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Finn Årup Nielsen1,2, Lars Kai Hansen2

1Neurobiology Research Unit, Rigshospitalet, Copenhagen, Denmark.
2Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark

Abstract

Statements like ”this study demonstrates highly
consistent findings” or ”our results reveal a strik-
ing degree of overlap” appear commonly in the
literature. Such statements are typically based
on informal comparison between activation maps.
Computerized methods for comparing activation
maps in the form of images exist, e.g., see [1].
Here we propose methods for comparing activa-
tion maps when they exist in the form of sets of
stereotaxic coordinates. We extented the method
developed in connection with information retrieval
where a metric was provided for assessing the sim-
ilarity between the coordinate sets [2]. Our aim is
to develop quantitative supports for phrases like
”striking degree of overlap” and ”highly consis-
tent”, i.e., a statistical test for replication, repro-
ducibility or consistency.

Data: Brede database

Data from the Brede database [3] is used. As the
BrainMap database [4] this database is organized
in a hierarchical fashion with “papers” on the top
level containing one or more “experiments” and
with each “experiment” containing one or more
“location”. The location are associated with Ta-
lairach coordinates [5].

The Brede database presently contains 391 exper-
iments from 126 different papers.

Method 1: Volume correlation

We describe two methods. The first method uses
a database of ”experiments” (sets of Talairach co-
ordinates) to generate a null-distribution for a sim-
ilarity measure: A distribution is computed for the
similarity between all pairs of experiments in the
database. When two new experiments are to be
assessed for reproducibility their similarity is com-
pared against the distribution of the database. A
P-value is generated based on the rank of the sim-
ilarity. We use a similarity based on voxelization
and the cross-correlation coefficient [2], where the
voxelization is performed by convolving each loca-
tion with a Gaussian kernel [6, 7, 8].

Isosurface in example voxelization with an experi-
ment from [9].

Method 2: Minimum distance

Our second method tests whether two coordinates
from two different experiments are statistically the
same, and the statistic is based on the minimum
distance between all pairs of coordinates (xn, xm)
in two experiments (the minimum of the mini-
mum)

d = min
n,m

[

√

(xn − xm)T(xn − xm)
]

. (1)

To form a P-value a new distance is compared
against the distribution found from all pairs of ex-
periments in the database.
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Figure with two experiments a yellow [10] and a
red [11] set of locations and with a thick black line
indicating the minimum distance.

Results: method 1
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Distribution of similarities between experiments

The above figure shows the sorted similarities from
all pairs in the database, excluding those pairs that
are from the same paper. The experiments within
the same paper is likely to be more correlated the
experiments between papers.

Experiments within the same cognitive domain
also likely to be more correlated, — but this is
presently ignored.

The voxelized experiments have all non-negative
elements making the distribution of the cross-
correlation coefficient very skewed around zero.



'

&

$

%

Results: method 1
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A threshold for P = 0.05 appears at a similarity
of 0.31.

Example

An example on gender differences in pain percep-
tion [12] with female as yellow and male as red.
Correlation coefficient c = 0.66 corresponding to
P = 0.001

Results: method 2
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A histogram of the minimum distance d is shown
in figure 2 and the associated d-value for a P -value
of 0.05 is d = 7mm.

The mean appear at dmean = 29mm and the mode
dmode ≈ 17mm
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Above is the cumulated distribution of the mini-
mum distances.

Example [12]: d = 5.9mm corresponding to P =
0.03.

Note that the value is a global value indicating
similarity on a set level.

Discussion

The distribution of the minimum distance tells us
that if we would like to say that two coordinates
from two different experiments are the same they
should be closer than approximately 7 millimeters,
and the similarity distribution indicates that the
presently used similarity should be larger than 0.31
before we can accept that an experiment is “repro-
duced”.

The statistics do not model the number of coor-
dinates in each experiment nor their distribution
in the brain. One would expect the minimum dis-
tance to be smaller if the experiments have many
coordinates.

Furthermore, the distribution of the similarity
measure changes depending on the type of vox-
elization and type of similarity measure. The most
immediate parameter to model is a strength value
such as the z-score or the percent signal change
giving more weight to locations with a high value.

Both methods use the same metric in the entire
brain.

If one has access to the original volume data it
might very well be better to perform the assess-
ment with these data instead of the associated sets
of coordinates.

Nevertheless, our method provides a first step for
a quantitative reproducibility measure for sets of
coordinates.

Availability

The tools for the analysis are available in the Brede
neuroinformatics toolbox [13] presently avail-
able from http://hendrix.imm.dtu.dk/software-
/brede/.

The Brede database is both available in the
Brede neuroinformatics toolbox and directly on
the Internet: http://hendrix.imm.dtu.dk/services-
/jerne/brede/.
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