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Summary: General Linear Model

A general linear model is:

Y ∼ Nn(Xβ, σ2I )
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Consider the well known two way ANOVA:

yij = µ+ αi + βj + εij , εij ∼ i.i.d. N (0, σ2), i = 1, 2, j = 1, 2, 3.

An expanded view of this model is:

y11 = µ + α1 + β1 + ε11
y21 = µ + α2 + β1 + ε21
y12 = µ + α1 + β2 + ε12
y22 = µ + α2 + β2 + ε22
y13 = µ + α1 + β3 + ε13
y23 = µ + α2 + β3 + ε23

(1)

The exact same in matrix notation:
y11
y21
y12
y22
y13
y23


︸ ︷︷ ︸

y

=


1 1 0 1 0 0
1 0 1 1 0 0
1 1 0 0 1 0
1 0 1 0 1 0
1 1 0 0 0 1
1 0 1 0 0 1


︸ ︷︷ ︸

X


µ
α1
α2
β1
β2
β3


︸ ︷︷ ︸

β

+


ε11
ε21
ε12
ε22
ε13
ε23


︸ ︷︷ ︸

ε

(2)
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
y11
y21
y12
y22
y13
y23


︸ ︷︷ ︸

y

=


1 1 0 1 0 0
1 0 1 1 0 0
1 1 0 0 1 0
1 0 1 0 1 0
1 1 0 0 0 1
1 0 1 0 0 1


︸ ︷︷ ︸

X


µ
α1
α2
β1
β2
β3


︸ ︷︷ ︸

β

+


ε11
ε21
ε12
ε22
ε13
ε23


︸ ︷︷ ︸

ε

y is the vector of all observations

X is known as the design matrix

β is the vector of parameters

ε is a vector of independent N (0, σ2) “measurement noise”

The vector ε is said to follow a multivariate normal distribution
Mean vector 0
Covariance matrix σ2I
Written as: ε ∼ N (0, σ2I)

y = Xβ + ε specifies the model, and everything can be calculated
from y and X.
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In a general linear model (with both factors and covariates), it is
surprisingly easy to construct the design matrix X.

For each factor: Add one column for each level, with ones in the rows
where the corresponding observation is from that level, and zeros
otherwise.

For each covariate: Add one column with the measurements of the
covariate.

Remove linear dependencies (if necessary)

Example: linear regression:

yi = α+ β · xi + ε

In matrix notation:

y =


1 x1
1 x2
1 x3
. .
. .
. .
1 xn


(
α

β

)
+ ε
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General Linear Model

A general linear model is:

Y ∼ Nn(Xβ, σ2I )

β can be estimated by:

β̂ = (XTX )−1XTy ∼ N (β, σ2(XTX )−1)

σ2 can be estimated by:

σ̂2 =
(y −X β̂)T (y −X β̂)

f
∼ σ2χ2

f /f where f = n − k .

The deviance is:

D(y , p(y)) = ||y−p(y)||2 = (y−p(y))T (y−p(y)) =
∑
i

(y i−p(y)i)
2
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Test for model reduction

Theorem (A test for model reduction)

The likelihood ratio test statistic for testing

H0 : µ ∈ Ω0 against the alternative H1 : µ ∈ Ω1 \ Ω0

is a monotone function of

F (y) =
D(p1(y); p0(y))/(m1 −m0)

D(y ; p1(y))/(n −m1)

where p1(y) and p0(y) denote the projection of y on Ω1 and Ω0, respectively.
Under H0 we have

F ∼ F (m1 −m0,n −m1)

i.e. large values of F reflects a conflict between the data and H0, and hence lead

to rejection of H0. The p-value of the test is found as

p = P [F (m1 −m0,n −m1) ≥ Fobs ], where Fobs is the observed value of F given

the data.
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Tests for model reduction

Assume that a rather comprehensive model (a sufficient model) H1

has been formulated.

Initial investigation has demonstrated that at least some of the terms
in the model are needed to explain the variation in the response.

The next step is to investigate whether the model may be reduced to
a simpler model (corresponding to a smaller subspace),.

That is we need to test whether all the terms are necessary.
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Successive testing, type I partition

Sometimes the practical problem to be solved by itself suggests a
chain of hypothesis, one being a sub-hypothesis of the other.

In other cases, the statistician will establish the chain using the
general rule that more complicated terms (e.g. interactions) should
be removed before simpler terms.

In the case of a classical GLM, such a chain of hypotheses
corresponds to a sequence of linear parameter-spaces, Ωi ⊂ Rn , one
being a subspace of the other.

R ⊆ ΩM ⊂ . . . ⊂ Ω2 ⊂ Ω1 ⊂ Rn ,

where
Hi : µ ∈ Ωi , i = 2, . . . ,M

with the alternative

Hi−1 : µ ∈ Ωi−1 \ Ωi i = 2, . . . ,M
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Partitioning of total model deviance

Theorem (Partitioning of total model deviance)

Given a chain of hypotheses that has been organised in a hierarchical
manner then the model deviance D(p1(y); pM (y)) corresponding to the
initial model H1 may be partitioned as a sum of contributions with each
term

D(pi+1(y); pi(y)) = D(y ; pi+1(y))−D(y ; pi(y))

representing the increase in residual deviance D(y ; pi(y)) when the model
is reduced from Hi to the next lower model Hi+1.
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Partitioning of total model deviance

Assume that an initial (sufficient) model with the projection p1(y)
has been found.

By using the Theorem, and hence by partitioning corresponding to a
chain of models we obtain:

||p1(y)− pM (y)||2 = ||p1(y)− p2(y)||2 + ||p2(y)− p3(y)||2

+ · · ·+ ||pM−1(y)− pM (y)||2

It is common practice for statistical software to print a table showing
this partitioning of the model deviance D(p1(y); pM (y)).

The partitioning of the model deviance is from this sufficient or total
model to lower order models, and very often the most simple model is
the null model with dim = 1

This is called Type I partitioning.
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Type I partitioning

Source f Deviance Test

HM mM−1 −mM ||pM−1(y)− pM (y)||2
||pM−1(y)− pM (y)||2/(mM−1 −mM )

||y − p1(y)||2/(n −m1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

H3 m2 −m3 ||p2(y)− p3(y)||2
||p2(y)− p3(y)||2/(m2 −m3)

||y − p1(y)||2/(n −m1)

H2 m1 −m2 ||p1(y)− p2(y)||2
||p1(y)− p2(y)||2/(m1 −m2)

||y − p1(y)||2/(n −m1)

Residual under H1 n −m1 ||y − p1(y)||2

Table: Illustration of Type I partitioning of the total model deviance
||p1(y)− pM (y)||2. In the table it is assumed that HM corresponds to the null
model where the dimension is dim = 1.
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Type I partitioning conclusions

Corresponds to a successive projection corresponding to a chain of
hypotheses reflecting a chain of linear parameter sub-spaces, such
that spaces of lower dimensions are embedded in the higher
dimensional spaces.

The effect at any stage (typically the effect of a new variable) in the
chain is evaluated after all previous variables in the model have been
accounted for.

The Type I deviance table depends on the order of which the variables
enters the model.
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Reduction of model using partial tests

We have considered a fixed layout of a chain of models. However, a
particular model can be formulated along a high number of different
chains.

Let us now consider some other types of test which by construction
do not depend on the order of which the variables enters the model.

Consider a given model Hi . This model can be reduced along
different chains. More particular we will consider the partial likelihood
ratio test:
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Partial likelihood ratio test

Definition (Partial likelihood ratio test)

Consider a sufficient model as represented by Hi . Assume now that the hypothesis
Hi allows the different sub-hypotheses HA

i+1 ⊂ Hi ; HB
i+1 ⊂ Hi ; . . .HS

i+1 ⊂ Hi .
A partial likelihood ratio test for HJ

i+1 under Hi is the (conditional) test for the
hypotheses HJ

i+1 given Hi .

The numerator in the F -test quantity for the partial test is found as the
deviance between the two models, i.e. µ̂ under Hi and ̂̂µ under HJ

i+1

F (y) =
D(µ̂; ̂̂µ)/(mi −mi+1)

||y − pi(y)||2/(n −mi)
,

where ||y − pi(y)||2/(n −mi), which for Σ = I is the variance of the
residuals under Hi .
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Simultaneous testing, Type III partition

Type III partition

The Type III partition is obtained as the partial test for all factors.

The Type III partitioning gives the deviance that would be obtained
for each variable if it were entered last into the model.

That is, the effect of each variable is evaluated after all other factors
have been accounted for.

Therefore the result for each term is equivalent to what is obtained
with Type I analysis when the term enters the model as the last one
in the ordering.

Henrik Madsen Poul Thyregod (IMM-DTU) Chapman & Hall February 27, 2012 17 / 47



Type I/III

There is no consensus on which type should be used for unbalanced
designs, but most statisticians generally recommend Type III.

Type III is the default in most software packages such as SAS, SPSS,
JMP, Minitab, Stata, Statista, Systat, and Unistat

R, S-Plus, Genstat, and Mathematica use Type I.

Type I SS also called sequential sum of squares, whereas Type III is
called marginal sum of squares.

Unlike the Type I SS, the Type III SS will NOT sum to the Sum of
Squares for the model corrected only for the mean (Corrected Total
SS).
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Example: Detergent powder

The efficacy of detergent powder is often assessed by washing pieces of
cloth that has been stained with specified amounts of various types of fat.
In order to assess the staining process an experiment was performed where
three technicians (α) applied the same amount of each of two types of oil
(β) to pieces of cloth, and subsequently measured the area of the stained
spot. The results are:

Type of fat Technician

A D E

Lard 46.5 43.9 53.7
Olive 55.4 61.7

Table: The area of the stained spot after application of the same amount of two
types of oil to pieces of cloth.
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Example: Detergent powder

The data are analyzed by a two-way model Yij ∼ N(µij , σ
2) with the

additive mean value structure:

H1 : µij = µ+ αi + βj ; i = 1, 2; j = 1, 2, 3

with suitable restrictions on αi and βj to assure identifiability.
Now, we formulate the chain

HM ⊂ H2 ⊂ H1

with H2 : βj = 0, j = 1, 2, 3

H2 : µij = µ+ αi i = 1, 2; j = 1, 2, 3

and
HM : µij = µ; i = 1, 2; j = 1, 2, 3
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Example: Detergent powder

> Area <- c(46.5, 43.9, 53.7, 55.4, 61.7)
> Fat <- as.factor(c("L", "L", "L", "O", "O"))
> Techn <- as.factor(c("A", "D", "E", "A", "E"))
> fit <- lm(Area ~ Fat + Techn)
> anova(fit)

Analysis of Variance Table

Response: Area
Df Sum Sq Mean Sq F value Pr(>F)

Fat 1 132.720 132.720 655.41 0.02485 *
Techn 2 71.189 35.595 175.78 0.05326 .
Residuals 1 0.203 0.203
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> drop1(fit, test = "F")

Single term deletions

Model:
Area ~ Fat + Techn

Df Sum of Sq RSS AIC F value Pr(F)
<none> 0.203 -8.0323
Fat 1 71.403 71.605 19.3086 352.60 0.03387 *
Techn 2 71.189 71.392 17.2937 175.78 0.05326 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Collinearity

Collinearity

When some predictors are linear combinations of others, then XTX is
singular, and there is (exact) collinearity. In this case there is no unique
estimate of β. When XTX is close to singular, there is collinearity (some
texts call it multicollinearity).

There are various ways to detect collinearity:

i Examination of the correlation matrix for the estimates may reveal
strong pairwise col-linearities

ii Considering the change of the variance of the estimate of other
parameters when removing a particular parameter.
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Inference on individual parameters in parameterized models

Theorem (Test of individual parameters)

A hypotheses βj = β0
j related to specific values of the parameters are evaluated

using the test quantity

tj =
β̂j − β0

j

σ̂
√

(XTΣ−1X )−1
jj

,

where (XTΣ−1X )−1
jj denotes the j ’th diagonal element of (XTΣ−1X )−1. The

test quantity is compared with the quantiles of a r(n −m0) distribution.
The hypotheses is rejected for large values tj , i.e. for

|tj | > t1−α/2(n −m0)

and the p-value is found as p = 2P [t(n −m0) ≥ |tobs |]
In the special case of the hypotheses βj = 0 the test quantity is

tj =
β̂j

σ̂
√

(XTΣ−1X )−1
jj
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Confidence intervals and confidence regions

Confidence intervals for individual parameters

100(1− α)% confidence interval for βj is found as

β̂j ± t1−α/2(n −m0)σ̂
√

(XTΣ−1X )−1
jj

Simultaneous confidence regions for model parameters

It follows from the distribution of β̂ that

(β̂ − β)T (XTΣ−1X )(β̂ − β) ≤ m0σ̂
2F1−α(m0,n −m0)

These regions are ellipsoidally shaped regions in Rm0 . They may be
visualised in two dimensions at a time.
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Prediction - known parameters

We will assume that Σ = I . For predictions in the case of correlated
observations we refer to the literature on time series analysis, Madsen
(2008) 1.

Consider the linear model with known parameters.

Yi = XT
i θ + εi

where E[εi ] = 0 and Var[εi ] = σ2 (i.e. constant). The prediction for a
future value Yn+` given the independent variable X n+` = xn+` is

Ŷn+` = E[Yn+`|X n+` = xn+`] = xT
n+`θ

Var[Yn+` − Ŷn+`] = Var[εn+`] = σ2

1Madsen, H. (2008) Time Series Analysis. Chapman, Hall
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Prediction - unknown parameters

Most often the parameters are unknown but assume that there exist some
estimates of θ. Assume also that the estimates are found by the estimator

θ̂ = (XTX )−1XTY

then the variance of the prediction error can be stated.

Theorem (Prediction in the general linear model)

Assume that the unknown parameters θ in the linear model are estimated
using the least squares method, then prediction is

Ŷn+` = E[Yn+`|X n+` = xn+`] = xT
n+`θ̂

The variance of the prediction error en+` = Yt+` − Ŷn+` becomes

Var[en+`] = Var[Yn+` − Ŷn+`] = σ2[1 + xT
n+`(X

TX )−1xn+`]
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Prediction - unknown parameters

If we use an estimate for σ2 and Σ = I then a 100(1− α)% confidence
interval for the future Yn+` is given as

Ŷn+` ± tα/2(n − k)
√

Var[en+`]

= Ŷn+` ± tα/2(n − k)σ̂
√

1 + xT
n+`(X

TX )−1X n+`

where tα/2(n − k) is the α/2 quantile in the t distribution with (n − k)
degrees of freedom and n is the number of observations used in estimating
the k unknown parameters.

A confidence interval for a future value is also called a prediction interval.
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Residuals, standardization and studentization

The residuals denote the difference between the observed value yi and
the value µ̂i fitted by the model.

The raw residuals do not have the same variance.

The variance of ri is σ2(1− hii) with hii denoting the i ’th diagonal
element in the hat-matrix.

Therefore, in order to meaningful compare the residuals, it is usual
practice to rescale them by dividing by the estimated standard
deviation.
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Standardized residual

Definition (Standardized residual)

The standardized residual is

r rsi =
ri√

σ̂2(1− hii)

Standardization does not imply that the variance is 1

It is a usual convention in statistics that standardization of a random
variable means transforming to a variable with mean 0, and variance 1.
Often standardization takes place by dividing the variable by its standard
deviation. We have only divided by an estimate of the standard deviation,
so although we have achieved equal variance for the standardized residuals,
the variance is not 1.
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Standardized residual

Residuals are often used to identify outliers, i.e. observations that for
some reasons do not fit into the general pattern, and possibly should
be excluded.

However, if a particular observation yi is such a contaminating
observation giving rise to a large residual ri , then that observation
would also inflate the estimate σ̂ of the standard deviation in the
denominator of the standardized residual thereby masking the effect
of the contamination.

Therefore, it is advantageous to scale the residual with an estimate of
the variance, σ2, that does not include the i ’th observation.
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Studentized residual

Definition (Studentized residual)

The studentized residual is

r rti =
ri√

σ̂2(i)(1− hii)

where σ̂2(i) denotes the estimate for σ2 determined by deleting the i ’th
observation.

It may be shown that σ̂2(i) ∼ σ
2χ2(f )/f -distribution with f = n −m0 − 1

and therefore, as ri is independent of σ̂2(i) that the studentized residual

follow a t(f )-distribution when H0 holds.
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Residual analysis

The residuals provide a valuable tool for model checking.

The residuals should be checked for individual large values.

A large standardized or studentized residual is an indication of poor
model fit for that point, and the reason for this outlying observation
should be investigated.

For observations obtained in a time-sequence the residuals should be
checked for possible autocorrelation, or seasonality.

The distribution of the studentized residuals should be investigated
and compared to the reference distribution (the t-distribution, or
simply a normal distribution) by means of a qq-plot to identify
possible anomalies.
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Influential observations, leverage

It follows from
∂µ̂

∂y
= H

that the i ’th diagonal element hii of the hat-matrix H denotes the change
in the fitted value µ̂i induced by a change in the i ’th observation yi .

In other words, the diagonal elements in the hat-matrix H indicate the
“weight” with which the individual observation contributes to the fitted
value for that data point.

Definition (Leverage)

The i ’th diagonal element in the hat-matrix is called the leverage of the
i ’th observation.
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Leverage

One should pay special attention to observations with large leverage.

It is not necessarily is undesirable that an observation has a large
leverage.

If an observation with large leverage is in agreement with the other
data, that point would just serve to reduce the uncertainty of the
estimated parameters.

When a model is reasonable, and data are in agreement with the
model, then observations with large leverage will be an advantage.

Observations with a large leverage might however be an indication
that the model does not represent the data.
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Cook’s distance

Observations with large residuals and/or high leverage may distort
the outcome, reliability and/or accuracy of a regression.

Cook’s distance for observation No. i is defined by

Di =
r2i
k σ̂2

[
hii

(1− hii)2

]
or

Di =
(r rsi )2

k

[
hii

(1− hii)

]
where hii is the i ’th diagonal element of the hat matrix, k the
number of estimated parameters, and r rs is the standardized residual,
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Residual plots

68 General Linear Models
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Figure 3.6: A data point ◦ with large leverage. The full line indicates the regression
line corresponding to all observations. The dashed line indicates the regression line
estimated without the point marked ◦ with large leverage.
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Figure 3.7: Residual plots XXX.
Figure: Residual plots.
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Plot of residuals against time

1) Acceptable

2) The variance grows with time. Do a weighted analysis.

3) Lack of term of the form β · time.

4) Lack of term of the form β · time + β1 · time2.
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Plot of residuals against independent variables

1) Acceptable

2) The variance grows with xi . Perform weighted analysis or transform
the Y ’es (e.g. with the logarithm or equivalent).

3) Error in the computations.

4) Lack of quadratic term in xi .
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Plot of residuals against fitted values

1) Acceptable

2) The variance grows with µ̂i . Do a weighted analysis or transform the
Y ’es.

3) Lack of constant term. The regression is possibly erroneously forced
trough zero.

4) Bad model, try transforming the Y ’es.

Henrik Madsen Poul Thyregod (IMM-DTU) Chapman & Hall February 27, 2012 39 / 47



Important R functions

> fit <- lm(y ~ A + B:x)

> plot(fit)

> anova(fit)

> drop1(fit, test = "F")

> coef(fit)

> predict(fit, newdata = predpoints)

> hatvalues(fit)

> residuals(fit)

> rstandard(fit)

> rstudent(fit)
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R example

Consider this dataset:
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R example

> fit0 <- lm(y ~ sex * tmt + sex * tmt * alt)

> drop1(fit0, test = "F")

Single term deletions

Model:

y ~ sex * tmt + sex * tmt * alt

Df Sum of Sq RSS AIC F value Pr(F)

<none> 42.983 -68.437

sex:tmt:alt 1 0.077585 43.060 -70.257 0.1661 0.6846
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> fit1 <- lm(y ~ sex * tmt + (sex + tmt) * alt)

> drop1(fit1, test = "F")

Single term deletions

Model:

y ~ sex * tmt + (sex + tmt) * alt

Df Sum of Sq RSS AIC F value Pr(F)

<none> 43.060 -70.257

sex:tmt 1 0.245 43.305 -71.690 0.5287 0.4690

sex:alt 1 0.848 43.909 -70.306 1.8324 0.1791

tmt:alt 1 143.386 186.446 74.297 309.6786 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Henrik Madsen Poul Thyregod (IMM-DTU) Chapman & Hall February 27, 2012 43 / 47



> fit2 <- lm(y ~ sex + tmt + (sex + tmt) * alt)

> drop1(fit2, test = "F")

Single term deletions

Model:

y ~ sex + tmt + (sex + tmt) * alt

Df Sum of Sq RSS AIC F value Pr(F)

<none> 43.305 -71.690

sex:alt 1 0.694 43.999 -72.101 1.5054 0.2229

tmt:alt 1 143.628 186.933 72.558 311.7645 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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> fit3 <- lm(y ~ sex + tmt * alt)

> fit4 <- lm(y ~ sex + tmt:alt)

> drop1(fit3, test = "F")

Single term deletions

Model:

y ~ sex + tmt * alt

Df Sum of Sq RSS AIC F value Pr(F)

<none> 43.999 -72.101

sex 1 150.34 194.338 74.443 324.61 < 2.2e-16 ***

tmt:alt 1 143.95 187.946 71.099 310.80 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> anova(fit4, fit3)

Analysis of Variance Table

Model 1: y ~ sex + tmt:alt

Model 2: y ~ sex + tmt * alt

Res.Df RSS Df Sum of Sq F Pr(>F)

1 96 44.005

2 95 43.999 1 0.0061976 0.0134 0.9082
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> fit4 <- lm(y ~ sex + tmt:alt)

> drop1(fit4, test = "F")

Single term deletions

Model:

y ~ sex + tmt:alt

Df Sum of Sq RSS AIC F value Pr(F)

<none> 44.00 -74.087

sex 1 151.90 195.90 73.245 331.38 < 2.2e-16 ***

tmt:alt 2 950.58 994.59 233.716 1036.88 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Results
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