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About random effect models

In purely fixed effects models we have

– Random variables we observe
– Model parameters we want to estimate

In random effects models we have

– Random variables we observe

– Random variables we do NOT observe
– Model parameters we want to estimate

This model class is very useful and goes by many names: random
effects models, mixed models, latent variable models, state-space
models, frailty models, hierarchical models, ...

Many tools (e.g. R) can handle linear Gaussian models.

AD Model Builder has a neat way to handle non-linear non-Gaussian
random effect models.
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Motivating example: Paired observations

Two methods A and B to measure blood cell count (to check for the
use of doping).

Paired study.
Person ID Method A Method B

1 5.5 5.4
2 4.4 4.9
3 4.6 4.5
4 5.4 4.9
5 7.6 7.2
6 5.9 5.5
7 6.1 6.1
8 7.8 7.5
9 6.7 6.3
10 4.7 4.2

It must be expected that two measurements from the same person are
correlated, so a paired t-test is the correct analysis

The t-test gives a p-value of 5.1%, which is a borderline result...

But more data is available
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In addition to the planned study 10 persons were measured with only
one method

Want to use all data, which is possible
with random effects

Assume these 20 are ramdomly selected
from a population where the blod cell
count is normally distributed

Consider the following model:
Ci = α(Mi) + B(Pi) + εi , i = 1 . . . 30
α(Mi) the 2 fixed method effects
B(Pi) ∼ N (0, σ2P ) the 20 rand. eff.
εi ∼ N (0, σ2R) measurement noise
All B(Pi) and εi are independent

This model uses all data

Allows us to test method difference

ID Meth. A Meth. B
1 5.5 5.4
2 4.4 4.9
3 4.6 4.5
4 5.4 4.9
5 7.6 7.2
6 5.9 5.5
7 6.1 6.1
8 7.8 7.5
9 6.7 6.3
10 4.7 4.2
11 3.4
12 4.7
13 3.9
14 2.5
15 4.1
16 4.0
17 6.3
18 6.0
19 6.4
20 3.5
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The paired t-test

> t.test(obs[,1],obs[,2],paired=TRUE)

Paired t-test

data: obs[, 1] and obs[, 2]

t = 2.2558, df = 9, p-value = 0.05052

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.000616709 0.440616709

sample estimates:

mean of the differences

0.22
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Fit random effects model for the entire data set

Same data but organized as one line per observation

> dim(dat)

[1] 30 3

> head(dat)

id met x

1 1 1 5.5

2 1 2 5.4

3 2 1 4.4

4 2 2 4.9

5 3 1 4.6

6 3 2 4.5

Call to fit the random effects model

> library(nlme)

> fit1<-lme(x~met, random=~1|id, data=dat)
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Summary of model fit

> summary(fit1)

Linear mixed-effects model fit by REML

Data: dat

AIC BIC logLik

82.9282 88.25702 -37.4641

Random effects:

Formula: ~1 | id

(Intercept) Residual

StdDev: 1.333150 0.2183855

Fixed effects: x ~ met

Value Std.Error DF t-value p-value

(Intercept) 5.479360 0.3344155 19 16.384887 0.0000

met -0.236767 0.0970331 9 -2.440068 0.0374

Correlation:

(Intr)

met -0.435

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.71559896 -0.29261631 -0.07249575 0.32413719 1.65810172

Number of Observations: 30

Number of Groups: 20
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Testing for no method effect

> anova(fit1)

numDF denDF F-value p-value

(Intercept) 1 19 289.66135 <.0001

met 1 9 5.95393 0.0374
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Reproducing the t-test as a random effect model

Just to show that this is in fact the same logic that was behind the t-test

> datcut<-dat[dat$id<11,]

> fit2<-lme(x~met, random=~1|id, data=datcut)

> anova(fit2)

numDF denDF F-value p-value

(Intercept) 1 9 252.85716 <.0001

met 1 9 5.08877 0.0505
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Could not do it without random effects

> # Notice wrongly ignoring the pairwise nature of

> # (some of) the data

> fit3<-lm(x~id+met,data=dat)

> drop1(fit3, test='F')

Single term deletions

Model:

x ~ id + met

Df Sum of Sq RSS AIC F value Pr(F)

<none> 44.665 17.940

id 1 3.4605 48.125 18.178 2.0919 0.1596

met 1 4.2006 48.865 18.636 2.5393 0.1227
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2. Motivating example

Unprocessed (baled) wool contain varying amounts of fat and other
impurities that need to be removed before further processing. The price -
and the value of the baled wool depends on the amount of pure wool that
is left after removal of fat and impurities. The purity of the baled wool is
expressed as the mass percentage of pure wool in the baled wool.

As part of the assessment of different sampling plans for estimation of the
purity of a shipment of several bales of wool has U.S.Customs Laboratory,
Boston selected 7 bales at random from a shipment of Uruguyan wool, and
from each bale, 4 samples were selected for analysis.
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Data

Bale no.

Sample 1 2 3 4 5 6 7

1 52.33 56.99 54.64 54.90 59.89 57.76 60.27
2 56.26 58.69 57.48 60.08 57.76 59.68 60.30
3 62.86 58.20 59.29 58.72 60.26 59.58 61.09
4 50.46 57.35 57.51 55.61 57.53 58.08 61.45

Bale average 55.48 57.81 57.23 57.33 58.86 58.78 60.78

Table: The purity in % pure wool for 4 samples from each of 7 bales of Uruguyan
wool.
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One-way ANOVA

The variation in the data can be split up into variation between groups
and variation within groups.

SST =

k∑
i=1

ni∑
j=1

(yij − ¯̄y)2

SSB =

k∑
i=1

ni(ȳi − ¯̄y)2

SSE =

k∑
i=1

ni∑
j=1

(yij − ȳi)
2

The total variation in data

Variation between groups

Variation within groups

SST = SSB + SSE
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Model with fixed effects

We could formulate a one-way model as discussed in Chapter 3:

H1 : Yij ∼ N(µi , σ
2) i = 1, 2, . . . , k ; j = 1, 2, . . . ,ni

and obtain the ANOVA table:

Variation Sum of Squares f s2 = SS/f F-value Prob > F
Between bales SSB 65.9628 6 10.9938 1.76 0.16
Within bales SSE 131.4726 21 6.2606
Total SST 197.4348 27

The test statistic for H0 : µ1 = µ2 = · · · = µk is F = 10.99/6.26 = 1.76.
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Model with fixed effects

Such a model would be relevant, if we had selected seven specific bales, eg
the bales with identification labels “AF37Q”, “HK983”, . . ., and “BB837”.

Thus, i = 1 would refer to bale “AF37Q”, and the probability distributions
would refer to repeated sampling, but under such imaginative repeated
sampling, i = 1 would always refer to this specific bale with label“AF37Q”.
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Model with random effects

However, although there is not strong evidence against H1, we will not
consider the bales to have the same purity. The idea behind the sampling
was to describe the variation in the shipment, and the purity of the seven
selected bales was not of interest in it self, but rather as representative for
the variation in the shipment.

Therefore, instead of the fixed effects model in Chapter 3, we shall
introduce a random effects model.
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Formulation of the random model

Definition (One-way model with random effects)

Consider the random variables Yi ,j , i = 1, 2, . . . , k ; j = 1, 2, . . . ,ni
A one-way random effects model for Yi ,j is a model such that

Yij = µ+ Ui + εij ,

with εij ∼ N(0, σ2) and Ui ∼ N(0, σ2b), and where εij are mutually
independent, and also the Ui ’s are mutually independent, and finally the
Ui ’s are independent of εij .

We shall put

N =

k∑
i=1

ni

When all groups are of the same size, ni = n, we shall say that the model
is balanced.
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Parameters in the one-way random effects model

Parameters in the one-way random effects model

Consider a one-way random effects model. The parameters of the model
are (µ, σ2, σ2b).

Sometimes, the signal to noise ratio

γ =
σ2b
σ2

is used instead of σ2b .

Thus, the parameter γ expresses the inhomogeneity between groups in
relation to the internal variation in the groups. We shall use the term
signal/noise ratio for the parameter γ.
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The one-way model as a hierarchical model

The one-way model as a hierarchical model

Putting µi = µ+ Ui we may formulated as a hierarchical model

We shall assume that
Yij |µi ∼ N(µi , σ

2) ;

in contrast to the systematic model, the bale level µi is modeled as a
realization of a random variable,

µi ∼ N(µ, σ2b),

where the µi ’s are assumed to be mutually independent, and Yij are
conditionally independent, i.e. Yij are mutually independent in the
conditional distribution of Yij for given µi .
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Random/fixed/mixed

The random effects model will be a reasonable model in situations
where the interest is not restricted alone to the experimental
conditions at hand.

The random effects model will be a reasonable model when the
experimental conditions are considered as representatitve for a larger
collection (population) of varying experimental conditions, in principle
selected at random from that population.

The analysis of the systematic model (fixed) puts emphasis on the
assessment of the results in the individual groups, µi , and possible
differences, µi − µh , between the results in specific groups.

The analysis of the random effects model aims at describing the
variation between the groups, Var[µi ] = σ2b .

Models with both fixed and random effects are mixed effects models.
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Marginal distribution

Theorem (Marginal distribution in the random effects model for one-way ANOVA)

The marginal distribution of Yij is a normal distribution with

E[Yij ] = µ

Cov[Yij ,Yhl ] =

 σ2
b + σ2 for (i , j ) = (h, l)
σ2
b for i = h, j 6= l

0 for i 6= h

We note that there is a positive covariance between observations from the
same group. This positive covariance expresses that observations within
the same group will deviate in the same direction from the mean, µ, in the
marginal distribution, namely in the direction towards the group mean in
question.
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The coefficient of correlation

The coefficient of correlation

The coefficient of correlation,

ρ =
σ2b

σ2b + σ2
=

γ

1 + γ

that describe the correlation within a group, is often termed the intraclass
correlation.
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Distribution of individual group averages

Distribution of individual group averages

We finally note that the simultaneous distribution of the group averages is
characterized by

Cov[Ȳi·, Ȳh·] =

{
σ2
b + σ2/ni for i = h

0 otherwise

That is, that the k group averages Ȳi·, i = 1, 2, . . . , k are mutually independent,
and that the variance of the group average

Var[Ȳi·] = σ2
b + σ2/ni = σ2(γ + 1/ni)

includes the variance of the random component, σ2
b = σ2γ, as well as the effect

of the residual variance on the group average.
Thus, an increase of the sample size in the individual groups will improve the
precision by the determination of the group mean αi ,but the variation between
the individual groupmeans is not reduced by this averaging.
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Observation vector for a group

When we consider the set of observations corresponding to the i ’th group as a
ni -dimensional column vector,

Y i =


Yi1

Yi2

...
Yini


The set of observations Y i , i = 1, 2, . . . , k may be described as k independent
observations of a ni dimensional variable Y i ∼ Nni (µ, σ

2I ni + σ2
bJ ni ), i.e. that the

dispersion matrix for Y i is

V i = D[Yi ]

= E[(Y i − µ)(Y i − µ)T ]

=


σ2
b + σ2 σ2

b . . . σ2
b

σ2
b σ2

b + σ2 . . . σ2
b

...
...

. . .
...

σ2
b σ2

b . . . σ2
b + σ2


where J ni is a ni × ni -dimensional matrix consisting solely by 1’s.
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Covariance structure for the whole set of observations

Covariance structure for the whole set of observations

If we organize all observations in one column, organized according to
groups, we observe that the N ×N -dimensional dispersion matrix D[Y ] is

V = D[Y ] = Block diag{V i}

This illustrates that observations from different groups are independent,
whereas observations from the same group are correlated.
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Covariance structure for the whole set of observations
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Test of the hypothesis of homogeneity in the random effects model

Under the random effect model, the hypothesis that the varying experimental
conditions do not have an effect on the observed values, is formulated as

H0 : σ2
b = 0.

Theorem (Test of the hypothesis of homogeneity in the random effects model)

Under the one-way random effects model the likelihood ratio test for the
hypothesis has the test statistic

Z =
SSB /(k − 1)

SSE /(N − k)

Large values of z are considered as evidence against the hypothesis.

Under the hypothesis, Z will follow a F (k − 1,N − k)-distribution.
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The mixed linear model

Consider now the one way ANOVA with random block effect:

Yij = µ+αi+Bj+εij , Bj ∼ N (0, σ2B ), εij ∼ N (0, σ2), i = 1, 2, j = 1, 2, 3

The matrix notation is:
Y11
Y21
Y12
Y22
Y13
Y23


︸ ︷︷ ︸

Y

=


1 1 0
1 0 1
1 1 0
1 0 1
1 1 0
1 0 1


︸ ︷︷ ︸

X

( µ
α1
α2

)
︸ ︷︷ ︸

β

+


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


︸ ︷︷ ︸

Z

(
B1
B2
B3

)
︸ ︷︷ ︸

U

+


ε11
ε21
ε12
ε22
ε13
ε23


︸ ︷︷ ︸

ε

Notice how this matrix representation is constructed in exactly the same
way as for the fixed effects model — but separately for fixed and random
effects.
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A general linear mixed effects model

A general linear mixed model can be presented in matrix notation by:

Y = Xβ + ZU + ε, where U ∼ N (0,G) and ε ∼ N (0,R).

Y is the observation vector

X is the design matrix for the fixed effects

β is the vector containing the fixed effect parameters

Z is the design matrix for the random effects
U is the vector of random effects

It is assumed that U ∼ N (0,G)
cov(Ui ,Uj ) = Gi,j (typically G has a very simple structure (for
instance diagonal))

ε is the vector of residual errors
It is assumed that ε ∼ N (0,R)
cov(εi , εj ) = Ri,j (typically R is diagonal, but we shall later see some
useful exceptions for repeated measurements)
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Examples

Examples using lme in R
Taken from Mixed Effects Models in S and S-PLUS

J.C. Pinheiro and D.M. Bates

The lme function is a part of the nlme package
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Examples

One-way random model: Rail data

The data comes from a study of travel time for a certain type of wave that
results from longitudinal stress of rails used for railroad track.

> str(dat)

'data.frame': 18 obs. of 2 variables:

$Rail: Factor w/ 6 levels "1","2","3","4",..: 1 1 1 2 2 2 3 3 3 4 ...

$travel: int 55 53 54 26 37 32 78 91 85 92 ...

The model can be written as

Yij = µ+ Ui + εij ,

with εij ∼ N(0, σ2) and Ui ∼ N(0, σ2b), and where εij are mutually
independent, and also the Ui ’s are mutually independent, and finally the
Ui ’s are independent of εij .
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Examples

groupedData object

A groupedData object contains the data values themselves, stored as a
data frame and a formula that specifies the response, the primary covariate
and the grouping factor that divides the observations into groups. It is
given as:

response ~ primary | grouping

In the Rail case we write:

library(nlme)

dat2<-groupedData(travel ~ 1 | Rail,dat)
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Examples

Plotting groupData objects

> plot(dat2)
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Examples

The lme() function

The lme function can be used to fit linear mixed-effects models by
maximum likelihood or by restricted maximum likelihood (default). The
lme function is in the nlme package. Several arguments can be used with
the function but a typical call is:

lme( fixed, data, random)

The first argument is a two-sided linear formula specifying the dependent
variable and the fixed effects in the model (as in lm). The third argument
is typically given as a one-sided linear formula specifying the effects and
the grouping structure in the model.

For the Rail data the call is:

fit1<-lme(travel ~ 1, data = dat2, random = ~ 1|Rail)
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Examples

The lme() function

fit1<-lme(travel ~ 1, data = dat2, random = ~ 1|Rail)

The first argument indicates that the response is travel, and that there is
a single fixed effect, the intercept.

The second argument indicates that the data can be found in the dat2

object.

The third argument indicates that there is a single random effect for each
group and that the grouping is given by the variable Rail.
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Examples

Some lme methods

anova Likelihood ratio or conditional test
coef Estimated coefficients for different levels of grouping
fitted Fitted values for different levels of grouping
fixef fixed-effects estimates
intervals Confidence intervals on model parameters
logLik Log-likelihood at convergence
pairs Scatter-plot matrix of coefficients or random effects
predict Predictions for different levels of grouping
print Brief information about the fit
qqnorm Normal probability plots
ranef Random-effect estimates
resid Residuals for different levels of grouping
summary More detailed information about the fit
update Update the lme fit
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Examples

summary()

> summary(fit1)

Linear mixed-effects model fit by REML

Data: dat2

AIC BIC logLik

128.177 130.6766 -61.0885

Random effects:

Formula: ~1 | Rail

(Intercept) Residual

StdDev: 24.80547 4.020779

Fixed effects: travel ~ 1

Value Std.Error DF t-value p-value

(Intercept) 66.5 10.17104 12 6.538173 0

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.61882658 -0.28217671 0.03569328 0.21955784 1.61437744

Number of Observations: 18

Number of Groups: 6

The REML estimates are:

β̂ = 66.5, σ̂b = 24.805, σ̂ = 4.021.
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Examples

AIC, BIC

The summary output included the values of the Akaike Information
Criterion, AIC, and Bayesian Information Criterion, BIC.
They are both model comparison criteria defined as

AIC = −2 log Lik + 2npar

BIC = −2 log Lik + npar log(N )

where npar denotes the number of parameters in the model and N the
total number of observations used to fit the model.

Under these definitions smaller is better!
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Examples

Testing the model

# test for fixed part

> anova(fit1)

numDF denDF F-value p-value

(Intercept) 1 12 42.7477 <.0001

# test for random part

fit2<-lm(travel ~ 1,data = dat2)

> anova(fit1,fit2)

Model df AIC BIC logLik Test L.Ratio p-value

fit1 1 3 128.1770 130.6766 -61.08850

fit2 2 2 162.6815 164.3479 -79.34075 1 vs 2 36.50451 <.0001
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Examples

Confidence intervals on parameters

> intervals(fit1)

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 44.33921 66.5 88.66079

attr(,"label")

[1] "Fixed effects:"

Random Effects:

Level: Rail

lower est. upper

sd((Intercept)) 13.27433 24.80547 46.35346

Within-group standard error:

lower est. upper

2.695003 4.020779 5.998757
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Examples

Assessing the model fit

The fitted model should be examined using graphical summaries:

> plot(fit1)

Fitted values
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and more plots ...
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Examples

Randomized block design: Chair data

The data comes from an experiment for assessing the effects of a different chair
types on muscular activity.
The effort of required by each of nine different subjects to arise from each of four
types of chairs is recorded. We want to compare the four particular chair types so
we model Type as a fixed factor. The nine subjects represent a sample from the
population we wish to make inferences so we model Subject as a random factor.

> str(dat)

'data.frame': 36 obs. of 3 variables:

$effort : int 12 15 12 10 10 14 13 12 7 14 ...

$Type: Factor w/ 4 levels "T1","T2","T3",..: 1 2 3 4 1 2 3 4 1 2 ...

$Subject:Factor w/ 9 levels "1","2","3","4",..: 1 1 1 1 2 2 2 2 3 3 ...

The model can be written as:

Yij = µ+ ai + Uj + εij ,

with εij ∼ N(0, σ2) and Uj ∼ N(0, σ2
b), and where εij are mutually independent,

and also the Uj ’s are mutually independent, and finally the Ui ’s are independent

of εij .
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Examples

plot()

> dat2<-groupedData(effort ~ Type | Subject,data=dat)

> plot(dat2)
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Examples

lme - summary

> fit1<-lme(effort~Type, data = dat2, random = ~1|Subject)

> summary(fit1)

Linear mixed-effects model fit by REML

Data: dat2

AIC BIC logLik

133.1308 141.9252 -60.5654

Random effects:

Formula: ~1 | Subject

(Intercept) Residual

StdDev: 1.332465 1.100295

Fixed effects: effort ~ Type

Value Std.Error DF t-value p-value

(Intercept) 8.555556 0.5760123 24 14.853079 0.0000

TypeT2 3.888889 0.5186838 24 7.497610 0.0000

TypeT3 2.222222 0.5186838 24 4.284348 0.0003

TypeT4 0.666667 0.5186838 24 1.285304 0.2110

...

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.80200345 -0.64316591 0.05783115 0.70099706 1.63142054

Number of Observations: 36

Number of Groups: 9
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Examples

Testing the model

# Fixed effects

> anova(fit1)

numDF denDF F-value p-value

(Intercept) 1 24 455.0075 <.0001

Type 3 24 22.3556 <.0001

# Random effect

> fit2<-lm(effort~Type, data = dat)

> anova(fit1,fit2)

Model df AIC BIC logLik Test L.Ratio p-value

fit1 6 133.1308 141.9252 -60.56539

fit2 5 144.6081 151.9367 -67.30403 1 vs 2 13.47728 2e-04
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Examples

Confidence intervals

> intervals(fit1)

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 7.3667247 8.5555556 9.744386

TypeT2 2.8183781 3.8888889 4.959400

TypeT3 1.1517114 2.2222222 3.292733

TypeT4 -0.4038442 0.6666667 1.737177

attr(,"label")

[1] "Fixed effects:"

Random Effects:

Level: Subject

lower est. upper

sd((Intercept)) 0.7495964 1.332465 2.368559

Within-group standard error:

lower est. upper

0.8292498 1.1002946 1.4599319
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Examples

plot()

> plot(fit1)

Fitted values
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Examples

plot()

> plot(fit1,form=resid(.,type='p')~fitted(.)|Subject,abline=0)

Fitted values
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Examples

plot()

> plot(fit1,form=resid(.,type='p')~fitted(.)|Type,abline=0)

Fitted values
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