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Abstract. Given two rooted, ordered, and labeled trees P and T the
tree inclusion problem is to determine if P can be obtained from T by
deleting nodes in T . This problem has recently been recognized as an
important query primitive in XML databases. Kilpeläinen and Mannila
(SIAM J. of Comp. 1995) presented the first polynomial time algorithm
using quadratic time and space. Since then several improved results have
been obtained for special cases when P and T have a small number of
leaves or small depth. However, in the worst case these algorithms still use
quadratic time and space. In this paper we present a new approach to the
problem which leads to a new algorithm which uses optimal linear space
and has subquadratic running time. Our algorithm improves all previous
time and space bounds. Most importantly, the space is improved by a
linear factor. This will make it possible to query larger XML databases
and speed up the query time since more of the computation can be kept
in main memory.

1 Introduction

Let T be a rooted tree. We say that T is labeled if each node is a assigned a
symbol from an alphabet Σ and we say that T is ordered if a left-to-right order
among siblings in T is given. All trees in this paper are rooted, ordered, and
labeled. A tree P is included in T , denoted P ⊑ T , if P can be obtained from T
by deleting nodes of T . Deleting a node v in T means making the children of v
children of the parent of v and then removing v. The children are inserted in the
place of v in the left-to-right order among the siblings of v. The tree inclusion
problem is to determine if P can be included in T and if so report all subtrees
of T that include P .

Recently, the problem has been recognized as an important query primitive
for XML data and has received considerable attention, see e.g., [15, 16, 18, 17].
The key idea is that an XML document can be viewed as an ordered, labeled
tree and queries on this tree correspond to a tree inclusion problem. As an
example consider Fig. 1. Suppose that we want to maintain a catalog of books
for a bookstore. A fragment of the tree, denoted D, corresponding to the catalog
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Fig. 1. Can tree (a) be included in tree (b)? Yes. The embedding is given in (c).

is shown in (b). In addition to supporting full-text queries, such as find all
documents containing the word ”John”, we can also utilize the tree structure of
the catalog to ask more specific queries, such as ”find all books written by John
with a chapter that has something to do with XML”. We can model this query
by constructing the tree, denoted Q, shown in (a) and solve the tree inclusion
problem: is Q ⊑ D? The answer is yes and a possible way to include Q in D is
indicated by the dashed lines in (c). If we delete all the nodes in D not touched
by dashed lines the trees Q and D become isomorphic. Such a mapping of the
nodes from Q to D given by the dashed lines is called an embedding (formally
defined in Sec. 3).

The tree inclusion problem was initially introduced by Knuth [11, exercise
2.3.2-22] who gave a sufficient condition for testing inclusion. Motivated by ap-
plications in structured databases [9, 12] Kilpeläinen and Mannila [10] presented
the first polynomial time algorithm using O(nP nT ) time and space, where nP

and nT is the number of nodes in a tree P and T , respectively. During the last
decade several improvements of the original algorithm of [10] have been sug-
gested [8, 1, 14, 4]. The previously best known bound is due to Chen [4] who
presented an algorithm using O(lP nT ) time and O(lP min{dT , lT }) space. Here,
lS and dS denotes the number of leaves of and the maximum depth of a tree S,
respectively. This algorithm is based on an algorithm of Kilpeläinen [8]. Note
that the time and space is still Θ(nP nT ) for worst-case input trees.

In this paper we improve all of the previously known time and space bounds.
Combining the three algorithms presented in this paper we have:

Theorem 1. For trees T and P the tree inclusion problem can be solved in
O(min( nP nT

log nT

, lP nT , nP lT log log nT )) time using optimal O(nT + nP ) space.



Hence, for worst-case input this improves the previous time and space bounds
by a logarithmic and linear factor, respectively. When P has a small number of
leaves the running time of our algorithm matches the previously best known time
bound of [4] while maintaining linear space. In the context of XML databases
the most important feature of our algorithms is the space usage. This will make
it possible to query larger trees and speed up the query time since more of the
computation can be kept in main memory.

Techniques Most of the previous algorithms, including the best one [4], are
essentially based on a simple dynamic programming approach from the original
algorithm of [10]. The main idea behind this algorithm is following: Let v ∈ V (P )
and w ∈ V (T ) be nodes with children v1, . . . , vi and w1, . . . , wj , respectively.
To decide if P (v) can be included T (w) we try to find a sequence of numbers
1 ≤ x1 < x2 < · · · < xi ≤ j such that P (vk) can be included in T (wxk

) for all k,
1 ≤ k ≤ i. If we have already determined whether or not P (vs) ⊑ T (wt), for all
s and t, 1 ≤ s ≤ i, 1 ≤ t ≤ j, we can efficiently find such a sequence by scanning
the children of v from left to right. Hence, applying this approach in a bottom-up
fashion we can determine, if P (v) ⊑ T (w), for all pairs (v, w) ∈ V (P ) × V (T ).

In this paper we take a significantly different approach. The main idea is
to construct a data structure on T supporting a small number of procedures,
called the set procedures, on subsets of nodes of T . We show that any such
data structure implies an algorithm for the tree inclusion problem. We consider
various implementations of this data structure which all use linear space. The
first simple implementation gives an algorithm with O(lP nT ) running time. As
it turns out, the running time depends on a well-studied problem known as the
tree color problem. We show a general connection between data structures for the
tree color problem and the tree inclusion problem. Plugging in a data structure
of Dietz [5] we obtain an algorithm with O(nP lT log log nT ) running time.

Based on the simple algorithms above we show how to improve the worst-
case running time of the set procedures by a logarithmic factor. The general idea
used to achieve this is to divide T into small trees or forests, called micro trees
or clusters of logarithmic size which overlap with other micro trees in at most 2
nodes. Each micro tree is represented by a constant number of nodes in a macro
tree. The nodes in the macro tree are then connected according to the overlap of
the micro trees they represent. We can efficiently preprocess the micro trees and
the macro tree such that the set procedures use constant time for each micro
tree. Hence, the worst-case running time is improved by a logarithmic factor to
O( nP nT

log nT

).

Our results rely on a standard RAM model of computation with word size
Θ(log n). We use a standard instruction set such as bitwise boolean operations,
shifts, and addition. Most of the proofs are omitted due to lack of space. They
can be found in the full version of the paper [3].



2 Notation and Definitions

In this section we define the notation and definitions we will use throughout the
paper. For a graph G we denote the set of nodes and edges by V (G) and E(G),
respectively. Let T be a rooted tree. The root of T is denoted by root(T ). The
size of T , denoted by nT , is |V (T )|. The depth of a node v ∈ V (T ), depth(v), is
the number of edges on the path from v to root(T ) and the depth of T , denoted
dT , is the maximum depth of any node in T . The set of children of a node v
is denoted child(v). A node with no children is a leaf and otherwise an internal
node. The set of leaves of T is denoted L(T ) and we define lT = |L(T )|. We say
that T is labeled if each node v is a assigned a symbol, denoted label(v), from an
alphabet Σ and we say that T is ordered if a left-to-right order among siblings
in T is given. All trees in this paper are rooted, ordered, and labeled.

Let T (v) denote the subtree of T rooted at a node v ∈ V (T ). If w ∈ V (T (v))
then v is an ancestor of w, denoted v � w, and if w ∈ V (T (v))\{v} then v is a
proper ancestor of w, denoted v ≺ w. If v is a (proper) ancestor of w then w is a
(proper) descendant of v. A node z is a common ancestor of v and w if it is an
ancestor of both v and w. The nearest common ancestor of v and w, nca(v, w), is
the common ancestor of v and w of largest depth. The first ancestor of w labeled
α, denoted fl(w, α), is the node v such that v � w, label(v) = α, and no node on
the path between v and w is labeled α. If no such node exists then fl(w, α) = ⊥,
where ⊥ 6∈ V (T ) is a special null node.

For any set of pairs U , let U |1 and U |2 denote the projection of U to the first
and second coordinate, that is, if (u1, u2) ∈ U then u1 ∈ U |1 and u2 ∈ U |2.

Lists A list, X , is a finite sequence of objects X = [v1, . . . , vk]. The length of
the list, denoted |X |, is the number of objects in X . The ith element of X , X [i],
1 ≤ i ≤ |X | is the object vi and v ∈ X iff v = X [j] for some 1 ≤ j ≤ |X |. For any
two lists X = [v1, . . . , vk] and Y = [w1, . . . , wk], the list obtained by appending
Y to X is the list X ◦Y = [v1, . . . , vk, w1, . . . , wk]. We extend this notation such
that for any object u, X ◦u denotes the list X ◦ [u]. For simplicity in the notation
we will sometimes write [vi | 1 ≤ i ≤ k] to denote the list [v1, . . . , vk]. A pair list
is a list of pairs of object Y = [(v1, w1), . . . , (vk, wk)]. Here the first and second
element in the pair is denoted by Y [i]1 = vi and Y [i]2 = wi. The projection of
pair lists is defined by Y |1 = [v1, . . . , vk] and Y |2 = [w1, . . . , wk].

Orderings Let T be a tree with root v and let v1, . . . , vk be the children of v
from left-to-right. The preorder traversal of T is obtained by visiting v and then
recursively visiting T (vi), 1 ≤ i ≤ k, in order. Similarly, the postorder traversal
is obtained by first visiting T (vi), 1 ≤ i ≤ k, and then v. The preorder number
and postorder number of a node w ∈ T (v), denoted by pre(w) and post(w), is
the number of nodes preceding w in the preorder and postorder traversal of T ,
respectively. The nodes to the left of w in T is the set of nodes u ∈ V (T ) such
that pre(u) < pre(w) and post(u) < post(w). If u is to the left of w, denoted by
u ⊳ w, then w is to the right of u. If u ⊳ w, u � w, or w ≺ u we write u E w.
The null node ⊥ is not in the ordering, i.e., ⊥ ⋪ v for all nodes v.
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Fig. 2. In (a) we have mop(S1, S2, S1, S3, S4) = {(v3, v7)} and in (b) we have
mop(S1, S2, S1, S3, S4) = {(v1, v7), (v3, v9)}.

Deep Sets A set of nodes V ⊆ V (T ) is deep iff no node in V is a proper ancestor
of another node in V .

Minimum Ordered Pair For deep sets of nodes V1, . . . , Vk let Φ(V1, . . . , Vk) ⊆
(V1 × · · · × Vk), be the set such that (v1, . . . , vk) ∈ Φ(V1, . . . , Vk) iff v1 ⊳ · · · ⊳
vk. If (v1, . . . , vk) ∈ Φ(V1, . . . , Vk) and there is no (v′1, . . . , v

′
k) ∈ Φ(V1, . . . , Vk),

where either v1 ⊳ v′1 ⊳ v′k E vk or v1 E v′1 ⊳ v′k ⊳ vk then the pair (v1, vk) is
a minimum ordered pair. The set of minimum ordered pairs for V1, . . . , Vk is
denoted by mop(V1, . . . , Vk). Fig. 2 illustrates mop on a small example. The
following lemma shows that we can compute mop(V1, . . . , Vk) iteratively by first
computing mop(V1, V2) and then mop(mop(V1, V2)|2, V3) and so on.

Lemma 1. For any deep sets of nodes V1, . . . , Vk:(v1, vk) ∈ mop(V1, . . . , Vk) iff
there exists a vk−1 such that (v1, vk−1) ∈ mop(V1, . . . , Vk−1) and (vk−1, vk) ∈
mop(mop(V1, . . . , Vk−1)|2, Vk).

3 Computing Deep Embeddings

In this section we present a general framework for answering tree inclusion
queries. As in [10] we solve the equivalent tree embedding problem. Let P and
T be rooted labeled trees. An embedding of P in T is an injective function
f : V (P ) → V (T ) such that for all nodes v, u ∈ V (P ),

(i) label(v) = label(f(v)). (label preservation condition)
(ii) v ≺ u iff f(v) ≺ f(u). (ancestor condition)
(iii) v ⊳ u iff f(v) ⊳ f(u). (order condition)

Lemma 2 ([10]). For any trees P and T , P ⊑ T iff there exists an embedding
of P in T .

An example of an embedding is given in Fig. 1(c). We say that the embedding f
is deep if there is no embedding g such that f(root(P )) ≺ g(root(P )). The deep
occurrences of P in T , denoted emb(P, T ) is the set of nodes,

emb(P, T ) = {f(root(P )) | f is a deep embedding of P in T}.



Note that emb(P, T ) must be a deep set in T . Furthermore, by definition the set
of ancestors of nodes in emb(P, T ) is the set of subtrees T (u) such that P ⊑ T (u).
Hence, to solve the tree inclusion problem it is sufficient to compute emb(P, T )
and then, using additional O(nT ) time, report all ancestors (if any) of this set.

The key idea in our algorithm for computing deep embeddings is to construct
a data structure that allows a fast implementation of the following procedures,
called the set procedures. For all V ⊆ V (T ), U ⊆ V (T ) × V (T ), α ∈ Σ define:

ParentT (V ). Return the set R := {parent(v) | v ∈ V }.
NcaT (U). Return the set R := {nca(u1, u2) | (u1, u2) ∈ U}.
DeepT (V ). Return the set R := {v ∈ V | ∄w ∈ V such that v ≺ w}.
MopT (U, V ). Return the set of pairs R such that for any pair (u1, u2) ∈ U ,

(u1, v) ∈ R iff (u2, v) ∈ mop(U |2, V ).
FlT (V, α). Return the set R := {fl(v, α) | v ∈ V }.

With the set procedures we can compute deep embeddings. The following pro-
cedure EmbT (v), v ∈ V (P ), recursively computes the set of deep occurrences of
P (v) in T . Fig. 3 illustrates how Emb works on a small example.

EmbT (v) Let v1, . . . , vk be the sequence of children of v ordered from left to
right. There are three cases:
1. k = 0 (v is a leaf). Set R := DeepT (FlT (L(T ), label(v))).
2. k = 1. Recursively compute R1 := EmbT (v1).

Set R := DeepT (FlT (DeepT (ParentT (R1)), label(v))).
3. k > 1. Compute R1 := EmbT (v1) and U1 := {(r, r) | r ∈ R1}. For i,

1 ≤ i ≤ k, compute Ri := EmbT (vi) and Ui := MopT (Ui−1, Ri).
Finally, compute R := DeepT (FlT (DeepT (NcaT (Uk)), label(v))).

If R = ∅ stop and report that there is no deep embedding of P (v) in T .
Otherwise return R.

Lemma 3. For any two trees T and P , EmbT (v) computes the set of deep
occurrences of P (v) in T .

Proof. By induction on the size of the subtree P (v). If v is a leaf we immediately
have emb(v, T ) = DeepT (FlT (L(T ), label(v))). Suppose that v is an internal
node with children v1, . . . , vk, k ≥ 1. We show that emb(P (v), T ) = EmbT (v).

If k = 1, w ∈ EmbT (v) implies label(w) = label(v) and there is a node
w1 ∈ EmbT (v1) such that fl(parent(w1), label(v)) = w, i.e., no node on the path
between w1 and w is labeled label(v). By induction EmbT (v1) = emb(P (v1), T )
and thus w is the root of an embedding of P (v) in T . Since EmbT (v) is the deep
set of all such nodes we have w ∈ emb(P (v), T ). Conversely, if w ∈ emb(P (v), T )
then label(w) = label(v), there is a node w1 ∈ emb(P (v1), T ) such that w ≺
w1, and no node on the path between w and w1 is labeled label(v), that is,
fl(w1, label(v)) = w. Hence, w ∈ EmbT (v).

Before considering case 3 we show that Uj = mop(EmbT (v1), . . . ,EmbT (vj))
by induction on j, 2 ≤ j ≤ k. For j = 2 it follows from the definition of MopT

that U2 = mop(EmbT (v1),EmbT (v2)). Hence, assume that j > 2. We have
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Fig. 3. Computing the deep occurrences of P into T depicted in (a) and (b) respectively.
The nodes in P are numbered 1–4 for easy reference. (c) Case 1 of Emb. Since 3 and
4 are leaves and label(3) = label(4) we have EmbT (3) = EmbT (4). (d) Case 2 of
Emb. Note that the middle child of the root(T ) is not in the set since it is not a deep
occurrence. (e) Case 3 of Emb: The two minimal ordered pairs of the sets of (d) and
(c). (f) nca of the pairs in (e) both give the root node of T which is the only (deep)
occurrence of P .

Uj = MopT (Uj−1,EmbT (vj)) = MopT (mop(EmbT (v1), . . . ,EmbT (vj−1)), Rj).
By definition of MopT , Uj is the set of pairs such that for any pair (r1, rj−1) ∈
mop(EmbT (v1), . . . ,EmbT (vj−1)), we have (r1, rj) ∈ Uj if and only if (rj−1, rj) ∈
mop(mop(EmbT (v1), . . . ,EmbT (vj−1))|2, Rj). It now follows from Lemma 1 that
(r1, rj) ∈ Uj iff (r1, rj) ∈ mop(EmbT (v1), . . . ,EmbT (vj)).

Consider case 3. If k > 1, w ∈ EmbT (v) implies label(w) = label(v) and
there are nodes (w1, wk) ∈ mop(emb(P (v1), T ), . . . , emb(P (vk), T )) such that
w = fl(nca(w1, wk), label(v)). Clearly, w is the root of an embedding of P (v)
in T . Assume for contradiction that w is not a deep embedding, i.e., w ≺ u
for some node u ∈ emb(P (v), T ). Since w = fl(nca(w1, wk), label(v)) there
must be nodes u1 ⊳ · · · ⊳ uk, such that ui ∈ emb(P (vi), T ), 1 ≤ i ≤ k, and
u = fl(nca(u1, uk), label(v)). However, this contradicts the fact that (w1, wk) ∈
mop(emb(P (v1), T ), . . . , emb(P (vk), T )). If w ∈ emb(P (v), T ) a similar argu-
ment implies that w ∈ EmbT (v). ⊓⊔

When the tree T is clear from the context we may not write the subscript T in
the procedure names. Note that since the EmbT (v) is a deep set we can assume
that Parent, Fl, Nca, and Mop take deep sets as input.



4 A Simple Tree Inclusion Algorithm

In this section we a present a simple implementation of the set procedures which
leads to an efficient tree inclusion algorithm. Subsequently, we modify one of the
procedures to obtain a family of tree inclusion algorithms where the complexities
depend on the solution to a well-studied problem known as the tree color problem.

Preprocessing To compute deep embeddings efficiently we require a data struc-
ture for T which allows us, for any v, w ∈ V (T ), to compute ncaT (v, w) and
determine if v ≺ w or v ⊳ w. In linear time we can compute pre(v) and post(v)
for all nodes v ∈ V (T ), and with these it is straightforward to test the two
conditions. Using a data structure by Harel and Tarjan [7] we can answer near-
est common ancestor queries in O(1) time using O(nT ) space and preprocessing
time. Hence, our data structure uses linear preprocessing time and space.

Implementation of the Set Procedures To answer tree inclusion queries we
give an efficient implementation of the set procedures. The idea is to represent
the node sets in a left-to-right order. For this purpose we introduce some helpful
notation. A node list, X , is a list of nodes. If vi ⊳ vi+1, 1 ≤ i < |X | then X is
ordered and if v1 E vi+1, 1 ≤ i < |X | then X is semiordered. A node pair list, Y ,
is a list of pairs of nodes. We say that Y is ordered if Y |1 and Y |2 are ordered,
and semiordered if Y |1 and Y |2 are semiordered.

The set procedures are implemented using node lists and node pair lists. All
lists used in the procedures are either ordered or semiordered. As noted in Sec. 3
we may assume that the input to all of the procedures, except Deep, represent
a deep set, that is, the corresponding node list or node pair list is ordered. We
assume that the input list given to Deep is semiordered. Hence, the output of
all the other set procedures must be semiordered.

ParentT (X). Return the list Z := [parent(X [i]) | 1 ≤ i ≤ |X |].
Nca(Y ). Return the list Z := [nca(Y [i]) | 1 ≤ i ≤ |Y |].
DeepT (X). Initially, set v := X [1] and Z := []. For each i, 2 ≤ i ≤ k, compare

v and X [i]: If v ⊳X [i] set Z := Z ◦ v and v := X [i]. If v ≺ X [i], set v := X [i]
and otherwise (X [i] ≺ v) do nothing. Finally, set Z := Z ◦ v and return Z.

MopT (X, Y ). Initially, set Z := []. Find the minimum j such that X [1]2 ⊳ Y [j]
and set x := X [1]1, y := Y [j], and h := j. If no such j exists, stop.

As long as h ≤ |Y | do the following: For each i, 2 ≤ i ≤ |X |, do: Set h := h+1
until X [i]2⊳Y [h]. Compare Y [h] and y: If y = Y [h] set x := X [i]1. If y⊳Y [h]
set Z := Z ◦ (x, y), x := X [i]1, and y := Y [h]. Finally, set Z := Z ◦ (x, y)
and return Z.

FlT (X, α). Initially, set Y := X , Z := [], and S := []. Repeat until Y := []:
For i = 1, . . . , |Y | if label(Y [i]) = α set Z := Insert(Y [i], Z) and otherwise
set S := S ◦ parent(Y [i]). Set S := DeepT (S), Y := Deep

∗
T (S, Z), S := [].

Return Z.



Procedure Fl calls two auxiliary procedures: Insert(v, Z) takes an ordered list
Z and insert the node v such that the resulting list is ordered, and Deep

∗(S, Z)
takes two ordered lists and returns the ordered list representing the set Deep(S∪
Z) ∩ S, i.e., Deep

∗(S, Z) = [s ∈ S|∄z ∈ Z : s ≺ z]. Below we describe the
implementation of Fl in more detail.

We use one doubly linked list to represent all the lists Y , S, and Z. For
each element in Y we have pointers Pred and Succ pointing to the predecessor
and successor in the list, respectively. We also have at each element a pointer
Next pointing to the next element in Y . In the beginning Next = Succ for all
elements, since all elements in the list are in Y . When going through Y in one
iteration we simple follow the Next pointers. When Fl calls Insert(Y [i], Z) we
set Next(Pred(Y [i])) to Next(Y [i]). That is, all nodes in the list not in Y , i.e.,
nodes not having a Next pointer pointing to them, are in Z. We do not explicitly
maintain S. Instead we just save Parent(Y [i]) at the position in the list instead
of Y [i]. Now Deep(S) can be performed following the Next pointers and removing
elements from the doubly linked list accordingly to procedure Deep. It remains
to show how to calculate Deep

∗(S, Z). This can be done by running through S
following the Next pointers. At each node s compare Pred(s) and Succ(s) with
s. If one of them is a descendant of s then remove s from the doubly linked list.

Using this linked list implementation Deep
∗(S, Z) takes time O(|S|), whereas

using Deep to calculate this would have used time O(|S| + |Z|).

Complexity of the algorithm For the running time of the node list implemen-
tation observe that, given the data structure described above, all set procedures,
except Fl, perform a single pass over the input using constant time at each step.
Hence we have,

Lemma 4. For any tree T there is a data structure using O(nT ) space and
preprocessing which supports each of the procedures Parent, Deep, Mop, and
Nca in linear time (in the size of their input).

The running time of a single call to Fl might take time O(nT ). Instead we will
divide the calls to Fl into groups and analyze the total time used on such a
group of calls. The intuition behind the division is that for a path in P the calls
made to Fl by Emb is done bottom up on disjoint lists of node in T .

Lemma 5. For disjoint ordered node lists V1, . . . , Vk and labels α1, . . . , αk, such
that any node in Vi+1 is an ancestor of some node in Deep(FlT (Vi, αi)), 2 ≤
i < k, all of FlT (V1, α1), . . . ,FlT (Vk, αk) can be computed in O(nT ) time.

The proof is omitted due to lack of space. The basic idea in the proof is to show
that any node in T can be in Y at most twice during all calls to Fl.

Using the node list implementation of the set procedures we get:

Theorem 2. For trees P and T the tree inclusion problem can be solved in
O(lP nT ) time and O(nP + nT ) space.



Proof. By Lemma 4 we can preprocess T in O(nT ) time and space. Let g(n)
denote the time used by Fl on a list of length n. Consider the time used by
EmbT (root(P )). We bound the contribution for each node v ∈ V (P ). From
Lemma 4 it follows that if v is a leaf the cost of v is at most O(g(lT )). Hence,
by Lemma 5, the total cost of all leaves is O(lP g(lT )) = O(lP nT ). If v has a
single child w the cost is O(g(|EmbT (w)|)). If v has more than one child the
cost of Mop,Nca, and Deep is bounded by

∑
w∈child(v) O(|EmbT (w)|). Fur-

thermore, since the length of the output of Mop (and thus Nca) is at most
z = minw∈child(v) |EmbT (w)| the cost of Fl is O(g(z)). Hence, the total cost for
internal nodes is,

∑

v∈V (P )\L(P )

O(g( min
w∈child(v)

|EmbT (w)|)+
∑

w∈child(v)

|EmbT (w)|) ≤
∑

v∈V (P )

O(g(|EmbT (v)|)).

Next we bound the sum
∑

v∈V (P ) O(g(|EmbT (v)|)). For any w ∈ child(v)

we have that EmbT (w) and EmbT (v) are disjoint ordered lists. Furthermore
we have that any node in EmbT (v) must be an ancestor of some node in
DeepT (FlT (EmbT (w), label(v))). Hence, by Lemma 5, for any leaf to root path
δ = v1, . . . , vk in P , we have that

∑
u∈δ g(|EmbT (u)|) ≤ O(nT ). Let ∆ denote

the set of all root to leaf paths in P . It follows that,
∑

v∈V (T ) g(|EmbT (v)|) ≤∑
p∈∆

∑
u∈p g(|EmbT (u)|) ≤ O(lP nT ).

Since this time dominates the time spent at the leaves the time bound fol-
lows. Next consider the space used by EmbT (root(P )). The preprocessing of
described above uses only O(nT ) space. Furthermore, by induction on the size
of the subtree P (v) it follows immediately that at each step in the algorithm at
most O(maxv∈V (P ) |EmbT (v)|) space is needed. Since EmbT (v) a deep embed-
ding, it follows that |EmbT (v)| ≤ lT . ⊓⊔

An Alternative Algorithm In this section we present an alternative algo-
rithm. Since the time complexity of the algorithm in the previous section is
dominated by the time used by Fl, we present an implementation of this pro-
cedure which leads to a different complexity. Define a firstlabel data structure
as a data structure supporting queries of the form fl(v, α), v ∈ V (T ), α ∈ Σ.
Maintaining such a data structure is known as the tree color problem, see e.g.,
[5, 13]. With such a data structure available we can compute Fl(X, α) as the list
[fl(X [i], α) | 1 ≤ i ≤ |X |].

Theorem 3. Let P and T be trees. Given a firstlabel data structure using s(nT )
space, p(nT ) preprocessing time, and q(nT ) time for queries, the tree inclusion
problem can be solved in O(p(nT ) + nP lT · q(nT )) time and O(nP + s(nT ) + nT )
space.

Proof. Constructing the firstlabel data structures uses O(s(nT )) space and time
O(p(nT )). As in the proof of Thm. 2 we have that the total time used by
EmbT (root(P )) is bounded by

∑
v∈V (P ) g(|EmbT (v)|), where g(n) is the time

used by Fl on a list of length n. Since EmbT (v) is a deep embedding and each



fl takes q(nT ) we have,
∑

v∈V (P ) g(|EmbT (v)|) ≤
∑

v∈V (P ) g(lT ) = nP lT · q(nT ).
⊓⊔

Several firstlabel data structures are available, for instance, if we want to main-
tain linear space, we can use a data structure by Dietz [5] that supports firstlabel
queries in O(log log nT ) time using O(nT ) space and O(nT ) expected preprocess-
ing time. Plugging in this data structure we obtain,

Corollary 1. For trees P and T the tree inclusion problem can be solved in
O(nP lT log log nT ) time and O(nP + nT ) space.

Since the preprocessing time p(n) of the firstlabel data structure is expected
the running time of the tree inclusion algorithm is also expected. However, the
expectation is due to a dictionary using perfect hashing and we can therefore
use the deterministic dictionary of [6] with O(nT log nT ) worst-case preprocessing
time instead. This does not affect the overall complexity of the algorithm.

5 A Faster Tree Inclusion Algorithm

In this section we present a new tree inclusion algorithm which has a worst-case
subquadratic running time. Due to lack of space we will only give a rough sketch
of the algorithm. A full description of the algorithm can be found in the full
version of the paper [3].

The first step is to divide T into small connected subgraphs, called micro trees
or clusters. Using a technique from [2] we can construct in linear time a cluster
partition of T , consisting of O(nT / lognT ) clusters each of size O(log nT ), with
the property that any cluster shares at most two nodes with any other cluster.
Each micro tree is represented by a constant number of nodes in a macro tree.
The nodes in the macro tree are then connected according to the overlap of the
micro trees they represent. Note that the total number of nodes in the macro
tree is O(nT / lognT ).

In linear time of the tree T we preprocess all the micro trees and the macro
tree such that the set procedures use constant time for each micro tree. Using
a compact node representation we can then implement all the set procedures in
O(nT / log nT ) time.

Lemma 6. For any tree T there is a data structure using O(nT ) space and
O(nT ) expected preprocessing time which supports all of the set procedures in
O(nT / log nT ) time.

The proof of the lemma and all details in the implementation of the set proce-
dures can be found in the full version of the paper. We can now compute the
deep occurrences of P in T using the procedure Emb of Sec. 3 and Lemma 6.
Since each node v ∈ V (P ) contributes at most a constant number of calls to set
procedures it follows that,

Theorem 4. For trees P and T the tree inclusion problem can be solved in
O( nP nT

log nT

) time and O(nP + nT ) space.



Combining the results in Theorems 2, 4 and Corollary 1 we have the main result
of Theorem 1.
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12. H. Mannila and K. J. Räihä. On query languages for the p-string data model.
Information Modelling and Knowledge Bases, pages 469–482, 1990.

13. S. Muthukrishnan and M. Müller. Time and space efficient method-lookup for
object-oriented programs. In Proc. of Symp. on Discrete Algorithms, pages 42–51,
1996.

14. T. Richter. A new algorithm for the ordered tree inclusion problem. In Proc. of
Symp. on Combinatorial Pattern Matching (CPM), pages 150–166, 1997.

15. T. Schlieder and H. Meuss. Querying and ranking XML documents. J. Am. Soc.
Inf. Sci. Technol., 53(6):489–503, 2002.

16. T. Schlieder and F. Naumann. Approximate tree embedding for querying XML
data. In Proc. of Workshop On XML and Information Retrieval, 2000.

17. H. Yang, L. Lee, and W. Hsu. Finding hot query patterns over an xquery stream.
The VLDB Journal, 13(4):318–332, 2004.

18. L. H. Yang, M. L. Lee, and W. Hsu. Efficient mining of XML query patterns for
caching. In Proc. of Conference on Very Large Databases (VLDB), pages 69–80,
2003.


