
Relating Abstra
t Datatypes and Z-S
hemata

?

Hubert Baumeister

University of Muni
h, Institute of Computer S
ien
e,

Oettingenstr. 67, D-80358 Muni
h, Germany

baumeist�informatik.uni-muen
hen.de

Abstra
t. In this paper we investigate formally the relationship be-

tween the notion of abstra
t datatypes in an arbitrary institution, found

in algebrai
 spe
i�
ation languages like Clear, ASL and CASL; and the

notion of s
hemata from the model-oriented spe
i�
ation language Z. To

this end the institution S of the logi
 underlying Z is de�ned and a trans-

lation of Z-s
hemata to abstra
t datatypes over S is given. The notion of

a s
hema is internal to the logi
 of Z and thus spe
i�
ation te
hniques of

Z relying on the notion of a s
hema
an only be applied in the
ontext of

Z. By translating Z-s
hemata to abstra
t datatypes these spe
i�
ation

te
hniques
an be transformed to spe
i�
ation te
hniques using abstra
t

datatypes. Sin
e the notion of abstra
t datatypes is institution indepen-

dent, this results in a separation of these spe
i�
ation te
hniques from

the spe
i�
ation language Z and allows them to be applied in the
ontext

of other, e.g. algebrai
, spe
i�
ation languages.

1 Introdu
tion

As already noted by Spivey [11℄, s
hema-types, as used in the model-oriented

spe
i�
ation language Z, are
losely related to many-sorted signatures; and

s
hemata are related to the notion of abstra
t datatypes found in algebrai

spe
i�
ation languages.

Z is a model-oriented spe
i�
ation language based on set-theory. In the

model-oriented approa
h to the spe
i�
ation of software systems spe
i�
ations

are expli
it system models
onstru
ted out of either abstra
t or
on
rete primi-

tives. This is in
ontrast to the approa
h used with algebrai
 or property-oriented

spe
i�
ation languages like CASL [9℄, whi
h identi�es the interfa
e of a software

module,
onsisting of sorts and fun
tions, and states the properties of the inter-

fa
e
omponents using �rst-order formulas.

Spe
i�
ations written in Z are stru
tured using s
hemata and operations on

s
hemata. A s
hema denotes a set of bindings of the form f(x

1

; v

1

); : : : ; (x

n

; v

n

)g.

Operations on s
hemata in
lude restri
tion of the elements of a s
hema to those

satisfying a formula; logi
al operations like negation,
onjun
tion, disjun
tion

and quanti�
ation; and renaming and hiding of the
omponents of a s
hema.

S
hemata, and thus the stru
turing me
hanism of Z, are elements of the logi

used by Z. This, on one hand, has the advantage of using Z again to reason about

the stru
ture of a spe
i�
ation, but, on the other hand, has the disadvantage

that development methods and theoreti
al results referring to the stru
ture of

spe
i�
ations
annot be easily transfered to other spe
i�
ation languages based

on di�erent logi
s.

?

This resear
h was partly supported by the Esprit working group 29432 (CoFI WG).

In
ontrast, the stru
turing primitives of property-oriented spe
i�
ation lan-

guages
an be formulated independent from the logi
 underlying the parti
ular

spe
i�
ation language. This is done by using the notion of an institution intro-

du
ed by Goguen and Burstall [5℄ to formalize the informal notion of a logi
al

system. The building blo
ks of spe
i�
ations are abstra
t datatypes whi
h
on-

sist of an interfa
e and a
lass of possible implementations of that interfa
e.

Operations on abstra
t datatypes are the restri
tion of the implementations to

those satisfying a set of formulas; the union of abstra
t datatypes; hiding, adding

and renaming of interfa
e
omponents. What exa
tly
onstitutes the
omponents

of an interfa
e and how they are interpreted in implementations depends on the

institution underlying the spe
i�
ation language. For example, in the institution

of equational logi
 the
omponents of an interfa
e are sorts and operations. The

implementations interpret the sorts as sets and the operations as fun
tions on

these sets.

The goal of this paper is to formalize the relationship between s
hemata and

abstra
t datatypes, and to show a
orresponden
e between the operations on

abstra
t datatypes and operations on s
hemata. This relationship
an be used

to transfer results and methods used from Z to property-oriented spe
i�
ation

languages and vi
e versa. For example, the Z-style for the spe
i�
ation of sequen-

tial systems
an be transfered to property-oriented spe
i�
ation languages [2℄.

Further, the
orresponden
e between operations on abstra
t datatypes and op-

erations on s
hema suggests new operations on abstra
t datatypes like negation

and disjun
tion.

However, we
annot
ompare s
hemata with abstra
t datatypes in an arbi-

trary institution; instead, we have to de�ne �rst an institution S whi
h formalizes

the notion of the set-theory used in Z, and then
ompare s
hemata with abstra
t

datatypes in this institution. The de�nition of the institution S has the further

advantage that it
an be used to de�ne a variant of the spe
i�
ation language

CASL, CASL-S, based on set-theory instead of order-sorted partial �rst-order

logi
. This is possible be
ause the semanti
s of most of CASL is largely indepen-

dent from a parti
ular institution (
f. Mossakowski [8℄).

2 Institutions and Abstra
t Datatypes

The notion of institutions is an attempt to formalize the informal notion of a

logi
al system and was developed by Goguen and Burstall [5℄ as a means to

de�ne the semanti
s of the spe
i�
ation language Clear [3℄ independent from a

parti
ular logi
.

De�nition 1 (Institution). An institution I = hSign

I

; Str

I

; Sen

I

; j=

I

i
on-

sists of

{ a
ategory of signatures Sign

I

,

{ a fun
tor Str

I

: Sign

op

I

! Cat assigning to ea
h signature � the
ategory of

�-stru
tures and to ea
h signature morphism � : � ! �

0

the redu
t fun
tor

j

�

: Str

I

(�

0

)! Str

I

(�);

{ a fun
tor Sen

I

: Sign

I

! Set assigning to ea
h signature � the set of

�-formulas and to ea
h signature morphism � : � ! �

0

a translation � of

�-formulas to �

0

-formulas, and

2

{ a family of satisfa
tion relations j=

I

�

� Str

I

(�)� Sen

I

(�) for � 2 Sign

I

indi
ating whether a �-formula ' is valid in a �-stru
turem, writtenm j=

I

�

' or for short m j=

I

',

su
h that the satisfa
tion
ondition holds: for all signature morphisms � : � !

�

0

, formulas ' 2 Sen

I

(�) and stru
tures m

0

2 Str

I

(�

0

) we have

m

0

j

�

j=

I

' if and only if m

0

j=

I

�(')

We may write M j=

I

' for a
lass of �-stru
turesM and a �-formula ' instead

of 8m 2 M : m j=

I

', and similar for m j=

I

� and M j=

I

� for a set of

�-formulas � and a �-stru
ture m.

Traditionally, an abstra
t datatype (�;M) is a spe
i�
ation of a datatype in

a software system. The signature � de�nes the external interfa
e as a
olle
tion

of sort and fun
tion symbols andM is a
lass of�-algebras
onsidered admissible

implementations of that datatype. In the
ontext of an arbitrary institution I

an abstra
t datatype is a pair (�;M) where � is an element of Sign

I

and M is

a full sub
ategory of Str

I

(�).

The basi
 operations on abstra
t datatypes are I

�

(impose), D

�

(derive), T

�

(translate) and + (union) (
f. Sannella and Wirsing [10℄):

Impose allows to impose additional requirements on an abstra
t datatype.

The semanti
s of an expression I

�

(�;M) is the abstra
t datatype (�;M

0

) where

M

0

onsists of all �-stru
tures m in M satisfying all formulas in �, i.e.

I

�

(�;M) = (�; fm 2M j m j=

I

�g):

The translate operation
an be used to rename symbols in a signature but

also to add new symbols to a signature. If � is a signature morphism from � to

�

0

then the expression T

�

(�;M) denotes an abstra
t datatype (�

0

;M

0

) where

M

0

ontains all �

0

-stru
tures m whi
h are extensions of some �-stru
ture m in

M , i.e.

T

�

(�;M) = (�

0

; fm

0

2 Str

I

(�

0

) j m

0

j

�

2Mg):

The derive operation allows to hide parts of a signature. D

�

(�

0

;M

0

) denotes

the abstra
t datatype having as signature the domain of � and as models the

translations of the models of Sp by j

�

, i.e.

D

�

(�

0

;M

0

) = (�; fm

0

j

�

j m

0

2M

0

g):

At last, the union operation is used to
ombine two spe
i�
ations. Sin
e

for arbitrary institutions, the union of signatures is not de�ned, we have to

require that both spe
i�
ations have the same signature. To form the union

of two spe
i�
ations of di�erent signatures �

1

and �

2

one has to provide a

signature � and signature morphisms �

1

: �

1

! � and �

2

: �

2

! � and write

T

�

1

Sp

1

+ T

�

2

Sp

2

. The semanti
s of (�;M

1

) + (�;M

2

) is the abstra
t datatype

(�;M

0

) where M

0

is the interse
tion M

1

and M

2

, i.e.

(�;M

1

) + (�;M

2

) = (�;M

1

\M

2

):

3

3 The Institution S

In this se
tion we introdu
e the
omponents of the institution S formalizing the

logi
 underlying the spe
i�
ation language Z. Note that this is not an attempt

to give a semanti
s to the Z spe
i�
ation language. The relationship between S

and Z is similar to the relationship between the institution of equational logi

and the semanti
s of a spe
i�
ation language based on this institution.

3.1 Signatures

A signature � in Sign

S

onsists of a set of names for given-sets G and a set of

identi�ers O. Ea
h identi�er id in O is asso
iated with a type �(id) built from

the names of given-sets and the
onstru
tors:
artesian produ
t, power-set and

s
hema-type. Note that S has no type
onstru
tors for fun
tion types. Instead,

a fun
tion from T

1

to T

2

is identi�ed with its graph and is of type P(T

1

� T

2

).

This allows fun
tions to be treated as sets and admits higher-order fun
tions,

as fun
tions may take as arguments the graph of a fun
tion and also return the

graph of a fun
tion.

De�nition 2 (Signatures). Let F and V be two disjoint re
ursive enumerable

sets of names. A signature � in Sign

S

is a tuple (G;O; �) where G and O are

�nite disjoint subsets of F . The fun
tion � maps names in O to types in T (G)

where T (G) is indu
tively de�ned by:

{ G � T (G)

{ (produ
t) T

1

� � � � � T

n

2 T (G) for T

i

2 T (G), 1 � i � n

{ (power-set) P(T) 2 T (G) for T 2 T (G)

{ (s
hema-type) <x

1

: T

1

; : : : ; x

n

: T

n

> 2 T (G) for T

i

2 T (G) and x

i

2 V

and x

i

6= x

j

for 1 � i; j � n.

The fun
tion T , mapping a given-set G to T (G), is extended to a fun
tor

from Set to Set by extending the fun
tion f : G ! G

0

to a fun
tion T (f) :

T (G)! T (G

0

) as follows:

{ T (f)(g) = g for g 2 G,

{ T (f)(T

1

� : : :� T

n

) = T (f)(T

1

)� : : :� T (f)(T

n

) for T

1

; : : : ; T

n

2 T (G),

{ T (f)(P(T)) = P(T (f)(T)) for T 2 T (G),

{ T (f)(<x

1

: T

1

; : : : ; x

n

: T

n

>) = <x

1

: T (f)(T

1

); : : : ; x

n

: T (f)(T

n

)>

for T

1

; : : : ; T

n

2 T (G).

De�nition 3 (Signature-Morphisms). A signature morphism � from a sig-

nature (G;O; �) to a signature (G

0

; O

0

; �

0

) is a pair of fun
tions �

G

: G ! G

0

and �

O

: O ! O

0

su
h that �

G

and �

O

are
ompatible with � and �

0

, that is

� ; T (�

G

) = �

O

; �

0

.

The
ategory Sign

S

has as obje
ts signatures � = (G;O; �) and as mor-

phisms signature morphisms � = (�

G

; �

O

) as de�ned above.

Example 1. As an example of a signature in Sign

S

onsider the following small

Z spe
i�
ation of a bank a

ount whi
h de�nes a given set Integer, an identi�er

+, and a s
hema ACCOUNT :

[Integer℄

4

+ : Integer � Integer ! Integer

ACCOUNT

bal : Integer

The signature of this spe
i�
ation is � = (fIntegerg; f+;ACCOUNTg; �) where

� maps ACCOUNT to the type Integer and + to the type P(Integer� Integer�

Integer). Note that the fun
tion type of + is translated to the type P(Integer�

Integer� Integer) of its graph.

A property ne
essary for writing modular spe
i�
ations is the
o
ompleteness

of the
ategory of signatures of an institution.

Theorem 1. The
ategory Sign

S

is �nitely
o
omplete.

The
olimit of a fun
tor F : J ! Sign

S

is given by the
olimits of the set

of given-set names and the set of identi�ers. Note that Sign

S

is only �nitely

o
omplete be
ause we have assumed that the set of given-set names and the

set of identi�ers are �nite.

3.2 Stru
tures

Given a signature � = (G;O; �) a �-stru
ture A interprets ea
h given-set in G

as a set from Set and ea
h identi�er id in O as a value of the set
orresponding

to the type of id .

De�nition 4 (�-stru
tures). For a given signature � = (G;O; �) the
at-

egory Str

S

(�) of �-stru
tures has as obje
ts pairs (A

G

; A

O

) where A

G

is a

fun
tor from the set G, viewed as a dis
rete
ategory, to Set, and A

O

is the set

f(o

1

; v

1

); : : : ; (o

n

; v

n

)g for O = fo

1

; : : : ; o

n

g and v

i

2

�

A

G

(�(o

i

)). The fun
tor

�

A

G

: T (G) ! Set is given by:

{

�

A

G

(T) = A

G

(T) for T = g and g 2 G

{

�

A

G

(T

1

� � � � � T

n

) = (

�

A

G

(T

1

)� � � � �

�

A

G

(T

n

)) for T

1

� � � � � T

n

2 T (G)

{

�

A

G

(P(T)) = 2

�

A

G

(T)

for P(T) 2 T (G)

{

�

A

G

(<x

1

: T

1

; : : : ; x

n

: T

n

>)

= ff(x

1

; v

1

); : : : ; (x

n

; v

n

)g j v

i

2

�

A

g

(T

i

); i 2 1 : : : ng

for <x

1

: T

1

; : : : ; x

n

: T

n

> 2 T (G).

Example 2. An example of a stru
ture A over the signature de�ned in Ex. 1

onsists of a fun
tion A

G

mapping Integer to Z and the set

A

O

= f(ACCOUNT ; ff(bal ; n)g j n 2 Zg); (+; graph(�(x; y):x + y))g:

The notation graph(f) is used to denote the graph of a fun
tion f : T ! T

0

.

A morphism h from a �-stru
ture A to a �-stru
ture B is a family of fun
-

tions between the interpretations of the given-sets whi
h is
ompatible with the

interpretations of the identi�ers in O.

5

De�nition 5 (�-homomorphism). A �-homomorphism h from a stru
ture

A = (A

G

; A

O

) to a stru
ture B = (B

G

; B

O

) is a natural transformation h :

A

G

) B

G

for whi
h

�

h

�(o)

(v

A

) = v

B

for all o 2 O, (o; v

A

) 2 A

O

and (o; v

B

) 2 B

O

holds.

�

h is the extension of h : A

G

) B

G

to h :

�

A

G

)

�

B

G

given by:

{

�

h

T

(v) = h

T

(v) for T 2 G

{

�

h

T

((v

1

; : : : ; v

n

)) = (

�

h

T

1

(v

1

); : : : ;

�

h

T

n

(v

n

)) for T = T

1

� � � � � T

n

2 T (G)

{

�

h

T

(S) = f

�

h

T

0

(v) j v 2 Sg for T = P(T

0

) 2 T (G)

{

�

h

T

(f(x

1

; v

1

); : : : ; (x

n

; v

n

)g) = f(x

1

;

�

h

T

1

(v

1

)); : : : ; (x

n

;

�

h

T

n

(v

n

))g

for T = <x

1

: T

1

; : : : ; x

n

: T

n

> 2 T (G)

De�nition 6 (�-redu
t). Given a signature morphism � from � = (G;O; �)

to �

0

= (G

0

; O

0

; �

0

) in Sign

S

and a stru
ture A = (A

G

; A

O

) in Str

S

(�

0

) the

�-redu
t of A, written Aj

�

, is the stru
ture B = (B

G

; B

O

) given by:

{ B

G

= �

G

;A

G

{ B

O

= f(o; v) j (�

O

(o); v) 2 A

O

; o 2 Og

For a �

0

-homomorphism h : A! B the �-redu
t is de�ned as hj

�

= �

G

;h.

De�nition 7 (Str

S

). The
ontravariant fun
tor Str

S

from Sign

S

to Cat as-

signs to ea
h signature � the
ategory having as obje
ts �-stru
tures and as

morphisms �-homomorphisms, and to ea
h Sign

S

-morphism � from � to �

0

a fun
tor from the
ategory Str

S

(�

0

) to the
ategory Str

S

(�) mapping a �-

stru
ture A and a �-homomorphism to their �-redu
t.

If an institution has amalgamation, two stru
tures A and B over di�erent

signatures �

A

and �

B

an be always
ombined provided that the
ommon
om-

ponents of both signatures are interpreted the same in A and B. This allows to

build larger stru
tures from smaller ones in a modular way. An institution has

amalgamation if and only if its stru
ture fun
tor preserves pushouts, i.e. maps

pushout diagrams in Sign

I

to pullba
k diagrams in the
ategory of
ategories.

The fun
tor Str

S

not only preserves pushouts but also arbitrary �nite
olimits.

Theorem 2. The fun
tor Str

S

preserves �nite
olimits.

3.3 Expressions

The �-formulas are �rst-order formulas over expressions denoting sets and ele-

ments in sets. Expressions
an be tested for equality and membership. An impor-

tant
ategory of expressions,
alled s
hema-expressions, denote sets of elements

of s
hema-type.

E ::= id j (E; : : : ; E) j E:i j <x

1

:= E; : : : ; x

n

:= E> j E:x j E(E)

j fE; : : : ; Eg j fS �Eg j P(E) j E � : : :�E j S

The fun
tion appli
ation E

1

(E

2

) is well-formed if E

1

is of type P(T

1

� T

2

) and

E

2

is of type T

1

. The result is of type T

2

. If E

1

represents the graph of a total

fun
tion then E

1

(E

2

) yields the result of that fun
tion applied to E

2

. However,

6

if E

1

is the graph of a partial fun
tion, or not fun
tional at all, then an arbitrary

value from the

�

A

G

(T

2

) is
hosen as the result for the situations where E

2

is not

in the domain of that fun
tion or if several results are asso
iated with E

2

in E

1

.

Given a signature � = (G;O; �) and a set of variables X � V together with

a fun
tion �

X

: X ! T (G) then an environment � is a pair (�; (X; �

X

)). We use

the notation �[<x

1

: T

1

; : : : ; x

n

: T

n

>℄ to denote the environment (�; (X

0

; �

0

X

))

given by X

0

= X [fx

1

; : : : ; x

n

g and

�

0

X

(id) =

�

T

i

if id = x

i

for some 1 � i � n

�

X

(id) else

An expression E is well-formed with respe
t to � if

{ E = id and id 2 X [O [G. The type of E wrt. � is

�

�

(E) =

8

<

:

�

X

(id) if id is in X ,

�(id) if id is in O,

P(id) if id is in G.

{ E = (E

1

; : : : ; E

n

) and ea
h E

i

is well-formed for all 1 � i � n. Then

�

�

(E) = �

�

(E

1

)� : : :� �

�

(E

n

).

{ E = E

0

:i, �

�

(E

0

) = T

1

� : : :� T

n

and 1 � i � n. The type of E is T

i

.

{ E = <x

1

:= E

1

; : : : ; x

n

:= E

n

>, x

i

2 V , x

i

6= x

j

and ea
h E

i

is well-formed.

The type of E is <x

1

: �

�

(E

1

); : : : ; x

n

: �

�

(E

n

)>.

{ E = E

0

:x, �

�

(E

0

) = <x

1

: T

1

; : : : ; x

n

: T

n

> and x = x

i

for some 1 � i � n.

The type of E is T

i

.

{ E

1

(E

2

), �

�

(E

1

) = P(T

1

� T

2

) and �

�

(E

2

) = T

1

. The type of E is T

2

.

{ E = fE

1

; : : : ; E

n

g, ea
h E

i

is well-formed and all E

i

have the same type T

for 1 � i � n. The type of E is P(T).

{ E = fS �E

0

g, S is well-formed and has type P(<x

1

: T

1

; : : : ; x

n

: T

n

>) and

E

0

is well-formed with respe
t to �[<x

1

: T

1

; : : : ; x

n

: T

n

>℄. The type of E

is P(�

�

0

(E

0

)).

{ E = P(E

0

) and E

0

is well-formed. The type of E is P(�

�

(E

0

)).

{ E = E

1

� : : :�E

n

and ea
h E

i

is well-formed. The type of E is P(�

�

(E

i

)�

: : :� �

�

(E

n

)).

{ E = S and S is a well-formed s
hema-expression with respe
t to � (well-

formedness of s
hema-expressions is de�ned later in this paper.) The type of

E is the type of S with respe
t to �.

Let E be an expression well-formed with respe
t to an environment � =

(�; (X; �

X

)) and let A = (A

G

; A

O

) be a �-stru
ture. The semanti
s of an ex-

pression E is given with respe
t to a variable binding �
ompatible with the

environment �. A variable binding � = (A;A

X

)
ompatible with �
onsists of a

�-stru
ture A and a set A

X

= f(x

1

; v

1

) : : : (x

n

; v

n

)g with v

i

2

�

A

G

(�

X

(x

i

)) for

all 1 � i � n.

If v = f(x

1

; v

1

); : : : ; (x

n

; v

n

)g is an element of type T = <x

1

: T

1

; : : : ; x

n

: T

n

>

then the notation �[v℄ is used to des
ribe the variable binding (A;A

0

X

) where

(x

i

; v

i

) is in A

0

x

i� (x

i

; v

i

) is in v, or there is no (x

i

; v

0

i

) in v for some v

i

and

(x

i

; v

i

) is in A

X

.

Now the semanti
s of an expression E wrt. � is de�ned as follows:

7

{ [[id℄℄

�

= v if (id; v) 2 A

X

and id 2 X or (id; v) 2 A

O

and o 2 O, or

[[id℄℄

�

= A

G

(id) if id is in G.

{ [[(E

1

; : : : ; E

n

)℄℄

�

= ([[E

1

℄℄

�

; : : : ; [[E

n

℄℄

�

).

{ [[E:i℄℄

�

= v

i

if [[E℄℄

�

= (v

1

; : : : ; v

n

).

{ [[<x

1

:= E

1

; : : : ; x

n

:= E

n

>℄℄

�

= f(x

1

; [[E

1

℄℄

�

); : : : ; (x

n

; [[E

n

℄℄

�

)g.

{ [[E:x℄℄

�

= v

i

if [[E℄℄

�

= f(x

1

; v

1

); : : : ; (x

n

; v

n

)g and x = x

i

.

{ [[E

1

(E

2

)℄℄

�

= v if v is unique with ([[E

2

℄℄

�

; v) in [[E

1

℄℄

�

. If another v

0

with

([[E

2

℄℄

�

; v

0

) in [[E

1

℄℄

�

exists or if none exists then v is an arbitrary element of

�

A

G

(T

2

), where �

�

(E

1

) = P(T

1

� T

2

).

{ [[fE

1

; : : : ; E

n

g℄℄

�

= f[[E

1

℄℄

�

; : : : ; [[E

n

℄℄

�

g.

{ [[fS �Eg℄℄

�

= f[[E℄℄

�[v℄

j v 2 [[S℄℄

�

g.

{ [[P(E)℄℄

�

= 2

[[E℄℄

�

.

{ [[E

1

� : : :�E

n

℄℄

�

= [[E

1

℄℄

�

� : : :� [[E

n

℄℄

�

.

S
hema-expressions A s
hema denotes a set of elements of s
hema-type,

whi
h have the form f(x

1

; v

1

); : : : ; (x

n

; v

n

)g and are
alled bindings. Thus the

type of a s
hema is P(<x

1

: T

1

; : : : ; x

n

: T

n

>) if T

i

is the type of v

i

for 1 � i � n.

A simple s
hema of the form x

1

: E

1

; : : : ; x

n

: E

n

de�nes the identi�ers of

a s
hema and a set of possible values for ea
h identi�er. Given a s
hema S

we
an a de�ne a new s
hema SjP having as elements all the elements of S

satisfying the predi
ate P . We
an form the negation, disjun
tion,
onjun
tion

and impli
ation of s
hema-expressions, whi
h
orrespond to the
omplement,

union and interse
tion of the sets denoted by the arguments. For the disjun
tion,

onjun
tion and impli
ation of s
hema-expressions the type of the arguments

have to be
ompatible, that is, if two
omponents have the same name, they have

to have the same type. The type of the result has as
omponents the union of the

omponents of the arguments with all dupli
ates removed. Adjustments of the

type of s
hemas
an be made by using hiding and renaming, where hiding hides

some
omponents of a s
hema-type and renaming renames some
omponents.

A parti
ular kind of renaming is de
orating the identi�ers with �nite sequen
es

of elements from f

0

; !; ?g. An existentially quanti�ed s
hema 9S

1

:S

2

denotes the

set of all bindings of the identi�ers of S

2

without the ones in S

1

su
h that there

exists a binding in S

1

su
h that the union of the bindings is an element of S

2

.

An universally quanti�ed s
hema 8S

1

:S

2

is an abbreviation for :9S

1

::S

2

.

S ::= x

1

: E; : : : ; x

n

: E j (SjP) j :S j S _ S j S ^ S j S) S

j 8S:S j 9S:S j S n [x

1

; : : : ; x

n

℄ j S[x

1

=y

1

; : : : ; x

n

=y

n

℄

j S De
or j E

Note that the s
hema operations �S and �S, used in Z for the spe
i�
ation

of sequential systems, are only
onvenient abbreviations for s
hema expressions

involving the s
hema operations de�ned above. For example, �S is the same as

the
onjun
tion of the s
hema S with S

0

, where S

0

is S where all
omponents

are de
orated with a prime, and �S is the same as the s
hema �Sj(x

1

= x

0

1

^

: : : ^ x

n

= x

0

n

) if P(<x

1

: T

1

; : : : ; x

n

: T

n

>) is the type of S.

A s
hema-expression S is well-formed with respe
t to an environment � =

(�; (X; �

X

)) with � = (G;O; �), if

8

{ S = x

1

: E

1

; : : : ; x

n

: E

n

, x

i

2 V and E

i

is well-formed and has type P(T

i

)

for ea
h 1 � i � n. The type of S is P(<x

1

: T

1

; : : : ; x

n

: T

n

>).

{ S = S

0

jP and P is well-formed with respe
t to �

0

= �[T ℄, where P(T) is the

type of S

0

with respe
t to �. The type of S is P(T).

{ S = :S

0

and S

0

is well-formed. The type of S is �

�

(S

0

).

{ S = S

1

op S

2

, S

1

and S

2

have
ompatible types, and S

1

and S

2

are well-

formed for ea
h op 2 f_;^;)g. Two types P(<x

1

: T

1

; : : : ; x

n

: T

n

>) and

P(<x

0

1

: T

0

1

; : : : ; x

0

m

: T

0

m

>) are
ompatible if for all i; j su
h that x

i

= x

0

j

we

have T

i

= T

0

j

. The type of S has as
omponents the union of the
omponents

of the type of S

1

and S

2

with the dupli
ates removed.

{ S = 9S

1

:S

2

, S

1

and S

2

are well-formed with respe
t to � and their types are

ompatible. The type of S is the type of S

2

with all the identi�ers removed

whi
h o

ur in S

1

.

{ S = S

0

n [x

1

; : : : ; x

n

℄ and S is well-formed. Note that it is not required that

the x

i

have to be identi�ers of the type of S

0

. The type of S is the type of

S

0

without the identi�er x

i

if x

i

o

urs in the type of S for all 1 � i � n.

{ S = S

0

[x

1

=y

1

; : : : ; x

n

=y

n

℄ and S is well-formed. Note that it is not required

that the x

i

have to be identi�ers of the type of S

0

. The type of S is the type

of S

0

where x

i

is repla
ed by y

i

if x

i

is an identi�er of S

0

. Note that the

fun
tion from the identi�ers of the type of S

0

to the identi�ers of the type

of S de�ned by this repla
ement has to be inje
tive.

{ S = S

0

De
or and S

0

is well-formed. De
or is a �nite sequen
e of elements

from f

0

; !; ?g. The type of S is P(<�x

1

: T

1

; : : : ; �x

n

: T

n

>) if S

0

is of type

P(<x

1

: T

1

; : : : ; x

n

: T

n

>). �x

i

is the de
orated form of x

i

, for example, if

De
or is ! then �x

i

is x

i

!.

{ S = E and E is well-formed with type P(<x

1

: T

1

; : : : ; x

n

: T

n

>). The type

of S is P(<x

1

: T

1

; : : : ; x

n

: T

n

>).

Let v be the set f(x

1

; v

1

); : : : ; (x

n

; v

n

)g and X be a set of variables, then

vj

X

denotes the binding v restri
ted to the identi�ers in the set X , i.e. the set

f(x

i

; v

i

) j x

i

2 X; (x

i

; v

i

) 2 vg.

If a s
hema-expression S is well-formed with respe
t to �, its semanti
s [[S℄℄

�

with respe
t to a stru
ture A = (A

G

; A

O

) and a variable binding � = (A;A

X

)

ompatible with � is de�ned as follows:

{ [[x

1

: E

1

; : : : ; x

n

: E

n

℄℄

�

= ff(x

1

; v

1

); : : : ; (x

n

; v

n

)g j v

i

2 [[E

i

℄℄

�

; 1 � i � ng.

{ [[SjP ℄℄

�

= fv 2 [[S℄℄

�

j �[v℄ j=

S

Pg. The satisfa
tion relation j=

S

is de�ned in

Se
t. 3.4.

{ [[:S℄℄

�

= fv 2

�

A

G

(T) j v 62 [[S℄℄

�

g and T is the type of S.

{ [[S n [y

1

; : : : ; y

n

℄℄℄

�

= fvj

fx

1

;::: ;x

m

g

j v 2 [[S℄℄

�

g, where fx

1

; : : : ; x

m

g is the set

of identi�ers of the type of S without the identi�ers y

1

; : : : ; y

n

.

{ [[S

1

op S

2

℄℄

�

= fv 2

�

A

G

(T) j vj

X

1

2 [[S

1

℄℄

�

op vj

X

2

2 [[S

2

℄℄

�

g for op 2 f_;^;)g,

where T is the type of S

1

op S

2

and X

1

and X

2

are the set of
omponents

of s
hemata S

1

and S

2

, respe
tively. Note that v 2

�

A

G

(T) guarantees that

if (x; a) 2 v

1

, (x; a

0

) 2 v

2

and v = v

1

[v

2

then a = a

0

.

{ [[9S

1

:S

2

℄℄

�

= fv 2

�

A

G

(�

�

(9S

1

:S

2

)) j 9v

1

2 [[S

1

℄℄

�

(v

1

[v)j

X

2

2 [[S

2

℄℄

�

g where

X

2

is the set of
omponents of s
hema S

2

.

{ [[S[y

1

=y

0

1

; : : : ; y

n

=y

0

n

℄℄℄

�

= f

�

f(v) j v 2 [[S℄℄

�

g where f is the fun
tion from the

identi�ers of type S to the identi�ers of type S

0

de�ned by [y

1

=y

0

1

; : : : ; y

n

=y

0

n

℄

9

as follows:

f(id) =

�

y

0

i

if y

i

= id for some 1 � i � n

id else

and

�

f is the extension of f to bindings.

{ [[S

0

De
or ℄℄

�

= ff(�x

1

; v

1

); : : : ; (�x

n

; v

n

)g j f(x

1

; v

1

); : : : ; (x

n

; v

n

)g 2 [[S

0

℄℄

�

g.

�x

i

is the identi�er x

i

de
orated with De
or . For example, if De
or is

0

then

�x

i

is x

i

0

.

3.4 Formulas

The formulas in Sen

S

(�) are the usual �rst-order formulas built on the mem-

bership predi
ate and the equality between expressions.

P ::= true j false j E 2 E j E = E j :P j P _ P j P ^ P

j P) P j 8S:P j 9S:P

A formula P is well-formed in an environment � = (�; (X; �

X

)) if

{ P = E

1

2 E

2

, �

�

(E

2

) = P(�

�

(E

1

)) and E

1

and E

2

are well-formed.

{ P = (E

1

= E

2

), �

�

(E

1

) = �

�

(E

2

) and E

1

and E

2

are well-formed.

{ P = :P

0

and P

0

is well-formed.

{ P = P

1

op P

2

and P

1

and P

2

are well-formed for op 2 f_;^;)g.

{ P = 8S:P

0

, S is well-formed and has type P(T) where T is a s
hema-type

and P

0

is well-formed with respe
t to �[T ℄.

{ P = 9S:P

0

, S is well-formed and has type P(T) where T is a s
hema-type

and P

0

is well-formed with respe
t to �[T ℄.

Given a signature-morphism � : � ! �

0

and a formula P well-formed with

respe
t to � = (�; (X; �

X

)) then the formula ��(P) is well-formed with respe
t

to (�

0

; (X; �

0

X

)) where �

0

X

= �

X

;T (�

G

) and ��(P) is given by:

{ ��(id) = id if id 2 X , ��(id) = �

O

(id) if id 2 O and ��(id) = �

G

(id) if id 2 G.

{ ��((E

1

; : : : ; E

n

)) = (��(E

1

); : : : ; ��(E

n

)).

{ ��(E:i) = ��(E):i.

{ ��(<x

1

:= E

1

; : : : ; x

n

:= E

n

>) = <x

1

:= ��(E

1

); : : : ; x

n

:= ��(E

n

)>.

{ ��(E:x) = ��(E):x.

{ ��(E

1

(E

2

)) = ��(E

1

)(��(E

2

)).

{ ��(fE

1

; : : : ; E

n

g) = f��(E

1

); : : : ; ��(E

n

)g.

{ ��(fS �Eg) = f��(S) � ��(E)g.

{ ��(P(E)) = P(��(E)).

{ ��(E

1

� : : :�E

n

) = ��(E

1

)� : : :� ��(E

n

).

{ ��(x

1

: E

1

; : : : ; x

n

: E) = x

1

: ��(E

1

); : : : ; x

n

: ��(E

n

).

{ ��(SjP) = ��(S)j��(P).

{ ��(:S) = :��(S).

{ ��(S

1

op S

n

) = ��(S

1

) op ��(S

n

) for op 2 f_;^;)g.

{ ��(9S

1

:S

2

) = 9��(S

1

):��(S

2

) and ��(8S

1

:S

2

) = 8��(S

1

):��(S

2

).

{ ��(S n [x

1

; : : : ; x

n

℄) = ��(S) n [x

1

; : : : ; x

n

℄.

{ ��(S[x

1

=y

1

; : : : ; x

n

=y

n

℄) = ��(S)[x

1

=y

1

; : : : ; x

n

=y

n

℄.

{ ��(E

1

2 E

2

) = ��(E

1

) 2 ��(E

2

).

10

{ ��(E

1

= E

2

) = ��(E

1

) = ��(E

n

).

{ ��(true) = true and ��(false) = false.

{ ��(:P) = :��(P).

{ ��(P

1

op P

2

) = ��(P

1

) op ��(P

2

) for op 2 f_;^;)g.

{ ��(8S:P) = 8��(S):��(P) and ��(9S:P) = 9��(S):��(P).

De�nition 8 (Sen

S

). The fun
tor Sen

S

from Sign

S

to Set maps ea
h signature

� to its set of �-formulas and ea
h signature morphism � from � to �

0

to the

translation of �-formulas to �

0

-formulas given by ��.

Validity of a well-formed formula P in � = (A;A

X

), � j=

S

P , is de�ned by:

{ � j=

S

true.

{ � j=

S

E

1

2 E

2

i� [[E

1

℄℄

�

2 [[E

2

℄℄

�

.

{ � j=

S

E

1

= E

2

i� [[E

1

℄℄

�

= [[E

2

℄℄

�

.

{ � j=

S

:P i� not � j=

S

P .

{ � j=

S

P

1

op P

2

i� � j=

S

P

1

op � j=

S

P

2

for op 2 f_;^;)g.

{ � j=

S

8S:P i� �[v℄ j=

S

P for all v 2 [[S℄℄

�

.

{ � j=

S

9S:P i� �[v℄ j=

S

P for some v 2 [[S℄℄

�

.

De�nition 9 (Satisfa
tion). Given a signature �, a formula P whi
h is well-

formed with respe
t to (�; (fg; �

X

)), and a �-stru
ture A then A j=

S

�

P if

(A; fg) j=

S

P .

Theorem 3 (The Institution S). The
ategory Sign

S

, the fun
tor Str

S

, the

fun
tor Sen

S

and the family of satisfa
tion relations given by j=

S

�

de�ne the

institution S = hSign

S

; Str

S

; Sen

S

; j=

S

i.

Example 3. To
omplete our small example of a bank a

ount we de�ne the

s
hema �ACCOUNT and the operation UPDATE adding n to the balan
e of

the a

ount:

�ACCOUNT = ACCOUNT ^ACCOUNT

0

UPDATE

�ACCOUNT

n : Integer

bal

0

= bal + n

The abstra
t datatype in S
orresponding to this spe
i�
ation
onsists of the

signature:

�

BA

= (fIntegerg; f+;ACCOUNT ; �ACCOUNT ;UPDATEg; �)

where � is given by

�(id) =

8

>

<

>

:

P(Integer� Integer� Integer) if id = +

P(<bal : Integer>) if id = ACCOUNT

P(<bal : Integer; bal

0

: Integer>) if id = �ACCOUNT

P(<bal : Integer; bal

0

: Integer; n : Integer>) if id = UPDATE

11

The following set of formulas spe
i�es the s
hema�ACCOUNT and the UPDATE

operation:

� =

f�ACCOUNT = ACCOUNT ^ACCOUNT

0

;

UPDATE = ((�ACCOUNT ^ (n : Integer)) j bal

0

= bal + n)g

4 Relating Abstra
t Datatypes to S
hemata

Let � = (G;O; �) be a signature in S. A s
hema-type

T = <x

1

: T

1

; : : : ; x

n

: T

n

>

de�nes a signature �

0

= (G;O[fx

1

; : : : ; x

n

g; �

0

) where �

0

(x

i

) = T

i

and �

0

(id) =

�(id) for id 2 O.

1

Given a �-stru
ture A = (A

G

; A

O

) then an element f(x

1

; v

1

); : : : ; (x

n

; v

n

)g

of type T de�nes a �

0

-stru
ture A

0

= (A

G

; A

O

[f(x

1

; v

1

); : : : ; (x

n

; v

n

)g).

De�nition 10. Given a signature � = (G;O; �), a s
hema-expression S of type

P(<x

1

: T

1

; : : : ; x

n

: T

n

>) and a �-stru
ture A = (A

G

; A

O

). De�ne an abstra
t

datatype (�

S

;M

A

S

) by

{ �

S

= (G;O [fx

1

; : : : ; x

n

g; �

S

), where �

S

(x

i

) = T

i

for 1 � i � n and

�

S

(id) = �(id) for id 2 O and

{ M

A

S

= f(A

G

; A

O

[v

S

) j v

S

2 [[S℄℄

((A

G

;A

O

);fg)

g.

This de�nition
an be extended to abstra
t datatypes Sp = (�;M) in Adt

S

by

taking the union of all M

A

S

for A 2M :

Sp

S

= (�

S

;

[

A2M

M

A

S

):

Example 4. Given � = (fIntegerg; f+g; �) then the signatures
orresponding to

the s
hemata ACCOUNT , �ACCOUNT and UPDATE are:

�

A

= (fIntegerg; f+; balg; �

A

);

�

�A

= (fIntegerg; f+; bal ; bal

0

g; �

�A

);

�

U

= (fIntegerg; f+; bal ; bal

0

; ng; �

U

):

The next theorem relates the operations on s
hemata with the operations on

abstra
t datatypes:

Theorem 4. Let Sp = (�;M) be an abstra
t datatype in S. If

1

Note that �

0

is not a signature as de�ned in Def. 2 be
ause fx

1

; : : : ; x

n

g is not a

subset of F sin
e, for te
hni
al reasons, we had to require that the set of variable

names and the set of identi�er names are disjoint. However, we
an assume that O

0

is the set O [f�x

1

; : : : ; �x

n

g where the �x

i

are suitable renamings of x

i

to symbols in

F not o

urring in O.

12

{ S = x : E

1

; : : : ; x : E

n

then Sp

S

= I

fx

i

2E

i

j1�i�ng

T

�

Sp where � is the

in
lusion of � into �

S

.

{ S = S

0

jP then Sp

S

= I

fPg

Sp

S

0

.

{ S = S

1

^ S

2

then Sp

S

= T

�

1

Sp

S

1

+ T

�

2

Sp

S

2

. The signature morphisms �

1

and �

2

are the in
lusions of the signatures �

S

1

and �

S

2

into �

S

1

^S

2

. This

is needed be
ause, in
ontrast to the union of abstra
t datatypes, the types of

S

1

and S

2

are only required to be
ompatible in the union of S

1

and S

2

.

{ S = S

0

n [x

1

; ::; x

n

℄ then Sp

S

= D

�

Sp

S

0

where � is the in
lusion of �

S

into

�

S

0

.

{ S = S

0

[x

1

=y

1

; ::; x

n

=y

n

℄ then Sp

S

= T

�

Sp

S

0

where �

G

is the identity and

�

O

(x) = y

i

, if x = x

i

for some i and �

O

(x) = x if x 6= x

i

for all i.

Example 5. Given Sp = (�;M) and UPDATE = (�ACCOUNT ^(n : Integer) j

bal

0

= bal + n) we
an write Sp

U

= (�

U

;M

U

) as:

Sp

U

= I

fbal

0

=bal+ng

(T

�

1

Sp

�A

+ T

�

2

I

fn2Integerg

T

�

3

Sp):

Here, �

1

is the in
lusion of �

�A

into �

U

, �

3

the in
lusion of � into �

(n:Integer)

,

and �

2

the in
lusion of �

(n:Integer)

into �

U

. �

(n:Integer)

= (fIntegerg; f+; ng; �

0

)

is the signature
orresponding to the s
hema (n : Integer).

What about the other s
hema operations :S, S

1

_S

2

, S

1

) S

2

, and 9S

1

:S

2

?

The existential quanti�er is the same as hiding the s
hema variables of S

1

in

the
onjun
tion of S

1

and S

2

. Let x

1

; : : : ; x

n

be the s
hema variables of S

1

then 9S

1

:S

2

and (S

1

^ S

2

) n [x

1

; ::; x

n

℄ have the same semanti
s. This yields the

following theorem:

Theorem 5. Let Sp = (�;M) be an abstra
t datatype in S, and S = 9S

1

:S

2

a

well-formed s
hema expression wrt. the environment �. Then

Sp

S

= D

�

(T

�

1

Sp

S

1

^ T

�

2

Sp

S

2

)

where �

1

and �

2

are the in
lusions of �

S

1

and �

S

2

into �

S

1

^S

2

, and � is the

in
lusion of the signature of the whole expression into �

S

1

^S

2

.

It is easy to de�ne negation, disjun
tion and impli
ation on abstra
t data-

types:

De�nition 11. Let (�;M), (�;M

1

) and (�;M

2

) be abstra
t datatypes in an

arbitrary institution I, de�ne:

:(�;M) = (�; fm 2 Str

I

(�) j m 62Mg)

(�;M

1

) _ (�;M

2

) = (�;M

1

[M

2

)

(�;M

1

)) (�;M

2

) = (�; fm 2 Str

I

(�) j m 2M

1

) m 2M

2

g)

What is the relationship of these operations to the
orresponding s
hema

operations? Disjun
tion
an be treated similar to
onjun
tion; however, while it

seems natural to expe
t Sp

:S

= :Sp

S

, this does not hold. The reason is that

in Sp

:S

the negation of S is interpreted within a given abstra
t datatype Sp

while the negation of Sp

S

also permits the negation of Sp itself. If (A

G

; A

O

[v)

is a model of Sp

:S

then v is not in [[S℄℄

�

and (A

G

; A

O

) is always a model of Sp.

On the other hand, if (A

G

; A

O

[v) is a model of :Sp

S

, either v is not in [[S℄℄

�

or (A

G

; A

O

) is not a model of Sp. The solution is to add the requirement that

(A

G

; A

O

) is a model of Sp to :Sp

S

. Impli
ation has a similar problem.

13

Theorem 6. Let Sp = (�;M) be an abstra
t datatype in S. If

{ S = S

1

_ S

2

then Sp

S

= T

�

1

Sp

S

1

_ T

�

2

Sp

S

2

. The signature morphisms �

1

and �

2

are the in
lusions of the signatures �

S

1

and �

S

2

into �

S

1

_S

2

.

{ Sp

:S

= :Sp

S

+ T

�

S

Sp where �

S

is the in
lusion of the � into �

S

.

{ S = S

1

) S

2

then Sp

S

= (T

�

1

Sp

S

1

) T

�

2

Sp

S

2

) + T

�

S

Sp. The signature

morphisms �

1

and �

2

are the in
lusions of the signatures �

S

1

and �

S

2

into

�

S

1

)S

2

.

5 Con
lusion

In this paper we have formalized the relationship between the stru
turing me
h-

anism in Z and the stru
turing me
hanism of property-oriented spe
i�
ation

languages. Z spe
i�
ations are stru
tured using s
hemata and operations on

s
hemata, whi
h are based on the parti
ular logi
 underlying Z. In
ontrast,

property-oriented spe
i�
ations are stru
tured using abstra
t datatypes and op-

erations on abstra
t datatypes, whi
h
an be formulated largely independent of

the logi
 used for the spe
i�
ations.

The advantage of having the stru
turing me
hanism represented as part of

the logi
 is that it is possible to reason within that logi
 about the stru
ture

of spe
i�
ations. The disadvantage is that it is not easy to transfer results and

methods to be used with a di�erent logi
 and spe
i�
ation language. For example,

the spe
i�
ation of sequential systems in Z
onsists of a s
hema for the state

spa
e and a s
hema for ea
h operation. In the example of the bank a

ount the

s
hema ACCOUNT de�nes the state spa
e of the bank a

ount and the s
hema

UPDATE de�nes the update operation that
hanges the state of the a

ount.

Using the results of this paper we
an use abstra
t datatypes instead of s
hemata

for the spe
i�
ation of sequential systems and the bank a

ount spe
i�
ation
an

be written without the use of s
hemata as a CASL-S spe
i�
ation as follows:

spe
 BASE =

sort Integer

op + : P(Integer � Integer � Integer)

spe
 ACCOUNT = BASE then

op bal : Integer

spe
 �ACCOUNT = ACCOUNT and f ACCOUNT with bal 7! bal

0

g

spe
 UPDATE = �ACCOUNT then

op n : Integer

axioms bal

0

= bal + n

Note that this spe
i�
ation does not make any referen
e to s
hemata any-

more. Instead of s
hemata the stru
turing fa
ilities of CASL-S are used. Sin
e

these stru
turing fa
ilities, based on abstra
t datatypes and operations on ab-

stra
t datatypes, are institution independent

2

, this allows the use of the Z-style

for the spe
i�
ation of sequential systems also with other spe
i�
ation languages.

2

To be pre
ise, CASL is parameterized by the notion of an institution with sym-

bols (
f. Mossakowski [8℄). However, it is easy to show that S is an institution with

symbols.

14

For example, this spe
i�
ation style
an be used in the state as algebra approa
h

(e.g. [1, 4, 6℄).

In the pro
ess of relating s
hemata and their operations to abstra
t datatypes

we have de�ned the operations negation, disjun
tion and impli
ation on abstra
t

datatypes, whi
h were previously not de�ned. Further work needs to be done to

study the relationship of these new operations with the other operations on

abstra
t datatypes, and how to integrate the new operations into proof
al
uli,

like that of Henni
ker, Wirsing and Bidoit [7℄. Work in this dire
tion has been

done for the
ase of disjun
tion in Baumeister [2℄.

Referen
es

1. Hubert Baumeister. Relations as abstra
t datatypes: An institution to spe
ify

relations between algebras. In Peter D. Mosses, Mogens Nielsen, and Mi
hael I.

S
hwartzba
h, editors, TAPSOFT 95, Pro
eedings of the Sixth Joint Conferen
e

on Theory and Pra
ti
e of Software Development, number 915 in LNCS, pages

756{771,

�

Arhus, Denmark, May 1995. Springer.

2. Hubert Baumeister. Relations between Abstra
t Datatypes modeled as Abstra
t

Datatypes. PhD thesis, Universit�at des Saarlandes, Saarbr�u
ken, May 1999.

3. R. M. Burstall and J. A. Goguen. The semanti
s of Clear, a spe
i�
ation language,

February 1980.

4. Hartmut Ehrig and Fernando Orejas. Dynami
 abstra
t data types, an informal

proposal. Bulletin of the EATCS, 53:162{169, June 1994.

5. J. A. Goguen and R. Burstall. Institutions: Abstra
t model theory for spe
i�
ation

and programming. Journal of the Asso
iation for Computing Ma
hinery, 39(1):95{

146, January 1992.

6. Yuri Gurevi
h. Evolving algebras: An attempt to dis
over semanti
s. Bulletin of

the EATCS, 43:264{284, February 1991.

7. Rolf Henni
ker, Martin Wirsing, and Mi
hel Bidoit. Proof systems for stru
-

tured spe
i�
ations with observability operators. Theoreti
al Computer S
ien
e,

173(2):393{443, February 28 1996.

8. Till Mossakowski. Spe
i�
ations in an arbitrary institution with symbols, Novem-

ber 19 1999. draft version.

9. Peter D. Mosses. CoFI: The
ommon framework initiative for algebrai
 spe
i�
a-

tion and development. In Mi
hel Bidoit and Max Dau
het, editors, TAPSOFT '97:

Pro
eedings of the Seventh Joint Conferen
e on Theory and Pra
ti
e of Software

Development, 7th International Joint Conferen
e CAAP/FASE, number 1214 in

LNCS, Lille, Fran
e, April 1997. Springer.

10. Donald Sannella and Martin Wirsing. A kernel language for algebrai
 spe
i�
a-

tion and implementation. In M. Karpinski, editor, Colloquium on Foundations of

Computation Theory, number 158 in LNCS, pages 413{427, Berlin, 1983. Springer.

11. J. M. Spivey. Understanding Z: A Spe
i�
ation Language and its Formal Semanti
s,

volume 3 of Cambridge tra
ts in theoreti
al
omputer s
ien
e. Cambridge Univ.

Press, Cambridge, GB, repr. 1992 edition, 1988.

15

