Static Polymorphism vs Dynamic
Brief Note

Andreas Baerentzen

November 26, 2001

1 Introduction

In C++ polymorphism is (mainly) implemented through the notion of virtual
functions. While virtual functions are extremely useful, one should be aware
that the call to a virtual function has a bit of overhead compared to a call
to a non—virtual function. Moreover, virtual functions are rarely inlined by
compilers. These two issues are unimportant if the virtual function is a large
function (in which case the overhead is dwarfed by the execution time of the
function) or infrequently called.

However, small frequently called functions that could be inlined should only
be virtual if we absolutely cannot resolve the function call at compile time.
Avoiding virtual functions without letting go of (all of) the advantages of poly-
morphism is a bit tricky, but it can be accomplished using templates. This leads
to static polymorphism, and the aim of this note is to describe a method for
implementing that construct.

To test the method, an example has been coded using both virtual functions
(dynamic polymorphism) and static polymorphism. These two examples have
been compared speedwise on several platforms, and — as we shall see — static
polymorphism is much faster given the conditions above.

2 Polymorphism

T’ll warm up to the subject a bit before explaining what static polymorphism
really is, but, first of all, I should point you to the only reference in this note,
namely Todd Veldhuizen’s excellent paper “Techniques for Scientific C++”
available from his homepage

http://osl.iu.edu/~tveldhui

which is the place where I learned about static polymorphism. In fact, all meth-
ods described below are also described in Veldhuizen’s paper, but in this note
I have coded a complete example using both normal (dynamic) polymorphism
and static polymorphism and timed both examples on several platforms. In



other words, there is nothing novel here, I just test the method and provide a
relatively comprehensive discussion.

Let us consider the notion of ordinary (or dynamic) polymorphism. Poly-
morphism is closely related to virtual functions, but what does it mean? Well,
the word means something like “having many shapes”, I guess, and in pro-
gramming this translates into classes that have the same interface but work
in different ways. The classical example seems to be the shape library where
Circle, Oval, Square etc. are all derived from the same abstract ancestor Shape
and

class Shape {
public:

virtual void draw_yourself() = 0;
b
class Circle: public Shape {
public:

virtual void draw_yourself();
h
class Square: public Shape { ... };
class Oval: public Shape { ... };

Shapex shape_ptr = new Circle ;

shape_ptr->draw_yourself();

results in a function being called which depends on the dynamic type of shape_ptr
— i.e. the actual type of the class instance pointed to by shape_ptr. For in-
stance, if shape_ptr points to an instance of class Circle (class Circle being, of
course, derived from class Shape) then the actual called function is, in fact, the
draw_yourself function belonging to class Circle which (we assume) overrides
the default function in the Shape class (which is abstract virtue of the fact that
draw_yourself() is pure virtual (that is what “=0” means ;-) — so Circle must
override).

That is pretty much the story. The advantage lies in the fact that we don’t
have to do an explicit case analysis in order to call the correct function. Let us
look at another example which will be used throughout the rest of this note. Be-
low is a class template for a generic class representing (mathematical) functions
(aka mappings):

template<class DomT, class ImgT>
class DMap
{
public:
virtual ImgT operator()(const DomT& x) const = 0;
};



where the template arguments represent the domain and the image of the func-
tion, respectively. To use DMap we derive a class from the instantiation of its
template, like this:

class DCosine: public DMap<float,float>

{

public:
float operator()(const float& x) const {return cos(x);}
b

DCosine is a concrete class that represents ... cosine. Notice that it is derived
from DMap and (as it must) overrides the function call operator. This means
that if the function call operator is invoked through a reference of type DMapé&:
or a pointer of type DMap*, respectively, the DCosine::operator() function is
still called. Let us exploit this to create a new class for computing, numerically,
derivatives of arbitrary functions. It looks as follows ...

class DDerivative: public DMap<float,float>
typedef DMap<float,float> DMapT;
static const float dt_2 = le-4;
const DMapT& fun;
public:
DDerivative(const DMapT& _fun): fun(_fun) {}

float operator()(const float& x) const

{
}

return (fun(x+dt-2)-fun(x-dt-2))/(2xdt_2);

}

Class DDerivative is constructed with an instance of a class derived from a
DMap — e.g. DCosine. It is also itself a descendant of DMap and overrides its
function call operator. If DDerivative is constructed using the DMap fun then
given an argument x it will return a numerical estimate of the derivative of fun
at x.

We can use DDerivative to generate a plot of cosine and its derivative

DCosine cosine;
DDerivative dcos-dt(cosine);

const int N = 1000000;
for(int i=0;i<N;++i)
{
float t = M_PI*2xi/N;
cout K t € " " K cosine(t) € " " K dcos_dt(t) < endl;



To give a slightly simpler example, we can also use a DMap in a function.
Below is a function that integrates a DMap

float integrate(float a, float b, const DMap<float,float>& f)

{

int N=10000;
float d =(b-a)/N;
float s =0;

for(int i=0;i<N;++1i)
s += f(a+dxi);
return sxd;

}

Again, a simple example of the use of virtual functions. Any descendant of
DMap is a valid argument to integrate.

3 Static Polymorphism

You frown, and I understand why you are worried. I just called a virtual function
ONE MILLION times. It is very fast, but mother always told us that virtual
functions in tight loops are a no no. The problem is that virtual functions are
rarely inlined and, furthermore, have more function call overhead than normal
functions. Of course, this overhead is negligible for functions if (a) the function
itself is large or (b) it is not called very often, but for small functions (especially
one liners) it is a problem, and for this reason, small, frequently called functions
should not be virtual. Now what can we do about it? We do NOT want to
sacrifice the elegance of object oriented programming (or we wouldn’t be here)
but we also want to write insaaanely fast code.

Enter: static polymorphism (but we still need to warm up a little). The
advantage of virtual functions is that it is only at run time that we decide (based
on the true type of the pointed to object) what function to call. However, very
often, it is, in fact, known at compile time what function we want to call. Take
the code snippet

DCosine cosine;
integrate(cosine);

It is quite clear that the argument to integrate must be of type DCosine above no
matter how the rest of the program looks. In other words, the virtual function
calls are unnecessary. How do we go about removing them?

Todd Veldhuizen outlines some of the options in his scientific computing
note referenced earlier. One option is to use a callback function, i.e. to pass a
function pointer to integrate. That was good C, but it is not good C++ and it
certainly ensures that the function call is not inlineable. A far better option is
to use templates. Below is a new version of Cosine and integrate.



class Cosine {
public:

float operator()(const float& x) const {return cos(x);}
};

template<class T> float integrate(float a, float b, const T& f)
{

int N=1000000;

float d =(b-a)/N;

float s =0;

for(int i=0;i<N;++1i)

s += f(a+d«i);
return sxd;

}

The function template above, assumes that the class represented by type T has
a function call operator. If it doesn’t we get an error. In any case, there are no
virtual functions, so the call is resolved statically and probably inlined which is
what we wanted. Cosine is not (unlike DCosine) derived from any Map class.
This is no longer necessary, because integrate will now accept any class with a
function call operator taking one float argument. Is that good? If you think
so - go ahead use this style, but note that it may be static but it is not really
polymorphism. We do not constrain the argument of the function to be of a
type derived from DMap. Potentially, this can lead to nasty errors. We need
more type rigour.

Todd Veldhuizen outlines several solutions. One of these is a trick where
Map is a template and Cosine (or whatever) is used as a template argument
for Map. I'll skip this technique since there is a more elegant solution (also due
to Mr. Veldhuizen) which involves something known as the Barton—Nackman
trick. Look at this example:

template<class DomT, class ImgT, class ChildT>
class SMap

{

public:

ImgT operator()(const DomT& x) const

{

return static_cast<const ChildT&>(xthis)(x);

}
b

class SCosine: public SMap<float,float,SCosine>

{

public:

float operator()(const float& x) const



{
return cos(x);
}

};

Above is a class SMap and SCosine. They obviously correspond to DMap and
DCosine which we have seen earlier. However, note that SMap has an extra
template argument, ChildT. Now, the weird thing is that when SCosine is de-
clared, it inherits from SMap using ... itself as the final template argument.
This construct is called the Barton and Nackman trick after the inventors, and
it seems to compile everywhere so it is certainly legal. The advantage of passing
the derived class as a template argument to the ancestor is that we can use the
type of the derived class in the ancestor.

This leads to a beautiful new possibility! Since the ancestor (e.g. SMap)
knows the derived class (e.g. SCosine), it can call a function in the derived class
(e.g. the function call operator):

return static_cast<const ChildT&>(xthis)(x);

We can exploit this to create an integrate function which is passed a range a
DMap and computes the integral:

template<class FunT>
float integrate(float a, float b, const SMap<float,float,FunT>& f)

int N=10000;

float d =(b-a)/N;

float s =0;

for(int i=0;i<N;++1i)
s += f(a+dxi);

return sxd;

}

In the code above, f(a+d*i) must call SMap::operator() which in turn calls
FunT::operator (where FunT might, for instance, be SCosine). With a little
luck and optimization flags set right, both calls are inlined since they are known
at compile time. Hence, the code above should run just as fast as the previous
static example, but now it is also type checked since every argument to integrate
must be derived from SMap. We can also use the trick to implement a new class
SDerivative which is just like DDerivative

template<class OrigFunT>
class SDerivative: public SMap<float,float,SDerivative<OrigFunT> >

typedef SMap<float,float,OrigFunT> SMapT;

static const float dt_2 = le-4;
const SMapT& fun;



public:
SDerivative(const SMapT& _fun): fun(_fun) {}

float operator()(const float& x) const

{
}

return (fun(x+dt_2)-fun(x-dt_2))/(2xdt_2);

b

Now, because SMap must know its descendant, we must also give SDerivative
a template argument — the class of the function whose derivative we are com-
puting. This may not be intuitive, but look at the full example in Appendix B
and it becomes pretty clear. SDerivative is used like this

SCosine cosine;
SDerivative<SCosine> dcos_dt(cosine);

const int N = 1000000;
for(int i=0;i<N;++i)
{
float t = M_PI«2xi/N;
cout € t € " " K cosine(t) € " " < deos_dt(t) < end];

}

and this concludes the examples. We have seen how the BN trick can be used
to implement static polymorphism. In other words, we have seen how to cre-
ate an inheritance hierarchy of classes with what might be called static virtual
functions. The important point about the technique is that the complete type
of an object must be known at compile time. This is enforced by the fact that
the SMap template takes the descendant type as a template argument.

4 Results

Two almost identical programs — one written using dynamic polymorphism and
one written using static were timed on a number of platforms: PIII/Linux,
Athlon/Linux, MIPS/IRIX and Sparc/SunOS. On each platform two experi-
ment were conducted, one using dynamic polymorphism and one using static
polymorphism. The programs used for the experiments are in Appendices A
and B to this note. Note that tiny changes (of no practical consequnce) were
required to make the code compile on the IRIX and Sun platforms. On each
platform each program was tested using

time ./a.out > /dev/null

The program was timed three times and timings are best out of three. The
results (in the order of decreasing speed of the static implementation) are sum-
marized in the table below:



Platform Compiler Optimization Static (sec) Dynamic (sec)

PIIT 800 icc 5.0.1 -03 0.369 0.466
Athlon 900 gee 2.96 -03 0.443 0.593
PIIT 800 gee 2.96 -03 0.537 0.618
PIII 800 gee 3.0.2 -03 0.542 0.608
MIPS R5000 MIPSPro 7.30 -0O3 0.91 1.69
sparc Sun C++ 5.3 x05 5.7 6.1

The only flags (except -DSPEEDRUN) used during compilation were optimiza-
tion flags which are also noted in the table.

Two things are noticeable. Static polymorphism is, never, slower than dy-
namic. That is comforting, and if the result had been otherwise, I probably
hadn’t written this note.

However, also comforting, but in a different way (we don’t have to rewrite
all our code) is the fact that the difference is not enormous. Only in the case
of the MIPSPro 7.30 compiler (which I believe is rather good) is the speed—up
dramatic (close to a doubling). It is a bit surprising that the Sparc machine is
so slow — it is a big 20 processor computer and it was heavily loaded so I believe
the program did not have a CPU to itself. Another interesting result is that the
Intel compiler (icc 5.0.1) is somewhat faster than either of the two versions of
gee also used on the PIIT 800 platform. In fact, the dynamic version compiled
using icc is faster than the static version using gcc. However, this single example
is, of course, quite insufficient as a test of whether icc is, in general, faster than
gec.

Clearly, if the innermost function in the loop did more work than simply
compute the cosine of the argument (see appendices A and B), the difference
between the schemes would be smaller. However, cosine involves a function
call and many reasonable functions do much less work. To see what would
be the most one could gain by using static polymorphism, the experiment was
changed slightly. The loop was changed from one million to ten million iterations
and instead of computing the cosine of the argument, SCosine::operator() and
DCosine::operator() were changed to simply return 1.0. This new program was
tested on the Athlon/gcc-2.96 platform. The result was that the static program
ran more than twenty times as fast as the dynamic (0.048 seconds vs 1.143
seconds).

Finally, both programs were compiled to assembler. Analysis of the output
reveals that all function calls (except calls to the math library cos() function
and calls pertaining to output) in the static program are inlined. On the other
hand, in the dynamic program, the virtual function calls are not inlined.

5 Conclusions

Static polymorphism using the Barton—Nackman trick is not too hard to im-
plement, and for our little example it seems to speed up programs consistently



on all tested platforms. The advantage of using the BN trick over just using
templates is that the BN trick preserves type safety: For instance, the static
version of integrate will only integrate a mapping class derived from SMap.

The speed—up is only important in very tight loops, but in some cases the
improvement can be vast. This is probably almost exclusively when the use of
dynamic linking would cause a very small function to be non—-inlineable.

Note, also, that you cannot use static polymorphism everywhere as a re-
placement for virtual functions. Let us take an example: Say we have a vector
of DMap* pointers. We iterate through the list and call a virtual function using
each pointer. We cannot replace the list with a list of SMap* pointers (except
if we fill in the last template argument which indicates the derived type) be-
cause the pointers types must all be the same. More precisely, we can have
an SMap<float,float,Cosine>* and an SMap<float,float,Sine>* but we cannot
have a pointer type that can point to either. In fact, that is the whole point - I
apologize for threading water.

Finally, I would like to mention that the BN trick has other applications
than the one discussed here. When the ancestor knows the type of the derived
class, we can let a function in the ancestor class return a value of derived type.
T used this technique in a library of vector and matrix class intended for use in
computer graphics called CGLA

http://www.imm.dtu.dk/~jab/software.html#cgla



A Dynamic Example

#include <iostream>
#include <cmath>

using namespace std;

template<class DomT, class ImgT>
class DMap

{

public:
virtual ImgT operator()(const DomT& x) const = 0;
};

class DCosine: public DMap<float,float>

{

public:
float operator()(const float& x) const {return cos(x);}
};

class DDerivative: public DMap<float,float>

{
typedef DMap<float,float> DMapT;
static const float dt_2 = le-4;
const DMapT& fun;
public:
DDerivative(const DMapT& _fun): fun(_fun) {}

float operator()(const float& x) const

{
}

return (fun(x+dt-2)-fun(x-dt-2))/(2xdt_2);

5

main()

{

DCosine cosine;
DDerivative dcos_dt(cosine);

const int N = 1000000;

float dummy;
for(int i=0;i<N;++1i)

10



{
float t = M_PI«2%i/N;
#ifdef SPEEDRUN
dummy += cosine(t) - dcos_dt(t);
#else
cout K t K" " K cosine(t) € " " < dcos_dt(t) < endl;
#endif
}
#ifdef SPEEDRUN
cout € "Dummy: " < dummy;
#endif

}

11



B Static Example

#include <iostream>
#include <cmath>

using namespace std;

template<class DomT, class ImgT, class ChildT>
class SMap

{

public:

ImgT operator()(const DomT& x) const

{
}

return static_cast<const ChildT& > (xthis)(x);

b

class SCosine: public SMap<float,float,SCosine>

{

public:

float operator()(const float& x) const

{
}

return cos(x);

b

template<class OrigFunT>
class SDerivative: public SMap<float,float,SDerivative<OrigFunT> >

typedef SMap<float,float,OrigFunT> SMapT;
static const float dt_2 = 1le-4;
const SMapT& fun;
public:
SDerivative(const SMapT& _fun): fun(_fun) {}

float operator()(const float& x) const

{
}

return (fun(x+dt_2)-fun(x-dt_2))/(2xdt_2);

b

12



main()

{

SCosine cosine;
SDerivative<SCosine> dcos_dt(cosine);

const int N = 1000000;
float dummy;
for(int i=0;i<N;++i)

{
float t = M_PI%2xi/N;
#ifdef SPEEDRUN
dummy += cosine(t) - dcos_dt(t);
#else

cout € t € " " K cosine(t) € " " <K dcos_dt(t) < endl;
#endif

#ifdef SPEEDRUN

cout € "Dummy: " < dummy;
#endif

}

13



