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T —
This lecture

Takes a deeper look into the use of random effects instead of
overdispersion, which we have already used in a few examples.
Introduction, approaches to modelling of overdispersion
Hierarchical Poisson Gamma model

Bayesian detour

The Binomial Beta model

Normal distributions with random variance

Hierarchical generalized linear models
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Introduction

@ A characteristic property of the generalized linear models is that the
variance, Var[Y] in the distribution of the response is a known function,
V (1), that only depends on the mean value

2
o
Var[Y;] = X\ V(p) = — V(p)
%
where w; denotes a known weight, associated with the i'th observation, and
where o2 denotes a dispersion parameter common to all observations,
irrespective of their mean.

@ The dispersion parameter o2 does serve to express overdispersion in
situations where the residual deviance is larger than what can be attributed
to the variance function V(i) and known weights w;.

@ We shall describe an alternative method for modeling overdispersion, viz. by
hierarchical models analogous to the mixed effects models for the normally
distributed observations.
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Introduction

@ A starting point in a hierarchical modeling is an assumption that the
distribution of the random “noise” may be modeled by an exponential
dispersion family (Binomial, Poisson, etc.), and then it is a matter of
choosing a suitable (prior) distribution of the mean-value parameter

1.
@ |t seems natural to choose a distribution with a support that coincides

with the mean value space M rather than using a normal distribution
(with a support constituting all of the real axis R).

@ In some applications an approach with a normal distribution of the
canonical parameter is used. Such an approach is sometimes called
generalized linear mixed models (GLMMs)
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Introduction

@ Although such an approach is consistent with a formal requirement of
equivalence between mean values space and support for the distribution of u
in the binomial and the Poisson distribution case, the resulting marginal
distribution of the observation is seldom tractable, and the likelihood of such
a model will involve an integral which cannot in general be computed
explicitly.

@ Also, the canonical parameter does not have a simple physical interpretation
and, therefore, an additive “true value” + error, with a normally distributed
“error” on the canonical parameter to describe variation between subgroups,
is not very transparent.

@ Instead, we shall describe an approach based on the so-called standard
conjugated distribution for the mean parameter of the within group
distribution for exponential families.

@ These distributions combine with the exponential families in a simple way,
and lead to marginal distributions that may be expressed in a closed form
suited for likelihood calculations.
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Hierarchical Poisson Gamma model

Hierarchical Poisson Gamma model - example

The table shows the distribution of the number of daily episodes of
thunderstorms at Cape Kennedy, Florida, during the months of June, July
and August for the 10-year period 19571966, total 920 days.

Number of episodes, z;  Number of days, # ¢ Poisson expected

0 803 791.85
1 100 118.78
2 14 8.91
3+ 3 0.46

Table: The distribution of days with 0, 1, 2 or more episodes of thunderstorm at
Cape Kennedy.

All observational periods are n;, = 1 day.
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Hierarchical Poisson Gamma model

Hierarchical Poisson Gamma model - example

e The data represents counts of events (episodes of thunderstorms)
distributed in time.

@ A completely random distribution of the events would result in a
Poisson distribution of the number of daily events.

@ The variance function for the Poisson distribution is V(u) = p;
therefore, a Poisson distribution of the daily number of events would
result in the variance in the distribution of the daily number of events
being equal to the mean, i = 7, = 0.15 thunderstorms per day.

@ The empirical variance is s = 0.1769, which is somewhat larger than
the average. We further note that the observed distribution has
heavier tails than the Poisson distribution. Thus, one might be
suspicious of overdispersion.
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Hierarchical Poisson Gamma model

Hierarchical Poisson Gamma model - example
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Hierarchical Poisson Gamma model

Formulation of hierarchical model

Theorem (Compound Poisson Gamma model)

Consider a hierarchical model for Y specified by

Y| ~ Pois(p),
w~ G(a, B),

i.e. a two stage model.

In the first stage a random mean value 1 is selected according to a
Gamma distribution, and that Y is generated according to a Poisson
distribution with that value as mean value. Then the marginal distribution
of Y is a negative binomial distribution, Y ~ NB(«,1/(1+ 3))
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Formulation of hierarchical model

Theorem (Compound Poisson Gamma model, continued)

The probability function for Y is

PIY =y] = gv(y; 0, B)
Ty+ao) BY
yT(a) (B+1)vte

(yta-1 1 B \Y -
—< y )(,6’+1)°‘(B+1> fory=0,1,2,...

where we have used the convention

(2) - F(zr+(zl+—1y)> y!

for z real and y integer values.

Henrik Madsen Poul Thyregod Anders Nielser, Chapman & Hall April 29, 2012 10 / 32



Proof.
We have the two densities:

1
BT ()"

fyu<y>=“y—?e—“ and  fulus, B) =

o0 ILLy 1 1 =2
gy (v) :/ —e M u® “e Bdu |collect, and constants outside]
0

1/8

1 ® ()

= YIBeT( _)/ pitele u(F )du [recognize as T integral]
y: @) Jo
g _\¥t

1 Tly+a ((ﬁﬂ))

= () | [reduce]
T y

= ly + ) [done!]

~ YT(@)(B+ 1)vte
O

4
Henrik Madsen Poul Thyregod Anders Nielser Chapman & Hall April 29, 2012 11 /32




Hierarchical Poisson Gamma model

Formulation of hierarchical model

@ For integer values of o the negative binomial distribution is known as
the distribution of the number of “failures” until the «'th success in a
sequence of independent Bernoulli trials where the probability of

success in each trial is p = 1/(1 + ).

@ For o = 1 the distribution is known as the geometric distribution.

Henrik Madsen Poul Thyregod Anders Nielser, Chapman & Hall April 29, 2012 12 / 32



Why use a Gamma to describe variation between days?

@ It has the desired support

o It is a very flexible distribution

05

04

03

02

01

@ Last but not least the integral can be directly calculated.
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Hierarchical Poisson Gamma model

Inference on mean u

Theorem (Conditional distribution of 1)
Consider the hierarchical Poisson-Gamma model and assume that a value
Y =y has been observed.

Then the conditional distribution of u for given Y = y is a Gamma
distribution,

pl Y =y ~Gla+y,B8/(B+1))

with mean
a+y

(1/8+1)

Proof is: 1. Bayes' theorem, 2. Collect terms, 3. Recognize Gamma

Elu| Y =y] =
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Back to the thunder storm example

The data was:
Number of episodes, z;  Number of days, # ¢ Poisson expected

0 803 791.85
1 100 118.78
2 14 8.91
3+ 3 0.46

@ Notice that the observations have been summarized for us
@ The real data would be something like:
Day Number of storms

1 0
2 0
3 1
920 0
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Hierarchical Poisson Gamma model

@ The model we want to setup is fairly simple:
Y; ~ NB(a,1/(1+f)), where i =1...920.

@ As the observations are collected, so can we collect the likelihood
calculations

803 - £(0) +100- £(1) + 14 - £(2) + 3 - £(> 3)
@ Remember that:

P(Y>3)=1-P(Y=0)-P(Y =1) - P(Y = 2)
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Detour: Bayesian inference

@ Purely likelihood based inference (a.k.a. Frequentist inference) is
based on drawing information from data Y about the model
parameters 6 via the likelihood function:

L(Y|0)

@ In Bayesian inference prior beliefs about the model parameters are
expressed as a probability density, so we have:

L(Y|#)  and q(0+)
@ Inference about the model parameters are drawn from the posterior

density:
L(Y = y|0)q(9])
JL(Y = y|0)q(0])do

which is computed via Bayes' rule.

pOlY =y) =
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Detour: Bayesian inference

@ What is done here is to update the prior beliefs with data
o If the data part is dominating results close to likelihood inference can
be expected

@ Notice that the prior parameters 1) are not influenced by data. In
hierarchical /mixed /random effects models we would estimate those.

@ Notice that the prior assumption is entirely subjective and not subject
to model validation. In hierarchical/mixed/random effects models we
can - to some extend - validate our assumed distribution.
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Detour: Bayesian inference

@ Notice that the integral in the posterior denominator in general
cannot be calculate analytically.

o Before the widespread use of MCMC* it was very important to specify
priors such that the denominator integral could be calculated.

@ A prior density is said to be conjugated to a certain likelihood if the
posterior density has the same parametric form as the prior density.

@ Using conjugate priors simplifies the modeling. To derive the posterior
distribution, it is not necessary to perform the integration, as the
posterior distribution is simply obtained by updating the parameters
of the prior one.

*Markov Chain Monte Carlo methods are simulations techniques that allow you to
sample a Markov chain with a desired equilibrium density, when that density is only

know unnormalized
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Reparameterization of the Gamma distribution

Instead of the usual parameterization of the gamma distribution of y by its shape
parameter « and scale parameter 3, we may choose a parameterization by the
mean value, m = «f, and the signal/noise ratio v = 8

v=45

m = af

The parameterization by m and -y implies that the degenerate one-point
distribution of i in a value mg may be obtained as limiting distribution for
Gamma distributions with mean mg and signal/noise ratios v — 0. Moreover,
under that limiting process the corresponding marginal distribution of Y
(negative binomial) will converge towards a Poisson distribution with mean my.

v
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Conjugate prior distributions

Definition (Standard conjugate distribution for an exponential dispersion family)

Consider an exponential dispersion family ED(p, V()/A) for 6 € Q. Let
M = 7(Q) denote the mean value space for this family. Let m € M and consider

Om — Me))

1
99(9; mﬁ) = m exp ( ~

C(m,’y):/ﬂexp (m—_n(e)> 40

with

v

for all (positive) values of  for which the integral converges.

This distribution is called the standard conjugate distribution for 6. The concept
has its roots in the context of Bayesian parametric inference to describe a family
of distributions whose densities have the structure of the likelihood kernel.
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Conjugate prior distributions

@ When the variance function, V(u) is at most quadratic, the
parameters m and -y have a simple interpretation in terms of the
mean value parameter, = 7(0), viz.

m = B[]
_Var[y]
77 EVar(u)]

with g = E[Y|6], and with Var(x) denoting the variance function

@ The use of the symbol 7 is in agreement with our introduction of ~ as
signal to noise ratio for normally distributed observations and for the
Poisson-Gamma hierarchical model.
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Conjugate prior distributions

@ When the variance function for the exponential dispersion family is at
most quadratic, the standard conjugate distribution for p coincides
with the standard conjugate distribution for 6.

@ However, for the Inverse Gaussian distribution, the standard conjugate
distribution for y is improper.

@ The parameterization of the natural conjugate distribution for u by
the parameters m and  has the advantage that location and spread
are described by separate parameters. Thus, letting v — 0, the
distribution of u will converge towards a degenerate distribution with
all its mass in m.
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Conjugated and marginal distributions

Density for  Sufficient statistic Density for E[T|0] V[T|6]

Y; T(Y1,...,Ys) T

Bern(0) MY B(n,0) no nd(1 — 0)
B(r,0) > B(rn,0) rné rnd(1 — 0)
Geo(0) S, NB(n, 0) nizf 107
NB(r,0) Y NB(rn, 0) it 1”711%2
P(0) MY P(n0) no no

P(r0) Y P(rn@) o rnd

Ex(6) Y G(n,0) no nd?

G(a, 0) Y G(na, ) anf anb?
u(0,0) max Y; Inv-Par(6, n) n"—fl %
N(6,0%) Y N(n@, no?) no no

N(u, 0) S(Y; — p)? G(n/2,20) no 2na?

N (0,X) Y, Ni(n@,nX) nb nX
Nie(p,0%) S(Y, —w)TZ1(Y; —pn) G(n/2,20) no 2no?
Ne(i.0) (Vi @) (Y- Wis(k,,0) 10

Table: Sufficient statistic T(Y7,. ..
of n iid random variables Y7, Y5, ..

, Y,,) (see p. 16 in the book) given a sample
., Y,. Notice that in some cases the

observation is a k dimensional random vector, and here a bold notation Y, is

used.
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Conjugated and marginal distributions

Conditional density  Conjugate prior  Posterior density for Marginal density of

of T given 0 for 6 0 after the T=t(Y1,...,Ys)
obs. T =t(y1,...,Yn)

B(n,0) Beta(a, ) Beta(t + a,n+ 8 —t) Pl(n, o, + )

NB(n, 6) Beta(a, ) Beta(n + a, 5+ t) NPI(n, 8, o + )

P(n0) Gla, 1/5) G+, 1/(B+ n) NE(a, 3/(B + 1))

G(n,0) Inv-G(a, B) Inv-G(n + a, 8+ t) Inv-Beta(a, n, B)

Inv-Par(0, n) Par(8, 1) Par(max(t, 8),n + ) BParg, u, n)

N(nb, no?) N(u,05) N(p1,o01) N(nu, no® + n0j)

w1 = (p/og +t/0?)
1/} =1/03 +n/o>

Ny (n8,nX) Nz (e, Xo) Ny (pe1, 1) N (np, nX 4+ o)
PP G R
2= +nx!

Table: Conditional densities of the statistic 7' given the parameter 6, conjugate
prior densities for 8, posterior densities for € after having observed the statistic
T =t(y1,...,Yn), and the marginal densities for T = ¢(Y7,..., Y,) — cf. also
the discussion on page 16 and 17 in the book.(Notice that in some cases the
observation is a random vector)
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Hierarchical Beta-Binomial model

@ Data describing the number of defective lids in samples of 770 lids
from each of 229 samples.

No. defective No. samples

0 131
1 38
2 28
3 11
4 4
5 5
6 5
7 2
8 3
9 2

@ Notice that the data is summarized
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Hierachical Beta-Binomial model

10° ¢
O  Binomial expected
< Polya expected
102 L o"ﬂ o} ® Observed
¥ o

100
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Hierachical Beta-Binomial model

Hierarchical Binomial-Beta distribution model

The natural conjugate distribution to the binomial is a Beta-distribution.

Theorem

Consider the generalized one-way random effects model for Z,, Z, . .., Zy, given
by

Zi|pi ~ B(n, pi)
pi ~ Beta(oz,,@)

i.e. the conditional distribution of Z; given p; is a Binomial distribution, and the
distribution of the mean value p; is a Beta distribution. Then the marginal
distribution of Z; is a Polya distribution

with probability function

o /m\D@+@)T(B+n—2) D(a+h)
P[Z‘Z]‘”(z"(z> M) T Tathin

forz=0,1,2,...,n.

v

Henrik Madsen Poul Thyregod Anders Nielser, Chapman & Hall April 29, 2012 28 / 32



Hierarchical Beta-Binomial distribution model

@ The Polya distribution is named after the Hungarian mathematician
G. Polya, who first described this distribution — although in another
context.

@ This distribution has:

a
a+p

E[p] =

of

Varlp] = (a+pB)2(atB+1)
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Why use a Beta to describe variation between samples?

@ It has the desired support

@ It is a very flexible distribution
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@ Last but not least the integral can be directly calculated.
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Normal distributions with random variance

Normal distributions with random variance

As a non-trivial example (and not given in the table) of a hierarchical distribution
we consider the hierarchical normal distribution model with random variance:

Theorem

Consider a generalized one-way random effects model specified by
Yilo} ~ N(u,07)
1/0? ~ G(a,1/B)
2

where o; are mutually independent for i =1,... k.
The marginal distribution of Y; under this model is

Yi—p
VB/a

where t(2«v) is a t-distribution with 2« degrees of freedom, i.e. a distribution with
heavier tails than the normal distribution.

~ t(2a)

v
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Next time

@ Finish the last chapter

@ Perspective: What have we learned - what more is out there
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