
advanced process control technique.

In this paper specialized algorithms for numerical solution of the unconstrained
nonlinear optimal control problem are presented. We advocate the use of spe-
cialized algorithms rather than bundling of off-the-shelf algorithms for opti-
mization and integration. By the specialized approach solution of large-scale
systems as well as unstable systems is made possible. Furthermore, by the
development of specialized algorithms, inherent numerical problems associated
with control of systems around unstable equilibria as well as efficient linear
algebra techniques for solution of the linear system arising are revealed. These
insights extends and refines the theory of linear systems and the optimal control
of linear quadratic systems.

This paper is limited to unconstrained optimal control problems. That is opti-
mal control problems in which the only constraint is the differential equations
describing the dynamics of the system. Furthermore, the dynamics is restricted
to be described by systems of ordinary differential equations. This restriction
excludes systems whose dynamics is described by differential-algebraic equa-
tions. Finally, the methods are presented by fixed step size explicit integration
of the system of ordinary differential equations. All these simplifications are
introduced to direct the focus on the essential principles for numerical solu-
tion of optimal control problems. The methods presented can be extended to
systems governed by index-1 differential-algebraic equations, integrated by an
implicit integration method, and with constraints on the control inputs. The
infeasible path sequential quadratic programming (SQP) algorithm can even
be extended to systems with state constraints. However, the feasible path SQP
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methods and the discrete maximum principle algorithm cannot in a concep-
tually simple fashion be extended to systems with state constraints such that
feasibility with respect to the inequality state constraints is respected at every
iteration of the algorithm. However, if violation of the state constraint dur-
ing the solution process is acceptable, then the feasible path methods can be
extended to systems with state constraints in a straightforward manner.

Utilization of the special structure arising from the separable objective func-
tion and the fact that the constraints are differential equations is essential
for effective and practical solution of unconstrained optimal control problems.
The structure exploiting algorithms are compared to algorithms constructing
a dense quadratic program to be solved at each iteration. Numerical issues
associated with dynamic optimization around unstable equilibria and the im-
plications for the considered algorithms are discussed extensively.

The basic principles of sequential quadratic programming are presented in sec-
tion 5.2. Section 5.3 provides an overview of numerical methods for solution of
the continuous time optimal control problem. Furthermore, the principles of
sequential quadratic programming are specialized to the unconstrained optimal
control problem. The specialization consists of a partitioned update of the Hes-
sian approximation and a structure utilizing Riccati based factorization of the
KKT-matrix. The proposed sequential quadratic programming algorithm is an
infeasible path method using an explicit Euler method with fixed step size for
integration. Both an open-loop and a closed-loop feasible path SQP algorithm
are presented in section 5.4. These algorithms are also based on factorization of
the KKT-matrix by Riccati iteration. Section 5.6 propose an algorithm based
on the discrete maximum-principle rather than sequential quadratic program-
ming. In section 5.7, the algorithms are demonstrated on a process example
concerning operation at an unstable equilibrium. Extensions and refinements
of the algorithms are presented and discussed in section 5.8.

5.2 Sequential Quadratic Programming

In this section, we review the optimality conditions for an equality constrained
nonlinear program. These conditions are used to establish a sequential quadratic
programming algorithm based on line search for the equality constrained non-
linear program. The developed algorithm is intended to serve as a template for
unconstrained nonlinear optimal control algorithms and make the construction
of such algorithms transparent.

Consider the equality constrained nonlinear program

min
x∈Rn

f(x) (5.1a)

s.t. g(x) = 0 (5.1b)

in which f : R
n 7→ R and g : R

n 7→ R
m are twice continuously differentiable
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functions. Sequential quadratic programming solves the nonlinear program
(5.1) by solution of a sequence of equality constrained quadratic programs.

The sequential quadratic programming algorithm was first developed by Wil-
son (1963) who used the exact Hessian of the Lagrangian function. Garcia-
Palomares and Mangasarian (1976) first suggested to use variable-metric methods
for approximation of the quadratic part in the quadratic programs solved by
the sequential quadratic programming algorithm. Han (1976) showed that if
the Hessian in the QP problem is replaced by an approximation computed
by either the Davidson-Fletcher-Powell update (DFP) or Powell’s symmetric
Broyden update (PSB), then the resulting SQP method is locally superlinearly
convergent in both the primal and the dual variables. Furthermore, locally it
takes constant step sizes (α = 1). In developing these results, Han required
that the KKT-matrix is non-singular and that the initial Hessian approxima-
tion is sufficiently close to the true Hessian of the solution. Later, Han (1977)
proved global convergence using a l1-penalty function and assuming that the
Lagrange multipliers remain bounded at all iterations. From a practical point
of view, Han’s results leaves many open problems. Some unresolved issues
concern selection of the penalty parameter in the l1-penalty function and how
to guarantee boundedness of the approximate Hessian for a sequence of quasi-
Newton updates. Han did not present any numerical results. Powell (1977)
was the first to present a working SQP method based on a variable-metric
approximation of the Hessian matrix. Powell suggested a modified Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update which keeps the Hessian approxi-
mations positive definite. On the basis of empirical testing, Powell proposed
a modified l1-penalty function for the line search and gave a procedure for
computation of the penalty weights. Much of the practical success of Powell’s
algorithm depends on heuristic elements. Due to these heuristics a number of
difficulties have been occasionally observed:

1. Maratros effect (c.f. Maratros, 1978). It may happen that a full step
is not taken even though the solution is close to the optimal solution
and the approximate Hessian approximates the true Hessian well. This
implies that the rate of convergence is only linear. Chamberlain et al.
(1982), Chen and Stadtherr (1984), and Hoza and Stadtherr (1993) have
proposed to use the watchdog technique to overcome this difficulty.

2. Cycling. In some examples Powell’s SQP algorithm cycles (c.f. Cham-
berlain, 1979). This is attributed to the selection of weights in Powell’s
l1-penalty function. The watchdog technique can also be used to over-
come this problem.

3. Unboundedness of the Hessian approximation. Chamberlain (1979) shows
in a simple example that the approximate Hessian matrix may not remain
bounded when the number of iterations become large.

4. Ill-conditioning of the Hessian approximation. The modified BFGS up-
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date can give highly ill-conditioned Hessian approximations, which inval-
idates the computed search directions (c.f. Powell, 1985b).

5. Inconsistent linearized constraints. For large-scale problems the lineariza-
tion of the constraints is not necessarily consistent, which may leave
the resulting QP infeasible. Biegler and Cuthrell (1985) have proposed
constraint relaxation procedures to avoid the problems with inconsistent
constraints due to the linearization. However, inconsistent linearized con-
straints are not possible in unconstrained optimal control problems.

Despite these problems, SQP methods perform well in practice and are con-
sidered as some of the most efficient methods for solution of nonlinearly con-
strained optimization problems. The primary advantage of SQP methods over
other gradient-based methods is the low number of function evaluations needed
to converge to a solution. This is a particularly attractive property, when func-
tion evaluations are expensive as in the optimal control problem.

Boggs and Tolle (1996, 2000) provide recent overviews of large-scale sequen-
tial quadratic programming. Gill et al. (1997) describe the algorithmic ideas
implemented in the popular large-scale SQP algorithm, SNOPT.

5.2.1 Optimality Conditions

The Lagrangian function is central in the development of a solution procedure
for constrained nonlinear optimization problems. The Lagrangian function of
(5.1) is

L(x, π) = f(x) − π′g(x) (5.2)

To be able to state optimality conditions for nonlinear programs, some kind of
constraint qualification is necessary (c.f. Mangasarian, 1994). The constraint
qualification typically invoked is the linear independence constraint qualifica-
tion (LICQ).

Definition 5.2.1 (LICQ)
Given a point x. The linear independence constraint qualification (LICQ) holds if
∇g(x) has full column rank.

The linear independence constraint qualification is not a necessary condition
for characterization of a minimizer of (5.1). However, it is a sufficient condition
and very convenient. As explained by ?) the linear independence constraint
qualification guarantees that a direction p satisfying ∇g(x0)′p = 0 at any fea-
sible point x0 is the tangent of a feasible arc emanating from the current point
x0. Therefore the linear independence constraint qualification satisfies the first-
order constraint qualification which is necessary in the proof of Kuhn-Tucker
optimality conditions. Essentially, the linear constraint qualification can be re-
garded as a condition that ensures that the linear approximation to the feasible
region at x∗ captures the essential geometric features of the true feasible set in
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some neighborhood of x∗. In particular, it should be noted that no gradient
∇gi(x

∗) can be zero at the optimal solution under the linear independence con-
straint qualification. Further, the linear independence constraint qualification
has been adopted because it is a necessary condition for non-singularity of the
KKT-matrix used in computing search directions.

With the linear independence constraint qualification, the famous first order
Karush-Kuhn-Tucker conditions may be stated as in the following proposition.

Proposition 5.2.2 (Necessary KKT-Conditions)
Let x∗ ∈ R

n be a local minimizer of (5.1) and let LICQ hold at x∗. Then there exists
a unique Lagrange multiplier vector π∗ ∈ R

m such that

∇xL(x∗, π∗) = ∇f(x∗) −∇g(x∗)π∗ = 0 (5.3a)

∇πL(x∗, π∗) = −g(x∗) = 0 (5.3b)

Proof. See Bertsekas (1995b) or Nocedal and Wright (1999) ¤

A point (x, π) that satisfies (5.3) is called a KKT-point. For continuously
differentiable functions, the necessary first-order KKT-conditions (5.3) are not
sufficient for x being a local minimizer of (5.1). To be sufficient conditions, the
nonlinear program (5.1) must be convex as stated in the following proposition.

Proposition 5.2.3 (Sufficient KKT-Conditions)
Let f : R

n 7→ R be convex and let gi : R
n 7→ R be linear for i = 1, 2, . . . , m. If (x∗, π∗)

satisfies (5.3), then x∗ is the global minimizer of (5.1).

Proof. See Bertsekas (1995b) ¤

Sufficient conditions for a local minimizer of a nonlinear program (5.1) with a
general possibly non-convex objective function and general equality constraints
need second order derivative information of the objective function, f : R

n 7→ R,
and the constraint functions, g : R

n 7→ R
m. The second order necessary condi-

tion for a local minimizer of (5.1) may be stated as in the following proposition.

Proposition 5.2.4 (Second Order Necessary Condition)
Let x∗ ∈ R

n be a local minimizer of (5.1) and let the LICQ condition be satisfied at
x∗. Let π∗ ∈ R

m be a Lagrange vector such that (5.3) are satisfied. Then

p′∇2
xxL(x∗, π∗)p ≥ 0 ∀p ∈ V (x∗) (5.4)

in which

V (x∗) =
{
p ∈ R

n : ∇g(x∗)′p = 0
}

(5.5)

Proof. See Bertsekas (1995b) ¤

To be sufficient for a local minimizer, the second order condition must be
strengthened as in the proposition below.
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Proposition 5.2.5 (Second Order Sufficiency Condition)
Let x∗ ∈ R

n and π∗ ∈ R
m satisfy (5.3) and

p′∇2
xxL(x∗, π∗)p > 0 ∀p ∈ V (x∗) \ {0} (5.6)

Then x∗ is a strict local minimizer of (5.1).

Proof. See Bertsekas (1995b) ¤

Hence, most algorithms locate a local minimizer by solving the KKT-conditions
(5.3) and assume that (5.6) is satisfied as well. The KKT-conditions (5.3)
are typically solved by a Newton or a quasi-Newton method. Solving (5.3) is
equivalent to solving the system of nonlinear equations

F (x, π) =

[
∇xL(x, π)
−g(x)

]

=

[
∇f(x) −∇g(x)π

−g(x)

]

= 0 (5.7)

By Newton’s method, a search direction (∆x,∆π) from a current point (x0, π0)
is computed by solving

∇xF (x0, π0)′∆x + ∇πF (x0, π0)′∆π = −F (x0, π0) (5.8)

which may be also be formulated as

[
∇2

xxL(x0, π0) −∇g(x0)
−∇g(x0)′ 0

] [
∆x
∆π

]

= −
[
∇xL(x0, π0)

−g(x0)

]

(5.9)

in which the Hessian of the Lagrangian is

∇2
xxL(x0, π0) = ∇2f(x0) −

m∑

i=1

π0
i ∇2gi(x

0) (5.10)

The coefficient matrix of (5.9) is called the KKT-matrix. A unique solution of
(5.9) exists if the KKT-matrix is non-singular. Otherwise no solution or several
solutions may exist. Non-singularity of the KKT-matrix is closely related to
the linear independence constraint qualification and the second order sufficiency
condition. This relation is stated in the following proposition.

Proposition 5.2.6
The KKT-matrix

[
∇2

xxL(x0, π0) −∇g(x0)
−∇g(x0)′ 0

]

(5.11)

is non-singular if and only if x0 satisfy LICQ and

p′∇xxL(x0, π0)p > 0 ∀p ∈ V (x0) \ {0} (5.12)

Proof. See Nocedal and Wright (1999) ¤
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Consequently, under the assumption that the linear independence constraint
qualification holds, satisfaction of the second order sufficiency condition is de-
tected by monitoring the singularity of the KKT-matrix during its factorization.
The second order sufficiency condition is equivalent to positive definiteness of
the Hessian matrix projected on the null space of ∇g(x0).

Through this overview of the optimality conditions, it is clear that if the linear
independence constraint qualification and the second order sufficiency condition
hold at the points generated by Newton’s algorithm, then a local minimizer of
(5.1) may be located by solving (5.3) using Newton’s method.

5.2.2 Newton’s Method and SQP

An alternative conceptualization of the Newton procedure for computation of
the step direction is to consider the quadratic program

min
∆x∈Rn

φ = 1
2∆x′∇2

xxL(x0, π0)∆x + ∇xL(x0, π0)′∆x (5.13a)

s.t. g(x0) + ∇g(x0)′∆x = 0 (5.13b)

If the second order sufficiency condition holds at (x0, π0) then the KKT-system
(5.9) is a necessary and sufficient conditions for ∆x being a unique global
minimizer of (5.13). Furthermore, if the linear independence constraint qual-
ification is satisfied then the KKT-matrix (5.11) is non-singular. Otherwise,
the quadratic program is either infeasible due to inconsistent constraints or
some constraints are superfluous. The first order conditions solved by New-
ton’s method may be obtained as solution of a sequence of quadratic programs
(5.13) and is therefore called sequential quadratic programming.

In practice sequential quadratic programming algorithms do not compute the
search direction by solving (5.13). Rather, they solve the quadratic program

min
∆x∈Rn

φ = 1
2∆x′W∆x + ∇f(x0)′∆x (5.14a)

s.t. g(x0) + ∇g(x0)′∆x = 0 (5.14b)

in which W is some approximation of the Hessian of the Lagrangian. A KKT-
point of the quadratic program (5.14) is characterized by the linear system of
equations

[
W −∇g(x0)

−∇g(x0)′ 0

] [
∆x
µ

]

= −
[
∇f(x0)
−g(x0)

]

(5.15)

If W = ∇2
xxL(x0, π0) and ∆π is defined by

µ = π0 + ∆π (5.16)

then equation (5.15) is identical with equation (5.9). Consequently, Newton’s
method for solution of (5.3) can be regarded as a sequential quadratic pro-
gramming method in which the search direction is generated by (5.14) and the
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associated step in the Lagrange multipliers is ∆π = µ − π0. µ is the Lagrange
multipliers associated with the quadratic program (5.14).

W is usally not the exact Hessian of the Lagrangian. It is a secant approx-
imation. For sequential quadratic programming a common approximation is
the modified BFGS update due to Powell (1977). In this update s and y are
computed by

s = x − x0 (5.17a)

y = ∇xL(x, π) −∇xL(x0, π) (5.17b)

in which π is the most recently computed Lagrange multipliers of (5.1). Sub-
sequently, θ is computed by

θ =

{

1 s′y ≥ 0.2s′Ws
0.8s′Ws

s′Ws−s′y s′y < 0.2s′Ws
(5.18)

and r is defined as
r = θy + (1 − θ)Ws (5.19)

such that the secant approximation of the Hessian of the Lagrangian, W , may
be updated according to

W ← W − Wss′W

s′Ws
+

rr′

s′r
(5.20)

For unconstrained optimization, positive definiteness of the Hessians approxi-
mated by the BFGS update is guaranteed if the curvature condition, s′y > 0, is
satisfied. This condition is incorporated in the line search algorithm such that it
is always satisfied (c.f. Dennis and Schnabel, 1996). However, for constrained
optimization situations exist in which this condition is not satisfied for any
value of the step length. To overcome this difficulty Powell modified the BFGS
update procedure at the price of loosing the secant property. Powell’s modifi-
cation ensures that the curvature condition is satisfied, i.e. s′r ≥ 0.2s′Ws > 0
for s 6= 0. When the first matrix, W , is positive definite, this update ensures
that all subsequent Hessian approximations, W , are positive definite. Hence, if
∇g(x) has full column rank, i.e. satisfy the linear independence constraint qual-
ification, for all x generated by the SQP algorithm, then the search direction
implicitly defined by equation (5.15) exists and is unique. It is important to
notice that sequential quadratic programming algorithm with a modified BFGS
update requires evaluation of the functions and their first order derivatives but
not their second order derivatives.

To ensure convergence, the full step (∆x,∆π) computed by solution of (5.15)
is not necessarily taken. (∆x,∆π) is used as a search direction and the step
taken is given by

[
x
π

]

=

[
x0

π0

]

+ α

[
∆x
∆π

]

=

[
x0

π0

]

+ α

[
∆x

µ − π0

]

(5.21)
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in which α ∈ (0, 1] is the step length. The procedure for selecting α is described
in the next section when the major steps of the entire algorithm have been
presented.

Convergence to a local minimum is checked using the KKT-tolerance due to
Chen and Stadtherr (1984). The KKT-tolerance is a weighted sum of possible
objective function improvement and constraint violations. This convergence
criterion is

|∇f(x0)′∆x| +
m∑

i=1

|µigi(x
0)| ≤ ǫ (5.22)

and may be checked immediately after computation of the search direction. The
rationale for this convergence criterion is explained in the next proposition.

Proposition 5.2.7
Assume that LICQ holds at x0. Let the approximate Hessian matrix, W , be positive
definite. Let (∆x, µ) be the solution of (5.15). Then

|∇f(x0)′∆x| +
m∑

i=1

|µigi(x
0)| = 0 (5.23)

implies ∆x = 0 and

∇f(x0) −∇g(x0)µ = 0 (5.24a)

g(x0) = 0 (5.24b)

Proof. (5.23) implies ∇f(x0)′∆x = 0 and µigi(x
0) = 0 for i = 1, 2, . . . ,m.

Combined with (5.15) these relations give

0 = ∇f(x0)′∆x = −
(
W∆x −∇g(x0)µ

)′
∆x

= −∆x′W∆x + µ′∇g(x0)′∆x

= −∆x′W∆x − µ′g(x0)
︸ ︷︷ ︸

=0

= −∆x′W∆x
(5.25)

which implies ∆x = 0 as W is positive definite. Consequently, using ∆x = 0,
the first block row of (5.15) yields

−∇g(x0)µ = −∇f(x0) ⇔ ∇f(x0) −∇g(x0)µ = 0 (5.26)

The second block row of (5.15) yields

g(x0) = −∇g(x0)′∆x = −∇g(x0)′0 = 0 (5.27)

This establishes the claimed relations. ¤

By proposition 5.2.7, it is clear that a KKT-point (x∗, π∗) satisfying (5.3) may
be established from the triple (x0,∆x, µ) satisfying (5.23) by (x∗, π∗) = (x0, µ).
Therefore, (5.22) may be used to detect whether a KKT-point has been found.
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This criterion has the same unit as the objective function and it gives an
approximate measure for the number of correct digits to be expected in the
numerical value of the objective function. Gill et al. (1997) implement an
alternative convergence test. They test directly whether the KKT-conditions
are satisfied at the current point.

The major steps in the sequential quadratic programming method for solution
of the nonlinear program (5.1) are stated in the following algorithm.

Algorithm 6 (Infeasible Path SQP with BFGS)
Given (x0, π0)

1. Evaluate the functions and gradients at the initial point: Calculate f0 = f(x0),
g0 = g(x0), c = ∇f(x0), and A = ∇g(x0).

2. Choose an initial Hessian approximation: W is chosen as some symmetric pos-
itive definite matrix. This is an initial estimate for the Hessian matrix.

3. Compute (∆x, µ) by solving the optimality conditions (5.15) of (5.14):
[

W −A
−A′ 0

] [
∆x
µ

]

= −
[

c
−g0

]

(5.28)

4. Compute the termination criteria and check for convergence. If

|c′∆x| +
m∑

i=1

|µig
0
i | ≤ ǫ (5.29)

terminate with (x0, µ) as the optimal solution. The optimal objective function
value is f0.

5. Compute α by a line search using some merit function. The result is α, x =
x0 + α∆x, f = f(x), and g = g(x). Compute π = π0 + α(µ − π0).

6. Compute
∇xL(x0, π) = c − Aπ (5.30)

7. Evaluate the gradients at the new point: Calculate c ← ∇f(x) and A ← ∇g(x).

8. Compute
∇xL(x, π) = c − Aπ (5.31)

9. Update the Hessian matrix by the modified BFGS recursion. Compute

s = x − x0 (5.32a)

y = ∇xL(x, π) −∇xL(x0, π) (5.32b)

and

θ =

{

1 s′y ≥ 0.2s′Ws
0.8s′Ws

s′Ws−s′y
s′y < 0.2s′Ws

(5.33)

as well as
r = θy + (1 − θ)Ws (5.34)

The updated Hessian is computed as

W ← W − Wss′W

s′Ws
+

rr′

s′r
(5.35)
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10. Update the old values: x0 ← x, π0 ← π, f0 ← f , g0 ← g. Goto (3).

A significant part of the computational cost of the algorithm is concerned with
solution of the KKT-system (5.28). For some problems evaluation of the ob-
jective function, evaluation of the constraint functions as well as evaluation
of their gradients constitute a significant computation cost that cannot be ne-
glected. This is the case for the optimal control problem. Some merit functions
compute π in step (6). However, as described in the next subsection this is not
done in the line search algorithm using Powell’s l1-penalty function.

5.2.3 Merit Function and Step Length

The solution generated by the infeasible path SQP algorithm is only guaranteed
to be feasible within a certain tolerance at the termination of the algorithm. At
intermediate steps the solution is typically infeasible. Therefore the objective
function cannot be used to decide the step length, α. Instead a merit function
which is some combination of the objective function and the constraint violation
is used. The actual merit function used in selecting the step length is important
for the convergence rate of the SQP algorithm. Powell (1977) suggested an l1
merit function, while Schittkowski (1981a,b), Fletcher (1987), and Gill et al.
(1997) have proposed augmented Lagrangian merit functions.

For simplicity, the l1-merit function due to Powell (1977) is considered

P (x, σ) = f(x) +
m∑

i=1

σi|gi(x)| (5.36)

in which the penalty parameters, σi, are chosen as

σi ← max
{
|µi|, 1

2 (σi + |µi|)
}

i = 1, 2, . . . ,m (5.37)

except at the first iteration at which they are set equal to the numerical value
of the Lagrange multipliers, i.e. σi = |µi|. The merit function of the point

(
x
π

)

=

(
x0

π0

)

+ α

(
∆x

µ − π0

)

(5.38)

may be stated as a function of α

T (α) = P (x0 + α∆x, σ) (5.39)

In an exact line search procedure α is chosen such that T (α) is minimized.
However, the exact line search is seldom used as the computational cost in
terms of function evaluations is unjustified when it is compared to an inexact
(or soft) line search in which α is selected such that a sufficient decrease in
T (α) is obtained. The sufficient decrease in the function T (α) is measured by
the Armijo condition

T (α) ≤ T (0) + c1α
dT

dα
(0) (5.40)
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in which c1 ∈ (0, 1). Nocedal and Wright (1999) recommend c1 = 10−4 while
Powell (1977) used c1 = 0.1. The Armijo condition itself is not sufficient to
guarantee that the algorithm makes sufficient progress as it does not rule out
small value of the step length, α. To rule out too small step lengths, α may be
selected by backtracking, by using a Wolfe condition, or by using a Goldstein
condition (c.f. Nocedal and Wright, 1999).

The computation of the step length, α, using the Armijo condition (5.40) and
backtracking in an inexact line search procedure is facilitated by the following
lemma

Lemma 5.2.8
Let ∆x be a solution of (5.14) and let T : [0, 1] 7→ R be defined by (5.39) and (5.36).
Then

T (α) = f(x0 + α∆x) +

m∑

i=1

σi|gi(x
0 + α∆x)| (5.41)

and

T (0) = P (x0, σ) = f(x0) +
m∑

i=1

σi|gi(x
0)| (5.42a)

T ′(0) =
dT

dα
(0) = ∇f(x0)′∆x −

m∑

i=1

σi|gi(x
0)| (5.42b)

Proof. The expressions for T (α) and T (0) follows straightforwardly. To deduce
the expression for the derivative, T ′(0), notice that the gradient

∇|gi(x)| =

{

∇gi(x) gi(x) ≥ 0

−∇gi(x) gi(x) ≤ 0
(5.43)

is not uniquely defined for gi(x) = 0. This implies that the line search function
T (α) is not in general differentiable everywhere. A special case is α = 0. ∆x
is constructed such that it satisfies (5.14b) which is equivalent to

∇gi(x
0)′∆x = −gi(x

0) (5.44)

Hence

∇|gi(x
0)|′∆x =

{

∇gi(x
0)′∆x gi(x

0) ≥ 0

−∇gi(x
0)′∆x gi(x

0) ≤ 0

=

{

−gi(x
0) gi(x

0) ≥ 0

gi(x
0) gi(x

0) ≤ 0

= −|gi(x
0)|

(5.45)
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For α = 0 the derivative of the line search function becomes

T ′(0) =
dT

dα
(0) = ∆x′∇xP (x0, σ)

= ∆x′

(

∇f(x0) +
m∑

i=1

σi∇|gi(x
0)|

)

= ∇f(x0)′∆x −
m∑

i=1

σi∇|gi(x
0)|′∆x

= ∇f(x0)′∆x −
m∑

i=1

σi|gi(x
0)|

(5.46)

¤

The inexact line search procedure used, initially attempts a full step (α1 = 1)
and terminates if the sufficient decrease condition (5.40) is satisfied. Otherwise,
it constructs a quadratic interpolation based on T (0), T ′(0), and T (1). The
step length, α2, is selected as the minimizer of this quadratic interpolation in
the interval α2 ∈ [0.1α1, 1]. The line search procedure is terminated if the
sufficient decrease condition is satisfied at this new value of the step length.
Otherwise, a cubic interpolation based on the points T (0), T ′(0), T (α1), and
T (α2) is constructed. The step length, α in the interval [0.1α2, 0.5α2] that
minimizes the cubic interpolation of T (α) is selected as the new step length.
This process with cubic interpolation is continued based on the two most recent
step lengths, α1 and α2, until the sufficient decrease condition (5.40) is satisfied.
The details of this procedure are described by Nocedal and Wright (1999) as
well as by Dennis and Schnabel (1996).

The quadratic interpolation of T (α) is

φ(α) = (T (1) − T (0) − T ′(0)) α2 + T ′(0)α + T (0) (5.47)

and its unconstrained minimizer is

αmin =
T ′(0)

2 (T (0) + T ′(0) − T (1))
(5.48)

The step length α2 is then computed by

α2 = max {0.1α1, αmin} (5.49)

in which α1 = 1. The cubic interpolation of T (α) is

φ(α) = aα3 + bα2 + T ′(0)α + T (0) (5.50)

in which
[
a
b

]

=
1

α1 − α2

[
1

α2
1

− 1
α2

2

−α2

α2
1

α1

α2
2

] [
T (α1) − T ′(0)α1 − T (0)
T (α2) − T ′(0)α2 − T (0)

]

(5.51)
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The unconstrained minimum of (5.50) is

αmin =
−b +

√

b2 − 3aT ′(0)

3a
(5.52)

and the new attempted step length is

α =







0.1α2 αmin ≤ 0.1α2

0.5α2 αmin ≥ 0.5α2

αmin otherwise

(5.53)

In the construction of the cubic interpolation, α2 is the most recent step length
attempted and α1 is the second most recent step length attempted. Based on
this interpretation of α1 and α2 the computation of α based on cubic inter-
polation may be continued until a value of α satisfies the sufficient decrease
condition (5.40).

The major steps in a inexact backtracking line search procedure using Powell’s
l1-penalty function are summarized in the following algorithm.

Algorithm 7 (Line Search with Powell’s l1-Penalty)
Let f(x0), g(x0), ∇f(x0), x0, ∆x, and σ be given. Let c1 = 10−4.

1. Compute η0 =
∑m

i=1 σi|gi(x
0)|, T (0) = f(x0) + η0, and T ′(0) = ∇f(x0)

′∆x0 −
η0. Set α1 = 1.

2. Compute x = x0 + ∆x. Evaluate f = f(x) and g = g(x). Compute T (α1) =
f +

∑m

i=1 σi|gi|.
3. If T (α1) ≤ T (0) + c1T

′(0) then stop with α = α1.

4. Compute αmin by (5.48) and α2 by (5.49).

5. x = x0 + α2∆x. Evaluate f = f(x) and g = g(x). Compute T (α2) = f +
∑m

i=1 σi|gi|.
6. If T (α2) ≤ T (0) + c1α2T

′(0) then stop with α = α2.

7. Compute a and b by (5.51). If a = 0 compute αmin = −T ′(0)
b

. Otherwise
compute αmin by (5.52). Compute α by (5.53).

8. x = x0 + α∆x. Evaluate f = f(x) and g = g(x). Compute T (α) = f +
∑m

i=1 σi|gi|.
9. If T (α) ≤ T (0) + c1αT ′(0) then stop.

10. Set α1 = α2, α2 = α, T (α1) = T (α2), and T (α2) = T (α). Go to step (7).

The algorithm returns α, x = x0 + α∆x, f = f(x) and g = g(x).

Algorithm 6 and 7 in conjunction can be used to compute a local minimizer
of (5.1). These algorithms constitute a line search SQP algorithm for equality
constrained nonlinear programming.



218 Numerical Solution of Nonlinear Optimal Control Problems

5.3 SQP for Nonlinear Optimal Control

The unconstrained nonlinear optimal control problem considered is a conti-
nuous time Bolza problem

min
x(t),u(t)

ψ =

∫ tf

t0

l(x(t), u(t), t) dt + L(x(tf ), tf ) (5.54a)

s.t. ẋ(t) = h(x(t), u(t), t) (5.54b)

x(t0) = x0 (5.54c)

The objective is to compute the control function u(t) = u(t, x0) such that some
performance integral is minimized. This integral may represent production
costs or be a least squares objective aimed at tracking some specified trajectory.
The evolution of x(t) given u(t) and x0 is described by a nonlinear system of
ordinary differential equations (5.54b).

5.3.1 Solution Methods

The history of the optimal control problem (5.54) and its constrained relatives
is described by Polak (1973) and more recently by Bryson (1996). Polak (1973)
classifies the major methods for solution of the optimal control problem as gra-
dient methods, Newton methods, Gauss-Newton methods, and conjugate gradi-
ent methods. He discusses extensively the relations between the unconstrained
optimization problem and the unconstrained optimal control problem. Pesch
(1994) provides a practical guide to the solution of optimal control problems,
while Kraft (1985, 1994) describes the discretization of (5.54) and practical
solution by nonlinear programming. The main categories of solution methods
for the optimal control problem (5.54) are summarized in table 5.1. This clas-
sification is different from the classification provided by Polak (1973). Polak
(1973) classifies according to the numerical method applied when the optimal
control problem is converted to an unconstrained optimization problem. In ta-
ble 5.1, the methods are classified according to the optimality conditions used
for solving the unconstrained optimal control problem. The solution methods
are classified as direct and indirect methods. The direct methods transform
the infinite dimensional optimization problem into a finite dimensional nonlin-
ear program, while the indirect methods formulate optimality conditions of the
continuous-time optimal control problem (5.54) and compute the solution based
on these conditions (c.f. Binder et al., 2001a). The indirect methods comprise
algorithms based on Pontryagin’s maximum principle (PMP) and algorithms
based on solution of the Hamilton-Jacobi-Bellman (HJB) partial differential
equation.

Using Pontryagin’s maximum principle (PMP), the indirect methods derive the
optimality conditions for the continuous-time problem and compute the solu-
tion using these conditions. The conditions developed are the Euler-Lagrange
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Table 5.1. Methodologies for solution of continuous-time optimal control problems
(cont. = continuous, param. = parameterized, PMP = Pontryagin’s maximum
principle, HJB = Hamilton-Jacobian-Bellman equation, BCI = boundary con-
dition iteration, CVP = control vector parameterization, CVI = control vector
iteration, NLP = nonlinear program, DP = dynamic programming).

Numerical Direct Indirect Indirect
solution PMP HJB
States - cont. Shooting
Inputs - cont. - method -

(BCI)
States - cont. Feasible Gradient
Inputs - param. path method -

(CVP) (CVI)
States - param. Infeasible State and Dynamic
Inputs - param. path adjoint program.

(NLP) param. (DP)

differential equations and the controls are obtained by application of the max-
imum principle (c.f. Hartl et al., 1995; Bryson and Ho, 1975). Solution proce-
dures using the maximum principle of Pontryagin introduce the Hamiltonian
of (5.54) defined by

H(x(t), u(t), π(t), t) = l(x(t), u(t), t)

− π(t)′h(x(t), u(t), t)
(5.55)

Necessary conditions for optimality of a trajectory, (x∗(t), u∗(t)), can be ex-
pressed by the differential equations

ẋ∗(t) = −∇πH(x∗(t), u∗(t), π∗(t), t) (5.56a)

π̇∗(t) = ∇xH(x∗(t), u∗(t), π∗(t), t) (5.56b)

with boundary conditions

x∗(t0) = x0 (5.57a)

π∗(tf ) = ∇xL(x∗(tf ), tf ) (5.57b)

and
u∗(t) = arg min

u(t)
H(x∗(t), u(t), π∗(t), t) (5.58)

The latter condition is often enforced by the necessary optimality condition

∇uH(x∗(t), u∗(t), π∗(t), t) = 0 (5.59)

The boundary condition iteration (BCI) procedure for solution of the optimal
control problem (5.54) computes the optimal solution by computing π∗(t0) = π0



220 Numerical Solution of Nonlinear Optimal Control Problems

such that the boundary condition (5.57b) is satisfied. π∗(t0) = π0 is found
iteratively by a shooting procedure integrating (5.56) forward and solving (5.58)
along the obtained trajectory. π∗(t0) = π0 is adjusted by a Newton or gradient
method until the boundary condition (5.57b) is satisfied. Given the optimal
initial adjoint variable, π∗(t0), satisfying the boundary condition (5.57b) the
optimal trajectory may be computed by integrating (5.56) forward and solving
(5.58) along this trajectory. This procedure may fail for unstable systems due
to divergence or the large sensitivity to the initial conditions.

By the gradient method, which is also called the control vector iteration (CVI)
method, the control vector, u(t), is parameterized. Using this parameterization
the Hamiltonians are minimized subject to the dynamic constraints and the
boundary conditions. Given an initial guess of the decision variables u(t) in
terms of their parameterization, the equation

ẋ∗(t) = −∇πH(x∗(t), u∗(t), π∗(t), t)

= h(x∗(t), u∗(t), t)
(5.60)

is integrated forward. Subsequently, the adjoint equation (5.56b) is integrated
backward. Having a trajectory (x(t), π(t)), some gradient based optimization
algorithm is used to adjust the decision variables, u(t), such that they ulti-
matively converge to the optimal solution, u∗(t), and satisfy (5.58). However,
this procedure may as the boundary vector iteration method fail for unstable
systems due to divergence and high sensitivity of the decision variables.

By the state and adjoint parameterization, the differential equations (5.56) are
discretized and all equations constituting the necessary conditions are solved
simultaneously using a Newton procedure. At each iteration a very large system
of equations must be solved. However, due to this discretization in which
controls, states and adjoint variables are computed simultaneously, this method
may be applicable to stable as well as unstable systems.

Another classical indirect method for solution of the optimal control problem
is by solution of the Hamilton-Jacobi-Bellman (HJB) equation. By this pro-
cedure optimality is characterized by the value function, V (x∗(t), t) of (5.54)
and by application of Bellman’s principle of optimality. As such the Hamilton-
Jacobi-Bellman procedure may be regarded as a continuous-time version of
dynamic programming. The optimal trajectory, (x∗(t), u∗(t)) can be obtained
by solution of the HJB-equation

∂V (x∗(t), t)

∂t
= −min

u
{l(x∗(t), u(t), t)

+∇xV (x∗(t), t)′h(x∗(t), u(t), t)}
(5.61)

along with its boundary condition

V (x∗(tf ), tf ) = L(x∗(tf ), tf ) (5.62)

By this procedure the optimal u∗(t) is computed as a function of x∗(t). Specific
values for u∗(t) is obtained using the initial condition x∗(t0) = x0. However,
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due to the curse of dimensionality this is not a practical approach and few
realistic applications have been reported. An exception is the case of linear
models in which an analytic solution is available.

The direct methods are the most practical therefore also the commonly applied
methods for approximate solution of the nonlinear optimal control problem
(5.54). By the direct methods the infinite dimensional optimization problem
(5.54) is converted to a finite dimensional nonlinear program by parameteriza-
tion of the controls, u(t). The control vector parameterization (CVP) algorithm
parameterizes the controls and solves the differential equations (5.54b) exactly
at each iteration of the optimization algorithm. The control vector parameter-
ization method is also referred to as a feasible path method as the differential
equations are satisfied at all iterations. Furthermore, as the integration and
optimization are conducted sequentially, the control vector parameterization
method is also called a sequential method. In contrast, by the infeasible path
method the differential equations (5.54b) are discretized and the resulting non-
linear program (NLP) is solved. Therefore, by the infeasible path method the
integration and optimization is conducted simultaneously. Satisfaction of the
differential equations are only guaranteed at the optimal solution but not at in-
termediate iterates. As by the indirect sequential approaches, the control vector
parameterization method may suffer from high sensitivity and divergence when
applied to unstable systems. Such problems do not occur using the infeasible
path method as optimization and integration are conducted simultaneously.

5.3.2 Transcription in the Direct Methods

The basic idea in the direct methods is to transcribe the infinite dimensional
optimization problem (5.54) into a finite dimensional optimization problem.
This is achieved by approximating the optimal control u(t) by some finite di-
mensional function. In this paper, the optimal control is approximated by
a piecewise constant function. This is also known as the zero-order-hold ap-
proximation. The integral in (5.54a) and the system of nonlinear differential
equations (5.54b) are approximated by difference equations using a numerical
integration method. For simplicity and to illustrate the principles, the explicit
Euler integration method is used in this paper. However, this is not a recom-
mendation of the explicit Euler method as the most efficient method. By these
approximation the finite dimensional approximation of (5.54) becomes

min
x,u

f(x, u) =
N−1∑

k=0

fk(xk, uk) + fN (xN ) (5.63a)

s.t. xk+1 = Hk(xk, uk), k = 0, 1, . . . , N − 1 (5.63b)

in which x0 is a parameter and the decision variables are x = {xk}N
k=1 and

u = {uk}N−1
k=0 . To emphasize the fact that x0 is a parameter and not a decision
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variable, (5.63) may be expressed as

min
x,u

f = f0(u0) +

N−1∑

k=1

fk(xk, uk) + fN (xN ) (5.64a)

s.t. x1 = H0(u0) (5.64b)

xk+1 = Hk(xk, uk), k = 1, 2, . . . , N − 1 (5.64c)

in which f0(u0) = f0(x0, u0) and H0(u0) = H0(x0, u0). The equivalent mathe-
matical programs (5.63) and (5.64) representing the discrete time Bolza prob-
lem could be solved using directly the sequential quadratic programming al-
gorithm described in section 5.2. However, the nonlinear discrete time control
(5.64) problem has a special structure that may be utilized in its efficient so-
lution.

The purpose of this section is to describe the computations used in construction
of the discrete time approximation (5.64) and the efficient solution of (5.64)
by using a modification of the sequential quadratic programming algorithm
described in section 5.2.

5.3.3 The Lagrangian and Partial Separability

The Lagrangian, L = L(x, u, π), of (5.64) is

L = f0(u0) +
N−1∑

k=1

fk(xk, uk) + fN (xN )

− π′
0(H0(u0) − x1)

−
N−1∑

k=1

π′
k(Hk(xk, uk) − xk+1)

= L0(u0, π) +

N−1∑

k=1

Lk(xk, uk, π) + LN (xN , π)

(5.65)

in which L0 = L0(u0, π), Lk = Lk(xk, uk, π), and LN = LN (xN , π) are defined
by

L0 = f0(u0) − π′
0H0(u0) (5.66a)

Lk = fk(xk, uk) − π′
kHk(xk, uk) + π′

k−1xk (5.66b)

LN = fN (xN ) + π′
N−1xN (5.66c)
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The first order necessary optimality conditions specialized to (5.64) are

∇u0
L(x, u, π) = ∇u0

L0(u0, π) = 0 (5.67a)

∇xk
L(x, u, π) = ∇xk

Lk(xk, uk, π) = 0 (5.67b)

∇uk
L(x, u, π) = ∇uk

Lk(xk, uk, π) = 0 (5.67c)

∇xN
L(x, u, π) = ∇xN

LN (xN , π) = 0 (5.67d)

as well as

∇π0
L(x, u, π) = −H0(u0) + x1 = 0 (5.68a)

∇πk
L(x, u, π) = −Hk(xk, uk) + xk+1 = 0 (5.68b)

The conditions (5.67) may also be expressed as

∇u0
L0 = ∇u0

f0(u0) −∇u0
H0(u0)π0 = 0 (5.69a)

∇xk
Lk = ∇xk

fk(xk, uk)

−∇xk
Hk(xk, uk)πk + πk−1 = 0

(5.69b)

∇uk
Lk = ∇uk

fk(xk, uk)

−∇uk
Hk(xk, uk)πk = 0

(5.69c)

∇xN
LN = ∇xN

fN (xN ) + πN−1 = 0 (5.69d)

Let z = {u0, x1, u1, . . . , xN−1, uN−1, xN}. Then the partial separability of the

Lagrangian, i.e. L =
∑N

k=0 Lk in which L0 = L0(u0, π), Lk = Lk(xk, uk, π),
and LN = LN (xN , π), implies that the Hessian of the Lagrangian, ∇2

zzL, has
a block diagonal structure

∇2
zzL =














R0

Q1 M1

M ′
1 R1

. . .

QN−1 MN−1

M ′
N−1 RN−1

PN














(5.70)

The blocks are symmetric matrices given by the expressions

R0 = ∇2
u0,u0

L0 (5.71a)
[
Qk Mk

M ′
k Rk

]

=

[
∇2

xk,xk
Lk ∇2

xk,uk
Lk

∇2
uk,xk

Lk ∇2
uk,uk

Lk

]

(5.71b)

PN = ∇2
xN ,xN

LN (5.71c)

5.3.4 Partitioned BFGS Hessian Approximation

The SQP algorithm solves (5.1) using a secant approximation of the Hessian
matrix of the Lagrangian. Direct construction of an approximate Hessian for
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the nonlinear optimal control problem (5.64) would produce a dense matrix,
W , and not retain the block diagonal structure of the exact Lagrangian (5.70).
Therefore, the secant approximation, W , of the Hessian of the Lagrangian is
enforced to have the block diagonal structure by updating each block individu-
ally (c.f. Bock and Plitt, 1983; Leineweber, 1995; Bock et al., 2000). Thus the
approximate Hessian is enforced to have the structure

W =










W0

W1

. . .

WN−1

WN










(5.72)

and each diagonal block, Wk, is computed using Powell’s modified BFGS up-
date. The structure is obtained by modification of (5.17). At stage k = 0, s0

and y0 are computed by

s0 = u0 − u0
0 (5.73a)

y0 = ∇u0
L0(u0, π) −∇u0

L0(u
0
0, π) (5.73b)

while at stage k = 1, 2, . . . , N − 1, sk and yk are computed by

sk =

[
xk − x0

k

uk − u0
k

]

(5.74a)

yk =

[
∇xk

Lk(xk, uk, π) −∇xk
Lk(x0

k, u0
k, π)

∇uk
Lk(xk, uk, π) −∇uk

Lk(x0
k, u0

k, π)

]

(5.74b)

At the final stage k = N , sN and yN are obtained by

sN = xN − x0
N (5.75a)

yN = ∇xN
LN (xN , π) −∇xN

LN (x0
N , π) (5.75b)

For each k = 0, 1, . . . , N , θk defined by

θk =

{

1 s′kyk ≥ 0.2s′kWksk
0.8s′

kWksk

s′
k
Wksk−s′

k
yk

s′kyk < 0.2s′kWksk
(5.76)

is used to compute rk

rk = θkyk + (1 − θk)Wksk (5.77)

and each block matrix, Wk, is obtained by the expression

Wk ←
{

Wk ‖sk‖2 ≤ εs

Wk − Wksks′
kWk

s′
k
Wksk

+
rkr′

k

s′
k
rk

‖sk‖2 > εs
(5.78)
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in which εs = 10−4 is an empirical constant. The distinction between ‖sk‖2

greater and less than εs is necessary as sk can be zero without the entire vector
s = {sk}N

k=0 being zero. That is, some components, say sk, can have converged
before the entire vector s has converged. In accordance with the notation used
in (5.70) and (5.71) the Hessian block matrices, Wk, may be denoted

R0 = W0 (5.79a)
[
Qk Mk

M ′
k Rk

]

= Wk k = 1, 2, . . . , N − 1 (5.79b)

PN = WN (5.79c)

5.3.5 The Quadratic Program

The data in the quadratic program (5.14) constructed for computation of the
search direction used in the sequential quadratic programming algorithm is
based on the approximate Hessian of the Lagrangian, the gradient of the ob-
jective function of the nonlinear program, and a first order Taylor expansion
of the constraints around some nominal point x0.

The same procedure is used to construct a quadratic program for computing the
search direction in a SQP algorithm for (5.64). The block diagonal structure of
the Hessian matrix and the notation defined by (5.79) as well as the separability
of the objective function (5.64a) may be used to obtain the following objective
function for the quadratic program used to compute the search direction from
(x0, u0). The objective function in the quadratic program is

φ = 1
2∆u′

0R0∆u0 +

N−1∑

k=1

1
2

[
∆xk

∆uk

]′ [
Qk Mk

M ′
k Rk

] [
∆xk

∆uk

]

+ 1
2∆x′

NPN∆xN

+ r′0∆u0 +

(
N−1∑

k=1

q′k∆xk + r′k∆uk

)

+ p′N∆xN

= 1
2∆u′

0R0∆u0 + r′0∆u0

+

N−1∑

k=1

( 1
2∆x′

kQk∆xk + ∆x′
kMk∆uk

+ 1
2∆u′

kRk∆uk + q′k∆xk + r′k∆uk)

+ 1
2∆x′

NPN∆xN + p′N∆xN

(5.80)
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in which

r0 = ∇u0
f(x0, u0) = ∇u0

f0(u
0
0) (5.81a)

qk = ∇xk
f(x0, u0) = ∇xk

fk(x0
k, u0

k), k ∈ N (5.81b)

rk = ∇uk
f(x0, u0) = ∇uk

fk(x0
k, u0

k), k ∈ N (5.81c)

pN = ∇xN
f(x0, u0) = ∇xN

fN (x0
N ) (5.81d)

and N = {1, 2, . . . , N − 1}. The quadratic program constructed on basis of
(5.64) becomes

min
∆x,∆u

φ = φ(∆x,∆u) (5.82a)

s.t. ∆x1 = B′
0∆u0 + b0 (5.82b)

∆xk+1 = A′
k∆xk + B′

k∆uk + bk, k ∈ N (5.82c)

in which the objective function is given by (5.80). Even though the quadratic
program (5.82) to a large extent resembles the quadratic program constituting
the discrete linear quadratic regulator (DLQR) problem (c.f. Franklin et al.,
1998), it has some small but important differences. In the DLQR problem,
the constraints are linear while the constraints (5.82b)-(5.82c) are affine due
to the terms involving the constants, bk. Similarly, the objective function in
the DLQR problem contains only quadratic terms, while the objective function
(5.80) of (5.82) contains quadratic as well as linear terms. For the continuous-
time problem, Mitter (1966) was the first to recognize that to solve the optimal
control problem by a Newton-Raphson method, the linear-quadratic problem
solved at each iteration must contain linear as well as quadratic terms in the
objective function.

The parameters, B0 and b0, in (5.82b) are computed by

B0 = ∇u0
H0(u

0
0) (5.83a)

b0 = H0(u
0
0) − x0

1 (5.83b)

Similarly, the parameters, Ak, Bk and bk, in (5.82c) are computed by

Ak = ∇xk
Hk(x0

k, u0
k) (5.84a)

Bk = ∇uk
Hk(x0

k, u0
k) (5.84b)

bk = Hk(x0
k, u0

k) − x0
k+1 (5.84c)

The Lagrangian of (5.82) is

L(∆x,∆u, µ) = φ(∆x,∆u) − µ′
0(B

′
0∆u0 − b0)

−
N−1∑

k=1

µ′
k(A′

k∆xk + B′
k∆uk + bk − ∆xk+1)

(5.85)
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However, for convenience in notation when illustrating the structure of the
resulting KKT-system, we define µ̃k = −µk such that the modified Lagrangian
becomes

L̃(∆x,∆u, µ̃) = φ(∆x,∆u) − µ̃′
0(B

′
0∆u0 − b0)

+

N−1∑

k=1

µ̃′
k(A′

k∆xk + B′
k∆uk + bk − ∆xk+1)

(5.86)

The necessary and sufficient optimality conditions for (5.82) in terms of the
modified Lagrange multipliers are

R0∆u0 + r0 + B0µ̃0 = 0 (5.87a)

∆x1 = B′
0∆u0 + b0 (5.87b)

as well as

Qk∆xk + Mk∆uk + qk − µ̃k−1 + Akµ̃k = 0 (5.87c)

M ′
k∆xk + Rk∆uk + rk + Bkµ̃k = 0 (5.87d)

∆xk+1 = A′
k∆xk + B′

k∆uk + bk (5.87e)

and
PN∆xN + pN − µ̃N−1 = 0 (5.87f)

In the case N = 3, the necessary and sufficient optimality conditions may be
expressed as the KKT-system



















R0 B0

Q1 M1 −I A1

M ′
1 R1 B1

Q2 M2 −I A2

M ′
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(5.88)

which may be rearranged to



















R0 B0

B′
0 0 −I

−I Q1 M1 A1

M ′
1 R1 B1

A′
1 B′

1 0 −I

−I Q2 M2 A2

M ′
2 R2 B2

A′
2 B′

2 0 −I

−I P3
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(5.89)

The equivalent KKT systems (5.88) and (5.89) are examples of highly struc-
tured symmetric indefinite linear systems of equations. These systems easily
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becomes very large for long time horizons. The following proposition contains
a Riccati based solution procedure for (5.88) and (5.89). The recursion is ob-
tained by a dynamic programming solution procedure of (5.82).

Proposition 5.3.1 (Optimal Solution)
The solution of (5.88) and (5.89) constitute the unique solution of (5.82) and may be
obtained by the following procedure:

1) Compute the factorization

Re,k = Rk + BkPk+1B
′
k (5.90a)

Kk = −R−1
e,k(M ′

k + BkPk+1A
′
k) (5.90b)

ak = −R−1
e,k(rk + Bk(Pk+1bk + pk+1)) (5.90c)

Pk = Qk + AkPk+1A
′
k − K′

kRe,kKk (5.90d)

pk = qk + Ak(Pk+1bk + pk+1)

+ K′
k(rk + Bk(Pk+1bk + pk+1))

(5.90e)

for k = N − 1, N − 2, . . . , 1 and

a0 = −(R0 + B0P1B
′
0)

−1(r0 + B0(P1b0 + p1)) (5.91)

2) Compute the primal solution {∆uk, ∆xk+1}N−1
k=0 by

∆u0 = a0 (5.92a)

∆x1 = B′
0∆u0 + b0 (5.92b)

and

∆uk = Kk∆xk + ak (5.93a)

∆xk+1 = A′
k∆xk + B′

k∆uk + bk (5.93b)

for k = 1, 2, . . . , N − 1.

3) Obtain the dual solution {µ̃k}N−1
k=0 by computing

µ̃N−1 = PN∆xN + pN (5.94a)

µ̃k−1 = Akµ̃k + Qk∆xk + Mk∆uk + qk (5.94b)

for k = N − 1, N − 2, . . . , 1.

Proof. See for instance Rao et al. (1998) or Ravn (1999). ¤

Remark 5.3.2
Uniqueness of the minimizer of (5.82) as well as existence of the inverses of Re,k =

Rk+BkPk+1B
′
k in proposition 5.3.1 follows from the fact that R0 = W0,

[
Qk Mk

M ′
k Rk

]

=

Wk, and PN = WN are all symmetric positive definite matrices by construction.
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Remark 5.3.3
To retain numerical stability of the Riccati based recursion, symmetry of the sequence

matrices {Pk}N−1
k=0 must be explicitly enforced. If symmetry is not enforced the recur-

sion may diverge for ill-conditioned systems. Another stable alternative implemen-
tation of the Riccati recursion is based on orthogonal factorizations as described by
Bierman (1977) and Kailath et al. (2000).

In the sequential quadratic programming algorithm as outlined, µk rather than
µ̃k is needed. The recursion for µk is stated in the following corollary.

Corollary 5.3.4
Let µk = −µ̃k for k = 0, 1, . . . , N − 1. Then {µk}N−1

k=0 may be obtained by

µN−1 = −PN∆xN − pN (5.95a)

µk−1 = Akµk − Qk∆xk − Mk∆uk − qk (5.95b)

Proof. Follows directly from the fact that µk = −µ̃k. ¤

Let xk ∈ R
n and uk ∈ R

m. Then the Riccati based method for solution of
(5.82) has computational complexity O(N(n3 + n2m)) while direct solution of
either (5.88) or (5.89) by dense symmetric indefinite factorization has com-
plexity O(N3(n + m)3). In particular for long horizons, N , the Riccati based
factorization is much more efficient than the dense direct solution procedure.
An alternative solution procedure is to eliminate the states in (5.82) and ob-
tain a mathematical program with u as the decision variables. Solution of the
resulting KKT system has complexity O(N3m3) but the formation of the ma-
trices describing the reduced system is in itself an O(N(n2m)) process. For
systems with very large state dimension memory considerations and the need
to or not to store all sensitivities along the current trajectory may determine
the applicability of an algorithm. The Riccati based factorization requires stor-
age of all sensitivities while alternative dense feasible path algorithms do not
necessarily have such a requirement.

Convergence in the SQP algorithm is checked just after computation of the
search direction. The convergence criteria (5.22) specialized to (5.64) becomes

|r′0∆u0 +

(
N−1∑

k=1

q′k∆xk + r′k∆uk

)

+ p′N∆xN |

+

N−1∑

k=0

n∑

i=1

|[µk]i[bk]i| ≤ ε

(5.96)



230 Numerical Solution of Nonlinear Optimal Control Problems

5.3.6 Linesearch and Penalty Functions

Using the step length computed by proposition 5.3.1 and corollary 5.3.4, the
new iterate, (x, u, π), in the SQP algorithm is generated by





x
u
π



 =





x0

u0

π0



 + α





∆x
∆u

µ − π0



 (5.97)

in which α is the step length. Let

g0(u0, x1) = H0(u0) − x1 (5.98a)

gk(xk, uk, xk+1) = Hk(xk, uk) − xk+1, k ∈ N (5.98b)

such that the constraints (5.64b) and (5.64c) may be expressed as

g0(u0, x1) = 0 (5.99a)

gk(xk, uk, xk+1) = 0 (5.99b)

Powell’s l1-penalty function (5.36) for the discrete-time nonlinear optimal con-
trol problem (5.64) may be expressed as

P (x, u, σ) = f(x, u) +

n∑

i=1

σi,0|[g0(u0, x1)]i|

+

N−1∑

k=1

n∑

i=1

σi,k|[gk(xk, uk, xk+1)]i|
(5.100)

in which f(x, u) is given by (5.64a). Except at the first iteration, the constraint
violation penalty parameters are computed by

σi,k ← max
{
|[µk]i|, 1

2 (σi,k + |[µk]i|)
}

(5.101)

for i = 1, . . . , n and k = 0, 1, . . . , N − 1. At the first iteration σi,k = |µi,k|. The
merit function used for selecting the step length α is

T (α) = P (x0 + α∆x, u0 + α∆u, σ) (5.102)

and its computation in an inexact line search procedure is facilitated by the
following lemma.

Lemma 5.3.5
Let (∆x, ∆u) be a solution of (5.82) and let T : [0, 1] 7→ R be defined by (5.102) and
(5.100). Let f(x, u) be defined by (5.64a). Let g0 as well as gk for k ∈ N be defined
by (5.98). Furthermore, let

b̃0(α) = g0(u
0
0 + α∆u, x0

1 + α∆x1) (5.103a)

b̃k(α) = gk(x0
k + α∆xk, u0

k + α∆u0
k, x0

k+1 + α∆xk+1) (5.103b)
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for k ∈ N .Then

T (α) = f(x0 + α∆x, u0 + α∆u)

+

N−1∑

k=0

n∑

i=1

σi,k|[b̃k(α)]i|
(5.104)

and

T (0) = f(x0, u0) +

N−1∑

k=0

n∑

i=1

σi,k|[bk]i| (5.105a)

T ′(0) = r′0∆u0 +

(
N−1∑

k=1

q′k∆xk + r′k∆uk

)

+ p′
N∆xN

−
N−1∑

k=0

n∑

i=1

σi,k|[bk]i|
(5.105b)

in which bk, rk, qk and pN are defined by (5.81). b0 is defined by (5.83b) and bk is
defined by (5.84c).

Proof. The results are direct specializations of the results in lemma 5.2.8 to
the discrete-time nonlinear optimal control problem (5.64). ¤

It is only the computation of the line search merit function, T (α), that is differ-
ent from the standard SQP algorithm when solving the discrete-time nonlinear
optimal control problem (5.64). The remaining parts of the line search algo-
rithm are identical to the steps stated in algorithm 7.

Algorithm 8 (Line Search for (5.64))
Let f0 = f(x0, u0), ∆f = r′0∆u0 +

(
∑N−1

k=1 q′k∆xk + r′k∆uk

)

+ p′
N∆xN , bk, x0, u0,

∆x, ∆u, and σ be given.

1. Compute η0 =
∑N−1

k=0

∑n

i=1 σi,k|[bk]i|, T (0) = f0 + η0, and T ′(0) = ∆f − η0.
Set α1 = 1.

2. Compute x =
{
xk = x0

k + ∆xk

}N

k=1
and u =

{
uk = u0

k + ∆uk

}N−1

k=0
. Evaluate

f = f(x, u) by (5.64a). Evaluate g0 = g0(u0, x1) and gk = gk(xk, uk, xk+1) by
(5.98). Compute T (α1) = f +

∑N−1
k=0

∑n

i=1 σi,k|[gk]i|.
3. If T (α1) ≤ T (0) + c1T

′(0) then stop with α = α1.

4. Compute αmin by (5.48) and α2 by (5.49).

5. Compute x =
{
xk = x0

k + α2∆xk

}N

k=1
and u =

{
uk = u0

k + α2∆uk

}N−1

k=0
. Eval-

uate f = f(x, u) by (5.64a). Evaluate g0 = g0(u0, x1) and gk = gk(xk, uk, xk+1)
by (5.98). Compute T (α2) = f +

∑N−1
k=0

∑n

i=1 σi,k|[gk]i|.
6. If T (α2) ≤ T (0) + c1α2T

′(0) then stop with α = α2.

7. Compute a and b by (5.51). If a = 0 compute αmin = −T ′(0)
b

. Otherwise
compute αmin by (5.52). Compute α by (5.53).
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8. Compute x =
{
xk = x0

k + α∆xk

}N

k=1
and u =

{
uk = u0

k + α∆uk

}N−1

k=0
. Evalu-

ate f = f(x, u) by (5.64a). Evaluate g0 = g0(u0, x1) and gk = gk(xk, uk, xk+1)
by (5.98). Compute T (α) = f +

∑N−1
k=0

∑n

i=1 σi,k|[gk]i|.
9. If T (α) ≤ T (0) + c1αT ′(0) then stop.

10. Set α1 = α2, α2 = α, T (α1) = T (α2), and T (α2) = T (α). Go to step (7).

The algorithm returns α, (x, u) = {xk+1, uk}N−1
k=0 , f , and {gk}N−1

k=0 .

5.3.7 The SQP Algorithm for Optimal Control

To accommodate solution of the nonlinear optimal control problem (5.64) with
an SQP algorithm similar to the SQP algorithm used for optimization of equal-
ity constrained nonlinear programs (5.1), a number of specializations have been
introduced. The evaluation of the nominal trajectory and the gradients has
been tailored to the optimal control problem. Based on these gradients a block
partitioned, structured update of the Hessian approximation specialized to the
optimal control problem has been introduced. The structure of this approx-
imate Hessian matrix and the staircase structure of the dynamic constraints
enable development of an efficient Riccati based solution procedure for the
quadratic program arising at each iteration in the SQP algorithm for the non-
linear optimal control problem. Further, the line search algorithm has been
tailored to the nonlinear optimal control problem. Substitution of these spe-
cializations to the nonlinear optimal control problem in the SQP algorithm
(algorithm 6) gives an SQP algorithm for solution of the nonlinear optimal
control problem (5.64).

Algorithm 9 (SQP for Optimal Control (5.64))
Let

{
x0

k+1, u
0
k, π0

k

}N−1

k=0
be given.

1. Evaluate the functions and gradient at the initial point: Calculate f0 = f(x0, u0)
by (5.64a), b0 = g0

0 = g0(u
0
0, x

0
1) and bk = g0

k = gk(x0
k, u0

k, x0
k+1) by (5.98),

(r0, {qk, rk}N−1
k=1 , pN ) by (5.81), and (B0, {Ak, Bk}N−1

k=1 ) by (5.83) and (5.84).

2. Choose initial approximations for the Hessian block matrices: {Wk}N

k=0 are
chosen as some symmetric positive definite matrices. These matrices constitute
an initial approximation of the Hessian matrix. Define R0, {Qk, Mk, Rk}N−1

k=1

and PN according to (5.79).

3. Compute ({∆xk+1, ∆uk, µk}N−1
k=0 ) by proposition 5.3.1 and corollary 5.3.4 using

the data ( R0 , r0, B0, b0, {Qk, Mk, Rk, qk, rk, Ak, Bk, bk}N−1
k=1 , PN , pN ).

4. Compute ∆f = r′0∆u0+
∑N−1

k=1 q′k∆xk+r′k∆uk+p′
N∆xN and η =

∑N−1
k=0

∑n

i=1 |[µk]i[bk]i|.
If |∆f |+ η ≤ ǫ then terminate with

{
x0

k+1, u
0
k, µk

}N−1

k=0
as the solution. Return

f0 as well.

5. Compute α by the line search algorithm using Powell’s l1-merit function (algo-
rithm 8). The result is α, {xk+1, uk}N−1

k=0 , f = f(x, u), and (g0 = g0(u0, x1), {gk = gk(xk, uk, xk+1)}N−1
k=1 ).

6. Compute
{
πk = π0

k + α(µk − π0
k)

}N−1

k=0
.



5.3. SQP for Nonlinear Optimal Control 233

7. Compute

∇u0L0 = r0 − B0π0 (5.106a)

∇xk
L0 = qk − Akπk + πk−1 k ∈ N (5.106b)

∇uk
L0 = rk − Bkπk k ∈ N (5.106c)

∇xN
L0 = pN + πN−1 (5.106d)

8. Evaluate the gradients at the new point, i.e. compute

r0 = ∇u0f0(u0) (5.107a)

qk = ∇xk
fk(xk, uk) k ∈ N (5.107b)

rk = ∇uk
fk(xk, uk) k ∈ N (5.107c)

pN = ∇xN
fN (xN ) (5.107d)

and

B0 = ∇u0H0(u0) (5.108a)

Ak = ∇xk
Hk(xk, uk) k ∈ N (5.108b)

Bk = ∇uk
Hk(xk, uk) k ∈ N (5.108c)

9. Compute

∇u0L = r0 − B0π0 (5.109a)

∇xk
L = qk − Akπk + πk−1 k ∈ N (5.109b)

∇uk
L = rk − Bkπk k ∈ N (5.109c)

∇xN
L = pN + πN−1 (5.109d)

10. Compute

s0 = u0 − u0
0 (5.110a)

y0 = ∇u0L −∇u0L0 (5.110b)

and

sk =

[
xk − x0

k

uk − u0
k

]

k ∈ N (5.111a)

yk =

[
∇xk

L −∇xk
L0

∇uk
L −∇uk

L0

]

k ∈ N (5.111b)

as well as

sN = xN − x0
N (5.112a)

yN = ∇xN
L −∇xN

L0 (5.112b)
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11. For k = 0, 1, . . . , N compute

θk =

{

1 s′kyk ≥ 0.2s′kWksk

0.8s′kWksk

s′
k

Wksk−s′
k

yk
s′kyk < 0.2s′kWksk

(5.113a)

rk = θkyk + (1 − θk)Wksk (5.113b)

Wk ←
{

Wk ‖sk‖2 ≤ εs

Wk − Wksks′kWk

s′
k

Wksk
+

rkr′
k

s′
k

rk
‖sk‖2 > εs

(5.113c)

Define R0, {Qk, Mk, Rk}N−1
k=1 , and PN according to (5.79).

12. Update the old values:
{
x0

k+1, u
0
k, π0

k

}N−1

k=0
← {xk+1, uk, πk}N−1

k=0 , f0 ← f , and

{bk}N−1
k=0 ← {gk}N−1

k=0 . Go to (3).

Algorithm 9 is an infeasible path method. As a consequence the integration
and optimization is performed simultaneously. This implies that the algorithm
can be applied to unstable systems without stability problems. However, the
constraints are only guaranteed to be satisfied at the solution but not at inter-
mediate iterates.

5.3.8 Discretization

The remaining issue in having a complete procedure to compute an approximate
local minimizer of (5.54) by computation of a local minimizer of (5.64) concerns
the time discretization of the continuous time optimal control problem (5.54).
As already emphasized for illustrative reasons, the explicit Euler method with
a fixed step length is used to discretize the continuous time nonlinear opti-
mal control problem. Proposition 5.3.6 provides the equations constituting an
explicit Euler integration procedure with sensitivities.

Proposition 5.3.6 (Explicit Euler Discretization)
Consider the continuous time nonlinear optimal control problem (5.54) and the discrete-
time nonlinear optimal control problem (5.64). Let the considered discrete times tk

be equidistant such that

tk = t0 + τk k = 0, 1, . . . , N τ =
tf − t0

N
(5.114)

in which τ is the constant step length. xk = x(tk) and uk = u(tk).

Then the explicit Euler approximation of the objective function (5.54a) is

f(x, u) = f0(u0) +

N−1∑

k=1

fk(xk, uk) + fN (xN ) (5.115)

in which

f0(u0) = τ l(x0, u0, t0) (5.116a)

fk(xk, uk) = τ l(xk, uk, tk) k ∈ N (5.116b)

fN (xN ) = L(xN , tN ) (5.116c)
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The gradients of the explicit Euler approximation of the objective function are

r0 = ∇u0f0(u0) = τ∇ul(x0, u0, t0) (5.117a)

qk = ∇xk
fk(xk, uk) = τ∇xl(xk, uk, tk) (5.117b)

rk = ∇uk
fk(xk, uk) = τ∇ul(xk, uk, tk) (5.117c)

pN = ∇xN
fN (xN ) = ∇xL(xN , tN ) (5.117d)

in which k ∈ N .

The first time step is special as x0 is a parameter. At the first time step, the explicit
Euler approximation of (5.54b) is

x1 = H0(u0) (5.118)

in which the function H0(u0) and its derived quantities are

H0(u0) = x0 + τh(x0, u0, t0) (5.119a)

B0 = ∇u0H0(u0) = τ∇uh(x0, u0, t0) (5.119b)

b0 = g0(u0, x1) = H0(u0) − x1 (5.119c)

As subsequent time steps, k ∈ N , the explicit Euler approximation of (5.54b) is

xk+1 = Hk(xk, uk) (5.120)

in which the function Hk(xk, uk) and its derived quantities are

Hk(xk, uk) = xk + τh(xk, uk, tk) (5.121a)

Ak = ∇xk
Hk(xk, uk)

= I + τ∇xh(xk, uk, tk)
(5.121b)

Bk = ∇uk
Hk(xk, uk)

= τ∇uh(xk, uk, tk)
(5.121c)

bk = gk(xk, uk, xk+1)

= Hk(xk, uk) − xk+1

(5.121d)

Proof. The results follow straightforwardly from the fact that the explicit
equidistant Euler discretization of ẋ(t) = f(x(t)) is obtained by tk = t0 + τk
and xk+1 = xk + τf(xk). ¤

5.4 Feasible Path SQP

The model equations (5.64b)-(5.64c) are only guaranteed to be satisfied at
the optimal solution in the infeasible path sequential quadratic programming
algorithm. An alternative to this algorithm is the feasible path sequential
quadratic programming algorithm. By this method, the constraints (5.64b)-
(5.64c) of (5.64) are satisfied at every iteration and not only at the optimal
solution. As already explained, the feasible path SQP algorithm for solution of
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the unconstrained optimal control problem may be regarded as a control vector
parameterization (CVP) method.

Use of a feasible path SQP algorithm for the dynamic optimization in model
predictive control allows early termination of the algorithm due to the real-time
constraint and application of the latest non-optimal iterate to the plant (c.f.
Scokaert et al., 1999; Tenny et al., 2002). Scokaert et al. (1999) demonstrate
that such a suboptimal procedure implies stability provided that the solution
is feasible. The major problem with the feasible path SQP algorithm concerns
its application to unstable processes. In such cases, an open-loop implementa-
tion of the algorithm may terminate due to instability of the process and the
possibility of finite escape time for nonlinear systems. In a closed-loop imple-
mentation of the feasible path SQP algorithm, the problems concerned with
unstable processes are overcome.

The major difference between the infeasible path SQP algorithm and the fea-
sible path SQP algorithm is the functions used in the line search procedure
and the forward solution of the model. The infeasible path SQP algorithm
uses a merit function, i.e. Powell’s l1 merit function, and computes a new it-
erate by xk = x0

k + α∆xk and uk = u0
k + α∆uk. In contrast, the open-loop

implementation of the feasible path SQP algorithm computes a new iterate by

uk = u0
k + α∆uk (5.122a)

xk+1 = Hk(xk, uk) x0 = x0
0 (5.122b)

and adjusts the step length, α, using the objective function (5.64a) as its merit
function. It is obvious by this construction that the constraints are always
satisfied. The problem is, that the open-loop control sequence {uk}N−1

k=0 does
not necessarily stabilize the process xk+1 = Hk(xk, uk). Numerically, such
instability phenomena manifest themselves by divergence and termination of
the algorithm. Precautions can be taken such that the objective function and
the norm of the states are monitored along the integration of the model, i.e.
solution of (5.122b). If these monitored variables become excessively large, the
integration is stopped and the step length reduced. Such a procedure requires

that the initial control profile
{
u0

k

}N−1

k=0
does not lead to divergence. An alter-

native procedure proposed by Tenny et al. (2002) extend the pre-stabilization
methodology of Rossitier et al. (1998) to nonlinear systems. This alternative
procedure is the closed-loop feasible path SQP algorithm. Compared to the
open-loop feasible path controls, u0

k +α∆uk, the controls, uk, computed in the
closed-loop feasible path SQP algorithm are extended with a term correspon-
ding to proportional feedback from the prediction error, xk − (x0

k + α∆xk),
of the linear model. The feedback term reduces the sensitivity and stabilizes
the current trajectory numerically. Hence, the new iterate in the closed-loop
feasible path SQP algorithm is computed by

uk = u0
k + α∆uk + Kk(xk − [x0

k + α∆xk]) (5.123a)

xk+1 = Hk(xk, uk) (5.123b)
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in which Kk is some stabilizing feedback gain matrix. The merit of this iterate
and selection of the step length, α, is based on the objective function as all the
constraints are feasible.

As stated above, the search direction needed in the open-loop feasible path

SQP algorithm is {∆uk}N−1
k=0 , while the closed-loop feasible path SQP algo-

rithm uses {∆xk+1,∆uk}N−1
k=0 as search direction. In addition, the closed loop

feasible path SQP algorithm needs a sequence of stabilizing feedback gains,

{Kk}N−1
k=1 . The search direction is found by solving the quadratic program

(5.82). One method to solve this program is by application of proposition 5.3.1

and corollary 5.3.4. However, {bk = Hk(xk, uk) − xk+1 = 0}N−1
k=0 in the feasible

path SQP algorithms. This implies that the recursions in proposition 5.3.1
may be simplified. The result of this simplification and hence a procedure for
computing the search direction is stated in the following proposition.

Proposition 5.4.1
Consider the case when bk = 0 for k = 0, 1, . . . , N − 1. Let (5.82) be a convex
quadratic program. Then the solution of (5.82) may be obtained by the following
procedure:

1) Compute the factorization

Re,k = Rk + BkPk+1B
′
k (5.124a)

Kk = −R−1
e,k

(
M ′

k + BkPk+1A
′
k

)
(5.124b)

ak = −R−1
e,k (rk + Bkpk+1) (5.124c)

Pk = Qk + AkPk+1A
′
k − K′

kRe,kKk (5.124d)

pk = qk + Akpk+1 + K′
k (rk + Bkpk+1) (5.124e)

for k = N − 1, N − 2, . . . , 1 and

a0 = −
(
R0 + B0P1B

′
0

)−1
(r0 + B0p1) (5.125)

2) Compute the primal solution {∆uk, ∆xk+1}N−1
k=0 by

∆u0 = a0 (5.126a)

∆x1 = B′
0∆u0 (5.126b)

and

∆uk = Kk∆xk + ak (5.127a)

∆xk+1 = A′
k∆xk + B′

k∆uk (5.127b)

for k = 1, 2, . . . , N − 1.

3) Obtain the dual solution {µk}N−1
k=0 by the recursion

µN−1 = −PN∆xN − pN (5.128a)

µk−1 = Akµk − Qk∆xk − Mk∆uk − qk (5.128b)

for k = N − 1, N − 2, . . . , 1.

Proof. Follows directly from proposition 5.3.1 and corollary 5.3.4 when
{bk = 0}N−1

k=0 is inserted. ¤
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5.4.1 Open-Loop Feasible Path SQP

The step length, α, in the open-loop feasible path SQP algorithm for solution
of (5.82) is based on the Armijo condition

T (α) ≤ T (0) + c1αT ′(0) (5.129)

in which the merit function, T (α), is the objective function (5.64a) along the
current search direction

T (α) =
N−1∑

k=0

fk(xk(α), uk(α)) + fN (xN (α)) (5.130)

and f0(u0(α)) = f0(x0(α), u0(α)). In the open-loop feasible path SQP algo-
rithm, the inputs as function of the step length, uk = uk(α), are

uk(α) = u0
k + α∆uk k = 0, 1, . . . , N − 1 (5.131)

Similarly, the states as function of the step length, xk = xk(α), are computed
by

x0(α) = x0 (5.132a)

xk+1(α) = Hk(xk(α), uk(α)) (5.132b)

for k = 0, . . . , N − 1. By these definitions T (0) and T ′(0) used in the Armijo
condition may be computed according to the following lemma.

Lemma 5.4.2
Let {∆xk+1, ∆uk}N−1

k=0 be the solution of (5.82). Let T : [0, 1] 7→ R be defined

by (5.130). Let {uk(α)}N−1
k=0 be defined by (5.131) and let {xk(α)}N

k=0 be defined by

(5.132). Let f0 be the value of (5.64a) at the nominal trajectory (
{
x0

k+1, u
0
k

}N−1

k=0
). Let

(r0, {qk, rk}N−1
k=1 , pN ) be defined by (5.81) at the nominal trajectory

{
x0

k+1, u
0
k

}N−1

k=0
.

Let (B0, {Ak, Bk}N−1
k=1 ) be defined by (5.83a) and (5.84a)-(5.84b), respectively, at the

nominal trajectory
{
x0

k+1, u
0
k

}N−1

k=0
.

Then

T (0) =

N−1∑

k=0

fk(x0
k, u0

k) + fN (x0
N ) = f0 (5.133)

and

T ′(0) =

N−1∑

k=0

r′k∆uk +

N−1∑

k=1

q′k
dxk

dα
(0) + p′

N

dxN

dα
(0) (5.134)

in which dxk

dα
(0) is obtained by the recursion

dx0

dα
(0) = 0 (5.135a)

dxk+1

dα
(0) = A′

k

dxk

dα
(0) + B′

k∆uk (5.135b)



5.4. Feasible Path SQP 239

Proof. (5.133) follows immediately by the fact that xk(0) = x0
k and uk(0) = u0

k.
(5.134) is obtained by application of the chain rule of differentiation. ¤

With the modification introduced above, the solution of the nonlinear optimal
control problem (5.64) by the open-loop feasible path SQP method consists of
the steps stated in algorithm 10 and algorithm 11.

Algorithm 10 (Feasible Path SQP for (5.64))
Let x0

0 = x0 and
{
u0

k

}N−1

k=0
be given.

1. Compute the initial state profile and objective function:
{
x0

k+1 = Hk(x0
k, u0

k)
}N−1

k=0

and f0 =
∑N−1

k=0 fk(x0
k, u0

k) + fN (x0
N ).

2. Evaluate the gradients along the nominal trajectory: Compute (r0, {qk, rk}N−1
k=1 , pN )

by (5.81) and (B0, {Ak, Bk}N−1
k=1 ) by (5.83a) and (5.84a)-(5.84b).

3. Compute an initial estimate of the Lagrange multipliers: π0
N−1 = pN , and

{
π0

k−1 = Akπ0
k − qk

}1

k=N−1
.

4. Choose initial approximations for the Hessian block matrices: {Wk}N

k=0 are cho-

sen as some symmetric positive definite matrices. Define R0, {Qk, Mk, Rk}N−1
k=1

and PN according to (5.79).

5. Compute ({∆xk+1, ∆uk, µk}N−1
k=0 ) by proposition 5.4.1 using the data ( R0, r0,

B0, {Qk, Mk, Rk, qk, rk , Ak , Bk }N−1
k=1 , PN , pN ).

6. Check for convergence: Compute ∆f = r′0∆u0 +
∑N−1

k=1 q′k∆xk + r′k∆uk +

p′
N∆xN . If |∆f | ≤ ǫ then terminate with

{
x0

k+1, u
0
k, µk

}N−1

k=0
as the solution.

Return f0 as well.

7. Compute α by the line search algorithm (algorithm 11). The result is {xk+1, uk}N−1
k=0

and f = f(x, u).

8. Compute
{
πk = π0

k + α(µk − π0
k)

}N−1

k=0
.

9. Compute the Lagrange derivatives using {x0
k+1 , u0

k, πk}N−1
k=0 (see step 7 of

algorithm 9).

10. Evaluate the gradients along the trajectory {xk+1, uk}N−1
k=0 : Compute (r0, {qk,

rk}N−1
k=1 , pN ) by (5.81) and (B0, {Ak, Bk}N−1

k=1 ) by (5.83a) and (5.84a)-(5.84b).

11. Compute the Lagrange derivatives using {xk+1, uk, πk}N−1
k=0 (see step 9 of al-

gorithm 9).

12. Compute {sk, yk}N

k=0 as in step 10 of algorithm 9.

13. Update the Hessian approximation as in step 11 of algorithm 9.

14. Update the old values:
{
x0

k+1, u
0
k, π0

k

}N−1

k=0
← {xk+1, uk, πk}N−1

k=0 and f0 ← f .
Go to (5).

The computation of the initial approximation of the Lagrange multipliers,
{π0

k}N−1
k=0 , in step (3) is based on (5.69b) and (5.69d). The operations of the

line search algorithm adapted for the open-loop feasible path SQP algorithm,
i.e. algorithm 10, are stated in algorithm 11.
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Algorithm 11 (Line Search for FSQP of (5.64))
Let x0 =

{
x0

k

}N

k=1
and u0 =

{
u0

k

}N−1

k=0
. Let f0 = f(x0, u0), η =

∑N−1
k=0 r′k∆uk,

{u0
k}N−1

k=0 , {∆uk}N−1
k=0 , ({qk}N−1

k=1 ,pN ), and (B0,{Ak, Bk}N−1
k=1 ) be given. Let c1 = 10−4.

1. Set T (0) = f0 and x′
0(0) = 0. Compute x′

k+1(0) = A′
kx′

k(0) + B′
k∆uk for

k = 0, 1, . . . , N − 1 and T ′(0) = η +
∑N−1

k=1 q′kx′
k(0) + p′

Nx′
N (0). Set α1 = 1.

2. Compute u =
{
uk = u0

k + ∆uk

}N−1

k=0
, x = {xk+1 = Hk(xk, uk)}N−1

k=0 , and f =
f(x, u). T (α1) = f .

3. If T (α1) ≤ T (0) + c1T
′(0) then stop with α = α1.

4. Compute αmin by (5.48) and α2 by (5.49).

5. Compute u =
{
uk = u0

k + α2∆uk

}N−1

k=0
and x = {xk+1 = Hk(xk, uk)}N−1

k=0 .
Evaluate f = f(x, u) by (5.64a). Set T (α2) = f .

6. If T (α2) ≤ T (0) + c1α2T
′(0) then stop with α = α2.

7. Compute a and b by (5.51). If a = 0 compute αmin = −T ′(0)
b

. Otherwise
compute αmin by (5.52). Compute α by (5.53).

8. Compute u =
{
uk = u0

k + α2∆uk

}N−1

k=0
and x = {xk+1 = Hk(xk, uk)}N−1

k=0 .
Evaluate f = f(x, u) by (5.64a). Set T (α) = f .

9. If T (α) ≤ T (0) + c1αT ′(0) then stop.

10. Set α1 = α2, α2 = α, T (α1) = T (α2), and T (α2) = T (α). Go to step (7).

The algorithm returns α, {xk+1, uk}N−1
k=0 , and f .

For unstable models the open-loop feasible path SQP method in terms of al-
gorithm 10 and 11 may break down as the evaluations xk+1 = Hk(xk, uk) and

f =
∑N−1

k=0 fk(xk, uk) + fN (xN ) may lead to numerical overflow. One imme-
diately apparent method to avoid such situations is to monitor the objective
function as well as the states and decrease the step length whenever divergence
is detected. This requires that the initial state combined with the initial control

trajectory
{
u0

k

}N−1

k=0
does not lead to divergence. Even if the system does not

diverge, the trajectory generated by the feasible path open-loop SQP algorithm
does not necessarily converge to a stationary solution (i.e. the optimal solution)
when applied to an unstable system. The reason for non-convergence is that
the algorithm ends up taking very small steps, i.e. the line search algorithms
selects a very small step length. This is believed to be a manifestation of the
Maratros effect (c.f. Maratros, 1978) and a consequence of the high sensitivity
of the state trajectory, {xk}N

k=0, to small deviations in the controls, {uk}N−1
k=0 .

5.4.2 Closed-Loop Feasible Path SQP

The closed-loop feasible path SQP algorithm ensures convergence even of un-
stable models by a state dependent modification of the input, uk, computed in
the forward run of the line search algorithm. This modification tackles both
the divergence and the non-convergence problems encountered in the open-loop
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feasible path SQP algorithm for optimal control. When the solution does not
diverge but the model itself is unstable, the problems with the open-loop fea-
sible path SQP algorithm is overcome by the closed-loop feasible path SQP as
the nominal trajectory at each iteration is stabilized.

When ∆uk and ∆xk as well as Kk are computed by proposition 5.4.1, the
input, uk(α), may be computed by

uk(α) = u0
k + α∆uk + Kk(xk(α) − [x0

k + α∆xk])

= u0
k + αak + Kk(xk(α) − x0

k)
(5.136)

in which α is the step length and ak is computed according to proposition 5.4.1.
The index has the range k = 0, 1, . . . , N − 1 and K0 = 0 by definition. With
this expression for the input, a feasible closed-loop trajectory may be generated
according to the recursion

u0(α) = u0
0 + αa0 (5.137a)

x1(α) = H0(u0(α)) = H0(x
0
0, u0(α)) (5.137b)

uk(α) = u0
k + αak + Kk(xk(α) − x0

k) (5.137c)

xk+1(α) = Hk(xk(α), uk(α)) (5.137d)

in which k = 1, 2, . . . , N − 1. As in the open-loop feasible path SQP method
for optimal control, the merit function T (α) in the closed-loop feasible path
SQP algorithm for optimal control is given by (5.130). However, in the closed-
loop feasible path SQP algorithm, the feasible trajectory used in evaluating
the merit function is computed by (5.137). The step length, α, is chosen such
that it satisfies the Armijo condition. For the closed-loop feasible path SQP
algorithm, T (0) and T ′(0) used in verifying the Armijo condition are computed
according to the following lemma.

Lemma 5.4.3
Let T : [0, 1] 7→ R be defined by (5.130). Let {Kk}N−1

k=1 and {ak}N−1
k=0 be computed

according to proposition 5.4.1. Let {uk(α)}N−1
k=0 and {xk(α)}N

k=1 be computed by
(5.137). Let f0 be the value of (5.64a) at the nominal trajectory {x0

k+1, u
0
k}N−1

k=0 . Let
(r0, {qk, rk}N−1

k=1 , pN ) be defined by (5.81) at the nominal trajectory {x0
k+1, u

0
k}N−1

k=0 .
Let (B0, {Ak, Bk}N−1

k=1 ) be defined by (5.83a) and (5.84a)-(5.84b), respectively, at the
nominal trajectory {x0

k+1, u0
k}N−1

k=0 .

Then

T (0) =

N−1∑

k=0

fk(x0
k, u0

k) + fN (x0
N ) = f0 (5.138)

and

T ′(0) = r′0a0 +

N−1∑

k=1

q′k
dxk

dα
(0) + r′k

duk

dα
(0) + p′

N

dxN

dα
(0) (5.139)



242 Numerical Solution of Nonlinear Optimal Control Problems

in which dxk

dα
(0) and duk

dα
(0) are obtained by the recursion

dx1

dα
(0) = B′

0a0 (5.140a)

duk

dα
(0) = ak + Kk

dxk

dα
(0) (5.140b)

dxk+1

dα
(0) = A′

k

dxk

dα
(0) + B′

k

duk

dα
(0) (5.140c)

for k = 1, 2, . . . , N − 1.

Proof. (5.138) follows immediately from the fact that xk(0) = x0
k and uk(0) =

u0
k. The expressions (5.139) and (5.140) are obtained by the chain rule of

differentiation. ¤

By the above modifications of the feasible path SQP algorithm for optimal
control, the closed-loop feasible path SQP algorithm may be formulated in
terms of the statements in the algorithm below.

Algorithm 12 (Feasible Path SQP for (5.64))
Let x0

0 = x0 and
{
u0

k

}N−1

k=0
be given.

1. Compute the initial state profile and objective function:
{
x0

k+1 = Hk(x0
k, u0

k)
}N−1

k=0

and f0 =
∑N−1

k=0 fk(x0
k, u0

k) + fN (x0
N ).

2. Evaluate the gradients along the nominal trajectory: Compute (r0, {qk, rk}N−1
k=1 , pN )

by (5.81) and (B0, {Ak, Bk}N−1
k=1 ) by (5.83a) and (5.84a)-(5.84b).

3. Compute an initial estimate of the Lagrange multipliers: π0
N−1 = pN , and

{
π0

k−1 = Akπ0
k − qk

}1

k=N−1
.

4. Choose initial approximations for the Hessian block matrices: {Wk}N

k=0 are cho-

sen as some symmetric positive definite matrices. Define R0, {Qk, Mk, Rk}N−1
k=1

and PN according to (5.79).

5. Compute ({∆xk+1, ∆uk, µk}N−1
k=0 ), {ak}M−1

k=0 , and {Kk}N−1
k=1 by proposition 5.4.1

using the data ( R0, r0, B0, {Qk, Mk, Rk, qk, rk , Ak , Bk }N−1
k=1 , PN , pN ).

6. Check for convergence: Compute ∆f = r′0∆u0 +
∑N−1

k=1 q′k∆xk + r′k∆uk +

p′
N∆xN . If |∆f | ≤ ǫ then terminate with

{
x0

k+1, u
0
k, µk

}N−1

k=0
as the solution.

Return f0 as well.

7. Compute α by the line search algorithm (algorithm 11). The result is {xk+1, uk}N−1
k=0

and f = f(x, u).

8. Compute
{
πk = π0

k + α(µk − π0
k)

}N−1

k=0
.

9. Compute the Lagrange derivatives using {x0
k+1 , u0

k, πk}N−1
k=0 (see step 7 of

algorithm 9).

10. Evaluate the gradients along the trajectory {xk+1, uk}N−1
k=0 : Compute (r0, {qk,

rk}N−1
k=1 , pN ) by (5.81) and (B0, {Ak, Bk}N−1

k=1 ) by (5.83a) and (5.84a)-(5.84b).

11. Compute the Lagrange derivatives using {xk+1, uk, πk}N−1
k=0 (see step 9 of al-

gorithm 9).
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12. Compute {sk, yk}N

k=0 as in step 10 of algorithm 9.

13. Update the Hessian approximation as in step 11 of algorithm 9.

14. Update the old values:
{
x0

k+1, u
0
k, π0

k

}N−1

k=0
← {xk+1, uk, πk}N−1

k=0 and f0 ← f .
Go to (5).

The major assumption in this particular formulation of the closed loop algo-
rithm is that the initial state trajectory {x0

k}N
k=1 associated with the initial

state x0 = x0
0 and the initial input trajectory {u0

k}N−1
k=0 is non-divergent. If this

restriction is undesirable, step (1) must be modified. Alternatively, one can
adjust the algorithm such that the user of the algorithm must supply an initial
feasible trajectory (x0

0, {x0
k+1, u

0
k}N−1

k=0 ). By this modification, the first part of
step (1) becomes redundant.

The fundamental change in the closed-loop feasible path algorithm compared
to the open-loop feasible path algorithm is that {Kk}N−1

k=1 and {ak}N−1
k=0 com-

puted in step (5) of algorithm 12 by proposition 5.4.1 are used by the line
search algorithm. The line search algorithm applies {ak}N−1

k=0 and {Kk}N−1
k=1

in construction of the closed-loop trajectory along which the merit function is
evaluated. With respect to the major principles, the line search algorithm pre-
sented below is identical with the previously presented line search algorithms.

Algorithm 13 (Line Search for FSQP of (5.64))
Let x0 =

{
x0

k

}N

k=1
and u0 =

{
u0

k

}N−1

k=0
. Let f0 = f(x0, u0), {x0

k+1, u
0
k}N−1

k=0 , {ak}N−1
k=0 ,

{Kk}N−1
k=1 , ({rk}N−1

k=0 , {qk}N−1
k=1 ,pN ), and (B0,{Ak, Bk}N−1

k=1 ) be given. Let c1 = 10−4.

1. Set T (0) = f0. Compute T ′(0) by (5.139) using (5.140). Set α1 = 1.

2. Compute u(α1) = {uk(α1)}N−1
k=0 and x(α1) = {xk(α1)}N

k=1 by (5.137). Com-
pute f = f(x(α1), u(α1)) and set T (α1) = f .

3. If T (α1) ≤ T (0) + c1T
′(0) then stop with α = α1.

4. Compute αmin by (5.48) and α2 by (5.49).

5. Compute u(α2) = {uk(α2)}N−1
k=0 and x(α2) = {xk(α2)}N

k=1 by (5.137). Evaluate
f = f(x(α2), u(α2)) by (5.64a). Set T (α2) = f .

6. If T (α2) ≤ T (0) + c1α2T
′(0) then stop with α = α2.

7. Compute a and b by (5.51). If a = 0 compute αmin = −T ′(0)
b

. Otherwise
compute αmin by (5.52). Compute α by (5.53).

8. Compute u(α) = {uk(α)}N−1
k=0 and x(α) = {xk(α)}N

k=1 by (5.137). Evaluate
f = f(x(α), u(α)) by (5.64a). Set T (α) = f .

9. If T (α) ≤ T (0) + c1αT ′(0) then stop.

10. Set α1 = α2, α2 = α, T (α1) = T (α2), and T (α2) = T (α). Go to step (7).

The algorithm returns α, {xk+1(α), uk(α)}N−1
k=0 , and f .
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5.5 Reduced-Space Quadratic Program

The quadratic program arising in both the infeasible and feasible path SQP
algorithm described in the previous sections is solved using a factorization
based on Riccati iteration. In this section an alternative for solution of the
quadratic program (5.82) is presented. The method is based on elimination of
the states and the constraints by formation of a smaller but dense quadratic
program. In the first modification, the dense quadratic program is formed
by elimination of the states in (5.82). In the second modification, the dense
quadratic program is formed directly by implicit elimination of the states in
(5.64) such that the resulting problem becomes an unconstrained optimization
problem in the inputs only.

Algorithms solving a dense quadratic program rather than solving a structured
quadratic programming using Riccati iteration may be advantageous when the
system has much fewer inputs than states and a short prediction and control
horizon compared to the state dimension.

5.5.1 Dense Quadratic Program

The structured quadratic program (5.82) may be transformed into a dense
quadratic program by elimination of the states and the constraints representing
the linearized dynamics. Consequently, rather than obtaining the solution by
solving the structured quadratic program through Riccati iteration, it may
be obtained by solving a dense quadratic program. This procedure may be
incorporated in both the feasible path and infeasible path SQP algorithms for
nonlinear optimal control.

The dense quadratic program is deduced by elimination of the constraints and
states in the structured quadratic program (5.82). Elimination of the con-
straints

∆x1 = B′
0∆u0 + b0 (5.141a)

∆xk+1 = A′
k∆xk + B′

k∆uk + bk k ∈ N (5.141b)

in the quadratic program (5.82) involves elimination of the states by express-
ing these as function of the inputs {∆uk}N−1

k=0 and the exogeneous parameters

{bk}N−1
k=0 . These expressions are conveniently deduced and expressed using the

discrete-time state transition matrix

Φk,j = Φ(k, j) =







A′
k−1A

′
k−2 · · ·A′

j k > j

I k = j

0 k < j

(5.142)
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and the discrete-time impulse response matrix

Γk,j = Φk,j+1B
′
j

=







A′
k−1A

′
k−2 · · ·A′

j+1B
′
j k > j + 1

B′
j k = j + 1

0 k < j + 1

(5.143)

for k ∈ {1, 2, . . . , N} and j ∈ {0, 1, . . . , N − 1}. Using the discrete-time state
transition matrices and the discrete-time impulse response matrices, the dy-
namic equations (5.141) give the following expression for the states {∆xk}N

k=1

∆xk =

k−1∑

j=0

Γk,j∆uj +

k−1∑

j=0

Φk,j+1bj

= Γk∆u + dk

(5.144)

The second part of this relation is expressed in terms of the decision vector ∆u
defined by ∆u =

[
∆u′

0 ∆u′
1 . . . ∆u′

N−1

]′
and the matrix Γk defined by

Γk =
[
Γk,0 Γk,1 . . . Γk,k−1 Γk,k . . . Γk,N−1

]

=
[
Γk,0 Γk,1 . . . Γk,k−1 0 . . . 0

] (5.145)

The structure of Γk resembles to some extent the structure of the controllability
matrix. The discrete-time impulse response matrix may be computed by the
recursion

Γ1 =
[
Γ1,0 Γ1,1 . . . Γ1,N−1

]

=
[
B′

0 0 . . . 0
] (5.146a)

Γk+1 =
[
Γk+1,0 . . . Γk+1,k−1 Γk+1,k 0 . . . 0

]

=
[
A′

kΓk,0 . . . A′
kΓk,k−1 B′

k 0 . . . 0
] (5.146b)

The set of vectors, {dk}N
k=1, are defined by

dk =

k−1∑

j=0

Φk,j+1bj (5.147)

but more conveniently computed by the recursion

d1 = b0 (5.148a)

dk+1 = A′
kdk + bk k = 1, 2, . . . , N − 1 (5.148b)

With the quantities introduced in this section, the states and constraints can
be eliminated from the quadratic program (5.82). The result is a quadratic
program with ∆u as the only decision variables. This result is stated in the
following proposition.
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Proposition 5.5.1 (Dense Quadratic Program)
Let {Γk}N

k=1 be defined by (5.145). Let Φk,j+1 and Γk,j be defined by (5.142) and

(5.143) for k = {1, 2, . . . N} and j = {0, 1, . . . , N − 1}. Let {dk}N
k=1 be computed by

(5.148). Let ∆u =
[
∆u′

0 ∆u′
1 . . . ∆u′

N−1

]′
. Let Ik ∈ R

m×Nm denote a matrix
with an identity matrix in block k, e.g.

Ik =
[
0 . . . 0 I 0 . . . 0

]
(5.149)

Then the solution {∆x∗
k+1, ∆u∗

k}N−1
k=0 of the quadratic program (5.82) may be obtained

as the solution {∆u∗
k}N−1

k=0 of

min
∆u

φ = 1
2
∆u′W∆u + r′∆u + ρ (5.150)

and subsequent computation of {∆x∗
k}N

k=1. The Hessian matrix, W , is given by

W =

N−1∑

k=0

I ′
kRkIk

+

N−1∑

k=1

Γ′
kQkΓk + Γ′

kMkIk + I ′
kM ′

kΓk

+ Γ′
NPNΓN

(5.151)

and the gradient, r, is

r = I ′
0r0

+

N−1∑

k=1

Γ′
k (qk + Qkdk) + I ′

k

(
rk + M ′

kdk

)

+ Γ′
N (pN + PNdN )

(5.152)

The constant term, ρ, is

ρ =

N−1∑

k=1

1
2
d′

kQkdk + q′kdk + 1
2
d′

NPNdN + p′
NdN (5.153)

Proof. The quadratic program (5.150) with the data (5.151)-(5.153) is ob-
tained from (5.82) by elimination of the states. ∆xk given by the expression
(5.144) implies that the constraints (5.82b)-(5.82c) are always satisfied. Substi-
tution of the expression (5.144) for the states in the objective function (5.80)
and subsequent straightforward algebraic manipulations leads to the desired
result. ¤

Remark 5.5.2
For unstable systems, the matrix W may be very ill-conditioned. Unstable modes
corresponding to eigenvalues with absolute value larger than one may be amplified
in the modified controllability matrices, Γk. As k becomes large the corresponding
entries in the modified controllability matrices become very large. Consequently, by
inspection of the expression for W it may have some directions with very large singular
values.
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The major computational efforts in solving the dense quadratic program (5.150)
concerns computation of the reduced approximate Hessian matrix, W , by
(5.151) and solution of the resulting quadratic program. The solution of (5.150)
is stated in the following corollary.

Corollary 5.5.3
The solution ∆u∗ of the quadratic program (5.150) is obtained as the solution of the
symmetric positive definite linear system

W∆u∗ = −r (5.154)

Subsequently, {∆x∗
k}N

k=1 can be obtained either from

∆x∗
k = Γk∆u∗ + dk (5.155)

or from the recursion

∆x∗
1 = B′

0∆u∗
0 + b0 (5.156a)

∆x∗
k+1 = A′

k∆x∗
k + B′

k∆u∗
k + bk (5.156b)

Proof. R0,

[
Qk Mk

M ′
k Rk

]

for k = 1, 2, . . . , N − 1, and PN are symmetric positive

definite by construction. Hence, W computed by (5.151) is symmetric positive
definite. Then the condition ∇φ = W∆u∗ + r = 0 is both necessary and
sufficient for ∆u∗ being the unique global minimizer of (5.150). The expressions
for computation of {∆x∗

k}N
k=1 follows directly from the preceding discussion in

this section. ¤

The reduced approximate Hessian matrix, W , is a symmetric positive definite
Nm×Nm matrix. Hence, the solution of (5.154) may be obtained by Cholesky
factorization, W = LL′, of W . This implies that the solution of the quadratic
program (5.150), i.e. solution of (5.154), requires O((Nm)3) floating point op-
erations. The solution procedure based on the Riccati iteration has complexity
O(Nm3), i.e. it is linear in the decision horizon. However, the number of
floating point operations in the Riccati iteration based procedure is cubic in
the state dimension. In comparison, the number of floating point operations in
formation of the reduced dense Hessian matrix, W , and hence in obtaining the
solution using the dense quadratic program is quadratic in the state dimension.

In a feasible path SQP algorithm for optimal control, the construction of the
dense quadratic program simplifies as {bk = 0}N−1

k=0 . The following corollary
states these simplifications.

Corollary 5.5.4
Let the solution of the quadratic program (5.82) be part of the feasible path SQP
algorithm for nonlinear optimal control.

Then {bk = 0}N−1
k=0 and the computation of the reduced gradient, r, of (5.150) sim-

plifies to

r = I ′
0r0 +

N−1∑

k=1

Γ′
kqk + I ′

krk + Γ′
NpN (5.157)
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The constant, ρ, of (5.150) is ρ = 0.

The optimal state sequence, {∆x∗
k}N

k=1, may be computed by

∆x∗
k = Γk∆u∗ (5.158)

or

∆x∗
1 = B′

0∆u∗
0 (5.159a)

∆x∗
k+1 = A′

k∆x∗
k + B′

k∆u∗
k (5.159b)

Proof. It has already been established that {bk = 0}N−1
k=0 in the feasible path

SQP algorithm for nonlinear optimal control. This implies that {dk = 0}N
k=1.

The simplified expression (5.157) is obtained from (5.152) by setting dk = 0.
Similarly, the expressions for the optimal state sequence {∆x∗

k}N
k=1 are obtained

using dk = 0 and bk = 0, respectively. ¤

In the infeasible path algorithm for optimal control as well as the feasible
path algorithm for optimal control the Lagrange multipliers associated with
(5.82) are needed. When the solution {∆x∗

k+1,∆u∗
k}N−1

k=0 is computed by solving
the dense quadratic program and subsequent computation of the states, the
Lagrange multipliers {µ∗

k}N−1
k=0 may be computed according to the following

corollary.

Corollary 5.5.5
Given the optimal solution {∆x∗

k+1, ∆u∗
k}N−1

k=0 of (5.82), the corresponding optimal

Lagrange multipliers {µ∗
k}N−1

k=0 may be computed by the recursion

µ∗
N−1 = −PN∆x∗

N − pN (5.160a)

µ∗
k−1 = Akµ∗

k − Qk∆x∗
k − Mk∆u∗

k − qk (5.160b)

Proof. The result is just another formulation of corollary 5.3.4. ¤

5.5.2 Direct Formation of the Dense Quadratic Program

Instead of forming the dense quadratic program (5.150) from the structured
quadratic program (5.82), the dense quadratic program may be formed directly
in a feasible path SQP algorithm for (5.64). In this algorithm, the states
and constraints are eliminated in the nonlinear program rather than in the
structured quadratic program. By the constraints

x1 = H0(u0) (5.161a)

xk+1 = Hk(xk, uk) k = 1, 2, . . . , N − 1 (5.161b)

the states, x = {xk = xk(u)}N
k=1, may be regarded as functions of u = {uk}N−1

k=0 .
This relation may also be expressed as x = x(u). Consequently, the objective



5.5. Reduced-Space Quadratic Program 249

function (5.64a) may be regarded as a function, F (u), of u

F (u) = f(x(u), u)

= f0(u0) +

N−1∑

k=1

fk(xk(u), uk) + fN (xN (u))
(5.162)

and the nonlinear discrete optimal control problem (5.64) is equivalent to the
unconstrained optimization problem

min
u

F (u) (5.163)

Quasi-Newton methods for solution of this unconstrained optimization prob-
lems compute the search direction using a quadratic approximation

min
∆u

φ = 1
2∆u′W∆u + ∇F (u0)′∆u + F (u0) (5.164)

of F (u) around the current point, u0. The Hessian matrix, W , of F (u) is
approximated by a variable metric secant update (c.f. Dennis and Schnabel,
1996). Usually, the BFGS update is employed. The gradient, ∇F (u), is needed
in the formation of φ and in the secant update of the BFGS or modified BFGS
approximation, W , of the Hessian matrix. An expression for the gradient,
∇F (u), may be obtained by application of the chain rule or by noting the
equivalence to construction of the dense quadratic program from the structured
quadratic program in the feasible path algorithm. The gradient, ∇F (u), is
given by the expression

∇F (u) = I ′0r0 +

N−1∑

k=1

Γ′
kqk + I ′krk + Γ′

NpN (5.165)

and is efficiently computed by the following algorithm.

Algorithm 14 (Computation of ∇F (u))
Let (x, u) = (x(u), u) = {xk+1(u), uk}N−1

k=0 be a given feasible trajectory.

1. Compute r0 = ∇u0f0(u0) and B0 = ∇u0H0(u0). Set ∇F = I ′
0r0. Set

Γ1 =
[
Γ1,0 Γ1,1 . . . Γ1,N−1

]

=
[
B′

0 0 . . . 0
]

2. For k = 1, 2, . . . , N − 1 compute: qk = ∇xk
fk(xk, uk) and rk = ∇uk

fk(xk, uk).
Set ∇F ← ∇F + Γ′

kqk + I ′
krk. Compute Ak = ∇xk

Hk(xk, uk) and Bk =
∇uk

Hk(xk, uk). Compute

Γk+1 =
[
Γk+1,0 . . . Γk+1,k−1 Γk+1,k 0 . . . 0

]

=
[
A′

kΓk,0 . . . A′
kΓk,k−1 B′

k 0 . . . 0
]

3. Compute pN = ∇xN
fN (xN ). Set ∇F ← ∇F + Γ′

NpN .
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The major computational expense in algorithm 14 concerns construction of the
discrete-time impulse response matrices, Γk. For dense systems, the construc-
tions of these matrices from Ak and Bk require 1

2 (N2 − N)n2m floating point
operations. Consequently, algorithm 14 has a complexity which is quadratic in
the horizon, N , and the state dimension, n.

With this algorithm for computation of the gradient, ∇F (u), available, the
nonlinear optimal control problem (5.64) may be solved by solving (5.163)
using the following algorithm.

Algorithm 15 (Reduced Feasible Path SQP for (5.64))
Let u0 = {u0

k}N−1
k=0 and x0

0 = x0 be given.

1. Compute the trajectory and objective value by {x0
k+1 = Hk(x0

k, u0
k)}N−1

k=0 and

F 0 = f0(u
0
0) +

∑N−1
k=1 fk(x0

k, u0
k) + fN (x0

N ).

2. Compute r0 = ∇F (u0) using algorithm 14.

3. Choose an initial positive definite approximation, W , for the Hessian matrix
∇2F (u0).

4. Compute ∆u∗ as the solution of the dense QP, i.e. by solving W∆u∗ = −r0.

5. Check for convergence. If |(r0)′∆u∗| < ε then stop with {x0
k+1, u

0
k}N−1

k=0 as the
solution. Return F 0 as well.

6. Compute the step length α by a line search algorithm using Armijo’s condition.
The result is α, (x, u) = {xk+1, uk}N−1

k=0 , and F .

7. Compute r = ∇F (u) by algorithm 14.

8. Update the approximate Hessian matrix, W , by Powell’s BFGS modification.
Compute s = u − u0, y = r − r0, and

θ =

{

1 s′y ≥ 0.2s′Ws
0.8s′Ws

s′Ws−s′y
s′y < 0.2s′Ws

(5.166)

Compute z = θy + (1 − θ)Ws. Compute W by the expression

W ← W − Wss′W

s′Ws
+

zz′

s′z
(5.167)

9. Update the old values: (x0, u0) = (x, u), F 0 = F , and r0 = r. Go to (4).

Algorithm 15 constructs the approximate Hessian matrix, W , by the modified
BFGS update. Hence, it is relatively straightforward to extend this algorithm
to the constrained case. Furthermore, this ensures that the approximate Hes-
sian, W , is always positive definite. As is evident, the construction of the
approximate Hessian, W , by this algorithm is much simpler than in the algo-
rithm constructing the dense quadratic program from the structured quadratic
program. The solution of the quadratic program in each iteration is obtained
by solving W∆u∗ = −r0. As W is symmetric and positive definite this solution
procedure may be conducted by Cholesky factorization, W = LL′, of W . How-
ever, as W is obtained by a rank-one modification, the Cholesky factor L may
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be obtained directly such that the factorization W = LL′ becomes redundant
(c.f. Dennis and Schnabel, 1996). Direct formation of the Cholesky factor of
a BFGS modified matrix, W , is an O((Nm)2) process while factorization of
W is an O((Nm)3) process. Consequently, a reduction in the computational
operations corresponding to one order of magnitude can be expected by such
a modification.

The line search algorithm employed in algorithm 15 uses the objective function
and the Armijo condition in conjunction with backtracking to select the step
length, α.

Algorithm 16 (Line search)
Let x0

0 = x0, (x0, u0) = {x0
k+1, u

0
k}N−1

k=0 , F 0 = F (u0), r0 = ∇F (u0), and ∆u∗ =

{∆u∗
k}N−1

k=0 be given.

1. Set α1 = 1. Set T (0) = F 0 and T ′(0) = (r0)′∆u∗.

2. Compute u = {uk = u0
k + ∆u∗

k}N−1
k=0 and x = {xk+1 = Hk(xk, uk)}N−1

k=0 . Evalu-
ate F = f(x, u) by (5.64a). Set T (α1) = F .

3. If T (α1) ≤ T (0) + c1T
′(0) then stop with α = α1.

4. Compute αmin by (5.48) and α2 by (5.49).

5. Compute u =
{
uk = u0

k + α2∆u∗
k

}N−1

k=0
and x = {xk+1 = Hk(xk, uk)}N−1

k=0 .
Evaluate F = f(x, u) by (5.64a). Set T (α2) = F .

6. If T (α2) ≤ T (0) + c1α2T
′(0) then stop with α = α2.

7. Compute a and b by (5.51). If a = 0 compute αmin = −T ′(0)
b

. Otherwise
compute αmin by (5.52). Compute α by (5.53).

8. Compute u =
{
uk = u0

k + α2∆u∗
k

}N−1

k=0
and x = {xk+1 = Hk(xk, uk)}N−1

k=0 .
Evaluate F = f(x, u) by (5.64a). Set T (α) = F .

9. If T (α) ≤ T (0) + c1αT ′(0) then stop.

10. Set α1 = α2, α2 = α, T (α1) = T (α2), and T (α2) = T (α). Go to step (7).

Essentially, the above algorithm is an open-loop feasible path algorithm with all
the deficiencies of such algorithms when applied to systems around an unstable
equilibrium.

The quasi-Newton method for unconstrained optimization provided by Dennis
and Schnabel (1996) employs the BFGS secant update rather than the modified
BFGS secant update. To ensure positive definiteness of the sequence of Hessian
approximations, they use the Armijo condition along with the condition

∇F (u0 + α∆u∗)′∆u∗ ≥ β∇F (u0)′∆u∗ (5.168)

in which β ∈ (α, 1). Therefore, the line-search algorithm has to be modified
as described by Dennis and Schnabel (1996). However, positive definiteness of
the sequence of Hessian approximations is ensured in the algorithm presented
by application of Powell’s modified BFGS update. This feature makes the
algorithm readily extensible to the case with inequality constraints.
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5.6 Discrete Maximum Principle

This section presents an algorithm for solution of the optimal control problem
(5.64) based on the disrete-time maximum principle. Even though the problem
is a minimization problem the principle used in the solution will be referred to
as the maximum principle and not the minimum principle. The presentation of
the discrete-time maximum principle algorithm for solution of optimal control
problems puts the SQP based algorithms in perspective in relation to classic
methods for optimal control. Ravn (1999) provides a recent presentation of the
discrete-time maximum principle and related algorithms.

The Lagrangian of (5.64) may be expressed as

L = f0(u0) +

N−1∑

k=1

fk(xk, uk) + fN (xN )

− π′
0(H0(u0) − x1)

−
N−1∑

k=1

π′
k(Hk(xk, uk) − xk+1)

= f0(u0) − π′
0H0(u0)

+

N−1∑

k=1

fk(xk, uk) − π′
kHk(xk, uk) + π′

k−1xk

+ fN (xN ) + π′
N−1xN

= H0(u0, π0) +

N−1∑

k=1

Hk(xk, uk, πk) + π′
k−1xk

+ HN (xN ) + π′
N−1xN

(5.169)

in which the Hamiltonians, Hk for k = 0, 1, . . . , N , are defined as

H0(u0, π0) = f0(u0) − π′
0H0(u0) (5.170a)

Hk(xk, uk, πk) = fk(xk, uk) − π′
kHk(xk, uk) (5.170b)

HN (xN ) = fN (xN ) (5.170c)

Using the Hamiltonians, it is customary to refer to the Lagrange multipliers
πk as the co-state vectors. Furthermore, by comparison to (5.66) it is evident
that Lk and Hk are related by

L0(u0, π0) = H0(u0, π0) (5.171a)

Lk(xk, uk, πk−1, πk) = Hk(xk, uk, πk) + π′
k−1xk (5.171b)

LN (xN , πN−1) = HN (xN ) + π′
N−1xN (5.171c)

and furthermore the block matrices (5.71) of the Hessian of the Lagrangian
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may be expressed as

R0 = ∇2
u0,u0

H0 (5.172a)
[
Qk Mk

M ′
k Rk

]

=

[
∇2

xk,xk
Hk ∇2

xk,uk
Hk

∇2
uk,xk

Hk ∇2
uk,uk

Hk

]

(5.172b)

PN = ∇2
xN ,xN

HN (5.172c)

This close correspondence between the Hamiltonians, Hk, and the stage wise
Lagrangians, Lk, implies that the necessary optimality conditions (5.67) of
(5.64) can be formulated in terms of the Hamiltonians, Hk, rather than the
stage wise Lagrangians, Lk, or the Lagrangian, L, itself. The first order neces-
sary optimality conditions of (5.64) formulated in terms of the Hamiltonians,
Hk, are stated in the following proposition.

Proposition 5.6.1
Let {xk+1, uk}N−1

k=0 be a local minimizer of (5.64). Let the Hamiltonians, Hk for
k = 0, 1, . . . , N − 1, be defined according to (5.170).

Then there exists unique Lagrange multipliers, {πk}N−1
k=0 , such that

∇u0H0(u0, π0) = 0 (5.173a)

x1 = H0(u0) (5.173b)

and for k = 1, 2 . . . , N − 1

∇uk
Hk(xk, uk, πk) = 0 (5.174a)

xk+1 = Hk(xk, uk) (5.174b)

as well as

πN−1 = −∇xN
HN (xN ) (5.175a)

πk−1 = −∇xk
Hk(xk, uk, πk) (5.175b)

for k = 1, 2, . . . , N − 1.

Proof. This is a direct specialization of proposition 5.2.2 to (5.64). Compare
for instance also to (5.67). The linear independence constraint qualification is
always satisfied for (5.64) which can be verified by inspection of (5.88). ¤

Remark 5.6.2
When the optimality conditions are expressed by the Hamiltonians, the Lagrange
multipliers πk are called the co-state vectors and (5.175) are called the adjoint equa-
tions.

Sequential quadratic programming algorithms obtain in principle the optimal
solution to (5.64) by simultaneous solution of (5.173)-(5.175) using Newton’s
method. The maximum principle algorithm is based on sequential solution
of (5.173)-(5.175). Given {x0

k+1, u
0
k}N−1

k=0 , the co-state vectors {π0
k}N−1

k=0 are
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computed using the adjoint equations (5.175). Given {x0
k}N

k=1 and {π0
k}N−1

k=0 ,

a new optimal input candidate, {u∗
k}N−1

k=0 , is computed by solution of (5.173a)
and (5.174a). This sequential solution procedure implies that the maximum
achievable rate of convergence is linear. The maximum obtainable rate of
convergence is quadratic using Newton’s method and super-linear using a quasi-
Newton methodology. However, compared to a Newton-based method, the
main feature of the maximum-principle algorithm is its simplicity as is evident
in the statement of the algorithm below.

Algorithm 17 (Discrete Weak Maximum Principle)
Let {u0

k}N−1
k=0 and x0

0 = x0 be given. Assume that the associated state trajectory

{x0
k}N

k=1 is non-divergent.

1. Compute {x0
k+1 = Hk(x0

k, u0
k)}N−1

k=0 . Compute f0 =
∑N−1

k=0 fk(x0
k, u0

k)+fN (x0
N ).

2. Compute π0
N−1 = −∇xN

HN (x0
N ) and {π0

k−1 = −∇xk
Hk(x0

k, u0
k, π0

k)}N−1
k=1 .

3. Compute {u∗
k}N−1

k=0 by solution of ∇u0H0(u
∗
0, π

0
0) = 0 and ∇uk

Hk(x0
k, u∗

k, π0
k) =

0. Compute {∆uk = u∗
k − u0

k}N−1
k=0 .

4. Check for convergence. If ‖∆uk‖2 ≤ ε for k = 0, 1, . . . , N − 1 then terminate
with {x0

k+1, u
0
k, π0

k}N−1
k=0 as the solution. Return f0 as well.

5. Compute the step length α by line search using the Armijo condition and
{
uk(α) = u0

k + α∆uk

}N−1

k=0
(5.176a)

{xk+1(α) = Hk(xk(α), uk(α))}N−1
k=0 (5.176b)

in computation of the merit function

T (α) =

N−1∑

k=0

fk(xk(α), uk(α)) + fN (xN (α)) (5.177)

6. Set {u0
k = uk(α)}N−1

k=0 , {xk+1(α) = x0
k+1} and f0 = T (α). Go to (2).

Remark 5.6.3
When Rk = ∇2

uk,uk
Hk(x0

k, uk, π0
k) is positive definite in a neighborhood of u∗

k, the
solution of

∇uk
Hk(x0

k, u∗
k, π0

k) = 0 (5.178)

is equivalent to the minimization

min
uk∈Rm

Hk(x0
k, uk, π0

k) (5.179)

This is the reason why the algorithm is called the maximum (minimum) principle
algorithm. At each stage the corresponding Hamiltonian, Hk, is minimized with
respect to uk.

Let Rk = ∇2
uk,uk

Hk(x0
k, uk, π0

k) and assume that this matrix is positive definite.
Then the solution of (5.179) may be obtained iteratively by solution of the following
equation to obtain the direction ∆u∗

k for a new iterate

Rk∆u∗
k = −∇uk

Hk(x0
k, uk, π0

k) (5.180)

The matrices Rk may also be constructed using the BFGS-approximation such that
(5.179) is solved by a quasi-Newton method.
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The stated maximum principle algorithm is a feasible path open-loop method.
This implies that it is not well suited for problems with unstable dynamics.
Compared to the SQP based methods for solution of optimal control problems,
the maximum principle algorithm requires less memory as it does not have to
store the entire KKT-matrix. It is also fairly simple to program, but can only
achieve linear rate of convergence. Another disadvantage is that it is not easily
extensible to problems with state constraints.

5.7 Process Example

The potential problems with dynamic optimization of models with unstable
dynamics is illustrated using a simple continuous stirred tank reactor with an
exothermic irreversible reaction, A → B (c.f. Henson and Seborg, 1997; Seborg
et al., 1989). The system is illustrated in figure 5.1. Reactant A at temperature
Tf is fed to a stirred vessel with a cooling/heating jacket. The objective is to
control the temperature, T , of the vessel by manipulating the temperature,
Tc, of the fluid in the jacket. The manipulated jacket fluid temperature, Tc,
is in practice a setpoint to a controller controlling the jacket temperature by
manipulation of the flow rate of cold and hot jacket fluid. The jacket fluid
temperature dynamics is assumed instantaneous relative to the material and
energy dynamics of the stirred vessel.

Feed: A
TF, CAF

Hot

Cold

CA, T

A ---> B

TC

Figure 5.1. An exothermic CSTR with a cooling jacket.
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The material and energy balance of the constant volume CSTR is

ĊA =
q

V
(CA,f − CA) − r(CA, T ) (5.181a)

Ṫ =
q

V
(Tf − T ) +

(−∆H)

ρCp
r(CA, T ) +

UA

V ρCp
(Tc − T ) (5.181b)

in which the reaction rate, r(CA, T ), is first order in A and governed by an
Arrhenius temperature dependence

r(CA, T ) = k(T )CA, k(T ) = k0 exp

(

− E

RT

)

(5.182)

CA is the concentration of A, q is the flow rate to and from the reactor, V is
the volume of liquid in the reactor, CA,f is the feed concentration of reactant
A, T is the temperature of the liquid in the reactor, Tf is the temperature of
the feed, ∆H is the reaction enthalpy, ρ is the density of the liquid, Cp is the
specific heat capacity, UA is the heat transmission number between the jacket
and the vessel, and Tc is the temperature of the jacket fluid. The parameters
and the nominal operating point of the CSTR in figure 5.1 are provided in
table 5.2.

The steady states of the system as function of the jacket fluid temperature, Tc,
is plotted in figure 5.2. The asterisk indicates the nominal operating point. At
the nominal jacket fluid temperature, multiple equilibria exist and the nominal
equilibrium is unstable. Among other things, the instability implies that the
steady state reactor temperature, T , and concentration, CA, are highly sensitive
to the actual value of the fluid temperature in the jacket.

A decrease in the jacket fluid temperature from Tc = 300 K to Tc = 295 K
implies that the reaction turns off and moves to the lower branch of the tem-
perature curve. This transient behavior is shown in figure 5.3. The opposite
situation in which the jacket fluid temperature is increased from Tc = 300 K
to Tc = 305 K is illustrated in figure 5.4. The temperature increase ignites the
reaction and the system goes into a limit cycle. As a result, excessive temper-
ature and concentration variations are observed. The center point of the limit

Table 5.2. Parameters and nominal operating conditions for the CSTR.

Variable Value Variable Value

q 100 L/min E
R 8750 K

CA,f 1.0 mol/L k0 7.2 · 1010 min−1

Tf 350 K UA 5 · 104 J/min·K
V 100 L Tc 300 K
ρ 1000 g/L CA 0.5 mol/L
Cp 0.239 J/g·K T 350 K

(−∆H) 5 · 104 J/mol
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Figure 5.2. Steady states of the exothermic CSTR.
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Figure 5.3. A small decrease in the jacket fluid temperature (Tc = 295 K) turns
the reaction off.
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Figure 5.4. A small increase in the jacket fluid temperature (Tc = 305 K) ignites
the reaction and drives the system into a limit cycle.

cycle corresponds to a point on the upper branch of the temperature steady
state curve.

As is evident the system is highly nonlinear and unstable around the nominal
operating point. The objective function used for driving the system to its
feasible steady state (xs, us) is

ψ = 1
2

∫ tf

t0

(x(t) − xs)
′Q(x(t) − xs)

+ (u(t) − us)
′R(u(t) − us) dt

+ 1
2 (x(tf ) − xs)

′P (x(tf ) − xs)

(5.183)

in which x =
(
CA T

)′
and u = Tc. The steady state used is the nominal

operating point

xs =

[
0.5
350

]

us = 300

and the selected weight matrices are1

Q =

[
0 0
0 4

]

R = 8 P =

[
99165 2104
2104 73

]

1Arbitrarily, P is selected to be the same as the one used by Tenny and Rawlings (2002).
It should be computed by solution of an appropriate Riccati equation.
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The optimal control problem used in controlling the temperature consists of
minimizing (5.183) subject to the physics of the system (5.181). Figure 5.5
shows an optimal start-up trajectory computed by solution of the optimal con-
trol problem for the CSTR. The initial state is a full reactor with cold feed, i.e.
CA = CA,f = 1.0 mol/L and T = 300 K. Initially, the computed jacket fluid
temperature is warmer than the reactor content to ignite the reaction. Subse-
quently, the jacket fluid temperature is decreased and colder than the reactor
content to avoid ignition and remove the heat produced by reaction. Physically
and intuitively, the computed optimal trajectory makes good intuitive sense.

Figure 5.6 shows a stabilizing trajectory for a critical state, (1.0 mol/L, 350 K).
Left uncontrolled with the nominal jacket fluid temperature this state of the
reactor would ignite the reaction and lead to a run-away situation. As expected
from physical intuition, the optimal stabilizing trajectory computed by the
optimal control problem avoids run-away by severe cooling. This removes the
generated heat and smoothly brings the system back to its desired unstable
equilibrium point.

From figure 5.5 and figure 5.6 it is apparent that the nonlinear optimal con-
troller is able to generate trajectories that are very appealing from a physical
point of view even though the system has severe nonlinearities in the operating
windows considered.
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Figure 5.5. Optimal startup of the exothermic CSTR.
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Figure 5.6. Stabilization of a critical state of the exothermic CSTR.

Both the infeasible path SQP method and the closed-loop feasible path SQP
method are able to produce the trajectories shown in figure 5.5 and figure 5.6.
However, the open-loop feasible path SQP method fails to converge. In some
cases, it fails due to a crude fixed step size in the explicit Euler discretization
such that the trajectories diverge. In other cases, when the step size used by
the Euler integration is sufficiently small such that divergence due to the dis-
cretization is avoided, the open-loop feasible path method still fails to converge
even though the generated trajectories to some extent approach the optimal
trajectories. This phenomenon is believed to be a manifestation of the Maratros
effect associated with Powell’s l1-merit function (c.f. Maratros, 1978).

5.8 Extensions and Refinements

To focus on the principles for solution of the nonlinear optimal control problem,
this paper has been concerned with algorithms for the unconstrained nonlinear
optimal control problem using Euler integration. This section describes ex-
tensions of the algorithms presented to constrained nonlinear optimal control
problems, discuss the choice of merit function and efficient approximation of
the Hessian matrix when the nonlinear optimal control problem is of the least
squares type. Furthermore, efficient integration methods along with sensitivity
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computation, their extension to index-1 differential algebraic equations, and
their parallelization are discussed. All these extensions are facilitated by a
thorough understanding of the unconstrained nonlinear optimal control prob-
lem.

5.8.1 Inequality Constraints

It is important to be able to extend the algorithms for solution of unconstrained
optimal control problems to constrained optimal control problems. Almost all
practical control problems are constrained as there is at least limits on the
actuators. Often the rate of movement is also constrained as well as it is
commonplace to use general state dependent functionalities to remain in some
operation regime.

The issues involved in extending the algorithms for unconstrained nonlinear
optimal control problems to constrained nonlinear optimal control problems
are best explained using the generic nonlinear optimization problem (5.1) as
a template. The extension of the generic equality constrained optimization
problem (5.1) with inequality constraints is

min
x∈Rn

f(x) (5.184a)

s.t. gi(x) = 0 i ∈ E (5.184b)

hi(x) ≥ 0 i ∈ I (5.184c)

The Lagrangian function associated with (5.184) is

L(x, π, λ) = f(x) − π′g(x) − λ′h(x) (5.185)

and the partial derivative with respect to the primal variables is

∇xL(x, π, λ) = ∇f(x) −∇g(x)π −∇h(x)λ (5.186)

By this expression, it is evident how to evaluate the partial derivative of the
Lagrangian with respect to the primal variables. This expression is applied in
updating the variable metric approximation, W , of the Hessian matrix. The
necessary optimality conditions may be stated using the complementarity con-
ditions

∇xL = ∇f(x) −∇g(x)π −∇h(x)λ = 0 (5.187a)

∇πL = −g(x) = 0 (5.187b)

∇λL = −h(x) ≤ 0 (5.187c)

λ ≥ 0 (5.187d)

λihi(x) = 0 i ∈ I (5.187e)
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or alternatively they may be stated using the active set formulation

∇xL = ∇f(x) −∇g(x)π −∇h(x)λ = 0 (5.188a)

∇πL = −g(x) = 0 (5.188b)

∇λL = −h(x) ≤ 0 (5.188c)

λi ≥ 0 i ∈ A(x) = {i ∈ I : hi(x) = 0} (5.188d)

λi = 0 i /∈ A(x) = {i ∈ I : hi(x) = 0} (5.188e)

The presence of inequality constraints adds significant complexity to the proce-
dure of obtaining the solution by solving the optimality conditions. However,
as in the case without inequalities, the solution of the optimality conditions
may be obtained by a Newton type procedure in which the search direction
is obtained by quadratic programming. The quadratic program obtained in
solving (5.184) is

min
∆x∈Rn

φ = 1
2∆x′W∆x + ∇f(x0)′∆x (5.189a)

s.t. gi(x
0) + ∇gi(x

0)′∆x = 0 i ∈ E (5.189b)

hi(x
0) + ∇hi(x

0)′∆x ≥ 0 i ∈ I (5.189c)

The various methods for solution of this problem and the quadratic program
corresponding to the optimal control problem are discussed by Jørgensen et al.
(2004). The solution of the inequality constrained quadratic is somewhat more
demanding from a computational point of view compared to the solution of
the quadratic program with equalities only. The reason is that the solution
must be obtained iteratively in which a sequence of problems corresponding to
equality constrained quadratic programs are solved.

Besides the inequalities in the quadratic program and the resulting modifi-
cations in the procedure for obtaining the search direction, the other major
consequence of adding inequalities to the nonlinear optimization problem con-
cerns the merit function. Powell’s exact l1-penalty function associated with
(5.184) is

P (x, σ, τ) = f(x) +
∑

i∈E

σi|gi(x)|

+
∑

i∈I

τi|min{0, hi(x)}|
(5.190)

The terms

|min{0, hi(x)}| =

{

0 hi(x) ≥ 0

−hi(x) hi(x) < 0
(5.191)

are due to the inequalities and penalize any violation of the inequalities. The
corresponding terms in the merit function may be denoted

ηi(α) = |min{0, hi(x
0 + α∆x)}| i ∈ I (5.192)
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Hence, the corresponding quantities required by the Armijo condition are

ηi(0) =

{

0 hi(x
0) ≥ 0

−hi(x
0) hi(x

0) < 0
(5.193a)

dηi

dα
(0) =

{

0 hi(x
0) ≥ 0

−∇hi(x
0)′∆x hi(x

0) < 0
(5.193b)

in which the fact that ∆x is obtained as the solution of (5.189) has been utilized.
The penalty parameters, σi and τi, are updated in a way analogously to the
case without inequality constraints

σi ← max{|µi|, 1
2 (σi + |µi|)} (5.194a)

τi ← max{κi,
1
2 (τi + κi)} (5.194b)

µi are the Lagrange multipliers associated with the equality constraints in the
quadratic program (5.189) and κi are the Lagrange multipliers associated with
the inequality constraints in the quadratic program (5.189).

For the constrained general optimization problems and inequality constrained
optimal control problems, the possibility of infeasibilities due to the problem
statement or due to an inconsistent linearization must be considered by the
algorithm. Biegler and Cuthrell (1985) and Gill et al. (1997) discuss these
considerations from an algorithmic point of view, while Scokaert and Rawlings
(1999) consider infeasibility issues from a model predictive control application
point of view.

The nonlinear optimal control problem with general constraints may be stated
as

min
x(t),u(t)

ψ =

∫ tf

t0

l(x(t), u(t)) dt + L(x(tf ), tf ) (5.195a)

s.t. ẋ(t) = h(x(t), u(t), t) (5.195b)

x(t0) = x0 (5.195c)

g(x(t), u(t), t) ≥ 0 (5.195d)

The extension compared to the unconstrained optimal control problem (5.54) is
the general constraint, g(x(t), u(t), t) ≥ 0, which must be enforced at all times,
t, in the interval [t0, tf ). For most practical applications, the constraints are
much more structured than indicated by the general constraints. For instance,
typically a subset of the constraints are actuator limits umin ≤ u(t) ≤ umax.
The constrained optimal control problem is discretized in the same way as the
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unconstrained optimal control problem

min
x,u

f(x, u) =
N−1∑

k=0

fk(xk, uk) + fN (xN ) (5.196a)

s.t. xk+1 = Hk(xk, uk) k = 0, 1, . . . , N − 1 (5.196b)

Gk(xk, uk) ≥ 0 k = 0, 1, . . . , N − 1 (5.196c)

in which x0 is a parameter and not a decision variable. This discretization
constitutes an approximation of the constrained continuous-time optimal con-
trol problem (5.195). One approximation is that the general function u(t) is
restricted to belong to the space of piecewise constant functions. In the con-
tinuous time problem, the inequality constraint must be enforced at all time
while in the discrete time case it is only enforced at discrete times. Depending
on the discretization procedure applied to the differential equations, the in-
equalities may be violated at times intermediate to the discrete times at which
the inequalities are enforced.

However, (5.196) is accepted as a reasonable approximation of (5.195) reflect-
ing the requirements for a practical solution. Consequently, the algorithms for
the unconstrained nonlinear optimal control problem (5.54) may be extended to
the constrained nonlinear optimal control problem (5.196) using the algorithmic
principles outlined for extending the general equality constrained optimization
problem with inequality constraints. In approximating the Hessian matrix it
is important to note that the partial separability of the Lagrangian function
is retained as the inequality constraints each involve variables from one time
period only. Consequently, the structure of the Hessian matrix observed for
the unconstrained optimal control problem is retained for the constrained op-
timal control problem. This implies that the resulting quadratic program that
must be solved has a structure that can be utilized in its efficient solution (c.f.
Jørgensen et al., 2004).

5.8.2 Merit Function

The merit function is another component of the infeasible path SQP algo-
rithm that can be modified to enhance the performance of the algorithm. As
has already been mentioned several times, Powell’s exact l1 penalty function
may suffer from the Maratros effect. To overcome this deficiency, Schittkowski
(1981a) proposed an augmented Lagrangian penalty function

P (x, π) = f(x) − π′g(x)
︸ ︷︷ ︸

=L(x,π)

+ 1
2

m∑

j=1

σgj(x)2 (5.197)

to determine the step length in an SQP algorithm for the general equality con-
strained nonlinear program (5.1). In this expression, σ is a positive penalty
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parameter that serves to penalize constraint violations and stabilizes the un-
constrained line search minimization in the sense that it prevents construction
of unbounded and therefore unsolvable subproblems. Schittkowski (1981a) pre-
sented his penalty function

P (x, π, λ) = f(x) − π′g(x) + 1
2

∑

j∈E

σgj(x)2

−
∑

j∈I

{

λjhj(x) − 1
2σhj(x)2 hj(x) ≤ λj

σ

1
2

λ2
j

σ hj(x) >
λj

σ

(5.198)

to the constrained general optimization problem (5.184) (c.f. Bertsekas, 1995b,
section 4.2). As explained by Bertsekas (1995b), the last part of this penalty
function is obtained through introduction of slack variables and conversion to
an equality constrained optimization problem. The advantage of this penalty
function is that it unlike Powell’s exact l1-penalty is differentiable. This implies
that algorithms computing the step length using this penalty function do not
suffer from the Maratros effect. Schittkowski (1981a) also provides an algorithm
for updating the penalty parameter σ such that convergence is guaranteed.
Gill et al. (1992, 1997) used a similar penalty function based on slack variables
but applied different penalty parameters to each constraint. Eldersveld (1991)
provides the detailed updating procedure of the penalty parameters employed
by Gill et al. (1997). The augmented Lagrangian merit function for selection of
the step length was also incorporated in the algorithm developed by Biegler and
Cuthrell (1985). A slight variant of the augmented Lagrangian penalty function
has been proposed and applied by Fletcher (c.f. Nocedal and Wright, 1999;
Bertsekas, 1995b) to avoid the Maratros effect. The difference in Fletcher’s
method compared to the method applied by Schittkowski (1981a) and Gill
et al. (1997) is that Flethcer computes the Lagrange multipliers as the least
squares estimate. This is an extra computational burden compared to the
method presented by Schittkowski (1981a).

The Maratros effect can also be avoided by application of the watchdog tech-
nique (c.f. Chamberlain et al., 1982; Hoza and Stadtherr, 1993; Nocedal and
Wright, 1999) in conjunction with Powell’s exact l1 penalty function. The
watchdog technique is a non-monotone strategy allowing iterates that occa-
sionally increase the merit function if a sufficient decrease in the merit function
is obtained within a certain number of iterates.

5.8.3 Hessian Approximations

The least squares objective function is often used in control problems when
some variables have to be tracked. From a numerical point of view, the least
squares objective function has special features that can be used in the efficient
construction of the Hessian matrix approximation (c.f. Jørgensen et al., 2002).
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The continuous-time least squares objective function of the nonlinear optimal
control problem (5.54) is

ψ = 1
2

∫ tf

t0

||ϕ(x(t), u(t), t)||2Λ(t) dt

+ 1
2 ||ϕ(x(tf ), tf )||2Λ(tf )

(5.199)

in which ϕ(x(t), u(t), t) and ϕ(x(tf ), tf ) are some residual functions. Upon
discretization, the objective function of the discrete time optimal Bolza control
problem (5.63) may be expressed as

f(x, u) =

N−1∑

k=0

fk(xk, uk) + fN (xN )

= 1
2

N−1∑

k=0

||ϕk(xk, uk)||2Λk
+ 1

2 ||ϕN (xN )||2ΛN

(5.200)

in which the stage cost functions are

fk(xk, uk) = 1
2 ||ϕk(xk, uk)||2Λk

k ∈ N0 (5.201a)

fN (xN ) = 1
2 ||ϕN (xN )||2ΛN

(5.201b)

and N0 = {0, 1 . . . , N − 1}. ϕk(xk, uk) are ϕN (xN ) are discrete-time residual
functions obtained from the continuous time residual functions through the
particular integration method employed. By construction the residual func-
tions are expected to be small for well-posed problems, as they represent the
deviation of some variable from a desired value.

The gradients of the stage costs are

∇xk
fk = ∇xk

ϕk(xk, uk)Λkϕk(xk, uk) k ∈ N0 (5.202a)

∇uk
fk = ∇uk

ϕk(xk, uk)Λkϕk(xk, uk) k ∈ N0 (5.202b)

∇xN
fN = ∇xN

ϕN (xN )ΛNϕN (xN ) (5.202c)

From these gradient expressions the second partial derivatives may be deduced
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for k ∈ N0

∇2
xk,xk

fk = ∇xk
ϕk(xk, uk)Λk∇xk

ϕk(xk, uk)′

+

l∑

i=1

[Λkϕk(xk, uk)]i∇2
xk,xk

ϕi,k(xk, uk)

∇2
xk,uk

fk = ∇xk
ϕk(xk, uk)Λk∇uk

ϕk(xk, uk)′

+

l∑

i=1

[Λkϕk(xk, uk)]i∇2
xk,uk

ϕi,k(xk, uk)

∇2
uk,uk

fk = ∇uk
ϕk(xk, uk)Λk∇uk

ϕk(xk, uk)′

+

l∑

i=1

[Λkϕk(xk, uk)]i∇2
uk,uk

ϕi,k(xk, uk)

and

∇2
xN ,xN

fN = ∇xN
ϕN (xN )ΛN∇xN

ϕN (xN )′

+

l∑

i=1

[ΛNϕN (xN )]i∇2
xN ,xN

ϕi,N (xN )

One crucial point concerning these expressions near the solution is that the sec-
ond term is expected to be much smaller than the first term as the residuals are
assumed small. Another important feature is that no second order derivatives
are needed in evaluation of the first terms. The evaluation of the first terms
only requires information about the residual gradients which already have been
evaluated in computing the stage cost gradients. Consequently, good approx-
imations of the Hessian of the objective function can be obtained at virtually
no computational cost by neglecting the second terms.

The Lagrangian function may as in the non-least squares case be expressed as

L(x, u, π) =

N−1∑

k=0

fk(xk, uk) + fN (xN )

−
N−1∑

k=0

π′
k(Hk(xk, uk) − xk+1)
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such that its second partial derivatives are given by the expressions

∇2
xk,xk

L = ∇2
xk,xk

fk −
m∑

i=1

πi,k∇2
xk,xk

Hi,k(xk, uk)

∇2
xk,uk

L = ∇2
xk,uk

fk −
m∑

i=1

πi,k∇2
xk,uk

Hi,k(xk, uk)

∇2
uk,uk

L = ∇2
uk,uk

fk −
m∑

i=1

πi,k∇2
uk,uk

Hi,k(xk, uk)

and

∇2
xN ,xN

L = ∇2
xN ,xN

fN

By the Gauss-Newton assumption, the residuals, ϕk and ϕN , are assumed
small relative to the derivatives of the residuals. As has been discussed in
Jørgensen et al. (2002), at the optimal solution the Lagrange multipliers, πk, are
proportional to the residuals and therefore expected to be small. Consequently,
the small residual assumption invoked by the Gauss-Newton approximation
implies that the Hessian matrices of the Lagrangian in the least squares problem
may be approximated by

∇2
xk,xk

L ≈ ∇xk
ϕk(xk, uk)Λk∇xk

ϕk(xk, uk)′

∇2
xk,uk

L ≈ ∇xk
ϕk(xk, uk)Λk∇uk

ϕk(xk, uk)′

∇2
uk,uk

L ≈ ∇uk
ϕk(xk, uk)Λk∇uk

ϕk(xk, uk)′

and

∇2
xN ,xN

L ≈ ∇xN
ϕN (xN )ΛN∇xN

ϕN (xN )′

By these expressions, it is evident that the Hessians of the Lagrangians in
the least squares problem may be approximated using only the residual gra-
dients but not the Hessians of the residuals. The residual gradients are al-
ready available as they are used in computation of the gradients ∇xk

fk(xk, uk),
∇uk

fk(xk, uk), and ∇xN
fN (xN ). By these expressions, good approximations

of the Hessians in the small residual least squares case can be obtained at
negligible computational cost.

The introduced approximations of the Lagrangians may be applied for efficient
computation of the Hessian matrices used in the SQP algorithms for optimal
control. The data related to the objective function used in the SQP algo-
rithms for optimal control may for the small residual least squares problem be
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computed by

Qk = ∇xk
ϕk(x0

k, u0
k)Λk∇xk

ϕk(x0
k, u0

k)′ (5.205a)

Mk = ∇xk
ϕk(x0

k, u0
k)Λk∇uk

ϕk(x0
k, u0

k)′ (5.205b)

Rk = ∇uk
ϕk(x0

k, u0
k)Λk∇uk

ϕk(x0
k, u0

k)′ (5.205c)

qk = ∇xk
ϕk(x0

k, u0
k)Λkϕk(x0

k, u0
k) (5.205d)

rk = ∇uk
ϕk(x0

k, u0
k)Λkϕk(x0

k, u0
k) (5.205e)

and

PN = ∇xN
ϕN (x0

N )ΛN∇xN
ϕN (x0

N ) (5.206a)

pN = ∇xN
ϕN (x0

N )ΛNϕN (x0
N ) (5.206b)

rather than by the modified BFGS approximations.

Essentially, the method described for approximating the Hessian matrix is the
Gauss-Newton method for the nonlinear least-squares problem specialized to
the least-squares nonlinear optimal control problem. A straightforward im-
provement of the Hessian matrix obtained by this approach is to apply the re-
finements of the Gauss-Newton method applied to the general nonlinear least-
squares problem. These improvements of the Gauss-Newton method for the
general nonlinear least-squares problem are described by Björck (1996) as well
as by Seber and Wild (1989). The most successful extensions of the pure
Gauss-Newton method use a switching strategy in which the algorithms switch
between the Gauss-Newton approximation of the Hessian matrix and the full
approximate Hessian matrix. In the NL2SOL algorithm by Dennis et al. (1981),
the terms neglected by the Gauss-Newton approximation of the Hessian matrix
are approximated by a specially tailored symmetric but not necessarily positive
definite secant approximation. NL2SOL switches between the model using the
Gauss-Newton Hessian approximation and the model using the full Hessian ap-
proximation by comparing the predicted objective function reductions with the
actual objective function reduction. NL2SOL is implemented in a trust-region
framework such that the quadratic program solved at each iteration is positive
definite even though the full approximate Hessian matrix is not necessarily
positive definite. However, the fact that the full approximate Hessian matrix
is not necessarily positive definite makes direct extension of the NL2SOL al-
gorithm to the line-search algorithms for the least-squares nonlinear optimal
control problem problematic. Another, extension of the Gauss-Newton method
for the general nonlinear least-squares problem has been given by Fletcher and
Xu (1987) and is described in Fletcher (1987). This method is embedded in a
line-search procedure and switches between a Gauss-Newton approximation of
the Hessian matrix and a modified BFGS approximation. As it is a line-search
based algorithm, it can be extended to the least-squares nonlinear optimal
control problem in a straightforward fashion such that the partitioned BFGS
update and the structured Gauss-Newton approximations (5.205)-(5.206) are
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applied. For the least-squares nonlinear optimal control problem, Tousain and
Bosgra (2000) approximate the terms neglected by the Gauss-Newton approx-
imation using a BFGS approximation and report good results in applying this
procedure for nonlinear model predictive control of a polymerization process.
This Hessian approximation specialized to the least-squares nonlinear optimal
control problem use the same fundamental idea as NL2SOL. However, the main
difference is that Tousain and Bosgra (2000) enforce the terms neglected by the
Gauss-Newton approximation and approximated by a secant update to be pos-
itive definite. Diehl (2001) employ a Gauss-Newton approximation in his solu-
tion of the least-squares nonlinear optimal control problem applied for nonlinear
model predictive control. Tenny et al. (2002) as well as Tenny (2002) discuss
several approximations of the Hessian matrix including the Gauss-Newton ap-
proximation for the least-squares nonlinear optimal control problem as it arises
in nonlinear model predictive control.

5.8.4 Integration Methods

When explicit methods are used for discretization of the continuous time op-
timal Bolza control problem (5.54), the discrete-time optimal control prob-
lem (5.63) arises directly. In contrast, direct application of an implicit inte-
gration method for discretization of (5.54) does not lead to a discrete-time
problem with the required structure (5.63). In the implicit integration case,
the discrete-time objective function and stage cost functions are given by
f(x, u) =

∑N−1
k=0 fk(xk, uk, xk+1) + fN (xN ). Consequently, the structure of

the stage costs fk(xk, uk, xk+1) implies that the block diagonal structure of the
Hessian of the objective function is lost. Another consequence of this structure
is that the corresponding Lagrangian function is no longer partially separable.
Similarly, by implicit integration the discrete-time dynamics has the structure
Hk(xk, uk, xk+1) = 0. This discrete-time dynamic constraint is not necessarily
linear in xk+1 which also implies that the block-diagonal structure of the Hes-
sian of the Lagrangian is lost. These properties of the implicit methods imply
that the infeasible path SQP algorithm for optimal control cannot be applied
directly in conjunction with this integration method. However, feasible path
algorithms are not restricted to a particular integration method and work as
well with an implicit integration method. By adopting a multiple shooting ap-
proach in which the differential equations are integrated exactly on a number
of intervals, the principles of the infeasible path algorithm may be applied as
the required discrete-time structure is retained by this procedure (Bock et al.,
2000; Binder et al., 2001a).

Explicit integration methods (c.f. Hairer et al., 1993; Hairer and Wanner,
1996) in conjunction with optimal control have been studied by Polak (1997),
Schwartz (1996), and Betts (2001) among others. Polak (1997) applied an ex-
plicit Euler discretization in his algorithms. Schwartz (1996) applies the same
optimization algorithms as Polak (1997) but apply an explicit Runge-Kutta
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integration. Betts (2001) present optimal control algorithms based on explicit
Euler integration and classic Runge-Kutta integration, but recommend and im-
plement an algorithm based on trapezoidal and Hermite-Simpson integration.

Pytlak (1999) has presented a comprehensive study of optimal control using
implicit Runge-Kutta integration. A number of dynamic optimization algo-
rithms have relied on orthogonal collocation for integration of the differential
equations (c.f. Biegler, 1984; Cuthrell and Biegler, 1987, 1989; Logsdon and
Biegler, 1993; Cervantes et al., 2000) and is typically implemented as part of
an infeasible path SQP algorithm (c.f. Binder et al., 2001a). When implicit in-
tegrations methods and orthogonal collocation on finite elements are employed
in a feasible path SQP algorithm for the optimal control problem, the optimal
control problem structure described in this paper is lost. Instead the problem
has a general block banded structure, and an appropriate block-banded or a
general sparse solver such as MA27 must be employed (c.f. Biegler, 2000; Golub
and Van Loan, 1996; Duff et al., 1986).

Multiple shooting algorithms are able to retain the discrete-time optimal con-
trol structure of (5.63) in the connection of one shooting interval to the next,
while employing standard explicit or implicit sensitivity augmented integration
methods (c.f. Bock and Plitt, 1983; Bock et al., 2000). Bauer (2000) has devel-
oped a BDF-based integration code used in the software for dynamic optimiza-
tion by multiple shooting of systems described by either ordinary differential
equations or systems of differential algebraic equations. This integration algo-
rithm is employed by Diehl (2001) and applied for nonlinear model predictive
control of a distillation column (c.f. Diehl et al., 2001).

The variable step and variable order BDF algorithm has been augmented to
provide sensitivity information along with the nominal trajectory by a number
of authors. Caracotsios and Stewart (1985) applied a direct staggered method
for computation of the sensitivities. Maly and Petzold (1996) computed the
sensitivies by a simultaneous corrector method, while Feehery et al. (1997) ap-
plied a staggered corrector method for computation of the sensitivities. These
methods have been implemented by Li and Petzold (1999, 2001) in their aug-
mentation of the popular DASSL algorithm. Serban and Petzold (2000) ap-
plied this integration method in a multiple shooting context to optimal control
problems. Leis and Kramer (1985), Kiehl (1999), and Lee et al. (2000) have
also addressed the computation of sensitivities. Galán et al. (1999) extended
the sensitivity computation to event-based discontinuous differential algebraic
equations. High-order integration methods like the BDF may loose efficiency
for optimal control problems as the frequent discontinuouties due to the piece-
wise constant parameterization of the optimal control requires frequent restart
of the BDF algorithm (c.f. Schlegel and Marquardt, 2001). Schlegel and Mar-
quardt (2001) exploited this observation and demonstrated the efficiency of
a linearly-implicit Euler discretization (c.f. Deuflhard, 1983; Deuflhard et al.,
1987, 1990) compared to the BDF implementations by Li and Petzold (1999).
Due to the frequent discontinuouties, the implicit and semi-implicit Runge-
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Kutta integration methods may be effective compared to BDF based methods
since Runge-Kutta methods are one-step integration methods.

The selection of a proper mesh and in particular a proper mesh for the parame-
terization of the control profiles such that the discrete optimal control problem
(5.63) approximates the continuous-time optimal control problem (5.54) well
has been considered by Waldraff et al. (1997), Betts and Huffmann (1998),
Betts (2001), and Binder et al. (2001b). The mesh selection is an extension
that is added on top of the solution of the discrete-time optimal control prob-
lem.

5.8.5 Index One DAEs

Chemical processes operated at a phase equilibrium or a reaction equilibrium
are typically described the differential equations and in addition a set of alge-
braic equations. Systems with such dynamics are called differential algebraic
equations (DAE). Application of dynamic optimization algorithms to such pro-
cesses requires some modifications of the basic algorithm developed for a system
of ordinary differential equations. Recently, Leineweber (1999), Diehl (2001),
and Leineweber et al. (2001) have reported nice comprehensive studies of the
dynamic optimization of differential algebraic systems.

An index 1 system of differential algebraic equations is the following system of
differential and algebraic equations

ẋ(t) = h(x(t), z(t), u(t)) (5.207a)

0 = g(x(t), z(t), u(t)) (5.207b)

in which ∇zg(x, z, u) is non-singular. x is the differential states, z is the alge-
braic states, and u is the process inputs which are available for manipulation.
A generic discretization of the system of differential algebraic equations (5.207)
may be denoted

xk+1 = Hk(xk, zk, uk) (5.208a)

0 = g(xk, zk, uk) (5.208b)

Linearization around a nominal trajectory {x0
k+1, z

0
k, u0

k}N−1
k=0 yields

∆xk+1 = A′
k∆xk + D′

k∆zk + B′
k∆uk + bk (5.209a)

0 = E′
k∆xk + F ′

k∆zk + G′
k∆uk + dk (5.209b)

in which Ak = ∇xk
Hk(x0

k, z0
k, u0

k), Dk = ∇zk
Hk(x0

k, z0
k, u0

k), Bk = ∇uk
Hk(x0

k, z0
k, u0

k),
bk = Hk(x0

k, z0
k, u0

k) − x0
k+1, Ek = ∇xk

gk(x0
k, z0

k, u0
k), Fk = ∇zk

gk(x0
k, z0

k, u0
k),

Gk = ∇uk
gk(x0

k, z0
k, u0

k), and dk = gk(x0
k, z0

k, u0
k). As the system is of index 1

by definition, the matrices Fk in {Fk}N−1
k=0 are nonsingular. Hence, ∆zk may

be expressed by the relation

∆zk = −(F ′
k)−1E′

k∆xk − (F ′
k)−1G′

k∆uk − (F ′
k)−1dk (5.210)
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Substitution of this expression in the linearized state dynamics yields

∆xk+1 = (A′
k − D′

k(F ′
k)−1E′

k)∆xk

+ (B′
k − D′

k(F ′
k)−1G′

k)∆uk

+ (bk − D′
k(F ′

k)−1dk)

= Ã′
k∆xk + B̃′

k∆uk + b̃k

(5.211)

in which

Ãk = Ak − EkF−1
k Dk (5.212a)

B̃k = Bk − GkF−1
k Dk (5.212b)

b̃k = bk − (F−1
k Dk)′dk (5.212c)

Consequently, by the projections outlined, the quadratic program resulting
from linearization of the differential algebraic optimal control problem has the
same staircase structure as the quadratic program resulting from linearization
of the optimal control problem with the dynamics described by a system of
ordinary differential equations. The Riccati iteration based factorization may
be applied for the efficient solution of this quadratic program.

In a number of practical problems the algebraic equations are independent of
the process inputs, uk, i.e.

0 = gk(xk, zk) (5.213)

This structure can be exploited to enhance the efficiency of the resulting algo-
rithm even further, as it implies Gk = 0 and B̃k = Bk.

5.8.6 Parallelization

Parallelization of the infeasible path sequential quadratic programming algo-
rithm is straightforward as the function evaluations needed in converging the
constraints and computing the sensitivies can be conducted independently.
This type of relatively coarse parallelization is ideally suited for a heterogeneous
cluster of workstations and can be implemented using for instance the message
passing interface (MPI) programming standard (c.f. Gropp et al., 1994).

In both the infeasible path methods and the feasible path methods, the sensi-
tivities may be evaluated independently when a nominal trajectory is available.
Hence, computational savings by computing the sensitivities in parallel can be
expected.

Li and Petzold (1999) have implemented a parallel version of DASSL for so-
lution of differential algebraic systems along with computation of their sensi-
tivities. The parallelization is based on MPI. Similar, the CVODE code has
been extended such that it computes sensitivities as well (c.f. Hindmarsh and
Serban, 2002) and has been parallelized using MPI (c.f. Lee et al., 2000).
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5.9 Conclusion

In this paper we have described implementations of infeasible path and feasible
path SQP algorithms for unconstrained nonlinear optimal control. The infea-
sible path method is applicable to solution of systems operated at an unstable
equilibrium, while the feasible path method must be of the closed loop type
to converge for such a system. The implementation of the closed-loop feasible
path SQP algorithm as well as the infeasible path SQP algorithm is facilitated
by a structure exploiting Riccati iteration based solver for the sequence of
quadratic programs. The SQP based solution procedures are compared quali-
tatively with the classic solution procedures for unconstrained nonlinear opti-
mal control problems. The implementations and solution of the KKT-systems
of the sequence of quadratic programs are solved by either a Riccati iteration
based factorization or by solution of a symmetric dense linear system. The Ric-
cati iteration based procedure for solution of the quadratic program enables the
closed-loop feasible path algorithm as well as a stabilized implementation of the
infeasible path algorithm.

An SQP algorithm for solution of the general equality constrained nonlinear
program has been tailored for solution of unconstrained nonlinear optimal con-
trol problems. The main ingredients in customization of the general SQP al-
gorithm to the nonlinear optimal control problem are a partitioned modified
BFGS update of the approximate Hessian matrix and a Riccati based procedure
for solution of the quadratic program. The Riccati based iteration procedure for
solution of the quadratic program has been embedded in the SQP algorithms
for nonlinear optimal control. This procedure has a computational complexity
which is linear in the problem horizon, N . The alternative to this procedure in-
volves construction of a dense symmetric linear system. Efficient construction
of this dense symmetric linear system has been described. A straightforward
implementation has a computational complexity which is cubic in the problem
horizon, N . In feasible path SQP algorithms, it is possible to construct the
dense system directly and update its Cholesky factors efficiently such that the
procedure has a computational complexity which is square in the problem hori-
zon, N . The developed algorithms constitute the software kernel for nonlinear
model predictive control as well as dynamic optimization.

The principles for numerical solution of optimal control problems has been il-
lustrated using the unconstrained nonlinear optimal control problem. Based on
these principles, extension of the algorithms to constrained nonlinear optimal
control problems has been described. Alternatives to the explicit Euler pro-
cedure for discretization of the continuous-time optimal control problem have
been mentioned as well.
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Conclusion

The extended linear quadratic optimal control problem has been defined and
introduced in this thesis. Compared to the linear quadratic regulation problem
that is treated in most textbooks, the extended linear quadratic optimal control
problem has linear terms in the stage costs and the state transition equation
is affine rather than linear.

By combining control theory, optimization theory and dynamic programming
efficient solution procedures for the extended linear quadratic optimal control
problems with a long horizon has been developed. The solution is based on
Riccati recursions. This solution may also be interpreted as the solution of
an equality constrained quadratic program. This interpretation provides an
efficient method for factorization and solution of the Karush-Kuhn-Tucker nec-
essary and sufficient optimality conditions for the extended linear quadratic
optimal control problem. The primal as well the dual variables in the Karush-
Kuhn-Tucker optimality conditions are obtained recursively using the Riccati
recursions.

The factorization of the Karush-Kuhn-Tucker optimality conditions by the Ric-
cati recursion procedure allows efficient solution of the extended constrained
linear quadratic programs as well as the nonlinear optimal control problem.
The extended constrained linear quadratic optimal control problems may be
solved by primal active set methods, dual active set methods, and interior point
methods. All these algorithms solve the extended constrained linear quadratic
optimal control problem by solving a sequence of extended (unconstrained) lin-
ear quadratic optimal control problems. Jørgensen (2004a,c,d) provide details
about quadratic programming and the dual active set algorithm. Jørgensen
(2004e) shows how a Schur complement technique may be applied for fac-
torization of the KKT-matrix in the dual active set algorithm. This enables
application of the dual active set algorithm to the extended constrained linear
quadratic optimal control problem, and efficient solution of the problem using
Riccati recursions. Jørgensen and Rawlings (2000) show how the Riccati recur-
sions may be applied in interior-point algorithms for solution of the extended
linear quadratic optimal control problem.

The Riccati recursion procedure is superior for solution of unstable and ill-
conditioned systems compared to alternative feasible path methods. One rea-
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son for this is that the Riccati recursion procedure is computationally efficient
for long horizons which are usually required for unstable systems. Another rea-
son is that the Riccati recursions generated the optimal feedback control gains
as part of the solution. Provided that the system is stabilizable, in a loose
sense, the Riccati solution method tends to stabilize the numerical iterations
as the optimal feedback gains are computed and applied iteratively.

Assuming that the separation theorem is valid and certainty equivalence holds,
it has been argued that the output feedback optimal control problem may be
decomposed into an estimation problem and a regulation problem. Both prob-
lems are instances of optimal control problems that may be solved efficiently
using the solution procedure for the extended linear quadratic optimal control
problem.

In addition to facilitate efficient and robust numerical solution of optimal con-
trol problems, the extended linear quadratic optimal control problem is also an
effective model for formulation of various control problems. In particular, for
linear model based predictive control it can readily be used for construction
of fast feedforward-feedback predictive controllers (Jørgensen, 2004b), antici-
patory predictive control, coordinated decentralized control and processes with
active constraints at steady state (Jørgensen and Rawlings, 2000).

The extended linear quadratic optimal control problem may be solved by Ric-
cati recursions. This solution procedure is particularly efficient for problems
with long control and prediction horizons. However, for problems with large
state dimension, i.e. problems arising from discretization of partial differential
equations, the Riccati iteration procedure may be inefficient as the computa-
tional cost of the Riccati iterations scales cubically with the state dimensions.
For such problems, solution by control vector parameterization may be more
efficient.

This thesis has focused on the optimization aspect of the optimal control prob-
lem. For nonlinear optimal control problems, the dominating computational
cost is solution of the differential equations and computation of the associated
sensitivities. Efficient algorithms for this aspect of the problem are provided
in Kristensen et al. (2004a,b) and Kristensen et al. (2005).
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A

Quadratic Program in SQP

A.1 Quadratic Program in SQP

This section illustrates how sequential quadratic programming algorithms gen-
erate the QP subproblem (Nocedal and Wright, 1999). Consider the nonlinear
program

min
x∈Rn

f(x) (A.1a)

s.t. g(x) = 0 (A.1b)

h(x) ≥ 0 (A.1c)

in which f : R
n 7→ R, g is a vector function consisting of the functions gi : R

n 7→
R for i ∈ E , and h is a vector function consisting of the functions hi : R

n 7→ R

for i ∈ I. Let A(x) denote the set of active inequality constraints

A(x) = {i ∈ I : hi(x) = 0} (A.2)

and let L(x, π, λ be the Lagrangian function of (A.1)

L(x, π, λ) = f(x) − π′g(x) − λ′h(x) (A.3)

The first order necessary and sufficient optimality conditions for (A.1) are

∇xL(x, π, λ) = 0 (A.4a)

g(x) = 0 (A.4b)

h(x) ≥ 0 (A.4c)

λ ≥ 0 (A.4d)

λi = 0 i ∈ I \ A(x) (A.4e)

in which

∇xL(x, π, λ) = ∇xf(x) −∇xg(x)π −∇xh(x)λ (A.5)
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The search direction in Newtons method for solution of this set of equations
must satisfy

∇2
xxL(x, π, λ)∆x −∇g(x)∆π −∇h(x)∆λ

= −∇xL(x, π, λ)
(A.6a)

∇xg(x)′∆x + g(x) = 0 (A.6b)

∇xh(x)′∆x + h(x) ≥ 0 (A.6c)

∆λ + λ ≥ 0 (A.6d)

∆λi + λi = 0 i ∈ I \ Ã(∆x) (A.6e)

in which
Ã(∆x) = {i ∈ I : ∇hi(x)∆x + hi(x) = 0} (A.7)

Consider the quadratic program

min
p∈Rn

1

2
p′Wp + ∇f(x)′p (A.8a)

s.t. ∇g(x)′p + g(x) = 0 (A.8b)

∇h(x)′p + h(x) ≥ 0 (A.8c)

The first order necessary and sufficient optimality conditions for this program
are

Wp + ∇xf(x) −∇xg(x)w −∇xh(x)v = 0 (A.9a)

∇xg(x)′p + g(x) = 0 (A.9b)

∇xh(x)′p + h(x) ≥ 0 (A.9c)

v ≥ 0 (A.9d)

vi = 0 i ∈ I \ Ã(p) (A.9e)

Let W = ∇2
xxL(x, π, λ). Comparison of (A.6) and (A.9) with this choice of W

yields




∆x
∆π
∆λ



 =





p
w − π
v − λ



 (A.10)

Hence, the search direction (∆x,∆π,∆λ) of (A.6) may be obtained by solving
the quadratic program (A.8).

In line-search SQP methods the next iterate is computed by





x
π
λ



 ←





x
π
λ



 + α





p
w − π
v − λ



 (A.11)

in which α ∈ (0, 1] is selected such that some merit function decreases.
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A.1.1 Exact Hessian of Lagrangian

When the search direction is obtained by solution of (A.8) with the Hessian
matrix selected as

W = ∇2
xxL(x, π, λ)

= ∇2f(x) −
∑

i∈E

πi∇2gi(x) −
∑

i∈I

λi∇2hi(x) (A.12)

the SQP method may be regarded as a Newton procedure for solution of the
conditions (A.6). This choice of W has two problems. First, W cannot be
guaranteed to be positive definite or positive semi-definite, but may be indefi-
nite. Algorithms do exist for the solution of indefinite quadratic programs (c.f.
Gill and Murray, 1978; Gill et al., 1991, 1995). However, they are mainly of the
primal active-set type, which are often inferior compared to other algorithms
for positive definite programs. The second, and most important objection,
concerning this selection of W is the computational cost of evaluating ∇2f(x),
∇2gi(x) for i ∈ E , and ∇2hi(x) for i ∈ I.

A.1.2 Secant Approximation of the Hessian

Instead of solving (A.6) with a Newton method, a quasi-Newton method may
be employed for the solution of (A.6). Rather than computing the Jacobian of
the non-linear equatoins (A.6), quasi-Newton methods recur an approximation
of the Jacobian which is consistent with the secant equations (c.f. Dennis and
Schnabel, 1996; Nocedal and Wright, 1999). The most widely used secant up-
date of the Jacobian matrix for solution of general nonlinear equations is the
Broyden update. For unconstrained optimization, the Jacobian matrix of the
first order optimality conditions is the Hessian matrix of the objective func-
tion. This matrix must be symmetric. The Broyden-Fletcher-Goldfarb-Shanno
(BFGS) updates recurs a symmetric positive definite Hessian approximation,
which is consistent with the secant equations.

The quasi-Newton solution of (A.6) with a BFGS update of ∇2
xxL(x, π, λ),

corresponds to solving the quadratic program (A.8) with the Hessian matrix
W computed as a BFGS-update.

Let xi denote the ith iterate of x in the SQP algorithm. Then the BFGS
approximation of the Hessian W is computed as

Wi+1 = Wi −
Wiss

′Wi

s′Wis
+

yy′

s′y
(A.13)

in which

s = xi+1 − xi (A.14a)

y = ∇xL(xi+1, π, λ) −∇xL(xi, π, λ) (A.14b)
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π = πi+1 and λ = λi+1 are the most recent computed value of the Lagrange
multipliers. The initial approximation of the Hessian matrix, W0, may be any
positive definite matrix. One option is W0 = I.

When ∇2
xxL is indefinite, the BFGS update may face numerical troubles. To

overcome these, it is standard practice to employ a damped BFGS update

Wi+1 = Wi −
Wiss

′Wi

s′Wis
+

rr′

s′r
(A.15)

in which

r = θy + (1 − θ)Wis (A.16)

with

θ =

{

1 s′y ≥ 0.2s′Wis
0.8s′Wis

s′Wis−s′y s′y < 0.2s′Wis
(A.17)

These modifications assure that the update is always well-defined. Efficient
techniques to update the Cholesky factor of Wi+1 rather than Wi+1 itself do
exist (c.f. Dennis and Schnabel, 1996).

A.1.3 Gauss-Newton Approximation in Least-Squares Prob-

lems

For inverse problems such as the control and state estimation problem (c.f.
Goodwin, 2002), general least squares objective functions constitute an impor-
tant special case whose structure may be utilized in computing an approxima-
tion of the Hessian matrix W for (A.8) (c.f. Dennis and Schnabel, 1996; Bock,
1983).

The nonlinear least squares objective function is

f(x) =
1

2
||ψ(x)||22 =

1

2
ψ(x)′ψ(x) (A.18)

in which ψ : R
n 7→ R

q is a residual function. Such a function is often small at
the optimal solution.

The gradient ∇f(x) and the Hessian ∇2f(x) of the nonlinear least squares
objective function are

∇f(x) =

q
∑

i=1

ψi(x)∇ψi(x) = ∇ψ(x)ψ(x) (A.19)

∇2f(x) = ∇ψ(x)∇ψ(x)′ +

q
∑

i=1

ψi(x)∇2ψi(x) (A.20)
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in which we use the following convention for the gradient of vector functions

∇ψ =







∂ψ1

∂x1
. . .

∂ψq

∂x1

...
...

∂ψ1

∂xn
. . .

∂ψq

∂xn







(A.21)

Assuming that the residual ψ(x) are small, the second term of (A.20) becomes
negligible compared to the first term. Hence the Hessian matrix ∇2f(x) may
be approximated by

∇2f(x) ≈ ∇ψ(x)∇ψ(x)′ (A.22)

The computation of this approximation is cheap, as ∇ψ(x) is already available
as it is also used in the computation of ∇f(x). By construction, this approxima-
tion provides a symmetric positive semi-definite Hessian. For most practical
problems ψ(x) is chosen such that the Hessian matrix in the approximation
(A.22) is even symmetric positive definite.

The preceding analysis is meant to facilitate the analysis of the weighted non-
linear least squares problem

f(x) =
1

2
||ϕ(x)||2Q =

1

2
ϕ(x)′Qϕ(x) (A.23)

in which ϕ : R
n 7→ R

q is a residual function and Q ∈ R
q×q is symmetric positive

definite. The weighted nonlinear least squares problem (A.23) may be regarded
as a particular instance of the nonlinear least squares problem (A.18)

f(x) =
1

2
||ϕ(x)||2Q =

1

2
||Lϕ(x)||22 =

1

2
||ψ(x)||22 (A.24)

in which L ∈ R
q×q is the Cholesky factor of Q, i.e. Q = LL′ = L′L, and

ψ(x) = Lϕ(x). Hence, ∇ψ(x) = ∇ϕ(x)L′ implies that the gradient ∇f(x) is

∇f(x) = ∇ψ(x)ψ(x)

= ∇ϕ(x)L′Lϕ(x) = ∇ϕ(x)Qϕ(x)
(A.25)

and the Hessian matrix ∇2f(x) may be approximated by

∇2f(x) ≈ ∇ψ(x)∇ψ(x)′

= ∇ϕ(x)L′L∇ϕ(x)′ = ∇ϕ(x)Q∇ϕ(x)′
(A.26)

Consider the nonlinear program (A.1) with the objective function (A.23). For
simplicity of the argument but without loss of generality, assume that the
inequality constraint are inactive. This implies λ = 0 and condition (A.4a)
becomes

∇xL(x, π, λ) = ∇f(x) −∇g(x)π −∇h(x)λ

= ∇ϕ(x)Qϕ(x) −∇g(x)π = 0
(A.27)
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Hence, π may be regarded as the following function

π = [∇g(x)]†∇ϕ(x)Qϕ(x) (A.28)

in which [∇g(x)]† is the pseudo-inverse of ∇g(x). π is thus proportional to the
residual function ϕ(x) and expected to be small. Therefore, the Hessian of the
Lagrangian, ∇2

xxL, may be approximated according to

∇2
xxL(x, π, λ) = ∇2f(x) −

∑

i∈E

πi∇2gi(x) −
∑

i∈I

λi∇2hi(x)

≈ ∇ϕ(x)Q∇ϕ(x)′
(A.29)

Consequently, under the small residual assumption, the quadratic program
(A.8) for computing the search direction in an SQP iteration of the nonlinear
program (A.1) with a weighted nonlinear least squares objective function (A.22)
may be generated with ∇f(x) computed by (A.25) and the Hessian matrix, W ,
computed by

W = ∇ϕ(x)Q∇ϕ(x)′ (A.30)

A.1.4 Hybrid Methods for Least-Squares Problems

In the large residual case methods based on the Gauss-Newton assumption may
fail and one may have to resort to hybrid methods.

One method, whose idea is due to Fletcher and Xu (1987) maintains a se-
quence of positive definite Hessian approximations, Wi. At each iteration a
Gauss-Newton step is attempted and accepted if it reduced the merit function
by a certain factor. In case of acceptance, the Hessian approximation, Wi, is
overwritten with the Gauss-Newton approximation. Otherwise, a new direc-
tion is obtained using Wi, and a new point is obtained by doing a line search.
In either case, a BFGS-like update is applied to Wi to obtain the next approx-
imation Wi+1. This method is well suited to be adapted in line-search SQP
algorithms.

Dennis et al. (1981) employ a different method in their hybrid code, NL2SOL.
Basically, they use a secant update to approximate the part neglected by the
Gauss-Newton approximation. They then use this update and the Gauss-
Newton approximation in a trust region method. Due to the technical details
of this method it is not well suited for line search SQP algorithms.



B

Dense MPC Quadratic

Program

The subject of this chapter is the transformation of a model predictive control
quadratic program into a standard quadratic program. The utility of this
result is that standard solvers for quadratic programming can be applied in
the computation of the optimal values for the actuators defined by the MPC
quadratic program.

Model predictive control is introduced in a process control context by Ogun-
naike and Ray (1994) and. Seborg et al. (2004). Camacho and Bordons (1999)
and Maciejowski (2002) provide a text book description of model predictive
control. Garcia et al. (1989), Qin and Badgwell (1996, 2000), Morari and Lee
(1999), Allgöwer et al. (1999), Rawlings (2000), and Mayne et al. (2000) pro-
vide surveys of various aspects of predictive control. Quadratic programs for
solution of model predictive control problems are discussed by Wright (1996),
Rao et al. (1998), Bartlett et al. (2000), Bartlett et al. (2002), Tiagounov et al.
(2003). However, these works do not present detailed descriptions about the
construction of a dense QP for the predictive control problem. This chap-
ter provides such a description and mention standard QP solvers by which the
resulting quadratic programs may be solved. The presentation is limited to for-
mulation of dense quadratic programs for constrained extended linear quadratic
regulators.

B.1 Standard Quadratic Program

In this section the standard quadratic program is defined. The standard
quadratic program is in a form which is readily solvable by general solvers
for quadratic programming. Furthermore in this context of MPC we choose
a standard form which is particularly relevant for this special case. For other
purposes such as algorithmic construction for quadratic programs other forms
depending on the particular method are more convenient.
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Definition B.1.1 (Standard Quadratic Program)
Let Q ∈ R

n×n and positive definite, q ∈ R
n, ρ ∈ R, A ∈ R

m×n, l ∈ R
m, u ∈ R

m,
πmin ∈ R

n, and πmax ∈ R
n be given data defining the standard quadratic program:

min
π

φ =
1

2
π′Qπ + q′π + ρ (B.1a)

s.t. l ≤ Aπ ≤ u (B.1b)

πmin ≤ π ≤ πmax (B.1c)

The optimal solution is denoted π∗ provided it exists. Similar the optimal value of
the objective function is φ∗.

Remark B.1.2
The constant term, ρ, in the objective function does not affect the solution, π∗. It only
affects the value of the objective function. Hence, it can be discarded in definition of
the standard quadratic program, if only the solution π∗ and not the actual value of
the objective function is of interest.

Remark B.1.3
The standard quadratic program may have no solution because the feasible set is
empty. Quality implementations for quadratic programming identify these situations
and terminate with appropriate information about the reason of termination. Un-
boundedness is not an issue as Q is positive definite.

Remark B.1.4
The positive definiteness of Q ensures that the solution to the standard quadratic
program is unique provided it exists. It also means that the quadratic program is
strictly convex.

Remark B.1.5
The solution, π∗ may be regarded as a function of the data, i.e.

π∗ = µ(Q, q, A, l, u, πmin, πmax)

= arg min
π

{φ : l ≤ Aπ ≤ u, πmin ≤ π ≤ πmax} (B.2)

The standard quadratic program is identical with the form used by Gill et al.
(1995) in QPSOL. The QPSOL algorithm is described in Gill and Murray
(1978) and Gill et al. (1991) and is a primal active-set algorithm.

The other major active-set method is a dual method due to Goldfarb and Idnani
(1983). This algorithm is further discussed and enhanced by Powell (1985a) and
Schmid and Biegler (1994). The implementation by Powell (1985a) is available
in the IMSL library as QPROG/DQPROG. This implementation is also avail-
able in the Harwell library (c.f. AEA Technology, 1995) as VE07 and VE17 as
well as in an implementation due to Schittkowski (2002, 2003). The quadratic
programming algorithm due to Goldfarb and Idnani (1983) applies to strictly
convex problems only, while the method by Gill et al. (1995) even applies to
indefinite quadratic programs. However, reasonable formulated model predic-
tive control problems are convex, so the restriction to strictly convex quadratic
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programs is no limitation with regard to solution of model predictive control
quadratic programs.

A third class of algorithms for solution of dense quadratic programs is interior
point methods. These methods are particularly simple to implement and are
excellently described in Wright (1997) and Nocedal and Wright (1999). Interior
point methods are generally believed to be more effective for structured prob-
lems in which the structure can be effectively applied in solving the appropriate
linear equations. Gertz and Wright (2001a,b) provide an object oriented C++
implementation of interior point algorithms for quadratic programming. One
shortcoming of these infeasible path interior point methods is that they cannot
robustly detect infeasibility. By using the homogeneous and self-dual formu-
lation, numerically efficient primal-dual interior-point algorithms for convex
quadratic programming capable of detecting infeasibility robustly have been
constructed (Andersen, 2000; Andersen and Andersen, 2000; Andersen et al.,
2003; Andersen and Ye, 1998, 1999). These algorithms are implemented in
MOSEK1.

B.2 LTI MPC Quadratic Program

A practical way to solve the quadratic program defining the model predictive
controller is to transform this quadratic program into a standard quadratic pro-
gram and apply a readily available solver for the standard quadratic program.
Hence, first we define a quadratic program defining a class model predictive
controllers with linear time invariant models, and next we transform this into
a standard quadratic program.

Definition B.2.1 (LTI MPC Quadratic Program)
The quadratic program defining the model predictive controller with a linear time
invariant model is

min
{xk+1,uk}N−1

k=0

φ =
1

2

N−1∑

k=0

{
x′

kQxk + 2x′
kMuk + u′

kRuk + 2q′kxk + 2r′kuk

}
(B.3a)

+
1

2
x′

NPxN + p′xN (B.3b)

s.t. xk+1 = Axk + Buk k = 0, 1, . . . , N − 1 (B.3c)

umin ≤ uk ≤ umax k = 0, 1, . . . , N − 1 (B.3d)

bl ≤ Gxk + Huk ≤ bu k = 0, 1, . . . , N − 1 (B.3e)

b̃l ≤ G̃xN ≤ b̃u (B.3f)

in which the data is x0, {qk}N−1
k=0 , {rk}N−1

k=0 , p, Q, M , R, P , A, B, G, H, bl, bu, G̃, b̃l,

b̃u, umin, and umax.

1www.mosek.com
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The solution is both the control sequence {u∗
k}N−1

k=0 and the state sequence {x∗
k}N

k=1.
The corresponding optimal value of the objective function is denoted φ∗.

Remark B.2.2
The optimal control sequence, {u∗

k}, can be regarded as the following function

{u∗
k}N−1

k=0 = µ(x0, {qk}N−1
k=0 , {rk}N−1

k=0 , p;

Q, M, R, P, A, B, G, H, bl, bu, G̃, b̃l, b̃u, umin, umax)
(B.4)

in which the first part of the input arguments may possibly change online. The second
part of the input arguments may be regarded as design parameters and therefore
regarded as constants.

Definition B.2.3 (Augmented Transition Matrix)
The augmented transition matrix is defined as

Φ =








A
A2

...
AN








(B.5)

Definition B.2.4 (Reverse Augmented Controllability Matrix)

Γ =












Γ1

Γ2

Γ3

...
ΓN−1

ΓN












=












B 0 0 . . . 0 0
AB B 0 . . . 0 0
A2B AB B . . . 0 0

...
...

...
...

...
AN−2B AN−3B AN−4B . . . B 0
AN−1B AN−2B AN−3B . . . AB B












(B.6)

Remark B.2.5
ΓN is

ΓN =
(
AN−1B AN−2B AN−3B . . . AB B

)
(B.7)

and Γk (k < N) is directly available from ΓN by copying the last k block-columns of
ΓN . No re-computation is needed.

Definition B.2.6 (Vector of Control and States)
Define the vector of controls, π, and the vector of states, x, as

π =








u0

u1

...
uN−1








x =








x1

x2

...
xN








(B.8)
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Lemma B.2.7 (Expression for the State Dynamics)
The state dynamics xk+1 = Axk + Buk k = 0, 1, 2, . . . implies that the states of the
system may be expressed in terms of the control and the initial state according to

xk = Akx0 +

k−1∑

j=0

Ak−1−jBuj

= Akx0 + Γkπ k = 1, 2, . . .

(B.9)

Using the notation introduced by the above definitions, this expression for k =
1, . . . , N may be expressed as

x = Φx0 + Γπ (B.10)

Proof. The first part concerns proving that the state dynamics xk+1 =

Axk + Buk implies xk = Akx0 +
∑k−1

j=0 Ak−1−jBuj . The proof is by recursion.
Note that the statement

P (k) : xk = Akx0 +
k−1∑

j=0

Ak−1−jBuj (B.11)

is true for k = 1, i.e.

P (k = 1) : x1 = Ax0 + Bu0 = A1x0 +
1−1∑

j=0

A1−1−jBuj (B.12)

Next assume that the statement P (k) is true. We want to show that this
implies that P (k + 1) is also true. For convenience let l = k + 1. The system
dynamics xk+1 = Axk + Buk and P (k) implies

xl = xk+1 = Axk + Buk

= A



Akx0 +

k−1∑

j=0

Ak−1−jBuj



 + Buk

= Ak+1x0 +

k−1∑

j=0

A(k+1)−1−jBuj + A(k+1)−1−kBuk

= Ak+1x0 +

k∑

j=0

A(k+1)−1−jBuj

= Alx0 +
l−1∑

j=0

Al−1−jBuj

(B.13)

Hence, P (l) = P (k + 1) is true whenever P (k) is true. Since P (1) is true and
P (k) =⇒ P (k +1), P (k) is true for all k ∈ {1, 2, . . .}. It should be noted that
P (0) is also true.
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Secondly, we show xk = Akx0 + Γkπ. This proof is accomplished by simple
algebraic manipulations according to

xk = Akx0 +
k−1∑

j=0

Ak−1−jBuj

= Akx0 +
(
Ak−1B Ak−2B Ak−3B . . . AB B 0 . . . 0

)



















u0

u1

u2

...
uk−2

uk−1

uk

...
uN−1



















= Akx0 + Γkπ

(B.14)

The last part of the lemma is obtained by vectorization of the above result, i.e.








x1

x2

...
xN








=








A
A2

...
AN








x0 +








Γ1

Γ2

...
ΓN








π (B.15)

Hence, x = Φx0 + Γπ. ¤

Lemma B.2.7 is central for the expression of the model predictive control
quadratic program as a dense quadratic program, because it is used for elimi-
nation of the state dynamics and the states in the model predictive controller
quadratic program.

The following very simple lemma is used for transforming the bounds on the
actuators to the standard formulation in terms of π.

Lemma B.2.8 (Actuator Constraints)
The actuator constraints umin ≤ uk ≤ umax for k = 0, 1, . . . , N − 1 may be expressed
as

πmin ≤ π ≤ πmax (B.16)

in which

πmin =








umin

umin

...
umin








πmax =








umax

umax

...
umax
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Proof. The result is straightforward and obtained by vectorization of umin ≤
uk ≤ umax for k = 0, 1, . . . , N − 1. ¤

Transformation of the general constraints in the model predictive quadratic
program is accomplished with the result in the lemma below. The central part
of this result is the elimination of the states by application of lemma B.2.7.

Lemma B.2.9 (General Constraints)
The general constraints in the model predictive controller quadratic program

bl ≤ Gxk + Huk ≤ bu k = 0, 1, . . . , N − 1 (B.17a)

b̃l ≤ G̃xN ≤ b̃u (B.17b)

may be expressed in terms of x0 and π by

bl − Gx0 ≤ HI0π ≤ bu − Gx0 (B.18a)

bl − GAkx0 ≤ (GΓk + HIk)π ≤ bu − GAkx0 k = 1, 2, . . . , N − 1 (B.18b)

b̃l − G̃ANx0 ≤ G̃ΓNπ ≤ b̃u − G̃ANx0 (B.18c)

Proof. uk is eliminated from the expressions by the substitution uk = Ikπ.
The situation for k = 0 is obtained by trivial rearrangement of terms. For k > 0
the system dynamics xk = Akx0 + Γkπ is applied and the result is obtained by
substitution of this expression for xk and subsequent rearrangement of terms.

¤

Remark B.2.10
Ik for k = 0, 1, . . . , N − 1 is defined as

I0 =
[
I 0 0 . . . 0

]
(B.19a)

I1 =
[
0 I 0 . . . 0

]
(B.19b)

I2 =
[
0 0 I . . . 0

]
(B.19c)

...

IN−1 =
[
0 0 0 . . . I

]
(B.19d)

The general constraints may be expressed compactly according to the follow-
ing lemma, which is directly compatible with the general constraints in the
standard quadratic program.

Lemma B.2.11 (General Constraints)
The general inequality constraints may be expressed by

l ≤ Aπ ≤ u (B.20)
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in which the coefficient matrix A is

A ←












H 0 0 . . . 0
GB H 0 . . . 0

GAB GB H . . . 0
...

...
...

...
GAN−2B GAN−3B GAN−4B . . . H

G̃AN−1B G̃AN−2B G̃AN−3B . . . G̃B












(B.21)

and the lower and upper bounds are

l ←












bl

bl

bl

...
bl

b̃l












−












G
GA
GA2

...
GAN−1

G̃AN












x0 u ←












bu

bu

bu

...
bu

b̃u












−












G
GA
GA2

...
GAN−1

G̃AN












x0 (B.22)

Proof. The results follow directly by stacking of the expressions in lemma
B.2.9. ¤

Remark B.2.12
The explicit expression for the system dynamics is








x1

x2

...
xN








=








A
A2

...
AN








x0 +








B 0 . . . 0
AB B . . . 0
...

AN−1B AN−2B . . . B















u0

u1

...
uN−1








(B.23)

while the expression for the general constraints may be written as












bl

bl

bl

...
bl

b̃l












≤












G
GA
GA2

...
GAN−1

G̃AN












x0

+












H 0 0 . . . 0 0
GB H 0 . . . 0 0

GAB GB H . . . 0 0
...

...
...

...
...

GAN−2B GAN−3B GAN−4B . . . GB H

G̃AN−1B G̃AN−2B G̃AN−3B . . . G̃AB G̃B























u0

u1

u2

...
uN−2

uN−1












≤












bu

bu

bu

...
bu

b̃u












(B.24)
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and the expression for the actuator constraints is








umin

umin

...
umin








≤








u0

u1

...
uN−1








≤








umax

umax

...
umax








(B.25)

The final major step is to obtain an expression for the objective functions in
terms of the actuator variables, π, and the initial state, x0. Application of
lemma B.2.7 to the objective function yields the desired result. This result is
stated in the lemma below.

Lemma B.2.13 (Dense MPC QP Objective Function)
The objective function of the model predictive quadratic program (B.3a) may be
expressed as

φ =
1

2
π′Qπ + q′π + ρ (B.26)

in which

ρ ← 1

2
x′

0

(
N−1∑

k=0

(Ak)′QAk + (AN )′PAN

)

x0 +

(
N−1∑

k=0

(Ak)′qk + (AN )′p

)′

x0 (B.27a)

q ←
(

N−1∑

k=0

I ′
kM ′Ak +

N−1∑

k=1

Γ′
kQAk + Γ′

NPAN

)

x0 +

N−1∑

k=0

I ′
krk +

N−1∑

k=1

Γ′
kqk + Γ′

Np

(B.27b)

Q ←
N−1∑

k=0

I ′
kRIk +

N−1∑

k=1

Γ′
kQΓk + Γ′

kMIk + I ′
kM ′Γk + Γ′

NPΓN (B.27c)

Proof. The proof proceeds by straightforward algebraic manipulations of each
term in the objective function

φ =
1

2

N−1∑

k=0

(x′
kQxk + 2x′

kMuk + u′
kRuk + 2q′kxk + 2r′kuk) +

1

2
x′

NPxN + p′xN

(B.28)
Each term involving xk is transformed to an expression in x0 and π using the
equation

xk = Akx0 + Γkπ k = 1, 2, . . . , N (B.29)

The quadratic term in xk becomes (k = 1, 2, . . . , N − 1)

x′
kQxk = (Akx0 + Γkπ)′Q(Akx0 + Γkπ)

= x′
0(A

k)′QAkx0 + 2x′
0(A

k)′QΓkπ + π′ΓkQΓkπ
(B.30)

and the linear term in xk may be expressed as (k = 1, 2, . . . , N − 1)

q′kxk = q′k(Akx0 + Γkπ) = q′kAkx0 + q′kΓkπ (B.31)
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Similarly, the quadratic term at k = N become

x′
NPxN = (ANx0 + ΓNπ)′P (ANx0 + ΓNπ)

= x′
0(A

N )′PANx0 + 2x′
0(A

N )′PΓNπ + π′Γ′
NPΓNπ

(B.32)

and the linear term in x at k = N is

p′xN = p′(ANx0 + ΓNπ) = p′ANx0 + p′ΓNπ (B.33)

The mixed term in x and u is

x′
kMuk = (Akx0 + Γkπ)′MIkπ = x′

0(A
k)′MIkπ + π′Γ′

kMIkπ (B.34)

Finally, the quadratic term in u is (k = 0, 1, . . . , N)

u′
kRuk = π′I ′kRIkπ (B.35)

and the linear term in u is expressed as

r′kuk = r′kIkπ (B.36)

The objective function in the model predictive quadratic program may by uti-
lization of the linear dynamics be expressed as a function explicitly in π and
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through the parameters implicitly in x0

φ =
1

2

N−1∑

k=0

(x′
kQxk + 2x′

kMuk + u′
kRuk + 2q′kxk + 2r′kuk) +

1

2
x′

NPxN + p′xN

=
1

2
(x′

0Qx0 + 2x′
0MI0π + π′I ′0RI0π + 2q′0x0 + 2r′0I0π)

+
1

2

N−1∑

k=1

x′
0(A

k)′QAkx0 + 2x′
0(A

k)′QΓkπ + π′Γ′
kQΓkπ

+ 2x′
0(A

k)′MIkπ + π′(Γ′
kMIk + I ′kM ′Γk)π

+ π′I ′kRIkπ

+ 2(q′kAkx0 + q′kΓkπ) + 2r′kIkπ

+
1

2

(
x′

0(A
N )′PANx0 + 2x′

0(A
N )′PΓNπ + π′Γ′

NPΓNπ
)

+ p′ANx0 + p′ΓNπ

=
1

2
x′

0

(

Q +

N−1∑

k=1

(Ak)′QAk + (AN )′PAN

)

x0 +

(

q0 +

N−1∑

k=1

(Ak)′qk + (AN )′p

)′

x0

+

[

x′
0

(

MI0 +
N−1∑

k=1

(Ak)′QΓk + (Ak)′MIk + (AN )′PΓN

)

+r′0I0 +

N−1∑

k=1

r′kIk +

N−1∑

k=1

q′kΓk + p′ΓN

]

π

+
1

2
π′

(

I ′0RI0 +

N−1∑

k=1

Γ′
kQΓk + Γ′

kMIk + I ′kM ′Γk + I ′kRIk + Γ′
NPΓN

)

π

= γ + q′π +
1

2
π′Qπ

(B.37)

By inspection, the parameters in the condensed expression for this quadratic
program are

γ ← 1

2
x′

0

(
N−1∑

k=0

(Ak)′QAk + (AN )′PAN

)

x0 +

(
N−1∑

k=0

(Ak)′qk + (AN )′p

)′

x0

(B.38a)

q ←
(

N−1∑

k=0

I ′kM ′Ak +

N−1∑

k=1

Γ′
kQAk + Γ′

NPAN

)

x0 +

N−1∑

k=0

I ′krk

+
N−1∑

k=1

Γ′
kqk + Γ′

Np

(B.38b)

Q ←
N−1∑

k=0

I ′kRIk +

N−1∑

k=1

Γ′
kQΓk + Γ′

kMIk + I ′kM ′Γk + Γ′
NPΓN (B.38c)
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¤

Remark B.2.14
The quadratic-term weighting matrix Q depends on the constant data matrices only.
Hence, it can be computed off-line. The linear-term weighting matrix q depends on
the constant data matrices as well as x0, {qk}N−1

k=0 , {rk}N−1
k=0 , and p. Due to the

dependence of the latter data, q must be computed online.

Remark B.2.15
By inspection of equation (B.27b) the weighting matrix Qx0 on x0 in q is

Qx0 =

N−1∑

k=0

I ′
kM ′Ak +

N−1∑

k=1

Γ′
kQAk + Γ′

NPAN (B.39)

This matrix may be computed off-line.

Remark B.2.16
The second term in q is effectively computed by

N−1∑

k=0

I ′
krk =








r0

r1

...
rN−1








(B.40)

Remark B.2.17
As all non-zero information about Γk is contained in ΓN , only ΓN need to be com-
puted. This matrix may be computed off-line and is used in all the computations

ΓN =
(
AN−1B AN−2B . . . AB B

)
(B.41)

Remark B.2.18
The explicit structure of the matrix Qx0 is

Qx0 =












M ′

M ′A
M ′A2

...
M ′AN−2

M ′AN−1












+
















B′
(
∑N−2

j=0 (Aj)′QAj
)

A

B′
(
∑N−3

j=0 (Aj)′QAj
)

A2

B′
(
∑N−4

j=0 (Aj)′QAj
)

A3

...

B′
(
∑0

j=0(A
j)′QAj

)

AN−1

0
















+












B′(AN−1)′PAN−1A
B′(AN−2)′PAN−2A2

B′(AN−3)′PAN−3A3

...
B′A′PAAN−1

B′PAN












=












M ′ + B′ΨN−1A
M ′A + B′ΨN−2A

2

M ′A2 + B′ΨN−3A
3

...
M ′AN−2 + B′Ψ1A

N−1

M ′AN−1 + B′Ψ0A
N












(B.42)
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in which

Ψ0 = P (B.43a)

Ψ1 = Q + A′PA (B.43b)

Ψ2 =

2−1∑

j=0

(Aj)′QAj + (A2)′PA2 (B.43c)

... (B.43d)

ΨN−1 =

N−2∑

j=0

(Aj)′QAj + (AN−1)′PAN−1 (B.43e)

Remark B.2.19
The Hessian matrix in the quadratic program may be split into two terms

Q = QI + QII (B.44)

in which the first term is

QI =

N−1∑

k=1

Γ′
kQΓk + Γ′

NPΓN

=










B′ΨN−1B B′A′ΨN−2B B′(A2)′ΨN−3B . . . B′(AN−1)′Ψ0B
B′ΨN−2AB B′ΨN−2B B′A′ΨN−3B . . . B′(AN−2)′Ψ0B
B′ΨN−3A

2B B′ΨN−3AB B′ΨN−3B . . . B′(AN−3)′Ψ0B
...

...
...

...
B′Ψ0A

N−1B B′Ψ0A
N−2B B′Ψ0A

N−3B . . . B′Ψ0B










(B.45)

and the second term is

QII =

N−1∑

k=1

Γ′
kMIk + I ′

kM ′Γk +

N−1∑

k=0

I ′
kRIk

=










R B′M B′AM . . . B′(AN−2)′M
M ′B R B′M . . . B′(AN−3)′M

M ′AB M ′B R . . . B′(AN−4)′M
...

...
...

...
M ′AN−2B M ′AN−3B M ′AN−4B . . . R










(B.46)

The transformation of a model predictive control quadratic program to a stan-
dard quadratic program is summarized in the next proposition.

Proposition B.2.20 (MPC QP as a standard QP)
The model predictive control quadratic program (B.3) is identical to solving a stan-
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dard quadratic program (B.1) with the data matrices defined as

q ← Qx0x0 +

N−1∑

k=0

I ′
krk +

N−1∑

k=1

Γ′
kqk + Γ′

Np (B.47)

Qx0 ←
N−1∑

k=0

I ′
kM ′Ak +

N−1∑

k=1

Γ′
kQAk + Γ′

NPAN (B.48)

Q ←
N−1∑

k=0

I ′
kRIk +

N−1∑

k=1

Γ′
kQΓk + Γ′

kMIk + I ′
kM ′Γk + Γ′

NPΓN (B.49)

A ←












H 0 0 . . . 0
GB H 0 . . . 0

GAB GB H . . . 0
...

...
...

...
GAN−2B GAN−3B GAN−4B . . . H

G̃AN−1B G̃AN−2B G̃AN−3B . . . G̃B












(B.50)

l ←












bl

bl

bl

...
bl

b̃l












−












G
GA
GA2

...
GAN−1

G̃AN












x0 u ←












bu

bu

bu

...
bu

b̃u












−












G
GA
GA2

...
GAN−1

G̃AN












x0 (B.51)

πmin =








umin

umin

...
umin








πmax =








umax

umax

...
umax








(B.52)

Proof. This follows directly from the preceding discussion. ¤

Remark B.2.21
For notational convenience let F be the matrix defined by

F =












G
GA
GA2

...
GAN−1

G̃AN












bl0 =












bl

bl

bl

...
bl

b̃l












bu0 =












bu

bu

bu

...
bu

b̃u












(B.53)

Then the lower and upper limits, l and u, may be computed as

l ← bl0 − Fx0 u ← bu0 − Fx0 (B.54)

The matrices Q, Qx0
, A, F , and ΓN may be computed off-line, while the

remaining vectors are computed and constructed on-line due to the way data
arrives.
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B.3 MPC with Nonzero Exogenous Input

In situations in which an exogenous input sequence {dk}N−1
k=0 is known, the

model predictive controller formulation must be extended. Exogenous inputs
arises for instance when a model is used for computing disturbances or some
forecast is used to predict the exogenous input. If only d0 is measured and used
as exogenous input, this extension corresponds to adding a feed-forward mech-
anism in the model predictive controller. When the entire sequence {dk}N−1

k=0

is applied in computation of the control variable, u∗
0, this type of control is

referred to as anticipatory model predictive control. The quadratic program
for the linear time invariant model predictive controller with exogenous inputs
is stated in the definition below.

Definition B.3.1 (LTI MPC with Exogenous Inputs Quadratic Program)
The quadratic program defining the model predictive controller based on a linear time
invariant model with exogenous inputs is

min
{xk+1,uk}N−1

k=0

φ =
1

2

N−1∑

k=0

{
x′

kQxk + 2x′
kMuk + u′

kRuk+ 2q′kxk + 2r′kuk

}
(B.55a)

+
1

2
x′

NPxN + p′xN (B.55b)

s.t. xk+1 = Axk + Buk + Edk k = 0, 1, . . . , N − 1 (B.55c)

umin ≤ uk ≤ umax k = 0, 1, . . . , N − 1 (B.55d)

bl ≤ Gxk + Huk ≤ bu k = 0, 1, . . . , N − 1 (B.55e)

b̃l ≤ G̃xN ≤ b̃u (B.55f)

in which the data is x0, {qk}N−1
k=0 , {rk}N−1

k=0 , {dk}N−1
k=0 , p, Q, M , R, P , A, B, E, G, H,

bl, bu, G̃, b̃l, b̃u, umin, and umax.

The solution is both the control sequence {u∗
k}N−1

k=0 and the state sequence {x∗
k}N

k=1.
The corresponding optimal value of the objective function is denoted φ∗.

Remark B.3.2
The horizon, N , used for the exogenous input sequence {dk}N−1

k=0 is in the formulation
equivalent with the control horizon. Normally the control horizon is chosen longer
than the horizon for the exogenous input sequence. We have chosen to make them
equal to keep the notation simple. If a shorter horizon for the exogenous inputs is
chosen, the remaining exogenous inputs may be set to zero; or more effectively the
appropriate rows and columns of certain matrices in the subsequent derivation may
be simply removed.

For convenience in the subsequent deduction of the standard quadratic program
equivalent with (B.55) the sequence of input vectors {dk}N−1

k=0 is stacked in a
vector.

Definition B.3.3 (Exogenous Input Vector)
The exogenous input vector, d, is the sequence of exogenous input vectors {dk}N−1

k=0
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stacked according to

d =












d0

d1

d2

...
dN−2

dN−1












(B.56)

Definition B.3.4 (Exogenous-Input-to-State Transition Matrix)
Define the exogenous-input-to-state transition matrix, Γd, as

Γd =












Γd
0

Γd
1

Γd
2

...

Γd
N−1

Γd
N












=












E 0 0 . . . 0 0
AE E 0 . . . 0 0
A2E AE E . . . 0 0

...
...

...
...

...
AN−2E AN−3E AN−4E . . . E 0
AN−1E AN−2E AN−3E . . . AE E












(B.57)

Remark B.3.5
The kth block-row of the exogenous-input-to-state matrix is

Γd
k =

(
Ak−1E Ak−2E . . . AE E 0 . . . 0

)
(B.58)

This matrix is important in eliminating the states xk from the quadratic program
describing the model predictive controller with exogenous inputs.

In the actual computation of the exogenous-input-to-state transition matrix it is
sufficient to compute the Nth block-row

Γd
N =

(
AN−1E AN−2E AN−3E . . . AE E

)
(B.59)

The remaining non-zero blocks in the exogenous-input-to-state transition matrix are
computed by appropriate block-copy operations using Γd

N .

Lemma B.3.6 (Expression for the State Dynamics)
The state dynamics xk+1 = Axk + Buk + Edk k = 0, 1, . . . , N − 1 implies that the
states of the system may be expressed in terms of the initial state x0, the control
sequence {uk}N−1

k=0 and the exogenous input sequence {dk}N−1
k=0 according to

xk = Akx0 +

k−1∑

j=0

Ak−1−jBuj +

k−1∑

j=0

Ak−1−jEdj k = 1, 2, . . . , N (B.60)

In using π and d instead of {uk}N−1
k=0 and {dk}N−1

k=0 , respectively, the states may be
expressed as

xk = Akx0 + Γkπ + Γd
kd k = 1, 2, . . . , N (B.61)

Proof. The proof is similar to the proof of lemma B.2.7. ¤
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Equation (B.61) is important because it relates the states xk to the initial state,
x0, the control variables, π, and the exogenous inputs, d, modulo the system
dynamics, xk+1 = Axk + Buk + Edk. Hence, it may be used in expressing the
general constraints and the objective functions in terms of the known initial
state, x0, the known exogenous inputs, d, and the control variables, π. The
control variables are the decision variables. As (B.61) by construction satisfies
the system dynamics, this constraint can be simply removed from the quadratic
program, when the states, xk, are removed by the substitution with equation
(B.61). Overall this procedure leads to a problem with reduced dimension, both
in terms of decision variables and constraints. The first because xk is eliminated
and the latter because the system dynamics constraints are inherently satisfied
by the substitution and therefore removed from the quadratic program.

The resulting expressions obtained when (B.61) is used to eliminate the states,
xk, in the general constraints and the objective functions are stated in the
next two lemmas. The proofs explain the algebra involved in obtaining these
expressions.

Lemma B.3.7 (General Constraints)
The general constraints in the model predictive controller quadratic program

bl ≤ Gxk + Huk ≤ bu k = 0, 1, . . . , N − 1 (B.62a)

b̃l ≤ G̃xN ≤ b̃u (B.62b)

modulo the system dynamics xk+1 = Axk + Buk + Edk may be expressed in terms
of x0, π, and d by

bl − Gx0 ≤ HI0π ≤ bu − Gx0 (B.63a)

bl − GAkx0 − GΓd
kd ≤ (GΓk + HIk)π ≤ bu − GAkx0 − Γd

kd k = 1, 2, . . . , N − 1
(B.63b)

b̃l − G̃ANx0 − G̃Γd
Nd ≤ G̃ΓNπ ≤ b̃u − G̃ANx0 − G̃Γd

Nd (B.63c)

Proof. The states {xk}N
k=1 and the controls {uk}N−1

k=0 are eliminated from the
general constraints using xk = Akx0 + Γkπ + Γd

kd and uk = Ikπ. Subsequent
simple rearrangement of terms lead to the desired result. ¤

Lemma B.3.8 (Objective Function)
The objective function

φ =
1

2

(
N−1∑

k=0

x′
kQxk + 2x′

kMuk + u′
kRuk + 2q′kxk + 2r′kuk

)

+
1

2
x′

NPxN + p′xN

(B.64)
modulo the system dynamics xk+1 = Axk+Buk+Edk can be expressed as a quadratic
function in π

φ = ρ + q′π +
1

2
π′Qπ (B.65)
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in which the coefficients are

ρ ← 1

2
x′

0Qx0 + q′0x0

+
1

2

N−1∑

k=1

(Akx0 + Γd
kd)′Q(Akx0 + Γd

kd) + 2q′k(Akx0 + Γd
kd)

+
1

2
(ANx0 + Γd

Nd)′P (ANx0 + Γd
Nd) + p′(ANx0 + Γd

Nd)

(B.66a)

q ←
(

N−1∑

k=0

I ′
kM ′Ak +

N−1∑

k=1

Γ′
kQAk + Γ′

NPAN

)

x0

+

(
N−1∑

k=1

(Γ′
kQ + I ′

kM ′)Γd
k + Γ′

NPΓd
N

)

d

+

N−1∑

k=0

I ′
krk +

N−1∑

k=1

Γ′
kqk + Γ′

Np

(B.66b)

Q ←
N−1∑

k=0

I ′
kRIk +

N−1∑

k=1

Γ′
kQΓk + Γ′

kMIk + I ′
kM ′Γk + Γ′

NPΓN (B.66c)

Proof. The objective function is

φ =
1

2

N−1∑

k=0

x′
kQxk+2x′

kMuk+u′
kRuk+2q′kxk+2r′kuk+

1

2
xNPxN+p′xN (B.67)

Elimination of xk and uk in this function is based on the relations

uk = Ikπ k = 0, 1, . . . , N − 1 (B.68)

xk = Akx0 + Γkπ + Γd
kd k = 1, 2, . . . , N (B.69)

For k > 0 the quadratic term x′
kQxk may be expressed as

x′
kQxk = (Akx0 + Γkπ + Γd

kd)′Q(Akx0 + Γkπ + Γd
kd)

= (Akx0 + Γd
kd)′Q(Akx0 + Γd

kd) + 2(Akx0 + Γd
kd)′QΓkπ + π′Γ′

kQΓkπ

(B.70)

The mixed term in xk and uk (k > 0) is

x′
kMuk = (Akx0 + Γkπ + Γd

kd)′MIkπ

= (Akx0 + Γd
kd)′MIkπ + π′Γ′

kMIkπ

= x′
0(A

k)′MIkπ + d′(Γd
k)′MIkπ + π′Γ′

kMIkπ

(B.71)

The quadratic term in uk for k ≥ 0 is

u′
kRuk = π′I ′kRIkπ (B.72)
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For k > 0 the linear term in the states q′kxk becomes

q′kxk = q′k(Akx0 + Γkπ + Γd
kd)

= q′k(Akx0 + Γd
kd) + q′kΓ′

kπ

= q′kAkx0 + q′kΓd
kd + q′kΓkπ

(B.73)

The linear term r′kuk in the controls is

r′kuk = r′kIkπ (B.74)

The cost-to-go quadratic term x′
NPxN is

x′
NPxN = (ANx0 + ΓNπ + Γd

Nd)′P (ANx0 + ΓNπ + Γd
Nd)

= (ANx0 + Γd
Nd)′P (ANx0 + Γd

Nd)

+ 2(ANx0 + Γd
Nd)′PΓNπ + π′Γ′

NPΓNπ

(B.75)

The cost-to-go linear term p′xN is

p′xN = p′(ANx0 + ΓNπ + Γd
Nd)

= p′(ANx0 + Γd
Nd) + p′ΓNπ

= p′ANx0 + p′Γd
Nd + p′ΓNπ

(B.76)
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Substitution of the above expressions in the objective function (B.67) and sub-
sequent rearrangement of terms yields

φ =
1

2

N−1∑

k=0

{
x′

kQxk + 2x′
kMuk + u′

kRuk + 2q′kxk + 2r′kuk

}
+

1

2
x′

NPxN + p′xN

=
1

2
x′

0Qx0 + x′
0MI0π +

1

2
π′I ′

0RI0π + q′0x0 + r′0I0π

+
1

2

N−1∑

k=1

(Akx0 + Γd
kd)′Q(Akx0 + Γd

kd) + 2(Akx0 + Γd
kd)′QΓkπ + π′Γ′

kQΓkπ
︸ ︷︷ ︸

=x′
k

Qxk

+
1

2

N−1∑

k=1

2(Akx0 + Γd
kd)′MIkπ + π′(Γ′

kMIk + I ′
kM ′Γk)π

︸ ︷︷ ︸

=2x′
k

Muk

+ π′I ′
kRIkπ

︸ ︷︷ ︸

=u′
k

Ruk

+

N−1∑

k=1

q′kAkx0 + qkΓd
kd + q′kΓkπ

︸ ︷︷ ︸

=q′
k

xk

+ r′kIkπ
︸ ︷︷ ︸

=r′
k

uk

+
1

2
(ANx0 + Γd

Nd)′P (ANx0 + Γd
Nd) + (ANx0 + Γd

Nd)′PΓNπ +
1

2
π′Γ′

NPΓNπ
︸ ︷︷ ︸

=x′
N

PxN

+ p′(ANx0 + Γd
Nd) + p′ΓNπ

︸ ︷︷ ︸

=p′xN

=

{

1

2
x′

0Qx0 + q′0x0 +
1

2

N−1∑

k=1

(Akx0 + Γd
kd)′Q(Akx0 + Γd

kd) + 2q′k(Akx0 + Γd
kd)

+
1

2
(ANx0 + Γd

Nd)′P (ANx0 + Γd
Nd) + p′(ANx0 + Γd

Nd)

}

+

{

x′
0

(

MI0 +

N−1∑

k=1

(Ak)′MIk +

N−1∑

k=1

(Ak)′QΓk + (AN )′PΓN

)

+ d′
(

N−1∑

k=1

(Γd
k)′(MIk + QΓk) + (Γd

N )′PΓN

)

+ r′0I0 +

N−1∑

k=1

r′kIk +

N−1∑

k=1

q′kΓk + p′ΓN

}

π

+
1

2
π′

{

I ′
0RI0 +

N−1∑

k=1

I ′
kRIk +

N−1∑

k=1

Γ′
kMIk + I ′

kM ′Γk + Γ′
kQΓk + Γ′

NPΓN

}

π

= ρ + q′π +
1

2
π′Qπ

(B.77)
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By inspection, the zeroth order term is

ρ ← 1

2
x′

0Qx0 + q′0x0

+
1

2

N−1∑

k=1

(Akx0 + Γd
kd)′Q(Akx0 + Γd

kd) + 2q′k(Akx0 + Γd
kd)

+
1

2
(ANx0 + Γd

Nd)′P (ANx0 + Γd
Nd) + p′(ANx0 + Γd

Nd)

(B.78)

The coefficient of the linear term is obtained by transposition of the linear
coefficient in the above expression. Hence

q ←
(

N−1∑

k=0

I ′kM ′Ak +
N−1∑

k=1

Γ′
kQAk + Γ′

NPAN

)

x0

+

(
N−1∑

k=1

(Γ′
kQ + I ′kM ′)Γd

k + Γ′
NPΓd

N

)

d

+

N−1∑

k=0

I ′krk +

N−1∑

k=1

Γ′
kqk + Γ′

Np

(B.79)

The weight matrix for the quadratic term is also obtained by direct inspection
in the last expression of φ

Q ←
N−1∑

k=0

I ′kRIk +

(
N−1∑

k=1

Γ′
kQΓk + Γ′

kMIk + I ′kM ′Γk

)

+ Γ′
NPΓN (B.80)

¤

The computation of the data matrices in a dense quadratic program that cor-
responds to a model predictive controller with exogenous inputs is stated in
the following proposition. This is a key result.

Proposition B.3.9 (Standard QP matrices, LTI MPC with Exo. Inputs)
The data in the standard quadratic program (B.1) for the model predictive controller
with exogenous inputs (B.55) are

Q =

N−1∑

k=0

I ′
kRIk +

N−1∑

k=1

Γ′
kQΓk + Γ′

kMIk + I ′
kM ′Γk + Γ′

NPΓN (B.81a)

q =

(
N−1∑

k=0

I ′
kM ′Ak +

N−1∑

k=1

Γ′
kQAk + Γ′

NPAN

)

x0

+

(
N−1∑

k=1

(Γ′
kQ + I ′

kM ′)Γd
k + Γ′

NPΓd
N

)

d

+

N−1∑

k=0

I ′
krk +

N−1∑

k=1

Γ′
kqk + Γ′

Np

(B.81b)
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A =












H 0 0 . . . 0 0
GB H 0 . . . 0 0

GAB GB H . . . 0 0
...

...
...

...
...

GAN−2B GAN−3B GAN−4B . . . GB H

G̃AN−1B G̃AN−2B G̃AN−3B . . . G̃AB G̃B












(B.81c)

l =












bl

bl

bl

...
bl

b̃l












−












G
GA
GA2

...
GAN−1

G̃AN












x0

−












0 0 0 . . . 0 0
GE 0 0 . . . 0 0

GAE GE 0 . . . 0 0
...

...
...

...
...

GAN−2E GAN−3E GAN−4E . . . GE 0

G̃AN−1E G̃AN−2E G̃AN−3E . . . G̃AE G̃E












d

(B.81d)

u =












bu

bu

bu

...
bu

b̃u












−












G
GA
GA2

...
GAN−1

G̃AN












x0

−












0 0 0 . . . 0 0
GE 0 0 . . . 0 0

GAE GE 0 . . . 0 0
...

...
...

...
...

GAN−2E GAN−3E GAN−4E . . . GE 0

G̃AN−1E G̃AN−2E G̃AN−3E . . . G̃AE G̃E












d

(B.81e)

πmin =








umin

umin

...
umin








πmax =








umax

umax

...
umax








(B.81f)

Proof. Follows directly from the preceding results. ¤

Corollary B.3.10
The coefficient vector for the linear term in the objective function of (B.1) for the
model predictive controller with exogenous inputs is

q = Qx0x0 + Qdd +

N−1∑

k=0

I ′
krk +

N−1∑

k=1

Γ′
kqk + Γ′

Np (B.82)
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in which

Qx0 =

N−1∑

k=0

I ′
kM ′Ak +

N−1∑

k=1

Γ′
kQAk + Γ′

NPAN (B.83a)

Qd =

N−1∑

k=1

(Γ′
kQ + I ′

kM ′)Γd
k + Γ′

NPΓd
N (B.83b)

Proof. Follows by inspection of equation (B.81b). ¤

B.4 MPC with Time Variant Linear Models

Linear time variant models arise as subproblems in solution of nonlinear optimal
control problems as well an in the control of batch and fed-batch processes.
The linear time variant MPC quadratic program is defined in the following
proposition.

Definition B.4.1 (Linear Time-Variant MPC Quadratic Program)
The quadratic program defining the model predictive controller with a linear time
variant model and exogenous inputs is

min
{xk+1,uk}N−1

k=0

φ =
1

2

N−1∑

k=0

{
x′

kQkxk + 2x′
kMkuk+ u′

kRkuk + 2q′kxk + 2r′kuk

}
(B.84a)

+
1

2
x′

NPxN + p′xN (B.84b)

s.t. xk+1 = Akxk + Bkuk + bk k = 0, 1, . . . , N − 1 (B.84c)

umin ≤ uk ≤ umax k = 0, 1, . . . , N − 1 (B.84d)

bl,k ≤ Gkxk + Hkuk ≤ bu,k k = 0, 1, . . . , N − 1 (B.84e)

b̃l ≤ G̃xN ≤ b̃u (B.84f)

in which the data is x0, {qk}N−1
k=0 , {rk}N−1

k=0 , p, {Qk, Mk, Rk}N−1
k=0 , P , {Ak, Bk}N−1

k=0 ,

{Gk, Hk, bl,k, bu,k}N−1
k=0 , G̃, b̃l, b̃u, umin, and umax.

The solution is both the control sequence {u∗
k}N−1

k=0 and the state sequence {xk}N

k=1.
The corresponding optimal value of the objective function is denoted φ∗.

To facilitate expressing the quadratic program for the time variant linear model
predictive controller with exogenous inputs as a standard quadratic program,
we must introduce some basic concepts from linear systems theory (c.f. Rugh,
1996).

Definition B.4.2 (State Transition Matrix)
The state transition matrix for the linear time variant system xk+1 = Akxk+Bkuk+bk

is defined in terms of the matrix sequence {Ak}∞k=0 as

Φ(k, j) =

{

Ak−1Ak−2 . . . Aj k > j

I k = j
(B.85)



308 Dense MPC Quadratic Program

Remark B.4.3
For notational convenience we adopt the notation Φk,j = Φ(k, j).

Remark B.4.4
The state space transition matrix stems from the time variant system xk+1 = Akxk

as xk = Ak−1Ak−2 . . . Ajxj = Φk,jxj . This notational effective way of representing
the transition from xj to xk is the primary reason for introducing the state transition
matrix.

For the subsequent derivations relating the states xk to the initial state x0,

the input sequence {uk}N−1
k=0 , and the exogenous input sequence {bk}N−1

k=0 , the
following lemma is needed

Lemma B.4.5

Φ(k + 1, j) = AkΦ(k, j) k ≥ j (B.86)

Proof.

k > j : AkΦ(k, j) = Ak(Ak−1Ak−2 . . . Aj)

= AkAk−1Ak−2 . . . Aj = Φ(k + 1, j)
(B.87)

k = j : AkΦ(k, j) = AkI = Ak = Φ(k + 1, k) = Φ(k + 1, j) (B.88)

¤

Definition B.4.6 (Linear Time Variant Input-to-State Transition Matrix)
The input-to-state transition matrix for a linear time variant system xk+1 = Akxk +
Bkuk + bk is

Γ =












Γ1

Γ2

Γ3

...
ΓN − 1

ΓN












=












Φ1,1B0 0 0 . . . 0 0
Φ2,1B0 Φ2,2B1 0 . . . 0 0
Φ3,1B0 Φ3,2B1 Φ3,3B2 . . . 0 0

...
...

...
...

...
ΦN−1,1B0 ΦN−1,2B1 ΦN−1,3B2 . . . ΦN−1,N−1BN−2 0
ΦN,1B0 ΦN,2B1 ΦN,3B2 . . . ΦN,N−1BN−2 ΦN,NBN−1












(B.89)

Remark B.4.7
The kth block-row of the input-to-state matrix is

Γk =
(
Φk,1B0 Φk,2B1 Φk,3B2 . . . Φk,k−1Bk−2 Φk,kBk−1 0 . . . 0

)

(B.90)
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This matrix is important in eliminating the states xk from the quadratic program
describing the model predictive controller for the time variant model with exogenous
inputs.

In the actual computation of the input-to-state transition matrix each block column
may be computed recursively. However all columns need to be computed due to the
time variant property of the system.

Definition B.4.8 (Exogenous Input Vector)
The exogenous input-vector is

b =












b0

b1

b2

...
bN−2

bN−1












(B.91)

Definition B.4.9 (Exogenous-Input-to-State Transition Matrix)
The exogenous-input-to-state matrix Γb of the system xk+1 = Akxk + Bkuk + bk is

Γb =












Γb
1

Γb
2

Γb
3

...

Γb
N−1

Γb
N












=












Φ1,1 0 0 . . . 0 0
Φ2,1 Φ2,2 0 . . . 0 0
Φ3,1 Φ3,2 Φ3,3 . . . 0 0

...
...

...
...

...
ΦN−1,1 ΦN−1,2 ΦN−1,3 . . . ΦN−1,N−1 0
ΦN,1 ΦN,2 ΦN,3 . . . ΦN,N−1 ΦN,N












(B.92)

Remark B.4.10
The kth block row of the exogenous-input-to-state transition matrix is

Γb
k =

(
Φk,1 Φk,2 Φk,3 . . . Φk,k−1 Φk,k 0 . . . 0

)
(B.93)

This matrix is important in eliminating the states xk from the quadratic program de-
scribing the model predictive controller with linear time variant model and exogenous
inputs.

In the actual computation of the exogenous-input-to-state transition matrix each
block-column may be computed recursively. But unlike the time invariant case, all
columns need to be computed due to the time variant property of the model.

Lemma B.4.11 (Expression for the State Dynamics)
The state dynamics xk+1 = Akxk + Bkuk + bk for k = 0, 1, . . . , N − 1 implies that
the states xk (k = 1, 2, . . . , N) of the system may be expressed in terms of the initial
state x0, the control sequence {uk}N−1

k=0 , and the exogenous input sequence {bk}N−1
k=0

according to

xk = Φk,0x0 +

k−1∑

j=0

Φk,j+1Bjuj +

k−1∑

j=0

Φk,j+1bj (B.94)

In using π and b instead of {uk}N−1
k=0 and {bk}N−1

k=0 , respectively, the states may be
expressed as

xk = Φk,0x0 + Γkπ + Γb
kb (B.95)
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Proof. The first part of the proof concerns establishing that the state dy-
namics xk+1 = Akxk + Bkuk + bk implies xk = Φk,0x0 +

∑k−1
j=0 Φk,j+1Bjuj +

∑k−1
j=0 Φk,j+1bj . The proof is by recursion. Note that the statement

P (k) : xk = Φk,0x0 +

k−1∑

j=0

Φk,j+1Bjuj +

k−1∑

j=0

Φk,j+1bj (B.96)

is true for k = 1, i.e.

P (k = 1) : x1 = A0x0 + B0u0 + b0 (B.97)

= Φ1,0x0 + Φ1,1B0u0 + Φ1,1b0 (B.98)

= Φ1,0x0 +

1−1∑

j=0

Φ1,j+1Bjuj +

1−1∑

j=0

Φ1,j+1bj (B.99)

Next assume that the statement P (k) is true. We want to show that this
implies that P (k + 1) is also true. For convenience let l = k + 1. The system
dynamics xk+1 = Akxk + Bkuk + bk and P (k) implies

xl = xk+1 = Akxk + Bkuk + bk

= Ak

(

Φk,0x0 +

k−1∑

j=0

Φk,j+1Bjuj +

k−1∑

j=0

Φk,j+1bj

)

+ Φk+1,k+1Bkuk + Φk+1,k+1bk

= Φk+1,0x0 +

k−1∑

j=0

Φk+1,j+1Bjuj + Φk+1,k+1Bkuk +

k−1∑

j=0

Φk+1,j+1bj + Φk+1,k+1bk

= Φl,0x0 +

l−1∑

j=0

Φl,j+1Bjuj +

l−1∑

j=0

Φl,j+1bj

(B.100)

As P (1) is true and P (k) =⇒ P (k + 1), P (k) is true for all k ∈ {1, 2, . . .}. If

we adopt the convention
∑k

j (·) = 0 whenever k < j then P (0) is also true.

The next part of the proof concerns establishing that xk = Φk,0x0+Γkπ+Γb
kb is

identical with the expression xk = Φk,0x0+
∑k−1

j=0 Φk,j+1Bjuj +
∑k−1

j=0 Φk,j+1bj .
The proof is accomplished by reformulation of the last two sums. The first sum
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is

k−1∑

j=0

Φk,j+1Bjuj =

(
Φk,1B0 Φk,2B1 Φk,3B2 . . . Φk,k−1Bk−2 Φk,kBk−1 0 . . . 0

)


















u0

u1

u2

. . .
uk−2

uk−1

uk

...
uN−1


















= Γkπ

(B.101)

and the second sum is

k−1∑

j=0

Φk,j+1bj =
(
Φk,1 Φk,2 Φk,3 . . . Φk,k−1 Φk,k 0 . . . 0

)



















b0

b1

b2

...
bk−2

bk−1

bk

...
bN−1



















= Γb
kb

(B.102)

Hence, we have the expression

xk = Φk,0x0 +

k−1∑

j=0

Φk,j+1Bjuj +

k−1∑

j=0

Φk,j+1bj

= Φk,0x0 + Γkπ + Γb
kb

(B.103)

¤

Lemma B.4.12 (General Constraints)
The general constraints in the time variant linear model predictive controller

bl,k ≤ Gkxk + Hkuk ≤ bu,k (B.104a)

b̃l ≤ G̃xk ≤ b̃u (B.104b)
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modulo the system dynamics xk+1 = Akxk + Bkuk + bk may be expressed in terms
of x0, π, and b by the equations

bl,0 − G0x0 ≤ H0I0π ≤ bu,0 − G0x0 (B.105a)

bl,k − GkΦk,0x0 − GkΓb
kb ≤ (GkΓk + HkIk)π ≤ bu,k − GkΦk,0x0 − GkΓb

kb (B.105b)

b̃l − G̃ΦN,0x0 − G̃Γb
Nb ≤ G̃ΓNπ ≤ b̃u − G̃ΦN,0x0 − G̃Γb

Nb (B.105c)

Proof. The results are obtained by substitution of the expressions xk =
Φk,0x0 + Γkπ + Γb

kb and uk = Ikπ for xk and uk in the general constraints.
Subsequent rearrangement of terms leads to the desired result. ¤

Lemma B.4.13 (Objective Function)
The objective function of the time variant linear model predictive controller with
exogenous inputs

φ =
1

2

(
N−1∑

k=0

x′
kQkxk + 2x′

kMkuk + u′
kRkuk + 2q′kxk + 2r′kuk

)

+
1

2
x′

NPxN + p′xN

(B.106)
modulo the system dynamics xk+1 = Akxk + Bkuk + bk may be expressed as

φ = ρ + q′π +
1

2
π′Qπ (B.107)

in which the coefficients are

ρ ← 1

2
x′

0Q0x0 + q′0x0

+
1

2

(
N−1∑

k=1

(Φk,0x0 + Γb
kb)′Qk(Φk,0x0 + Γb

kb) + 2q′k(Φk,0x0 + Γb
kb)

)

+
1

2
(ΦN,0x0 + Γb

Nb)′P (ΦN,0x0 + Γb
Nb) + p′(ΦN,0x0 + Γb

Nb)

(B.108)

q ←
(

N−1∑

k=0

I ′
kM ′

kΦk,0 +

N−1∑

k=1

Γ′
kQkΦk,0 + Γ′

NPΦN,0

)

x0

+

(
N−1∑

k=1

Γ′
kQkΓb

k + I ′
kM ′

kΓb
k + Γ′

NPΓb
N

)

b

+

N−1∑

k=0

I ′
krk +

N−1∑

k=1

Γ′
kqk + Γ′

Np

(B.109)

Q ←
N−1∑

k=0

I ′
kRkIk +

N−1∑

k=1

Γ′
kMkIk + I ′

kM ′
kΓk + Γ′

kQkΓk + Γ′
NPΓN (B.110)

Proof. The objective function of the model predictive controller based on a
time variant linear model with exogenous inputs is

φ =
1

2

(
N−1∑

k=0

x′
kQkxk + 2x′

kMkuk + u′
kRkuk + 2q′kxk + 2r′kuk

)

+
1

2
x′

NPxN + p′xN

(B.111)



B.4. MPC with Time Variant Linear Models 313

The dynamic equation xk+1 = Akxk + Bkuk + bk means that the states may
be expressed in terms of x0, π, and b:

xk = Φk,0x0 + Γkπ + Γb
kb k = 1, 2, . . . , N (B.112)

The inputs uk are related to π by

uk = Ikπ k = 0, 1, . . . , N − 1 (B.113)

Next we express each term in the objective function in terms of x0, π, and b.
The quadratic term x′

kQkxk for k = 1, 2, . . . , N becomes

x′
kQkxk = (Φk,0x0 + Γkπ + Γb

kb)′Qk(Φk,0x0 + Γkπ + Γb
kb)

= (Φk,0x0 + Γb
kb)′Qk(Φk,0x0 + Γb

kb)

+ 2(Φk,0x0 + Γb
kb)′QkΓkπ + π′Γ′

kQkΓkπ

(B.114)

The mixed term in xk and uk, x′
kMkuk, may be expressed as

x′
kMkuk = (Φk,0x0 + Γkπ + Γb

kb)′MkIkπ

= (Φk,0x0 + Γb
kb)′MkIkπ + π′Γ′

kMkIkπ

= (Φk,0x0 + Γb
kb)′MkIkπ +

1

2
π′(Γ′

kMkIk + I ′kM ′
kΓk)π

(B.115)

The quadratic term u′
kRkuk is in terms of π

u′
kRkuk = π′I ′kRkIkπ (B.116)

The linear term q′kxk becomes

q′kxk = q′k(Φk,0x0 + Γkπ + Γb
kb)

= q′k(Φk,0x0 + Γb
kb) + q′kΓkπ

(B.117)

The linear term r′kuk is

r′kuk = r′kIkπ (B.118)

The quadratic cost-to-go term x′
NPxN becomes

x′
NPxN = (ΦN,0x0 + ΓNπ + Γb

Nb)′P (ΦN,0x0 + ΓNπ + Γb
Nb)

= (ΦN,0x0 + Γb
Nb)′P (ΦN,0x0 + Γb

Nb)

+ 2(ΦN,0x0 + Γb
Nb)PΓNπ + π′Γ′

NPΓNπ

(B.119)

The linear cost-to-go term p′xN is

p′xN = p′(ΦN,0x0 + ΓNπ + Γb
Nb)

= p′(ΦN,0x0 + Γb
Nb) + p′ΓNπ

(B.120)
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Upon substitution of the above expressions in the objective function it becomes

φ =
1

2
x
′
0Q0x0 + x

′
0M0u0 +

1

2
u
′
0R0u0 + q

′
0x0 + r

′
0u0

+
1

2

N−1∑

k=1

x
′
kQkxk + 2x

′
kMkuk + u

′
kRkuk + 2q

′
kxk + 2rkuk

+
1

2
x
′
N PxN + p

′
xN

=
1

2
x
′
0Q0x0 + x

′
0M0I0π +

1

2
π
′
I
′
0R0I0π + q

′
0x0 + r

′
0I0π

+
1

2

N−1∑

k=1

(Φk,0x0 + Γ
b
kb)

′
Qk(Φk,0x0 + Γ

b
kb) + 2(Φk,0x0 + Γ

b
kb)

′
QkΓkπ + π

′
Γ
′
kQkΓkπ

︸ ︷︷ ︸

=x′
k

Qkxk

+

N−1∑

k=1

(Φk,0x0 + Γ
b
kb)

′
MkIkπ +

1

2
π
′
(Γ

′
kMkIk + I

′
kM

′
kΓk)π

︸ ︷︷ ︸

=x′
k

Mkuk

+
1

2

N−1∑

k=1

π
′
Γ
′
kRkΓkπ

︸ ︷︷ ︸

=u′
k

Rkuk

+

N−1∑

k=1

q
′
k(Φk,0x0 + Γ

b
kb)

′
+ q

′
kΓkπ

︸ ︷︷ ︸

=q′
k

xk

+

N−1∑

k=1

r
′
kIkπ

︸ ︷︷ ︸

=r′
k

uk

+
1

2

(

(ΦN,0x0 + Γ
b
N b)

′
P (ΦN,0x0 + Γ

b
N b) + 2(ΦN,0x0 + Γ

b
N b)

′
PΓN π + π

′
Γ
′
N PΓN π

)

︸ ︷︷ ︸

=x′
N

P xN

+ p
′
(ΦN,0x0 + Γ

b
N b) + p

′
ΓN π

︸ ︷︷ ︸

=p′xN

(B.121)

which by collection and rearrangement yields

φ =

{
1

2
x
′
0Q0x0 + q

′
0x0

+
1

2

N−1∑

k=1

(Φk,0x0 + Γ
b
kb)

′
Qk(Φk,0x0 + Γ

b
kb) + 2q

′
k(Φk,0x0 + Γ

b
kb)

+
1

2
(ΦN,0x0 + Γ

b
N b)

′
P (ΦN,0x0 + Γ

b
N b) + p

′
(ΦN,0x0 + Γ

b
N b)

}

+

{(
N−1∑

k=0

I
′
kM

′
kΦk,0 +

N−1∑

k=1

Γ
′
kQkΦk,0 + Γ

′
N PΦN,0

)

x0

+

(
N−1∑

k=1

Γ
′
kQkΓ

b
k + I

′
kM

′
kΓ

b
k + Γ

′
N PΓ

b
N

)

b +

N−1∑

k=0

I
′
krk +

N−1∑

k=1

Γ
′
kqk + Γ

′
N p

} ′

π

+
1

2
π
′

{
N−1∑

k=0

I
′
kRkIk +

N−1∑

k=1

Γ
′
kMkIk + I

′
kM

′
kΓk + Γ

′
kQkΓk + Γ

′
N PΓN

}

π

= ρ + q
′
π +

1

2
π
′
Qπ

(B.122)
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By inspection in this expression, the coefficients are

ρ ← 1

2
x′

0Q0x0 + q′0x0

+
1

2

(
N−1∑

k=1

(Φk,0x0 + Γb
kb)′Qk(Φk,0x0 + Γb

kb) + 2q′k(Φk,0x0 + Γb
kb)

)

+
1

2
(ΦN,0x0 + Γb

Nb)′P (ΦN,0x0 + Γb
Nb) + p′(ΦN,0x0 + Γb

Nb)

(B.123)

q ←
(

N−1∑

k=0

I ′kM ′
kΦk,0 +

N−1∑

k=1

Γ′
kQkΦk,0 + Γ′

NPΦN,0

)

x0

+

(
N−1∑

k=1

Γ′
kQkΓb

k + I ′kM ′
kΓb

k + Γ′
NPΓb

N

)

b

+
N−1∑

k=0

I ′krk +
N−1∑

k=1

Γ′
kqk + Γ′

Np

(B.124)

Q ←
N−1∑

k=0

I ′kRkIk +
N−1∑

k=1

Γ′
kMkIk + I ′kM ′

kΓk + Γ′
kQkΓk + Γ′

NPΓN (B.125)

¤

The coefficient vector for the linear term may be arranged differently. This is
the content of the next corollary.

Corollary B.4.14
The coefficient to the linear term in the objective function is

q = Qx0x0 + Qbb +

N−1∑

k=0

I ′
krk +

N−1∑

k=1

Γ′
kqk + Γ′

Np (B.126)

in which

Qx0 =

N−1∑

k=0

I ′
kM ′

kΦk,0 +

N−1∑

k=1

Γ′
kQkΦk,0 + Γ′

NPΦN,0 (B.127)

Qb =

N−1∑

k=1

Γ′
kQkΓb

k + I ′
kM ′

kΓb
k + Γ′

NPΓb
N (B.128)
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Proof. The result follows directly by inspection in the expression

q =

(
N−1∑

k=0

I ′kM ′
kΦk,0 +

N−1∑

k=1

Γ′
kQkΦk,0 + Γ′

NPΦN,0

)

x0

+

(
N−1∑

k=1

Γ′
kQkΓb

k + I ′kM ′
kΓb

k + Γ′
NPΓb

N

)

b

+

N−1∑

k=0

I ′krk +

N−1∑

k=1

Γ′
kqk + Γ′

Np

(B.129)

¤

The term independent of π in the objective function is addressed in the next
corollary. It concerns the computation of ρ given x0 and b.

Corollary B.4.15
The constant term, ρ, in the objective function may be expressed as

ρ =
1

2
x′

0Wx0 + w′x0 + x′
0Sb +

1

2
b′V b + v′b (B.130)

in which the matrices are

W =

N−1∑

k=0

Φ′
k,0QkΦk,0 + Φ′

N,0PΦN,0 (B.131)

S =

N−1∑

k=1

Φ′
k,0QkΓb

k + Φ′
N,0PΓb

N (B.132)

V =

N−1∑

k=1

(Γb
k)′QkΓb

k + (Γb
N )′PΓb

N (B.133)

(B.134)

and the vectors are

w =

N−1∑

k=0

Φ′
k,0qk + Φ′

N,0p (B.135)

v =

N−1∑

k=1

(Γb
k)′qk + (Γb

N )′p (B.136)

Proof. The zeroth order term is

ρ =
1

2
x′

0Q0x0 + q′0x0

+
1

2

{
N−1∑

k=1

(Φk,0x0 + Γb
kb)′Qk(Φk,0x0 + Γb

kb) + 2q′k(Φk,0x0 + Γb
kb)

}

+
1

2
(ΦN,0x0 + Γb

Nb)P (ΦN,0x0 + Γb
Nb) + p′(ΦN,0x0 + Γb

Nb)

(B.137)
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Each individual term in this expression is expanded to subsequently collect
quadratic and linear terms in x0, quadratic and linear terms in b as well as
cross terms in x0 and b.

(Φk,0x0 + Γb
kb)′Qk(Φk,0x0 + Γb

kb) =

x′
0Φ

′
k,0QkΦk,0x0 + 2x′

0Φ
′
k,0QkΓb

kb + b′(Γb
k)′QkΓb

kb
(B.138)

q′k(Φk,0x0 + Γb
kb) = q′kΦk,0x0 + q′kΓb

kb (B.139)

(ΦN,0x0 + Γb
Nb)′P (ΦN,0x0 + Γb

Nb) =

x′
0Φ

′
N,0PΦN,0x0 + 2x′

0Φ
′
N,0PΓb

Nb + b′(Γb
N )′PΓb

Nb
(B.140)

p′(ΦN,0x0 + Γb
Nb) = p′ΦN,0x0 + p′Γb

Nb (B.141)
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ρ =
1

2
x′

0Q0x0 + q′0x0

+
1

2

{
N−1∑

k=1

(Φk,0x0 + Γb
kb)′Qk(Φk,0x0 + Γb

kb) + 2q′k(Φk,0x0 + Γb
kb)

}

+
1

2
(ΦN,0x0 + Γb

Nb)P (ΦN,0x0 + Γb
Nb) + p′(ΦN,0x0 + Γb

Nb)

=
1

2
x′

0Q0x0 + q′0x0

+
1

2

N−1∑

k=1

x′
0Φ

′
k,0QkΦk,0x0 + 2x′

0Φ
′
k,0QkΓb

kb + b′(Γb
k)′QkΓb

kb
︸ ︷︷ ︸

=(Φk,0x0+Γb
k
b)′Qk(Φk,0x0+Γb

k
b)

+

N−1∑

k=1

q′kΦk,0x0 + q′kΓb
kb

︸ ︷︷ ︸

=q′
k
(Φk,0x0+Γb

k
b)

+
1

2

(
x′

0Φ
′
N,0PΦN,0x02x′

0Φ
′
N,0PΓb

Nb + b′(Γb
N )′PΓb

Nb
)

︸ ︷︷ ︸

=(ΦN,0x0+Γb
N

b)′P (ΦN,0x0+Γb
N

b)

+ p′ΦN,0x0 + p′Γb
Nb

︸ ︷︷ ︸

=p′(ΦN,0x0+Γb
N

b)

=
1

2
x′

0

{

Q0 +
N−1∑

k=1

Φ′
k,0QkΦk,0 + Φ′

N,0PΦN,0

}

︸ ︷︷ ︸

=W

x0

+

{

q′0 +

N−1∑

k=1

q′kΦk,0 + p′ΦN,0

}

︸ ︷︷ ︸

=w′

x0

+ x′
0

{
N−1∑

k=1

Φ′
k,0QkΓb

k + Φ′
N,0PΓb

N

}

︸ ︷︷ ︸

=S

b

+
1

2
b′

{
N−1∑

k=1

(Γb
k)′QkΓb

k + (Γb
N )′PΓb

N

}

︸ ︷︷ ︸

=V

b +

{
N−1∑

k=1

q′kΓb
k + p′Γb

N

}

︸ ︷︷ ︸

=v′

b

=
1

2
x′

0Wx0 + w′x0 + x0Sb +
1

2
b′V b + v′b

(B.142)
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in which the quadratic weight matrices are

W = Q0 +

N−1∑

k=1

Φ′
k,0QkΦk,0 + Φ′

N,0PΦN,0 (B.143)

S =
N−1∑

k=1

Φ′
k,0QkΓb

k + Φ′
N,0PΓb

N (B.144)

V =
N−1∑

k=1

(Γb
k)′QkΓb

k + (Γb
N )′PΓb

N (B.145)

and

w =

N−1∑

k=0

Φ′
k,0qk + Φ′

N,0p (B.146)

v =

N−1∑

k=1

(Γb
k)′qk + (Γb

N )′p (B.147)

¤

The computation of the data matrices in the dense quadratic program for the
linear time variant model predictive control quadratic program is summarized
in the following proposition.

Proposition B.4.16 (Standard QP Matrices for LTV MPC QP)
The data in the standard quadratic program (B.1) for the linear time variant MPC
quadratic program (B.84) are

Q ←
N−1∑

k=0

I ′
kRkIk +

N−1∑

k=1

Γ′
kMkIk + I ′

kM ′
kΓk + Γ′

kQkΓk + Γ′
NPΓN (B.148)

q ← Qx0x0 + Qbb +

N−1∑

k=0

I ′
krk +

N−1∑

k=1

Γ′
kqk + Γ′

Np (B.149a)

Qx0 ←
N−1∑

k=0

I ′
kM ′

kΦk,0 +

N−1∑

k=1

Γ′
kQkΦk,0 + Γ′

NPΦN,0 (B.149b)

Qb ←
N−1∑

k=1

Γ′
kQkΓb

k + I ′
kM ′

kΓb
k + Γ′

NPΓb
N (B.149c)

A ←

















H0 0 . . . 0 0
G1Φ1,1B0 H1 . . . 0 0

G2Φ2,1B0 G2Φ2,2B1 . . . 0 0

.

.

.

.

.

.

.

.

.

.

.

.
GN−2ΦN−2,1B0 GN−2ΦN−2,2B1 . . . HN−2 0

GN−1ΦN−1,1B0 GN−1ΦN−1,2B1 . . . GN−1ΦN−1,N−1BN−2 HN−1
G̃ΦN,1B0 G̃ΦN,2B1 . . . G̃ΦN,N−1BN−2 G̃ΦN,N BN−1

















(B.150)

l ← bl0 − Fx0x0 − Fbb u ← bu0 − Fx0x0 − Fbb (B.151)
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Fx0 ←














G0

G1Φ1,0

G2Φ2,0

...
GN−2ΦN−2,0

GN−1ΦN−1,0

G̃ΦN,0














bl0 ←














bl,0

bl,1

bl,2

...
bl,N−2

bl,N−1

b̃l














bu0 ←














bu,0

bu,1

bu,2

...
bu,N−2

bu,N−1

b̃u














(B.152)

Fb ←














0 0 . . . 0 0
G1Φ1,1 0 . . . 0 0
G2Φ2,1 G2Φ2,2 . . . 0 0

...
...

...
...

GN−2ΦN−2,1 GN−2ΦN−2,2 . . . 0 0
GN−1ΦN−1,1 GN−1ΦN−1,2 . . . GN−1ΦN−1,N−1 0

G̃ΦN,1 G̃ΦN,2 . . . G̃ΦN,N−1 G̃ΦN,N














(B.153)

πmin ←








umin

umin

...
umin








πmax ←








umax

umax

...
umax








(B.154)

Γk, Γb
k and Φk,j are defined by (B.90), (B.93), and (B.85), respectively.

Proof. Follows directly from the preceding results. ¤



C

Maximal Output

Admissible Set

In a seminal paper Gilbert and Tan (1991) defined the concept of maximum
output admissible sets of linear systems and gave algorithms for its computa-
tion. This chapter will repeat those results in a setting that is relevant for linear
model predictive control. In particular we will restrict ourselves to polytopic
output constraints, i.e. output sets Y with linear inequality constraints only
Y = {y ∈ R

p| ymin ≤ y ≤ ymax}. From a computational perspective this sim-
plification is important as it implies that the maximum output admissible set
can be found by solving a sequence of linear programs. Furthermore for linear
model predictive control this is the form of the constraints. So this assumption
does not restrict the application.

C.1 Motivation for Maximal Output Admissi-

ble Sets

The output admissibility concept arises for systems with output constraints.
Consider the linear system

xk+1 = Axk (C.1)

yk = Cxk (C.2)

with the output constraints

yk ∈ Y (C.3)

In general not all initial states x0 will satisfy the output constraints at all
times. Even initial states x0 that satisfy the output constraint at time k = 0
may at some subsequent time fail to satisfy the output constraints. An initial
state x0 that does satisfy the output constraints at present (time k=0) and
all subsequent times is said to be output admissible of the system. Any set of
output admissible points is said to be positively invariant (c.f. Blanchini, 1999).
The set of all output admissible states is called the maximum output admissible
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set. The maximum output admissible set is thus the largest positively invariant
set of the system.

The relevance of this problem stems from linear control with constraints on the
inputs and/or the outputs. Consider the linear system

xk+1 = Axk + Buk (C.4)

controlled by a linear controller

uk = Kxk (C.5)

with constraints on the actuator and possible also on the output. The con-
straints may be modelled by the inclusion

Cxk + Duk ∈ Y (C.6)

Actuator constraints arise due to limits on the actuator range, while state con-
straints arise because of product specifications and limitations on the desired
operating regime. For this problem the maximal output admissible set charac-
terizes the initial states x0 for which these actuator limits and state constraints
are observed.

This problem may be cast into the standard form by the assignments A ←
A + BK and C ← C + DK. In linear model predictive control knowledge
of the maximal output admissible set enables a finite parametrization of an
infinite number of constraints.

C.2 Definitions and Basic Properties

Let I denote the set of non-negative integers, i.e. I = {0}∪N, and let B(x0, r) =
{x ∈ R

n| ‖x − x0‖ < r} denote the open ball with center in x0 and radius r.
Let S ⊂ R

n and P ∈ R
m×n then PS = {z ∈ R

m| z = Px, x ∈ S}.
The tripple (A,C, Y) denotes the system

xk+1 = Axk (C.7)

yk = Cxk (C.8)

with the output constraints

yk ∈ Y k ∈ I (C.9)

The output constraints considered are assumed to be polyhedral

Y = {y ∈ R
p| ymin ≤ y ≤ ymax} (C.10)

Definition C.2.1 (State Constraint Set)
The state constraint set associated with C and Y is

X(C, Y) = {x ∈ R
n|Cx ∈ Y} (C.11)



C.2. Definitions and Basic Properties 323

Definition C.2.2 (Output Admissible Point)
A point x0 ∈ R

n is an output admissible point of the system

xk+1 = Axk (C.12)

yk = Cxk (C.13)

with respect to the output constraints Y if

yk ∈ Y ∀k ∈ I (C.14)

Corollary C.2.3
A point x0 ∈ R

n is output admissible of the system (A, C, Y) if and only if

CAkx0 ∈ Y ∀k ∈ I (C.15)

Proof. The output of the system (A,C, Y) is by simple algebra expressed in
terms of the initial state as xk = Akx0 which gives yk = Cxk = CAkx0 ∈ Y.

¤

Definition C.2.4 (Maximal Output Admissible Set)
The maximal output admissible set is the set of all output admissible points

O∞(A, C, Y) =
{

x ∈ R
n|CAkx ∈ Y k ∈ I

}

(C.16)

Definition C.2.5 (A-Invariant Set)
A set S ⊂ R

n is A-invariant if x ∈ S ⇒ Ax ∈ S (i.e. AS ⊂ S).

Definition C.2.6 (Positively Invariant Set)
A set S ⊂ R

n is positively invariant with respect to the system xk+1 = Axk if
x0 ∈ S ⇒ xk ∈ S∀k ∈ I.

As the next lemma states, positive invariance of a set with respect to a linear
discrete-time system is equivalent to A-invariance. This is a special result
applying to linear discrete-time systems only. It does not carry over to linear
continuous-time systems and obviously not to nonlinear systems.

Lemma C.2.7
A set S ⊂ R

n is positively invariant with respect to xk+1 = Axk if and only if it is
A-invariant.

Proof. Assume that S is positively invariant. Then for x0 ∈ S : x1 = Ax0 ∈ S

which means that S is A-invariant. Conversely, assume that S is A-invariant,
then xk ∈ S ⇒ xk+1 = Axk ∈ S. By induction x0 ∈ S ⇒ xk = Akx0 ∈ S∀k ∈ I

which means that S is positively invariant. ¤

Lemma C.2.8
Assume that S is positively invariant and that S ⊂ X(C, Y). Then S ⊂ O(A, C, Y)

Proof. ∀x ∈ X(C, Y) : Cx ∈ Y and ∀x ∈ S : Akx ∈ S∀k ∈ I. Consequently
∀x ∈ S ⊂ X(C, Y) : CAkx ∈ Y∀k ∈ I which implies x ∈ S ⊂ X(C, Y) ⇒ x ∈
O∞(A,C, Y). Thus S ⊂ O(A,C, Y) ¤
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Remark C.2.9
Due to lemma C.2.8 and the fact that O∞(A, C, Y) is positively invariant by con-
struction, the maximal output admissible set is in a certain sense the largest positive
invariant set of the system (A, C, Y).

Definition C.2.10

Ot(A, C, Y) =
{

x ∈ R
n|CAkx ∈ Y k ∈ {0, 1, . . . , t}

}

(C.17)

Definition C.2.11 (Finitely Determined Output Admissible Set)
The output admissible set O∞(A, C, Y) is finitely determined if

∃t ∈ I : O∞(A, C, Y) = Ot(A, C, Y) (C.18)

Definition C.2.12 (Output Admissibility Index)
The output admissibility index of a finitely determined output admissible set is the
integer

t∗ = min {t ∈ I|O∞(A, C, Y) = Ot(A, C, Y)} (C.19)

Lemma C.2.13

O∞(A, C, Y) ⊂ Ot2(A, C, Y) ⊂ Ot1(A, C, Y) ⊂ X(C, Y) t2 ≥ t1 t1, t2 ∈ I (C.20)

Proof. The proves of all three subset relations are similar and use the set
property A = B ∩ C ⊂ B.

O∞(A,C, Y) =
{
x ∈ R

n|CAkx ∈ Y k ∈ I
}

=
{
x ∈ R

n|CAkx ∈ Y k ∈ {0, 1, . . . , t2}
}
∩

{
x ∈ R

n|CAkx ∈ Y k ∈ I ∧ k > t2
}

= Ot2(A,C, Y) ∩
{
x ∈ R

n|CAkx ∈ Y k ∈ I ∧ k > t2
}

⊂ Ot2(A,C, Y)

(C.21)

Ot2(A,C, Y) =
{
x ∈ R

n|CAkx ∈ Y k ∈ {0, 1, . . . , t2}
}

=
{
x ∈ R

n|CAkx ∈ Y k ∈ {0, 1, . . . , t1}
}
∩

{
x ∈ R

n|CAkx ∈ Y k ∈ {t1 + 1, . . . , t2}
}

= Ot1(A,C, Y) ∩
{
x ∈ R

n|CAkx ∈ Y k ∈ {t1 + 1, . . . , t2}
}

⊂ Ot1(A,C, Y)

(C.22)
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Ot1(A,C, Y) =
{
x ∈ R

n|CAkx ∈ Y k ∈ {0, 1, . . . , t1}
}

=
{
x ∈ R

n|CAkx ∈ Y k = 0
}
∩

{
x ∈ R

n|CAkx ∈ Y k ∈ {1, . . . , t1}
}

= {x ∈ R
n|Cx ∈ Y} ∩

{
x ∈ R

n|CAkx ∈ Y k ∈ {1, . . . , t1}
}

= X(C, Y) ∩
{
x ∈ R

n|CAkx ∈ Y k ∈ {1, . . . , t1}
}

⊂ X(C, Y)

(C.23)

¤

Remark C.2.14
In early literature (c.f. Bertsekas, 1972; Bertsekas and Rhodes, 1971a,b) addressing
polyhedral invariant sets, the property O∞(A, C, Y) =

⋂∞
t=0 Ot(A, C, Y) was used

to derive algorithms for its determination. This property follows immediately from
lemma C.2.13. Later literature (c.f. Gutman and Cwikel, 1986; Cwikel and Gutman,
1986; Gutman and Cwikel, 1987; Keerthi and Gilbert, 1987) has also focused on this
property.

Theorem C.2.15 (Finitely Determined Output Admissible Set)
O∞(A, C, Y) is finitely determined if and only if

∃t ∈ I : Ot+1(A, C, Y) = Ot(A, C, Y) (C.24)

Proof.

Assume that O∞(A,C, Y) is finitely determined. Then ∃t ∈ I : Ot(A,C, Y) =
O∞(A,C, Y). This and lemma C.2.13 gives O∞(A,C, Y) ⊂ Ot+1(A,C, Y) ⊂
Ot(A,C, Y) = O∞(A,C, Y) which implies ∃t ∈ I : Ot+1(A,C, Y) = Ot(A,C, Y).

Assume ∃t ∈ I : Ot+1(A,C, Y) = Ot(A,C, Y). Then Ot(A,C, Y) is A-invariant,
i.e. x ∈ Ot(A,C, Y) ⇒ Ax ∈ Ot(A,C, Y). By lemma C.2.13 Ot(A,C, Y) ⊂
X(C, Y). By lemma C.2.7 and lemma C.2.8 these properties imply that Ot(A,C, Y)
is output admissible, i.e. Ot(A,C, Y) ⊂ O∞(A,C, Y). The output admissibil-
ity and lemma C.2.13 yield O∞(A,C, Y) ⊂ Ot(A,C, Y) ⊂ O∞(A,C, Y). Thus
∃t ∈ I : Ot(A,C, Y) = O∞(A,C, Y) and the maximal output admissible set is
finitely determined. ¤

Theorem C.2.15 suggests a conceptual method for determination of the maxi-
mal output admissible set

1. t = 0

2. If Ot+1(A,C, Y) = Ot(A,C, Y) Stop: t∗ = t and O∞(A,C, Y) = Ot(A,C, Y).

3. t = t + 1. Goto 2.

The method has two shortcomings. Firstly, it does not prescribe a method to
establish whether the sets Ot+1(A,C, Y) and Ot(A,C, Y) are identical. Sec-
ondly, it does not prescribe under what conditions the algorithm will stop in
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finite time. It only says that if the maximal output admissible set is finitely
determined, the algorithm will find it.

The next theorem addresses the latter concern, and gives sufficient conditions
for finite determination of the maximal output admissible set. In order to
establish the theorem, the following two lemmas must be apprehended.

Lemma C.2.16
If (A, C) is observable and Y is bounded then O∞(A, C, Y) is bounded.

Proof. The observability of (A,C) implies that the observability matrix

O =








C
CA
...

CAn−1








∈ R
np×n

has rank n. Thus if Ox = y has a solution, the solution is unique, and given by
x = O+y, where O+ = (OTO)−1OT is the pseudo-inverse. Applying lemma
C.2.13 gives

O∞(A,C, Y) ⊂ On−1(A,C, Y)

=
{
x ∈ R

n|CAkx ∈ Y k ∈ {0, 1, . . . , n − 1}
}

= {x ∈ R
n|Ox ∈ Y

n}
= O+

Y
n

Since Y is bounded so are O+
Y

n and O∞(A,C, Y). ¤

Lemma C.2.17
If A is stable and 0 ∈ int(Y) then 0 ∈ int(O∞(A, C, Y))

Proof.

The stability of A implies

∃γ1 > 0∀x ∈ R
n ∀k ∈ I :

∥
∥CAkx

∥
∥ < γ1 ‖x‖

As 0 ∈ int(Y):
∃γ2 > 0 : B(0, γ2) ⊂ Y

From these implications, the following statement holds
∥
∥CAkx

∥
∥ < γ1 ‖x‖ < γ2 ⇒ CAkx ∈ B(0, γ2) ⊂ Y ∀k ∈ I

which is equivalent to

x ∈ B

(

0,
γ2

γ1

)

⇒ x ∈ O∞(A,C, Y)

Consequently B(0, γ2

γ1
) ⊂ O∞(A,C, Y) and 0 ∈ int(O∞(A,C, Y)) ¤
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Theorem C.2.18 (Sufficient Conditions for Finite Determination of O∞)
If

1. A is asymptotically stable

2. (A, C) is observable

3. Y is bounded

4. 0 ∈ int(Y)

then O∞(A, C, Y) is finitely determined.

Proof.

We must establish ∃k ∈ I : Ok+1(A,C, Y) = Ok(A,C, Y). Lemma C.2.13 gives
Ok+1(A,C, Y) ⊂ Ok(A,C, Y). Therefore the remaining part of the proof need
to establish Ok(A,C, Y) ⊂ Ok+1(A,C, Y) for some k ∈ I.

As (A,C) is observable and Y is bounded so is O∞(A,C, Y) according to lemma
C.2.16. This implies

∃r ∈ (0,∞) : Ok(A,C, Y) ⊂ B(0, r) ∀k ∈ {k ∈ I| k ≥ n − 1}

The asymptotic stability of A implies

∀γ > 0∃N ∈ I :
∥
∥Ak

∥
∥ < γ ∀k ≥ N (C.25)

Furthermore as 0 ∈ int(Y) and A is asymptotically stable lemma C.2.17 and
lemma C.2.13 give

∃γ > 0 : B(0, γr) ⊂ O∞(A,C, Y) ⊂ Ok(A,C, Y) (C.26)

Combining (C.25) and (C.26) gives

∃N ∈ I : B(0,
∥
∥Ak

∥
∥ r) ⊂ Ok(A,C, Y) ∀k ≥ N (C.27)

Consequently

∃N ∈ I ∀k ∈ {k ∈ I| k ≥ max(N,n − 1)} :

x ∈ Ok(A,C, Y) ⊂ B(0, r) ⇒ Ak+1x ∈ B(0,
∥
∥Ak+1

∥
∥ r) ⊂ Ok+1(A,C, Y)

(C.28)

This result implies that Ok(A,C, Y) ⊂ Ok+1(A,C, Y), which completes the
proof. ¤

Remark C.2.19
For the output sets Y considered, 0 ∈ int(Y) implies ymin < 0 < ymax.

Remark C.2.20
The k used in the proof is an upper bound for the output admissibility index, t∗.

Choose γ > 0 and 0 < r < ∞ such that B(0, γ) ⊂ Y ⊂ B(0, r). Then
∥
∥CAk+1

∥
∥ r < γ

implies that CAk+1
B(0, r) ∈ Y and t∗ ≤ k.
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In a linear model predictive control context, the requirement of asymptotic sta-
bility does not limit the application, as the A-matrix is a closed loop A-matrix
asymptotically stable by construction. Furthermore, as the next proceedings
will show the output admissible set of unstable A-matrices are readily com-
puted, leaving only potential problems with stable A-matrices, i.e. matrices
with simple eigenvalues on the unit circle. For practical linear MPC problems
they seldom present a problem, as other characteristics of the solution often
provides the necessary requirements to characterize the admissible states.

The observability requirement is serious and not met by all systems. However,
the next proceedings will show that it can be circumvented, as the output ad-
missible set of similar systems are related and the maximum output admissible
set of unobservable subsystems is easily characterized. Therefore for linear
model predictive applications it is no real restriction.

The requirement that Y is bounded is not met in all linear model predictive
control formulations. Though it is easy to meet the requirement by imposing
very large bounds on the unbounded outputs. From a practical point of view
this does not lead to performance degradation and is therefore acceptable.
From a strict mathematical point of view, the maximal output admissible set,
of the modified problem, is a subset of the maximal output admissible set of the
original problem. Therefore in the rigorous sense the set found in finite time
is only a positively invariant set of the original unbounded problem, but not
the maximal output admissible set of that problem. As the practical examples
show, this is not a serious limitation of the method.

The last requirement saying that origo must be in the interior of the output
constraints profoundly impacts the application of the theorem in a linear model
predictive control context, as it means that no constraints can be active at
steady state. Loeblein and Perkins (1999a) use the arguments of Narraway
et al. (1991) to advocate backing off from the constraints active at steady state.
Using this approach will fulfill the interior requirement. Rao and Rawlings
(1999) address the problem by considering a system projected into the null
space of the steady state active constraints. We will later demonstrate the
implications of origo being on the boundary of the output admissible set and
discuss its linear model predictive control implications.

C.3 Algorithmic Determination

Theorem C.2.15 prescribes a conceptual method of constructing the maximal
output admissible set, and theorem C.3.7 gives sufficient conditions for termi-
nation of the conceptual algorithm in finite time.

To make the procedure applicable to practical linear model predictive control
computations, we will demonstrate how to deal with the observability require-
ment and how to test whether Ot+1(A,C, Y) = Ot(A,C, Y). While not relevant
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to current linear model predictive control formulations, we will also show how
to deal with the asymptotic stability condition.

The following theorem is the fundamental result used to challenge the observ-
ability and asymptotic stability requirements.

Theorem C.3.1 (The Output Admissible Set of Similar Systems)
Let (A, C, Y) and (Ā, C̄, Y) be similar systems related by x̄ = Px where P is non-
singular and

Ā = PAP−1 (C.29)

C̄ = CP−1 (C.30)

The output admissible sets of these systems are related by

O∞(A, C, Y) = P−1
O∞(Ā, C̄, Y) (C.31)

Proof.

O∞(A,C, Y) =
{
x ∈ R

n|CAkx ∈ Y k ∈ I
}

=
{
P−1Px ∈ R

n|CP−1P (AP−1P )kx ∈ Y k ∈ I
}

=
{
P−1x̄ ∈ R

n| C̄Ākx̄ ∈ Y k ∈ I
}

= P−1
O∞(Ā, C̄, Y)

¤

Thus by theorem C.3.1 we shall feel free to study the output admissible set
construction in whatever coordinate system is most convenient. This has im-
mediate implications as any system can be decomposed into an observable and
unobservable subspace as well as decomposed into a subspace that is asymptotic
stable and one that is not.

The following theorem handles the observability requirement.

Theorem C.3.2 (The Output Admissible Set of an Observable/Unobservable System)
Consider the system

(
xo

xō

)

k+1

=

(
A11 0
A21 A22

) (
xo

xō

)

k

(C.32)

yk =
(
C1 0

)
(

xo

xō

)

k

(C.33)

where xo is output observable states, i.e. (A11, C1) is observable, xō is output unob-
servable states, dim(xo) = n1, and dim(xō) = n2.

The output admissible set of this system is

O∞(A, C, Y) = O∞(A11, C1, Y) × R
n2 (C.34)
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Proof.

The structure of the system implies

(xo)k+1 = A11(xo)k

(xō)k+1 = A21(xo)k + A22(xō)k

yk = C1(xo)k

Consequently
yk = CAkx0 = C1A

k
11(xo)0

O∞(A,C, Y) =
{
x ∈ R

n|CAkx ∈ Y k ∈ I
}

=
{
(xo, xō) ∈ R

n1×n2 |C1A
k
11xo ∈ Y k ∈ I

}

=
{
xo ∈ R

n1 |C1A
k
11xo ∈ Y k ∈ I

}
× {xō ∈ R

n2}
= O∞(A,C, Y) × R

n2

¤

In current linear model predictive control parameterizations, A is asymptoti-
cally stable as it a closed loop matrix. Consequently, assuming Y is bounded
and 0 ∈ int(Y), the maximum output admissible set may found by performing
an observability decomposition (c.f. Chen, 1999) and then applying the algo-
rithm for determination of the maximal output admissible set to the observable
subspace only. The resulting maximal output admissible set is constructed by
subsequent use of theorems C.3.2 and C.3.1.

By techniques similarly to the techniques applied in theorem C.3.2, the asymp-
totic stability requirement can be addressed.

Theorem C.3.3 (The Output Admissible Set of Unstable Modes)
Assume

1. (A, C) is observable

2. Y is bounded

3. 0 ∈ Y

and that the system (A, C) is partitioned into its stable and unstable subspace ac-
cording to

(
xs

xu

)

k+1

=

(
A11 A12

0 A22

) (
xs

xu

)

k

(C.35)

yk =
(
C1 C2

)
(

xs

xu

)

k

(C.36)

where xs denotes the states in the stable subspace and xu denotes the states in the
unstable subspace. n1 = dim(xs) and n2 = dim(xu).
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Then the maximal output admissible set is given by

O∞(A, C, Y) = O∞(A11, C1, Y) × {0}n2 (C.37)

Proof. See Gilbert and Tan (1991). ¤

Remark C.3.4
The decomposition into a stable and unstable subspace of the form (C.35)-(C.36)
may be obtained by a Schur decomposition (c.f. Golub and Van Loan, 1996). The
observability requirement can be met by only applying the Schur decomposition to
the observable subspace of the original system.

Remark C.3.5
By the form of the system A11 must be stable (in the Lyapunov sense, i.e. have
eigenvalues within the unit circle only, and the eigenvalues on the unit circle must
be simple), and A22 must have no stable modes, i.e. all eigenvalues must either be
outside the unit circle or non-simple eigenvalues on the unit circle.

In current linear model predictive parameterizations there is no need for theo-
rem C.3.3. However, the parameterization suggested by Muske and Rawlings
(1993a) has an unstable A if the model is unstable. In this parameterization,
theorem C.3.3 is employed to construct the maximum output admissible set.

The remaining question to be addressed to have a practical algorithm for con-
struction of maximal output admissible sets for polyhedral output constraints
of linear systems is the comparison of Ot+1(A,C, Y) and Ot(A,C, Y). The fol-
lowing sequence of theorems will solve this issue. However, let us emphasize
that the results hinges on the fact that Y is polyhedral, which fortunately is
the case in linear model predictive control applications.

The next theorem gives the principles for construction of the maximum output
admissible set of polyhedral output constraints.

Theorem C.3.6
Assume that A is stable and Y = {y ∈ R

p| ymin ≤ y ≤ ymax} then

1. gi : R
n 7→ R given by gi(x) = sup

{
eT

i CAkx| k ∈ I
}

is defined

2. hi : R
n 7→ R given by hi(x) = inf

{
eT

i CAkx| k ∈ I
}

is defined

3. O∞(A, C, Y) = {x ∈ R
n| (ymin)i ≤ hi(x) ∧ gi(x) ≤ (ymax)i i ∈ {1, . . . , p}}

Proof. The proves of 1. and 2. are identical and regards the existence of a
supremum and infinum respectively. The Weierstrass theorem (c.f. Luenberger,
1969) is obviously selected to address this question.

First notice that the function fi : R
p 7→ R defined by

fi(y) = eT
i y (C.38)

is continuous.
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By the stability of A

∃γ > 0∀x ∈ R
n ∀k ∈ I : ‖yk‖ =

∥
∥CAkx

∥
∥ < γ ‖x‖ (C.39)

Consequently
yk = CAkx ∈ B(0, γ ‖x‖) ⊂ B̄(0, γ ‖x‖) (C.40)

where B̄ is the closure of B. As B̄ is bounded, closed and finite dimensional it
is also compact.

As fi(y) is continuous and y belongs to a compact set B̄, gi(x) defined by

gi(x) = sup
{
eT
i CAkx| k ∈ I

}
(C.41)

exists, i.e. gi(x) < ∞ for ‖x‖ < ∞, according to Weierstrass theorem. By
similar arguments hi(x) exists.

Result 3. is a direct consequence of the definition of the maximal output
admissible set, Y, gi(x) and hi(x):

O∞(A,C, Y) =
{
x ∈ R

n| ymin ≤ CAkx ≤ ymax k ∈ I
}

=
{
x ∈ R

n| (ymin)i ≤ eT
i CAkx ≤ (ymax)i k ∈ I, i ∈ {1, . . . , p}

}

= {x ∈ R
n| (ymin)i ≤ hi(x) ∧ gi(x) ≤ (ymax)i i ∈ {1, . . . , p}}

(C.42)

¤

The principles in theorem C.3.6 is combined with theorems C.2.18 and C.2.15
to provide the principles for construction of the maximum output admissible
set in finite time.

Theorem C.3.7 (Constructive Method for Determination of O∞)
If

1. A is asymptotically stable

2. (A, C) is observable

3. Y = {y ∈ R
p| ymin ≤ y ≤ ymax} where ymin ∈ (−∞, 0) and ymax ∈ (0,∞)

then ∃t ∈ I such that

sup
x∈Ot(A,C,Y)

{eT
i CAt+1x} ≤ (ymax)i i ∈ {1, 2, . . . , p} (C.43)

inf
x∈Ot(A,C,Y)

{eT
i CAt+1x} ≥ (ymin)i i ∈ {1, 2, . . . , p} (C.44)

and the maximum output admissible set is given by

O∞(A, C, Y) =
{

x ∈ R
n| ymin ≤ CAkx ≤ ymax k ∈ {0, 1, . . . , t}

}

(C.45)

The smallest such t is the output admissibility index, t∗.
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Proof. By the assumptions and theorem C.2.15 O∞(A,C, Y) is finitely deter-
mined

∃t ∈ I : Ot(A,C, Y) = Ot+1(A,C, Y) = O∞(A,C, Y)

which implies

Ot+1(A,C, Y) =
{
x ∈ Ot(A,C, Y)| ymin ≤ CAt+1x ≤ ymax

}
= Ot(A,C, Y)

Consequently

∀x ∈ Ot(A,C, Y) : ymin ≤ CAt+1x ≤ ymax

which is identical to

sup
x∈Ot(A,C,Y)

{eT
i CAt+1x} ≤ (ymax)i i ∈ {1, 2, . . . , p} (C.46)

inf
x∈Ot(A,C,Y)

{eT
i CAt+1x} ≥ (ymin)i i ∈ {1, 2, . . . , p} (C.47)

Conversely, if ∃t ∈ I satisfying (C.46) and (C.47) then Ot(A,C, Y) ⊂ Ot+1(A,C, Y).
This combined with lemma C.2.13 implies Ot(A,C, Y) = Ot+1(A,C, Y). Thus
according to theorem C.2.15 Ot(A,C, Y) = O∞(A,C, Y).

By definition the output admissibility index t∗ is defined as the smallest t with
the above properties.

Accordingly the maximal output admissible set is

O∞(A,C, Y) = Ot(A,C, Y) =
{
x ∈ R

n| ymin ≤ CAkx ≤ ymax k ∈ {0, 1, . . . , t}
}

¤

Theorem C.3.7 gives a constructive method for generation of the maximal out-
put admissible set. The core new result in the theorem is the methodology for
comparing Ot+1(A,C, Y) and Ot(A,C, Y) when Y is polyhedral. This result is
explicitly stated in the following corollary.

Corollary C.3.8
Assume Y = {y ∈ R

p| ymin ≤ y ≤ ymax}. Then

Ot+1(A, C, Y) = Ot(A, C, Y)

if and only if

sup
x∈Ot(A,C,Y)

{eT
i CAt+1x} ≤ (ymax)i i ∈ {1, 2, . . . , p} (C.48)

inf
x∈Ot(A,C,Y)

{eT
i CAt+1x} ≥ (ymin)i i ∈ {1, 2, . . . , p} (C.49)

Proof. It follows directly by the arguments in the proof of theorem C.3.7.
¤
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C.3.1 Algorithm

The procedure for computation of the maximal output admissible set is summa-
rized in algorithm 6. This algorithm computes the output admissibility index,
t∗, by solution of a sequence of linear programs. Knowledge of the output ad-
missibility index, t∗, allows construction of the maximal output admissible set,
O∞ = O∞(A,C, ymin, ymax).

In model predictive control application ymin and ymax will be limits that de-
pends on the location of the origin. This implies that they depend on the dis-
turbances. Consequently, in all practical infinity horizon predictive controller,
the admissibility index, t∗, and the maximal output admissible set must be
computed online for each control computation by the predictive controller. In
some applications this requirement of online computation of the maximal out-
put admissible set can prohibit implementation of a rigorous infinity horizon
predictive controller.

Algorithm 6 Output Admissibility Index, t∗ = t∗(A,C, ymin, ymax)

Require: (A,C) observable. A asymptotic stable. ymin ∈ (−∞, 0) and ymax ∈
(0,∞).

1: t = 0
2: for i = 1 to p do

3: Solve

G∗
i,t+1 = max

x
eT
i CAt+1x (C.50)

s.t. ymin ≤ CAkx ≤ ymax k ∈ {0, 1, . . . , t} (C.51)

4: if G∗
i,t+1 > (ymax)i then

5: t = t + 1
6: Go to 2:
7: end if

8: Solve

H∗
i,t+1 = min

x
eT
i CAt+1x (C.52)

s.t. ymin ≤ CAkx ≤ ymax k ∈ {0, 1, . . . , t} (C.53)

9: if H∗
i,t+1 < (ymin)i then

10: t = t + 1
11: Go to 2:
12: end if

13: end for

14: t∗ = t
15: O∞(A,C, ymin, ymax) =

{
x ∈ R

n| ymin ≤ CAkx ≤ ymax k ∈ {0, 1, . . . , t∗}
}
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C.4 Examples

A number of simple two-dimensional examples are provided to illustrate the
properties and geometry of the maximal output admissible set.

C.4.1 Bounded Observable Output Constraints with Origo

in the Interior

The first examples are used to illustrate the core algorithm and some generic
geometrical features of maximal output admissible sets.

The constraint set used in the examples are

−1 ≤ x1 ≤ 1 − 1 ≤ x2 ≤ 1 − 0.5 ≤ x1 + x2 ≤ 2

which corresponds to ymin ≤ Cx ≤ ymax where

ymin =





−1
−1
−0.5



 C =





1 0
0 1
1 1



 ymax =





1
1
2





The state admissible set corresponding to these constraints is depicted in figure
C.1. As can be inferred from both the form of the constraints and the figure
the state admissible set is bounded and origo is in the interior.

Example C.4.1 (Distinct Positive Real Eigenvalues)
The matrix

A =

(
1 −0.21
1 0

)

has two real distinct eigenvalues: λ1 = 0.7 with associated eigenvector v1 =
(
0.5735 0.8192

)T

and λ2 = 0.3 with associated eigenvector v2 =
(
0.2873 0.9578

)T
. The vector field,

the eigenvectors and representative trajectories and the state admissible set is plotted
in figure C.2. By inspection it is obvious that not all states in the admissible set stay
in that set. The maximum output admissible set is illustrated in the bottom part
of figure C.2. The lines defining the maximum output admissible set is only a small
fraction of all the constraints included in the representation. The output admissibility
index is t∗ = 2.

It can be observed from the plots that the lines corresponding to the constraints tends
to be parallel with one of the eigenvectors.

Example C.4.2 (A Positive Real and a Negative Real Eigenvalue)
The matrix

A =

(
0.4 0.21
1 0

)

has a positive real eigenvalue at λ1 = 0.7 with the associated eigenvector v1 =
(
0.5735 0.8192

)T
and a negative real eigenvalue at λ2 = −0.3 with the associated

eigenvector v2 =
(
−0.2873 0.9578

)T
.
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Figure C.1. State admissible set with origo in the interior. The lines correspond to
the constraints.

The vector field, the eigenvectors of A, the state admissible set and representative
trajectories are plotted in the upper part of figure C.3. Note that the trajectories
crosses the eigenvectors. This is possible for discrete time systems with eigenvalues
with a negative real part. Therefore for this type of systems the part of the eigen-
vector lines in the state admissible set is not in general part of the maximum output
admissible set. The lower part of figure C.3 shows the maximum output admissible
set and the lines defining it. Again it is observed that only a fraction of the equations
in the constraint set will be active.

Example C.4.3 (A Common Positive Real Eigenvalue)
The matrix

A =

(
0.5 0.3
0 0.5

)

has a double real eigenvalue at λ = 0.5. The corresponding eigenvector is v =
(
1 0

)T
. The vector field, the eigenvectors, representative trajectories and the state

admissible set is illustrated in the upper part of figure C.4. It is evident from the lower
part of figure C.4 that almost the entire state admissible set is part of the maximum
output admissible set.

Example C.4.4 (Complex Conjugate Eigenvalues)
The matrix

A =

(
1 −0.74
1 0

)

has a complex eigenvalue at λ = 0.5 ± 0.7i. The vector field and representative
trajectories as well as the state admissible set is depicted in the upper part of figure
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Figure C.2. Distinct positive real eigenvalues with origo in the interior. Top: The
state admissible set, the eigenvectors of A and different trajectories. Bottom:
Lines corresponding to active constraints at different times and the maximum
output admissible set.

C.5. As the eigenvalues of the system are complex conjugate, the vector field forms
a spiral. In the bottom part of figure C.5 the lines forming the output constraints
ymin ≤ CAtx ≤ ymax are shown for different values of t. Due to the complex part
of the eigenvalues the output constraints are rotated as t increases, and due to the
stability of the eigenvalue the lines move away from zero in a Minkowski sense. The
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Figure C.3. Dynamics with a positive real and a negative real eigenvalue. Origo
is in the interior of the output constraints. Top: Vector field, eigenvectors and
representative trajectories generated by the system. The state admissible set is
also shown. Bottom: The maximum output admissible set along with the lines
generated by ymin ≤ CAtx ≤ ymax as function of t.

maximum output admissible set is indicated in the plot. In this case the active
constraints in the output admissible set is −0.5 ≤ CAtx for t ∈ {0, 1, 2, 3, 4, 5}. The
effect of the vector field on the line −0.5 = CAtx is to rotate it outwards. I.e. line 1
can be regarded as the rotation of line 0 by the vector field, line 2 can be regarded
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Figure C.4. A common positive real eigenvalue and origo in the interior of the
output constraint set. Top: Vector field, eigenvector, representative trajectories,
and the state admissible set. Bottom: The maximum output admissible set.

as the rotation of line 1 by the vector field, and so on.

The output admissibility index of this system is t∗ = 5. Note that the active con-
straints defining the maximum output admissible set is a small fraction of all con-
straints, i.e. ymin ≤ CAtx ≤ ymax for t ∈ {0, 1, 2, 3, 4, 5}.
It is important to recognize that the case with complex conjugate eigenvalues is the
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generic case for linear model predictive control. The other cases do occur, but the
case with complex conjugate eigenvalues is the most common situation.

C.4.2 Partly Unobservable Output Constraints

The next three examples are used to demonstrate the shape of the maximal
output admissible set when the outputs are not observable. The first example
is unobservable in the cartesian coordinate system, while the second example
is unobservable in a rotated cartesian basis. These two systems both have a
common positive real eigenvalue. The third example is used to demonstrate
that the results obtained do not depend on the fact that the two first systems
only have one real eigenvalue with one associated eigenvector. The last example
has two real eigenvalues and two associated eigenvectors.

Example C.4.5 (Unobservable System in a Cartesian Basis)
Let the system be

(
x1

x2

)

k+1

=

(
0.5 0
0.3 0.5

) (
x1

x2

)

k

−1 ≤
(
1 0

)
(

x1

x2

)

k

≤ 1

The second state, x2, is not observable in the output constraints. The state admissible
set is therefore of a cylinder form as indicated in figure C.6. Note that the eigenvector
is parallel to the output constraints. This is due to the fact that the system is
not observable in the output constraints, i.e. as the output constraint lines and
the eigenvector line are parallel they never intersect. In computing the maximum
output admissible set is therefore sufficient to consider the dynamics of the first
coordinate, x1, only. In this case this is trivial as the corresponding eigenvalue is real
and stable. Consequently, the output constraints move outward and the maximum
output admissible set is identical to the state admissible set. This is illustrated in
figure C.6.

The next example is essentially identical to the previous example. The only
difference is that the basis is different, i.e. the coordinate system has been
rotated.

Example C.4.6
Let the system be

(
x1

x2

)

k+1

=

(
0.35 −0.15
0.15 0.65

) (
x1

x2

)

k

−1 ≤
(
0.5 0.5

)
(

x1

x2

)

k

≤ 1

This system has an eigenvalue at λ = 0.5 with multiplicity 2. Just by inspection, it
is not obvious that this system is not observable in the output constraints. However
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Figure C.5. A system with complex conjugate eigenvalues and origo in the interior
of the output constraint set. Top: The vector field and trajectories of the system.
The state admissible set is also marked. Bottom: The output constraint lines
ymin ≤ CAtx ≤ ymax for different values of t. The maximum output admissible
set is indicated and is relative small subset of the state admissible set.

a Kalman observability decomposition reveals that it is unobservable in the direction
(
1 −1

)T
. This is also revealed in figure C.7 where the eigenvector v =

(√
2 −

√
2
)T

is parallel to the output constraints. The output constraints ymin ≤ CAT x ≤ ymax

move outwards parallel to the original constraints as t increases. The maximum
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Figure C.6. Unobservable system in the output constraint set. Top: Vector field,
eigenvector and representative trajectories. The state admissible set is a cylinder
set and indicated. Bottom: The maximum output admissible set is identical to
the state admissible set as the constraints move outward (note that the x-axis are
different scaled than in the top).

output admissible set for this system is therefore identical to the state constraint set,
which is a cylinder set as indicated in figure C.7.
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Figure C.7. Unobservable system in the output constraints. The system has a
double eigenvalue in 0.5 and therefore only one associated eigenvector. The system
is unobservable in the direction of this eigenvector which is parallel to the output
constraints.

Example C.4.7
The system

(
x1

x2

)

k+1

=

(
0.45 −0.25
0.05 0.75

) (
x1

x2

)

k

−1 ≤
(
0.5 0.5

)
(

x1

x2

)

k

≤ 1

has eigenvalues at λ1 = 0.5 and λ2 = 0.7 with corresponding eigenvectors v1 =
(
−0.9806 0.1961

)T
and v2 =

(√
2 −

√
2
)T

. Furthermore a Kalman observability
decomposition reveals that the system is not observable in the output constraints

along the direction
(
1 −1

)T
. As is illustrated in figure C.8 one of the eigenvectors

is parallel with the output constraints. The corresponding mode of the system is
therefore not observable.

C.4.3 Origo on the Boundary of The Constraint Set

The next examples are used to geometrically demonstrate why the maximal
output admissible set is not finitely determined, when origo is on the boundary
of the state admissible set. Let the constraints be

−1 ≤ x1 ≤ 1 − 1 ≤ x2 ≤ 1 0 ≤ x1 + x2 ≤ 2
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Figure C.8. Unobservable system in the output constraints. The system has two
distinct real eigenvalues and associated distinct eigenvectors. One eigenvector is
parallel to the output constraints. The corresponding mode is therefore unobserv-
able and the maximum output admissible set is a cylinder set.

corresponding to ymin ≤ Cx ≤ ymax where

ymin =





−1
−1
0



 C =





1 0
0 1
1 1



 ymax =





1
1
2



 x =

(
x1

x2

)

The boundary lines as well as teh state admissible set corresponding to these
constraints are illustrated in figure C.9.

The maximal output admissible set for this set of output constraints is inves-
tigated for dynamic systems

xk+1 = Axk

with different A-matrices.

Example C.4.8 (Real Distinct Eigenvalues)
The matrix

A =

(
1 −0.21
1 0

)

has two real distinct eigenvalues: λ1 = 0.7 with associated eigenvector v1 =
(
0.5735 0.8192

)T

and λ2 = 0.3 with associated eigenvector v2 =
(
0.2873 0.9578

)T
. The vector flow,

the eigenvector and the constraints are plotted in figure C.10. By inspection of the
vector field of this figure it is obvious that not all states in the state admissible set
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Figure C.9. State admissible set with origo on the boundary. The lines corresponds
to the constraints.

belong to the output admissible plot. The output admissible set for different values of
t is also indicated. The plots indicate that the constraint lines ymin ≤ CAtx ≤ ymax

rotate such that they are parallel to the eigenvector with the smallest eigenvalue in
the limit t → ∞.

The problem with origo being at the boundary is also illustrated by the lower plot in
figure C.10. While the other lines move away from origo in a Minkowski sense, the
line through origo keeps going through origo and only rotates. It only approaches the
eigenvector in the limit t → ∞ and thus the maximal output admissible set is not
finitely determined.

Example C.4.9 (A Positive Real and Negative Real Eigenvalue)
The matrix

A =

(
0.4 0.21
1 0

)

has a positive real eigenvalue at λ1 = 0. with the associated eigenvector v1 =
(
0.5735 0.8192

)T
and a negative real eigenvalue at λ2 = −0.3 with the associated

eigenvector v2 =
(
−0.2873 0.9578

)T
.

The vector field, the eigenvectors (dashed), the constraints (solid), and the constraints
(dash-dot) in Ot(A, C, Y) are shown in figure C.11.

In this case the set produced by the algorithm is finitely determined even though
origo is on the boundary of the state admissible set.

In practice discrete-time eigenvalues with negative real value seldom occurs, as the
systems observed in engineering typically are sampled continuous-time systems for
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Figure C.10. Dynamics of a system with two distinct positive real eigenvalues
and origo on the boundary of the state admissible set. Top: The vector field,
the eigenvectors and the state admissible set. Bottom: The output constraints
ymin ≤ CAtx ≤ ymax for different values of t and the maximum output admissible
set. The constraint through origo approaches one of the eigenvalue lines as t → ∞.
Therefore the maximum output admissible set is not finitely determined.

which the discrete-time eigenvalues. For these systems the discrete-time eigenvalues
are in the positive half-plane as eλiTs > 0.
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Figure C.11. A positive real and a negative real eigenvalue. Origo is on the bound-
ary of the state admissible set. Top: The vector field and the eigenvectors as well
as the state admissible set. Bottom: The constraints ymin ≤ CAtx ≤ ymax for
different values of t. Note that the points at lines with t = 1 will be transferred to
the output constraints in one time step and so on. As the line through origo passes
the eigenvector line, the maximum output admissible set is finitely determined.

Example C.4.10 (Real Eigenvalue of Multiplicity 2)
The matrix

A =

(
0.5 0.3
0 0.5

)
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has a double real eigenvalue at λ = 0.5. The corresponding eigenvector is v =
(
1 0

)T
. The eigenvectors and the vector field along with the state admissible set is

depicted in the upper part of figure C.12. Note that the vector field on the boundary
in the lower part of the state admissible set is directed out of it indicating that these
state are not part of the maximum output admissible set.

The lower part of figure C.12 indicates the rotation of the constraint line passing
through origo. As t increases it is rotated in the clockwise direction. In the limit
t → ∞ this line approaches the eigenvector line. Consequently, the maximum output
admissible set is not finitely determined as is evident from figure C.12.

Example C.4.11 (Complex Conjugate Eigenvalues)
The matrix

A =

(
1 −0.74
1 0

)

has a complex eigenvalue at λ = 0.5 ± 0.7i. The vector field of this matrix is shown
in figure C.13. Due to the complex eigenvalues the vector field forms a spiral. The
stability implies that the constraints ymin ≤ CAtx ≤ ymax are rotated away from
zero in a Minkowski sense as t increases. The imaginary part gives persistent rotation.
As the constraint through origo keeps going through origo and is persistently rotated,
the only point in the maximal output admissible set is origo itself. This is indicated
in figure C.13.

C.5 Conclusion

The method of Gilbert and Tan (1991) for construction of the maximal output
admissible set for a linear system with polytopic constraints has been presented.
The algorithm relies on solution of a sequence of linear programs.

One requirement for termination of the algorithm in a finite number of itera-
tions is that the origin must be in the interior of the constraint set. This re-
quirement prevents application of the algorithm for systems which have active
constraints at steady state. Furthermore, in predictive control applications,
the origin shifts due to changing disturbances. Hence, the maximal output
admissible set must be recomputed online at each control computation.

Consequently, the maximal output admissible set has some limitations in the
practical implementation of a true infinite horizon model predictive controller.
Nevertheless, the maximal output admissible set serve a useful purpose in study
of properties of an ideal infinite horizon constrained predictive controller.
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Figure C.12. Flow field and eigenvector of the case with a common real eigenvalue
at λ = 0.5. Origo is on the boundary of the state admissible set. Top: Vector
field and eigenvector line (dashed horizontal line going through origo) and the
state admissible set. Bottom: The constraint lines ymin ≤ CAtx ≤ ymax rotate
as function of t. In the limit t → ∞ the constraint line through origo approaches
the eigenvector line. The maximum output admissible set is bounded by this
eigenvector line and is therefore not finitely determined.
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Figure C.13. Dynamics of a system with complex conjugate eigenvalues and origo
at the boundary of the state admissible set. Top: Flow field and eigenvector of
the case with complex eigenvalues. Bottom: Constraints ymin ≤ CAtx ≤ ymax as
function of t. The vector field rotates the line through origo such that origo is the
only point in the maximal output admissible set.



D

Linear Regression

Construction of models for predictive control is based on regression. Various
regression techniques are reviewed. The regressions described may be applied
in an output error as well as a prediction error framework (Söderström and
Stoica, 1989; Ljung, 1999).

Draper and Smith (1998) give a general introduction to regression methods.
Lütkepohl (1993), Hamilton (1994), and Reinsel (2003) provide comprehensive
descriptions of multivariate regression techniques in a multivariate time series
analysis context. Reinsel and Velu (1998) describe multivariate reduced rank
regression.

D.1 Regression Framework

The methods for multivariate regression are related to results for the stochastic
model

y = ŷ(θ) + v v ∼ N(0,Λ) (D.1)

in which θ ∈ R
p, y : Ω 7→ R

n, v : Ω 7→ R
n. The predictor ŷ : R

p 7→ R
n, is given

by a linear relation in the parameters

ŷ(θ) = f(θ) = Φθ (D.2)

When the predictor is the deterministic model, the framework is called output
error estimation. When the predictor is obtained as either the rigorous or ap-
proximate predictor of a stochastic system, the framework is called prediction
error estimation. The framework discussed here apply to both situations. The
major restriction is that the predictor, ŷ, is assumed to be linear in the param-
eters, θ. Further, the regressor variables Φ are assumed to be deterministic.

D.1.0.1 Least Squares Estimation

Let y ∈ R
n denote a realization of the stochastic variable y. Then the weighted

linear least squares estimation problem concerns computing the parameters, θ,
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by solution of the problem

min
θ∈Rp

φ =
1

2
‖y − ŷ(θ)‖2

W =
1

2
‖y − Φθ‖2

W (D.3)

It is assumed throughout this section that this problem is strictly convex, i.e.
that W is symmetric positive semi-definite and that Φ′WΦ is positive definite,
such that a unique solution exists.

The next results concerns solution of the weighted least squares problem (D.3).

Proposition D.1.1 (Weighted linear least squares regression)
The solution of the weighted linear least squares estimation problem

θ̂ = arg min
θ∈Rp

φ =
1

2
‖y − Φθ‖2

W (D.4)

is
θ̂ = (Φ′WΦ)−1Φ′Wy (D.5)

Proof. The objective function may be expanded

φ =
1

2
‖y − Φθ‖2

W =
1

2
(y − Φθ)′W (y − Φθ)

=
1

2
y′Wy − y′WΦθ +

1

2
θ′Φ′WΦθ

=
1

2
θ′Φ′WΦθ − (Φ′Wy)′θ +

1

2
y′Wy

(D.6)

As Φ′WΦ is positive definite by assumption, this function is strictly convex.
Hence, there exists a unique solution to the problem

θ̂ = arg min
θ∈Rp

φ(θ) (D.7)

which is characterized by

∇φ(θ̂) = Φ′WΦθ̂ − Φ′Wy = 0 (D.8)

Consequently
θ̂ = (Φ′WΦ)−1Φ′Wy (D.9)

¤

In the case when W = I, the weighted linear least squares estimate is called
the linear least squares estimate.

Corollary D.1.2 (Linear least squares estimate)
The linear least squares estimate

θ̂ = arg min
θ∈Rp

φ =
1

2
‖y − Φθ‖2 (D.10)

is
θ̂ = (Φ′Φ)−1Φ′y (D.11)

Proof. The result is readily obtained from (D.5) using W = I. ¤
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The minimum variance estimate is a special case of the weighted least squares
estimate. In this case, the weights are equal to the inverse of the covariance of
the prediction error, i.e. W = Λ−1.

Corollary D.1.3 (Minimum variance linear least squares estimate)
The minimum variance estimate

θ̂ = arg min
θ∈Rp

φ =
1

2
‖y − Φθ‖2

Λ−1 (D.12)

is
θ̂ = (Φ′Λ−1Φ)−1Φ′Λ−1y (D.13)

Proof. The result follows directly by setting W = Λ−1 in (D.5). ¤

D.1.0.2 Maximum Likelihood Estimation

The likelihood function for the model (D.1)-(D.2) is

p(y|θ,Λ) = p(v) = (2π)−n/2 (det Λ)
−1/2

exp

(

−1

2
v′Λ−1v

)

= (2π)−n/2 (det Λ)
−1/2

exp

(

−1

2
(y − Φθ)′Λ−1(y − Φθ)

) (D.14)

The likelihood function specifies the probability of the measurements given the
parameters, θ and Λ, in the model (D.1)-(D.2). The maximum likelihood esti-
mator selects the free parameters such that the probability of the measurements
is maximized. For cases in which the covariance, Λ, is known the maximum
likelihood problem is

max
θ∈Rp

p(y|θ,Λ) (D.15)

and for cases in which the covariance is unknown, the maximum likelihood
problem is

max
θ∈Rp,Λ∈Rn×n

p(y|θ,Λ) (D.16)

It is convenient to introduce the negative logarithm of the likelihood function

L(θ,Λ; y) = − ln p(y|θ,Λ)

=
n

2
ln (2π) +

1

2
ln (det Λ) +

1

2
(y − Φθ)′Λ−1(y − Φθ)

=
n

2
ln (2π) +

1

2
ln (det Λ) +

1

2
tr

(
Λ−1(y − Φθ)(y − Φθ)′

)

(D.17)

As the logarithm function, ln, is strictly monotonous, the maximum likelihood
function with known covariance is equivalent with

min
θ∈Rp

L(θ,Λ; y) (D.18)
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and the maximum likelihood function without known covariance is equivalent
with

min
θ∈Rp,Λ∈Rn×n

L(θ,Λ; y) (D.19)

Proposition D.1.4 (ML estimation with known covariance)
The maximum likelihood estimate with known covariance, Λ, of the noise

θ̂ = arg min
θ∈Rp

L(θ, Λ; y) (D.20)

is the minimum variance estimate

θ̂ =
(
Φ′Λ−1Φ

)−1
Φ′Λ−1y (D.21)

Proof. As Λ is given, the maximum likelihood problem is

min
θ∈Rp

L(θ,Λ; y) =
n

2
ln (2π) +

1

2
ln (det Λ) + min

θ∈Rp

1

2
(y − Φθ)′Λ−1(y − Φθ)

=
n

2
ln (2π) +

1

2
ln (det Λ) + min

θ∈Rp

1

2
‖y − Φθ‖2

Λ−1

(D.22)

Hence, the selection of parameters corresponds to a minimum variance linear
least squares problem, and the parameters may be computed by (D.13). ¤

The next proposition confirms the intuitive notion that we cannot estimate the
covariance and the value of the parameters without replicating the experiment,
i.e. the maximum likelihood estimate of (D.1)-(D.2) with unknown covariance
does not exist. To prove this we use the matrix differentiation stated in the
following lemma:

Lemma D.1.5
Let A ∈ R

n×n and B ∈ R
n×n be symmetric positive definite matrices. Then

∂

∂A
ln det A = A−1 (D.23)

∂

∂A
tr

(
A−1B

)
= −A−1BA−1 (D.24)

Proof. See Bard (1974). ¤

Proposition D.1.6 (ML estimation with unknown covariance)
The maximum likelihood estimate

(θ̂, Λ̂) = arg min
θ∈Rp,Λ∈Rn×n

L(θ, Λ; y) (D.25)

of the model (D.1)-(D.2) with unknown covariance, Λ, is undefined and does not exist.
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Proof. Note that the negative log likelihood function (D.17) is

L(θ,Λ; y) =
n

2
ln(2π) +

1

2
ln (det Λ) +

1

2
tr

(
Λ−1(y − Φθ)(y − Φθ)′

)
(D.26)

To be maximum likelihood estimates, (θ̂, Λ̂) must satisfy the first order opti-
mality conditions

∂L

∂θ
(θ̂, Λ̂) = 0 (D.27a)

∂L

∂Λ
(θ̂, Λ̂) = 0 (D.27b)

Hence, using lemma D.1.5

∂

∂Λ
L(θ̂, Λ̂; y) =

1

2
Λ̂−1 − 1

2
Λ̂−1(y − Φθ̂)(y − Φθ̂)′Λ̂−1 = 0 (D.28)

we obtain
Λ̂ = (y − Φθ̂)(y − Φθ̂)′ (D.29)

Consequently

tr
(

Λ̂−1(y − Φθ̂)(y − Φθ̂)′
)

= tr (In) = n (D.30)

and

L(θ̂, Λ̂; y) =
n

2
ln(2π) +

1

2
ln

(

det Λ̂
)

+
1

2
n

=
n

2
[1 + ln (2π)] + ln

(

det
[

(y − Φθ̂)(y − Φθ̂)′
])

=
n

2
[1 + ln (2π)] + ln (det [εε′])

(D.31)

in which ε = y − Φθ̂. The rank of the matrix, εε′, is either zero or one. The
matrix is of rank 0 when ε = 0 and of rank one otherwise. Notice that y ∈ R

n.
When n > 1, det [εε′] = 0, and L(θ̂, Λ̂; y) is undefined (minus infinity) for all

parameters θ̂. In the case n = 1 (and p ≥ 1), ε = 0 for Φ 6= 0. Hence,

det [εε′] = 0 and L(θ̂, Λ̂; y) is undefined (minus infinity) for all parameters θ̂.
The same situation occurs for y = 0 and Φ = 0. This leaves the case n = 1,
y 6= 0 and Φ = 0. In this case the covariance exists, but any parameter θ̂ will
give the same likelihood function, and the minima is from a practical point of
view undefined in this case too. ¤

Not surpisingly, the maximum likelihood estimate of the model (D.1)-(D.2)
with unknown covariance, Λ, cannot be computed. In order to compute the
covariance, some kind of repetition in the experiments is needed. In section
D.2 and D.3, the model is (D.1)-(D.2) specialized to a univariate and multi-
variate regression model, respectively. These models contain repetition and it
is possible to solve the maximum likelihood estimation problem with unknown
measurement covariance.
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D.1.0.3 Distribution of the Estimates

Proposition D.1.7 (Distribution of the WLS estimate)
The weighted least squares estimate (D.5) of the parameter θ in the model (D.1)-(D.2)
is normally distributed

θ̂ ∼ N(θ, Q) (D.32)

with mean θ and covariance

Q = (Φ′WΦ)−1Φ′WΛWΦ(Φ′WΦ)−1 (D.33)

Proof. The stochastic variable, θ̂, is normally distributed as it is a linear
combination of a normally distributed variable, i.e.

θ̂ = (Φ′WΦ)−1Φ′Wy

= (Φ′WΦ)−1Φ′W (Φθ + v)

= θ + (Φ′WΦ)−1Φ′Wv

(D.34)

in which v ∼ N(0,Λ). The mean is

E
{

θ̂
}

= E
{
θ + (Φ′WΦ)−1Φ′Wv

}
= θ + (Φ′WΦ)−1Φ′WE {v} = θ (D.35)

which implies that the estimate is unbiased. Use that W is symmetric, to
express the covariance of the estimate as

Q = V
{

θ̂
}

= 〈θ̂ − θ, θ̂ − θ〉
= 〈(Φ′WΦ)−1Φ′Wv, (Φ′WΦ)−1Φ′Wv〉
=

[
(Φ′WΦ)−1Φ′W

]
〈v,v〉

[
(Φ′WΦ)−1Φ′W

]′

= (Φ′WΦ)−1Φ′WΛWΦ(Φ′WΦ)−1

(D.36)

This proves the statement θ̂ ∼ N(θ,Q). ¤

Corollary D.1.8 (Distribution of the LS estimate)
The least squares estimate (D.11) of the parameter θ in the model (D.1)-(D.2) is
normally distributed

θ̂ ∼ N(θ, Q) (D.37)

with mean θ and covariance

Q = (Φ′Φ)−1Φ′ΛΦ(Φ′Φ)−1 (D.38)

Proof. This follows directly from proposition D.1.7 using the substitution
W = I. ¤

Corollary D.1.9 (Distribution of minimum variance estimate)
The minimum variance estimate (D.13) of the parameter θ in the model (D.1)-(D.2)
is normally distributed

θ̂ ∼ N(θ, Q) (D.39)

with mean θ and covariance
Q = (Φ′Λ−1Φ)−1 (D.40)
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Proof. This follows directly from proposition D.1.7 using the substitution
W = Λ−1, i.e.

Q = (Φ′Λ−1Φ)−1Φ′Λ−1ΛΛ−1Φ(Φ′Λ−1Φ)−1

= (Φ′Λ−1Φ)−1Φ′Λ−1Φ(Φ′Λ−1Φ)−1

= (Φ′Λ−1Φ)−1

(D.41)

¤

Corollary D.1.10 (Distribution of the ML estimate with known covariance)
Consider the maximum likelihood estimate with known covariance, Λ, of the noise.
The estimate (D.20) of θ is normally distributed

θ̂ ∼ N(θ, Q) (D.42)

with mean θ and covariance
Q = (Φ′Λ−1Φ)−1 (D.43)

Proof. This is a trivial consequence of corollary D.1.9, as the maximum
likelihood estimate with known noise covariance is identical to the minimum
variance least squares estimate. ¤

D.1.1 Numerical Methods

The optimum, θ̂, of the least squares problem

θ̂ = arg min
θ

{

φ =
1

2
‖y − Φθ‖2

2

}

(D.44)

satisfies the first order optimality conditions (the normal equations)

(Φ′Φ)θ̂ = Φ′y (D.45)

and may formally be obtained as

θ̂ = (Φ′Φ)−1Φ′y (D.46)

Various numerical methods for solution of the normal equations and thereby
the least squares problem are presented.

The normal equations (D.45) may be expressed as the linear system of equations

Aθ̂ = b (D.47a)

in which

A = Φ′Φ (D.47b)

b = Φ′y (D.47c)



358 Linear Regression

and A is symmetric positive semi definite. The solution to (D.47a) may be
expressed as

θ̂ = A−1b (D.48)

provided A is non-singular. It should be noted that (D.47a) can be regarded
as the first order optimality conditions for the quadratic program

θ̂ = arg min
θ

{

φ̃ =
1

2
θ′Aθ − b′θ

}

(D.49)

D.1.1.1 LU Factorization of the Normal Equations

The coefficient matrix, A, associated with the normal equations may be LU
factorized

A = Φ′Φ = LU (D.50)

such that the least squares estimate may be computed by

θ̂ = A−1b = U−1[L−1(Φ′y)] (D.51)

This factorization is not recommended for solution of the normal equations as
it does not utilize the symmetry of A. Neither, does it provide any mechanism
to handle ill-conditioned matrices, A.

D.1.1.2 Cholesky Factorization of the Normal Equations

Provided the coefficient matrix, A = Φ′Φ, is positive definite (non-singular), it
may be factorized using a Cholesky factorization

A = Φ′Φ = LL′ (D.52)

Using this Cholesky factorization, the optimal estimate of the parameters are
obtained as

θ̂ = A−1b = (L′)−1[L−1(Φ′y)] (D.53)

The Cholesky factorization is computationally more efficient than the LU fac-
torization as it utilize the symmetry of A. The requirement of positive defi-
niteness implies in practice that A must be well-conditioned.

D.1.1.3 QR Factorization of the Normal Equations

Yet another alternative for solution of the normal equations is by a QR factor-
ization. In this case A is factorized as

A = Φ′Φ = Q

[
R
0

]

=
[
Q1 Q2

]
[
R
0

]

= Q1R (D.54)
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in which Q is an orthogonal matrix (Q′Q = QQ′ = I) and R is a non-singular
upper (right) triangular matrix. This implies that

θ̂ = R−1[Q′
1(Φ

′y)] (D.55)

The QR-factorization is computationally more expensive than the Cholesky
factorization. However, it has a built in mechanism to handle ill-conditioned
systems.

D.1.1.4 SVD Factorization of the Normal Equations

The SVD factorization of A may be stated as

A = Φ′Φ = UΣV ′ =
[
U1 U2

]
[
Σ1 0
0 0

]
[
V1 V2

]′
= U1Σ1V

′
1 (D.56)

in which U and V are unitary matrices (U ′U = UU ′ = I and V ′V = V V ′ = I)
and Σ is a diagonal matrix. Consequently, U ′

1U1 = I, V ′
1V1 = I, and Σ1 is

diagonal and non-singular. Using this factorization, the solution of the normal
equations is computed as

θ̂ = A−1b = V1

(
Σ−1

1 [U ′
1(Φ

′y)]
)

(D.57)

The SVD factorization is even more expensive than the QR factorization. How-
ever, it is very efficient for detecting ill-conditioning and may therefore be the
preferred alternative for some ill-conditioned systems.

D.1.1.5 Recursive Factorization of the Normal Equations

Let y =
[
y1 y2 . . . yn

]′ ∈ R
n and θ ∈ R

p. Furthermore, define ϕk ∈ R
p as

the columns of Φ′ (Φ ∈ R
n×p), i.e.

Φ′ = Φ(n)′ =
[
ϕ1 ϕ2 . . . ϕn

]
(D.58)

This implies that

A(k) = Φ(k)′Φ(k) =

k∑

j=1

ϕjϕ
′
j

=

k−1∑

j=1

ϕjϕ
′
j + ϕkϕ′

k = A(k − 1) + ϕkϕ′
k

(D.59)

To compute the least squares estimate using an equation like (D.59), the matrix
inversion lemma stated next is needed.
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Lemma D.1.11 (Matrix Inversion Lemma)

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1 (D.60)

Proof. See Kailath et al. (2000). ¤

Let A = A(k), B = ϕk, C = 1, and D = ϕ′
k. Application of the matrix

inversion lemma to (D.59) yields

A−1
k = A−1

k−1 − A−1
k−1ϕk(1 + ϕ′

kA−1
k−1ϕk)−1ϕ′

kA−1
k−1

= A−1
k−1 −

(
A−1

k−1ϕk

) (
A−1

k−1ϕk

)′

1 + ϕ′
k

(
A−1

k−1ϕk

)

(D.61)

In the last expression, the symmetry of Ak−1 is exploited. Let Pk = A−1
k . This

implies that (D.61) may be expressed as

Pk = Pk−1 −
(Pk−1ϕk) (Pk−1ϕk)

′

1 + ϕ′
k (Pk−1ϕk)

= Pk−1 −
Pk−1ϕkϕ′

kPk−1

1 + ϕ′
kPk−1ϕk

(D.62)

Define ȳk =
[
y1 y2 . . . yk

]′
and the estimate θ̂k as the least square estimate

given ȳk. Then

θ̂k = (Φ(k)′Φ(k))
−1

Φ(k)′ȳk = Pk

[
Φ(k − 1)′ ϕk

]
[
ȳk−1

yk

]

=

(

Pk−1 −
Pk−1ϕkϕ′

kPk−1

1 + ϕ′
kPk−1ϕk

)

(Φ(k − 1)′ȳk−1 + ϕkyk)

= Pk−1Φ(k − 1)′ȳk−1
︸ ︷︷ ︸

=θ̂k−1

− Pk−1ϕk

1 + ϕ′
kPk−1 ϕk

ϕ′
k Pk−1Φ(k − 1)′ȳk−1
︸ ︷︷ ︸

=θ̂k−1

+ Pk−1ϕk

(

1 − ϕ′
kPk−1ϕk

1 + ϕ′
kPk−1ϕk

)

︸ ︷︷ ︸

= 1
1+ϕ′

k
Pk−1ϕk

yk

= θ̂k−1 +
Pk−1ϕk

1 + ϕ′
kPk−1ϕk

(

yk − ϕ′
kθ̂k−1

)

(D.63)

Hence, the recursions for computation of θ̂k are

Kk =
Pk−1ϕk

1 + ϕ′
k(Pk−1ϕk)

(D.64a)

Pk = Pk−1 −
(Pk−1ϕk)(Pk−1ϕk)′

1 + ϕ′
k(Pk−1ϕk)

= Pk−1 − Kk(Pk−1ϕk)′ (D.64b)

θ̂k = θ̂k−1 + Kk(yk − ϕ′
kθ̂k−1) (D.64c)
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and the least squares estimate, θ̂, is obtained as θ̂n. The remaining problem
concerns selection of θ̂0 and P0 to initiate the recursion. It can be shown that
the estimate, θ̂n, corresponds to the solution of the regularized least squares
problem

θ̂n =arg min
θ

{

φ =
1

2
‖y − Φθ‖2

2 +
1

2
‖θ − θ0‖2

P−1
0

}

(D.65a)

One rigorous way to select θ0 ∈ R
p and P0 ∈ R

p×p is to use the first p data
points, ȳp, and compute θ0 = θ̂p and P0 = (Φ(p)′Φ(p))−1 by a non-recursive
least squares procedure based on the first p data points. In this approach
Φ(p)′Φ(p) is assumed to be non-singular. Subsequently, the estimates are com-
puted iteratively disregarding the first p data points.

Alternatively, θ0 = 0 and P0 is selected heuristically as a large number such
that P−1

0 ≈ 0. A common choice is P0 = αI in which α is a large number. In
this case the second term of (D.65) becomes negligible and (D.65) approximates
the least squares problem well.

Kalman Filter Interpretation: The recursive equations for solution of the
least squares problem may be regarded as a Kalman filter for the least squares
problem (Söderström and Stoica, 1989; Sayed and Kailath, 1994; Ljung, 1999;

Kailath et al., 2000). The least-squares problem (D.44) with Φ′ =
[
ϕk

]N

k=1
may

be interpreted as an estimation problem in the dynamic stochastic system

θk+1 = θk (D.66a)

yk = ϕ′
kθk + vk (D.66b)

in which vk ∼ N(0, 1) and θ0 ∼ N(θ̂0|−1, P0|−1). The predictive Kalman filter
recursions for the system

xk+1 = Akxk + Gwk (D.67a)

yk = Ckxk + vk (D.67b)

in which

〈





wk

vk

x0



 ,







wl

vl

x0

1






〉 =





Qkδkl Skδkl 0 0
Skδkl Rkδkl 0 0

0 0 P0|−1 x̂0|−1



 (D.67c)

are

Re,k = Rk + CkPk|k−1C
′
k (D.68a)

Kp,k = (AkPk|k−1C
′
k + GkSk)R−1

e,k (D.68b)

Pk+1|k = AkPk|k−1A
′
k + GkQkG′

k − Kp,kRe,kK ′
p,k (D.68c)

x̂k+1|k = Akx̂k|k−1 + Kp,k(yk − Ckx̂k|k−1) (D.68d)
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Consequently, the predictive Kalman filter for (D.66) becomes

Re,k = 1 + ϕ′
kPk|k−1ϕk (D.69a)

Kp,k = Pk|k−1ϕkR−1
e,k =

Pk|k−1ϕk

1 + ϕ′
kPk|k−1ϕk

(D.69b)

Pk+1|k = Pk|k−1 − Kp,kRe,kK ′
p,k = Pk|k−1 − Kp,k(Pk|k−1ϕk)′ (D.69c)

θ̂k+1|k = θ̂k|k−1 + Kp,k(yk − ϕ′
kθ̂k|k−1) (D.69d)

It is apparent that except from some minor notational details, the predictive
Kalman filter equations (D.69) are identical to the recursions (D.64) for the
recursive least squares solution procedure. This observation is important be-
cause it implies that parameter estimation by least squares methods can be
expressed as a filtering problem and solved using control, filtering and estima-
tion techniques of dynamic systems (Sayed and Kailath, 1994; Kailath et al.,
2000).

D.1.1.6 Iterative Solution of the Normal Equations

The iterative method presented for solution of Aθ = b in which A = Φ′Φ ∈ R
p×p

is symmetric and positive definite is a conjugate gradient method (c.f. Golub
and Van Loan, 1996; Björck, 1996; Nocedal and Wright, 1999) for optimization
of (D.49). Minimization of φ = 1

2θ′Aθ− b′θ is equivalent to solution of Aθ = b.
The conjugate gradient algorithm applies at most p iterations for solution Aθ =
b. The conjugate algorithm can also be adopted for solution of ill-conditioned
problems by terminating the algorithms prematurely, i.e. before the residual is
zero (Hansen, 1996).

The conjugate gradient (CG) algorithm is useful for large scale systems as it
does not need to store or factorize the matrix A but only need the A operator,
i.e. the matrix-vector multiplication Apk (and Aθ0). If A is sparse this may
easily be utilized as well in this operation. The conjugate gradient algorithm for
solution of minθ

{
φ = 1

2θ′Aθ − b′θ
}

equivalent to solution of Aθ = b is stated
in algorithm 7.

The conjugate gradient algorithm (algorithm 7) may be specialized to solution
of the normal equations for the least squares problem. This algorithm is called
the conjugate gradient least squares (CGLS) algorithm and is stated as algo-
rithm 8. This algorithm solves minθ

{
φ = 1

2 ‖y − Φθ‖
}

which is equivalent to
solution of Φ′Φθ = Φ′y by the conjugate gradient algorithm. The algorithm
does not need to store or factorize the matrix, Φ. It only need Φ as an operator
for the matrix vector operations, Φpk and Φ′p̃k. It is straightforward to utilize
sparsity of Φ in these operations and they are also relatively easy to parallelize.
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Algorithm 7 CG algorithm for solution of Aθ = b.

Require: θ0, b, A symmetric, positive definite.
Set r0 ← Aθ0 − b, p0 ← −r0, γ0 ← r′0r0, k ← 0
while γk 6= 0 do

Compute

αk ← γk

p′kApk
(D.70a)

θk+1 ← θk + αkpk (D.70b)

rk+1 ← rk + αkApk (D.70c)

γk+1 ← r′k+1rk+1 (D.70d)

βk+1 ← γk+1

γk
(D.70e)

pk+1 ← −rk+1 + βk+1pk (D.70f)

k ← k + 1 (D.70g)

end while

θ ← θk.

Algorithm 8 CGLS algorithm for solution of Φ′Φθ = Φ′y.

Require: θ0, y, Φ
Set r̃ = Φθ0 − y, r0 ← Φ′r̃, p0 ← −r0, γ0 ← r′0r0, k ← 0
while γk 6= 0 do

Compute

p̃k ← Φpk (D.71a)

αk ← γk

p̃′kp̃k
(D.71b)

θk+1 ← θk + αkpk (D.71c)

r̃k ← Φ′p̃k (D.71d)

rk+1 ← rk + αkr̃k (D.71e)

γk+1 ← r′k+1rk+1 (D.71f)

βk+1 ← γk+1

γk
(D.71g)

pk+1 ← −rk+1 + βk+1pk (D.71h)

k ← k + 1 (D.71i)

end while

θ ← θk.
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D.1.1.7 QR Factorization of Φ

The estimates that are computed based on direct solution of the normal equa-
tions rely on some factorization of A = Φ′Φ. As A is the square of Φ, its
condition number, κ(A), is the square of the condition number, κ(Φ), of Φ,
i.e. κ(A) = κ(Φ)2. The precision of the resulting solution is inversely related
to the condition number, i.e. the larger a condition number the less precise a
solution and vice versa. For ill-conditioned matrices Φ, this implies that A is
very ill-conditioned and the resulting solution of the normal equations based
on factorization of A is less accurate than a solution obtained by factorization
of Φ.

The QR factorization of Φ is

Φ = Q

[
R
0

]

=
[
Q1 Q2

]
[
R
0

]

= Q1R (D.72)

in which Q is an orthogonal matrix Q′Q = QQ′ = I and R is a non-singular
right triangular matrix. Note the relations

Φ′Φ = (Q1R)′(Q1R) = R′Q′
1Q1R = R′R (D.73a)

(Φ′Φ)−1Φ′ = (R′R)−1(Q1R)′ = R−1Q′
1 (D.73b)

which implies that the least squares estimate may be computed by

θ̂ = (Φ′Φ)−1Φ′y = R−1Q′
1y (D.74)

D.1.1.8 SVD Factorization of Φ

Φ may also be factorized by the SVD factorization

Φ = UΣV ′ =
[
U1 U2

]
[
Σ1 0
0 0

]
[
V1 V2

]′
= U1Σ1V

′
1 (D.75)

in which U is unitary (U ′U = UU ′ = I), V is unitary (V ′V = V V ′ = I), and
Σ is diagonal. Then U ′

1U1 = I, V ′
1V1 = I, and Σ1 is diagonal and non-singular.

This implies

Φ′Φ = V1Σ1U
′
1U1Σ1V

′
1 = V1Σ

2
1V

′
1 (D.76a)

(Φ′Φ)−1 = V1Σ
−2
1 V ′

1 (D.76b)

(Φ′Φ)−1Φ′ = V1Σ
−2
1 V ′

1V1Σ1U
′
1 = V ′

1Σ−1
1 U ′

1 (D.76c)

Consequently, the least squares estimate may be computed by

θ̂ = (Φ′Φ)−1Φ′y = V1Σ
−1
1 U ′

1y (D.77)
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D.2 Univariate Regression

An important special regression problem is the linear univariate Gaussian re-
gression problem. The linear multivariate Gaussian regression problem with
common regressors reduces to a sequence of linear univariate Gaussian regres-
sion problems.

The linear univariate Gaussian regression problem is based on the stochastic
model

yk = θ′xk + vk = x′
kθ + vk vk ∼ Niid(0, σ

2) k = 1, 2, . . . , N (D.78)

in which yk : Ω 7→ R and vk : Ω 7→ R are stochastic variables, while the
parameters, θ ∈ R

n, and the regressors, xk ∈ R
n, are deterministic variables.

The noise sequence {vk} is assumed to arise from an independent identically
normal distribution with zero mean and variance σ2.

The model (D.78) may be expressed as the regression model (D.1)

y = Φθ + v v ∼ N(0, σ2I) (D.79)

in which the stochastic vectors are defined as

y =






y1

...
yN




 v =






v1

...
vN




 (D.80)

and the regressors are given as

X =
[
x1 . . . xN

]
(D.81)

Φ = X ′ =






x′
1
...

x′
N




 (D.82)

The parameter vector is

θ =






θ1

...
θn




 (D.83)

The covariance matrix of the noise is Λ = σ2I.

Alternatively, the regression model (D.78) may be expressed in the framework
also used for multivariate regression (D.192)

Y = θ′X + V

= AX + V
(D.84)
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in which

Y = y′ =
[
y1 . . . yN

]
(D.85a)

V = v′ =
[
v1 . . . vN

]
(D.85b)

and

A = θ′ =
[
θ1 . . . θn

]
(D.86)

In the following subsections estimates of the parameters, θ, will be based on a
least squares criteria, the minimum variance criteria, and the maximum likeli-
hood criterion. It turns out that all criteria leads to the least squares estimate,
i.e.

θ̂ = (Φ′Φ)−1Φ′y (D.87)

D.2.1 Least Squares Estimate

The least squares estimate of the univariate regression model (D.78) is

θ̂ = arg min
θ

{

φ = ‖y − Φθ‖2
2

}

= (Φ′Φ)−1Φ′y
(D.88)

This result is a direct consequence of corollary D.1.2.

D.2.2 Weighted Least Squares Estimate

The weighted least squares estimate with weight W of the univariate linear
regression model is obtained using proposition D.1.1

θ̂ = arg min
θ

{

φ = ‖y − Φθ‖2
W

}

= (Φ′WΦ)−1Φ′Wy
(D.89)

The minimum variance estimate is obtained with the weight matrix equal to
the inverse of the covariance matrix: W = (σ2I)−1 = σ−2I. With this weight
matrix, the minimum variance estimate becomes

θ̂ = arg min
θ

{

φ = ‖y − Φθ‖2
W=σ−2I

}

= (Φ′σ−2IΦ)−1Φ′σ−2Iy

= (Φ′Φ)−1Φ′y

(D.90)

As is readily observed, the minimum variance estimate is equal to the least
squares estimate in the univariate case.
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D.2.3 Maximum Likelihood Estimate

The maximum likelihood estimate for the univariate regression model (D.78)
is developed for the case in which the noise covariance is known, and the case
in which the noise covariance is unknown.

Using that the covariance is Λ = σ2I, the likelihood function of the univariate
regression model (D.78) is

L(θ, σ2; y) = L(θ,Λ(σ2); y) = − ln p(y|θ,Λ(σ2))

=
N

2
ln(2π) +

1

2
ln(det Λ) +

1

2
(y − Φθ)′Λ−1(y − Φθ)

=
N

2
ln(2π) +

N

2
ln(σ2) +

1

2
σ−2(y − Φθ)′(y − Φθ)

(D.91)

In the case of known noise covariance, the maximum likelihood estimate is

θ̂ = arg min
θ

L(θ, σ2; y) (D.92)

In the case of unknown noise covariance, the maximum likelihood estimate is

(θ̂, σ̂2) = arg min
θ,σ2

L(θ, σ2; y) (D.93)

D.2.3.1 Known Covariance

The maximum likelihood estimate of the univariate regression model (D.78) in
the case of known noise covariance is stated in the next proposition.

Proposition D.2.1 (ML estimate with known covariance)
The maximum likelihood estimate

θ̂ = arg min
θ

L(θ, σ2; y) (D.94)

of the univariate regression model (D.78) with known noise covariance, σ2I, is

θ̂ = (Φ′Φ)−1Φ′y (D.95)

Proof. The likelihood function (D.91) of the univariate regression model is

L(θ, σ2; y) =
N

2
ln(2πσ2) + σ−2 1

2
(y − Φθ)′(y − Φθ)

=
N

2
ln(2πσ2) + σ−2 1

2
‖y − Φθ‖2

2

(D.96)

Hence, the maximum likelihood estimate with known noise covariance, σ2, is

θ̂ = arg min
θ

{

L(θ, σ2; y) =
N

2
ln(2πσ2) + σ−2 1

2
‖y − Φθ‖2

2

}

= arg min
θ

1

2
‖y − Φθ‖2

2

= (Φ′Φ)−1Φ′y

(D.97)
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The univariate maximum likelihood estimate with known covariance is equal
to the least squares estimate. This is evident from the proof as well as the
expression for the univariate maximum likelihood estimate.

D.2.3.2 Unknown Covariance

The maximum likelihood estimate of the univariate regression model (D.78) is
stated in the next proposition.

Proposition D.2.2 (ML estimate with unknown covariance)
The maximum likelihood estimate

(θ̂, σ̂2) = arg min
θ,σ2

L(θ, σ2; y) (D.98)

of the univariate linear regression model (D.78) with unknown covariance, σ2I, is

θ̂ = (Φ′Φ)−1Φ′y (D.99a)

σ̂2 =
1

N

∥
∥
∥y − Φθ̂

∥
∥
∥

2

2
=

1

N
(y − Φθ̂)′(y − Φθ̂) (D.99b)

Proof. The likelihood function (D.91) of the univariate regression model
(D.78) is

L(θ, σ2; y) =
N

2
ln(2π) +

N

2
ln(σ2) +

1

2
σ−2(y − Φθ)′(y − Φθ)

=
N

2
ln(2π) +

N

2
ln(σ2) +

1

2
σ−2 [y′y − 2(Φ′y)′θ + θ′Φ′Φθ]

(D.100)

The first order necessary and sufficient conditions for the maximum likelihood
estimate

(θ̂, σ̂2) = arg min
θ,σ2

L(θ, σ2; y) (D.101)

are

∇θL(θ, σ2; y) = σ̂−2
[

Φ′Φθ̂ − Φ′y
]

= 0 (D.102a)

∇σ2L(θ, σ2; y) =
N

2
σ̂−2 − 1

2
(σ̂2)−2(y − Φθ̂)′(y − Φθ̂) = 0 (D.102b)

(D.102a) yields the maximum likelihood estimate for the parameters, θ:

θ̂ = (Φ′Φ)−1Φ′y (D.103)

(D.102b) yields the maximum likelihood estimate for the noise variance, σ2:

σ̂2 =
1

N
(y − Φθ̂)′(y − Φθ̂) =

1

N

∥
∥
∥y − Φθ̂

∥
∥
∥

2

2
(D.104)

¤
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D.2.4 Inference

In assessing the properties of the least squares estimate, it is assumed that the
data y are generated by the system S

S : y = Φθ + v v ∼ N(0, σ2I) (D.105)

in which Φ ∈ R
N×n is a deterministic matrix. The stochastic vector, v, is

assumed to be normally distributed with zero mean and covariance σ2I, i.e.
v ∼ N(0, σ2I). θ ∈ R

n is the true parameter vector.

The least squares estimate, θ̂ ∈ R
n, of the parameter vector, θ ∈ R

n, given the
data y ∈ R

N is
θ̂ = (Φ′Φ)−1Φ′y (D.106)

D.2.4.1 Distribution of the Least Squares Value Function

The expression for the least squares estimate

θ̂ = arg min
θ

{

VN (θ) =
1

2
‖y − Φθ‖2

2

}

= (Φ′Φ)−1Φ′y (D.107)

implies that the value function of the least squares estimate may be expressed
as

VN (θ̂) = min
θ

{

VN (θ) =
1

2
‖y − Φθ‖2

2

}

=
1

2

∥
∥y − Φ(Φ′Φ)−1Φ′y

∥
∥

2

2
=

1

2

∥
∥(I − Φ(Φ′Φ)−1Φ′)y

∥
∥

2

2

=
1

2
y′(I − Φ(Φ′Φ)−1Φ′)′(I − Φ(Φ′Φ)−1Φ′)y

=
1

2
y

(
I − Φ(Φ′Φ)−1Φ′

)
y

(D.108)

The value function VN (θ̂) is a realization of a stochastic function, VN , as y
is a realization of a stochastic variable, y = Φθ + v. The stochastic function
VN (θ̂) is given by

VN (θ̂) =
1

2
y′

(
I − Φ(Φ′Φ)−1Φ′

)
y

=
1

2
(Φθ + v)′

(
I − Φ(Φ′Φ)−1Φ′

)
(Φθ + v)

=
1

2
v′

(
I − Φ(Φ′Φ)−1Φ′

)
v

(D.109)

Lemma D.2.3
Let Φ ∈ R

N×n have full column rank. Let the QR decomposition of Φ be

Φ = Q

[
R
0

]

=
[
Q1 Q2

]
[
R
0

]

= Q1R (D.110)
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Then
I − Φ(Φ′Φ)−1Φ′ = Q2Q

′
2 (D.111)

Proof. Q =
[
Q1 Q2

]
is the orthogonal matrix in a QR-decomposition of the

full column rank matrix Φ ∈ R
N×n. This implies Q1 ∈ R

N×n, Q2 ∈ R
N×(N−n),

Q′
1Q1 = In,n, Q′

2Q2 = IN−n,N−n, and QQ′ = Q1Q
′
1 + Q2Q

′
2 = IN,N .

Consequently

Φ(Φ′Φ)−1Φ′ = Q1R(R′Q′
1Q1R)−1R′Q′

1 = Q1Q
′
1 (D.112)

and
I − Φ(Φ′Φ)−1Φ′ = I − Q1Q

′
1 = Q2Q

′
2 (D.113)
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Lemma D.2.4
Let v ∼ N(0, σ2I) and define z by

z =
1

σ
Q′

2v (D.114)

in which Q2 ∈ R
N×(N−n) is an orthogonal matrix. Then the stochastic vector is

distributed as
z ∼ N(0, I) (D.115)

and each component, zi for i = 1, . . . , N − n, is distributed as

zi ∼ N(0, 1) (D.116)

Proof. z = 1
σ Q′

2v is normally distributed as it is a linear combination of a nor-
mally distributed vector, v. The mean is E {z} = E

{
1
σ Q′

2v
}

= 1
σ Q′

2E {v} = 0
and the variance is

V {z} = 〈z, z〉 = 〈 1

σ
Q′

2v,
1

σ
Q′

2v〉 =
1

σ
Q′

2〈v,v〉Q2
1

σ
=

1

σ
Q′

2σ
2IQ2

1

σ
= Q′

2Q2 = IN−n,N−n = I
(D.117)

Hence z ∼ N(0, I). zi ∼ N(0, 1) for i = 1, 2, . . . , N − n follows trivially. ¤

Proposition D.2.5
Let VN (θ̂) be the least squares value function. Let the regression matrix Φ ∈ R

N×n

have full column rank. Let v ∼ N(0, σ2I).

Then
2VN (θ̂)

σ2
∼ χ2(N − n) (D.118)

Proof. It follows from (D.108), (D.109), and lemma D.2.3 that the stochastic
value function can be expressed as

VN (θ̂) =
1

2
v′(I − Φ(Φ′Φ)−1Φ′)v =

1

2
v′Q2Q

′
2v =

1

2
(Q′

2v)
′
(Q′

2v) (D.119)
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in which Q2 ∈ R
N×(N−n) is an orthogonal matrix in the QR decomposition of

Φ ∈ R
N×n, i.e. Φ = Q

[
R
0

]

=
[
Q1 Q2

]
[
R
0

]

= Q1R. Define z = 1
σ Q′

2v and

use lemma D.2.4 as well as the definition of the χ2-distribution to establish

2VN (θ̂)

σ2
=

1

σ2
(Q′

2v)
′
(Q′

2v) =

(
1

σ
Q′

2v

)′ (
1

σ
Q′

2v

)

= z′z =

N−n∑

i=1

z2
i ∼ χ2(N − n)

(D.120)
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D.2.4.2 Unbiased Estimate of the Noise Variance

The maximum likelihood estimate, σ̂2, of the noise variance, σ2, is

σ̂2 =
1

N

∥
∥
∥y − Φθ̂

∥
∥
∥

2

2
=

2

N
VN (θ̂) (D.121)

By proposition D.2.5 it follows that

N
σ̂2

σ2
=

2VN (θ̂)

σ2
∼ χ2(N − n) (D.122)

The distribution χ2(n) has the mean n and variance 2n. Hence

E

{

N
σ̂2

σ2

}

=
N

σ2
E

{
σ̂2

}
= N − n (D.123)

which implies that the maximum likelihood estimate, σ̂2, of the noise variance,
σ2, is biased

E
{
σ̂2

}
=

N − n

N
σ2 =

(

1 − n

N

)

σ2 (D.124)

Proposition D.2.6 (Unbiased Estimate of the Noise Variance)
Define

ŝ2 =
1

N − n

∥
∥
∥y − Φθ̂

∥
∥
∥

2

2
=

2

N − n
VN (θ̂) (D.125)

Then ŝ2 has the distribution given by

(N − n)
ŝ2

σ2
∼ χ2(N − n) (D.126)

and ŝ2 is an unbiased estimate of the noise variance, σ2.



372 Linear Regression

Proof. The definition of ŝ2

ŝ2 =
2

N − n
VN (θ̂) (D.127)

implies

(N − n)
ŝ2

σ2
=

2VN (θ̂)

σ2
∼ χ2(N − n) (D.128)

and

E

{

(N − n)
ŝ2

σ2

}

=
N − n

σ2
E

{
ŝ2

}
= N − n (D.129)

Hence, E
{
ŝ2

}
= σ2 and ŝ2 is an unbiased estimate of σ2. ¤

It follows immediately that the unbiased noise variance estimate, ŝ2, is related
to the maximum likelihood noise variance estimate, σ̂2, by

ŝ2 =
2VN (θ̂)

N − n
=

N

N − n
σ̂2 (D.130)

The statistical properties of the unbiased and maximum likelihood noise vari-
ance estimate can be summarized by

(N − n)
ŝ2

σ2
∼ χ2(N − n) N

σ̂
2

σ2
∼ χ2(N − n) (D.131a)

E
{
ŝ
2} = σ2 E

{
σ̂

2} =
(

1 − n

N

)

σ2 (D.131b)

V
{
ŝ
2} = 2

1

N − n
σ4 V

{
σ̂

2} = 2
N − n

N2
σ4 (D.131c)

From this comparison, it is apparent that the maximum likelihood estimate,
σ̂2, is biased but has a smaller variance than the unbiased estimate, ŝ2:

V
{
σ̂

2}

V
{
ŝ
2} =

(
N − n

N

)2

=
(

1 − n

N

)2

< 1 0 < n < N (D.132)

This is a consequence of the general bias-variance dilemma (Hastie et al., 2001).

D.2.4.3 Distribution of the Estimate

In the following the distribution of the least squares estimate is established.
This result is used to deduce the confidence interval and marginal distribution
of the least square parameters for the case when the covariance is computed as
P̂ = ŝ2(Φ′Φ)−1 and P̂ = σ̂2(Φ′Φ)−1, respectively. It should be noted that the
least squares estimate is identical to the maximum likelihood estimate for the
univariate regression model.
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Proposition D.2.7 (Distribution of the Least Squares Estimate)
Let the data, y, be generated by the system (D.105). Let v ∼ N(0, σ2I). Then the
least squares estimate is distributed as

θ̂ ∼ N(θ, σ2(Φ′Φ)−1) (D.133)

Proof. The least squares estimate may be expressed as

θ̂ = (Φ′Φ)−1Φ′y = (Φ′Φ)−1Φ′ (Φθ + v) = θ + (Φ′Φ)−1Φ′v (D.134)

This implies that the estimate is normally distributed as it is related linearly
to a normally distributed variable, v. The mean is

θ̄ = E
{

θ̂
}

= θ + (Φ′Φ)−1Φ′E {v} = θ (D.135)

and the covariance is

E
{

(θ̂ − θ̄)(θ̂ − θ̄)′
}

=
[
(Φ′Φ)−1Φ′

]
E {vv′}

[
(Φ′Φ)−1Φ′

]′

=
[
(Φ′Φ)−1Φ′

] [
σ2

] [
Φ(Φ′Φ)−1

]
= σ2(Φ′Φ)−1

(D.136)

Consequently
θ̂ ∼ N(θ, σ2(Φ′Φ)−1) (D.137)

¤

Proposition D.2.8 (Confidence interval, known covariance)
Let

θ̂ ∼ N(θ, P ) (D.138)

in which θ ∈ R
n and P = σ2(Φ′Φ)−1 is a known deterministic real symmetric positive

definite matrix, P ∈ R
n×n. σ is a known real number. Then

θ̂i − θi ∼ N(0, Pii) (D.139a)

θ̂i − θi√
Pii

∼ N(0, 1) (D.139b)

and
(θ̂ − θ)′P−1(θ̂ − θ) ∼ χ2(n) (D.140)

Proof. (D.139) follows trivially. (D.139a) comes from the definition of a
marginal distribution. (D.139b) is obtained using the covariance properties
associated with the normal distribution.

To derive (D.140) Cholesky factorize P

P = LL′ (D.141)

and define the stochastic variable z as

z = L−1
(

θ̂ − θ
)

(D.142)
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Note that z ∼ N(0, I). z is normally distributed as it is a linear combination

of a normally distributed variable. E {z} = L−1
(

E
{

θ̂
}

− θ
)

= 0 and

〈z,z〉 = 〈L−1
(

θ̂ − θ
)

, L−1
(

θ̂ − θ
)

〉 = L−1〈θ̂ − θ, θ̂ − θ〉(L−1)′

= L−1P (L−1)′ = L−1LL′(L′)−1 = I
(D.143)

Consequently,
∑n

i=1 z2
i ∼ χ2(n) and

n∑

i=1

z2
i = z′z =

[

L−1
(

θ̂ − θ
)]′ ]

L−1
(

θ̂ − θ
)]

=
(

θ̂ − θ
)′

(L−1)′L−1
(

θ̂ − θ
)

=
(

θ̂ − θ
)′

(LL′)
−1

(

θ̂ − θ
)

=
(

θ̂ − θ
)′

P−1
(

θ̂ − θ
)

(D.144)

which proves (D.140). ¤

Without proof we use the well-known result for Hilbert spaces, that the least
squares estimate, θ̂, and the residuals, e = y−Φθ̂, are orthogonal. For normally
distributed variables this implies that they are independent. Consequently, θ̂

and V = 1
2e′e are independent. Further this implies that θ̂ and ŝ

2 are inde-

pendent as well as independence of θ̂ and σ̂
2. These independence properties

are used to establish the following results concerning the distribution of the
least squares estimate in the case of unknown covariance of v in the univariate
regression model.

Proposition D.2.9 (Confidence interval, unknown covariance)
Let

θ̂ ∼ N(θ, P ) (D.145)

in which θ ∈ R
n, P̂ = σ2(Φ′Φ)−1 ∈ R

n×n is a positive definite matrix. Define

P̂ = ŝ2 (Φ′Φ)
−1

and ŝ2 = 1
N−n

∥
∥
∥y − Φθ̂

∥
∥
∥

2

2
. Note that ŝ2 stems from the distribution

(N − n)
ŝ2

σ2
∼ χ2(N − n) (D.146)

Further define P̂ = ŝ2 (Φ′Φ)
−1

. Assume that θ̂ and ŝ2 are independent stochastic
variables.

Then, the marginal distribution of θ̂i is

θ̂i − θi
√

P̂ ii

∼ t(N − n) (D.147)

and the confidence interval of θ̂ may be computed from the relation

1

n
(θ̂ − θ)′P̂

−1
(θ̂ − θ) ∼ F (n, N − n) (D.148)
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Proof. Let Qii =
[

(Φ′Φ)
−1

]

ii
, Pii = σ2

[

(Φ′Φ)
−1

]

ii
= σ2Qii, P̂ii = ŝ2

[

(Φ′Φ)
−1

]

ii
=

ŝ2Qii, and P̂ ii = ŝ
2
[

(Φ′Φ)
−1

]

ii
= ŝ

2Qii. Note

θ̂i − θi√
Pii

∼ N(0, 1) (D.149)

Consequently

t =
θ̂i − θi√

Pii

√
N − n

√

(N − n) ŝ
2

σ2

∼ t(N − n) (D.150)

and

t =
θ̂i − θi√

Pii

√
N − n

√

(N − n) ŝ
2

σ2

=
θ̂i − θi
√

σ2Qii

√
N − n

√

(N − n) ŝ
2

σ2

=
θ̂i − θi
√

ŝ
2Qii

=
θ̂i − θi
√

P̂ ii

∼ t(N − n)

(D.151)

Note that (θ̂ − θ)′P−1(θ̂ − θ) ∼ χ2(n). Then

f =
(θ̂ − θ)′P−1(θ̂ − θ)

n

N − n

(N − n) ŝ
2

σ2

∼ F (n,N − n) (D.152)

which implies

f =
(θ̂ − θ)′P−1(θ̂ − θ)

n

N − n

(N − n) ŝ
2

σ2

=
(θ̂ − θ)′ (Φ′Φ) (θ̂ − θ)

nσ2

N − n

(N − n) ŝ
2

σ2

=
(θ̂ − θ)′

[

ŝ
2 (Φ′Φ)

−1
]−1

(θ̂ − θ)

n

=
(θ̂ − θ)′P̂

−1
(θ̂ − θ)

n
∼ F (n,N − n)

(D.153)

¤

Proposition D.2.10 (Confidence interval, unknown covariance)
Let

θ̂ ∼ N(θ, P ) (D.154)

in which θ ∈ R
n, P = σ2(Φ′Φ)−1 ∈ R

n×n is a positive definite matrix. Define

P̂ = σ̂2(Φ′Φ)−1 and σ̂2 = 1
N

∥
∥
∥y − Φθ̂

∥
∥
∥

2

2
. Note that σ̂2 stems from the distribution

N
σ̂2

σ2
∼ χ2(N − n) (D.155)
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Further define P̂ = σ̂2(Φ′Φ)−1. Assume that θ̂ and σ̂2 are independent stochastic
variables.

Then the marginal distribution of θ̂i is
√

N − n

N

θ̂i − θi
√

P̂ii

∼ t(N − n) (D.156)

and the confidence interval of θ̂ may be computed from the relation

N − n

N

(θ̂ − θ)′P̂−1(θ̂ − θ)

n
∼ F (n, N − n) (D.157)

Proof. Let Qii =
[

(Φ′Φ)
−1

]

ii
, Pii = σ2

[

(Φ′Φ)
−1

]

ii
= σ2Qii, P̂ii = σ̂2

[

(Φ′Φ)
−1

]

ii
=

σ̂2Qii, and P̂ ii = σ̂
2
[

(Φ′Φ)
−1

]

ii
= σ̂

2Qii. Note

θ̂i − θi√
Pii

∼ N(0, 1) (D.158)

Consequently

t =
θ̂i − θi√

Pii

√
N − n

√

N σ̂
2

σ2

∼ t(N − n) (D.159)

and

t =
θ̂i − θi√

Pii

√
N − n

√

N σ̂
2

σ2

=
θ̂i − θi
√

σ2Qii

√
N − n

√

N σ̂
2

σ2

=

√

N − n

N

θ̂i − θi
√

σ̂
2Qii

=

√

N − n

N

θ̂i − θi
√

P̂ ii

∼ t(N − n)

(D.160)

Note that (θ̂ − θ)′P−1(θ̂ − θ) ∼ χ2(n). Then

f =
(θ̂ − θ)′P−1(θ̂ − θ)

n

N − n

N σ̂
2

σ2

∼ F (n,N − n) (D.161)

which implies

f =
(θ̂ − θ)′P−1(θ̂ − θ)

n

N − n

N σ̂
2

σ2

=
(θ̂ − θ)′ (Φ′Φ) (θ̂ − θ)

nσ2

N − n

N σ̂
2

σ2

=
N − n

N

(θ̂ − θ)′
[

σ̂
2 (Φ′Φ)

−1
]−1

(θ̂ − θ)

n

=
N − n

N

(θ̂ − θ)′P̂
−1

(θ̂ − θ)

n
∼ F (n,N − n)

(D.162)

¤
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Figure D.1. Probability density function (top) and cumulative probability density
function (bottom) of Student’s t-distribution with 10 degrees of freedom. The
dotted lines indicate the 95% confidence interval [−2.2281, 2.2281].

Let p = t(x;V ) denote the cumulative Student’s t-distribution with V degrees
of freedom evaluated at x. Let x = t−1(p;V ) denote the corresponding inverse
function. Then the (1 − α) marginal confidence interval for the estimated
parameters may be expressed as

[

θ̂i + t−1(α
2 ;N − n)

√

P̂ii θ̂i + t−1(1 − α
2 ;N − n)

√

P̂ii

]

(D.163)

in which the covariance matrix P̂ is computed as

P̂ = ŝ2(Φ′Φ)−1 (D.164)

using ŝ2 = (y−Φθ̂)′(y−Φθ̂)
N−n and θ̂ = (Φ′Φ)−1Φ′y.

D.2.4.4 Model Discrimination

The following results are useful for discriminating between two univariate linear
regression models, M1 and M2 (Söderström and Stoica, 1989; Madsen, 1995;
Poulsen, 1995a; Ljung, 1999).
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Lemma D.2.11
Let the data {yt}N

t=1 be generated by the univariate regression model (D.78), i.e.

S : yt = x′
tθ + vt vt ∼ Niid(0, σ2) t = 1, 2, . . . , N (D.165)

Let the regressors of model M1 be identical to the regressors of the system, S

M1 : θ̂1 = arg min
θ

{

V1(θ) =
1

2

N∑

t=1

∥
∥yt − x′

tθ
∥
∥2

2

}

(D.166)

Let model, M2, be a superset of model M1, i.e. M2 ⊃ M1. Denote the corresponding
parameter estimates as

M2 : (θ̂2, η̂) = arg min
θ,η

{

V2(θ, η) =
1

2

N∑

t=1

∥
∥yt − x′

tθ − z′
tη

∥
∥2

2

}

(D.167)

Let n1 = dim(θ) = dim(xt) and n2 = dim(θ) + dim(η) = dim(xt) + dim(zt).

Then

1. The value function V2(θ̂2, η̂) is a realization of the stochastic variable V2(θ̂2, η̂)
distributed as

2V2(θ̂2, η̂)

σ2
∼ χ2(N − n2) (D.168)

2. The difference, V1(θ̂1) − V2(θ̂2, η̂), is a realization of the stochastic variable
V1(θ̂1) − V2(θ̂2, η) distributed as

2(V1(θ̂1) − V2(θ̂2, η̂))

σ2
∼ χ2(n2 − n1) (D.169)

3. V1(θ̂1) − V2(θ̂2, η̂) and V2(θ̂2, η̂) are independent random variables.

Proof. See Söderström and Stoica (1989). ¤

Proposition D.2.12
Let the assumption of lemma D.2.11 be satisfied. Then

f =
V1(θ̂1) − V2(θ̂2, η̂)

n2 − n1

N − n2

V2(θ̂2, η̂)
∼ F (n2 − n1, N − n2) (D.170)

Proof. The result follows trivially from lemma D.2.11. See also Söderström
and Stoica (1989). ¤

Remark D.2.13
Proposition D.2.12 may be used to construct a statistical test for comparison of the

model structures M1 and M2. Let θ̂1 be parameters in the model M1. Estimate
parameters (θ̂2, η̂) in a model M2 ⊃ M1. If f computed by (D.170) is in the (1−α)-
confidence interval of F (n2 − n1, N − n2) then model M2 does not produce a loss
function with a statistical significant lower value; hence, we cannot reject model M1.
Consequently, either we accept model M1 or conduct other tests to see if these reject
model M1. If f is not in the (1−α)-confidence interval, we reject model M1 because
model M2 gives a loss function that has a lower value that is statistically significant.
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Remark D.2.14
Asymptotically

f =
V1(θ̂1) − V2(θ̂2, η̂)

n2 − n1

N − n2

V2(θ̂2, η̂)
∼ F (n2 − n1, N − n2) → χ2(n2 − n1) N → ∞

(D.171)

Proposition D.2.12 is typically applied by computing the least squares estimate
and associated value function (loss function) for a sequence of successively
larger regressors. The value function is plotted as function of the number of
parameters and proposition D.2.12 is used to select the minimum number of
parameters for which no further statistically significant reduction in the value
function is obtained (Söderström and Stoica, 1989; Madsen, 1995; Poulsen,
1995a).

D.2.5 Maximum a Posteriori Estimation

Maximum a posteriori estimation is also called Bayes estimation or Bayesian
estimation (Hamilton, 1994).

Let θ ∈ R
p be a parameter to be estimated based on a sample observations, y,

stemming from some distribution. Classical statistics, i.e. maximum likelihood
based estimation, assumes that there exists some true value of θ. This true
value is regarded as an unknown but fixed number. An estimator θ̂ is con-
structed from the data, and θ̂ is therefore a random variable. The efficiency of
the estimator is judged by the mean squared error of the random variable, i.e.

E
{

(θ̂ − θ)(θ̂ − θ)
}

.

In Bayesian statistics, by contrast, θ itself is regarded as a stochastic variable.
All inference about θ takes the form of statements of probability. The view is
that there will always exist some uncertainty about θ, and the goal of statistical
analysis is to describe this uncertainty in terms of a probability distribution.
Any information about θ available prior to the observation process is repre-
sented by a prior distribution, i.e. a prior probability density function p(θ).
The joint likelihood of y and θ is expressed as

p(y, θ) = p(θ|y)p(y) = p(y|θ)p(θ) (D.172)

and used to derive Bayes law for the posterior probability density of θ

p(θ|y) =
p(y, θ)

p(y)
=

p(y|θ)p(θ)

p(y)
∝ p(y|θ)p(θ) (D.173)

By Bayes law it is evident that the posterior probability density, p(θ|y), is
proportional to the likelihood, p(y|θ), and the prior probability density, p(θ).

In some simple cases, the probability density, p(θ|y), and thereby the distribu-
tion of the a posteriori variable θ|y may be expressed analytically. However, in
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most cases this is not possible; even for linear models. This can be due to the
prior probability distribution, i.e. the the prior probability density does not
lead to an analytical expression for the posterior probability density. In these
cases it is common to approximate the posterior mean

E {θ|y} =

∫

θp(θ|y)dθ (D.174)

by the posterior mode

θ̂ = arg max
θ

{p(θ|y)} = arg max
θ

{p(y|θ)p(θ)} (D.175)

Consequently, usually the a posteriori estimate must be computed numerically
as the mode. This topic is outside the scope of this treatment. In the following
some examples are provided in which it is possible to characterize the posterior
distribution analytically.

D.2.5.1 Known Covariance

Consider the Bayesian univariate regression model

y = Φθ + v v ∼ N(0, σ2I), θ ∼ N(θ0, Pθ0
) (D.176)

and note that in contrast to the univariate regression model (D.79), the parame-
ter θ is a stochastic variable and not a fixed variable. The density distributions,
p(θ) and p(y|θ), for the stochastic model (D.176) are

p(θ) = (2π)
−p/2

(detPθ0
)
−1/2

exp

(

−1

2
(θ − θ0)

′P−1
θ0

(θ − θ0)

)

(D.177)

and

p(y|θ) = pv(y − Φθ)

= (2π)
−n/2 (

det σ2I
)−1/2

exp

(

−1

2
(y − Φθ)′(σ2I)−1(y − Φθ)

)

=
(
2πσ2

)−n/2
exp

(

− 1

2σ2
‖y − Φθ‖2

2

)

(D.178)

Consequently, the posterior mode maximization problem (D.175) may be stated
as

θ̂ = arg max
θ

{p(y|θ)p(θ)} = arg min
θ

L(θ) (D.179)

in which

L(θ) = − ln [p(y|θ)p(θ)] = − ln p(y|θ) − ln p(θ)

=

[
(n + p)

2
ln(2π) +

n

2
ln(σ2) +

1

2
ln (detPθ0

)

]

+
1

2
‖θ − θ0‖2

P−1
θ0

+
1

2

1

σ2
‖y − Φθ‖2

2

(D.180)
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The posterior estimate, θ̂, computed as the mode of p(θ|y) is stated in the
following proposition.

Proposition D.2.15 (MAP estimate with known covariance)
The maximum a posteriori estimate

θ̂ = arg max
θ

p(θ|y) = arg min
θ

L(θ) (D.181)

of the univariate regression model (D.176) with known noise covariance, σ2I, is

θ̂ = θ0 +

(

P−1
θ0

+
1

σ2
Φ′Φ

)−1

Φ′ 1

σ2
(y − Φθ0) (D.182)

Proof. Introduce the function L̃(θ)

L̃(θ) =
1

2
‖θ − θ0‖2

P−1
θ0

+
1

2

1

σ2
‖y − Φθ‖2

2

=
1

2
θ′

(

P−1
θ0

+
1

σ2
Φ′Φ

)

θ −
(

P−1
θ0

θ0 +
1

σ2
Φ′y

)′

θ

+
1

2
‖θ0‖2

P−1
θ0

+
1

2σ2
‖y‖2

2

(D.183)

and note that L(θ) = α + L̃(θ) in which α is a constant independent of θ.
Consequently, the first order optimality conditions for (D.181) may be stated
as

∇θL(θ̂) = ∇θL̃(θ̂) =

(

P−1
θ0

+
1

σ2
Φ′Φ

)

θ̂ −
(

P−1
θ0

θ0 +
1

σ2
Φ′y

)

= 0 (D.184)

which implies

θ̂ =

(

P−1
θ0

+
1

σ2
Φ′Φ

)−1 (

P−1
θ0

θ0 +
1

σ2
Φ′y

)

= θ0 +

(

P−1
θ0

+
1

σ2
Φ′Φ

)−1

Φ′ 1

σ2
(y − Φθ0)

(D.185)

¤

Corollary D.2.16
The estimate, θ̂, computed by (D.182) may be expressed as

θ̂ = θ0 + Pθ0Φ
′ (σ2I + ΦPθ0Φ

′)−1
(y − Φθ0) (D.186)

Proof. Application of the matrix inversion lemma to
(
P−1

θ0
+ 1

σ2 Φ′Φ
)−1

=
(

P−1
θ0

+ Φ′
(
σ2I

)−1
Φ

)−1

gives the desired result. ¤
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Remark D.2.17
The relation between the posterior estimate θ̂ and the recursive maximum likelihood
parameter estimation should be noted.

By the stochastic model (D.176) it may b noted that the joint distribution of
θ and y is

[
θ

y

]

∼ N

([
θ0

Φθ0

]

,

[
Pθ0

Pθ0
Φ′

ΦPθ0
ΦPθ0

Φ′ + σ2I

])

(D.187)

Consequently, the distribution of the conditional stochastic variable θ|y is

θ|y ∼ N
(

θ̂, P
)

(D.188a)

in which the mean, θ̂, and covariance, P , are

θ̂ = θ0 + Pθ0
Φ′

(
σ2I + ΦPθ0

Φ′
)−1

(y − Φθ) (D.188b)

P = Pθ0
− ΦPθ0

(
σ2I + ΦPθ0

Φ′
)−1

Pθ0
Φ′ (D.188c)

In this particular case, the posterior mode and conditional mean are identical
and it is possible to characterize the conditional distribution completely. In
fact, this result is used extensively in one derivation of the Kalman filter.

Typically, n ≫ p and the mean and covariance are most efficiently computed
as

θ̂ = θ0 +

(

P−1
θ0

+
1

σ2
Φ′Φ

)−1

Φ′ 1

σ2
(y − Φθ0) (D.189a)

P =

(

P−1
θ0

+
1

σ2
Φ′Φ

)−1

(D.189b)

D.2.5.2 Unknown Covariance

Typically, when the covariance is unknown, the posterior estimate of the pa-
rameters, θ, and the covariance, σ2, in (D.176) is accomplished by computing

the estimate, (θ̂, σ̂), as the mode of the posterior distribution using a numerical
procedure.

Hamilton (1994) provide an interesting example in which the posterior distri-
bution can be characterized analytically. In this case the prior distribution of
θ and σ2 are

σ−2 ∼ Γ(n0, λ0) (D.190a)

θ|σ−2 ∼ N(θ0, Pθ0
) (D.190b)

The joint probability density function is p(θ, σ−2) = p(θ|σ−2)p(σ−2). For such
a system an analytical characterization of the posterior distribution exists. We
refer to proposition 12.3 in Hamilton (1994) for the resulting distribution.
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D.3 Multivariate Regression

Consider the stochastic linear model

yk = Axk + vk vk ∼ Niid(0, R) k = 1, 2, . . . , N (D.191)

in which yk : Ω 7→ R
m and vk : Ω 7→ R

m are stochastic variables, xk ∈ R
n are

the regressors, A ∈ R
m×n denotes the parameters, and the covariance of the

output errors is R. The experiment is conducted N times, such that the data
available for estimation of the parameters are {yk, xk}N

k=1.

The main assumptions invoked in this model are

1. The regressor sequence, {xk}N
k=1, is deterministic.

2. {vk}N
k=1 is a sequence of independent identically normal distributed vari-

ables with vk ∼ Niid(0, R).

The model (D.191) may be expression in matrix notation

Y = AX + V (D.192)

in which

Y =
[
y1 . . . yN

]
(D.193a)

X =
[
x1 . . . xN

]
(D.193b)

V =
[
v1 . . . vN

]
(D.193c)

(D.192) may be expressed as

vec(Y) = (X ′ ⊗ Im)vec(A) + vec(V) (D.194)

which is equivalent with

y = (X ′ ⊗ Im)a + v v ∼ N(0, IN ⊗ R) (D.195)

using the notation

y = vec(Y) (D.196a)

a = vec(A) (D.196b)

v = vec(V) (D.196c)

The predictors in (D.191), (D.192), and (D.195) are, respectively:

ŷ(xk|A) = Axk k = 1, 2, . . . , N (D.197a)

Ŷ (X|A) = AX (D.197b)

ŷ(X|a) = (X ′ ⊗ Im)a (D.197c)
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D.3.1 Least Squares Regression

The least squares criterion for estimating the parameters A is

φ =
1

2

N∑

k=1

‖yk − Axk‖2
2 =

1

2

N∑

k=1

(yk − Axk)′(yk − Axk)

=
1

2
‖Y − AX‖2

(D.198)

Note that in this expression, we have defined the norm, ‖·‖ : R
m×n 7→ R \ R−,

of a matrix , Z =
[
z1 . . . zn

]
∈ R

m×n, as

‖Z‖2
=

n∑

k=1

‖zk‖2
2 =

n∑

k=1

z′kzk (D.199)

With this matrix norm definition, we have equivalence between this matrix
norm and the two-norm for the case

‖Z‖2
= ‖vec(Z)‖2

2 vec(Z) =






z1

...
zn




 (D.200)

With this norm definition, the least squares problem may be defined as

min
A∈Rm×n

φ =
1

2
‖Y − AX‖2

(D.201)

and the least squares estimate is denoted

Â = arg min
A∈Rm×n

φ =
1

2
‖Y − AX‖2

(D.202)

The least squares estimate for the model (D.191) stated in the matrix form
(D.192) is stated in the following proposition.

Proposition D.3.1 (Least squares estimate)
Assume that (XX ′) is non-singular. The least squares estimate

Â = arg min
A∈Rm×n

φ =
1

2
‖Y − AX‖2 (D.203)

of the model (D.192) is
Â = Y X ′(XX ′)−1 (D.204)

Proof. Notice

y = vec(Y ) (D.205)

vec(AX) = (X ′ ⊗ Im)vec(A) = Φθ (D.206)
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in which

Φ = X ′ ⊗ Im (D.207)

θ = vec(A) ∈ R
mn (D.208)

Consequently

φ =
1

2
‖Y − AX‖2

=
1

2
‖vec(Y − AX)‖2

2 =
1

2
‖y − Φθ‖2

2
(D.209)

and

vec(Â) = θ̂ = arg min
θ

{

φ =
1

2
‖y − Φθ‖2

2

}

= (Φ′Φ)−1Φ′y

= [(X ′ ⊗ Im)′(X ′ ⊗ Im)]
−1

(X ′ ⊗ Im)′vec(Y )

= [(XX ′) ⊗ Im]
−1

(X ⊗ Im)vec(Y )

=
[
(XX ′)−1 ⊗ Im

]
(X ⊗ Im)vec(Y )

=
[
(XX ′)−1X ⊗ Im

]
vec(Y )

= vec(ImY X ′(XX ′)−1)

= vec(Y X ′(XX ′)−1)

(D.210)

Hence
Â = Y X ′(XX ′)−1 (D.211)

¤

Remark D.3.2
Define the sample covariances as

R̂Y X =
1

N

N∑

k=1

ykx′
k =

1

N
Y X ′ (D.212)

R̂XX =
1

N

N∑

k=1

xkx′
k =

1

N
XX ′ (D.213)

Then the least squares estimate (D.204) may also be computed by

Â = Y X ′(XX ′)−1 =

(
1

N
Y X ′

) (
1

N
XX ′

)−1

= R̂Y XR̂−1
XX (D.214)

¥

Remark D.3.3
From the least squares expression (D.204), it is evident that each row of A may be
estimated separately, i.e.

Âi,: = Yi,:X
′(XX ′)−1 i = 1, 2, . . . , m (D.215)
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This implies that the multivariate output problem can be solved by solving m univari-
ate output problems. However, the advantage of the multivariate output formulation
is that the matrix (XX ′) is inverted only once, while in a naive solution of m uni-
variate output problems, it would be inverted m times.

For applications in system identification, this observation implies that there is no
difference between the MIMO and MISO estimate, as long as the regressor matrix,
X, is identical in the two cases. This implies that each individual output may be
predicted independently. ¥

Proposition D.3.4 (Distribution of the least squares estimate)
Let (XX ′) be non-singular. Then the least squares estimate (D.204) of A in the
model (D.191) expressed in matrix form (D.192) has the distribution

vec(Â) ∼ N(vec(A), (XX ′)−1 ⊗ R) (D.216)

Proof. The least squares estimate is a realization of

vec(Â) =
[
(XX ′)−1X ⊗ Im

]
vec(Y)

=
[
(XX ′)−1X ⊗ Im

]
[(X ′ ⊗ Im)vec(A) + vec(V)]

= vec(A) +
[
(XX ′)−1X ⊗ Im

]
vec(V)

(D.217)

in which
vec(V) = v ∼ N(0, IN ⊗ R) (D.218)

As vec(Â) is a linear combination of normally distributed variables, vec(Â) is

also normally distributed. vec(Â) has mean

E
{

vec(Â)
}

= vec(A) (D.219)

and covariance

V
{

vec(Â)
}

= 〈vec(Â) − vec(A), vec(Â) − vec(A)〉
= 〈

[
(XX ′)−1X ⊗ Im

]
v,

[
(XX ′)−1X ⊗ Im

]
v〉

=
[
(XX ′)−1X ⊗ Im

]
〈v,v〉

[
(XX ′)−1X ⊗ Im

]′

=
[
(XX ′)−1X ⊗ Im

]
(IN ⊗ R)

[
X ′(XX ′)−1 ⊗ Im

]

=
[
(XX ′)−1X ⊗ R

] [
X ′(XX ′)−1 ⊗ Im

]

=
[
(XX ′)−1XX ′(XX ′)−1

]
⊗ R

= (XX ′)−1 ⊗ R

(D.220)

¤

Remark D.3.5
The distribution (D.216) of the least squares estimate may also be expressed as

1√
N

vec
(

Â − A
)

∼ N(0, R̂−1
XX ⊗ R) (D.221)

¥
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With the estimate, Â, given, the noise in the models (D.191) and (D.192) may
be estimated as

v̂k = yk − Âxk k = 1, 2, . . . , N (D.222a)

V̂ = Y − ÂX (D.222b)

These expressions can be used for estimating the covariance of the noise. The
maximum likelihood covariance estimate is

R̂ =
1

N
V̂ V̂ ′ =

1

N

N∑

k=1

v̂kv̂′
k (D.223)

while an unbiased estimate of the covariance may be computed as

R̂ =
1

N − n
V̂ V̂ ′ =

1

N − n

N∑

k=1

v̂kv̂′
k (D.224)

In these expressions, we have assumed that the regression is constructed such
that the estimated noise has zero mean.

The true noise covariance, R, is usually not available. Hence, it is natural
to replace it with the estimated noise covariance, R̂, in the covariance of the
parameter estimates, i.e.

vec(Â) ∼ N(vec(A), (XX ′)−1 ⊗ R̂) (D.225)

D.3.2 Maximum Likelihood Regression

The likelihood function of an observation, yk, given A and R in the model
(D.191) is

p(yk|A,R) = p(vk) = (2π)−m/2(detR)−1/2 exp

(

−1

2
v′

kR−1vk

)

= (2π)−m/2(detR)−1/2 exp

(

−1

2
(yk − Axk)′R−1(yk − Axk)

)

(D.226)

for k = 1, 2, . . . , N . The independence of each observation yk from the other
observations implies that the likelihood function, p(Y |A,R), for the model
(D.191) is

p(Y |A,R) =

N∏

k=1

p(yk|A,R)

= (2π)−mN/2(det R)−N/2 exp

(

−1

2

N∑

k=1

(yk − Axk)′R−1(yk − Axk)

)

(D.227)
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Use that a′Wa = tr(Waa′) to obtain

L(A,R;Y ) = − ln p(Y |A,R)

=
Nm

2
ln(2π) +

N

2
ln(detR) +

1

2

N∑

k=1

(yk − Axk)′R−1(yk − Axk)

=
Nm

2
ln(2π) +

N

2
ln(detR) +

1

2

N∑

k=1

tr
[
R−1(yk − Axk)(yk − Axk)′

]

=
Nm

2
ln(2π) +

N

2
ln(detR) +

1

2
tr

[

R−1
N∑

k=1

(yk − Axk)(yk − Axk)′

]

=
Nm

2
ln(2π) +

N

2
ln(detR) +

1

2
tr

[
R−1(Y − AX)(Y − AX)′

]

(D.228)

The maximum likelihood estimate with known noise covariance, R, may be
expressed as

Â = arg max
A∈Rm×n

p(Y |A,R)

= arg min
A∈Rm×n

L(A,R;Y )
(D.229)

Similarly, the maximum likelihood estimate in the situation with unknown
noise covariance, R, may be expressed as

(Â, R̂) = arg max
A∈Rm×n

p(Y |A,R)

= arg min
A∈Rm×n

L(A,R;Y )
(D.230)

Lemma D.3.6
Let A, B, and D be compatible real matrices. Then

∂

∂A
tr(BA′) = B (D.231)

∂

∂A
tr(BAD) = B′D′ (D.232)

∂

∂A
tr(BADA′) = B′AD′ + BAD (D.233)

Furthermore, let B and D be symmetric. Then

∂

∂A
tr(BADA′) = 2BAD (D.234)

Proof. Bard (1974) provides the technique for developing matrix derivatives.
Poulsen (1995c) provides some of the results stated. ¤
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Lemma D.3.7
Let A ∈ R

n×n and B ∈ R
n×n be symmetric positive definite matrices. Then

∂

∂A
ln det A = A−1 (D.235)

∂

∂A
tr(A−1B) = −A−1BA−1 (D.236)

Proof. See Bard (1974). ¤

Lemma D.3.8
The matrix derivatives of the negative log likelihood function (D.228) with respect to
A ∈ R

m×n and R ∈ R
m×m are, respectively:

∂L

∂A
= −R−1Y X ′ + R−1AXX ′ (D.237)

∂L

∂R
=

N

2
R−1 − 1

2
R−1(Y − AX)(Y − AX)′R−1 (D.238)

Proof. The negative log likelihood function is

L(A,R;Y ) =
Nm

2
ln(2π) +

N

2
ln(det R) +

1

2
tr

(
R−1(Y − AX)(Y − AX)′

)

(D.239)
Notice

R−1(Y − AX)(Y − AX)′ =

R−1Y Y ′ − R−1Y X ′A′ − R−1AXY ′ + R−1AXX ′A′
(D.240)

Consequently, application of lemma D.3.6 gives

∂L

∂A
=

1

2

∂

∂A
tr

(
R−1(Y − AX)(Y − AX)′

)

=
1

2

∂

∂A
tr

(
R−1Y Y ′

)
− 1

2

∂

∂A
tr

(
R−1Y X ′A′

)

− 1

2

∂

∂A
tr

(
R−1AXY ′

)
+

1

2

∂

∂A
tr

(
R−1AXX ′A′

)

= 0 − 1

2
R−1Y X ′ − 1

2
R−1(XY ′)′ +

1

2
2R−1AXX ′

= −R−1Y X ′ + R−1AXX ′

(D.241)

Similarly, application of lemma D.3.7 yields

∂L

∂R
=

N

2

∂

∂R
ln(det R) +

1

2

∂

∂R
tr

(
R−1(Y − AX)(Y − AX)′

)

=
N

2
R−1 − 1

2
R−1(Y − AX)(Y − AX)′R−1

(D.242)

¤



390 Linear Regression

Proposition D.3.9 (ML estimate with known covariance)
Let XX ′ be non-singular. The maximum likelihood estimate

Â = arg min
A∈Rm×n

L(A, R; Y ) (D.243)

of A in the model (D.191) with known noise covariance, R, is

Â = Y X ′(XX ′)−1 (D.244)

Proof. The maximum likelihood problem is convex (Lütkepohl, 1993). The
first order necessary and sufficient optimality condition for the considered max-
imum likelihood problem is

∂L

∂A
= −R−1Y X ′ + R−1ÂXX ′ = 0 (D.245)

which implies

R−1
(

ÂXX ′ − Y X ′
)

= 0 ⇔ Â = Y X ′(XX ′)−1 (D.246)

¤

Proposition D.3.10 (ML estimate with unknown covariance)
Let XX ′ be non-singular. The maximum likelihood estimate

(Â, R̂) = arg min
A∈Rm×n,R∈Rm×m

L(A, R; Y ) (D.247)

of A and R in the model (D.191) with unknown noise covariance, R, is

Â = Y X ′(XX ′)−1 (D.248a)

R̂ =
1

N
(Y − ÂX)(Y − ÂX)′ (D.248b)

Proof. The maximum likelihood problem is convex (Lütkepohl, 1993). The
first order necessary and sufficient optimality conditions for the considered
maximum likelihood problem are

∂L

∂A
= −R̂−1Y X ′ + R̂−1ÂXX ′ = 0 (D.249a)

∂L

∂R
=

N

2
R̂−1 − 1

2
R̂−1(Y − ÂX)(Y − ÂX)′R̂−1 = 0 (D.249b)

(D.249a) implies

R̂−1
(

ÂXX ′ − Y X ′
)

= 0 ⇔ Â = Y X ′(XX ′)−1 (D.250)

and (D.249b) yields

1

2
R̂−1

(

NI − (Y − ÂX)(Y − ÂX)′R̂−1
)

= 0 ⇔ (D.251a)

R̂ =
1

N
(Y − ÂX)(Y − ÂX)′ (D.251b)

¤



E

Prediction-Error-Methods

for Model Predictive

Control

Prediction-error-methods tailored for state space model based predictive con-
trol are presented. The prediction-error methods studied are based on predic-
tions using the Kalman filter and predictors for a linear discrete-time stochastic
state space model. Both single-step and multi-step prediction-error methods
based on least squares, maximum likelihood and maximum a posteriori crite-
ria are derived and presented. It is argued that the prediction-error criterion
should be selected such that it is compatible with the objective function of the
predictive controller in which the model is to be applied. Realization of the
discrete-time stochastic state space model from a continuous-discrete-time lin-
ear stochastic system specified using transfer functions with time-delays is out-
lined. The proposed prediction error-methods are demonstrated for a SISO sys-
tem parameterized by the transfer functions with time delays of a continuous-
discrete-time linear stochastic system. The simulations for this case suggest
to use the one-step-ahead prediction-error maximum-likelihood (or maximum
a posteriori) estimator. It gives consistent estimates of all parameters and the
parameter estimates are almost identical to the estimates obtained for long
prediction horizons but with consumption of significantly less computational
resources. The suitability of the proposed method for predictive control is
demonstrated for dual composition control of a simulated binary distillation
column.

E.1 Introduction

Predictive control computes the controls based on a prediction of the outputs.
The predictions are based on a model of the system. Original model predictive
control algorithms developed for the process industries such as Dynamic Matrix
Control (Cutler and Ramaker, 1980) and Model Predictive Heuristic Control
(Richalet et al., 1978) are based on step an impulse response models for the
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output predictions and introduce feedback by updating a bias term representing
an output disturbance. In contrast to the approach applied by the process
industries, the academic system identification community developed predictive
controllers based on ARMAX (ARIMAX, CARIMA) models (Box et al., 1994;
Hallager et al., 1984; Clarke et al., 1987a; Bitmead et al., 1990). Generalized
Predictive Control (Clarke et al., 1987a) is the most famous implementation of
this class of predictive controllers that use an ARMAX model for the filter in
generating the feedback as well as for the output predictions. The success of
these model based control algorithms and their applications is to a large extent
due to existence of efficient methods for generation of the models needed by
these controllers.

Modern predictive control is discussed in terms of state space models (Muske
and Rawlings, 1993a; Rawlings, 2000; Maciejowski, 2002). These algorithms
are based on a discrete-time linear stochastic state space model. They apply
a Kalman filter to compute the current state based on the measurements, and
a Kalman predictor for predicting the outputs (Kailath et al., 2000). State
space based model predictive controllers may be derived by realization of input-
output models (i.e. FIR, ARX, ARMAX models) in state space form. However,
no advice has been given regarding direct construction of a linear state space
model suitable for predictive control. Therefore, better identification methods
for state space based predictive control is requested (Morari and Lee, 1999;
Jørgensen and Lee, 2001; Hjalmarsson, 2003; Gevers, 2003, 2004).

This paper addresses construction of stochastic linear state space models using
the prediction-error-method (Åström, 1980; Ljung, 1999; Kristensen et al., 2004c).
In particular, we argue that for predictive control the parameters in the model
should be based on the multi-step prediction error compatible with the pre-
dictive controller in which the predictor is to be used. This approach differs
from the standard prediction-error-method in which the single-step one-step-
ahead prediction error is minimized. Shah and coworkers (Shook et al., 1992;
Gopaluni et al., 2003, 2004) apply a similar multi-step approach based on im-
pulse response models and a least-squares criterion. The approach presented in
this paper distinguishes itself by being general for linear systems, by applying
least-squares as well as maximum likelihood criteria for the prediction errors
in the estimator, and in particular by being directly applicable to state space
model based predictive control in its modern implementation.

In section E.2, the optimal filter and predictor for a discrete time linear system
in state space form is presented and the application of this predictor in a pre-
dictive controller is stated. Section E.3 introduces the prediction error of the
predictor and demonstrates how the prediction error may be applied in esti-
mating the parameters in the model - or rather the parameters in the predictor
- using the prediction error method. The least squares criterion, the maximum
likelihood criterion and the maximum a posteriori criterion are discussed for
the single-step one-step-ahead and j-step-ahead prediction error as well as for
the multi-step prediction error. It is argued that for predictive control, the
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multi-step prediction error should be used. Section E.4 introduces continuous-
discrete-time systems in which the continuous part consists of a system of
stochastic differential equations. Transformation of this system to a discrete-
time system is presented. A continuous-discrete-time deterministic-stochastic
transfer function model with time delays is stated and it is outlined how the
discretization of linear stochastic differential equations may be used for discrete-
time realization of the continuous-discrete-time deterministic-stochastic trans-
fer function model with time delays. By this discrete-time realization tech-
nique the prediction error methods can be applied to continuous-discrete-time
deterministic-stochastic transfer function models with time delays. Section E.5
and E.6 demonstrate the methodology for a SISO and MIMO system, respec-
tively. The MIMO system represents a high purity binary distillation column
and the performance of a constrained predictive controller based on the esti-
mated model is demonstrated. Finally, in section E.7 conclusions are drawn.

E.2 Predictive Control

The predictive controller considered assumes that the system, S, can be de-
scribed by a linear stochastic discrete-time difference equation of the form

xk+1 = A(θ)xk + B(θ)uk + wk (E.1a)

yk = C(θ)xk + vk (E.1b)

in which [
wk

vk

]

∼ Niid

([
0
0

]

,

[
Rww(θ) Rwv(θ)
Rwv(θ)′ Rvv(θ)

])

(E.1c)

and
x0 ∼ N(x̂0|−1(θ), P0|−1(θ)) (E.1d)

The system matrices, (A = A(θ), B = B(θ), C = C(θ)), are parameterized
in terms of the parameter vector, θ. This parameter vector is also used to
specify the distribution of the exogenous stochastic variables, i.e. to specify
the covariance matrices, (Rww = Rww(θ), Rwv = Rwv(θ), Rvv = Rvv(θ)), of
the noise terms as well as to specify the initial condition, x̂0|−1 = x̂0|−1(θ),
and its covariance P0|−1 = P0|−1(θ). The states, xk, the process noise, wk, the
measurement noise, vk, and the outputs, yk, are stochastic vectors. As x0, wk,
and vk are normally distributed and the system is linear, the states, xk, and
the outputs, yk are also normally distributed. The inputs, uk, are assumed to
be deterministic and in particular assumed to be uncorrelated with the process
measurements, yk. This assumption implies that the IO-data, {yk, uk}N−1

k=0 ,
are collected for a system that operates in open-loop.

Assume that the system matrices, noise covariance matrices, and distribution
of the model, M, and the true system, S, are identical. Then prediction
uncertainties and errors are due to the stochastic nature of the initial state,
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the process noise, and the measurement noise, but not due to any systematic
trend as a consequence of an incorrect model. In this case, the optimal filter
and predictor is the Kalman filter and predictor (Kailath et al., 2000). Under
the same assumptions the separation principle is valid, and the optimal con-
troller for the system can be split into an estimator and a certainty equivalence
regulator (Bertsekas, 1995a). Obviously, the true system and the model are
never identical. The separation principle does not hold either, as the system
is constrained. Nevertheless, predictive control use the Kalman filter feedback,
the Kalman predictor for the output predictions, and separates the controller
into an estimator and a regulator. To guarantee offset free control in the case
of model-plant mismatch as well as unknown disturbances, the model must
be augmented with integrators (Muske and Badgwell, 2002; Pannocchia and
Rawlings, 2003). For ARMAX models this is achieved by differencing the in-
puts and outputs (Hallager et al., 1984; Clarke et al., 1987a). In the face of
these approximations and deliberate model modifications introduced to obtain
steady-state offset-free control, it is clear that the structure of the estimated
model, M, in general will be different from the structure of true system, S.
Therefore, it seems reasonable to side with Ljung (Ljung, 1999) and view the
parameter-estimation purpose as to obtain good predictors for the predictive
controller rather than accurate parameters in the true unknown model.

E.2.1 Filter and Predictor

The filter and predictor used in the predictive controller for the system (E.1)
is the Kalman filter and predictor. The recursions defining the Kalman fil-
ter and predictor along with their covariances are stated in this subsection.
The filter and predictors are the conditional states, xk+j |Ik, and the condi-
tional outputs, yk+j |Ik, given the information vector Ik defined recursively as
Ik = {Ik−1, yk, uk−1}, I0 = {y0}, and I−1 = ∅. As all states, xk, and outputs,
yk, are normally distributed, the conditional states, xk+j |Ik, and the condi-
tional outputs, yk+j |Ik, are also normally distributed. Normally distributed
stochastic variables are completely characterized by their mean and covariance.

The Kalman filter and predictor algorithm stated next is the measurement-time
updated Kalman filter and predictor (Kailath et al., 2000). As new information,
yk, becomes available, the gains, Kfx,k and Kfw,k, and one-step prediction
error, ek, of the filter are updated according to

ŷk|k−1 = Cx̂k|k−1 (E.2a)

ek = yk − ŷk|k−1 (E.2b)

Re,k = CPk|k−1C
′ + Rvv (E.2c)

Kfx,k = Pk|k−1C
′R−1

e,k (E.2d)

Kfw,k = RwvR−1
e,k (E.2e)

The filtered state and filtered process disturbance are normally distributed, i.e.
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xk|Ik ∼ N(x̂k|k, Pk|k) and wk|Ik ∼ N(ŵk|k, Qk|k). The expressions for the
filtered conditional means are

x̂k|k = x̂k|k−1 + Kfx,kek (E.3a)

ŵk|k = Kfw,kek (E.3b)

and the expressions for the filtered conditional covariances are

Pk|k = Pk|k−1 − Kfx,kRe,kK ′
fx,k (E.4a)

Qk|k = Rww − Kfw,kRe,kK ′
fw,k (E.4b)

The one-step-ahead prediction of the state, xk+1|Ik ∼ N(x̂k+1|k, Pk+1|k), and
the measured output, yk+1|Ik ∼ N(ŷk+1|k, Rk+1|k), are also normally dis-
tributed. The one-step-ahead prediction conditional means are

x̂k+1|k = Ax̂k|k + Bûk|k + ŵk|k (E.5a)

ŷk+1|k = Cx̂k+1|k (E.5b)

and the associated covariances are computed by

Pk+1|k = APk|kA′ + Qk|k − AKfx,kR′
wv − RwvK ′

fx,kA′ (E.6a)

Rk+1|k = CPk+1|kC ′ + Rvv (E.6b)

Similarly, the j-step-ahead predictions (j > 1) of the states, xk+j |Ik ∼ N(x̂k+j|k, Pk+j|k),
and the outputs, yk+j |Ik ∼ N(x̂k+j|k), are normally distributed. The j-step-
ahead prediction conditional means are

x̂k+j|k = Ax̂k+j−1|k + Bûk+j−1|k (E.7a)

ŷk+j|k = Cx̂k+j|k (E.7b)

and the associated conditional covariances are computed by

Pk+j|k = APk+j−1|kA′ + Rww (E.8a)

Rk+j|k = CPk+j|kC ′ + Rvv (E.8b)

The recursions (E.2)-(E.8) specifies the Kalman filter and predictor equations
used by the predictive controller completely. Often the j-step-ahead (j > 1)
conditional covariance equations (E.8) are not used directly in the predictive
controller. Equations (E.2) and (E.3) are used in the estimator part for forming
the filtered states and filtered process disturbances. Equations (E.4), (E.5a),
and (E.6a) are used in the estimator part for updating the Kalman filter.

E.2.2 Regulator

Given the conditional mean of the filtered state, x̂k|k, and the conditional mean
of the filtered process disturbance, ŵk|k, the certainty equivalence predictive
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regulator applies equations (E.5) and (E.7) for predicting the mean of the
conditional outputs, ŷk+j|k, in the regulator objective function

φk =
1

2

Np∑

j=1

(ŷk+j|k − rk+j|k)′Q(ŷk+j|k − rk+j|k)

+
1

2

Nc∑

j=0

∆û′
k+j|kS∆ûk+j|k

(E.9)

The objective, φk, has a finite prediction horizon, Np, and computes the optimal

predicted inputs,
{
ûk+j|k

}Np−1

j=0
=

{
ûk+j|k

}Nc

j=0
∪

{
ûk+j|k

}Np−1

j=Nc+1
by solving

min
{ûk+j|k}Np−1

j=0

φk (E.10a)

s.t. (E.5), (E.7) (E.10b)

ûk+j|k ∈ U(x̂k|k, ŵk|k) (E.10c)

ŷk+j|k ∈ Y(x̂k|k, ŵk|k) (E.10d)

and using some parametrization of the tail inputs,
{
ûk+j|k

}Np−1

j=Nc+1
(Garcia

et al., 1989; Muske and Rawlings, 1993a; Scokaert and Rawlings, 1998; Mayne
et al., 2000; Maciejowski, 2002). The sets U(·, ·) and Y(·, ·) denote input con-
straints, rate of movement input constraints, and output constraints. (E.10)
is a quadratic program with special structure for which efficient solution al-
gorithms exist (Jørgensen et al., 2004). Predictive control is implemented in
a moving horizon manner, which means that the first optimal control, ûk|k,

of the optimal control sequence obtained by solving (E.10),
{
ûk+j|k

}Np−1

j=0
, is

implemented on the process, i.e. uk = ûk|k. In some implementations, the
setup is modified slightly to accommodate the duration of computation and
the implemented process input is uk = ûk|k−1.

The implemented process input, uk = ûk|k, is an implicit function of the out-
put predictions. The objective function in the regulator of the model pre-
dictive controller requires multi-step output prediction, i.e. ŷk+j|k for j =
1, 2, . . . , Np. Hence, intuitively it seems natural to select the model parameters
based on multi-step prediction capabilities compatible with the regulator ob-
jective (Söderström and Stoica, 1989; Stoica and Nehorai, 1989; Shook et al.,
1992; Gopaluni et al., 2003, 2004). This is in contrast to the usual approach
in which the parameters are determined based on their single-step one-step-
ahead prediction capabilities. In yet another alternative, Np different models
are identified, i.e. one model for each single-step j-step-ahead output predic-
tion, ŷk+j|k for j = 1, 2, . . . , Np. This implies that instead of using ŷk+j|k(θ)
for j = 1, 2, . . . , Np, the predictors ŷk+j|k(θj) for j = 1, 2, . . . , Np are proposed.
This multi-model approach has been applied for ARX models (Rossiter and
Kouvaritakis, 2001; Haber et al., 2003) and is also adopted in the MUSMAR
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(multi-step multi-variable adaptive regulator) algorithm for predictive control
(Greco et al., 1984; Mosca, 1995).

E.3 Prediction-Error-Methods

E.3.1 Standard Regression Problem

The essence of regression is to select some parameters, θ, such that the predicted
outputs, ŷk(θ), match the measured outputs, yk, as well as possible for all
measurements k = 0, 1, . . . , N − 1. The estimation problem is often stated as
the stochastic relation

yk = ŷk(θ) + ek, ek ∼ N(0, Rk), k = 0, 1, . . . , N − 1 (E.11)

The predictor or estimator, ŷk(θ), is a function of the parameters, θ ∈ Θ ⊂
R

nθ . For the measured realization, {yk}N−1
k=0 , of the outputs, {yk}N−1

k=0 , the
parameters, θ, are computed such that some measure, e.g. the least squares
measure, of the residuals, {ek(θ) = yk − ŷk(θ)}N−1

k=0 , is minimized. This is the
standard nonlinear regression problem (Seber and Wild, 1989; Hamilton, 1994),
which can be stated as the optimization problem

θ̂ = arg min
θ∈Θ

V (θ) (E.12)

with the objective function V (θ) = VLS(θ) being

VLS(θ) =
1

2

N−1∑

k=0

‖ek(θ)‖2
2 (E.13)

in the least squares case. The maximum-likelihood estimate corresponds to
using negative log-likelihood function in (E.12), i.e. V (θ) = VML(θ) with
VML(θ) defined as

VML(θ) =
Nny

2
ln(2π) +

1

2

N−1∑

k=0

ln (detRk(θ))

+
1

2

N−1∑

k=0

ek(θ)′Rk(θ)−1ek(θ)

(E.14)

The maximum a posteriori estimate assumes that a priori the parameters stem
from the distribution θ ∼ N(θ0, Pθ0

) in which θ0 ∈ Θ ⊂ R
nθ . Then using Bayes

rule the negative log-likelihood a posteriori function is

VMAP (θ) = VML(θ) +
nθ

2
ln(2π) +

1

2
ln (detPθ0

)

+
1

2
(θ − θ0)

′P−1
θ0

(θ − θ0)

(E.15)
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Hence, the maximum a posteriori estimate is obtained by applying V (θ) =
VMAP (θ) in (E.12).

E.3.2 The PE Method as a Regression Problem

The family of prediction-error-methods can be considered as solving a general
regression problem similar to (E.11). The estimate of the prediction error
estimates are obtained by solving an optimization problem like (E.12) for some
criteria (LS, ML, MAP) and some predictors. For the case considered in this
paper, the predictors in the prediction error method are the Kalman predictors,
ŷk+j|k(θ). The prediction errors, εk+j|k = yk+j − ŷk+j|k(θ), correspond to the
residuals in the standard regression problem. Therefore, the prediction-error-
method is a standard regression problem with a predictor generated by the
Kalman filter and predictor. In the following, the statistical properties of the
predictors and the prediction errors will be discussed and various criteria for
estimating the parameters in the prediction error framework are presented.

If it is possible to know the true structure of the system, S, and the model
identified, M(θ), is equal to the true system, M(θ) = S, then this model will
be optimal in a statistical sense no matter for what purpose it is to be used and
what consistent estimator (criterion) used for determining the parameters. In
any realistic situation, it is almost impossible to know the true model structure
due to changing process conditions, changing disturbance properties and non-
linearities. Therefore, in practice the model should be suited and be identified
for the purpose it is going to be used. In predictive control this corresponds to
minimization of multi-step predictions compatible with the regulator objective
function.

E.3.3 Single-Step j-Step-Ahead Prediction Error

Let the time indices be k = −1, 0, 1, . . . , N − 1− j and the prediction index be
1 ≤ j ≤ Np. This implies that 0 ≤ k + j ≤ N − 1. The conditional outputs,
yk+j |Ik, have the distribution

yk+j |Ik ∼ N(ŷk+j|k, Rk+j|k) (E.16)

and their correlation may be computed by (Kailath et al., 2000)

R(i,j)|k = 〈(yk+i|Ik) − ŷk+i|k, (yk+j |Ik) − ŷk+j|k〉

=







CAi−j−1Nk+j|k i > j

CPk+i|kC ′ + Rvv i = j

N ′
k+i|k(Aj−i−1)′C ′ i < j

(E.17)

in which 1 ≤ i ≤ Np, 1 ≤ j ≤ Np, and

Nk+i|k = APk+i|kC ′ + Rwv (E.18)
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Hence, the single-step j-step-ahead prediction error problem may be stated as

yk+j |Ik = ŷk+j|k(θ) + εk+j,k|Ik k = −1, 0, . . . , N − 1 − j (E.19)

with εk+j,k|Ik ∼ N(0, Rk+j|k) in the ideal case when the system and the model
on which the predictor is computed are identical. εk+j,k denotes the residual of
the single-step j-step-ahead predictor at time k. This corresponds to a standard
regression problem in which some measure of the j-step prediction error

εk+j|k = yk+j − ŷk+j|k(θ), k = −1, 0, . . . , N − 1 − j (E.20)

is minimized. εk+j|k can be regarded as the realization of εk+j,k|Ik ∼ N(0, Rk+j|k).
When the structure of the model and the system are different, εk+j,k|Ik may
have a non-zero mean and a covariance different from Rk+j|k. Even in such
cases it seems reasonable to minimize some measure of the prediction error,
εk+j|k. However, as the distribution of εk+j,k|Ik is unknown maximum like-
lihood based procedures can only be considered as approximation, i.e. quasi
maximum likelihood.

The least squares j-step prediction-error estimate

θ̂j,LS = arg min
θ∈Θ

{

Vj,LS(θ) =

N−1−j
∑

k=−1

ε′k+j|kεk+j|k

}

(E.21)

is obtained by minimizing the j-step prediction-error least squares criterion.
Similarly, the weighted least squares j-step prediction error estimate

θ̂j,WLS = arg min
θ∈Θ

{

Vj,WLS(θ) =

N−1−j
∑

k=−1

ε′k+j|kQεk+j|k

}

(E.22)

is obtained by minimizing the j-step prediction error weighted least squares
criterion. The weights, Q, are selected as the weights in the regulator objective
function. The (quasi) maximum likelihood estimate is

θ̂j,ML = arg min
θ∈Θ

Vj,ML(θ) (E.23)

in which

Vj,ML(θ) =
(N + 1 − j)ny

2
ln(2π)

+
1

2

N−1−j
∑

k=−1

ln
(
det Rk+j|k

)

+
1

2

N−1−j
∑

k=−1

ε′k+j|kR−1
k+j|kεk+j|k

(E.24)
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is the negative log likelihood function. In its formulation it has been used
that εk+j|k⊥εl+j|l for k 6= l (Kailath et al., 2000). The maximum a posteriori
estimate is

θ̂j,MAP = arg min
θ∈Θ

Vj,MAP (θ) (E.25)

in which

Vj,MAP (θ) = Vj,ML(θ)

+
nθ

2
ln(2π) +

1

2
ln (detPθ0

)

+
1

2
(θ − θ0)

′P−1
θ0

(θ − θ0)

(E.26)

θ0 is the a priori estimate and Pθ0
the associated covariance. Other formulations

of the j-step prediction-error problem exist, e.g. regularized j-step least squares
estimation.

As ŷk+j|k(θ) is not a simple function of θ, the analytical derivatives of εk+j|k =
εk+j|k(θ) with respect to θ are generally not available. Hence, the optimization
algorithms for solving the parameter estimation problem must compute the
derivatives of the objective functions numerically, i.e. by finite difference.

The one-step prediction-error estimates may be regarded as special versions of
the j-step prediction-error estimates. However, in that case no extra effort is
needed for computing εk+1|k and Rk+1|k as they are already computed as part
of the Kalman filter updates. In the j-step prediction case with j > 1, εk+j|k

and Rk+j|k must be computed explicitly if needed in the parameter estimation
objective function.

Simplifications exist for some class of models, e.g. ARMAX models, for which
the covariance matrices are constant as it applies to stochastic stationary pro-
cess. In addition the gradients can be computed analytically for ARMAX
models (Åström, 1980). This simplifies the computation of the parameters
significantly.

E.3.4 Multi-Step Prediction Error

In the multi-step prediction error method, the parameters are estimated such
that they minimize the sum of the one- to Np-prediction error. The least
squares multi-step parameter estimate is

θ̂1:Np,LS =

arg min
θ∈Θ






V1:Np,LS(θ) =

Np∑

j=1

Vj,LS(θ)







(E.27)
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and the objective function is efficiently computed as

V1:Np,LS(θ) =

Np∑

j=1

Vj,LS(θ)

=

Np∑

j=1

(
N−1−j
∑

k=−1

ε′k+j|kεk+j|k

)

=

N−1−Np∑

k=−1

Np∑

j=1

ε′k+j|kεk+j|k

+

N−2∑

k=N−Np

N−1−k∑

j=1

ε′k+j|kεk+j|k

(E.28)

By this formulation it is evident, that the extra computational expense of com-
puting the multi-step least squares objective function is negligible compared to
computation of the Np-step least squares objective function.

Similarly, the multi-step weighted least-squares estimate is computed as

θ̂1:Np,WLS =

arg min
θ∈Θ






V1:Np,WLS(θ) =

Np∑

j=1

Vj,WLS(θ)







(E.29)

in which the objective function is evaluated as

V1:Np,WLS(θ) =

N−1−Np∑

k=−1

Np∑

j=1

ε′k+j|kQεk+j|k

+
N−2∑

k=N−Np

N−1−k∑

j=1

ε′k+j|kQεk+j|k

(E.30)

The multi-step pseudo maximum-likelihood prediction error estimate may be
defined similarly

θ̂1:Np,pML =

arg min
θ∈Θ






V1:Np,pML(θ) =

Np∑

j=1

Vj,ML(θ)







(E.31)
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with the objective function computed as

V1:Np,pML(θ) =

Np∑

j=1

N−1−j
∑

k=−1

N + 1 − j

2
ln(2π)+

1

2

N−1−Np∑

k=−1

Np∑

j=1

[

ln
(
det Rk+j|k

)
+ ε′k+j|kR−1

k+j|kεk+j|k

]

+

1

2

N−2∑

k=N−Np

N−1−k∑

j=1

[

ln
(
det Rk+j|k

)
+ ε′k+j|kR−1

k+j|kεk+j|k

]

(E.32)

Similarly, the multi-step pseudo maximum a posteriori estimate is computed
as

θ̂1:Np,pMAP =

arg min
θ∈Θ






V1:Np,pMAP (θ) =

Np∑

j=1

Vj,MAP (θ)







(E.33)

in which

V1:Np,pMAP (θ) = V1:Np,pML(θ) +
nθ

2
ln(2π)

+
1

2
ln (detPθ0

) +
1

2
(θ − θ0)

′P−1
θ0

(θ − θ0)
(E.34)

The above multi-step maximum likelihood and maximum a posteriori estimates
are called pseudo maximum likelihood and pseudo maximum a posteriori, re-
spectively, because the correlations between εk+i,k|Ik and εk+j,k|Ik for i 6= j
are neglected. The formulas for these estimates have been introduced heuristi-
cally by summing corresponding j-step prediction-error objective functions as
could be done in the least-squares and weighted least-squares case. No statis-
tical considerations are taken into account in deriving these estimates.

E.3.5 Multi-Step Maximum Likelihood Predictors

To deduce true multi-step prediction-error (quasi) maximum likelihood and
maximum a posteriori estimators, the correlation between εk+i,k|Ik and εk+j,k|Ik

for i 6= j must be taken into account. This correlation is

〈εk+i,k|Ik, εk+j,k|Ik〉 = R(i,j)|k (E.35)

Define

Y k =
[
y′

k+1 . . . y′
k+Np

]′
k = −1, 0, . . . , N − 1 − Np

Y k =
[
y′

k+1 . . . y′
N−1

]′
k = N − Np, . . . , N − 2
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and the corresponding multi-step predictions

Ŷk(θ) =
[

ŷ′
k+1|k . . . ŷ′

k+Np|k

]′
k = −1, 0, . . . , N − 1 − Np

Ŷk(θ) =
[

ŷ′
k+1|k . . . ŷ′

N−1|k

]′
k = N − Np, . . . , N − 2

Furthermore, define the conditional multi-step prediction error vector as

ǫk|Ik =








εk+1,k|Ik

εk+2,k|Ik

...
εk+Np,k|Ik








ǫk|Ik =








εk+1,k|Ik

εk+2,k|Ik

...
εN−1,k|Ik








(E.37)

for k = −1, 0, . . . , N − 1−Np (the left vector) and k = N −Np, . . . , N − 2 (the
right vector), respectively.

The multi-step prediction error problem can then be expressed as the stochastic
model

Y k|Ik = Ŷk(θ) + ǫk|Ik k = −1, 0, . . . , N − 2 (E.38)

with ǫk|Ik ∼ N(0, Rk). For k = −1, 0, . . . , N − 1 − Np, Rk is

Rk = 〈ǫk|Ik, ǫk|Ik〉

=








R(1,1)|k R(1,2)|k . . . R(1,Np)|k

R(2,1)|k R(2,2)|k . . . R(2,Np)|k
...

...
...

R(Np,1)|k R(Np,2)|k . . . R(Np,Np)|k








(E.39)

For k = N − Np, . . . , N − 2, Rk is

Rk = 〈ǫk|Ik, ǫk|Ik〉

=








R(1,1)|k R(1,2)|k . . . R(1,N−1−k)|k

R(2,1)|k R(2,2)|k . . . R(2,N−1−k)|k
...

...
...

R(N−1−k,1)|k R(N−1−k,2)|k . . . R(N−1−k,N−1−k)|k








(E.40)

The realization of the multi-step prediction-error vector for k = −1, 0, . . . , N −
1 − Np is

ǫk|k = Yk − Ŷk(θ)

=








yk+1 − ŷk+1|k

yk+2 − ŷk+2|k
...

yk+Np
− ŷk+Np|k








=








εk+1|k

εk+2|k
...

εk+Np|k








(E.41)
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and

ǫk|k = Yk − Ŷk(θ)

=








yk+1 − ŷk+1|k

yk+2 − ŷk+2|k
...

yN−1 − ŷN−1|k








=








εk+1|k

εk+2|k
...

εN−1|k








(E.42)

for k = N − Np, . . . , N − 2.

The negative log likelihood function for the multi-step prediction is

V1:Np,ML(θ) =

N−1−Np∑

k=−1

nyNp

2
ln(2π)

+

N−2∑

k=N−Np

ny(N − 1 − k)

2
ln(2π)

+
1

2

N−2∑

k=−1

(

ln (detRk) + ǫ′k|kR−1
k ǫk|k

)

=
nyf

2
ln (2π)

+
1

2

N−2∑

k=−1

(

ln (detRk) + ǫ′k|kR−1
k ǫk|k

)

(E.43)

in which f = Np

[
N − 1

2 (Np − 1)
]
. Consequently, the multi-step prediction

error (quasi) maximum likelihood estimate is

θ̂1:Np,ML = arg min
θ∈Θ

V1:Np,ML(θ) (E.44)

Similarly, the multi-step prediction error (quasi) maximum a posteriori esti-
mate is

θ̂1:Np,MAP = arg min
θ∈Θ

V1:Np,MAP (θ) (E.45)

in which

V1:Np,MAP (θ) = V1:Np,ML(θ) +
nθ

2
ln(2π)

+
1

2
ln (detPθ0

) +
1

2
(θ − θ0)

′P−1
θ0

(θ − θ0)
(E.46)

In computation of the multi-step prediction-error maximum likelihood esti-
mate, ln (detRk) and ǫ′k|kR−1

k ǫk|k must be computed. ǫk|k is obtained by

computing the j-step prediction errors. This is accomplished using (E.7) for
j = 1, 2, . . . , Np given Ik and ûk+j|k = uk+j . By construction the covariance
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matrix, Rk, has the special structure that arise from a state space model. This
implies that (Kailath et al., 2000)

Rk = LkRǫ,kL′
k (E.47)

in which the factorization, Lk and Rǫ,k, is computed using the Kalman filter re-
cursions (E.2c)-(E.2e), (E.4) and (E.6a). Using the one-step predictive Kalman
gain

Kp,k = AKfx,k + Kfw,k (E.48)

the block lower triangular matrix, Lk, may be computed as

Lk =










I 0 . . . 0
CKp,k+1 I . . . 0

CAKp,k+1 CKp,k+2 . . . 0
...

...
...

CANp−2Kp,k+1 CANp−3Kp,k+2 . . . I










(E.49)

and the block diagonal matrix, Rǫ,k, is

Rǫ,k =








Re,k+1

Re,k+2

. . .

Re,k+Np








(E.50)

Hence, the determinant of Rk may be computed as

det Rk = detRǫ,k =

Np∏

j=1

det Re,k+j (E.51)

which implies

ln (detRk) = ln





Np∏

j=1

det Re,k+j



 =

Np∑

j=1

ln (detRe,k+j) (E.52)

Consequently, the term
∑N−2

k=−1 ln (detRk) in (E.43) may be evaluated as

N−2∑

k=−1

ln (detRk) =

Np−2
∑

k=0

(k + 1) ln (detRe,k)

+ Np

N−1∑

k=Np−1

ln (detRe,k)

(E.53)
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The term ǫ′k|kR−1
k ǫk|k can be evaluated as

ǫ′k|kR−1
k ǫk|k = ǫ′k|k(LkRǫ,kL′

k)−1ǫk|k

= (L−1
k ǫk|k)′R−1

ǫ,k(L−1
k ǫk|k)

=

Np∑

j=1

ē′k+j|kR−1
e,k+j ēk+j|k

(E.54)

in which
[

ē′k+1|k ē′k+2|k . . . ē′k+Np|k

]′
= L−1

k ǫk|k.
{
ēk+j|k

}Np

j=1
is efficiently

computed using the Kalman filter recursions for j = 1, 2, . . . , Np

ēk+j|k = εk+j|k − Cx̄k+j|k (E.55a)

x̄f = x̄k+j|k + Kfx,k+j ēk+j|k (E.55b)

w̄f = Kfw,k+j ēk+j|k (E.55c)

x̄k+j+1|k = Ax̄f + w̄f (E.55d)

with x̄k+1|k = 0. Note that (E.55b)-(E.55d) may be expressed as

x̄k+j+1|k = Ax̄k+j|k + Kp,k+j ēk+j|k (E.56)

which implies that (E.55) can be expressed as

x̄k+j+1|k = (A − Kp,k+jC)x̄k+j|k + Kp,k+jεk+j|k (E.57a)

ēk+j|k = −Cx̄k+j|k + εk+j|k (E.57b)

Consequently, the term
∑N−2

k=−1 ǫ′k|kR−1
k ǫk|k in (E.43) may be efficiently evalu-

ated using

N−2∑

k=−1

ǫ′k|kR−1
k ǫk|k =

Np−2
∑

k=0

k+1∑

j=1

ē′k|k−jR
−1
e,kēk|k−j

+

N−1∑

k=Np−1

Np∑

j=1

ē′k|k−jR
−1
e,kēk|k−j

(E.58)

and a bank of Kalman filter recursion (E.55) for computing ēk|k−j and x̄k+1|k−j

for j = 1, 2, . . . , Np. Hence, at each time instant k the multi-step prediction
error ǫk|k is computed using the Kalman predictions. This vector is stored
in memory for Np iterations such that εk|k−j can be used in computation of
ēk|k−j and subsequent evaluation of the terms in (E.58). The advantage of this
method compared to a naive implementation is that gains and covariances in
the Kalman recursions need to be evaluated only once at each time step.
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E.4 Continuous-Time Stochastic Model

System models based on conservation laws and formulated using differential
balances are most conveniently modelled in the continuous time domain. Fur-
thermore, continuous-time models often contain much fewer parameters than
equivalent discrete-time models. Hence, instead of proposing a system modelled
by stochastic linear difference equations (E.1), a system modelled by stochas-
tic linear differential equations is proposed (Jazwinski, 1970; Åström, 1970a,
1980), i.e.

dx(t) = [F (θ)x(t) + G(θ)u(t)] dt + H(θ)dω(t) (E.59a)

y(tk) = C(θ)x(tk) + v(tk) (E.59b)

in which {ω(t)} is a standard Wiener process and v(tk) ∼ N(0, Rvv(θ)). The
stochastic differential equation (E.59a) contains a drift term, (Fx(t)+Gu(t))dt,
as well as a diffusion term, Hdω(t). The structure and parameter dependence
of the drift term may be obtained in the usual way by forming differential
balances and linearization around a steady state. The diffusion term is used
to represent unknown disturbances and plant-model mismatch. In the control
literature, the diffusion term is known as the disturbance model.

The continous-discrete time system (E.59) may be represented as an equivalent
discrete-time system (E.1). The output equation (E.59b) of the continuous-
discrete time system is identical to the output equation (E.1b) of the discrete-
time system. Hence the matrix, C, and the covariance matrix, Rvv, in the
discrete time system (E.1) are identical to their counterparts in the continuous-
discrete time system (E.59). Rwv = 0 in the discrete-time model (E.1) as v(tk)
and the standard Wiener process {ω(t)} are independent in the continuous-
discrete time model (E.59). The stochastic differential equation (E.59a) is
related to the stochastic difference equation (E.1a) through the expressions
(Åström, 1970a; Åström and Wittenmark, 1997)

A = A(Ts) = exp (FTs) (E.60a)

B = B(Ts) =

∫ Ts

0

exp (Fs) dsG (E.60b)

Rww = Rww(Ts) =

∫ Ts

0

exp (Fs)HH ′ exp (F ′s) ds (E.60c)

in which Ts is the sampling time. A, B, and Rww are efficiently computed
using the matrix exponential relation

exp









−F HH ′ 0
0 F ′ I
0 0 0



 t



 =





F1(t) G1(t) H1(t)
0 F2(t) G2(t)
0 0 F3(t)



 (E.61)
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and the expressions (Moler and Van Loan, 1978; Van Loan, 1978; Sidje, 1998)

A = A(Ts) = F2(Ts)
′ (E.62a)

B = B(Ts) = G2(Ts)
′G (E.62b)

Rww = Rww(Ts) = F2(Ts)
′G1(Ts) (E.62c)

For numerical implementation, we find the discretization approach discussed
here more instructive and efficient than the alternative procedure that estab-
lishes differential equations for the conditional covariance evolution (Jazwinski,
1970; Åström, 1980; Kristensen et al., 2004c). In the direct approach described
here, the conditional covariance evolution, Pk+1|k, is computed through the
state sensitivities, A, and (E.6a) rather than through solution of a differential
equation for the covariance evolution, i.e. a differential equation of the form

d

dt
P (t|tk) = FP (t|tk) + P (t|tk)F ′ + HH ′ (E.63)

In the linear case, the state sensitivities are efficiently computed using (E.62a).
Even in the nonlinear case, it is computationally more efficient to compute the
conditional covariance evolution by computation of the state sensitivities, A,
and (E.6a) rather than by an expression similar to (E.63). The reason for this
is existence of very efficient methods for joint integration and state sensitivity
computation (Kristensen et al., 2004a).

While systems of stochastic differential equations (E.59) are useful for repre-
senting dynamics with a stochastic component, they suffer from the shortcom-
ing that they are not suitable for modelling distributed systems. Most indus-
trial processes are distributed. One way to represent multivariate stochastic
distributed processes is through the input-output representation in the LaPlace
domain

Z(s) = G(s; θ)U(s) + H(s; θ)E(s) (E.64a)

y(tk) = z(tk) + v(tk) (E.64b)

in which U(s) is the process input vector, E(s) is a vector with white noise
components, Z(s) is the process output vector. v(tk) is the measurement
noise vector and y(tk) is the measured process output vector at time tk. The
elements, {gij(s)} and {hij(s)}, of the transfer function matrices, G(s) and
H(s), are rational transfer functions with time delays

gij(s) =
bij(s; θ)

aij(s; θ)
exp(−τij(θ)s) (E.65a)

hij(s) =
dij(s; θ)

cij(s; θ)
exp(−λij(θ)s) (E.65b)

In the case of no delays, the transfer function representation (E.64) can be
realized as a system of stochastic differential equations (E.59) and transformed
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to an equivalent discrete-time representation (E.1). In the case with delays, the
transfer function is formally realized as a system of delayed stochastic differen-
tial equations and then converted to an equivalent discrete-time representation
(E.1). The Kalman filter and predictor is then used as the optimal estimator
for (E.1) and used to compute the various prediction-error criteria for the pa-
rameter estimation. This procedure corresponds to computation of the optimal
predictions for the system (E.64) described using the transfer functions (E.65).

E.5 SISO Example

To illustrate the identification criteria discussed in this paper, we consider the
SISO system, S = {g(s), h(s)}, defined as

Z(s) = g(s)U(s) + h(s)E(s) (E.66a)

y(tk) = z(tk) + v(tk) (E.66b)

in which E(s) is standard white noise and v(tk) ∼ Niid(0, r
2). The transfer

function, g(s), from the process inputs, U(s), to the process output, Y (s), and
the disturbance transfer function, h(s), are

g(s) =
K

(α1s + 1)(α2s + 1)
e−τs (E.67a)

h(s) =
σ

γs + 1
(E.67b)

The parameters defining the system S and used for generating the data are:
K = 1.0, α1 = 1.0, α2 = 3.0, τ = 5.2, σ = 0.2, γ = 1.0 and r = 0.2. The system
is sampled with a sampling time of Ts = 0.25. The deterministic input, U(s), is
assumed to be implemented using a zero-order-hold circuit. The IO-data used
for estimation of this system are illustrated in figure E.1.

E.5.1 Identical Model and System Structure

Consider the situation in which the model and the system has the same struc-
ture. In this case the structure of the model, ĝ(s), and the disturbance model,

ĥ(s), are

ĝ(s) =
K̂

(α̂1s + 1)(α̂2s + 1)
e−τ̂s (E.68a)

ĥ(s) =
σ̂

γ̂s + 1
(E.68b)

Let M =
{

ĝ(s), ĥ(s)
}

. This implies that the true system, S, is within the class

of models, M, estimated, i.e. S ∈ M.
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Table E.1. Single-Step LS Estimation. θ0 = θ. Model (E.68). For j = 40, apparently the optimizer converges to a local minimum.

j K α1 α2 τ σ γ r σ/r V CPU sec.

1 0.9797 0.5643 3.4213 5.3171 0.3066 1.3754 0.2887 1.0618 109.9 75
4 0.9792 0.5799 3.4052 5.3118 0.5135 1.1552 0.4016 1.2787 116.9 83
8 0.9790 0.7231 3.3499 5.2044 0.4699 1.1888 0.3192 1.4722 120.0 73
20 0.9832 0.7091 3.3811 5.2017 3.2526 9.7835 3.4802 0.9346 119.2 188
40 0.9789 0.8811 3.2721 5.1013 1.1390 3.4448 2.12 · 10−5 5.37 · 104 122.2 185
80 0.9719 0.7614 3.3373 5.1576 0.2000 1.0000 0.2000 1.0000 129.5 196
100 1.0087 0.9819 3.3473 4.8655 0.2000 1.0000 0.2000 1.0000 200.3 194
200 0.9426 1.1232 2.8932 5.0718 0.2000 1.0000 0.2000 1.0000 130.4 373
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Table E.2. Single-Step LS Estimation. θ0 = 0.9 · θ. Model (E.68).

j K α1 α2 τ σ γ r σ/r V CPU sec.

1 0.9797 0.5641 3.4216 5.3171 0.8705 1.3757 0.8198 1.0618 109.9 113
4 0.9792 0.5798 3.4053 5.3119 0.4802 1.1548 0.3756 1.2785 116.9 154
8 0.9790 0.7239 3.3496 5.2037 0.8301 1.1885 0.5636 1.4730 120.0 227
20 0.9832 0.7086 3.3815 5.2019 1.9202 9.7771 2.0543 0.9347 119.2 351
40 0.9786 0.8639 3.2871 5.1016 0.1824 0.9056 0.1776 1.0268 122.5 325
80 0.9719 0.7612 3.3374 5.1578 0.1800 0.9000 0.1800 1.0000 129.5 394
100 1.0087 0.9820 3.3471 4.8656 0.1800 0.9000 0.1800 1.0000 200.3 376
200 0.9428 1.1445 2.8801 5.0634 0.1800 0.9000 0.1800 1.0000 130.4 532
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Table E.3. Multi-Step LS Estimation. θ0 = θ. Model (E.68).

Np K α1 α2 τ σ γ r σ/r V CPU sec.

1 0.9797 0.5652 3.4209 5.3164 0.3082 1.3750 0.2902 1.0618 110.0 64
4 0.9796 0.5659 3.4194 5.3169 0.2347 1.3862 0.2214 1.0603 449.1 120
8 0.9794 0.6137 3.3979 5.2827 0.5525 1.3641 0.5220 1.0585 924.2 175
20 0.9792 0.7116 3.3562 5.2107 0.2986 1.4301 0.2833 1.0540 2370 276
40 0.9823 0.7394 3.3641 5.1836 0.0277 8.0822 0.0295 0.9382 4763 804
80 0.9804 0.7596 3.3357 5.1767 0.2408 7.1234 0.2530 0.9514 9481 1154
100 0.9796 0.7587 3.3305 5.1782 0.4931 6.5668 0.5253 0.9386 11804 1389
200 0.9759 0.7740 3.2966 5.1802 0.9572 6.1967 1.0277 0.9313 23023 2635
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Table E.4. Multi-Step LS Estimation. θ0 = 0.9 · θ. Model (E.68).

Np K α1 α2 τ σ γ r σ/r V CPU sec.

1 0.9797 0.5632 3.4219 5.3179 0.3377 1.3754 0.3180 1.0620 110.0 87
4 0.9796 0.5657 3.4194 5.3170 0.0080 1.3861 0.0075 1.0603 449.1 421
8 0.9794 0.6136 3.3981 5.2827 0.3805 1.3641 0.3595 1.0585 924.2 251
20 0.9792 0.7116 3.3563 5.2107 0.3053 1.4301 0.2897 1.0539 2370 393
40 0.9823 0.7394 3.3641 5.1836 0.7805 8.0826 0.8318 0.9383 4763 644
80 0.9804 0.7597 3.3357 5.1767 0.4734 7.1230 0.4975 0.9514 9481 1101
100 0.9796 0.7586 3.3305 5.1782 0.6825 6.5664 0.7271 0.9386 11804 1426
200 0.9760 0.7739 3.2966 5.1802 0.5728 6.1969 0.6151 0.9314 23023 2382
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Table E.5. Single-Step ML Estimation. θ0 = θ. Model (E.68).

j K α1 α2 τ σ γ r σ/r V CPU sec.

1 0.9797 0.5651 3.4210 5.3164 0.2204 1.3762 0.2077 1.0613 -63.27 63
4 0.9792 0.5799 3.4047 5.3121 0.2432 1.1319 0.1868 1.3024 -1.987 178
8 0.9789 0.7184 3.3500 5.2089 0.2853 1.0881 0.1526 1.8698 23.57 387
20 0.9833 0.7078 3.3827 5.2018 0.2272 9.6807 0.2394 0.9490 17.60 882
40 0.9786 0.8638 3.2872 5.1061 0.0002 0.0046 0.2475 0.0008 45.37 1288
80 0.9719 0.7619 3.3372 5.1572 0.0002 0.0164 0.2545 0.0008 100.7 3213
100 1.0087 0.9817 3.3474 4.8657 0.0002 0.0173 0.3165 0.0006 536.9 7720
200 0.9426 1.1231 2.8932 5.0718 0.0002 0.1342 0.2553 0.0008 107.4 5043
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Table E.6. Single-Step ML Estimation. θ0 = 0.9 · θ. Model (E.68).

j K α1 α2 τ σ γ r σ/r V CPU sec.

1 0.9797 0.5651 3.4211 5.3164 0.2204 1.3762 0.2077 1.0613 -63.27 115
4 0.9793 0.5798 3.4048 5.3120 0.2432 1.1321 0.1868 1.3022 -1.987 371
8 0.9789 0.7184 3.3500 5.2088 0.2853 1.0881 0.1526 1.8694 23.57 725
20 0.9832 0.7081 3.3829 5.2007 0.2243 9.0000 0.2391 0.9384 17.62 2038
40 0.9786 0.8639 3.2871 5.1060 0.0002 0.1380 0.2475 0.0007 45.37 3297
80 0.9719 0.7608 3.3376 5.1580 0.0002 0.1985 0.2545 0.0007 100.7 6082
100 1.0088 0.9817 3.3474 4.8656 0.0002 0.2748 0.3165 0.0006 536.9 6696
200 0.9426 1.1232 2.8931 5.0718 0.0002 0.0291 0.2553 0.0007 107.4 13227
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Table E.7. Multi-Step ML Estimation. θ0 = θ. Model (E.68).

j K α1 α2 τ σ γ r σ/r V CPU sec.

1 0.9797 0.5651 3.4210 5.3164 0.2204 1.3761 0.2077 1.0613 -63.27 60
4 0.9798 0.5607 3.4252 5.3186 0.2182 1.4747 0.2102 1.0384 -248.7 106
8 0.9798 0.5307 3.4370 5.3425 0.2051 1.5454 0.2140 0.9582 -468.5 172
20 0.9801 0.5262 3.4700 5.3392 0.1860 1.5199 0.2189 0.8498 -829.0 402
40 0.9835 0.5302 3.5242 5.3124 0.1807 1.3616 0.2189 0.8254 -1204 860
80 0.9872 0.5295 3.5493 5.3044 0.1839 1.3596 0.2190 0.8400 -1977 1465
100 0.9879 0.5293 3.5537 5.3029 0.1846 1.3577 0.2189 0.8434 -2397 2289
200 0.9898 0.5285 3.5647 5.2997 0.1854 1.3493 0.2186 0.8480 -4715 5873
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Table E.8. Multi-Step ML Estimation. θ0 = 0.9 · θ. Model (E.68).

j K α1 α2 τ σ γ r σ/r V CPU sec.

1 0.9797 0.5651 3.4211 5.3164 0.2204 1.3762 0.2077 1.0613 -63.27 111
4 0.9798 0.5607 3.4251 5.3186 0.2182 1.4745 0.2102 1.0383 -248.7 160
8 0.9798 0.5307 3.4369 5.3425 0.2051 1.5453 0.2140 0.9581 -468.5 237
20 0.9801 0.5262 3.4700 5.3392 0.1860 1.5200 0.2189 0.8498 -829.0 490
40 0.9835 0.5302 3.5242 5.3124 0.1807 1.3614 0.2189 0.8254 -1204 878
80 0.9872 0.5294 3.5495 5.3043 0.1840 1.3603 0.2190 0.8403 -1977 1616
100 0.9879 0.5295 3.5535 5.3027 0.1843 1.3535 0.2189 0.8421 -2397 2508
200 0.9898 0.5298 3.5640 5.2987 0.1840 1.3310 0.2185 0.8420 -4715 6730
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Figure E.1. IO-data for the SISO system, S, defined by (E.66)-(E.67). The inputs,
{u(t)}, are PRBS with bandwidth [0 0.02] and levels [−1 1].

The estimates for the single-step and multi-step least squares criteria, various
prediction horizons and various starting guesses of the parameters are shown
in tables E.1-E.4.1 From these results, it is apparent that the LS method
cannot be used to uniquely estimate σ and r. However, their ratio seems to be
constant for different starting guesses and decreases with increasing horizon.
This implies that the identified model approaches an output error model for
long prediction horizons.

The estimates for the single-step and multi-step maximum likelihood criteria,
various prediction horizons and various starting guesses of the parameters are
shown in tables E.5-E.8. σ and r are estimated consistently for various initial
guesses. For long-range single-step maximum likelihood estimation, the esti-
mated model is essentially an output error model. The step response for the
true model and the models estimated by the multi-step maximum-likelihood
criterion with prediction horizons Np = 1 and Np = 200 are shown in figure
E.2. There is not much difference between the two estimated models, but a
little steady difference compared to the true model. However, as can be read
off from tables E.7-E.8 the main difference between the estimated models for
prediction horizon Np = 1 and prediction horizon Np = 200 is not the de-

terministic transfer function, ĝ(s), but the disturbance model, ĥ(s), and the
covariance of the measurement noise, r̂2.

1All computations are conducted using a 3.20 GHz Pentium IV processor. The CPU time
is reported to indicate the order of magnitude of computing time needed to calculate the
various estimates.
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Figure E.2. Step response for the deterministic part of the SISO model estimated
using a simplified model with an output integrator. Estimated model (E.68a)
using the multi-step maximum likelihood criterion with Np = 1 (solid line) and
Np = 200 (dotted line). Dashed line: True model (E.67a).

E.5.2 Simplified Model with Output Integrator

In this subsection we will illustrate the methodology when the model structure,
M, is different from the system model, S, used to generate the data, i.e. S /∈
M. To do this consider the model

ĝ(s) =
K̂

α̂s + 1
e−τ̂s (E.69a)

ĥ(s) =
σ̂

s
(E.69b)

In the process industries most stable models can be approximated quite well
by delayed first-order transfer functions, ĝ(s). The disturbance model, ĥ(s), is
chosen as an integrator to ensure off-set free control for step-type disturbances
and model-plant mismatch in the resulting predictive control system for which
the estimated model is applied. For internal model control (IMC) which can
be considered as a restricted class of predictive control this modelling approach
is commonplace (Morari and Zafiriou, 1989).

In contrast to the least-squares prediction-error-methods, the maximum-likelihood
prediction-error-methods yield unique estimates for the covariance matrices.
Hence, only the maximum-likelihood prediction-error-estimates for the system
(E.69) will be reported here. The single-step maximum-likelihood estimates for
various prediction horizons are shown in table E.9. As the prediction horizon
increases, σ̂ is decreased and the estimated model becomes essentially an out-



420 Prediction-Error-Methods for Model Predictive Control

Table E.9. Single-Step ML Estimation. Model (E.69).

j K α τ σ r σ/r V CPU sec.

1 1.0043 3.8386 5.7243 0.0658 0.2226 0.2959 -19.78 123
4 0.9911 3.6390 5.7547 0.0124 0.2424 0.0511 30.24 399
8 0.9811 3.5585 5.7792 0.0006 0.2490 0.0025 34.02 857
20 0.9812 3.5568 5.7802 0.0004 0.2455 0.0018 29.20 2245
40 0.9822 3.5750 5.7697 0.0002 0.2479 0.0009 48.26 4192
80 0.9747 3.5664 5.7618 0.0002 0.2547 0.0008 102.8 7448
100 1.0107 3.6458 5.6487 0.0002 0.3169 0.0006 539.5 8212
200 0.9465 3.3713 5.8331 0.0006 0.2556 0.0023 110.5 17885

Table E.10. Multi-Step ML Estimation. Model (E.69).

j K α τ σ r σ/r V CPU sec.

1 1.0043 3.8386 5.7243 0.0658 0.2226 0.2959 -19.78 120
4 1.0043 3.8387 5.7244 0.0659 0.2424 0.2962 -79.72 160
8 1.0043 3.8386 5.7243 0.0658 0.2490 0.2956 -161.4 257
20 1.0043 3.8389 5.7244 0.0660 0.2455 0.2968 -398.4 382
40 1.0044 3.8394 5.7245 0.0666 0.2479 0.2995 -780.4 722
80 1.0039 3.8319 5.7256 0.0669 0.2547 0.3011 -1541 1550
100 1.0033 3.8277 5.7261 0.0670 0.3169 0.3018 -1954 2082
200 1.0024 3.8209 5.7269 0.0672 0.2556 0.3027 -4234 4268

put error model. For the case considered, the estimated process noise vanishes
already at a prediction horizon of j = 8. The measurement noise is increased
slightly as the prediction horizon increases to accommodate the output noise
that is not caught by the process noise. The multi-step maximum-likelihood
estimates are shown in table E.10. Compared to the single-step maximum
likelihood estimates the multi-step maximum-likelihood estimates are much
less sensitive to the chosen prediction horizon. In fact there is not much dif-
ference between the estimated parameters for the one-step ahead maximum
likelihood estimate and the multi-step maximum likelihood estimate with a
very long prediction horizon, i.e. Np = 200. The step responses for the es-
timated multi-step maximum likelihood estimate with a prediction horizon of
Np = 1, i.e. the one-step maximum likelihood estimate, and a prediction hori-
zon of Np = 200 are shown in figure E.3. They can hardly be distinguished.
Hence, for all practical purposes they can be considered identical. This sug-
gests that the one-step ahead prediction maximum-likelihood estimate should
be applied in practice as the computing time for the one-step ahead prediction
maximum-likelihood estimate is considerably lower than the computing time
for the multi-step maximum-likelihood prediction with a long prediction hori-
zon (Np = 200). Figure E.3 also depicts the step response of the true system.
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Figure E.3. Step response for the deterministic part of the SISO model estimated
using a simplified model with an output integrator. Solid line: Estimated model
(E.69a) using the multi-step maximum likelihood criterion with Np = 1 and Np =
200. Dashed line: True model (E.67a).

It is evident that the step responses of the estimated models approximate the
true step response quite well.

E.6 Wood and Berry Distillation Example

Wood and Berry (Wood and Berry, 1973; Ogunnaike and Ray, 1994) propose
the following model for a distillation column separating methanol and water

Y (s) = G(s)U(s) + Gd(s)D(s) (E.70)

with

G(s) =

[
12.8e−s

16.7s+1
−18.9e−3s

21.0s+1
6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1

]

(E.71a)

Gd(s) =

[
3.8e−8.1s

14.9s+1
4.9e−3.4s

13.2s+1

]

(E.71b)

The variables in the model are: y1 is the overhead methanol mole fraction, y2

is the bottom product methanol mole fraction, u1 is the overhead reflux flow
rate, u2 is the bottoms steam flow rate, and d is the column feed flow rate.

The output data for the Wood and Berry distillation column is generated using
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the stochastic model

Z(s) = G(s)U(s) + Gd(s)(D(s) + σE(s)) (E.72a)

y(tk) = z(tk) + v(tk) (E.72b)

with E(s) being white noise and σ = 1. The measurement noise is

v(tk) ∼ Niid

([
0
0

]

,

[
r2
1 0
0 r2

2

])

(E.73)

in which r1 = r2 = 1.0. The sampling time of the system is Ts = 1.0. In
the identification experiment u is a pseudo random binary sequence and the
systematic feed flow rate deviation, d, is set to zero.

The IO-data generated for this system and used for identification is plotted in
figure E.4. It is apparent that outputs are highly co-linear, i.e.the system is ill-
conditioned. This is a well known phenomenon for distillation columns and may
in many cases require closed-loop identification or specially designed perturba-
tions suitable for the directionality of the plant (Andersen et al., 1989, 1991;
Andersen and Kümmel, 1992a,b; Koung and MacGregor, 1994; Zhu, 2001).

E.6.1 Identification of a Control Relevant Model

In the following the generated open-loop data will be used for estimation of a
process model, Ĝ(s), and a disturbance model, Ĥ(s). The application of this
model for predictive control is demonstrated.
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Figure E.4. IO-data for the Wood and Berry distillation column simulated using the
model defined by (E.72) with the transfer functions (E.71). σ = 1 and r1 = r2 =
1.0. The inputs, {u(t)}, are PRBS with bandwidth [0 0.01] and levels [−0.5 0.5].
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Figure E.5. Phase plane plot of the output data of the Wood and Berry distillation
column simulated using the model defined by (E.72) with the transfer functions
(E.71). σ = 1 and r1 = r2 = 1.0. The inputs, {u(t)}, are PRBS with bandwidth
[0 0.01] and levels [−0.5 0.5]. The figure shows that the output data are highly
co-linear.

The estimated model is of the form

Ẑ(s) = Ĝ(s)U(s) + Ĥ(s)Ê(s) (E.74a)

y(tk) = ẑ(tk) + v̂(tk) (E.74b)

in which Ĝ(s) is a transfer function with the same structure as G(s). The
disturbance model, Ĥ(s), has the structure

H(s) =

[
h11(s) 0

0 h22(s)

]

(E.75)

with

hii(s) =
1

s

σii

γiis + 1
i = 1, 2 (E.76)

Note that the disturbance model is equipped with integrators in order to en-
sure steady-state offset-free control when the model is applied in a predictive
controller (Muske and Badgwell, 2002; Pannocchia and Rawlings, 2003). Using
a multi-step (one-step) maximum likelihood criterion with prediction horizon
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Np = 1, the estimated model transfer functions are

Ĝ(s) =

[
13.21e−0.84s

17.20s+1
−18.52e−3.34s

20.67s+1
6.72e−7.69s

10.03s+1
−19.28e−3.07s

14.77s+1

]

(E.77a)

Ĥ(s) =

[ 1
s

0.18
0.16s+1 0

0 1
s

0.27
0.16s+1

]

(E.77b)

and the estimated covariance of the measurement noise is

R̂vv =

[
1.032 0

0 1.042

]

(E.77c)

In this particular disturbance model, we have not utilized that the impact of
the actual disturbance on the outputs are correlated even though this is evident
from the estimated disturbance model. This implies that the estimated model
is essentially two MISO models.

The step responses of the estimated transfer function, Ĝ(s), and the true trans-
fer function, G(s), are shown in figure E.6. It is evident that the estimated
model represents the true model well. To illustrate the identification conse-
quences of having co-linear output data as shown in figure E.5, the high gain
and low gain direction gains are plotted as function of frequency in figure E.7.
It is evident that the gain in the high gain direction is estimated accurately,
while there is some error in the estimate of the gain in the low gain direction.
This phenomena is well known for ill-conditioned plants and can be overcome
by closed-loop identification or identification experiments taking the high-gain
and low-gain direction into account.
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Figure E.6. Step responses for the deterministic part of the Wood and Berry dis-
tillation column model. Solid line: Estimated model. Dashed line: True model.
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Figure E.7. Low and high gain plots for the true model (dashed line) and the
estimated model (solid line) of the Wood and Berry distillation column. It is
evident that the error of the estimated model is almost entirely in the low gain
direction, while the gain in the high gain direction is estimated accurately.

E.6.2 Model Predictive Control

The suitability of the proposed identification method for predictive control
is validated by application of the identified model (E.77) in the design of a
constrained multivariable predictive controller. This controller is tested in a
simulation using (E.72) as the plant. The transfer functions are defined by
(E.71), σ = 1 and the measurement noise covariance is defined by (E.73). At
time t = 150 a deterministic feed flow step disturbance, d = 1, occurs. This
disturbance is unknown to the controller. At time t = 400, the disturbance
disappears again.

The performance of the model predictive controller is shown in figure E.8. In
the upper plots the noise free outputs, z1 and z2, as well as the measurements,
y1 and y2, are shown. The measurement noise is significant. Its effect on the
measured output is of the same order of magnitude as the effect of the process
noise. This corresponds to the common industrial plant using low resolution
sensors contaminated with a high level of measurement noise. In this situation,
no control system can completely eliminate the effect of the process noise on
the outputs. However, as is evident by figure E.9 which compares the open-
loop outputs, (z1 and z2, dotted line), to the closed-loop outputs, (z1 and
z2, solid line), the controller rejects the disturbance and performs marginally
better than the no-control (open-loop) case in the situation with only white
process noise. This closed-loop performance of the constrained predictive con-
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Figure E.8. The Wood and Berry distillation column controlled by a predictive
controller. Top: Outputs (z, solid line) and measured outputs (y, dotted line).
Bottom: Controlled process inputs, u.
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Figure E.9. The process outputs, z, for the Wood and Berry distillation column
controlled by a predictive controller (solid line) and the identical scenario without
control (dotted line).
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troller indicates that the proposed prediction-error- methodology is suitable
and feasible for identification of models that can be used by a predictive con-
troller. For the performance of the controller in the situation with model-plant
mismatch as well as unmeasured disturbance, it is important that the noise
model is equipped with integrators. In addition identification of parameters in
stochastic transfer functions with delays have proven feasible and very useful
for specification of predictive controllers.

E.7 Conclusion

A constructive method for estimation of parameters in continuous-discrete-
time stochastic systems described by transfer functions with time delays has
been described and demonstrated. The method applies prediction-error cri-
teria and the predictions are generated using the Kalman filter and predic-
tor for a stochastic linear discrete-time state space model equivalent to the
continuous-discrete-time stochastic transfer function model with time delays.
In particular, an efficient computing scheme for the multi-step maximum like-
lihood prediction-error estimator is developed. The multi-step prediction-error
criteria may be selected such that they are compatible with the optimization
criterion applied by the predictive controller that uses the identified model.
Compared to the single-step least-squares and the single-step maximum like-
lihood estimators, the multi-step maximum likelihood estimator produces pa-
rameter estimates that are less sensitive to the prediction horizon applied. In
contrast to the single-step and multi-step least squares estimators, the multi-
step maximum likelihood estimator computes unique parameters for the process
and measurement noise. Hence, the multi-step maximum likelihood estimators
are recommended for predictive control. Depending on the prediction horizon,
the multi-step maximum likelihood estimator requires much more computer
resources than the single-step one-step ahead least-squares predictor.

A number of authors (Shook et al., 1992; Gopaluni et al., 2003, 2004; Ljung,
1999) recommend that the pre-filter for the prediction errors is chosen in ac-
cordance with the prediction horizon in the predictive controller. However,
our SISO simulation example suggests that the multi-step maximum likeli-
hood estimates depend only weakly on the prediction horizon. The reason for
this apparent contradiction between our simulation example and conventional
wisdom is that we apply a rigorous maximum-likelihood estimator, while tra-
ditional prediction-error methods (Shook et al., 1992; Gopaluni et al., 2003,
2004; Ljung, 1999) neglect the covariance of the multi-step prediction errors.

Consequently, based on the SISO simulation example, we recommend the max-
imum likelihood (or maximum a posteriori) estimator based on the one-step-
ahead prediction-error. The models obtained using the multi-step maximum-
likelihood prediction-error method with a prediction horizon of one and a very
long prediction horizon are essentially identical. However, the long prediction
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horizon demands much more computational resources than the criterion based
on the one-step-ahead prediction.

The feasibility of the suggested approach for predictive control is demonstrated
using the Wood and Berry (Wood and Berry, 1973) distillation example. In
particular, the design of predictive controllers using continuous-discrete-time
stochastic models specified by transfer functions with delays has proven very
convenient.

E.8 Array Algorithms

The array algorithm implementations of the Kalman filter propagates the ma-
trix square root (a lower triangular matrix) of the covariance matrices. Thereby,
they circumvent the problems in the ordinary Kalman filter recursions about
maintaining symmetry and positive definiteness. These problems may arise due
to finite precision and round-off for ill-conditioned systems (Kaminski et al.,
1971; Morf and Kailath, 1975; Bierman, 1977; Bierman and Thornton, 1977;
Verhaegen and Van Dooren, 1986; Kailath et al., 2000). Problems with ill-
conditioning are particularly likely to occur when the Kalman estimators are
applied within an optimization algorithm for parameter estimation. The reason
for this is that the parameters may vary dramatically during the course of an
optimization.

The array algorithms proceed by transforming a pre-array, A, into a lower
triangular post-array,

[
L 0

]
, using orthogonal transformations, Θ, i.e.

AΘ =
[
L 0

]
(E.78)

The orthogonal transformations may be conducted using Householder trans-
formations, Givens rotations or fast Givens transformations (Golub and Van
Loan, 1996; Kailath et al., 2000). For the general treatment of this problem
Householder transformation are most efficient, while Givens rotations and fast
Givens transformation are more efficient when the problem is highly structured.

The ordinary Kalman-filter implementation may be considered as the dynamic
state space equivalent of the normal equations in least squares problems. Simi-
larly, the array methods may be regarded as the dynamic state space equivalent
of the QR-method for solution of least squares problems. In this appendix, the
pre-arrays and the structure of the post-arrays are presented and their relevance
to the prediction error methods is indicated.

E.8.1 One-Step Predictions

The one-step prediction error and the associated covariances for the model
(E.1) are presented and it is outlined how the results are used in the prediction
error algorithms. The resulting algorithm corresponds to (E.2)-(E.6a) in the
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ordinary Kalman filter implementation. The pre- and post-array can be stated
as [

R
1/2
vv CP

1/2
k|k−1 0

RwvR
−T/2
vv AP

1/2
k|k−1 Q

1/2
s

]

Θ =

[
X 0 0
Y Z 0

]

(E.79)

in which Qs = Rww − RwvR−1
vv R′

wv and Θ is some orthogonal transformation.
Note that the algorithm simplifies considerably when Rwv = 0. The post-array
matrices are

X = R
1/2
e,k (E.80a)

Y = (APk|k−1C
′ + Rwv)R

−T/2
e,k (E.80b)

Z = P
1/2
k+1|k (E.80c)

Hence, Z = P
1/2
k+1|k is the updated one-step state prediction-error square root

covariance. X and Y may be used in computing the one step prediction error,
εk|k−1 = ek, and to update the one-step state prediction, x̂k+1|k, i.e.

ŷk|k−1 = Cx̂k|k−1 (E.81a)

ek = yk − ŷk|k−1 (E.81b)

ēk = X−1ek (E.81c)

x̂k+1|k = Ax̂k|k−1 + Buk + Y ēk (E.81d)

Note that X is a lower triangular matrix. Hence, ēk = X−1ek may be computed
without factorizing X as it is already factorized. The one-step least squares
prediction error objective function apply εk|k−1 = ek and the contribution to
the objective function may be computed as ε′k|k−1εk|k−1 = e′kek. The contribu-
tion at time k to the maximum likelihood objective function may be computed
efficiently as

ε′k|k−1R
−1
e,kεk|k−1 = ē′kēk (E.82)

Since X = R
1/2
e,k is lower triangular, the determinant, detRk|k−1, may be com-

puted as

det Rk|k−1 = detRe,k =

ny∏

i=1

X2
i,i =

(
ny∏

i=1

Xi,i

)2

(E.83)

E.8.2 j-Step Predictions

For j-step prediction error maximum likelihood methods, the covariances, Pk+j|k =

P
1/2
k+j|kP

T/2
k+j|k may be propagated using the following array algorithm for the

square root
[

AP
1/2
k+j|k R

1/2
ww

]

Θ =
[

P
1/2
k+j+1|k 0

]

(E.84)
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in which Θ is an orthogonal transformation. Similarly, the square roots in

Rk+j|k = R
1/2
k+j|kR

T/2
k+j|k may be computed using an array algorithm

[

CP
1/2
k+j|k R

1/2
vv

]

Θ =
[

R
1/2
k+j|k 0

]

(E.85)

in which Θ is an orthogonal transformation. For the maximum likelihood j-step
prediction error method, the needed determinant may be computed as

det Rk+j|k =

ny∏

i=1

(R
1/2
k+j|k)2i,i =

(
ny∏

i=1

(R
1/2
k+j|k)i,i

)2

(E.86)
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Andersen, H. W. and Kümmel, M. (1992b). Evaluating Estimation of Gain
Directionality - Part 2: A Case Study of Binary Distillation. Journal of
Process Control , 2, 67–86.



432 References

Andersen, H. W.; Kümmel, M. and Jørgensen, S. B. (1989). Dynamics and
Identification of a Binary Distillation Column. Chemical Engineering Sci-
ence, 44, 2571–2581.

Andersen, H. W.; Rasmussen, K. H. and Jørgensen, S. B. (1991). Advances
in Process Identification. In W. H. Ray and Y. Arkun, editors, Chemical
Process Control IV , pages 237–269, New York, USA. AIChE.

Andersen, T. R. (2002). Optimal Design and Operation of Process Integrated
Distillation. Ph.D. thesis, Department of Chemical Engineering, Technical
University of Denmark.

Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.;
Croz, J. D.; Greenbaum, A.; Hammarling, S.; McKenney, A. and Sorensen,
D. (1999). LAPACK User’s Guide. SIAM, Philadelphia, PA, third edition.

Arrow, K. J. (1951). Alternative Approaches to the Theory of Choice in Risk-
Taking Situations. Econometrica, 19, 404–437.

Arrow, K. J.; Blackwell, D. and Girshick, M. A. (1949). Bayes and Minimax
Solutions of Sequential Design Problems. Econometrica, 17, 213–244.

Artstein, Z. and Leizarowitz, A. (1985). Tracking Periodic Signals with the
Overtaking Criterion. IEEE Transactions on Automatic Control , AC-30,
1123–1126.
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DAE Processes. In F. Allgöwer and A. Zheng, editors, Nonlinear Model
Predictive Control , pages 245–267. Birkhäuser, Basel.
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Chamberlain, R. M.; Lemaréchal, C.; Pedersen, H. C. and Powell, M. J. D.
(1982). The Watchdog Technique for Forcing Convergence in Algorithms for
Constrained Optimization. Mathematical Programming Study , 16, 1–17.

Chang, T. S. and Seborg, D. E. (1983). A Linear Programming Approach to
Multivariable Feedback Control with Inequality Constraints. International
Journal of Control , 37, 583–597.

Chen, C.-T. (1999). Linear System Theory and Design. Oxford, third edition.
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