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Abstract— Two years ago, we extended Petri nets by a simple
but powerful concept for interactively animating systems as a
3D-visualization, which is calledPNVis. The basic idea of PNVis
is to equip the Petri net with information on how a token on
some place corresponds to a physical object and how this object
behaves. PNVis associates the simulation of tokens of the Petri
net with these objects in the virtual 3D-world.

In this paper, we take the next step and use the concepts of
PNVis and associate the tokens of a Petri net with objects of
the real world. This way, a Petri net can be used as a controller
of some plant. In principle, this idea works for any kind of
hardware; for simplicity, however, we demonstrate this idea by
a Petri net for controlling a simple toy-train.

What is more, we show that the control and the 3D-
visualization can be synchronized so that the visualization,
basically, shows the behaviour of the real world. Altogether, this
demonstrates that the concepts of PNVis are a powerful means
for designing, prototyping, and validating controllers.

I. I NTRODUCTION

Petri nets are a well-accepted formalism for modelling
concurrent and distributed systems. The main advantages of
Petri nets are their graphical notation, their simple semantics,
and the rich theory for analyzing and verifying their behaviour.

In spite of their graphical nature, getting an understanding
of a complex system just from studying the Petri net model
itself is quite hard – if not impossible. In particular, this applies
to experts from application areas who are not experts in Petri
nets. ‘Playing the token-game’ is not enough for understanding
the behaviour of a complex system. The concepts ofPNVis
improve this situation by providing a simple mechanism for
animating the behaviour of a system modelled as a Petri net
in a 3D-visualization. The extensions of Petri nets that are
necessary for such a 3D-visualization are remarkably simple
[2], [3]: the tokens of the Petri net are associated with objects
of a virtual world and with a behaviour. A simple feedback
mechanism allows the 3D-visualization to have an effect on
the behaviour of the Petri net.

The interaction between the actualPetri net simulator
(PNSim) and thevisualization(PNVis) is realized by a simple
protocol. It turned out that this protocol can be used for
visualizing systems in other formalisms than Petri nets by
replacingPNSim by a simulator for some other formalism.
Likewise, we can usePNSimwith some other visualization
tool such as a simple control panel, which allows users to
interact with the Petri net simulation; this will result in a tool
similar to ExSpectwith its dash boards [5].

Even more interestingly, the interface to the virtual world
of the visualization can be replaced by an interface to the real
world, e. g. a machinery or plant. This allows us to control the
plant directly by a Petri net (respectively byPNSimsimulating
the Petri net). In this paper, we present the basic concepts
that allow us to control a plant by a Petri net. The concepts
are, basically, the same as for visualizing a Petri net; the
controller and visualization can even be used synchronously,
which allows us to visualize the real behaviour of a plant while
running. Since these concepts are quite simple and compatible
with the standard Petri net semantics, these concepts seem to
be universal for relating the behaviour and the analysis results
of Petri nets to the real world.

II. PNV IS

In this section, we give a brief overview of the extensions
needed for visualizing Petri nets by the help of PNVis. To
this end, a Petri net is equipped with some information on the
shape and the dynamic behaviour of the objects corresponding
to tokens on some places.

Shapes and animation functions:In a first step, we
distinguish those places of a Petri net that correspond to
virtual objects. We call themanimation places. The idea is
that each token on such a place corresponds to an object with
its individual appearance and behaviour. In order to visualize
and to animate a physical object, we need two pieces of
information: its shape and its behaviour.

It is easy to define theshapeof the object associated with
a token on a place: Each animation place is associated with
a 3D-model(e. g. a VRML file) that defines the shape of all
tokens on this place. Defining thebehaviourof an object is
similar: Each animation place is associated with ananimation
function. This animation function is composed from some
predefined animation functions. When a token is produced on
an animation place, an object with the corresponding shape
appears and behaves according to the animation function. For
example, the object couldmovealong a predefined line, the
object couldrotate, or the object could simplyappearat some
position.

In order to illustrate these concepts, let us consider a simple
example: a toy-train. Figure 1 shows the layout of a toy-
train, which consists of two semicircle trackssc1 and sc2,
which are composed to a full circle. We call this layout the
underlyinggeometry. For defining such a geometry, there is
a set of predefined geometrical objects such as lines, circle
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Fig. 1. A toy-train

segments, and Beziér curves. In our example, there is one
toy-train moving clockwise on this circle. The right-hand side
of Fig. 1 shows the corresponding Petri net model, where both
placesp1 and p2 are animation places. In this example, the
correspondence between the Petri net model and the physical
model is clear from the similar layout. Formally, this corre-
spondence is defined by annotating each place with a reference
to the corresponding element in the geometry. The annotation
shapedefines the shape of the objects. In our example, it is
a toy-train, actually alocomotiveonly, for both places, where
the details of the definition of the shape are discussed in [2],
[3]. Here, we can think of it as the reference to some VRML
model of a locomotive. The annotationanimationdefines the
behaviour of the object, which is started when a token is added
to the place. In our example, it is amoveanimation. Without
additional parameters, each animation function refers to the
geometry object corresponding to that place. Therefore, a toy-
train corresponding to a token on placep1 moves on tracksc1,
and a toy-train corresponding to a token on placep2 moves
on tracksc2.

In order to make our example complete, we must provide
some graphical information for visualizing the geometry ob-
jects. To this end, each geometry object can have an annotation
shape, too. In our example, the semicirclessc1 and sc1 are
visualized as tracks (see [2], [3] for details). Once we have
provided this information, we can start PNVis for visualizing
this system. Figure 2 shows a screen-shot of the 3D-animation
of our example, where there is a toy-train moving on tracksc2,
which corresponds to a token on placep2.

Fig. 2. Screen-shot of the visualization

Object identities:Up to now, the objects and the shapes
corresponding to the tokens on the two placesp1 and p2 are

completely independent of each other. When transitiont1 fires,
an object corresponding to the token on placep1 is deleted
and a new object corresponding to the new token on place
p2 is created and the move animation is started. Clearly, this
is not what happens in reality. In reality, the same object,
the toy-train, moves from tracksc1 to track sc2. In order to
keep the identity of an object when a token is moved from
one place to another, we equip the arcs of the Petri net with
annotations of the formid:n, wheren is some number. We
call n the identity of that arc. By assigning the same identity
to an in-coming arc and an out-going arc of a transition, we
express that the corresponding object is moved between those
two places. In order not to clone an object, we require that
there is a one-to-onecorrespondencebetween the identities
of the in-coming and out-going arcs of a transition; i. e. each
identity of a transition occurs exactly once in all in-coming
arcs and exactly once in all out-going arcs. Figure 3 shows
the toy-train example equipped with such identities1.
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Fig. 3. The model with identities

Animation results:Next, we consider the relation of the
behaviour of the Petri net and the animations of the objects
corresponding to the tokens in more detail. When a token
is added to an animation place by firing a transition, the
animation for the corresponding object is started. But, what
will happen, if a token is removed before the animation is
terminated? In our example, this does not make much sense –
the toy-train would jump from its current position on the track
to the start of the next track. Assuming that firing a transition
does not take any time, this behaviour is physically impossible.
But, there are other examples in which a transitions could fire
while an animation is running. Therefore, we must explicitly
define in the Petri net model whether a transition may or may
not remove a token while an animation is still running on the
corresponding object. When we want a transition to wait until
the animation of a token has terminated before removing the
token, we add the annotationresult: {..} to the corresponding
arc. Actually, an animation function has a return value, and the
annotationresultsays for which return values of the animation
the corresponding transition may fire. The set{..} stands for
all possible return values. Altogether,return: {..} means that

1Both transitions have only one in-coming and out-going arc. Therefore,
the example does not show the full power of identities. We will see a more
exciting examples, soon.
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Fig. 4. A toy-train with a signal

the animation must terminate – with any return value – before
the transition can fire. If there is no such annotation at the arc,
the transition does not need to wait until the animation of the
corresponding object terminates – when fired, the transition
simply stops the animation2.

In order to illustrate these new concepts, we extend our
example. We assume that there is a signal at the end of track
sc1. When the signal is in statered, the toy-train stops at the
end of tracksc1; when the signal is in stategreen, the toy-
train may enter tracksc2. In order to have a position for the
signal in the layout, the geometry is extended by a pointsig at
the end of semicirclesc1. Figure 4 shows the Petri net model
of this extended system. The two placesp1 andp2 as well as
the transitionst1 and t2 are the same as before. The arcs are
equipped with identities in order to keep the same object, the
toy-train, on the tracks. The annotationresult:{..} guarantees
that the transitions wait until the move animation of the toy-
train has come to an end (i. e. the toy-train has reached the
end of the track). Next we consider the signal: The two states
of the signal are represented by the placesred andgreen. The
object corresponding to a token on placered is a signal with its
red light on:SignalStop. The object corresponding to a token
on placegreen is a signal with its green light on:SignalGo.
These objects will appear at the pointsig of the geometry
(somewhere at the end ofsc1). Due to the loop between place
green and transitiont1, transition t1 can fire only when the
signal is in stategreen. The interesting parts of this model
are the identities of transitiont1; when transitiont1 is fired,
the object of the signal from placegreenstays on this place.
Moreover, the animation is not restarted, because the identity
is equipped with thekeep animation tag.

Another interesting issue is the animation of the signal. The
animation function is composed of two predefined animation
functions:appear; trigger. The meaning is that these anima-
tions are started sequentially. When the first animation function
finishes, the second starts. In both cases, the signal appears
at positionsig; then, it behaves as a trigger. Atrigger is an
animation function that waits for a user to click on that object.
When this happens, the animation terminates and a result value

2If the corresponding arc has an identity, there is an optionkeep animation
that does not stop the current animation on the object, but continues the
animation while the token is on another place.

is assigned to the token; the assigned value depends on the part
of the object on which the user clicked. In combination with
the annotationsresult:{..} at the in-coming arcs of transitions
t3 andt4, the user can toggle the state of the signal by clicking
on the signal in the 3D-visualization.

III. C ONTROLLING PLANTS

In this section, we show how the concepts of PNVis can
be used for controlling a plant via the same interface as the
visualization; i. e. the Petri net simulator does not interact
with the 3D-visualization, but with the hardware. In our
implementation, we used a M̈arklin toy-train, which has an
interface to a Linux workstation in order to interact with it. A
picture of the toy-train system is shown in Fig. 5.

Actions and events:When the simulator interacts with the
visualization, the simulator starts an animation of an object
when a token is added to a place. Likewise, the simulator
interacting with the hardware issues someactionwhen a token
is added to a place. Such an action can be the switching
of some actuator of the hardware. Likewise, the simulator
interacting with the hardware can issue an action when a token
is removed from a place. The details on how to define actions,
and how to associate them with a place of a Petri net will be
discussed later.

In order to give the simulator feedback on the behaviour of
the hardware, we will useevents. An example for an event
could be a rising edge of the position sensor at the end of
some track – indicating that the toy-train has reached the end
of this track. Then the token on the place representing the
train on that track could be removed and added to the place
representing the next track. When the event occurs, a result
value is assigned to a token on the corresponding place (where
the result value depends on the type of the event). This way,
the Petri net simulator knows that the token can be removed.
In our example, we have one sensor at the end of each track
segment. The details on how to define events and how to relate
them to a place will be discussed later.

In a nutshell, the actions on the hardware correspond to
starting an animation in the visualization, and the events
correspond to the termination of an animation function in
the visualization. This allows the Petri net simulator to use
the same interface to interact with the visualization and with



Fig. 5. The hardware: A M̈arklin toy-train

the hardware; we call this interface theinteraction handler
interface. Here, we do not go into the technical details of this
interface.

Panels and buttons:Of course, the user would also like to
interact with the hardware. For example, the user might want
to toggle some signal to red or to green, or the user might
want to toggle some switch from left to right or vice versa.

To this end, the hardware handler supports the definition
of buttonson some controlpanel, which can be pressed by
the user in order to interact with the hardware. An example
panel for our toy-train example is shown in Fig. 6. The buttons
can be activated and deactivated by corresponding actions,
i.e. when tokens are removed and added to the corresponding
places. The activated buttons will be highlighted and can be
pressed by the user. Pressing an activated button, triggers an
event, which in turn can be used to return a result value to
some token, which enables the transition to fire.

Fig. 6. Screen-shot of a simple control panel

Example:The actions and events as well as the panel with
its buttons are defined in an XML file. A simplified version
of the XML file for our toy-train example of Fig. 4 is shown
in Fig. 7 at the end of this article.

The first part of this file defines the initialization of the
hardware, i. e. the initial setting of all actuators. In our exam-
ple, the signal (with hardware address 101) is set to green.
In a second part, two buttons are defined, which allow the
user to interact with the system. Each button has a position,
a size (dimension), and an image that appears on that button.
Moreover, the two coloursacolor and hcolor define the
colours of the button in the activated and the deactivated state.
The definition of each button implicitly defines an event, which
occurs when a user presses the button. The name of this event
is given in the corresponding attribute in the button definition.

Moreover, the file defines some actions and events. Each
action is assigned a name, and it refers to a component in the
hardware by some id; actually, this id refers to some software
object representing the hardware component in theHardware
Abstraction Layer(HAL). The attributetypedefines the class
of this object and the attributeperform refers to the method
to be called on this object when the action is initiated.

Likewise, the definition of an event defines the name,
and it refers to some hardware id (resp. a software object
representing it). The attributetype defines its class, and the
attribute trigger defines the value which triggers this event –
actually, it is a change to this value triggering the event. In
our example, the eventendSC1is triggered once the sensorS1
changes its value to 1, which indicates that the toy-train has
reached the end of tracksc1.



A second XML file defines how the different actions and
events are associated with the places of the Petri net. The
XML file for our example is shown in Fig. 8 at the end of this
article. In this file, placep1 is assigned the end-eventendSC1.
When this event occurs, a token on placep1 will receive 0
as its result value3. For each of the places green and red
representing the two states of the signal, we define two actions
that are invoked, when a token is added to them: the first action
enables the button for switching the signal to the other state,
the second action actually switches the hardware signal to the
state corresponding to the place (red or green). The action
associated with the removal of a token is the deactivation of
the other button. Moreover, the result value 0 is assigned to
the token when the button is pressed, which will allow the
Petri net simulator to fire the transition fromred to greenor
vice versa.

When the Petri net simulator and the hardware handler are
started with the Petri net from Fig. 4 and the two XML files
from Fig. 7 and 8, they actually control the real hardware,
where the user can interact with it via the panel shown in
Fig. 6.

Synchronizing interaction handlers:Actually, we have
another implementation of an interaction handler, which is
capable of synchronizing onemaster interaction handlerwith
many otherslave interaction handlers. This way, it is possible
to start the Petri net simulation with the hardware handler
as the master and one or more visualization handlers as the
slaves. Then the visualization shows the behaviour of the real
hardware (see right monitor in Fig. 5). Due to variations
in speed, there might be minor mismatches: For example,
the toy-train in the visualization might stop at the end of a
track because the real train has not arrived there yet; or the
toy-train of the visualization might jump to the next track
from its current position on a track when the real toy-train
reaches the end of its track first. But, the deviations will be
synchronized when the transitions fire and could be minimized
by dynamically adjusting the speeds.

This synchronization shows that the interface is well-
designed. But, we cannot go into the details of this interface
here. You will find more details in [1], [4].

IV. CONCLUSION

In this paper, we have shown that the simple concepts of
PNVis can be used not only for visualizing the behaviour of
a real system, but also for controlling it. In order to allow
the Petri net simulation to interact and synchronize with the
real world, the concept of result values of tokens were used.
These result values are set either by the visualization or by
the real hardware. By the help of theresult labels at some
arcs, a transition can fire only when the tokens have particular
result values. Note that this is compatible with the traditional
firing rule of low-level Petri nets, where transitions fire non-
deterministically and are not even required to fire at all.
The result values just make the behaviour more deterministic.

3Actually, the result values are irrelevant in this example.

Therefore, the analysis results for the low-level Petri net are
still valid.

This way, a single Petri net model can be used throughout
the design process of plants such as flexible manufacturing
systems – including analysis and verification as well as
validation. In particular the behaviour can be simulated and
visualized in early stages of the design process.
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<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE occurrences SYSTEM "occurrence.dtd">

<hardwaredefinition>
<hardwareinitialisation>

<initial type="signal" adressid="101"
state="green"/>

</hardwareinitialisation>

<buttons>
<pushbutton id="red" event="redPressed"

position="320,295" dimension="40,12"
acolor="#FF0000" hcolor="#4C4C4C" />

<pushbutton id="green" event="greenPressed"
position="320,310" dimension="40,12"
acolor="#00C800" hcolor="#4C4C4C" />

</buttons>

<events>
<event name="endSC1">

<attributes type="sensor" id="s1"
trigger="1"/>

</event>
<event name="endSC2">

<attributes type="sensor" id="s2"
trigger="1"/>

</event>
</events>

<actions>
<action name="enableGreen">

<attributes type="button" id="green"
perform="settoenable"/>

</action>
<action name="disableGreen">

<attributes type="button" id="green"
perform="settodisable"/>

</action>
<action name="enableRed">

<attributes type="button" id="red"
perform="settoenable"/>

</action>
<action name="disableRed">

<attributes type="button" id="red"
perform="settodisable"/>

</action>

<action name="fire101green">
<attributes type="signal" id="101"

perform="switchToGreen"/>
</action>
<action name="fire101red">

<attributes type="signal" id="101"
perform="switchToRed"/>

</action>
</actions>

</hardwaredefinition>

Fig. 7. Actions, events and panel definition

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE relations SYSTEM "relation.dtd">

<eventactiondefinition>

<place name="p1">
<endEvent>

<event name="endSC1" result="0"/>
</endEvent>

</place>

<place name="p2">
<endEvent>

<event name="endSC2" result="0"/>
</endEvent>

</place>

<place name="green">
<onAdd>

<action name="enableRed"/>
<action name="fire101green"/>

</onAdd>
<onRemove>

<action name="disableRed"/>
</onRemove>

<endEvent>
<event name="redPressed" result="0">

</endEvent>
</place>

<place name="red">
<onAdd>

<action name="enableGreen"/>
<action name="fire101red"/>

</onAdd>
<onRemove>

<action name="disableGreen"/>
</onRemove>
<endEvent>

<event name="greenPressed" result="0">
</endEvent>

</place>

</eventactiondefinition>

Fig. 8. Associating actions and events with the places


