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The likelihood principle

The beginning of likelihood theory

Fisher (1922) identified the likelihood function as the key inferential
quantity conveying all inferential information in statistical modelling
including the uncertainty

The Fisherian school offers a Bayesian-frequentist compromise
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The likelihood principle

A motivating example

Suppose we toss a thumbtack (used to fasten up documents to a
background) 10 times and observe that 3 times it lands point up.
Assuming we know nothing prior to the experiment, what is the probability
of landing point up, θ?

Binomial experiment with y = 3 and n = 10.

P(Y=3;10,3,0.2) = 0.2013

P(Y=3;10,3,0.3) = 0.2668

P(Y=3;10,3,0.4) = 0.2150
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The likelihood principle

A motivating example

By considering Pθ(Y = 3) to be a function of the unknown parameter we
have the likelihood function:

L(θ) = Pθ(Y = 3)

In general, in a Binomial experiment with n trials and y successes, the
likelihood function is:

L(θ) = Pθ(Y = y) =

(
n
y

)
θy(1− θ)n−y
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The likelihood principle

A motivating example4 The likelihood principle
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Figure 2.1: Likelihood function of the success probability θ in a binomial experiment
with n = 10 and y = 3.

where const indicates a term that does not depend on θ. By solving
∂ logL(θ)

∂θ = 0, it is readily seen that the maximum likelihood estimate (MLE)
for θ is θ̂(y) = y

n . In the thumbtack case where we observed Y = y = 3 we
obtain θ̂(y) = 0.3. The random variable θ̂(Y ) = Y

n is called a maximum
likelihood estimator for θ.

The likelihood principle is not just a method for obtaining a point estimate of
parameters; it is a method for an objective reasoning with data. It is the entire
likelihood function that captures all the information in the data about a certain
parameter, not just its maximizer. The likelihood principle also provides the
basis for a rich family of methods for selecting the most appropriate model.

Today the likelihood principles play a central role in statistical modelling
and inference. Likelihood based methods are inherently computational. In
general numerical methods are needed to find the MLE.

We could view the MLE as a single number representing the likelihood
function; but generally, a single number is not enough for representing a
function. If the (log-)likelihood function is well approximated by a quadratic
function it is said to be regular and then we need at least two quantities;
the location of its maximum and the curvature at the maximum. When our
sample becomes large the likelihood function generally does become regular.
The curvature delivers important information about the uncertainty of the
parameter estimate.

Before considering the likelihood principles in detail we shall briefly consider
some theory related to point estimation.

Figure: Likelihood function of the success probability θ in a binomial experiment
with n = 10 and y = 3.
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The likelihood principle

A motivating example

It is often more convenient to consider the log-likelihood function. The
log-likelihood function is:

logL(θ) = y log θ + (n − y) log(1− θ) + const

where const indicates a term that does not depend on θ.
By solving

∂ logL(θ)

∂θ
= 0

it is readily seen that the maximum likelihood estimate (MLE) for θ is

θ̂(y) =
y

n
=

3

10
= 0.3
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The likelihood principle

The likelihood principle

Not just a method for obtaining a point estimate of parameters.

It is the entire likelihood function that captures all the information in
the data about a certain parameter.

Likelihood based methods are inherently computational. In general
numerical methods are needed to find the MLE.

Today the likelihood principles play a central role in statistical
modelling and inference.
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The likelihood principle

Some syntax

Multivariate random variable: Y = {Y1,Y2, ...,Yn}T

Observation set: {y = y1, y2, . . . , yn}T

Joint density: {fY(y1, y2, . . . , yn ;θ)}θ∈Θk

Estimator (random) θ̂(Y)

Estimate (number/vector) θ̂(y)
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Point estimation theory

Point estimation theory

We will assume that the statistical model for y is given by parametric
family of joint densities:

{fY(y1, y2, . . . , yn ;θ)}θ∈Θk

Remember that when the n random variables are independent, the joint
probability density equals the product of the corresponding marginal
densities or:

f (y1, y2, ...yn) = f1(y1) · f2(y2) · . . . · fn(yn)
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Point estimation theory

Point estimation theory

Definition (Unbiased estimator)

Any estimator θ̂ = θ̂(Y ) is said to be unbiased if

E[θ̂] = θ

for all θ ∈ Θk .

Definition (Minimum mean square error)

An estimator θ̂ = θ̂(Y ) is said to be uniformly minimum mean square
error if

E
[
(θ̂(Y )− θ)(θ̂(Y )− θ)T

]
≤ E

[
(θ̃(Y )− θ)(θ̃(Y )− θ)T

]

for all θ ∈ Θk and all other estimators θ̃(Y ).
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Point estimation theory

Point estimation theory

By considering the class of unbiased estimators it is most often not
possible to establish a suitable estimator.

We need to add a criterion on the variance of the estimator.

A low variance is desired, and in order to evaluate the variance a
suitable lower bound is given by the Cramer-Rao inequality.
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Point estimation theory

Point estimation theory

Theorem (Cramer-Rao inequality)

Given the parametric density fY (y ;θ),θ ∈ Θk , for the observations Y . Subject

to certain regularity conditions, the variance of any unbiased estimator θ̂(Y ) of θ
satisfies the inequality

Var
[
θ̂(Y )

]
≥ i−1(θ)

where i(θ) is the Fisher information matrix defined by

i(θ) = E

[(
∂ log fY (Y ;θ)

∂θ

)(
∂ log fY (Y ;θ)

∂θ

)T
]

and Var
[
θ̂(Y )

]
= E

[
(θ̂(Y )− θ)(θ̂(Y )− θ)T

]
.

Henrik Madsen Poul Thyregod (DTU Inf.) Chapman & Hall January 2012 13 / 45



Point estimation theory

Point estimation theory

Definition (Efficient estimator)

An unbiased estimator is said to be efficient if its covariance is equal to the
Cramer-Rao lower bound.

Dispersion matrix

The matrix Var
[
θ̂(Y )

]
is often called a variance covariance matrix since

it contains variances in the diagonal and covariances outside the diagonal.
This important matrix is often termed the Dispersion matrix.
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The likelihood function

The likelihood function

The likelihood function is built on an assumed parameterized
statistical model as specified by a parametric family of joint densities
for the observations Y = (Y1,Y2, ...,Yn)T .

The likelihood of any specific value θ of the parameters in a model is
(proportional to) the probability of the actual outcome,
Y1 = y1,Y2 = y2, ...,Yn = yn , calculated for the specific value θ.

The likelihood function is simply obtained by considering the
likelihood as a function of θ ∈ Θk .
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The likelihood function

The likelihood function

Definition (Likelihood function)

Given the parametric density fY (y ,θ), θ ∈ ΘP , for the observations
y = (y1, y2, . . . , yn) the likelihood function for θ is the function

L(θ;y) = c(y1, y2, . . . , yn)fY (y1, y2, . . . , yn ;θ)

where c(y1, y2, . . . , yn) is a constant.

The likelihood function is thus (proportional to) the joint probability
density for the actual observations considered as a function of θ.
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The likelihood function

The log-likelihood function

Very often it is more convenient to consider the log-likelihood
function defined as

l(θ;y) = log(L(θ;y)).

Sometimes the likelihood and the log-likelihood function will be
written as L(θ) and l(θ), respectively, i.e. the dependency on y is
suppressed.
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The likelihood function

Example: Likelihood function for mean of normal distribution

An automatic production of a bottled liquid is considered to be stable. A
sample of three bottles were selected at random from the production and
the volume of the content volume was measured. The deviation from the
nominal volume of 700.0 ml was recorded.

The deviations (in ml) were 4.6; 6.3; and 5.0.
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The likelihood function

Example: Likelihood function for mean of normal distribution

First a model is formulated

i Model: C+E (center plus error) model, Y = µ+ ε

ii Data: Yi = µ+ εi

iii Assumptions:

Y1,Y2,Y3 are independent

Yi ∼ N(µ, σ2)

σ2 is known, σ2 = 1,

Thus, there is only one unknown model parameter, µY = µ.
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The likelihood function

Example: Likelihood function for mean of normal distribution

The joint probability density function for Y1,Y2,Y3 is given by

fY1,Y2,Y3
(y1, y2, y3;µ) =

1√
2π

exp

[
− (y1 − µ)2

2

]

× 1√
2π

exp

[
− (y2 − µ)2

2

]

× 1√
2π

exp

[
− (y3 − µ)2

2

]

which for every value of µ is a function of the three variables y1, y2, y3.

Remember that the normal probability density is: f (y ;µ, σ2) = 1√
2πσ

exp
[
− (y−µ)2

2σ2

]
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The likelihood function

Example: Likelihood function for mean of normal distribution

Now, we have the observations, y1 = 4.6; y2 = 6.3 and y3 = 5.0, and
establish the likelihood function

L4.6,6.3,5.0(µ) = fY1,Y2,Y3(4.6, 6.3, 5.0;µ)

=
1√
2π

exp

[
− (4.6− µ)2

2

]

× 1√
2π

exp

[
− (6.3− µ)2

2

]

× 1√
2π

exp

[
− (5.0− µ)2

2

]

The function depends only on µ.
Note that the likelihood function expresses the infinitesimal probability of
obtaining the sample result (4.6, 6.3, 5.0) as a function of the unknown
parameter µ.
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The likelihood function

Example: Likelihood function for mean of normal distribution

Reducing the expression one finds

L4.6,6.3,5.0(µ) =
1

(
√

2π)3
exp

[
−1.58

2

]
exp

[
−3(5.3− µ)2

2

]

=
1

(
√

2π)3
exp

[
−1.58

2

]
exp

[
−3(ȳ − µ)2

2

]

which shows that (except for a factor not depending on µ), the likelihood
function does only depend on the observations (y1, y2, y3) through the
average ȳ =

∑
yi/3.
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The likelihood function

Example: Likelihood function for mean of normal distribution10 The likelihood principle
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Figure 2.2: The likelihood function for µ given the observations y1 = 4.6; y2 = 6.3
and y3 = 5.0.

Sufficient statistic

The primary goal in analysing observations is to characterise the information in
the observations by a few numbers. A statistics t(Y1, Y2, . . . , Yn) is a function
of the observations. In estimation a sufficient statistic is a statistic than
contains all the information in the observations.

Definition 2.5 (Sufficient statistic)
A (possibly vector-valued) function t(Y1, Y2, . . . , Yn) is said to be a sufficient
statistic for a (possibly vector-valued) parameter, θ, if the probability density
function for t(Y1, Y2, . . . , Yn) can be factorized into a product

fY1,...,Yn
(y1, . . . , yn; θ) = h(y1, . . . , yn)g(t(y1, y2, . . . , yn); θ)

with the factor h(y1, . . . , yn) not depending on the parameter θ, and the
factor g(t(y1, y2, . . . , yn); θ) only depending on y1, . . . , yn through the function
t(·, ·, . . . , ·). Thus, if we know the value of t(y1, y2, . . . , yn), the individual
values y1, . . . , yn do not contain further information about the value of θ.

Roughly speaking, a statistic is sufficient if we are able to calculate the
likelihood function (apart from a factor) only knowing t(Y1, Y2, . . . , Yn).

Example 2.5 (Sufficiency of the sample mean)
Consider again the the situation from Example 2.4. One obtains more general
insight if we just use the symbols (y1, y2, y3) for the data values. Using this
notation, the likelihood function is

Figure: The likelihood function for µ given the observations y1 = 4.6; y2 = 6.3
and y3 = 5.0.

Henrik Madsen Poul Thyregod (DTU Inf.) Chapman & Hall January 2012 23 / 45



The likelihood function

Sufficient statistic

The primary goal in analysing observations is to characterise the
information in the observations by a few numbers.

A statistics t(Y1,Y2, . . . ,Yn) is a function of the observations.

In estimation a sufficient statistic is a statistic than contains all the
information in the observations.
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The likelihood function

Sufficient statistic

Definition (Sufficient statistic)

A (possibly vector-valued) function t(Y1,Y2, . . . ,Yn) is said to be a sufficient
statistic for a (possibly vector-valued) parameter, θ, if the probability density
function for t(Y1,Y2, . . . ,Yn) can be factorized into a product

fY1,...,Yn
(y1, . . . , yn ; θ) = h(y1, . . . , yn)g(t(y1, y2, . . . , yn); θ)

with the factor h(y1, . . . , yn) not depending on the parameter θ, and the factor
g(t(y1, y2, . . . , yn); θ) only depending on y1, . . . , yn through the function
t(·, ·, . . . , ·). Thus, if we know the value of t(y1, y2, . . . , yn), the individual values
y1, . . . , yn do not contain further information about the value of θ.

Roughly speaking, a statistic is sufficient if we are able to calculate the
likelihood function (apart from a factor) only knowing t(Y1,Y2, . . . ,Yn).
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The Score function

The Score function

Definition (Score function)

Consider θ = (θ1, · · · , θk ) ∈ Θk , and assume that Θk is an open subspace
of Rk , and that the log-likelihood is continuously differentiable. Then
consider the first order partial derivative (gradient) of the log-likelihood
function:

l ′θ(θ;y) =
∂

∂θ
l(θ;y) =




∂

∂θ1
l(θ;y)

...
∂

∂θk
l(θ;y)




The function l ′θ(θ;y) is called the score function often written as S (θ;y).
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The Score function

The Score function

Theorem

Under normal regularity conditions

Eθ

[
∂

∂θ
l(θ;Y )

]
= 0

This follows by differentiation of

∫
fY (y ;θ) µ{dy} = 1
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The information matrix

The information matrix

Definition (Observed information)

The matrix

j (θ;y) = − ∂2

∂θ∂θT
l(θ;y)

with the elements

j (θ;y)ij = − ∂2

∂θi∂θj
l(θ;y)

is called the observed information corresponding to the observation y ,
evaluated in θ̂.

The observed information is thus equal to the Hessian (with opposite sign)
of the log-likelihood function evaluated at θ. The Hessian matrix is simply
(with opposite sign) the curvature of the log-likelihood function.
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The information matrix

The information matrix

Definition (Expected information)

The expectation of the observed information

i(θ) = E[j (θ;Y )],

where the expectation is determined under the distribution corresponding
to θ, is called the expected information, or the information matrix
corresponding to the parameter θ. The expected information is also known
as the Fisher information matrix
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The information matrix

Fisher Information Matrix

Fisher Information Matrix

The expected information or Fisher Information Matrix is equal to the
dispersion matrix for the score function, i.e.

i(θ) = Eθ

[
− ∂2

∂θ∂θT
l(θ;Y )

]

= Eθ

[
∂

∂θ
l(θ;Y )

(
∂

∂θ
l(θ;Y )

)T
]

= Dθ[l
′
θ(θ;Y )]

where D [·] denotes the dispersion matrix.

In estimation the information matrix provides a measure for the accuracy
obtained in determining the parameters.
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The information matrix

Example: Score function, Observed and Expected Information

Consider again the production of a bottled liquid example from slide 18.

The log-likelihood function is:

l(µ; 4.6, 6.3, 5.0) = −3(5.3− µ)2

2
+ C (4.6, 6.3, 5.0)

and hence the score function is

l ′µ(µ; 4.6, 6.3, 5.0) = 3 · (5.3− µ),

with the observed information

j (µ; 4.6, 6.3, 5.0) = 3.
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The information matrix

Example: Score function, Observed and Expected Information

In order to determine the expected information it is necessary to perform
analogous calculations substituting the data by the corresponding random
variables Y1,Y2,Y3.

The likelihood function can be written as

Ly1,y2,y3(µ) =
1

(
√

2π)3
exp

[
−
∑

(yi − ȳ)2

2

]
exp

[
−3(ȳ − µ)2

2

]
.
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The information matrix

Example: Score function, Observed and Expected Information

Introducing the random variables (Y1,Y2,Y3) instead of (y1, y2, y3) and
taking logarithms one finds

l(µ;Y1,Y2,Y3) = −3(Y − µ)2

2
− 3 ln(

√
2π)−

∑
(Yi −Y )2

2
,

and hence the score function is

l ′µ(µ;Y1,Y2,Y3) = 3(Y − µ),

and the observed information

j (µ;Y1,Y2,Y3) = 3.

Henrik Madsen Poul Thyregod (DTU Inf.) Chapman & Hall January 2012 33 / 45



The information matrix

Example: Score function, Observed and Expected Information

It is seen in this (Gaussian) case that the observed information (curvature
of log likelihood function) does not depend on the observations
Y1,Y2,Y3, and hence the expected information is

i(µ) = E[j (µ;Y1,Y2,Y3)] = 3.
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The information matrix

Alternative parameterizations of the likelihood

Definition (The likelihood function for alternative parameterizations)

The likelihood function depends not on the actual parameterization. Let
ψ = ψ(θ) denote a one-to-one mapping of Ω ⊂ Rk onto Ψ ⊂ Rk . The
parameterization given by ψ is just an alternative parameterization of the model.
The likelihood and log-likelihood function for the parameterization given by ψ is

LΨ(ψ;y) = LΩ(θ(ψ);y)

lΨ(ψ;y) = lΩ(θ(ψ);y)

This gives rise to the very useful invariance property.

The likelihood is thus not a joint probability density on Ω, since then the
Jacobian should have been used

However, the score function and the information matrix depends in general
on the parameterization.
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The information matrix

The Maximum Likelihood Estimate (MLE)

The score function can be used to obtain the estimate, since the MLE can
be found as the solution to

l ′θ(θ;y) = 0

which are called the estimation equations for the ML-estimator, or, just
the ML equations.

It is common practice, especially when plotting, to normalize the
likelihood function to have unit maximum and the log-likelihood to
have zero maximum.
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The information matrix

Invariance property

Theorem (Invariance property)

Assume that θ̂ is a maximum likelihood estimator for θ, and let ψ = ψ(θ)
denote a one-to-one mapping of Ω ⊂ Rk onto Ψ ⊂ Rk . Then the
estimator ψ(θ̂) is a maximum likelihood estimator for the parameter ψ(θ).

The principle is easily generalized to the case where the mapping is not
one-to-one.
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Distribution of the ML estimator

Distribution of the ML estimator

Theorem (Distribution of the ML estimator)

We assume that θ̂ is consistent. Then, under some regularity conditions,

θ̂ − θ → N(0, i(θ)−1)

where i(θ) is the expected information or the information matrix.

The results can be used for inference under very general conditions.
As the price for the generality, the results are only asymptotically
valid.

Asymptotically the variance of the estimator is seen to be equal to the
Cramer-Rao lower bound for any unbiased estimator.

The practical significance of this result is that the MLE makes
efficient use of the available data for large data sets.
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Distribution of the ML estimator

Distribution of the ML estimator

In practice, we would use

θ̂ ∼ N(θ, j−1(θ̂))

where j (θ̂) is the observed (Fisher) information.

This means that asymptotically

i) E[θ̂] = θ

ii) D [θ̂] = j−1(θ̂)
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Distribution of the ML estimator

Distribution of the ML estimator

The standard error of θ̂i is given by

σ̂θ̂i =

√
Varii [θ̂]

where Varii [θ̂] is the i’th diagonal term of j−1(θ̂)

Hence we have that an estimate of the dispersion (variance-covariance
matrix) of the estimator is

D [θ̂] = j−1(θ̂)

An estimate of the uncertainty of the individual parameter estimates
is obtained by decomposing the dispersion matrix as follows:

D [θ̂] = σ̂θ̂Rσ̂θ̂

into σ̂θ̂, which is a diagonal matrix of the standard deviations of the
individual parameter estimates, and R, which is the corresponding
correlation matrix. The value Rij is thus the estimated correlation

between θ̂i and θ̂j .
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Distribution of the ML estimator

The Wald Statistic

A test of an individual parameter

H0 : θi = θi ,0

is given by the Wald statistic:

Zi =
θ̂i − θi ,0
σ̂θ̂i

which under H0 is approximately N(0, 1)-distributed.
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Distribution of the ML estimator

Quadratic approximation of the log-likelihood

A second-order Taylor expansion around θ̂ provides us with a quadratic
approximation of the normalized log-likelihood around the MLE.

A second-order Taylors expansion around θ̂ we get

l(θ) ≈ l(θ̂) + l ′(θ̂)(θ − θ̂)− 1

2
j (θ̂)(θ − θ̂)2

and then

log
L(θ)

L(θ̂)
≈ −1

2
j (θ̂)(θ − θ̂)2

In the case of normality the approximation is exact which means that
a quadratic approximation of the log-likelihood corresponds to normal
approximation of the θ̂(Y ) estimator.
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Distribution of the ML estimator

Example: Quadratic approximation of the log-likelihood

Consider again the thumbtack example.
The log-likelihood function is:

l(θ) = y log θ + (n − y) log(1− θ) + const

The score function is:
l ′(θ) =

y

θ
− n − y

1− θ ,

and the observed information:

j (θ) =
y

θ2
+

n − y

(1− θ)2
.

For n = 10, y = 3 and θ̂ = 0.3 we obtain

j (θ̂) = 47.6

The quadratic approximation is poor in this case. By increasing the sample
size to n = 100, but still with θ̂ = 0.3 the approximation is much better.
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Distribution of the ML estimator

Example: Quadratic approximation of the log-likelihood18 The likelihood principle
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(b) n = 100, y = 30

Figure 2.3: Quadratic approximation of the log-likelihood function.

Example 2.7 (Quadratic approximation of the log-likelihood)
Consider again the situation from Example 2.1 where the log-likelihood
function is

l(θ) = y log θ + (n− y) log(1− θ) + const

The score function is
l′(θ) =

y

θ
− n− y

1− θ
,

and the observed information

j(θ) =
y

θ2
+

n− y

(1− θ)2
.

For n = 10, y = 3 and θ̂ = 0.3 we obtain

j(θ̂) = 47.6

The log-likelihood function and the corresponding quadratic approximation
are shown in Figure 2.3a. The approximation is poor as can be seen in the
figure. By increasing the sample size to n = 100, but still with θ̂ = 0.3, the
approximation is much better as seen in Figure 2.3b.

At the point θ̂ = y
n we have

j(θ̂) =
n

θ̂(1− θ̂)

and we find the variance of the estimate

Var
[
θ̂
]
= j−1(θ̂) =

θ̂(1− θ̂)

n
.

Figure: Quadratic approximation of the log-likelihood function.
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Some R hints

Function for calculating the likelihood function as a function of the mean value parameter for
Gaussian data (in x) with known standard deviation:

> L.gaussian.data <- function(theta) {

+ prod(dnorm(x,mean=theta,sd=standard.dev))

+ }

To plot the likelihood function you may use something like

th <- seq(mean(x) - 3*standard.dev, mean(x) + 3*standard.dev, length =200)

L <- sapply(th, L.gaussian.data)

plot(th,L/max(L), ylab="L", xlab=expression(theta))

To calculate the log likelihood function and estimate the parameter(s) you may use something
like

nll.gaussian.data <- function(theta) {

-sum(dnorm(x, mean=theta, sd=standard.dev, log=TRUE))

}

fit <- optim(x, nll.gaussian.data, hessian = TRUE)

fit[c("convergence","par","hessian")]
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