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The general linear model - intro

The general linear model - intro

We will use the term classical GLM for the General linear model to
distinguish it from GLM which is used for the Generalized linear
model.

The classical GLM leads to a unique way of describing the variations
of experiments with a continuous variable.

The classical GLM’s include

Regression analysis
Analysis of variance - ANOVA
Analysis of covariance - ANCOVA

The residuals are assumed to follow a multivariate normal distribution
in the classical GLM.
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The general linear model - intro

The general linear model - intro

Classical GLM’s are naturally studied in the framework of the
multivariate normal distribution.

We will consider the set of n observations as a sample from a
n-dimensional normal distribution.

Under the normal distribution model, maximum-likelihood estimation
of mean value parameters may be interpreted geometrically as
projection on an appropriate subspace.

The likelihood-ratio test statistics for model reduction may be
expressed in terms of norms of these projections.
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The multivariate normal distribution

The multivariate normal distribution

Let Y = (Y1, Y2, . . . , Yn)T be a random vector with Y1, Y2, . . . , Yn
independent identically distributed (iid) N(0, 1) random variables.

Note that E[Y ] = 0 and the variance-covariance matrix Var[Y ] = I.

Definition (Multivariate normal distribution)

Z has an k-dimensional multivariate normal distribution if Z has the same
distribution as AY + b for some n, some k × n matrix A, and some k
vector b. We indicate the multivariate normal distribution by writing
Z ∼ N(b,AAT ).

Since A and b are fixed, we have E[Z] = b and Var[Z] = AAT .
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The multivariate normal distribution

The multivariate normal distribution

Let us assume that the variance-covariance matrix is known apart from a
constant factor, σ2, i.e. Var[Z] = σ2Σ.

The density for the k-dimensional random vector Z with mean µ and
covariance σ2Σ is:

fZ(z) =
1

(2π)k/2σk
√

det Σ
exp

[
− 1

2σ2
(z − µ)TΣ−1(z − µ)

]

where Σ is seen to be (a) symmetric and (b) positive semi-definite.

We write Z ∼ Nk(µ, σ
2Σ).
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The multivariate normal distribution

The normal density as a statistical model

Consider now the n observations Y = (Y1, Y2, . . . , Yn)T , and assume that
a statistical model is

Y ∼ Nn(µ, σ2Σ) for y ∈ Rn

The variance-covariance matrix for the observations is called the dispersion
matrix, denoted D[Y ], i.e. the dispersion matrix for Y is

D[Y ] = σ2Σ
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Inner product and norm

Inner product and norm

Definition (Inner product and norm)

The bilinear form
δΣ(y1,y2) = yT1 Σ−1y2

defines an inner product in Rn. Corresponding to this inner product we
can define orthogonality, which is obtained when the inner product is zero.

A norm is defined by
||y||Σ =

√
δΣ(y,y).
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Deviance

Deviance for normal distributed variables

Definition (Deviance for normal distributed variables)

Let us introduce the notation

D(y;µ) = δΣ(y − µ,y − µ) = (y − µ)TΣ−1(y − µ)

to denote the quadratic norm of the vector (y − µ) corresponding to the
inner product defined by Σ−1.

For a normal distribution with Σ = I, the deviance is just the Residual
Sum of Squares (RSS).
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Deviance

Deviance for normal distributed variables

Using this notation the normal density is expressed as a density defined on
any finite dimensional vector space equipped with the inner product, δΣ:

f(y;µ, σ2) =
1

(
√

2π)nσn
√

det(Σ)
exp

[
− 1

2σ2
D(y;µ)

]
.
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Likelihood, score function and information matrix

The likelihood and log-likelihood function

The likelihood function is:

L(µ, σ2;y) =
1

(
√

2π)nσn
√

det(Σ)
exp

[
− 1

2σ2
D(y;µ)

]

The log-likelihood function is (apart from an additive constant):

`µ,σ2(µ, σ2;y) = −(n/2) log(σ2)− 1

2σ2
(y − µ)TΣ−1(y − µ)

= −(n/2) log(σ2)− 1

2σ2
D(y;µ).
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Likelihood, score function and information matrix

The score function, observed - and expected information for µ

The score function wrt. µ is

∂

∂µ
`µ,σ2(µ, σ2;y) =

1

σ2

[
Σ−1y −Σ−1µ

]
=

1

σ2
Σ−1(y − µ)

The observed information (wrt. µ) is

j(µ;y) =
1

σ2
Σ−1.

It is seen that the observed information does not depend on the
observations y. Hence the expected information is

i(µ) =
1

σ2
Σ−1.
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The general linear model

The general linear model

In the case of a normal density the observation Yi is most often written as

Yi = µi + εi

which for all n observations (Y1, Y2, . . . , Yn) can be written on the matrix
form

Y = µ+ ε

where
Y ∼ Nn(µ, σ2Σ) for y ∈ Rn
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The general linear model

General Linear Models

In the linear model it is assumed that µ belongs to a linear (or affine)
subspace Ω0 of Rn.

The full model is a model with Ωfull = Rn and hence each
observation fits the model perfectly, i.e. µ̂ = y.

The most restricted model is the null model with Ωnull = R. It only
describes the variations of the observations by a common mean value
for all observations.

In practice, one often starts with formulating a rather comprehensive
model with Ω = Rk, where k < n. We will call such a model a
sufficient model.
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The general linear model

The General Linear Model

Definition (The general linear model)

Assume that Y1, Y2, . . . , Yn is normally distributed as described before. A
general linear model for Y1, Y2, . . . , Yn is a model where an affine
hypothesis is formulated for µ. The hypothesis is of the form

H0 : µ− µ0 ∈ Ω0,

where Ω0 is a linear subspace of Rn of dimension k, and where µ0 denotes
a vector of known offset values.

Definition (Dimension of general linear model)

The dimension of the subspace Ω0 for the linear model is the dimension of
the model.
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The general linear model

The design matrix

Definition (Design matrix for classical GLM)

Assume that the linear subspace Ω0 = span{x1, . . . , xk}, i.e. the subspace is
spanned by k vectors (k < n).
Consider a general linear model where the hypothesis can be written as

H0 : µ− µ0 = Xβ with β ∈ Rk,

where X has full rank. The n× k matrix X of known deterministic coefficients is
called the design matrix.
The ith row of the design matrix is given by the model vector

xT
i =




xi1
xi2

...
xik




T

,

for the ith observation.
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Estimation

Estimation of mean value parameters

Under the hypothesis
H0 : µ ∈ Ω0 ,

the maximum likelihood estimate for the set µ is found as the orthogonal
projection (with respect to δΣ), p0(y) of y onto the linear subspace Ω0.

Theorem (ML estimates of mean value parameters)

For hypothesis of the form

H0 : µ(β) = Xβ

the maximum likelihood estimated for β is found as a solution to the
normal equation

XTΣ−1y = XTΣ−1Xβ̂.

If X has full rank, the solution is uniquely given by

β̂ = (XTΣ−1X)−1XTΣ−1y
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Estimation

Properties of the ML estimator

Theorem (Properties of the ML estimator)

For the ML estimator we have

β̂ ∼ Nk(β, σ
2 (XTΣ−1X)−1)

Unknown Σ

Notice that it has been assumed that Σ is known. If Σ is unknown, one
possibility is to use the relaxation algorithm described in Madsen (2008) a.

aMadsen, H. (2008) Time Series Analysis. Chapman, Hall
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Fitted values

Fitted values

Fitted – or predicted – values

The fitted values µ̂ = Xβ̂ is found as the projection of y (denoted p0(y))
on to the subspace Ω0 spanned by X, and β̂ denotes the local coordinates
for the projection.

Definition (Projection matrix)

A matrix H is a projection matrix if and only if
(a) HT = H and
(b) H2 = H, i.e. the matrix is idempotent.
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Fitted values

The hat matrix

The matrix
H = X[XTΣ−1X]−1XTΣ−1

is a projection matrix.

The projection matrix provides the predicted values µ̂, since

µ̂ = p0(y) = Xβ̂ = Hy

It follows that the predicted values are normally distributed with

D[Xβ̂] = σ2X[XTΣ−1X]−1XT = σ2HΣ

The matrix H is often termed the hat matrix since it transforms the
observations y to their predicted values symbolized by a ”hat” on the
µ’s.
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Residuals

Residuals

The observed residuals are

r = y −Xβ̂ = (I −H)y

Orthogonality

The maximum likelihood estimate for β is found as the value of β which
minimizes the distance ||y −Xβ||.
The normal equations show that

XTΣ−1(y −Xβ̂) = 0

i.e. the residuals are orthogonal (with respect to Σ−1) to the subspace Ω0.

The residuals are thus orthogonal to the fitted – or predicted – values.
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Residuals

Residuals3.5 Likelihood ratio tests 45

Ω0

y

‖y‖

‖p0(y)‖0

p0(y) =Xβ̂

‖y − po(y)‖

Figure 3.1: Orthogonality between the residual (y −X bβ) and the vector X bβ.

moreover, the independence of r andXβ̂ implies that D(y;Xβ̂) and D(Xβ̂;Xβ)
are independent.

Thus, (3.34) represents a partition of the σ2χ2
n-distribution on the left side

into two independent χ2 distributed variables with n − k and k degrees of
freedom, respectively. x
Estimation of the residual variance σ2

Theorem 3.4 (Estimation of the variance)
Under the hypothesis (3.21) the maximum marginal likelihood estimator for

the variance σ2 is

σ̂2 =
D(y;Xβ̂)

n− k
=

(y −Xβ̂)TΣ−1(y −Xβ̂)
n− k

(3.35)

Under the hypothesis σ̂2 ∼ σ2χ2
f/f with f = n− k.

Proof It follows from considerations analogous to Example 2.11 on page 29
and Remark 3.5 on page 43 that the marginal likelihood corresponds to the
σ2χ2

n−k distribution of D(y;Xβ̂).

3.5 Likelihood ratio tests

In the classical GLM case the exact distribution of the likelihood ratio test
statistic (2.46) may be derived.

Figure: Orthogonality between the residual (y −Xβ̂) and the vector Xβ̂.
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Residuals

Residuals

The residuals r = (I −H)Y are normally distributed with

D[r] = σ2(I −H)

The individual residuals do not have the same variance.

The residuals are thus belonging to a subspace of dimension n− k,
which is orthogonal to Ω0.

It may be shown that the distribution of the residuals r is
independent of the fitted values Xβ̂.
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Residuals

Cochran’s theorem

Theorem (Cochran’s theorem)

Suppose that Y ∼ Nn(0, In) (i.e. standard multivariate Gaussian random
variable)

Y TY = Y TH1Y + Y TH2Y + · · ·+ Y THkY

where Hi is a symmetric n× n matrix with rank ni, i = 1, 2, . . . , k.
Then any one of the following conditions implies the other two:

i The ranks of the Hi adds to n, i.e.
∑k

i=1 ni = n

ii Each quadratic form Y THiY ∼ χ2
ni (thus the Hi are positive

semidefinite)

iii All the quadratic forms Y THiY are independent (necessary and
sufficient condition).
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Partitioning of variation

Partitioning of variation

Partitioning of the variation

D(y;Xβ) = D(y;Xβ̂) + D(Xβ̂;Xβ)

= (y −Xβ̂)TΣ−1(y −Xβ̂)

+ (β̂ − β)TXTΣ−1X(β̂ − β)

≥ (y −Xβ̂)TΣ−1(y −Xβ̂)
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Partitioning of variation

Partitioning of variation

χ2-distribution of individual contributions

Under H0 it follows from the normal distribution of Y that

D(y;Xβ) = (y −Xβ)TΣ−1(y −Xβ) ∼ σ2χ2
n

Furthermore, it follows from the normal distribution of r and of β̂ that

D(y;Xβ̂) = (y −Xβ̂)TΣ−1(y −Xβ̂) ∼ σ2χ2
n−k

D(Xβ̂;Xβ) = (β̂ − β)TXTΣ−1X(β̂ − β) ∼ σ2χ2
k

moreover, the independence of r and Xβ̂ implies that D(y;Xβ̂) and
D(Xβ̂;Xβ) are independent.
Thus, the σ2χ2

n-distribution on the left side is partitioned into two
independent χ2 distributed variables with n− k and k degrees of freedom,
respectively.
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Estimation of the residual variance σ2

Estimation of the residual variance σ2

Theorem (Estimation of the variance)

Under the hypothesis
H0 : µ(β) = Xβ

the maximum marginal likelihood estimator for the variance σ2 is

σ̂2 =
D(y;Xβ̂)

n− k =
(y −Xβ̂)TΣ−1(y −Xβ̂)

n− k

Under the hypothesis, σ̂2 ∼ σ2χ2
f/f with f = n− k.
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General Linear Models - Summary and Hints

Summary: General Linear Model

A general linear model is:

Y ∼ Nn(Xβ, σ2I)
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General Linear Models - Summary and Hints

Consider the well known two way ANOVA:

yij = µ+ αi + βj + εij , εij ∼ i.i.d. N(0, σ2), i = 1, 2, j = 1, 2, 3.

An expanded view of this model is:

y11 = µ + α1 + β1 + ε11
y21 = µ + α2 + β1 + ε21
y12 = µ + α1 + β2 + ε12
y22 = µ + α2 + β2 + ε22
y13 = µ + α1 + β3 + ε13
y23 = µ + α2 + β3 + ε23

(1)

The exact same in matrix notation:




y11
y21
y12
y22
y13
y23




︸ ︷︷ ︸
y

=




1 1 0 1 0 0
1 0 1 1 0 0
1 1 0 0 1 0
1 0 1 0 1 0
1 1 0 0 0 1
1 0 1 0 0 1




︸ ︷︷ ︸
X




µ
α1
α2
β1
β2
β3




︸ ︷︷ ︸
β

+




ε11
ε21
ε12
ε22
ε13
ε23




︸ ︷︷ ︸
ε

(2)
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General Linear Models - Summary and Hints




y11
y21
y12
y22
y13
y23




︸ ︷︷ ︸
y

=




1 1 0 1 0 0
1 0 1 1 0 0
1 1 0 0 1 0
1 0 1 0 1 0
1 1 0 0 0 1
1 0 1 0 0 1




︸ ︷︷ ︸
X




µ
α1
α2
β1
β2
β3




︸ ︷︷ ︸
β

+




ε11
ε21
ε12
ε22
ε13
ε23




︸ ︷︷ ︸
ε

y is the vector of all observations

X is known as the design matrix

β is the vector of parameters

ε is a vector of independent N(0, σ2) “measurement noise”

The vector ε is said to follow a multivariate normal distribution
Mean vector 0
Covariance matrix σ2I
Written as: ε ∼ N(0, σ2I)

y = Xβ + ε specifies the model, and everything can be calculated
from y and X.
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General Linear Models - Summary and Hints

In a general linear model (with both factors and covariates), it is
surprisingly easy to construct the design matrix X.

For each factor: Add one column for each level, with ones in the rows
where the corresponding observation is from that level, and zeros
otherwise.

For each covariate: Add one column with the measurements of the
covariate.

Remove linear dependencies (if necessary)

Example: linear regression:

yi = α+ β · xi + ε

In matrix notation:

y =




1 x1
1 x2
1 x3
. .
. .
. .
1 xn




(
α

β

)
+ ε
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Likelihood ratio tests

Likelihood ratio tests

In the classical GLM case the exact distribution of the likelihood ratio
test statistic may be derived.

Consider the following model for the data Y ∼ Nn(µ, σ2Σ).

Let us assume that we have the sufficient model

H1 : µ ∈ Ω1 ⊂ Rn

with dim(Ω1) = m1.

Now we want to test whether the model may be reduced to a model
where µ is restricted to some subspace of Ω1, and hence we introduce
Ω0 ⊂ Ω1 as a linear (affine) subspace with dim(Ω0) = m0.
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Likelihood ratio tests

Model reduction

48 General Linear Models

Table 3.1: Deviance table corresponding to a test for model reduction as specified by
H0. For Σ = I this corresponds to an analysis of variance table, and then ’Deviance’
is equal to the ’Sum of Squared deviations (SS)’

Source f Deviance Test statistic, F

Model ver-
sus hypoth-
esis

m1 −m0 ‖p1(y)− p0(y)‖2
‖p1(y)− p0(y)‖2/(m1 −m0)

‖y − p1(y)‖2/(n−m1)

Residual
under
model

n−m1 ‖y − p1(y)‖2

Residual
under
hypothesis

n−m0 ‖y − p0(y)‖2

Ω0

Ω1

y

‖y‖

0

p1(y)

p0(y)

‖y − p1(y)‖

‖y − p0(y)‖

‖p1(y)− p0(y)‖

Figure 3.2: Model reduction. The partitioning of the deviance corresponding to a
test of the hypothesis H0 : µ ∈ Ω0 under the assumption of H1 : µ ∈ Ω1.

Initial test for model ’sufficiency’

x Remark 3.10 (Test for model ’sufficiency’)
In practice, one often starts with formulating a rather comprehensive model
(also termed sufficient model), and then uses Theorem 3.5 to test whether
the model may be reduced to the null model with ΩM = R, i.e., dimΩM = 1.
Thus, one formulates the hypotheses

HM : µ ∈ R

Figure: Model reduction. The partitioning of the deviance corresponding to a test
of the hypothesis H0 : µ ∈ Ω0 under the assumption of H1 : µ ∈ Ω1.
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Likelihood ratio tests

Test for model reduction

Theorem (A test for model reduction)

The likelihood ratio test statistic for testing

H0 : µ ∈ Ω0 against the alternative H1 : µ ∈ Ω1 \ Ω0

is a monotone function of

F (y) =
D(p1(y); p0(y))/(m1 −m0)

D(y; p1(y))/(n−m1)

where p1(y) and p0(y) denote the projection of y on Ω1 and Ω0, respectively.
Under H0 we have

F ∼ F (m1 −m0, n−m1)

i.e. large values of F reflects a conflict between the data and H0, and hence lead

to rejection of H0. The p-value of the test is found as

p = P [F (m1 −m0, n−m1) ≥ Fobs], where Fobs is the observed value of F given

the data.
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Likelihood ratio tests

Test for model reduction

The partitioning of the variation is presented in a Deviance table (or
an ANalysis Of VAriance table, ANOVA).

The table reflects the partitioning in the test for model reduction.

The deviance between the variation of the model from the hypothesis
is measured using the deviance of the observations from the model as
a reference.

Under H0 they are both χ2 distributed, orthogonal and thus
independent.

This means that the ratio is F distributed.

If the test quantity is large this shows evidence against the model
reduction tested using H0.
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Likelihood ratio tests

Deviance table

Source f Deviance Test statistic, F

Model versus hypothesis m1 −m0 ||p1(y)− p0(y)||2
||p1(y)− p0(y)||2/(m1 −m0)

||y − p1(y)||2/(n−m1)
Residual under model n−m1 ||y − p1(y)||2
Residual under hypothesis n−m0 ||y − p0(y)||2

Table: Deviance table corresponding to a test for model reduction as specified by
H0. For Σ = I this corresponds to an analysis of variance table, and then
’Deviance’ is equal to the ’Sum of Squared deviations (SS)’
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Likelihood ratio tests

Test for model reduction

The test is a conditional test

It should be noted that the test has been derived as a conditional test. It
is a test for the hypothesis H0 : µ ∈ Ω0 under the assumption that
H1 : µ ∈ Ω1 is true. The test does in no way assess whether H1 is in
agreement with the data. On the contrary in the test the residual variation
under H1 is used to estimate σ2, i.e. to assess D(y; p1(y)).

The test does not depend on the particular parametrization of the
hypotheses

Note that the test does only depend on the two sub-spaces Ω1 and Ω0,
but not on how the subspaces have been parametrized (the particular
choice of basis, i.e. the design matrix). Therefore it is sometimes said that
the test is coordinate free.
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Likelihood ratio tests

Initial test for model ’sufficiency’

In practice, one often starts with formulating a rather comprehensive
model, a sufficient model, and then tests whether the model may be
reduced to the null model with Ωnull = R, i.e. dim Ωnull = 1.

The hypotheses are
Hnull : µ ∈ R

H1 : µ ∈ Ω1 \ R.
where dim Ω1 = k.

The hypothesis is a hypothesis of ”Total homogeneity”, namely that
all observations are satisfactorily represented by their common mean.
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Likelihood ratio tests

Deviance table

Source f Deviance Test statistic, F

Model Hnull k − 1 ||p1(y)− pnull(y)||2 ||p1(y)− pnull(y)||2/(k − 1)

||y − p1(y)||2/(n− k)
Residual under H1 n− k ||y − p1(y)||2
Total n− 1 ||y − pnull(y)||2

Table: Deviance table corresponding to the test for model reduction to the null
model.

Under Hnull, F ∼ F (k − 1, n− k), and hence large values of F would
indicate rejection of the hypothesis Hnull. The p-value of the test is
p = P [F (k − 1, n− k) ≥ Fobs].
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Coefficient of determination, R2

Coefficient of determination, R2

The coefficient of determination, R2, is defined as

R2 =
D(p1(y); pnull(y))

D(y; pnull(y))
= 1− D(y; p1(y))

D(y; pnull(y))
, 0 ≤ R2 ≤ 1.

Suppose you want to predict Y . If you do not know the x’s, then the
best prediction is y. The variability corresponding to this prediction is
expressed by the total variation.

If the model is utilized for the prediction, then the prediction error is
reduced to the residual variation.

R2 expresses the fraction of the total variation that is explained by
the model.

As more variables are added to the model, D(y; p1(y)) will decrease,
and R2 will increase.
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Coefficient of determination, R2

Adjusted coefficient of determination, R2
adj

The adjusted coefficient of determination aims to correct that R2

increases as more variables are added to the model.

It is defined as:

R2
adj = 1− D(y; p1(y))/(n− k)

D(y; pnull(y))/(n− 1)
.

It charges a penalty for the number of variables in the model.

As more variables are added to the model, D(y; p1(y)) decreases, but
the corresponding degrees of freedom also decreases.

The numerator in may increase if the reduction in the residual
deviance caused by the additional variables does not compensate for
the loss in the degrees of freedom.
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