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Last week

Likelihood function L(θ) = Pθ(Y = y)

Log likelihood function `(θ) = log(L(θ))

Score function `′(θ)

Maximum likelihood estimate θ̂ = argmax
θ∈Θ

`(θ)

Observed information matrix −`′′(θ̂)
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This lecture

The maximum likelihood estimate (MLE)

Distribution of the ML estimator

Quadratic approximation of the log-likelihood

Model selection

Dealing with nuisance parameters
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The maximum likelihood estimate (MLE)

The Maximum Likelihood Estimate (MLE)

Definition (Maximum Likelihood Estimate (MLE))

Given the observation y = (y1, y2, . . . , yn) the Maximum Likelihood
Estimate (MLE) is a function θ̂(y) such that

L(θ̂;y) = sup
θ∈Θ

L(θ;y)

The function θ̂(Y ) = argmax
θ∈Θ

L(θ;Y ) over the sample space of

observations Y is called an ML estimator.

In practice it is convenient to work with the log-likelihood function l(θ;y).
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The maximum likelihood estimate (MLE)

The Maximum Likelihood Estimate (MLE)

The score function can be used to obtain the estimate, since the MLE can
be found as the solution to

l ′θ(θ;y) = 0

which are called the estimation equations for the ML-estimator, or, just
the ML equations.

It is common practice, especially when plotting, to normalize the
likelihood function to have unit maximum and the log-likelihood to
have zero maximum.
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The maximum likelihood estimate (MLE)

Invariance property

Theorem (Invariance property)

Assume that θ̂ is a maximum likelihood estimator for θ, and let ψ = ψ(θ)
denote a one-to-one mapping of Ω ⊂ Rk onto Ψ ⊂ Rk . Then the
estimator ψ(θ̂) is a maximum likelihood estimator for the parameter ψ(θ).
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Distribution of the ML estimator

Distribution of the ML estimator

Theorem (Distribution of the ML estimator)

We assume that θ̂ is consistent. Then, under some regularity conditions,

θ̂ − θ → N(0, i(θ)−1)

where i(θ) is the expected information or the information matrix.

The results can be used for inference under very general conditions.
As the price for the generality, the results are only asymptotically
valid.

Asymptotically the variance of the estimator is seen to be equal to the
Cramer-Rao lower bound for any unbiased estimator.

The practical significance of this result is that the MLE makes
efficient use of the available data for large data sets.
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Distribution of the ML estimator

Distribution of the ML estimator

In practice, we would use

θ̂ ∼ N(θ, j−1(θ̂))

where j (θ̂) is the observed (Fisher) information.

Remember how we get these in practice.

This means that asymptotically

i) E[θ̂] = θ

ii) D [θ̂] = j−1(θ̂)
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Distribution of the ML estimator

Distribution of the ML estimator

The standard error of θ̂i is given by

σ̂θ̂i =

√
Varii [θ̂]

where Varii [θ̂] is the i’th diagonal term of j−1(θ̂)

Hence we have that an estimate of the dispersion (variance-covariance
matrix) of the estimator is

D [θ̂] = j−1(θ̂)

An estimate of the uncertainty of the individual parameter estimates
is obtained by decomposing the dispersion matrix as follows:

D [θ̂] = σ̂θ̂Rσ̂θ̂

into σ̂θ̂, which is a diagonal matrix of the standard deviations of the
individual parameter estimates, and R, which is the corresponding
correlation matrix. The value Rij is thus the estimated correlation

between θ̂i and θ̂j .
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Distribution of the ML estimator

The Wald Statistic

A test of an individual parameter

H0 : θi = θi ,0

is given by the Wald statistic:

Zi =
θ̂i − θi ,0
σ̂θ̂i

which under H0 is approximately N(0, 1)-distributed.
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In practice

Fitting Poisson regression (Ex.: Invariance Property)

Consider the model:

yi ∼ Pois(eθ1xi+θ2), i = 1, . . . , 10

With observations given in the following R snip:

> x <- 1:10

> y <- c(3, 0, 4, 5, 6, 4, 9, 7, 4, 10)

> l <- function(th) {

+ -sum(dpois(y, exp(th[1] * x + th[2]), log = TRUE))

+ }

> fit <- optim(par = c(0, 0), fn = l, hessian = TRUE)

Henrik Madsen Poul Thyregod (IMM-DTU) Chapman & Hall Feb 2012 11 / 41



In practice

Fitting object contain

> fit

$par

[1] 0.1395798 0.8017717

$value

[1] 21.41071

$counts

function gradient

91 NA

$convergence

[1] 0

$message

NULL

$hessian

[,1] [,2]

[1,] 2665.3444 343.96835

[2,] 343.9684 51.99424
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In practice

Fitting object contain

Estimates of θ1 and θ2

> est <- fit$par

> est

[1] 0.1395798 0.8017717

Estimates of their standard deviations

> std <- sqrt(diag(solve(fit$hessian)))

> std

[1] 0.05064875 0.36263335

Setup confidence intervals

> ci <- cbind(low = est - 2 * std, high = est + 2 * std)

> ci

low high

[1,] 0.03828231 0.2408773

[2,] 0.07650498 1.5270384
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In practice

Fitting object contain

The correlation matrix R

> solve(fit$hessian)/(std %o% std)

[,1] [,2]

[1,] 1.0000000 -0.9239835

[2,] -0.9239835 1.0000000

Wald test for no influence of x , or in other words θ1 = 0

> Z <- (est[1] - 0)/std[1]

> Z

[1] 2.755839

Greater than 2, so hypothesis can be rejected, the p-value is:

> 2 * (1 - pnorm(abs(Z)))

[1] 0.005854177
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In practice

Plot it
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In practice

Quadratic approximation of the log-likelihood

A second-order Taylor expansion around θ̂ provides us with a quadratic
approximation of the normalized log-likelihood around the MLE.

A second-order Taylors expansion around θ̂ we get

l(θ) ≈ l(θ̂) + l ′(θ̂)(θ − θ̂)− 1

2
j (θ̂)(θ − θ̂)2

and then

log
L(θ)

L(θ̂)
≈ −1

2
j (θ̂)(θ − θ̂)2

In the case of normality the approximation is exact which means that
a quadratic approximation of the log-likelihood corresponds to normal
approximation of the θ̂(Y ) estimator.
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In practice

Example: Quadratic approximation of the log-likelihood

Consider again the thumbtack example.
The log-likelihood function is:

l(θ) = y log θ + (n − y) log(1− θ) + const

The score function is:
l ′(θ) =

y

θ
− n − y

1− θ ,

and the observed information:

j (θ) =
y

θ2
+

n − y

(1− θ)2
.

For n = 10, y = 3 and θ̂ = 0.3 we obtain

j (θ̂) = 47.6

The quadratic approximation is poor in this case. By increasing the sample
size to n = 100, but still with θ̂ = 0.3 the approximation is much better.
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In practice

Example: Quadratic approximation of the log-likelihood18 The likelihood principle
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(a) n = 10, y = 3
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(b) n = 100, y = 30

Figure 2.3: Quadratic approximation of the log-likelihood function.

Example 2.7 (Quadratic approximation of the log-likelihood)
Consider again the situation from Example 2.1 where the log-likelihood
function is

l(θ) = y log θ + (n− y) log(1− θ) + const

The score function is
l′(θ) =

y

θ
− n− y

1− θ
,

and the observed information

j(θ) =
y

θ2
+

n− y

(1− θ)2
.

For n = 10, y = 3 and θ̂ = 0.3 we obtain

j(θ̂) = 47.6

The log-likelihood function and the corresponding quadratic approximation
are shown in Figure 2.3a. The approximation is poor as can be seen in the
figure. By increasing the sample size to n = 100, but still with θ̂ = 0.3, the
approximation is much better as seen in Figure 2.3b.

At the point θ̂ = y
n we have

j(θ̂) =
n

θ̂(1− θ̂)

and we find the variance of the estimate

Var
[
θ̂
]
= j−1(θ̂) =

θ̂(1− θ̂)

n
.

Figure: Quadratic approximation of the log-likelihood function.
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Model selection

Likelihood ratio tests

Method for testing hypotheses using the likelihood function.

Assume we have a sufficient model (A) with θ ∈ ΩA

Want to test if we can reduce to a sub-model (B) H0 : θ ∈ ΩB

We call B a sub-model of A if ΩB ⊂ ΩA (for instance when setting a
free parameter in A to a fixed value in B)

The purpose is to analyze if the observations provide sufficient
evidence to reject the model reduction, otherwise we accept the
hypothesis H0

The test statistic D (called deviance) is calculated as:

D = 2(`A(θ̂A,Y )− `B (θ̂B ,Y ))

D ≥ 0, so ”small values” means model B is as good as A

”Large values” means model B gives worse data description than A
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Model selection

Likelihood ratio tests

Want to know the distribution of D when assuming H0 (model B).

It is sometimes possible to calculate the exact distribution. This is for
instance the case for the General Linear Model for Gaussian data.

In most cases, however, we must use following important result
regarding the asymptotic behavior.

Theorem (Wilk’s Likelihood Ratio test)

The random variable D = 2(`A(θ̂A,Y )− `B (θ̂B ,Y )) converges in law to
a χ2 random variable with f = (dim(ΩA)− dim(ΩB )) degrees of freedom,
i.e.,

D → χ2(f )

under H0.
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Model selection

Likelihood ratio tests

With Wilk’s in place we have the (approximate) distribution of D if
we assume H0 to be true

Further we have calculated the observed D

The evidence against H0 is measured by the p-value.

The p-value is the probability under H0 of observing a value of D
equal to or more extreme as the actually observed test statistic.

Hence, a small p-value (say ≤ 0.05) leads to a strong evidence
against H0, and H0 is then said to be rejected. Likewise, we retain
H0 unless there is a strong evidence against this hypothesis.

Rejecting H0 given H0 is true is called a Type I error, while retaining
H0 when the truth is actually H1 is called a Type II error.
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Model selection

Likelihood ratio tests

With the notation from the book

Definition (Likelihood ratio)

Consider the hypothesis H0 : θ ∈ Ω0 against the alternative H1 : θ ∈ Ω \ Ω0

(Ω0 ⊆ Ω), where dim(Ω0) = r and dim(Ω) = k .
For given observations y1, y2, ..., yn the likelihood ratio is defined as

λ(y) =
supθ∈Ω0

L(θ;y)

supθ∈Ω L(θ;y)

If λ is small, then the data are seen to be more plausible under the
alternative hypothesis than under the null hypothesis.

Hence the hypothesis (H0) is rejected for small values of λ.
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Model selection

Null model and full model

The null model

Ωnull = R (dim(Ωnull) = 1), is a model with only one parameter.

The full model

Ωfull = Rn (dim(Ωfull) = n), is a model where the dimension is equal to
the number of observations and hence the model fits each observation
perfectly.
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Model selection

The deviance

The deviance

Let us introduce L0 = sup
θ∈Ω0

L(θ;y) and L = sup
θ∈Ωfull

L(θ;y) then we notice

that

−2 log λ(Y ) = −2(logL0 − logL)

= 2(logL− logL0).

The statistic D = −2 log λ(Y ) = 2(logL− logL0) is called the deviance.
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Model selection

Example likelihood ratio test

Likelihood ratio test for θ1 = 0 in the model yi ∼ Pois(eθ1xi+θ2)

> lA <- function(th) {

+ -sum(dpois(y, exp(th[1] * x + th[2]), log = TRUE))

+ }

> fitA <- optim(par = c(0, 0), fn = lA, hessian = TRUE)

> lB <- function(th) {

+ -sum(dpois(y, exp(0 * x + th[1]), log = TRUE))

+ }

> fitB <- optim(par = c(0), fn = lB, hessian = TRUE)

> D <- 2 * (fitB$value - fitA$value)

> D

[1] 7.96622

> 1 - pchisq(D, 1)

[1] 0.004765838
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Model selection

Hypothesis chains

Consider a chain of hypotheses specified by a sequence of parameter spaces

R ⊆ ΩM . . . ⊂ Ω2 ⊂ Ω1 ⊂ Rn .

For each parameter space Ωi we define a hypothesis

Hi : θ ∈ Ωi

with dim(Ωi) < dim(Ωi−1).
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Model selection

Partial likelihood ratio test

Definition (Partial likelihood ratio test)

Assume that the hypothesis Hi allows the sub hypothesis Hi+1 ⊂ Hi .
The partial likelihood ratio test for Hi+1 under Hi is the likelihood ratio
test for the hypothesis Hi+1 under the assumption that the hypothesis Hi

holds. The likelihood ratio test statistic for this partial test is

λHi+1|Hi
(y) =

supθ∈Ωi+1
L(θ;y)

supθ∈Ωi
L(θ;y)

When Hi+1 holds, the distribution of λHi+1|Hi
(Y ) approaches a χ2(f )

distribution with f = dim(Ωi)− dim(Ωi+1).
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Model selection

Partial tests

Theorem (Partitioning into a sequence of partial tests)

Consider a chain of hypotheses.

Now, assume that H1 holds, and consider the minimal hypotheses HM : θ ∈ ΩM

with the alternative H1 : θ ∈ Ω1 \ ΩM . The likelihood ratio test statistic
λHM |H1

(y) for this hypothesis may be factorized into a chain of partial likelihood
ratio test statistics λHi+1|Hi

(y) for Hi+1 given Hi , i = 1, . . . ,M .

The partial tests ”corrects” for the effect of the parameters that are in
the model at that particular stage

When interpreting the test statistic corresponding to a particular
stage in the hierarchy of models, one often says that there is
”controlled for”, or ”corrected for” the effect of the parameters that are
in the model at that stage.
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Model selection

Two factor experiment2.12 Successive testing in hypothesis chains 23
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Figure 2.6: Inclusion diagram corresponding to a two-factor experiment. In the upper
level we have used the same notation as used by the software R, i.e. Length∗Thick
denotes a two-factor model with interaction between the two factors.

x Remark 2.8 (The partial tests “corrects” for the effect of the
parameters that are in the model at that particular stage)
When interpreting the test statistic corresponding to a particular stage in the

hierarchy of models, one often says that there is “controlled for”, or “corrected
for” the effect of the parameters that are in the model at that stage. x
Example 2.8 (Sub-hypotheses in a two-factor model)
Consider a two-factor experiment with r levels of factor Length and c levels

of factor Thick. The usual two-factor model for the mean value µij = E[Yijk]
is

µij = µ0 + αi + βj + γij i = 1, 2, . . . , r ; j = 1, 2, . . . , c

with suitable restrictions on the parameters.
Figure 2.6 illustrates the two hypothesis chains that may be formulated

for such an experiment. First a test for vanishing interaction terms (γij = 0).
Following “acceptance” in this test one may either test for vanishing effect
of Thick, viz. a model µij = µ + αi, and – if accepted – subsequently test
for vanishing effect of Length, ending with a null model (left hand side of
the diagram), or one may start by testing a hypothesis of vanishing effect of
Length (model µij = µ+ βj) and finally testing whether the model may be
reduced to the null model. The experiment will be discussed in more detail
in Example 4.15 on page 131.

Example 2.9 (Hypothesis chains for a three-factor experiment)
Figure 2.7 illustrates analogously possible hypothesis chains for a three-

factor experiment. Notice the difference in complexity between the possible
hypothesis chains for a two-factor model (Figure 2.6) and a three-factor

Figure: Inclusion diagram corresponding to a two-factor experiment. The notation
is the same as used by the software R, i.e. Length∗Thick denotes a two-factor
model with interaction between the two factors.
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Model selection

Three factor experiment24 The likelihood principle
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Figure 2.7: Inclusion diagram corresponding to three-factor models. The notation
is the same as used by the software R, i.e. A∗B denotes a two-factor model with
interaction between the two factors.

model.
In practice, it may well happen that one works down a path until the

model can not be further reduced following that path, but going back a few
steps and choosing another branch might result in a greater simplification of
the model.

Now it is clear that for models with a large number of explanatory
variables (factors), well defined strategies for testing hypothesis are useful.

Strategies for variable selection in hypothesis chains

Typically, one of the following principles for model selection is used:

Figure: Inclusion diagram corresponding to a three-factor experiment.
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Model selection

Strategies for variable selection in hypothesis chains

Typically, one of the following principles for model selection is used:

a) Forward selection: Start with a null model, add at each step the
variable that would give the lowest p-value of the variable not yet
included in the model.

b) Backward selection: Start with a model containing all variables,
variables are step by step deleted from the model. At each step, the
variable with the largest p-value is deleted.

c) Stepwise selection: This is a modification of the forward selection
principle. Variables are added to the model step by step. In each step,
the procedure also examines whether variables already in the model
can be deleted.

d) Best subset selection: For k = 1, 2, ... up to a user-specified limit, the
procedure identifies a specified number of best models containing k
variables.
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Model selection

Variable selection in hypothesis chains

In-sample methods for model selection

The model complexity is evaluated using the same observations as those
used for estimating the parameters of the model.

The training data is used for evaluating the performance of the model.

Any extra parameter will lead to a reduction of the loss function.

In the in-sample case statistical tests are used to access the
significance of extra parameters, and when the improvement is small
in some sense the parameters are considered to be non-significant.

The classical statistical approach.
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Model selection

Variable selection in hypothesis chains

Statistical learning or data mining

We have a data-rich situation such that only a part of the data is needed
for model estimation and the rest can be used to test its performance.

Seeking the generalized performance of a model which is defined as
the expected performance on an independent set of observations.

The expected performance can be evaluated as the expected value of
the generalized loss function.

The expected prediction error on an independent set of observations
is called the test error or generalization error.
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Model selection

Variable selection in hypothesis chains

In a data-rich situation, the performance can be evaluated by splitting
the total set of observations in three parts:

training set: used for estimating the parameters

validation set: used for out-of-sample model selection

test set: used for assessing the generalized performance, i.e. the
performance on new data

A typical split of data is 50 pct for training and 25 pct for both
validation and testing.
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Model selection

Variable selection in hypothesis chains

26 The likelihood principle
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Figure 2.8: A typical behavior of the (possibly generalized) training and test prediction
error as a function of the model complexity

training and test error as a function of the model complexity is shown on
Figure 2.8.

2.13 Dealing with nuisance parameters

Nuisance parameters
In many cases, the likelihood function is a function of many parameter but
our interest focuses on the estimation on one or a subset of the parameters,
with the others being considered as nuisance parameters. For the Gaussian
model for instance, we are often interested in µ but not in σ2, and then σ2 is
considered as a nuisance parameter used for scaling only, i.e., used to account
for the variability in the data.

Methods are needed to summarize the likelihood on a subset of the pa-
rameters by eliminating the nuisance parameters. Accounting for the extra
uncertainty due to unknown nuisance parameters is an essential consideration,
especially in small-sample cases.

In the literature several methods have been proposed to eliminate such
nuisance parameters so that the likelihood can be written as a function of
the parameters of interest only; the most important methods being profile,
marginal and conditional likelihoods. However, there is no single technique
that is acceptable in all situations, see e.g., Bayarri, DeGroot and Kadane
(1987) and Berger, Liseo and Wolpert (1999)

Figure: A typical behavior of the (possibly generalized) training and test
prediction error as a function of the model complexity.
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Dealing with nuisance parameters

Nuisance parameters

In many cases, the likelihood function is a function of many parameter
but our interest focuses on the estimation on one or a subset of the
parameters, with the others being considered as nuisance parameters

Methods are needed to summarize the likelihood on a subset of the
parameters by eliminating the nuisance parameters.

Accounting for the extra uncertainty due to unknown nuisance
parameters is an essential consideration, especially in small-sample
cases.
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Dealing with nuisance parameters

Profile likelihood

Definition (Profile likelihood)

Assume that the statistical model for the observations Y1,Y2, . . . ,Yn is
given by the family of joint densities, θ = (τ, ζ) and τ denoting the
parameter of interest. Then the profile likelihood function for τ is the
function

LP (τ ;y) = sup
ζ

L((τ, ζ);y)

where the maximization is performed at a fixed value of τ .
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Dealing with nuisance parameters

Profile likelihood based confidence intervals

Consider again θ = (τ , ζ). It is seen that

{
τ ;

LP (τ ;y)

L(θ̂,y)
> exp(−1

2
χ2

1−α(p))

}
(1)

defines a set of values of τ (Notice: p is the dimension of τ ) that
constitutes a 100(1− α)% confidence region for τ .

Important special case:
In the case p = 1 (a single parameter) we find the lower bound of a 95%
Confidence Interval (CI) as the smallest value of τ for which
logLP (τ) > logL(θ̂)− 1.92 (2× 1.92 = 3.84 is equal to the
95%-percentile of the χ2(1) distribution). The upper bound is found in a
similar way.

Henrik Madsen Poul Thyregod (IMM-DTU) Chapman & Hall Feb 2012 38 / 41



Dealing with nuisance parameters

Example: Profile likelihood confidence intervals

Figure: Binomial log-likelihood for 10 successes from 100 trials, and 95 pct.
likelihood confidence interval.

Likelihood 95 pct. CI is (0.051, 0.169). (asymmetric)
Question: What is the normal (symmetric) Wald CI?
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Dealing with nuisance parameters

Marginal likelihood

Definition (Marginal likelihood)

Assume that the statistical model for the observations Y1,Y2, . . . ,Yn is
given by the family of joint densities, θ = (τ, ζ) and τ denoting the
parameter of interest. Let (U ,V ) be a sufficient statistic for (τ, ζ) for
which the factorization

fU ,V (u, v ; (τ, ζ)) = fU (u; τ)fV |U=u(v ; u, τ, ζ)

holds. Provided that the likehood factor which corresponds to fV |U=u(·)
can be neglected, inference about τ can be based on the marginal model
for U with density fU (u; τ). The corresponding likelihood function

LM (τ ; u) = fU (u; τ)

is called the marginal likelihood function based on U .
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Dealing with nuisance parameters

Now you know it all

Likelihood function L(θ) = Pθ(Y = y)

Log likelihood function `(θ) = log(L(θ))

Score function `′(θ)

Maximum likelihood estimate θ̂ = argmax
θ∈Θ

`(θ)

Observed information matrix −`′′(θ̂)
Distribution of the ML estimator θ̂ ∼ N(θ, (−`′′(θ̂))−1)

Likelihood ratio test 2(`A(θ̂A,Y )− `B (θ̂B ,Y )) ∼ χ2
dim(A)−dim(B)

Dealing with nuisance parameters
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