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Abstract. We present a simple concept for a 3D-visualization of sys-
tems that are modelled as a Petri net. To this end, the Petri net is
equipped with some information on the physical objects corresponding
to the tokens on the places.

1 Introduction

Petri nets are a well-accepted formalism for modelling concurrent and distributed
systems in various application areas: Workflow management, embedded systems,
production systems, and traffic control are but a few examples. The main ad-
vantages of Petri nets are their graphical notation, their simple semantics, and
the rich theory for analyzing their behaviour.

In spite of their graphical nature, getting an understanding of a complex
system just from studying the Petri net model itself is quite hard – if not im-
possible. In particular, this applies to experts from some application area who,
typically, are not experts in Petri nets. ‘Playing the token-game’ is not enough
for understanding the behaviour of a complex system. Using suggestive icons for
transitions and places in order to indicate the corresponding action or document
in the application area is but a poor solution.

Therefore, there have been different approaches that try to visualize the be-
haviour of a Petri net in a way understandable for experts in the application
area. At best, there will be an animation of the model using icons and graphical
features from the corresponding application area. ExSpect [9], for example, uses
the concept of dashboards in order to visualize the dynamic behaviour of a sys-
tem in a way that is familiar to the experts in the application area (e. g. by using
flow meters, flashing lights, etc. as used in typical control panels). It is even pos-
sible to interact with the simulation via this dashboard. Another example is the
Mimic library of Design/CPN [4, 8], which allows a Design/CPN simulation to
manipulate graphical objects, and the user can interact with the simulation via
these graphical elements. This way, one can get a good impression of the ‘look
and feel’ of the final product. A good example is the model of a mobile phone [6].
Another approach for visualizing Petri nets is based on graph transformations
and their animation: GenGED [1, 2]

In the PNVis project, we take the next step: The graphical objects manip-
ulated by the simulation are no longer considered to be artifacts for visualizing



information; rather we consider them as a part of the system. Actually, they
are considered as the physical part of the system. Though simple, this step has
several benefits: First, it makes the interaction between the control system and
the physical world explicit. Second, the physical part can be used for a realistic
3D-visualization of the dynamic behaviour by using the shape and the dynamic
properties of the physical components. Third, the properties of the physical ob-
jects can now be used for analysis and verification purposes. For example, we
can exploit the fact that two physical components cannot be at the same place
at a time.

In this paper, we discuss some first ideas on how to enrich a Petri net model
with information on physical objects, and we present a tool which uses this in-
formation for a 3D-visualization of the physical objects. Here, the focus is on
those aspects of the physical objects that are necessary for visualization: basi-
cally the shape of the objects. Currently, the tool is restricted to low-level Petri
nets, P/T-Systems to be precise. The PNVis project, however, has a much wider
scope. For example, we would like to use some physical properties of the ob-
jects such as their weight for analysis purposes. Moreover, PNVis will support
high-level Petri nets as a more powerful modelling mechanism. And PNVis will
provide concepts for constructing a system from components in a structured way.

PEP [7] was one of the first Petri Net tools that came up with a 3D-
visualization of Petri net models: SimPep [5]. Basically, SimPep triggers ani-
mations in a VRML model while simulating the underlying Petri net. But, this
simulation imposes a sever restriction on the animations: There is only one an-
imation at a time; concurrent animations of independently moving objects are
impossible. In this paper, we will present concepts that allow us to have concur-
rent animations of independent objects.

Of course, there are many toolkits and frameworks for building 3D-visuali-
zations of systems, which cannot be discussed in this paper. Most of them are
much more powerful than PNVis and have much more features. PNVis is not
intended to compete with such toolkits. The focus of PNVis is on the Petri net
model, which can be easily equipped with some more information in order to
get a simple 3D-visualization. What is more, no programming or knowledge of
3D-visualization techniques are needed for adding this information.

2 Concepts

In order to animate the behaviour of a Petri net in a 3D-visualization, the Petri
net must be equipped with some information on the physical objects. Moreover,
the behaviour of the physical objects must be related to the dynamic behaviour
of the Petri net. In the follwoing, we will discuss how to add this information to
a Petri net.

Geometry, shapes and animation functions. In a first step, we distinguish those
places of a Petri net that correspond to physical objects. We call these anima-
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Fig. 1. A toy-train

tion places. The idea is that each token on an animation1 place corresponds
to a physical object with its individual appearance and behaviour. In order to
animate a physical object, we need two pieces of information: its shape and its
behaviour.

Defining the shape of the object is easy: Each animation place is associated
with a 3D-model (e. g. a VRML file) that defines the shape of all tokens on this
place2. Defining the behaviour of an object is similar: Each animation place is
associated with an animation function, where the animation function is con-
structed from some predefined animation functions. When a token is produced
on an animation place, an object with the corresponding shape appears and be-
haves according to the animation function. For example, the object could move
along a predefined line, the object could rotate, or the object could simply appear
at some position.

In order to illustrate these concepts, let us consider a simple example: a toy-
train. Figure 1 shows the layout of a toy-train, which consists of two semicircle
tracks sc1 and sc2, which are composed to a full circle. We call this layout the
underlying geometry. For defining such a geometry, there is a set of predefined
geometrical objects such as lines, circle segments, and Beziér curves. In our exam-
ple, there is one toy-locomotive moving clockwise on this circle. The right-hand
side of Fig. 1 shows the corresponding Petri net model, where both places p1 and
p2 are animation places. In this example, the correspondence between the Petri

1 Actually, these places could be called physical places because the tokens correspond
to physical objects. Since we are concentrating on the visualization of the physical
models in this paper, we call them animation places.

2 Note that this means that all tokens on the same animation place have the same
shape. This corresponds to the fact that we use low-level Petri nets in which the
different tokens on a place cannot be distinguished. When the concept is lifted to
high-level Petri nets, we can have objects of different shape on the same place: the
shape can depend on the value of the token. Moreover, we will discuss a way of
having tokens with different shapes on the same place even for low-level Petri nets
later in this section.



Fig. 2. Screenshot of an animation of the toy-train

net model and the physical model is clear from the similar layout. Formally, this
correspondence is defined by annotating each place with a reference to the corre-
sponding element in the geometry. As expected, the annotation shape defines the
shape of the objects. In our example, it is a locomotive for both places3, where
the details of the definition of the shape will be discussed in Sect. 3. For now,
you can think of it as the reference to some VRML model of a toy locomotive.
The annotation animation defines the behaviour of the object, which is started
when a token is added to the place. In our example, it is a move animation.
Note that, without additional parameters, each animation function refers to the
geometry object corresponding to that place. So, a locomotive corresponding to
a token on place p1 moves on track sc1, and a locomotive corresponding to a
token on place p2 moves on track sc2.

In order to make our example complete, we must also give some information
on how to visualize the geometry objects themselves. To this end, each geometry
object can have an annotation shape, too. In our example, the semicircles should
be visualized as tracks (see Sect. 3 for details). Once we have provided this
information, we can start a 3D-visualization of this system. Figure 2 shows a
screen-shot of the animation of our example, where the locomotive on place p1
has almost reached the end of its move animation on sc1.

Object identities. Up to now, we assumed that the shapes corresponding to the
tokens on the two places p1 and p2 are completely independent of each other.
When transition t1 fires, the object corresponding to the token on place p1 is
deleted and a new object corresponding to the token on place p2 is created and
the move animation is started. Clearly, this is not what happens in reality. In
reality, the same physical object, the locomotive, moves from track sc1 to track

3 In principle, we could have different shapes for both places. In that case, the loco-
motive would appear to change its shape when it changes the track. Using the same
shape gives the impression that the same locomotive is moving on. We will see soon
that there is an even better way to keep the identity of the locomotive.
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Fig. 3. The toy-train equipped with identities

sc2. In order to keep the identity of a physical object when a token is moved
from one place to another, we equip the arcs of the Petri net with annotations
of the form id:n, where n is some identifier4. We call n the identity of that arc.
By assigning the same identity to an in-coming arc and an out-going arc of a
transition, we express that the corresponding object is moved between those
two places. In order not to clone a physical object, we require that there is a
one-to-one correspondence between the identities of the in-coming and out-going
arcs of a transition. Therefore, we require for each transition that each identity
occurs exactly once in all in-coming arcs and exactly once in all out-going arcs.
Figure 3 shows the toy-train example equipped with such identities5.

Animation results. Next, we consider the relation of the behaviour of the Petri
net and the animations of the objects corresponding to the tokens in more detail.
When a token is added to an animation place by firing a transition, the anima-
tion for the corresponding object is started. But, what will happen, if a token is
removed before the animation is terminated? In our example, this does not make
much sense – the locomotive would jump from some intermediate position of the
track to the start of the next track. Assuming that transition firing does not take
any time, this behaviour is physically impossible. But, there are other examples
in which a transitions could fire while an animation is running. Whether a tran-
sition may remove or must not remove a token with a corresponding animation
running must be explicitly defined in the Petri net model. When the transition
should wait until the animation of a token has terminated before removing it,
we add the annotation result: {..} to the corresponding arc6. If there is no such

4 In the current implementation, it must be some natural number.
5 Both transitions have only one in-coming and out-going arc. Therefore, the examples

is not very interesting. We will see more interesting examples, soon.
6 Actually, an animation function has a return value, and the annotation result says for

which return value of the animation the corresponding transition may fire. The set
{..} stands for all possible return values. So, return: {..} means that the animation
must be terminated – with any return value.
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Fig. 4. A toy-train with a signal

annotation at the arc, the transition need not wait until the animation of the
corresponding object is terminated – when fired, the transition simply stops the
animation7.

In order to illustrate these new concepts, we extend our example. We assume
that there is a signal at the end of track sc1. When the signal is in state stop,
the locomotive stops at the end of track sc1 ; when the signal is in state go, the
locomotive may enter track sc2. In order to have a position for the signal in the
layout, the geometry is extended by a point sig at the end of semicircle sc1.
Figure 4 shows the Petri net model of this extended system. The two places p1
and p2 as well as the transitions t1 and t2 are the same as before. The arcs are
equipped with identities in order to keep the same object, the locomotive, on
the tracks. The annotation result:{..} guarantees that the transitions wait until
the move animation of the locomotive has come to an end (i. e. the locomotive
has reached the end of the track). Next we consider the signal: The two states of
the signal are represented by the places stop and go. The object corresponding
to a token on place stop is a signal with its red light on: SignalRed. The object
corresponding to a token on place go is a signal with its green light on: SignalRed.
These objects will appear at the point sig of the geometry (somewhere at the
end of sc1 ). Due to the loop between place go and transition t1, transition t1
can only fire, when the signal is in state go. The interesting parts of this model
are the identities of transition t1 ; when transition t1 is fired, the object of the
signal from place go stays on this place. Moreover, the animation is not restarted,
because the identity is equipped with the keep animation tag.

Another interesting issue is the animation of the signal. The animation func-
tion is composed from two predefined animation functions: appear; trigger. The
meaning is that these animations are started sequentially. When the first ani-
mation function has finished, the second is started. So, in both cases the signal

7 If the corresponding arc has an identity, there is an option keep animation that does
not stop the current animation on the object, but continues the animation while the
token is on another place.



Fig. 5. Screenshot of a more complex toy-train

appears at position sig; then, it behaves as a trigger. A trigger is an animation
function that simply waits for a user to click on that object. When this happens,
the animation terminates (where the result depends on where the user clicked).
In combination with the annotations result:{..} at the in-coming arcs of tran-
sitions t3 and t4, the user can toggle the state of the signal by clicking on the
signal.

Collisions. In our previous examples, there was only one locomotive. Figure 5
shows a screenshot of a more complex example, where there are two locomotives,
two signals, and two switches. All objects are animated independently of each
other. In particular, the signals and the switches can be toggled by the user by
clicking on the corresponding objects. In this scenario, it could well happen that
two locomotives move on the same track. On the one hand, the animations of
these locomotives should be independent; on the other hand, the locomotives
are solid objects such that they cannot be at the same place at the same time.
Consider the situation shown in Fig. 5 again. Suppose that the first locomotive
stops in front of the stop signal. Eventually, the second locomotive will approach
the first locomotive. Then, the move animation of the second locomotive will be
suspended. When the signal is switched to go by the user, the first locomotive
will start moving; then, the second locomotive will resume its movement again
and, eventually, will finish its animation. This way, the animation reflects the
fact that objects are solid. Currently, we avoid collisions of solid objects, by
suspending the corresponding animations when there is another object in front
of it. This behaviour was inspired by material flow systems in which collisions
of shuttles are avoided by infra-red detectors. But, we could also model other
behaviour; for example, we could also stop the animation of objects, when they
collide and return a special result value. This way, the Petri net model would be
aware of a collision. More detailed concepts for reacting on collisions, however,
need further investigations.

Parameters. The shapes and the animation functions for the places could take
some parameters. Examples, are the size of an object or the speed of a movement.
Moreover, there is an implicit parameter for the animations: the corresponding
geometry object. Here, we do not deal with these parameters because we use



low-level Petri nets only. For high-level Petri nets, the parameters for the shape
and the animation function can be taken from the token itself.

3 Realization

The above concepts have been implemented in a prototype tool, which is based on
the Petri Net Kernel (PNK) [10]. In the following, we discuss how the additional
information is provided to this tool.

There are three types of information that must be provided to the tool: the
annotations of the Petri net, the geometry, and the 3D-models for the animated
objects. The annotations for the Petri net can be easily added as extensions to
the Petri, by defining a new Petri net type. Here, we do not discuss the definition
of such a Petri net type. Basically, there is a list of new annotations for each
element of a Petri net, which is similar to the concept of annotations in PNML
[3]. Moreover, the Petri net will have two global annotations: a reference to a
geometry file and to a models file, which are discussed below.

The geometry file defines the layout of the system, i. e. it lists all the geometry
objects in some XML syntax. For our toy-train example with one signal, the
geometry file looks as follows:

<geometry>

<circle id="sc1" shape="track" cx="0" cy="0" cz="0"

sx="-10" sy="0" sz="0"

angle="180" />

<circle id="sc2" shape="track" cx="0" cy="0" cz="0"

sx="10" sy="0" sz="0"

angle="180" />

<point id="sig" x="13" y="0" z="0" />

</geometry>

Basically, the XML file consist of a list of predefined elementary geometry ob-
jects. Currently, there are points, lines, circles, and Bezièr curves. Moreover, a
geometry object could be composed from many elementary geometry objects. We
call such geometry objects an compound objects. The attribute id is the unique
identifier of the corresponding geometry object. This identifier will be used in
the geometry annotations of the places of the Petri net in order to establish the
correspondence between the Petri net and the geometry. The attribute shape
defines its graphical appearance; it is a reference to a 3D-model, which will be
discussed below. The other attributes depend on the chosen geometry object.
For example, the attributes cx, cy, and cz define the center of a circle segment,
attributes sx, sy, and sz define the start point of a circle segment, and attribute
angle defines the angle of the circle segment (in clockwise orientation).

The models file defines the graphical appearance of the shapes used in the
geometry file and the Petri net model. We call the shapes of the geometry file
static models, because they are not animated. The shapes from the Petri net file
are called dynamic models, because they are animated according to the animation



functions given in the Petri net model. For our toy-train, the models file looks
as follows:

<models>

<static>

<model id="track">

<profile> <rectangle height="1.5" width="3" /> </profile>

<texture name="track.jpg" />

</model>

</static>

<dynamic>

<model id="locomotive">

<file name="locomotive.wrl" />

</model>

<model id="signalGo">

<file name="lampRed.wrl" />

</model>

<model id="signalStop">

<file name="lampGreen.wrl" />

</model>

</dynamic>

</models>

In the static section, we have the definition of tracks, which define the graphical
appearance of the geometry objects in the visualization. It is defined by giving a
profile and a texture. This way, the same definition can be used for all geometry
objects. In our example, the profile is a rectangle8 and the texture is some JPEG
file. In the dynamic section, we define several 3D-models (one for each model
referred to in the Petri net). Here, we refer to some VRML models.

In fact, the Petri net from Fig. 4 along with the above geometry file and the
model file are sufficient for visualizing the Petri net model with our tool. The
separation of the geometry file and the model file allows us to easily exchange
the underlying layout as well as the graphical appearance of a model. This way,
we have a clear separation between the dynamic behaviour which is modelled in
the Petri net, the underlying layout, which is defined in the geometry file, and
the graphical appearance, which is defined in the models file.

4 Conclusion

In this paper, we have introduced some simple concepts that allow us to easily
equip a Petri net with a 3D-visualization. What is more, for obtaining a visual-
ization, no programming is necessary. We only need to provide some 3D-models,
a geometry, and some animation functions from a set of predefined animation
functions.

8 Currently, we have implemented the profile rectangle only. But, in future version,
there can be other predefined profiles or even user defined profiles.



One of the principles underlying these concepts is separation of concerns.
The 3D-visualization part should be as independent as possible from the Petri
net itself. This way, it is possible to analyse the behaviour of the system without
considering the details of the physical model. Actually, this is not always pos-
sible. For example, collisions of objects could result in deadlocks that are not
present in the Petri net model itself. The investigation of such problems and
the definition of some sufficient conditions for independence is one of the future
research directions.

The implementation of our prototype demonstrates that the concepts work.
Clearly, there could be much more features for obtaining more realistic anima-
tions. Such features will be added in a future version of the tool, which will also
support high-level Petri nets. Which features are necessary and, on the other
hand, which features do not compromise analysis results for the Petri net itself
is another direction of future research.
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