Towards using Extreme Programming to the
Formal Specification of Software*

Hubert Baumeister

Institut fir Informatik, LMU
baumeist@informatik.uni-muenchen.de

Lately an agile software development process called Extreme Programming
(XP) has received a lot of attention. For small projects XP promises to produce
high quality software that provides business value faster than traditional soft-
ware processes. In addition, XP is designed to cope with changing requirements
and to provide early feedback to cope with unclear requirements. On the other
hand, people believe that XP is not very well suited to produce provably correct
software because XP does not do up front specification and design.

When starting an XP-project the customer requirements are captured as
so called user stories. Each user story describes a functionality of the system
useful for the customer. The user stories are ordered by importance to the cus-
tomer and estimated by the developers. While in traditional software develop-
ment processes, first a design of the system is produced taking into account all
requirements and then implemented, in XP the system is developed by taking
a user story at a time starting from a birds eye view on the architecture called
metaphor. For each new user story the simplest design is sought that incorpo-
rates the previous user stories and the new user story, and then this design is
implemented. User stories not yet implemented do not contribute to the design.
During this process it may be required to change the design and implementa-
tion of the existing functionality given by the previous user stories; this is called
refactoring. To ensure that refactoring does not unintentionally destroy already
implemented functionality, automatic tests are needed that check if the software
still exhibits the desired functionality.

The advantage of this process is that it is easy to exchange requirements
(user stories) as the software develops either due to changes in the business
case or because of experiences gained with the already implemented software.
Also higher quality software is produced as refactoring requires automatic tests
with a good code coverage. Extreme Programming even advocates writing tests
before writing code that make these tests run. This has the advantage that
the programmer has to think about the functionality of the software before
implementing it; further it ensures that no tests are forgotten.

The drawback of tests, however, is that they can only show that something
is wrong and not that the software is correct. The idea that I want to present is
that formal specifications are used instead of tests. However, in contrast to the
traditional use of formal methods, not one big specification is produced before
starting the implementation; instead, the specification is build incrementally and

* to be presented at WADT 2002.



in parallel with the software implementing the specification. In addition, tests can
be automatically generated from these specifications to be used in refactorings.



