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This lecture

One-way random effects model, continued

More examples of hierarchical variation

General linear mixed effects models
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One-way random effects model

Estimation of parameters

Confidence interval for the variance ratio

In the balanced case one may construct a confidence interval for the
variance ratio γ. A 1− α confidence interval for γ, i.e. an interval
(γL, γU ), satisfying

P [γL < γ < γU ] = 1− α

is obtained by using

γL =
1

n

(
Z

F (k − 1, N − k)1−α/2
− 1

)

γU =
1

n

(
Z

F (k − 1, N − k)α/2
− 1

)
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One-way random effects model

Estimation of parameters

Theorem (Moment estimates in the random effects model)

Moment estimates for the parameters µ, σ2 and σ2
u are

µ̃ = Y
··

σ̃2 = SSE /(N − k)

σ̃u
2 =

SSB/(k − 1)− SSE /(N − k)

n0

=
SSB /(k − 1)− σ̃2

n0

where the weighted average group size n0 is given by

n0 =

∑k
1
ni −

(∑k
1
n2
i /

∑k
1
ni

)

k − 1
=

N −
∑

i n
2
i /N

k − 1
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One-way random effects model

Estimation of parameters

Distribution of “residual” sum of squares

In the balanced case we have that

SSE ∼ σ2χ2(k(n− 1))

SSB ∼ {σ2/w(γ)}χ2(k − 1)

and that SSE and SSB are independent.
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One-way random effects model

Estimation of parameters

Unbiased estimates for variance ratio in the balanced case

In the balanced case, n1 = n2 = · · · = nk = n, we can provide explicit
unbiased estimators for γ and w(γ) = 1/(1 + nγ). One has

w̃ =
SSE /{k(n − 1)}

SSB /(k − 3)

γ̃ =
1

n

(
SSB /(k − 1)

SSE /{k(n − 1)− 2}
− 1

)

are unbiased estimators for w(γ) = 1/(1 + nγ) and for γ = σ2
u/σ

2,
respectively.
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One-way random effects model

Example - Wool data

Variation Sum of squares f s2 = SS/f E[S2]

Between bales SSB 65.9628 6 10.9938 σ2 + 4σ2
u

Within bales SSE 131.4726 21 6.2606 σ2

Table: ANOVA table for the baled wool data.
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One-way random effects model

Example - Wool data

The test statistic for the hypothesis H0 : σ
2
u = 0, is

z =
10.9938

6.2606
= 1.76 < F0.95(6, 21) = 2.57

The p-value is P [F (6, 21) ≥ 1.76] = 0.16

Thus, the test fails to reject the hypothesis of no variation between the
purity of the bales when testing at a 5% significance level. However, as
the purpose is to describe the variation in the shipment, we will estimate
the parameters in the random effects model, irrespective of the test result.
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One-way random effects model

Example - Wool data

Now lets find a 95% confidence interval for the ratio γ = σ2
u/σ

2. As
F (6, 21)0.025 = 1/F (21, 6)0.975 , one finds the interval

γL =
1

4

(
1.76

F (6, 21)0.975
− 1

)
= 0.25×

(
1.76

3.09
− 1

)
= −0.11

γU =
1

4

(
1.76

F (6, 21)0.025
− 1

)
= 0.25× (1.76 × 5.15 − 1) = 2.02
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One-way random effects model

Maximum likelihood estimates

Theorem (Maximum likelihood estimates for the parameters under the random
effects model)

The maximum likelihood estimates for µ, σ2 and σ2

u = σ2γ are determined by

For
∑

i n
2

i (yi· − y
··
)2 < SSE+SSB one obtains

µ̂ = y
··
=

1

N

∑

i

niyi·

σ̂2 =
1

N
(SSE+SSB)

γ̂ = 0
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One-way random effects model

Maximum likelihood estimates

Theorem (Maximum likelihood estimates for the parameters under the random
effects model continued)

For
∑

i n
2

i (yi· − y
··
)2 > SSE+SSB the estimates are determined as

solution to

µ̂ =
1

W (γ̂)

k∑

i=1

niwi(γ̂)yi·

σ̂2 =
1

N

{
SSE+

k∑

i=1

niwi(γ̂)(yi· − µ̂)2

}

1

W (γ̂)

k∑

i=1

n2

iwi(γ̂)
2(yi· − µ̂)2 =

1

N

{
SSE+

k∑

i=1

niwi(γ̂)(yi· − µ̂)2

}

where

W (γ) =

k∑

i=1

niwi(γ).
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One-way random effects model

Maximum likelihood estimates

The maximum likelihood estimate µ̂ is a weighted average of the group
averages

µ̂ is a weighted average of the group averages, yi·, with the estimates for
the marginal precisions

σ2niwi(γ) =
σ2

Var[Y i·]

as weights. We have the marginal variances

Var[Y i·] = σ2
u +

σ2

ni
=

σ2

ni
(1 + niγ) =

σ2

niwi(γ)

When the experiment is balanced, i.e. when n1 = n2 = · · · = nk, then all
weights are equal, and one obtains the simple result that µ̂ is the crude
average of the group averages.
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One-way random effects model

Maximum likelihood estimates

The estimate for σ2 utilizes also the variation between groups

We observe that the estimate for σ2 is not only based upon the variation
within groups, SSE, but the estimate does also utilize the knowledge of
the variation between groups, as

E[(Y i· − µ)2] = Var[Y i·] =
σ2

niwi(γ)

and therefore, the terms (yi· − µ)2 contain information about σ2 as well as
γ.
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One-way random effects model

Maximum likelihood estimates

The estimate for σ2 is not necessarily unbiased

We observe further that – as usual with ML-estimates of variance – the
estimate for σ2 is not necessarily unbiased.

Instead of the maximum likelihood estimate above, it is common practice
to adjust the estimate. Later we shall introduce the so-called residual
maximum likelihood (REML) estimates for σ2 and σ2

u, obtained by
considering the distribution of the residuals.
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One-way random effects model

Maximum likelihood estimates

Maximum-likelihood-estimates in the balanced case

In the balanced case, n1 = n2 = · · · = nk the weights

wi(γ) =
1

1 + nγ

do not depend on i, and then

µ̂ =
1

k

k∑

i=1

yi+ = y++,

which is the same as the moment estimate.
When (n − 1) SSB > SSE then the maximum likelihood estimate
corresponds to an inner point.
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One-way random effects model

Maximum likelihood estimates

Maximum-likelihood-estimates in the balanced case, continued

Nσ2 = SSE+
SSB

1 + nγ

N
n

1 + nγ

SSB

k
= SSE+

SSB

1 + nγ

with the solution

σ̂2 =
SSE

N − k

γ̂ =
1

n

[
SSB

kσ̂2
− 1

]

σ̂2
b =

SSB /k − σ̂2

n
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One-way random effects model

Estimation of random effects, BLUP-estimation

In a mixed effects model, it is not clear what fitted values, and
residuals are.

Our best prediction for subject i is not given by the mean
relationship, µ.

It may sometimes be of interest to estimate the random effects.

The best linear unbiased predictor (BLUP) in the one-way case is

µi =
(
1− wi(γ)

)
yi + wi(γ)µ

Thus, the estimate for µi is a weighted average between the
individual bale averages, yi and the overall average µ̂ with weights
(1− wi(γ)) and wi(γ), where

wi(γ) =
1

1 + niγ
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General linear mixed effects models

General linear mixed effects models

Definition (Linear mixed effects model)

The model
Y =Xβ +ZU + ǫ

with X and Z denoting known matrices, and where ǫ ∼ N(0,Σ) and
U ∼ N(0,Ψ) are independent is called a mixed general linear model. In
the general case may the covariance matrices Σ and Ψ depend on some
unknown parameters, ψ, that also need to be estimated.
The parameters β are called fixed effects or systematic effects, while the
quantities U are called random effects.
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General linear mixed effects models

General linear mixed effects models

It follows from the independence of U and ǫ that

D

[(
ǫ

U

)]
=

(
Σ 0

0 Ψ

)

The model may also be interpreted as a hierarchical model

U ∼ N(0,Ψ)

Y |U = u ∼ N(Xβ +Zu,Σ)
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General linear mixed effects models

General linear mixed effects models

The marginal distribution of Y is a normal distribution with

E[Y ] =Xβ

D[Y ] = Σ+ZΨZT

We shall introduce the symbol V for the dispersion matrix in the marginal
distribution of Y , i.e.

V = Σ+ZΨZT

The matrix V may grow rather large and cumbersome to handle.
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General linear mixed effects models

One-way model with random effects - example

The one-way model with random effects

Yij = µ+ Ui + eij

We can formulate this as

Y =Xβ +ZU + ǫ

with

X = 1N

β = µ

U = (U1, U2, . . . , Uk)
T

Σ = σ2IN

Ψ = σ2
uIk

where 1N is a column of 1’s. The i, j’th element in the N × k dimensional
matrix Z is 1, if yij belongs to the i’th group, otherwise it is zero.
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General linear mixed effects models

Estimation of fixed effects and variance parameters

The fixed effect parameters β and the variance parameters ψ are
estimated from the marginal distribution of Y .

For fixed ψ the estimate of β is found as the solution of

(XTV −1X)β =XTV −1y

This is the well-known weighted least squares (WLS) formula.

In some software systems the solution is called the generalised least
squares (GLS).

Note, however, that the solution may depend on the unknown
variance parameters ψ as we saw in the case of the unbalanced
one-way random effect model.
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General linear mixed effects models

Estimation of fixed effects and variance parameters

The observed Fisher information for β is

I(β̂) =XTV −1X

An estimate for the dispersion matrix for β̂ is determined as

Var[β̂] = (XTV −1X)−1
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General linear mixed effects models

Estimation of fixed effects and variance parameters

In order to determine estimates for the variance parameters ψ we shall
modify the profile likelihood for ψ in order to compensate for the estimation
of β

The modified profile log-likelihood is

ℓm(ψ) = − 1

2
log |V | − 1

2
log |XTV −1X|

− 1

2
(Y −Xβ̂)TV −1(Y −Xβ̂)

When β̂ depends on ψ it is necessary to determine the solution by iteration.
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General linear mixed effects models

Estimation of fixed effects and variance parameters

The modification to the profile likelihood equals the so-called residual
maximum likelihood (REML)-method using the marginal distribution of the

residual (y −Xβ̂ψ).

In REML the problem of biased variance components is solved by setting the
fixed effects estimates equal to the WLS solution above in the likelihood
function and then maximising it to find the variance component terms only.

The reasoning is that the fixed effects cannot contribute with information on
random effects leading to a justification of not estimating these parameters
in the same likelihood.

The method is also termed restricted maximum likelihood method because
the model may be embedded in a more general model for the group
observation vector Yi where the random effects model restricts the
correlation coefficient in the general model.
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General linear mixed effects models

Estimation of fixed effects and variance parameters

It is observed that the REML-estimates are obtained by minimising

(Y −Xβ)TV −1(ψ)(Y −Xβ) + log |V −1(ψ)|+ log |XTV −1(ψ)X|

A comparison with the full likelihood function in shows that it is the
variance term log |XTV −1(ψ)X| which is associated with the estimation of
β that causes the REML estimated variance components to be unbiased.

If accuracy of estimates of the variance terms are of greater importance than
bias then the full maximum likelihood should be considered instead.

An optimal weighting between bias and variance of estimators is obtained by
the estimators optimising the so-called Godambe Information

In balanced designs REML gives the classical moment estimates of variance
components (constrained to be non-negative).
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General linear mixed effects models

Estimation of random effects

Formally, the random effects, U are not parameters in the model, and the
usual likelihood approach does not make much sense for “estimating” these
random quantities.

It is, however, often of interest to assess these “latent”, or “state” variables.

We formulate a so-called hierarchical likelihood by writing the joint density
for observable as well as unobservable random quantities.

By putting the derivative of the hierarchical likelihood equal to zero and
solving with respect to u one finds that the estimate û is solution to

(ZTΣ−1Z +Ψ
−1)u = ZTΣ−1(y −Xβ)

where the estimate β̂ is inserted in place of β.

The solution is termed the best linear unbiased predictor
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General linear mixed effects models

Simultaneous estimation of β and u

The estimates for β and for u are those values that simultaneously
maximize ℓ(β,ψ,u) for a fixed value of ψ.

The mixed model equations are

(
XT

Σ
−1X XT

Σ
−1Z

ZT
Σ

−1X ZT
Σ

−1Z +Ψ
−1

)(
β

u

)
=

(
XT

Σ
−1y

ZT
Σ

−1y

)

The equations facilitate the estimation of β and u without
calculation of the marginal variance V , or its inverse.

The estimation may be performed by an iterative back-fitting
algorithm.
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General linear mixed effects models

Interpretation as empirical Bayes estimate

It is seen from

(ZT
Σ

−1Z +Ψ
−1)u = ZT

Σ
−1(y −Xβ̂)

that the BLUP-estimate û for the random effects has been “shrunk”
towards zero, as it is a weighted average of the direct estimate, (y −Xβ̂),
and the prior mean, E[U ] = 0, where the weights are the precision Ψ

−1 in
the distribution of U .
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