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Abstract. In this chapter we describe some of the software packages
for learning distributed semantic representation in the form of word and
graph embeddings. We also describe several Python natural language
processing frameworks which can prepare a corpus for the embedding
software. We furthermore point to the Wikidata software as a tool for
collaborative construction of explicit semantic representation and to tools
to embed such data.

– Many natural language processing packages exist, including several written
in the Python programming language.

– The popular scikit-learn, Gensim and Keras Python packages provide means
for quickly building and training machine learning models on large corpora.

– Several word embedding software packages exist for efficiently building dis-
tributed representations of words.

– Many of the software packages have associated pre-trained models in multiple
languages trained on very large corpora and the models are distributed freely
for others to use.

– Software for collaboratively building large semantic networks and knowledge
graphs exist and these graphs can be converted to a distributed representa-
tion.

1 Introduction

Since the first description and publication of modern efficient word embedding
tools around 2013, they have seen wide-spread use in many areas of text mining
that need semantic information. The free software license, the easy setup and its
often very good performance on semantic tasks have no doubt been important
for their adoption.

Natural language processing (NLP) software may be necessary for corpus
preparation as dedicated semantic representation software does not handle dif-
ferent forms of textual input. For instance, Wikipedia derived text should usually
be stripped of the special wiki markup present in MediaWiki-based wikis. Word
embedding software may expect the input to be tokenized and white-space sep-
arated, so word tokenization and perhaps a sentence segmentation is necessary.

For morphological rich language, handling of the word variations may be im-
portant to avoid too sparse data when estimating a semantic model. Stemmers



and lemmatizers may be used to convert word variations to a basic form. Lan-
guages with many and rare compound nouns (e.g., German) can face an issue
with many out-of-vocabulary words, so decompounding can be advantageous.

Datasets and pre-trained models are important parts of natural language
processing, including semantic modeling. Python packages, NLTK and polyglot,
have built-in facilities for easy download of their associated data and pre-trained
models making the setup of a working system less of a hassle. These packages
also saves the data in predefined directories, making subsequent setup simpler.
The researchers using word embedding software have also distributed a number
of pre-trained model for others to use.

Many text mining packages exist. Below we will focus on a few Python natural
language processing packages: NLTK, spaCy, Pattern and polyglot for general
natural language processing packages. Then we will describe word embedding
software and some other software to create semantic representations.

2 Natural Language Processing Toolkit, NLTK

NLTK, short for Natural Language Processing Toolkit, is a Python pack-
age and perhaps one of the most popular Python NLP packages. It is docu-
mented in a detailed book [4] available in print as well as on the Internet at
http://www.nltk.org/book/ under a Creative Commons license. NLTK pack-
ages a large number of models for a range of NLP tasks and furthermore in-
cludes methods for downloading and loading several corpora and other language
resources.

Pre-trained sentence tokenizers exist for several languages, and different word
tokenizers are also implemented. For instance, the word_tokenize function uses
the default word tokenizer, which in NLTK version 3.2.5 is a modified version of
the regular expression-based TreebankWordTokenizer. An example application
of this default tokenizer for the sentence “I don’t think you’ll see anything here:
http://example.org :)” is:

from nltk.tokenize import word_tokenize

text = ("I don’t think you’ll see anything here: "

"http :// example.org :)")

token_list = word_tokenize(text)

This tokenization yields a list with the individual words identified, but
with the URL and the emoticon not well handled: [’I’, ’do’, "n’t",

’think’, ’you’, "’ll", ’see’, ’anything’, ’here’, ’:’, ’http’,

’:’, ’//example.org’, ’:’, ’)’]. Both the URL and the emoticon are split
into separate parts. The NLTK’s TweetTokenizer handles such tokens better.
An example application of this method reads

from nltk.tokenize import TweetTokenizer

tokenizer = TweetTokenizer ()

token_list = tokenizer.tokenize(text)



The result is [’I’, "don’t", ’think’, "you’ll", ’see’, ’anything’,

’here’, ’:’, ’http://example.org’, ’:)’], where the URL and the emoti-
con are detected as tokens.

NLTK has various methods to deal with morphological variations of words.
They are available from the nltk.stem submodule. For English and some other
languages, NLTK implements several stemmers. Variations of the Snowball stem-
mer by Martin Porter work for a range of languages, here an example in French

from nltk.stem.snowball import FrenchStemmer

from nltk.tokenize import word_tokenize

text = ("La cuisine fran çaise fait réfé rence à divers "

"styles gastronomiques dériv és de la "

"tradition fran çaise.")

stemmer = FrenchStemmer ()

[stemmer.stem(word) for word in word_tokenize(text)]

This yields [’la’, ’cuisin’, ’français’, ’fait’, ’référent’, ’à’,

’diver’, ’styl’, ’gastronom’, ’dériv’, ’de’, ’la’, ’tradit’,

’français’, ’.’]. For English, a WordNet-based lemmatizer is available.
Part-of-speech taggers are implemented in the nltk.tag submodule. The de-

fault tagger available with the function pos_tag in NLTK 3.2.5 uses the Greedy
Averaged Perceptron tagger by Matthew Honnibal [13]. Trained models for En-
glish and Russian are included.

Trained models are usually saved as Python’s pickle format. This for-
mat has the unfortunate problem of posing a security issue, as the pickle
files can contain executable code, that gets executed if the file is loaded.
It means that pickle data should only be downloaded from trusted sources.
Trusted models distributed by the NLTK developers can fairly easily be down-
loaded by functions provided by the toolkit. By default they will be saved un-
der the ~/nltk_data/ directory. For instance, the Danish tokenizer is saved
~/nltk_data/tokeniers/punkt/danish.pickle. The functions of NLTK that
require these models for setup will automatically read such files.

NLTK has also methods for handling semantic representations in the form
of word nets. Access to the Princeton WordNet (PWN) [21] is readily available
in a submodule imported, e.g., by:

from nltk.corpus import wordnet as wn

With this at hand, synsets and lemmas can be found based on the word represen-
tation. Semantic similarities can be analyzed with one of several similarity meth-
ods that transverse the word net taxonomy. Below are the similarities between
pairs of 4 nouns (dog, cat, chair and table) computed with the path_similarity
method which computes the similarity based on shortest path in the hyper-
nym/hyponym graph:

import numpy as np

words = ’dog cat chair table’.split()

similarities = np.zeros ((len(words), len(words )))



dog cat chair table

dog 1.00 0.20 0.08 0.07

cat 0.20 1.00 0.06 0.05

chair 0.08 0.06 1.00 0.07

table 0.07 0.05 0.07 1.00

Table 1. NLTK WordNet similarities

for n, word1 in enumerate(words):

for m, word2 in enumerate(words):

synset1 = wn.synsets(word1 , pos=’n’)[0]

synset2 = wn.synsets(word2 , pos=’n’)[0]

similarities[n, m] = synset1.path_similarity(synset2)

The result is displayed in Table 1, where the words cat and dog are found to have
the highest similarity, while cat and table the lowest. For chair, the word dog
has a higher similarity than table which in usual contexts would not be right.
Each word may have multiple synsets, e.g., dog has 7 synsets. In the code above,
the most common synset is selected.

3 spaCy

spaCy (https://spacy.io/) is a relatively new Python package with an initial
release in 2015. It offers a range of NLP methods, such as tokenization, POS-
tagging, sentence segmentation, dependency parsing, named entity recognition
and semantic similarity computation. A 2015 paper showed that its dependency
parser was the fastest among 13 systems evaluated [7].

spaCy has a number of pre-trained models for several languages. A command-
line method downloads and installs the model packages. The packages with mod-
els for a specific language ship in various sizes, and for working with distribu-
tional semantics, the largest package should be downloaded for best result. For
instance, one of the large English packages is downloaded with the command:1

python -m spacy download en_core_web_lg

This package provides models for the tagger, parser, named-entity recognizer
and distributional semantic vectors trained on OntoNotes Release 5 and the
Common Crawl dataset. An even larger package (en_vectors_web_lg) contains
300-dimensional distributional semantic vectors for 1.1 million tokens trained on
the Common Crawl dataset with GloVe [26]. Once installed, the models can be
used from within Python:

import spacy

nlp = spacy.load(’en_core_web_lg ’)

doc = nlp(u’A lion is a large cat. It lives in Africa ’)

1 A list of the various models is available at https://spacy.io/models/.



The resulting object, here named doc, has a number of attributes which analyze
the text with lazy evaluation. For instance, doc.sents returns a generator that
yields the sentences of the text as so-called Span objects, while doc.ents returns
named entities, here ‘Africa’, and doc.noun_chunks returns the Span objects
representing ‘A lion’, ‘a large cat’, ‘It’ and ‘Africa’. The object itself iterates over
tokens. An embedding of the text is available as doc.vector. This is created as
the average of the word embedding. It can also be computed by iterating over
the tokens and computing the average over the word embedding of each token.
The example below compares the overall embedding with the computed average
of the individual word embeddings of each token:

token_vectors = [token.vector for token in doc]

average_vector = sum(token_vectors) / len(token_vectors)

sum(doc.vector - average_vector) == 0

The last line yields true. The dimension of the subspace is 300 in this case, while
token_vectors is a list of 11 300-dimensional vectors (the punctuation is also
embedded).

As of 2018, spaCy distributes pre-trained models for full support of English
as well as a few European language, see https://spacy.io/models/. French and
Spanish models also support embeddings, while German, Portuguese, Italian
and Dutch have less support. A multilingual model can be used for name entity
detection.

4 Pattern

Open source Pattern Python package provides methods for processing text data
from the web [27]. Exposed in the pattern.web submodule, it has download
methods for a range of web services including popular web search engines,2

Twitter, individual Wikipedia articles and news feeds. It also features a web
crawler and an object to retrieve e-mail messages via IMAP.

Pattern has natural language processing methods for a few European lan-
guage, English, German, French, Italian and Dutch, with varying degree of im-
plementation. For English there are, e.g., a part-of-speech tagger, lemmatizer,
singularization/pluralization, conjugation and sentiment analysis. It also con-
tains a small set of word lists (academic, profanity, time and a basic list with
1000 words) as well as an interface to WordNet.

The pattern.vector submodule exposes various methods based around the
vector space model representation, word count, tf-idf, latent semantic analysis.
This module also features K-means and hierarchical document clustering algo-
rithms and supervised classification algorithms.

5 Polyglot

Polyglot is a multilingual NLP Python package [2]. It can be applied both as
a Python module and as a command-line script. As shown in the documenta-

2 Some of the web search engines are paid services, requiring a license key.



tion at https://polyglot.readthedocs.io, it has language detection, tokenization,
part-of-speech tagging, word embedding, named entity extraction, morpholog-
ical analysis, transliteration and sentiment analysis for many languages. Some
of the methods require the download of files from the web. The command-line
polyglot program will automatically download the files and in a manner similar
to NLTK store them locally in directory such as ~/polyglot_data. For instance,
the command

polyglot download embeddings2.de

will download the German word embeddings file. Word embeddings are gener-
ated from the different language versions of Wikipedia and trained on a Theano-
implementation of a curriculum learning-inspired method [2]. Apart from work-
ing with its own word embedding format, the polyglot word embeddings are
also able to load pre-trained Gensim, Word2vec and GloVe models.3 A series of
commands that find the four nearest words to the German word ‘Buch’ (book)
may read

from os.path import expanduser

from polyglot.mapping import Embedding

directory = expanduser(’~/ polyglot_data/embeddings2/de/’)

filename = directory + ’embeddings_pkl.tar.bz2’

embedding = Embedding.load(filename)

words = embedding.nearest_neighbors(’Buch’, 4)

These commands yield [’Werk’, ’Schreiben’, ’Foto’, ’Archiv’]. The em-
bedding vector is available as embedding[’Buch’]. The German word embed-
ding has a vocabulary of 100004 tokens and the dimension of the embedding
space is 64. Note that the polyglot embeddings distinguish between upper and
lower case letter. Out-of-vocabulary case-variations of words can be handled with
polyglot’s ‘case expansion’.

6 MediaWiki processing software

Widely used as a free, large and multilingual text corpus [18], Wikipedia poses
a special challenge to parse. The entire text is distributed as large compressed
XML dump files where the text is embedded with the special MediaWiki markup
for rendering of, e.g., tables, citations, infoboxes and images. There exist a few
tools to convert the raw MediaWiki markup to a form suitable for standard NLP
tools. The Python package mwparserfromhell parse the MediaWiki markup and
can filter the individual parsed components to text in various ways. The Python
code below downloads the ‘Denmark’ article from the English Wikipedia and
strips any formatting.

import requests , mwparserfromhell

3 See, e.g., https://polyglot.readthedocs.io/en/latest/Embeddings.html.



url = ’https ://en.wikipedia.org/w/index.php’

response = requests.get(url ,

params ={’title ’: ’Denmark ’, ’action ’: ’raw’})

wikicode = mwparserfromhell.parse(response.content)

text = wikicode.strip_code ()

The Gensim package (see below) has its own dedicated wiki extractor: the
make_wiki script.

7 Scikit-learn

Scikit-learn, also called sklearn, is a popular Python package for machine learn-
ing [25]. Its popularity may stem from implementation of a wide variety of ma-
chine learning algorithms and a consistent application programming interface
(API). Though not specifically targeted at text processing, Scikit-learn does
have a number of ways to handle text and convert it to a numerical matrix
representation. The sklearn.feature_extraction.text submodule defines the
CountVectorizer which tokenizes a list of texts into words or characters and
counts the occurrences of the tokens, returning a bag-of-words or bag-of-n-
grams representation. TfidfTransformer does the popular tf-idf normalization
of a count matrix, while TfidfVectorizer combines the CountVectorizer and
TfidfTransformer into one model. The HashingVectorizer applies hashing to
the words and has a default size of 1048576 features. This particular hashing will
make hash collisions, e.g., between “wearisome” and “drummers” and between
“funk”, “wag” and “deserters”.

Several of scikit-learn’s unsupervized learning models can be used to
project high-dimensional representations to a two- or three-dimensional rep-
resentation useful for a visualization. Relevant models are the ones in the
sklearn.decomposition submodule, such as the principal component analy-
sis (PCA) as well as the models in the sklearn.manifold submodule where we
find the t-distributed Stochastic Neighbor Embedding (TSNE).

Yet other models in scikit-learn may be used for topic modeling. Apart from
principal component analysis, scikit-learn implements non-negative matrix fac-
torization with sklearn.decomposition.NMF, while latent Dirichlet allocation
is implemented with sklearn.decomposition.LatentDirichletAllocation.

Andrej Karpathy’s Arxiv Sanity web service with the code available
from https://github.com/karpathy/arxiv-sanity-preserver provides an interest-
ing working example of the use of scikit-learn’s TfidfVectorizer. Karpathy
downloads bibliographic information and PDFs from the arXiv preprint server
at https://arxiv.org/, extracts the text from the PDF with the pdftotext

command-line script, builds a word-bigram tfidf-weighted model with scikit-learn
and computes document similarities based on inner products. The web service at
http://www.arxiv-sanity.com can then use such similarities for ranking similar
scientific papers given a specific paper.



Model Corpus Tokens Vocabulary Dim. Comment

Word2vec4 Wikipedia 10K–50K 300 29 languages

GloVe5 Common Crawl 840G 2.2M 300 Cased, English

GloVe Common Crawl 42G 1.9M 300 Uncased, English

GloVe Wikipedia+Gigaword 6G 400K 300 Uncased, English. Mod-
els with dimension 50,
100 and 200 are also
available

GloVe Twitter 27G 1.2M 200 25, 50 and 100 dimen-
sional models are also
available.

fastText6 Wikipedia up to 2.5M 300 294 different language
versions are available

fastText7 Common Crawl
+ Wikipedia

300 157 different language
versions

Table 2. Selection of important pre-trained word embedding models.

8 Word embedding

Word embeddings represent words in a continuous dense low-dimensional space.
Although a number of systems exists for training, Word2vec, GloVe and fastText
are probably the most popular. Below we describe these software packages

8.1 Word2vec

The original word2vec [19] word embedding software is available from
https://code.google.com/archive/p/word2vec. The Apache license software is
written in C and compiles to a multi-threaded command-line program. A
small demonstration program uses the automatically downloaded 100 MB
Wikipedia-derived text8 corpus to train a model in a few minutes time on a
modern computer. Pre-trained word2vec models based on multiple languages
of Wikipedia and Gensim, has been made available by Kyubyong Park at
https://github.com/Kyubyong/wordvectors, see also Table 2.

The word2vec program has several parameters for the estimation of the
model. Apart from parameters for reading the corpus and writing the trained
model, some of the parameters are: size, which determines the dimension of the
low-dimensional space. The default is 100 and researchers tend to set it to 300
for large corpora. window controls the size of the context. cbow switches between

4 https://github.com/Kyubyong/wordvectors
5 https://nlp.stanford.edu/projects/glove/
6 https://fasttext.cc/docs/en/pretrained-vectors.html
7 https://fasttext.cc/docs/en/crawl-vectors.html



the skip-gram and the continuous bag of words model. min-count discards words
occuring less often. Setting this parameter to a high value will results in a smaller
vocabulary.

8.2 GloVe

Another widely used system is GloVe [26] with the reference implementation
available from https://nlp.stanford.edu/projects/glove/. Like word2vec, GloVe
is distributed under the Apache license and written in C with a demonstration
program using the text8 corpus. Several large pre-trained word embeddings are
available from the homepage. In [26], the researchers reported performance for
the so-called 6B (trained on Wikipedia and Gigaword corpora with 6 gigatokens)
and 42B (trained on Common Crawl with 42 gigatokens). On word similarity
and word analogy the model trained on the largest corpus (42B) proved the best,
also in comparison with the word2vec variations and other examined approaches.

8.3 FastText

FastText is an open embedding library and program from Facebook AI Research.
It is available from GitHub at https://github.com/facebookresearch/fastText
under a BSD license and documented at https://fasttext.cc/ and in several sci-
entific papers [5, 16, 20, 11]. The program is implemented in C++ with interface
in Python. FastText requires a whitespace-separated tokenized corpus as input.
Word phrases should be preprocessed. The ability to handle both words and
character n-grams sets fastText apart.

The fastText research group distributes open pre-trained
models. The so-called “Wiki word vectors” available from
https://fasttext.cc/docs/en/pretrained-vectors.html are trained on 294 different
language versions of Wikipedia using an embedding dimension of 300 and
the skip-gram model. Another line of pre-trained models were initially only
available in English but trained on very large datasets [20]. These models have
produced strong results on benchmark datasets, including word and phrase
analogy datasets, rare word similarity and a question answering system, so may
likely be the current state-of-the-art. In 2018, the researchers used language
detection on the very large dataset which enabled them to train separate models
on 157 different languages. This improved the performance of fastText on a
word analogy benchmark dataset, — for some language the improvement was
considerable [11].

Apart from the unsupervised learning of a word embedding, fastText can
also work in a supervised setting with a labeled corpus. For supervised training
each line in the input should be prefixed with a string indicating the category.

8.4 Other word embedding software

The Multivec package implements bilingual word embeddings that
should be trained on a parallel corpus [6]. It is available from



https://github.com/eske/multivec, and implements training as well as functions
to compute similarity and find the semantically closest words across languages.
The documentation shows a training with a 182,761 sentence large French–
English parallel corpus and with this pre-trained model, an associated Python
package can compute similarity values, e.g., between the French and English
word for dog :

from multivec import BilingualModel

model = BilingualModel(’news -commentary.fr -en.bin’)

model.similarity(’chien’, ’dog’) # 0.7847443222999573

model.similarity(’dog’, ’chien’) # 0.0

model.similarity(’chien’, ’chien’) # 0.0

model.similarity(’dog’, ’dog’) # 0.0

Here the resulting similarities are shown after the method call. Only when the
source embedding is French and the target English, does the model report a
non-zero similarity. In the other cases, the words are out-of-vocabulary in one or
two of the languages and the returned similarity value from the method is zero.

9 Other embedding software

Other forms of embedding software go beyond embedding of words. Of particular
interest is graph embedding software that takes a graph (rather than a corpus)
and embeds the nodes or both nodes and typed links between the nodes in the
continuous embedding space. The tools may generate a ‘sentence’ of nodes (and
possible links) by a random walk on the graph and submit the ‘sentence’ to con-
ventional (word) embedding software. The node2vec package8 embeds nodes via
such random graph walks. The simple reference implementation uses the Python
NetworkX package and Gemsim’s implementation of Word2vec. In the accompa-
nying paper [12], the node2vec embedding was trained on a Wikipedia-derived
word co-occurrence corpus. RDF2vec9 is a similar tool and also uses Gensim’s
Word2vec implementation, but works for relational graphs. Wembedder uses a
simple RDF2vec-inspired approach to embed a relational graph in the form of
the Wikidata knowledge graph. Wembedder embeds both Wikidata items (the
nodes in the knowledge graph) as well as the Wikidata properties (the links) and
makes similarity computations based on the trained model available as a web
service with an associated API [24].

10 Gensim

Gensim is an open source Python package for topic modeling and related
text mining methods going back to at least 2010 [29]. Distributed from

8 https://snap.stanford.edu/node2vec/
9 http://data.dws.informatik.uni-mannheim.de/rdf2vec/



https://radimrehurek.com/gensim/, the package has various methods to han-
dle large corpora by streamed reading and to convert a corpus to a vector space
representation.

Gensim implements several popular topic modeling methods: tf-idf
(TfidfModel), latent semantic analysis (LsiModel), random projections
(RpModel), latent Dirichlet allocation (LdaModel) and hierarchical Dirichlet pro-
cess (HdpModel). It provides access to computed vectors so similarity computa-
tions can be made between the documents or between the documents and a
query.

Gensim reimplements the word2vec models including training of the model
from a text stream, returning the vector representation of a word and computing
similarity between words. Several other word embedding algorithms are also
implemented: doc2vec, fastText and Poincaré embedding.

Furthermore, Gensim wraps a few programs so they are accessible from
within the Python session, although the programs need to be installed sepa-
rately to work. They include WordRank [14] and VarEmbed [3] as well as Dy-
namic Topic Models and LDA models implemented in Mallet and Vowpal Wab-
bit. FastText was also wrapped but with the direct implementation in Gensim
3.2, the wrapper is now deprecated.

Gensim has a simple class to read the POS-tagged Brown Corpus from an
NLTK installation, which can be used as an example. Provided that this small
dataset is downloaded via NLTK, training a Gensim word2vec model may be
done as follows

from os.path import expanduser , join

from gensim.models.word2vec import BrownCorpus , Word2Vec

dirname = expanduser(join(’~’, ’nltk_data ’, ’corpora ’,

’brown ’))

model = Word2Vec(BrownCorpus(dirname ))

Here the POS-tags are included as part of the word. The training with
this small corpus takes no more than a few seconds. A similarity search
on the noun “house” (postfix with the POS-tag “nn” for nouns) with
model.similar_by_word(’house/nn’) may yield the nouns “back”, “room”
and “door” as the most similar words.

11 Deep learning

Several free software packages for deep learning are available: Google’s Ten-
sorFlow [1], Microsoft’s CNTK,10 Theano, PyTorch, Keras, MXNet, Caffe [15]
and Caffe2. Model architectures and trained models may differ between the
frameworks, but there are efforts towards a standardized format for inter-
change. One such effort is Open Neural Network Exchange (ONNX) described
at https://github.com/onnx.

10 https://docs.microsoft.com/en-us/cognitive-toolkit/



AllenNLP is a open source framework for natural language understanding
using deep learning from the Allen Institute for Artificial Intelligence [10]. Avail-
able from http://allennlp.org/, it is built on top of PyTorch and spaCy and runs
with Python 3.

11.1 Keras

Keras11 is a high-level deep learning library. It runs on top of either TensorFlow,
CNTK, or Theano. It is among the most popular deep learning frameworks.

Keras enables the deep learning programmer to easily build deep neural net-
works by chaining layers of simple classes representing, e.g., layers of weights
(such as Dense or Conv1D) or activation functions (such as ReLU or softmax).
It has a range of layers for recurrent neural networks, such as the popular long
short-term memory (LSTM) unit. Of special interest for text mining are the text
preprocessing functions and an embedding layer.

Under the keras.application submodule, Keras has a number of pre-
trained deep learning models. Currently, they are all trained for image clas-
sification with the ImageNet dataset, so not of direct relevance in a text mining
context, except in cases with combined image and text analysis, such as image
captioning. It is possible to load pre-trained embedding models, such as GloVe
models, as a Keras embedding layer with the keras.layers.Embedding class.
The set up of pre-trained embedding models requires a verbose setup,12 but the
third-party KerasGlove package makes the set up simpler.

In the keras.datasets submodule, a couple of text corpora are readily avail-
able — mostly for benchmarking and not particular relevant for establishing
general semantic models: The Large Movie Review Data ([17], by Keras referred
to as IMDB Movie reviews) with 25,000 movie reviews in the training set labeled
by sentiment and the Reuters newswires dataset with 11,228 newswires labeled
over 46 topics. Keras loading functions format the data as a sequence of indices,
where the indices point to words. The indices are offset by 3 to make room for in-
dices representing special ‘words’: start, out-of-vocabulary and padding. Loading
the Large Movie Review Data into a training and a test set as well as translating
the indexed based data back to text can be performed with the following code:

from keras.datasets.imdb import get_word_index , load_data

# Read the text corpus as indices

(x_train , y_train), (x_test , y_test) = load_data(

num_words =5000)

# Read the index to word mapping

index_to_word = {v: k for k, v in get_word_index (). items ()}

11 https://keras.io/
12 See the blog post “Using pre-trained word embeddings in a Keras model” at

https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html.



# Add special translation indices for padding , start

# and out -of-vocabulary indicators

index_to_word.update ({-3: ’PAD’, -2: ’START’, -1: ’OOV’})

# Translate indices to words and concatenate

review = " ".join([ index_to_word[index - 3]

for index in x_train [1]])

The beginning of the second review in the dataset (the review variable) will
read “START big hair big OOV bad music and a giant safety OOV these are
the words . . . ” Here the case, punctuation and markup have been removed from
the original text: The original file13 reads “Big hair, big boobs, bad music and
a giant safety pin.......these are the words . . . ”

The DeepMoji pre-trained Keras model has been trained to predict emojis
based on a very large English Twitter dataset [9].14 The model predicts across 64
common emojis. deepmoji_feature_encoding loads the neural network exclud-
ing the last softmax layer so a prediction generates a 2304-dimensional feature
space. The layers of the model can be used in other systems for semantic task. A
recent system for emotion classification used the softmax layer and the attention
layer together with domain adaptation as the winning entry in a competition for
prediction of affect in messages from Twitter [8].

The Keras.js is a JavaScript library that support running Keras models in
the web browser. This browser version may use the GPU through WebGL thus
running at reasonable speeds.

12 Explicit creation of semantic representation

Software for construction of ontologies, e.g., for explicit semantic representa-
tions exists with, e.g., Protegé [22].15 A recent development is Wikibase and its
prime instance Wikidata [28], which is a collaborative environment for multilin-
gual structured data, implemented around the Wikipedia software (MediaWiki).
Users are able to describe concepts and, through properties, describe relations
between the concepts. A new feature enables users to describe lexemes and their
orthographic forms. Users can make properties of different type. In Wikidata,
some of the properties are ‘instance of’, ‘subclass of’ and ‘part of’, so users of
Wikidata can create multilingual concept hierarchies. A database engine is setup
where users can query the knowledge graph with complex queries in the SPARQL
query language, e.g., generating semantic networks on-the-fly. The SPARQL list-
ing below generates the semantic hypernym network from the concept chair, see
also Fig. 1.

#defaultView:Graph

13 The original text can be found as a text file in Large Movie Review Dataset dis-
tributed from http://ai.stanford.edu/ amaas/data/sentiment/.

14 https://github.com/bfelbo/DeepMoji
15 https://protege.stanford.edu/.



Fig. 1. Wikidata semantic hypernym network from the concept ‘chair’.

SELECT ?child ?childLabel ?parent ?parentLabel

WHERE {

SERVICE gas:service {

gas:program gas:gasClass

"com.bigdata.rdf.graph.analytics.BFS" ;

gas:in wd:Q15026 ;

gas:traversalDirection "Forward" ;

gas:out ?parent ;

gas:out2 ?child ;

gas:linkType wdt:P279 ;

}

SERVICE wikibase:label {

bd:serviceParam wikibase:language "en" . }

}

If the semantic graph representation is not used directly, then graph embed-
ding can embed Wikidata items and properties in a low dimensional space via,
e.g., node2vec, RDF2vec or Poincaré embedding [23]. Fig. 2 shows the result of a
Poincaré embedding of the furniture hyponym network from Wikidata where the
embedding space have been selected to have just two dimensions. The Python
code below constructs this plot, first formulating a SPARQL query for the fur-



Fig. 2. Wikidata semantic network for furniture and its subclasses with concept posi-
tion (the blue dots) determined by Gensim’s Poincaré embedding where the dimension
of the embedding space is two. For this particular trained model, the concept armchair
appears at the coordinate (0.04,−0.43) while the root concept furniture is close to the
middle of the plot.

niture hyponym network, then downloading the data from the Wikidata Query
Service and converting the results, lastly training and plotting with Gensim via
its PoincareModel.

from gensim.models.poincare import PoincareModel

from gensim.viz.poincare import poincare_2d_visualization

from plotly.offline import plot

import requests

# Furniture graph query

sparql = """



SELECT

?furniture1 ?furniture1Label

?furniture2 ?furniture2Label

WHERE {

?furniture1 wdt:P279+ wd:Q14745 .

{

?furniture2 wdt:P279+ wd:Q14745 .

?furniture1 wdt:P279 ?furniture2 .

}

UNION

{

BIND(wd:Q14745 AS ?furniture2)

?furniture1 wdt:P279 ?furniture2 .

}

?furniture1 rdfs:label ?furniture1Label .

?furniture2 rdfs:label ?furniture2Label .

FILTER (lang(?furniture1Label) = ’en’)

FILTER (lang(?furniture2Label) = ’en’)

}"""

# Fetch data from Wikidata Query Service and convert

response = requests.get(

"https://query.wikidata.org/sparql",

params={’query’: sparql, ’format’: ’json’})

data = response.json()[’results’][’bindings’]

relations = [

(row[’furniture1Label’][’value’],

row[’furniture2Label’][’value’])

for row in data]

# Set up and train Poincare embedding model

model = PoincareModel(relations, size=2, negative=5)

model.train(epochs=100)

# Plot

plot_data = poincare_2d_visualization(model, relations, ’Furniture’)

plot(plot_data)

We can further query the trained Gensim model for similarity, e.g.,
model.kv.most_similar(’armchair’) yields similar furniture for the armchair
concept. With a particular trained model the most similar concepts are recliner,
Morris chair and fauteuil, but also gynecological chair and gas-discharge lamp.
The latter concept is in the hyponym network of furniture because lamp is re-
garded as a furniture.

The selection of the Poincaré embedding space to have just two dimensions is
entire due to visualization. In the original work [23], the WordNet noun network



was modeled with embedding spaces from 5 to 100. Also note that the resulting
embedding is depended upon the initialization and that the resulting configu-
ration in Fig. 2 is not optimal (as some concept groups can be moved closer to
higher concepts).
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