
MAX-PLANCK-INSTITUT

F�UR

INFORMATIK

 	

� �

Using Algebraic Speci�cation
Languages for Model-Oriented

Speci�cations

Hubert Baumeister

MPI{I{96{2-003 February 1996

���
�

�� k

I N F O R M A T I K

Im Stadtwald

D 66123 Saarbr�ucken

Germany

i

Author's Address

Max-Planck-Institut f�ur Informatik
Im Stadtwald
66123 Saarbr�ucken, Germany
hubert@mpi-sb.mpg.de

Acknowledgements

The research described in this paper was supported in part by the ES-

PRIT Basic Research Working Group 6112 COMPASS (A Comprehen-
sive Algebraic Approach to System Speci�cation and Development).

ii

Abstract

It is common belief that there is a substantial di�er-
ence between model-oriented (eg. Z and VDM) and
algebraic speci�cation languages (eg. LSL and ACT-
ONE) wrt. their applicability to the speci�cation of

software systems. While model-oriented speci�cation
languages are assumed to be suited better for the de-
scription of state based systems (abstract machines),
algebraic speci�cation languages are assumed to be

better for abstract datatype speci�cations. In this
paper we shall demonstrate how an algebraic speci-
�cation language (the Larch Shared Language) can be
used to write speci�cations of abstract machines in the

style of Z and how support tools for algebraic speci�ca-
tion languages, eg. type checker and theorem provers,
can be used to reason about abstract machines.

Keywords

abstract data type, algebraic speci�cation, model-oriented speci�ca-

tion, Z, Larch Shared Language, abstract machine, institution

iii

1. Introduction

In the literature (eg. [16, 15]), there is a perceived di�erence be-
tween model-oriented and algebraic speci�cation languages wrt. their
applicability to the speci�cation of software systems. Model-oriented
speci�cation languages are assumed to be better for the speci�cation of

state-based software systems (abstract machines) because of their im-
plicit handling of the state, which may be called implicit state approach
and is closely related to how imperative programming languages deal
with state.

In contrast, algebraic speci�cation languages are assumed to be bet-
ter for the speci�cation of (functional) abstract datatypes. When al-
gebraic speci�cation languages deal with abstract machines, they do
so in a functional way by adding the state of the machine as an addi-

tional parameter to the operations of the machine (cf. [9]). This may
be called explicit state approach.

In this paper we shall give a model for abstract machines parame-

terized by a model for the state. The state as algebra approach [8, 12,
7, 18, 4, 11, 1, 6] is used to model the state of an abstract machine as
a �-algebra or, more general, as a �-structure in an arbitrary institu-
tion (cf. [10]). For the operations of the abstract machine we use the

relations as abstract datatype approach [3] to model the operations as
sets of �-algebras (-structures). This model of an abstract machine
will allow us to specify abstract machines in the Z style but using the
Larch Shared Language (LSL) [13] instead of Z. We shall also show
how the support tools for LSL (the LSL type checker and the Larch

Prover) can be used to reason about abstract machines.

Preliminaries. The Larch Shared Language is based on many sorted,

�rst-order logic with equations. A many sorted signature � consists of
a set of sorts S and a set O of sorted function symbols f : w ! s, where
w 2 S � and s 2 S . A signature morphism � : � ! � 0 is a mapping
from the sorts of � to the sorts of � 0 together with a mapping from

the function symbols of � to the function symbols of � 0 respecting the
sort mapping.

A �-algebra A consists of a family of sets sA for each sort s in
S and a total, deterministic function fA : wA ! sA for each function

symbol f : w ! s in O . For each signature morphism � : � ! � 0 there
exists a function j

�
mapping a � 0-algebra A to a �-algebra Aj

�
by

sAj
�

= �(s)A for each sort and function symbol s from � 0.

�-formulas in LSL are universally quanti�ed equations build from
terms over �. Predicates are modeled by boolean functions. The

1

satisfaction relation j= between �-algebras and �-formulas over the
same signature is de�ned as usual.

An abstract datatype of signature � is a set of �-algebras M . Using
loose semantics, a set of �-formulas F de�nes an abstract datatype by

M = fA j A j= F g

A Larch trait is a signature together with a set of formulas.

The approach presented in this paper can be generalized from many
sorted �rst-order logic with equations to an arbitrary logic formalizable
as an institution. Here we will only recall the de�nition of institutions,

for more details see the paper by Goguen and Burstall [10]. An insti-
tution I = hSIGN ; Str; Sen; j=i consists of

� a category of signatures SIGN ,
� a functor Str : SIGN ! CAT op assigning to each signature �

the category of �-structures and to each signature morphism
� : � ! � 0 a forgetful functor j

�
: Str (� 0)! Str (�);

� a functor Sen : SIGN ! SET , assigning to each signature � the
set of �-formulas and to each signature morphism � : � ! � 0

a translation �� of �-formulas to � 0-formulas, and

� a family of satisfaction relations (j=� � Str (�)� Sen (�))
�2SIGN

indicating whether a �-formula f is valid in a �-structure m

(m j=� f or for short m j= f)

where the satisfaction condition holds: for all signature morphisms

� : � ! � 0, formulas f 2 Sen (�) and structures m 0 2 Str (� 0)

m 0j
�
j= f i� m 0 j= �� (f) :

Implicit State Approach. An abstract machine consists of a set of states

St , a set of initial states I � St and a family of operations Op. Op-
erations op from Op are relations between possible input values of the
operation and the state before (pre-state) and the state after the opera-
tion (post-state) and possible output values. The view of operations as

relations allows the modelling of non-deterministic state changes and
partiality. Other names for abstract machines are abstract datatypes
(with state) and dynamic abstract datatypes.

As an example of abstract machines and the way they are speci�ed

using a model-oriented language, we give part of the speci�cation of an
employment agency, from Middelburg [16], using Z. An employment
agency keeps a list of associations of people who are looking for a job
to their skills and a list of vacancies. A vacancy is modeled by a pair

of the company looking for an employee and the required skills for the
jobs. Only one person is allowed to apply for a job at any time whereas

2

a company may o�er several jobs simultaneously. Here we model only
two operations, Apply and Subscribe. The Apply operation adds a

person and his/her skills and the Subscribe operation adds vacancies
to the agency database. The Subscribe operation returns a vacancy
number to identify the job o�er for later retrieval. The speci�cation is
generic with respect to the sets Person, Skill and Company .

[Person; Skill ;Company]

The set Skills is the set of �nite subsets of Skill , denoted by F Skill ,
and Vacno is just another name for the set of natural numbers.

Skills == F Skill

Vacno == N

The state space of the agency is given by the schema Agency .

Agency

cands : Person 7! Skills

vacs : Vacno 7! Vacdata

The components of the schema are two partial functions cands and
vacs. The function cands maps a person looking for a job to the his/her
skills and the function vacs maps a vacancy number to a job o�er.

Vacdata

comp : Company

skills : Skills

The initial state of the agency is described by the schema Empty , stat-
ing that cands and vacs, viewed as sets of tuples, are the empty set.

Empty

Agency

cands = ;
vacs = ;

�Agency introduces two copies of the state of the agency, an unprimed
one for the pre-state and a primed one for the post-state.

�Agency == Agency ^ Agency 0

By convention, variable names decorated with a question mark are
used as input parameters and variables decorated with an exclamation
mark as output parameters of an operation. The operation Apply is

applicable only if the person p? is not already applying for a job. The
function vacs does not change and cands is updated at p? by s?.

3

Apply

�Agency

p? : Person

s? : Skills

p? 62 dom cands

vacs 0 = vacs

cands 0 = cands [f p? 7! s? g

A job o�er is introduced by using the Subscr operation. The param-
eters are the company who o�ers the job and the set of skills the job
requires. It returns the vacancy number for this job o�er. The vacancy

number is chosen non-deterministically but is required to be unique.

Subscr

�Agency

c? : Company

s? : Skills

n! : Vacno

cands 0 = cands

n! 62 dom vacs

vacs 0 = vacs [f n! 7! �Vacdata j comp = c? ^ skills = s? g

The function cands does not change and vacs is updated at n! by an

element of schema type Vacdata that has c? as its comp component
and s? as its skills component. The �-expression allows to refer to the
components comp and skills of Vacdata within the predicate of the set
comprehension.

Explicit State Approach. The usual way of modeling abstract machines

using algebraic speci�cations is by providing a sort St for the state
space and adding an additional argument of sort St to the functions
representing the operations of the abstract machine. This approach
is called explicit state approach because of the explicit representation

of the state as a formal parameter to the operations. In contrast, the
model-oriented approach is called implicit state approach because the
state is not given as an argument to the operation but implicitly. As
an example of the explicit state approach, we give the speci�cation of
the employment agency using the Larch Shared Language.

Again Person, Skill and Company are generic sorts. The trait Set
for �nite sets is included from the LSL library of traits to provide the

4

sort Skills of �nite sets over Skill. The sort Vacdata is de�ned as
the sort of records with components comp and skills.

Agency (Person, Skill, Company) : trait

includes Set(Skill, Skills), Natural(Vacno for N)

Vacdata tuple of comp Company, skills: Skills

The state space is modeled by a sort Agency and the initial state empty

by the constant empty of sort Agency. No explicit model for the el-
ements of the sort Agency is given, therefore functions are needed to
observe the state. These observers are isCand, skillsFor, isVacNo
and vacFor. The function isCand checks whether a person has applied

for a job with a given agency or not. If a person has applied for a job
then skillsFor returns his/her skills. Functions isVacNo and vacFor

do a similar job for vacancies.
introduces

isCand: Agency, Person ! Bool

skillsFor: Agency, Person ! Skills

isVacNo: Agency, Vacno ! Bool

vacFor: Agency, Vacno ! Vacdata

empty: ! Agency

apply: Agency, Person, Skills ! Agency

subscr: Agency, Company, Skills ! Agency

newVNo: Agency, Company, Skills ! Vacno

The operations Apply and Subscribe are modeled by the functions
apply, subscr and newVNo. Note that apply and subscr have an

additional argument of sort Agency and return a value of sort Agency.
Since LSL does not allow a function to return two values, the opera-
tion Subscr is split into two functions subscr and newVNo. The �rst
returns a new agency and the second the vacancy number.

The axioms of the Agency trait describe the values of the observer

functions for a given state, which is constructed from the operations
empty, apply and subscr. Here we only give the axioms for isCand
and skillsFor, the others are similar.
asserts

forall a: Agency, p, p1: Person, c: Company,

s, s1: Skills, n, n1 : Vacno

: isCand(empty,p);

isCand(apply(a,p,s),p1) , p = p1 _ isCand(a,p1);

isCand(subscr(a,c,s1),p1) , isCand(a,p1);

skillsFor(apply(a,p,s),p1) = (if p = p1 ^ : isCand(a,p1)

then s

else skillsFor(a, p1));

skillsFor(subscr(a,c,s1), p1) = skillsFor(a, p1);

5

One problem with this approach is that the speci�er has to make the
state of the abstract machine explicit as an argument to the operations

of the abstract machine. This can be cumbersome in real life exam-
ples as Dauchy and Gaudel observe in [4] and \is in conict with the
tradition of imperative programming, where the state always remains
implicit" [7].

One has to be careful when adding new operations to the abstract

machine because all possible interactions of the new operations with
the old operations and the observers have to be speci�ed, and therefore,
the resulting speci�cation is likely to be unclear.

2. Algebraic Specifications and the

Implicit State Approach

Another way to model abstract machines is by using the state as
algebra approach [8, 12, 7, 18, 4, 11, 1, 6]. In this approach the state

of an abstract machine is an algebra over a signature containing the
components of the state. The state space St is given by an abstract
datatype, a set of algebras over the signature of the state. For example,
the state of an employment agency is given by the following LSL trait:

Agency (Person, Skill, Company): trait

includes

Set(Skill, Skills),

Natural(Vacno for N),

FiniteMap(CandsMap,Person,Skills),

FiniteMap(VacMap,Vacno,Vacdata)

Vacdata tuple of company: Company, skills: Skills

introduces

cands : ! CandsMap

vacs : ! VacMap

The components of the state are the constants cands of sort CandsMap

and vacs of sort VacMap. CandsMap is the sort of �nite maps from
Person to Skills and VacMap the sort of �nite maps from Vacno to
Vacdata. FiniteMap is a trait from the LSL library introducing the
sort of �nite, partial maps from a domain sort to a range sort. The trait

introduces the operations dom to test if an element is in the domain of
a �nite map f , update for changing f at c to d and apply to apply
f to a value in its domain. The sorts Skills, Vacno and Vacdata are
de�ned as in the explicit state approach.

The initial states of an abstract machine are given by an abstract

datatype having fewer models than the abstract datatype for the state
space.

6

Empty : trait

includes Agency

asserts equations

cands = { };

vacs = { }

Relations as Abstract Datatypes. How do we specify the operations
of the abstract machine? The proposal of this paper is to use again
abstract datatypes to describe the operations, according to the relation

as abstract datatype approach of Baumeister [3].

We start from the observation that each pair of algebras A and B of
signature � can be combined to one algebra A + B over the disjoint
union of � and �. The signature �]� contains each symbol from �

twice, primed and unprimed. Each disjoint union of signatures has as-
sociated two signature morphisms �1 : � ! �] � and �2 : � ! �]�.
The �rst morphism �1 is the identity on � and the second maps a sym-
bol s from � to a symbol s 0 in �]�. The algebra A+B is constructed

from A and B such that the interpretation of s in A + B is the inter-
pretation of s in A and the interpretation of s 0 is the interpretation of
s in B .

As a consequence any relation R � Alg(�)� Alg(�) can be viewed
as a set R 0 � Alg(�]�). On the other hand, any set S � Alg(�]�)

can be viewed as a relation R � Alg(�)� Alg(�) by de�ning R as

R = f (C j
�1
;C j

�2
) j C 2 S g

Thus, there is a one to one correspondence between relations Alg(�)�
Alg(�) and sets S � Alg(�]�).

In practice, an algebra representing a state has two components, an
environment component and a state component. This situation can be
described by an inclusion of the environment signature �Env into the

state signature� by � : �Env ! �. If A and B are algebras representing
a state and R is a relation on states, we require that the environment
components of A and B remain unchanged.

A R B) Aj
�
= B j

�

For example, the environment components of Agency are the sorts

Skills, CandsMap, VacMap, Vacno, Vacdata and the operations on
them. Their interpretation should not change when applying the op-
erations of the abstract machine. The constants cands and vacs are
the only state components of Agency. These are the only components

allowed to change their interpretation by the operations of the abstract
machine.

7

As above, we have the following property. For each pair of�-algebras
A and B that share the interpretation of �Env (eg. Aj

�
= B j

�
), there

exists a unique algebra A +� B over the pushout signature �]� �.
A+� B is called the amalgamated sum of A and B (cf. [5]).

�]� �

�

::�1 t

t

t

po �

dd �2J

J

J

�Env

dd

�

J
J
J
J
J
J

::

�

t
t
t
t
t
t

The morphism �1 is again the identity on � and �2 leaves all symbols in
� from �Env unchanged and maps s to s 0 if s is in � but not in �Env .
A+�B uses the same construction as A+B ; however, this time A+�B

is well de�ned for symbols s from �Env if and only if the interpretation
of s in A and in B are the same, but this follows from the requirement

that Aj
�
= B j

�
.

Again, there is a one to one correspondence between relations R �
Alg(�)�Alg(�) such that A R B) Aj

�
= B j

�
, and sets S � Alg(�]�

�). Because sets S � Alg(�]� �) are just abstract datatypes of
signature �]� �, operations on abstract machines can be built using

techniques for building abstract datatypes. For example, we can give
a set of formulas F over �]� � and de�ne a relation R by:

A R B i� A + B j= F

Note that sharing is essential in this approach because formulas over
the disjoint union �]� can contain either primed or unprimed symbols
but not both kinds together. Consider a constant c of sort s in �. Then
�] � contains also a constant c 0 of sort s 0. Now it is not possible to
write a formula c = c 0 to relate the interpretation of c in a � algebra

A to the interpretation of c in the � algebra B because c and c 0 are
of di�erent sorts. However, if s is de�ned in the environment and c is
a state component then �]� � contains the constants c and c 0 of the
same sort s. This allows us to write the formula c = c 0.

In the employment example the trait DeltaAgency represents the

pushout Agency]� Agency

DeltaAgency : trait

includes Agency(cands' for cands, vacs' for vacs), Agency

To specify the Apply operation of the employment agency, we have to
give a speci�cation of a set of Agency]� Agency algebras. For this we
include the trait DeltaAgency into a trait Apply.

Apply : trait

8

includes DeltaAgency

introduces

p_in : ! Person

s_in : ! Skills

asserts equations

: defined(cands,p_in);

vacs' = vacs;

cands' = update(cands,p_in,s_in)

Apply introduces two new constants, p_in and s_in, to represent the
input values of the operation. Given an interpretation of p_in and
s_in as pin and sin , Apply denotes a relation between Agency algebras
A and B such that

candsB = updateB(candsA; pin ; sin)

vacsB = vacsA

provided that definedA(candsA; pin) does not hold. Note that the
interpretation of update and defined in A is the same as in B .

The speci�cation of the Subscribe operation is given as follows, where
n_out represents the output value of the Subscribe operation.

Subscr : trait

includes DeltaAgency

introduces

c_in : ! Company

s_in : ! Skills

n_out : ! Vacno

asserts equations

cands' = cands;

: defined(vacs,n_out);

vacs' = update(vacs,n_out,[c_in,s_in])

Note the similiarity of this speci�cation of an employment agency
with the Z speci�cation of the employment agency from section 1 al-
though we have used a model-oriented speci�cation language, based on

set theory, for one speci�cation and an algebraic language, based on
many sorted equational logic for the other.

We have chosen to model cands and vacs as constants of sorts
CandsMap and VacMap because we wanted to stress the similarity of

the LSL speci�cation with the Z speci�cation. However, since the log-
ics used by Z and LSL are di�erent, we might prefer to model the state
of an employment agency by two total functions cands, from Person

to Skills, and vacs, from Vacno to Vacdata, together with two pred-

icates knownCands � Person and knownVacs � Vacno. This gives the
following traits for the state space and the Apply operation.

9

Agency (Person, Skill, Company): trait

includes

Set(Skill, Skills),

Natural(Vacno for N)

Vacdata tuple of company: Company, skills: Skills

introduces

cands: Person ! Skills

vacs: Vacno ! Vacdata

knownCands: Person ! Bool

knownVacs: Vacno ! Bool

Apply : trait

includes DeltaAgency

introduces

p_in : ! Person

s_in : ! Skills

asserts

forall p : Person, n : Vacno

: knownCands(p);

knownCands'(p) , p = p_in _ knownCands(p);

cands'(p) = (if p = p_in then s_in else cands(p));

knownVacs'(n) , knownVacs(n);

vacs'(n) = vacs(n)

Institution Independence. The argumentation just presented holds for
any institution where the category of signatures SIGN has all pushouts

and the model functor Str maps pushouts in SIGN to pullbacks in CAT
(eg. the institution has unique amalgamated sums [5, 2]). This allows
the use of a model-oriented style for specifying abstract machines in-
dependent from the concrete logic used to specify the state space and

the operations. We could take any of the variety of logics used for
algebraic speci�cations, for example, total functions, partial functions,
non-deterministic functions (multi-algebras), (conditional) equational
logic, �rst-order (w/o constraints), higher-order logic or any other logic
that can be given the form of an institution and has the above men-

tioned properties.

3. Using Operations on ADTs to define

Abstract Machines

In the previous section we have seen that an abstract machine can be
speci�ed using abstract datatypes for describing the state space, the ini-
tial states and the operations of an abstract machine. We have de�ned

these abstract datatypes by providing a signature and a set of formulas
over this signature. Each algebra satisfying this set of formulas denotes

10

either a possible state or a pair of states in an relation. However, this is
not the only way to de�ne an abstract datatype. Another way is with

the help of operations on abstract datatypes as de�ned, for example,
by Sannella and Tarlecki in [17]. As abstract datatypes correspond to
schemata in Z, the use of operations on abstract datatypes corresponds
to the schema calculus of Z. In the following we give an example on

how to use these operators to de�ne an abstract machine of a stack
from an abstract machine of a counter and an array.

Counter. The state of the counter has one component c, which is set
in the initial states to zero.

Counter : trait

includes Natural

introduces c : ! N

Zero : trait

includes Counter

asserts equations c = zero

The trait DeltaCounter de�nes the pushout of Counter]� Counter,
where the de�nition of natural numbers is in the environment and c is
the only state component.

DeltaCounter : trait

includes Counter, Counter (c' for c)

The increment operation on the counter increments the state compo-
nent c by one. The decrement operation decrements c only if c is not
zero. Note that c' is not given explicitly in terms of c but only implicit
by the solution of the equation succ(c') = c.

Inc : trait

includes DeltaCounter

asserts equations

c' = succ(c)

Dec : trait

includes DeltaCounter

asserts equations

c 6= zero;

succ(c') = c

Array. The abstract machine speci�cation of an array shows that not
only constants can be state components but also functions. The state

of an array has two functions map and dom as components. If dom(n)
is true, map(n) yields the value of the array at index n. In the empty
array the domain function dom always yields false.

Array : trait

includes

Natural

introduces

map : N ! E

dom : N ! Bool

EmptyArray : trait

includes Array

asserts

forall n : N

: dom(n)

The update operations assigns the value v_in to the map at i_in.
11

Update : trait

includes DeltaArray

introduces

i_in : ! N

v_in : ! E

asserts forall n : N

map'(n) = (if n = i_in then v_in else map(n));

dom'(n) , n = i_in _ dom(n)

The get operation returns the value v_out for an index value i_in.

Get : trait

includes DeltaArray

introduces

i_in : ! N

v_out : ! E

asserts forall n : N

dom(i_in);

map'(n) = map(n);

v_out = map(i_in)

Stack Implementation. The state space of an abstract machine stack is

the union of the state spaces for the counter and the array.

StackState = Counter]� Array

StackState is the pushout of Counter and Array wrt. a common
environment containing the union of the environment components of
Counter and Array. Since the only operations available on traits in

LSL are the inclusion of traits and the renaming of symbols, StackState
is written as the following trait.

StackState : trait

includes Array, Counter

The initial states of the stack are given by the union of the initial states
of the counter and the array.

Empty = Zero]� EmptyArray

Empty : trait

includes Zero, EmptyArray

The push operation is

Push = impose f i_in = c g on (Update]� Inc)

The input parameter v_in of the update operation of the array is also
the input parameter of the push operation.

12

Push : trait

includes Update, Inc

asserts equations i_in = c

The pop operation pops the stack and returns the top of the stack in
v_out.

Pop = impose f c' = i_in g on (Get]� Dec)

Pop : trait

includes Dec, Get

asserts equations i_in = c'

4. Example of Proofs

One advantage of representing the state space and the operations of
an abstract machine as abstract datatypes is the possibility of using
tools for the speci�cation language to apply to the speci�cation of ab-
stract machines. For example, we have used the LSL checker to type

check all the LSL traits de�ning abstract machines.

In this section we will use the Larch Prover to prove the correctness of
the abstract machine for a stack de�ned in the previous section. First,
we have to give a more abstract speci�cation of an abstract machine for

a stack. To do this, we �rst specify a conventional (functional) abstract
datatype of a stack. The trait Stack de�nes the sort S of stacks over
elements of sort E.

Stack : trait

introduces

empty : ! S

isEmpty : S ! Bool

pop : S ! S

top : S ! E

push : E, S ! S

asserts S generated by empty, push

forall e : E, s, s1 : S

push(e,s) = push(e,s1)) s = s1;

top(push(e,s)) = e;

pop(push(e,s)) = s;

isEmpty(empty);

: isEmpty(push(e,s));

The state space and the operations of the abstract machine of the
abstract version of a stack are now de�ned with the help of Stack.

The only state component of AStackState is the constant stack of
sort S. AStackState and the initial state is given by

13

AStackState : trait

includes Stack

introduces stack : ! S

AEmpty : trait

includes AStackState

asserts equations

stack = empty

and the operations push and pop by

APush : trait

includes DeltaStack

introduces e_in : ! E

asserts equations

stack' = push(e_in,stack)

APop : trait

includes DeltaStack

introduces e_out : ! E

asserts equations

: isEmpty(stack);

stack' = pop(stack);

e_out = top(stack)

To show that this abstract machine is implemented by the abstract

machine of the previous section we use an abstraction relation between
the state space of the implementation StackState and AStackState.
Similar to the operations of an abstract machine we can de�ne the
abstraction relation Alpha by providing an abstract datatype over the

pushout signature StackState]� AStackState.

Alpha : trait

includes StackState, AStackState

introduces alpha: N ! S

asserts forall n:N

alpha(0) = empty;

succ(n) � c) alpha(succ(n)) = push(map(n),alpha(n));

stack = alpha(c)

Alpha is de�ned with the help of a function alpha from natural num-
bers to S, which depends implicit on the value of map in StackState.

alpha creates a stack from a number and map. The relation between
StackState and AStackState is established by the equation stack =

alpha(c).

We then have to show that AEmpty equals Empty o
9 Alpha and that

Alpha o
9 AOp is the same as Op o

9 Alpha for all operations Op of the

abstract machine stack where o
9 denotes the composition of relations.

Here we can only give the proof for the push operation, the proofs
of the others are similar. We show that Alpha o

9 APush equals Push o
9

Alpha. First, the composition of relations is represented as an algebraic

speci�cation. For this we introduce new symbols for the intermediate
states, stack'' in the �rst and map'', dom'' and c'' in the second
case.
APush_o_Alpha : trait

includes

14

Alpha (stack'' for stack),

APush (stack'' for stack, stack for stack')

Alpha_o_Push : trait

includes Push (dom'' for dom', map'' for map', c'' for c'),

Alpha (dom'' for dom, map'' for map, c'' for c)

In the next step Alpha o
9 APush and Push o

9 Alpha are included into
one trait. We have to be careful to avoid name clashes; therefore, we

decorate the input states, output states and the functions alpha with
1 and 2.
All : trait

includes APush_o_Alpha (dom1 for dom, map1 for map,

c1 for c, stack1 for stack, alpha1 for alpha)

Alpha_o_Push (dom2 for dom, map2 for map,

c2 for c, stack2 for stack, alpha2 for alpha)

Now we have to prove that if e_in = v_in, dom1 � dom2, map1 � map2

and c1 = c2 then stack1 = stack2.
prove e_in = v_in ^ c1 = c2 ^ 8 n (dom1(n) = dom2(n))

^ 8 n (map1(n) = map2(n))) stack1 = stack2

This can be proved using the Larch Prover without much di�culty

given the lemma 8n (n 6 c) alpha1(n) = alpha2(n), which itself is
proved by induction over n by the Larch Prover.

5. Conclusion

The novelty of the approach presented in this paper is to separate the
model-oriented style for the speci�cation of abstract machines from the
logic used to talk about the state components and the relation between

the state components of the pre- and post-state.

State space and operations of abstract machines are modeled by
abstract datatypes, which can be de�ned as sets of �-structures in any
suitable logic (institution) (cf. section 1 and [17]). Thus our method

is parameterized by the notion of state, which is a �-structure in an
institution. If we provide a model for the state of our abstract machines
we get a method for specifying the operations of the abstract machines
over this state. Therefore, a state can be an association of names to
values and sets, as for example in Z or an association of names to

values (no sets) and (partial/total) functions on sets, as with algebraic
speci�cations or more concrete state structures involving structured
names, pointers, arrays etc. For example, if we model the notion of
state of a programming language we get a speci�cation language for

abstract machines over this kind of state in the spirit of the family of
Larch Interface Languages [13].

15

In Z the state space and the operations of an abstract machine are
represented as schemata, which are sets de�nable and manipulatable

within Z. Thus in Z the state space and the operations are modeled
by sets, but also the values of state components are sets and elements
of sets. The advantage of this approach is that we can reason within
the logic of Z about abstract machines, the disadvantage is that this

also �xes the logic for describing the state components and the relation
between state components of the pre- and the post-state to set theory.

As in Z we are able to reason about the state space and the operations

of abstract machines using the logic used for modeling the state (cf. the
example in section 4). No additional logic is needed to reason about the
operations of abstract machines. This is unlike, for example, COLD-K,
where dynamic logic is used to specify the operations (see below).

All other implicit state as algebra approaches [8, 12, 7, 18, 4, 11, 1, 6]
have in common that they use an algebraic logic to de�ne the state
space of an abstract machine and another logic, for example, local

function updates, elementary modi�ers, dynamic logic etc. to de�ne
the operations. Another di�erence is that most of these approaches �x
the logics for de�ning the state space and the operations and are not
formulated in a logic independent way.

For example, the evolving algebra approach by Gurevich [12] uses
unsorted algebra for the state space and de�nes a transformation of an

algebra A to an algebra B by a set of guarded local function updates

of the form if b then f (~t) := t0. The semantics is that if b evaluates to
true in A then the interpretation of f in B is fB(x) = (t0)A, if x = tB
and fB(x) = fA(x) otherwise. The interpretation of all other functions
remains unchanged.

In the implicit state approach by Dauchy and Gaudel [4] the state
space consists of many sorted algebras. The operations are functors
on algebras built from elementary modi�ers �-ac(~p) = t by sequential

and indi�erent composition and using conditionals.

COLD-K [7] uses many sorted partial algebras for specifying the

state space and Harel's dynamic logic [14] to specify the operations,
while Wieringa [18] uses order sorted algebra de�ned by equations and
equational dynamic logic for the operations.

References

[1] Egidio Astesiano and Elena Zucca. A semantic model for dynamic systems.

In Modelling Database Dynamics, Workshops in Computing, pages 63{83.

Springer, Volkse, 1992.

16

[2] Hubert Baumeister. Unifying initial and loose semantics of parameterized

speci�cations in an arbitrary institution. In TAPSOFT '91, Volume 1: CAAP,

volume 493 of LNCS, pages 103{120, Brighton, UK, April 1991. Springer.

[3] Hubert Baumeister. Relations as abstract datatypes: An institution to specify

relations between algebras. In TAPSOFT '95, volume 915 of LNCS, pages

756{771, �Arhus, Denmark, May 1995. Springer.

[4] P. Dauchy and M.-C. Gaudel. Algebraic speci�cations with implicit state,

February 1994.

[5] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Speci�cation 1:

Equations and initial Semantics. Number 6 in EATCS Monographs on Theo-

retical Computer Science. Springer, 1985.

[6] Hartmut Ehrig and Fernando Orejas. Dynamic abstract data types, an infor-

mal proposal. Bulletin of the EATCS, 53:162{169, June 1994.

[7] Loe M. Feijs and H. B. Jonkers. Formal Speci�cation and Design, volume 35

of Cambridge tracts in theoretical computer science. Cambridge Univ. Press,

Cambridge, 1992.

[8] Harald Ganzinger. Programs as transformations of algebraic theories (ex-

tended abstract). Informatik Fachberichte, 50:22{41, 1981.

[9] J. Goguen and J. Meseguer. Universal realization, persistent interconnection

and implementation of abstract modules. In ICALP, volume 140 of LNCS,

pages 265{281. Springer, 1982.

[10] J. A. Goguen and R. Burstall. Institutions: Abstract model theory for speci�-

cation and programming. Journal of the Association for Computing Machin-

ery, 39(1):95{146, January 1992.

[11] Martin Gro�e-Rhode. Speci�cation of Transition Categories, An Approach to

Dynamic Abstract Data Types. PhD thesis, Fachbereich 13 | Informatik,

Technische Universti�at, Berlin, 1995.

[12] Yuri Gurevich. Evolving algebras: An attempt to discover semantics. Bulletin

of the EATCS, 43:264{284, February 1991.

[13] John V. Guttag and J. Horning. LARCH: Languages and Tools for Formal

Speci�cation. Texts and Monographs in Computer Science. Springer, New

York, 1993.

[14] David Harel. Dynamic logic. In Dov M. Gabbay and Franz Guenthner, editors,

Handbook of Philosophical Logic: Vol. 2: Extensions of Classical Logic, volume

165 of Synthese library, pages 497{604. Kluwer, Dordrecht, 1984.

[15] I. J. Hayes, C. B. Jones, and J. E. Nicholls. Understanding the di�erences

between VDM and Z. Technical Report UMCS-93-8-1, Computer Science,

University of Manchester, August 1993.

[16] Cornelis A. Middelburg. Logic and Speci�cation: Extending VDM-SL for Ad-

vanced Formal Speci�cation. Computer science research and practice. Chap-

man and Hall, London, 1993.

[17] Donald Sannella and Andrzej Tarlecki. Speci�cations in an arbitrary institu-

tion. Information and Computation, 76(2/3):165{210, February/March 1988.

[18] Roel Wieringa. Equational speci�cation of dynamic objects. Technical Re-

port 91-1, Faculty of Mathematics and Computer Science, Vrije Universiteit

Amsterdam, 1991.

