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Linear mixed effects model

Recall from Section 5.4 p. 179:

Definition (Linear mixed effects model)

The model
Y =Xβ +ZU + ε

with X and Z denoting known matrices, and where ε ∼ N(0,Σ) and
U ∼ N(0,Ψ) are independent is called a mixed general linear model. In the
general case may the variance matrices Σ and Ψ depend on some unknown
parameters, θ, that also needs to be estimated.
The parameters β are called fixed effects or systematic effects, while the
quantities U are called random effects.

In previous examples, we most often assumed that

Σ = σ2IN

Ψ = σ2
bIk

We will relax the assumption regarding the Σ-matrix later in the lecture.
We will use V for the dispersion matrix in the marginal distribution of Y , i.e.
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Example: Drying of beech wood

To investigate the effect of drying of beech wood on humidity, the
following experiment was conducted:
Each of 20 planks was dried in a certain period of time. Then the humidity
was measured in 5 depths (1,3,5,7,9) and 3 widths (1,2,3) for each plank:
depth 1: close to the top, depth 5: in the center, depth 9: close to the
bottom, depth 3: between 1 and 5, depth 7: between 5 and 9. width 1:
close to the side, width 3: in the center, width 2: between 1 and 3.

> str(dat)

’data.frame’: 300 obs. of 4 variables:

$ plank : Factor w/ 20 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...

$ width : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 2 2 2 2 2 ...

$ depth : Factor w/ 5 levels "1","3","5","7",..: 1 2 3 4 5 1 2 3 4 5 ...

$ humidity: num 3.4 4.9 5 4.9 4 4.1 4.7 5.2 4.6 4.3 ...
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Example: Drying of beech wood

with(dat, interaction.plot(width,plank,humidity,legend=F))

with(dat, interaction.plot(depth,plank,humidity,legend=F))

with(dat, interaction.plot(width,depth,humidity,legend=T))

with(dat, interaction.plot(depth,width,humidity,legend=T))
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Example: Drying of beech wood

options(contrasts=c("contr.sum", "contr.poly"))

> fit1<-lme(humidity~depth+width+depth:width,

random=~1|plank,data=dat)

> anova(fit1)

numDF denDF F-value p-value

(Intercept) 1 266 593.6487 <.0001

depth 4 266 78.2592 <.0001

width 2 266 29.6463 <.0001

depth:width 8 266 1.0840 0.3745

> fit2<-lme(humidity~depth+width,random=~1|plank,data=dat)

> anova(fit2)

numDF denDF F-value p-value

(Intercept) 1 274 593.6487 <.0001

depth 4 274 78.0676 <.0001

width 2 274 29.5738 <.0001
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Example: Drying of beech wood

> summary(fit2)

Linear mixed-effects model fit by REML

Data: dat

AIC BIC logLik

687.24 720.3615 -334.62

Random effects:

Formula: ~1 | plank

(Intercept) Residual

StdDev: 0.9897981 0.6361904

Fixed effects: humidity ~ depth + width

Value Std.Error DF t-value p-value

(Intercept) 5.466333 0.22435273 274 24.364907 0.0000

depth1 -0.751333 0.07346094 274 -10.227658 0.0000

depth2 0.438667 0.07346094 274 5.971428 0.0000

depth3 0.728667 0.07346094 274 9.919104 0.0000

depth4 0.397000 0.07346094 274 5.404233 0.0000

width1 0.047667 0.05194473 274 0.917642 0.3596

width2 0.319667 0.05194473 274 6.153977 0.0000

...
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Hierarchical random effects

In some cases the experimental design leads to a natural hierarchy of the
random effects.

Consider, for example the following experimental design to determine the
fat content in milk.

Two farms were selected randomly from all milk producing farms in
some area.

From each selected farms, two cows were randomly selected.

From each cow, two cups of milk were taken randomly from the daily
production and analysed in a lab.
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Single level of grouping

To analyse the cow data using single level of grouping, the information
about farm is ignored but the information about the cow is included.

In that case, the model is

yij = µ+Bi + εij

Bi ∈ N(0, σ21), ε ∈ N(0, σ2)

and the dispersion matrix in the marginal distribution is:

V =



σ2
1 + σ2 σ2

1 0 0 0 0 0 0
σ2
1 σ2

1 + σ2 0 0 0 0 0 0
0 0 σ2

1 + σ2 σ2
1 0 0 0 0

0 0 σ2
1 σ2

1 + σ2 0 0 0 0
0 0 0 0 σ2

1 + σ2 σ2
1 0 0

0 0 0 0 σ2
1 σ2

1 + σ2 0 0
0 0 0 0 0 0 σ2

1 + σ2 σ2
1

0 0 0 0 0 0 σ2
1 σ2

1 + σ2


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Two level of grouping

The natural model for the cow data is the two level grouping model, with
farm as the top layer.

In that case, the model is

yijk = µ+Bi +Bij + εijk

Bi ∈ N(0, σ22), Bij ∈ N(0, σ21), ε ∈ N(0, σ2)

with Bi representing the farms and Bij the cows nested within the farms.
The dispersion matrix in the marginal distribution is:



σ2
2 + σ2

1 + σ2 σ2
2 + σ2

1 σ2
2 σ2

2 0 0 0 0

σ2
2 + σ2

1 σ2
2 + σ2

1 + σ2 σ2
2 σ2

2 0 0 0 0

σ2
2 σ2

2 σ2
2 + σ2

1 + σ2 σ2
2 + σ2

1 0 0 0 0

σ2
2 σ2

2 σ2
2 + σ2

1 σ2
2 + σ2

1 + σ2 0 0 0 0

0 0 0 0 σ2
2 + σ2

1 + σ2 σ2
2 + σ2

1 σ2
2 σ2

2
0 0 0 0 σ2

2 + σ2
1 σ2

2 + σ2
1 + σ2 σ2

2 σ2
2

0 0 0 0 σ2
2 σ2

2 σ2
2 + σ2

1 + σ2 σ2
2 + σ2

1
0 0 0 0 σ2

2 σ2
2 σ2

2 + σ2
1 σ2

2 + σ2
1 + σ2


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Example: Lactase measurements in piglets

As part of a larger study of the intestinal health in newborn piglets, the
gut enzyme lactase was measured in 20 piglets taken from 5 different
litters. For each of the 20 piglets the lactase level was measured in three
different regions. At the time the measurement was taken the piglet was
either unborn (status=1) or newborn (status=2).

The hierarchical structure for the first two litters is:

Module 5: Hierarchical random effects 2

5.1.1 Main example: Lactase measurements in piglets

As part of a larger study of the intestinal health in newborn piglets, the gut enzyme lac-
tase was measured in 20 piglets taken from 5 different litters. For each of the 20 piglets
the lactase level was measured in three different regions. At the time the measurement
was taken the piglet was either unborn (status=1) or newborn (status=2). These data
are kindly provided by Charlotte Reinhard Bjørnvad, Department of Animal Science
and Animal Health, Division of Animal Nutrition, Royal Veterinary and Agricultural
University. The 60 log transformed measurements are listed below:

Obs litter pig reg status loglact Obs litter pig reg status loglact
1 1 1 1 1 1.89537 31 3 11 1 2 1.58104
2 1 1 2 1 1.97046 32 3 11 2 2 1.52606
3 1 1 3 1 1.78255 33 3 11 3 2 1.65058
4 1 2 1 1 2.24496 34 4 12 1 1 1.97162
5 1 2 2 1 1.43413 35 4 12 2 1 2.11342
6 1 2 3 1 2.16905 36 4 12 3 1 2.51278
7 1 3 1 2 1.74222 37 4 13 1 1 2.06739
8 1 3 2 2 1.84277 38 4 13 2 1 2.25631
9 1 3 3 2 0.17479 39 4 13 3 1 1.79251

10 1 4 1 2 2.12704 40 5 14 1 1 1.93274
11 1 4 2 2 1.90954 41 5 14 2 1 1.82394
12 1 4 3 2 1.49492 42 5 14 3 1 1.23629
13 2 5 1 2 1.62897 43 5 15 1 2 2.07386
14 2 5 2 2 2.26642 44 5 15 2 2 1.96713
15 2 5 3 2 1.96763 45 5 15 3 2 0.47971
16 2 6 1 2 2.01948 46 5 16 1 2 2.01307
17 2 6 2 2 2.56443 47 5 16 2 2 1.85483
18 2 6 3 2 1.16387 48 5 16 3 2 2.18274
19 2 7 1 2 2.20681 49 5 17 1 2 2.86629
20 2 7 2 2 2.55652 50 5 17 2 2 2.71414
21 2 7 3 2 1.69358 51 5 17 3 2 1.60533
22 2 8 1 2 1.09186 52 5 18 1 2 1.97865
23 2 8 2 2 1.93091 53 5 18 2 2 1.93342
24 2 8 3 2 . 54 5 18 3 2 0.74943
25 3 9 1 1 2.36462 55 5 19 1 2 2.89886
26 3 9 2 1 2.72261 56 5 19 2 2 2.88606
27 3 9 3 1 2.80336 57 5 19 3 2 2.20697
28 3 10 1 1 2.42834 58 5 20 1 2 1.87733
29 3 10 2 1 2.64971 59 5 20 2 2 1.70260
30 3 10 3 1 2.54788 60 5 20 3 2 1.11077

Notice the hierarchical structure in which the measurements are naturally ordered.
First the five litters, then the piglets, and finally the individual measurements. This
structure is illustrated in figure 5.1 for the first two litters.

Litter=1 Litter=2

Pig=1 Pig=2 Pig=3 Pig=4 Pig=5 Pig=6 Pig=7 Pig=8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 .

Figure 5.1: The hierarchical structure of the lactase data set for the first two litters

ST113/Mixed Linear Models http://statmaster.sdu.dk/courses/ST113/ Last modified: February 27, 2004
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Example: Lactase measurements in piglets

The model can be written as

yijkl = µ+ ri + sj + riij +Bk +Bkl + εijkl

Bk ∈ N(0, σ21), Bkl ∈ N(0, σ22), ε ∈ N(0, σ2)

where ri denotes the region, sj the status, Bk denotes the litter, Bkl the
piglets within litters.

> str(dat)

’data.frame’: 60 obs. of 5 variables:

$ litter : Factor w/ 5 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...

$ pig : Factor w/ 20 levels "1","2","3","4",..: 1 1 1 2 2 2 3 3 3 4 ...

$ reg : Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3 1 2 3 1 ...

$ status : Factor w/ 2 levels "1","2": 1 1 1 1 1 1 2 2 2 2 ...

$ loglact: num 25 32 19 45 9 41 18 22 2 40 ...
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Example: Lactase measurements in piglets

> fit1<-lme(loglact~reg+status+reg:status,data=dat,

random=~1|litter/pig,na.action=na.omit)

> summary(fit1)

Linear mixed-effects model fit by REML

Data: dat

AIC BIC logLik

97.91436 115.647 -39.95718

Random effects:

Formula: ~1 | litter

(Intercept)

StdDev: 2.269151e-05

Formula: ~1 | pig %in% litter

(Intercept) Residual

StdDev: 0.3345345 0.3673081

Fixed effects: loglact ~ reg + status + reg:status

Value Std.Error DF t-value p-value

(Intercept) 2.1292914 0.1877797 35 11.339305 0.0000

reg2 0.0093629 0.1963344 35 0.047688 0.9622

reg3 -0.0086600 0.1963344 35 -0.044108 0.9651

status2 -0.1211776 0.2329121 14 -0.520272 0.6110

reg2:status2 0.1098179 0.2435229 35 0.450955 0.6548

reg3:status2 -0.6550188 0.2458415 35 -2.664395 0.0116
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Example: Lactase measurements in piglets

> anova(fit1)

numDF denDF F-value p-value

(Intercept) 1 35 478.7082 <.0001

reg 2 35 10.2922 0.0003

status 1 14 2.5496 0.1326

reg:status 2 35 5.6265 0.0076
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Example: Lactase measurements in piglets

fit2<-lme(loglact~reg+status+reg:status,data=dat,

random=~1|pig,na.action=na.omit)

fit3<-lm(loglact~reg+status+reg:status,data=dat,

na.action=na.omit)

> anova(fit1,fit2)

Model df AIC BIC logLik L.Ratio p-value

fit1 9 97.91436 115.6470 -39.95718

fit2 8 95.91436 111.6767 -39.95718 1.349653e-08 0.9999

> anova(fit2,fit3)

Model df AIC BIC logLik L.Ratio p-value

fit2 8 95.91436 111.6767 -39.95718

fit3 7 103.46331 117.2554 -44.73165 9.548944 0.002
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Example: Lactase measurements in piglets

plot(fit2)

Fitted values
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The extended linear mixed effects model

In the models we have considered so far, considerably flexibility is
allowed in the random effects structure but we have restricted the
within group errors ε to be independent, identically distributed
random variables with mean zero and constant variance.

There are many applications involving grouped data for which the
within-group errors are heteroscedastic (i.e. have unequal variances)
or are correlated, or even both.

We will now extend the linear mixed effect model to allow for
heteroscedastic correlated within group errors and use lme to fit those
kind of models.
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The extended linear mixed effects model

Within-group errors allowed to be correlated and heteroscedastic

ε ∼ N(0, σ2Σ)

The within-group variance-covariance matrix R can be decomposed
into

Σ = V CV ,

V describes the variance and C describes the correlation

Convenient since the heteroscedasticity and the correlation structure
can be modeled separately
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Modeling heteroscedasticity - varFunc classes in R

Variance functions in R

Arguments: value and form

value specifies the initial value for the variance parameter(s). As
default it is optimized in the iteration process, but held fixed if
specified

form is a one-sided formula specifying a covariate and optionally a
grouping variable

form = ∼ covariate | group

If the variance should depend on µ̂ij , it is formulated

form = ∼ fitted(.) | group
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Modeling heteroscedasticity - varFunc classes in R

varFixed

Var(εij) = σ2covariateij

within-group variance proportional to a covariate. No grouping
variables or the symbol ., i.e. no fitted values are allowed

varIdent

Var(εij) = σ2δ2sij

different within-group variances for each level of a grouping variable.
Variance parameters is the standard deviation of the kth group
relative to the first group, i.e. δ1 = 1 and δk > 0, k = 2, ..., S
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Modeling heteroscedasticity - varFunc classes in R

varPower

Var(εij) = σ2|υij |2δ

the absolute value of a covariate raised to a power δ. When values of
the covariate are close 0, varConstPower may be more more
appropriate

varConstPower

Var(εij) = σ2(δ1 + |υij |δ2)2

Similar to varPower but with a constant added to the power term.
δ1 is restricted to be positive. May provide a more realistic model
when the values of the covariate are close to 0
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Modeling heteroscedasticity - varFunc classes in R

varExp

Var(εij) = σ2exp(2δυij)

the within-group variance increases or decreases exponentially with a
covariate

varComb

Combines different variance functions by multiplying them together
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Modeling dependence

Modeling dependence among within-group errors

Historically developed for time-series data (serial correlation) and
spatial data (spatial correlation)

We will only consider serial correlation here.

Use corStruct classes in R to model the correlation

Syntax in R is similar to the varFunc classes
Arguments: value and form

value: initial value for the correlation parameter(s). Held fixed if
specified

form: one-sided formula specifying the position vector and grouping
variable

form = ∼ position | group
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Modeling dependence

Modeling dependence - serial corStruct classes

corCompSymm

h(k, ρ) = ρ, k = 1, 2, ...

All within-group errors in the same group are correlated equally
regardless the distance between them

This is the correlation structure for a mixed-effects model with a
random intercept and iid within-group errors with the correlation
parameter

ρ = σ2b/(σ
2
b + σ2)

Useful when there are few observations per group but may be too
simple otherwise
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Modeling dependence

Modeling dependence - serial corStruct classes

corSymm

h(k, ρ) = ρk, k = 1, 2, ...

General correlation structure with different parameters for each lag

Often yields overparameterized models and mostly useful with few
observations per group
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Modeling dependence

Modeling dependence - serial corStruct classes

corARMA: Possible to specify autoregressive models, moving average
models or both

The autoregressive (AR) model of order p

Yt = φ1Yt−1 + · · ·+ φpYt−p + εt

The current observation (Yt) is a linear function of prior observations
plus an iid noise term εt

Since Yt depends on prior observations that again depends on prior
observations etc, the correlation structure is infinite
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Modeling dependence

Modeling dependence - serial corStruct classes

The moving average (MA) model of order q

Yt = θ1εt−1 + · · ·+ θqεt−q + εt

The current observation is a linear function of prior errors plus an iid
noise term εt

Yt depends only on prior errors and the correlation structure is finite.
Observations with lag > q are uncorrelated

In R the arguments p and q specifies the order of the autoregressive
model and the moving average, respectively
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Modeling dependence

Modeling dependence - serial corStruct classes

corAR1

h(k, ρ) = φk, k = 0, 1, ...

Special case of the general autoregressive function described above

A simple and often useful correlation model with only one parameter

corCAR1

h(s, ρ) = φs, s ≤ 0, ρ ≤ 0

corCAR1 is corAR1 extended to accommodate continuous time
measurements
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Modeling dependence

Example on specification in ’lme’

Specification of a mixed-effects model - also with heteroscedastic error
structure

m.0 <- lme(dds.log ~ dbh.log+dbh+BAL+BA+SITES,

random=~1|PLot/MP, # measured periods (MP) are nested within Plots

data=tree, method="ML")

m.AR1 <- update(m.0, correlation = corAR1())

m.0d <- update(m.AR1, weights = varPower(form = ~dbh))

m.0w <- update(m.AR1, weights = varPower())

m.0w.REML <- update(m.0w, method="REML")
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Modeling dependence

Example: Orthodont

The Orthodont data frame has 108 rows and 4 columns of the change in
an orthdontic measurement over time for several young subjects.

> str(Orthodont)

108 obs. of 4 variables:

$ distance: num 26 25 29 31 21.5 22.5 23 26.5 23 22.5 ...

$ age : num 8 10 12 14 8 10 12 14 8 10 ...

$ Subject : Ord.factor w/ 27 levels "M16"<"M05"<"M02"<..: 15 15 15 15 3 3 3 3 7 7 ...

$ Sex : Factor w/ 2 levels "Male","Female": 1 1 1 1 1 1 1 1 1 1 ...

Henrik Madsen Anna Helga Jónsdóttir (hm@imm.dtu.dk)Intruction to General and Generalized Linear Models April 30, 2012 30 / 36



Modeling dependence

Example: Orthodont

From a previous exercise ...

fit1<-lme(distance ~ I(age-11),data=Orthodont,random= ~1|Subject)

We would like to see if boys and girls have different growth patterns:

fit2<-update(fit1,fixed=distance~Sex*I(age-11))

> anova(fit2)

numDF denDF F-value p-value

(Intercept) 1 79 4123.156 <.0001

Sex 1 25 9.292 0.0054

I(age - 11) 1 79 122.450 <.0001

Sex:I(age - 11) 1 79 6.303 0.0141

Henrik Madsen Anna Helga Jónsdóttir (hm@imm.dtu.dk)Intruction to General and Generalized Linear Models April 30, 2012 31 / 36



Modeling dependence

Example: Orthodont

plot(fit2)

Fitted values (mm)
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Modeling dependence

Example: Orthodont

plot(fit2,form=resid(.,type=’p’)~age,abline=0)
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Modeling dependence

Example: Orthodont

plot(fit2,form=resid(.,type=’p’)~fitted(.)|Sex,abline=0)

Fitted values (mm)
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Modeling dependence

Example: Orthodont

fit3<-update(fit2,weights=varIdent(form = ~ 1 | Sex))

plot(fit3,form=resid(.,type=’p’)~fitted(.)|Sex,abline=0)
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Modeling dependence

Example: Orthodont

> anova(fit2,fit3)

df AIC BIC logLik Test L.Ratio p-value

fit2 6 445.7572 461.6236 -216.8786

fit3 7 429.2205 447.7312 -207.6102 1 vs 2 18.53677 <.0001

> summary(fit3)

....

Variance function:

Structure: Different standard deviations per stratum

Formula: ~1 | Sex

Parameter estimates:

Male Female

1.0000000 0.4678944

....
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