Time Series Analysis

Henrik Madsen

hm@imm.dtu.dk

Informatics and Mathematical Modelling
Technical University of Denmark
DK-2800 Kgs. Lyngby
Outline of the lecture

Regression based methods, 2nd part:
- Regression and exponential smoothing (Sec. 3.4)
- Time series with seasonal variations (Sec. 3.5)
Regression without explanatory variables

- During Lecture 2 we saw that assuming known independent variables x we can forecast the dependent variable Y.
- To be able to do so we estimated θ in
 \[Y_t = f(x_t, t; \theta) + \epsilon_t \]
- If we do not have access to x we may use:
 \[Y_t = f(t; \theta) + \epsilon_t \]
- During this lecture we shall consider models of this (last) form and we shall consider how $\hat{\theta}$ can be updated as more information becomes available.
- Only models linear in θ will be considered.
Model: Constant mean

- \(Y_t = \mu + \varepsilon_t, \varepsilon_t \) i.i.d. with mean zero and constant variance \(\sigma^2 \) (white noise).
- In vector form (\(t = 1, \ldots, N \)): \(\mathbf{Y} = \mathbf{1}\mu + \mathbf{\varepsilon} \)
- Estimate: \(\hat{\mu} = (\mathbf{1}^T\mathbf{1})^{-1}\mathbf{1}^T\mathbf{Y} = N^{-1}\sum_{t=1}^{N} Y_t = \bar{y} \).
- Prediction (the conditional mean): \(\hat{Y}_{N+\ell|N} = \hat{\mu} = \frac{1}{N}\sum_{t=1}^{N} Y_t \)
- Variance of the prediction error:
 \[
 V[Y_{N+\ell} - \hat{Y}_{N+\ell|N}] = \sigma^2(1 + \frac{1}{N})
 \]
Updating the estimate

- Based on Y_1, Y_2, \ldots, Y_N we have $\hat{\mu}_N = \frac{1}{N} \sum_{t=1}^{N} Y_t$

- When we get one more observation Y_{N+1} the best estimate is

$$\hat{\mu}_{N+1} = \frac{1}{N+1} \sum_{t=1}^{N+1} Y_t$$

- Recursive update:

$$\hat{\mu}_{N+1} = \frac{1}{N+1} \sum_{t=1}^{N+1} Y_t = \frac{1}{N+1} Y_{N+1} + \frac{N}{N+1} \hat{\mu}_N$$
Model: Local constant mean

- In the constant mean model the variance of the forecast error decrease towards σ^2 as $1/N$
- Therefore, if N is sufficiently high (say 100) there is not much gained by increasing the number of observations
- If there is indications that the true (underlying) mean is actually changing slowly it can even be advantageous to “forget” old observations.
- One way of doing this is to base the estimate on a rolling window containing e.g. the 100 most recent observations
- An alternative is exponential smoothing
Exponential smoothing

\[\hat{\mu}_N = c \sum_{j=0}^{N-1} \lambda^j Y_{N-j} = c[Y_N + \lambda Y_{N-1} + \cdots + \lambda^{N-1} Y_1] \]

The constant \(c \) is chosen so that the weights sum to one, which implies that \(c = (1 - \lambda)/(1 - \lambda^N) \). For large \(N \):

\[\hat{\mu}_{N+1} = (1 - \lambda)Y_{N+1} + \lambda \hat{\mu}_N \quad \text{or} \quad \hat{Y}_{N+\ell+1|N+1} = (1 - \lambda)Y_{N+1} + \lambda \hat{Y}_{N+\ell|N} \]
Choice of smoothing constant $\alpha = 1 - \lambda$

- The smoothing constant $\alpha = 1 - \lambda$ determines how much the latest observation influence the prediction.
- Given a data set $t = 1, \ldots, N$ we can try different values before implementing the method on-line.

$$S(\alpha) = \sum_{t=1}^{N} (Y_t - \hat{Y}_{t|t-1}(\alpha))^2$$

- If the data set is large we eliminate the influence of the initial estimate by dropping the first part of the errors when evaluating $S(\alpha)$.

Example – wind speed 76 m a.g.l. at Risø

- Measurements of wind speed every 10th minute
- Task: Forecast up to approximately 3 hours ahead using exponential smoothing
\(S(\alpha) \) for horizons 10 and 70 minutes

- 10 minutes (1-step): Use \(\alpha = 0.95 \) or higher
- 70 minutes (7-step): Use \(\alpha \approx 0.7 \)
$S(\alpha)$ for horizons 130 and 190 minutes

- 130 minutes (13-step): Use $\alpha \approx 0.6$
- 190 minutes (19-step): Use $\alpha \approx 0.5$
Example of forecasts with optimal α
Trend models

- Linear regression model
- Functions of time are taken as the independent variables
Linear trend

- Observations for \(t = 1, \ldots, N \)
- Naive formulation of the model: \(Y_t = \phi_0 + \phi_1 t + \varepsilon_t \)
- If we want to forecast \(Y_{N+j} \) given information up to \(N \) we use
 \[
 \hat{Y}_{N+j|N} = \hat{\phi}_0 + \hat{\phi}_1 (N + j)
 \]
- However, for on-line applications \(N + j \) can be arbitrary large
- The problem arise because \(\phi_0 \) and \(\phi_1 \) is defined w.r.t. the origin 0
- Defining the parameters w.r.t. the origin \(n \) we obtain the model:
 \[
 Y_t = \theta_0 + \theta_1 (t - N) + \varepsilon_t
 \]
- Using this formulation we get:
 \[
 \hat{Y}_{N+j|N} = \hat{\theta}_0 + \hat{\theta}_1 j
 \]
Linear trend in a general setting

- The general trend model:

\[Y_{N+j} = f^T(j) \theta + \varepsilon_{N+j} \]

- The linear trend model is obtained when: \(f(j) = \begin{pmatrix} 1 \\ j \end{pmatrix} \)

- It follows that for \(N+1+j \):

\[Y_{N+1+j} = \begin{pmatrix} 1 \\ j+1 \end{pmatrix}^T \theta + \varepsilon_{N+1+j} = \left(\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ j \end{pmatrix} \right)^T \theta + \varepsilon_{N+1+j} \]

- The \(2 \times 2 \) matrix \(L \) defines the transition from \(f(j) \) to \(f(j+1) \)
Trend models in general

- Model: \(Y_{N+j} = f^T(j)\theta + \varepsilon_{N+j} \)
- Requirement: \(f(j+1) = Lf(j) \)
- Initial value: \(f(0) \)
- In Section 3.4 some trend models which fulfill the requirement above are listed.
 - Constant mean: \(Y_{N+j} = \theta_0 + \varepsilon_{N+j} \)
 - Linear trend: \(Y_{N+j} = \theta_0 + \theta_1j + \varepsilon_{N+j} \)
 - Quadratic trend: \(Y_{N+j} = \theta_0 + \theta_1j + \theta_2\frac{j^2}{2} + \varepsilon_{N+j} \)
 - \(k'\)th order polynomial trend:
 \[
 Y_{n+j} = \theta_0 + \theta_1j + \theta_2\frac{j^2}{2} + \cdots + \theta_k\frac{j^k}{k!} + \varepsilon_{N+j}
 \]
 - Harmonic model with the period \(p \):
 \(Y_{N+j} = \theta_0 + \theta_1 \sin \frac{2\pi}{p}j + \theta_2 \cos \frac{2\pi}{p}j + \varepsilon_{N+j} \)
Estimation

- Model equations written for all observations Y_1, \ldots, Y_N

$$Y = x_N \theta + \varepsilon$$

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_N \end{bmatrix} = \begin{bmatrix} f^T(-N+1) \\ f^T(-N+2) \\ \vdots \\ f^T(0) \end{bmatrix} \theta + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_N \end{bmatrix}$$

- OLS-estimates: $\hat{\theta}_N = (x_N^T x_N)^{-1} x_N^T Y$ or

$$\hat{\theta}_N = F_N^{-1} h_N \quad F_N = \sum_{j=0}^{N-1} f(-j) f^T(-j) \quad h_N = \sum_{j=0}^{N-1} f(-j) Y_{N-j}$$
\(\ell \)-step prediction

- **Prediction:**
 \[
 \hat{Y}_{N+\ell|N} = f^T(\ell)\hat{\theta}_N
 \]

- **Variance of the prediction error:**
 \[
 V[Y_{N+\ell} - \hat{Y}_{N+\ell|N}] = \sigma^2 \left[1 + f^T(\ell)F_N^{-1}f(\ell) \right]
 \]

- **100(1 - \alpha)\% prediction interval:**
 \[
 \hat{Y}_{N+\ell|N} \pm t_{\alpha/2}(N - p)\sqrt{V[e_N(\ell)]} = \\
 \hat{Y}_{N+\ell|N} \pm t_{\alpha/2}(N - p)\hat{\sigma}\sqrt{1 + f^T(\ell)F_N^{-1}f(\ell)}
 \]

where \(\hat{\sigma}^2 = \varepsilon^T\varepsilon / (N - p) \) (\(p \) is the number of estimated parameters)
Updating the estimates when Y_{N+1} is available

- **Task:**
 - Going from estimates based on $t = 1, \ldots, N$, i.e. $\hat{\theta}_N$ to
 - estimates based on $t = 1, \ldots, N, N + 1$, i.e. $\hat{\theta}_{N+1}$
 - without redoing everything...

- **Solution:**

\[
\begin{align*}
\hat{\theta}_{N+1} &= F_{N+1}^{-1} h_{N+1} \\
F_{N+1} &= F_N + f(-N)f^T(-N) \\
h_{N+1} &= L^{-1} h_N + f(0)Y_{N+1}
\end{align*}
\]
Local trend models

We forget old observations in an exponential manner:

\[
\hat{\theta}_N = \arg \min_{\theta} S(\theta; N)
\]

where for \(0 < \lambda < 1\)

\[
S(\theta; N) = \sum_{j=0}^{N-1} \lambda^j [Y_{N-j} - f^T(-j)\theta]^2
\]
WLS formulation

The criterion:

\[S(\theta; N) = \sum_{j=0}^{N-1} \lambda^j [Y_{N-j} - f^T(-j)\theta]^2 \]

can be written as:

\[
\begin{bmatrix}
 Y_1 - f^T(N - 1)\theta \\
 Y_2 - f^T(N - 2)\theta \\
 \vdots \\
 Y_N - f^T(0)\theta
\end{bmatrix}^T
\begin{bmatrix}
 \lambda^{N-1} & 0 & \cdots & 0 \\
 0 & \lambda^{N-2} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 Y_1 - f^T(N - 1)\theta \\
 Y_2 - f^T(N - 2)\theta \\
 \vdots \\
 Y_N - f^T(0)\theta
\end{bmatrix}
\]

which is a WLS criterion with \(\Sigma = \text{diag}[1/\lambda^{N-1}, \ldots, 1/\lambda, 1] \)
WLS solution

\[\hat{\theta}_N = (x_N^T \Sigma^{-1} x_N)^{-1} x_N^T \Sigma^{-1} Y \]

or

\[\hat{\theta}_N = F_N^{-1} h_N \]

\[F_N = \sum_{j=0}^{N-1} \lambda^j f(-j) f^T(-j) \]

\[h_N = \sum_{j=0}^{N-1} \lambda^j f(-j) Y_{N-j} \]
Updating the estimates when Y_{N+1} is available

$$\hat{\theta}_{N+1} = F_{N+1}^{-1} h_{N+1}$$

$$F_{N+1} = F_N + \lambda^N f(-N) f^T(-N)$$

$$h_{N+1} = \lambda L^{-1} h_N + f(0) Y_{N+1}$$

When no data is available we can use $h_0 = 0$ and $F_0 = 0$

For many functions $\lambda^N f(-N) f^T(-N) \to 0$ for $N \to \infty$ and we get the stationary result $F_{N+1} = F_N = F$. Hence:

$$\hat{\theta}_{N+1} = L^T \hat{\theta}_N + F^{-1} f(0) [Y_{N+1} - \tilde{Y}_{N+1|N}]$$