Surrogate Models
Hans Bruun Nielsen
IMM, Numerical Analysis Section

- Alternatives to physically based mathematical models and local Taylor expansions
- Metamodels, Surface Response, Neural Networks, ...
- Space Mapping
- Radial Basis Functions (RBF)
- Kriging, “Design and Analysis of Computer Experiments” (DACE)

Approximation tools. Interested in applications in

- Data representation (fitting)
- Optimization

Data Fitting

Given \(\{(x_i, y_i)\}_{i=1}^{m} \), \(y_i = Y(x_i) + e_i \)

Seek (an approximation to) \(Y(x) \)

May have a mathematical model

\(Y(x) \approx M(p,x) \)

Parameters \(p \) eg determined by minimizing

\(g(p) = \sum w_i^2 (y_i - M(p,x_i))^2 \)

In lack of a proper model we may use a polynomial as “surrogate model”.

Poor approximation.
Polynomials have too “long memory”.
The Taylor expansion

\[
P_n(x+h) = P_n(x) + \sum_{k=1}^{n} \frac{1}{k!} h^k P^{(k)}(x)
\]

is exact for any \(h \)

Cubic Splines

Information that should be carried by 3rd and higher derivatives is lost.
Local nature. Put knots where they are needed.

M.J.D. Powell: *Curve fitting by splines in one variable*

Knots \(\kappa_0, \kappa_1, \ldots, \kappa_n \)

\[
s(x) = \sum_{j=1}^{n+1} c_j B_j(x)
\]

Basis spline \(B_j \) is nonzero only in four consecutive knot intervals. Local support.
\(c_j \) has influence only in \([\kappa_{j-1}, \kappa_j]\)
Example. Apnea. Measurements of pressure in throat as function of distance (22 values in \([0, 10]\) cm) and time (every 0.1 second).

$$x \in \mathbb{R}^d.$$ Polynomials and splines generalize.

Curse of dimensionality

Interpolation or fitting,

$$Bc \simeq f$$

Serious risk of rank deficient \(B\).

Bicubic splines \((x = (u, v) \in \mathbb{R}^2)\).

$$s(x) = \sum_{i,j} c_{ij} B_i(\xi) B_j(\eta)$$

\(\xi\) and \(\eta\) : knots in \(u\) and \(v\)-directions, resp.

Level curves of a function that we want to approximate show \(eg\) that we need close knots in both directions at \((0.6, 0.5)\).

Also close where it is not needed. The system,

$$Ac \simeq f$$

is either rank deficient or needs many “superfluous” data points.

Alternative approximating function.

Given data points \((x_i, y_i), \quad i = 1, 2, \ldots, m\)

with distinct \(x_i \in \mathbb{R}^d\) and \(y_i \in \mathbb{R}\)

Surrogate model

$$s(x) = c^T \phi(x) + \beta^T \psi(x) = \sum_{i=1}^m c_i \phi_i(x) + \sum_{j=1}^n \beta_j \psi_j(x)$$

where the \(\phi_i\) are basis functions \(eg\) for a low order polynomial that models a “global trend”, and

$$\phi_i(x) = \phi(\|x - x_i\|_2)$$

\(\psi_j\) a Gaussian

$$\psi(r) = e^{-\theta r^2}$$

The figures show \(x \in [-1, 1]^2\)
Surrogate models based on Kriging and Radial Basis Functions (RBF) both have the form
\[s(x) = c^T \phi(x) + \beta^T \psi(x). \]

Different derivation, but (under certain conditions on \(\phi \)) same model.

We consider interpolation, i.e. \(s(x_i) = y_i, \ i = 1, \ldots, m. \)

Let \(\Phi \in \mathbb{R}^{m \times n}, \ \Psi \in \mathbb{R}^{m \times n} \) be the matrices defined by
\[\Phi_{ij} = \phi(||x_i - x_j||_2), \quad \Psi_{ij} = \psi(x_i)\]
The interpolation condition can be expressed as
\[\Phi \psi = y. \]

In the case of RBF this is combined with the condition that \(\psi \) should be orthogonal to the range of \(\Psi \),
and we get the linear system of equations
\[
\begin{pmatrix}
\Phi^T & \Psi^T \\
0 & 0
\end{pmatrix}
\begin{pmatrix}
\phi \\
\beta
\end{pmatrix}
= \begin{pmatrix}
y \\
0
\end{pmatrix}
\Leftrightarrow
\begin{pmatrix}
\Phi & \Psi \\
0 & -\Psi \Phi^{-1} \Psi
\end{pmatrix}
\begin{pmatrix}
\phi \\
\beta
\end{pmatrix}
= \begin{pmatrix}
y \\
-\Psi \Phi^{-1} y
\end{pmatrix}.
\]

Solution: \(\beta = (\Psi^T \Phi^{-1} \Psi)^{-1} \) \(\Phi^T \Phi^{-1} y, \quad c = \Phi^{-1} (y - \Psi \beta). \)

Example. Rosenbrock’s function. \(n = 1, \ \psi(x) = 1 \)

Start with 9 points. Best \(\theta = [0.1, 100]. \) \(\text{RMS} = \sqrt{\Omega} \)

Successively insert new data points where \(\Omega(x) = \text{minimal}. \)
RBF. Gaussian. Choose θ

RBF. Inverse multiquadric: $\phi_j(x) = (\theta \| x - x_j \|^2 + 1)^{-1/2}$
Plans for future work

- Better error estimation for Kriging
- Extend DACE to cope with errors in data
- Strategy for use in optimization
- Choice of θ in RBF
- Extend DACE to cope with other RBFs
- ...

With Kristine Fissenfeldt Thuesen