
The Petri Net Markup Language and ISO/IEC 15909-2:
Concepts, Status, and Future Directions

Ekkart Kindler
Department of Computer Science

University of Paderborn
Warburger Strasse 100

D-33098 Paderborn
Germany

E-Mail: kindler@upb.de

Abstract: The Petri Net Markup Language (PNML) is an XML-based interchange format for
Petri nets. In order to support different versions of Petri nets, its focus is on universality and
flexibility, which is achieved by a technique for defining new Petri net types. For presenting and
precisely defining the XML-syntax, PNML uses UML meta models: The PNML Core Model
defines the concepts shared by all kinds of Petri nets; additional Petri net type definitions are
UML meta models for defining the concepts that are specific to particular kinds of Petri nets.
The concrete XML-syntax is then defined by mapping the concepts of these UML meta models
to XML elements.

Currently, PNML is standardised as Part 2 of the International Standard ISO/IEC 15909 as the
transfer syntax for three particular versions of Petri nets: Place/Transition-Nets, High-level Petri
Nets, and Symmetric Nets.

In this paper, we outline the concepts of PNML and, in particular, of the PNML Core Model and
its mapping to XML-syntax. In order to illustrate the definition of a particular Petri net type, we
discuss the meta model for Place/Transition-Nets. Since the exact details of the transfer syntax
for High-level nets are not yet fixed, we do not go into the details of this Petri net type.
Moreover, we report on the current state of the standardisation and possible future extensions,
which might be included to Part 3 of ISO/IEC 15909.

Keywords: Petri net, high-level Petri net, P/T-Net, transfer format, XML, PNML,
ISO/IEC 15909

1 Introduction

Petri nets come in many versions, variants, and flavours. The Petri Net Markup Language
(PNML) is an XML-based interchange format that supports the exchange of Petri nets among
different tools. It was designed to accommodate the demands of the variety of Petri net types.

Paper for the invited talk at EKA 2006: In E. Schnieder (ed.): Entwurf Komplexer Automatisierungssysteme, EKA 2006,
9. Fachtagung, Braunschweig, Germany, May 2006, pp. 35-55.

Currently, PNML is under standardisation as Part 2 of ISO/IEC 15909. This standard will define
the PNML Core Model – the concepts common to all Petri nets – as well as three concrete Petri
net types: Place/Transition-Nets (P/T-Nets), High-level Petri Nets (HLPNG), and Symmetric
Nets1.

Though ISO/IEC 15909-2 is not yet finalised (see [ISO05] for the latest working draft), the
concepts of the PNML Core Model and its XML-syntax are generally agreed upon; as are the
Petri net type definition and the XML-syntax for P/T-Nets. The details for HLPNGs and for
Symmetric Nets, however, are still under discussion.

In this paper, we present the concepts of PNML. We will discuss the PNML Core Model and its
XML-syntax as well as the technique for defining new Petri net types. This will be illustrated by
the example of the definition of the concepts and the XML-syntax of P/T-Nets. Moreover, we
will discuss the current state of the standardisation, the open issues, and possible future
directions.

2 PNML concepts

In this section, we discuss the basic concepts of PNML and their relation. These concepts are
independent from a particular XML-syntax. Therefore, PNML uses meta modelling techniques,
in particular UML class diagrams, for precisely capturing these concepts. For understanding the
PNML concepts, however, an in-depth understanding of these meta modelling techniques and of
UML are not necessary; the UML diagrams can be considered as illustrations of the concepts
defined in the text. The mapping of these concepts to XML-syntax will be defined in Sect. 3.

2.1 General principles

PNML was designed to be extensible and open for future variants of Petri nets and possibly for
other use, such as the transfer of results associated with the analysis of Petri nets. In order to
obtain this flexibility, the transfer format considers a Petri net as a labelled directed graph, where
all type specific information of the net is represented in labels. Labels may be associated with
nodes, arcs, pages, or with the net itself. This basic structure of PNML is defined in the PNML
Core Model, which is defined in Sect. 2.2.

The PNML Core Model imposes no restrictions on labels. Therefore, the PNML Core Model can
represent any kind of Petri net. Due to this generality of the PNML Core Model, there can be

1 Symmetric Nets have been inspired by well-formed nets [CDFH91].

models that do not even correspond to a Petri net at all. For a concrete version of Petri nets, the
legal labels will be defined by extending the PNML Core Model with another meta model that
exactly defines the legal labels of this Petri net type; such a meta model is called a Petri net type
definition.

Technically, the PNML Core Model is a UML package, and there are additional UML packages
for the different Petri net types that extend the PNML Core Model package. ISO/IEC 15909-2
will define a Petri net type for P/T-Nets, for High-level Petri Net Graphs (HLPNGs), and for
Symmetric Nets. HLPNGs subsume P/T-Nets, which means that any legal label of a P/T-Net may
occur also in a HLPNG. Symmetric Nets are a version of HLPNGs with a restricted subset of
built-in types and functions. In this paper, we concentrate on the package for P/T-Nets in order to
illustrate the idea of defining Petri net types.

Figure 1 gives an overview of the different UML packages of PNML and of their dependencies.
The PNML Core Model package defines the basic structure of all kinds of Petri nets; this
structure will be extended by the package for the two types. The PNML Core Model is defined in
Sect. 2.2, the P/T-Net package is defined in Sect. 2.3.1, and some ideas on the package for
HLPNGs are discussed in Sect. 2.3.2. In Sect. 3, we show how the concepts defined in these
packages are mapped to concrete XML-syntax.

2.2 PNML Core Model

Figure 2 shows the PNML Core Model as a UML class diagram. This diagram will be discussed
in the following subsections. For an example of a Petri net model and its representation in XML,
we refer to Fig. 5 and Listing 1.

PNML Core Model

HLPNG

PT−Net

<<merge>>

<<merge>>

Figure 1: Overview of the UML packages of PNML

2.2.1 Petri net documents, Petri nets, and objects

A document that meets the requirements of the PNML Core Model is called a Petri net document
(PetriNetDoc). It may contain several Petri nets (PetriNet). Each Petri net includes a unique
identifier and a type. The type is a URL referring to the name of the package with its definition.

A Petri net consists of some top-level pages that in turn consist of several objects. These objects,
basically, represent the graph structure of the Petri net. Each object within a Petri net document
has a unique identifier, which can be used for referring to this object. Moreover, each object may
be equipped with graphical information defining its position, size, colour, shape and other
information on its graphical appearance. The precise graphical information that can be provided
for an object depends on the particular type of the object, which will be discussed in Sect. 2.2.4
in more detail.

An object of a net is a place, a transition, or an arc, or – as discussed below – a page or a
reference node. For convenience, a place or a transition is generalised to a node, which can be
connected by arcs.

PetriNetDoc

Label

PetriNet

type
id

AttributeAnnotation

XML::PCDATA

Name

PlaceNode

Place

−− source and target must
−− be on the same page

 self.target.page
 self.source.page =

ToolInfo

Object
id

*

tool
version

* label *

label *

*

*toolinfo

toolinfo
toolinfo

net

1text

object

{redefines label}
name0..1

name

0..1

{redefines label}

graphic

graphic

0..1

0..1
Graphics

Node

RefPlace RefTrans

1

1
Page

TransitionNode
1

ref

1

ref

source

target

page

Transition

Arc

* *

*

*

page

context Arc inv:

1..*

1..*

Figure 2: The PNML Core Model

Note that it is legal to have an arc from a place to a place or from a transition to a transition
according to the PNML Core Model. The reason is that there are versions of Petri nets that may
have such arcs. If a Petri net type does not support such arcs, this restriction will be imposed on
it in the particular Petri net type definition.

2.2.2 Pages and reference nodes

Three other kinds of objects are used for structuring large Petri nets: pages, reference places
(RefPlace), and reference transitions (RefTrans). As mentioned above, a page may contain
objects; since a page is an object itself, a page may contain other pages. Therefore, there can be
a hierarchy of sub-pages in a Petri net.

PNML requires that an arc must connect nodes on the same page only. The reason for this
restriction is that arcs connecting nodes on different pages cannot be drawn graphically on a
single page. In the PNML Core Model shown in Fig. 2, this requirement is formally expressed by
the OCL expression next to the class Arc.

In order to connect nodes on different pages, a representative of one of the two nodes is drawn
on the same page as the other node. Then, this representative may be connected with the other
node by an arc. This representative is called a reference node because it has a reference to the
node it represents. Note that a reference place must refer to a place or a reference place
(generalised to a class PlaceNode), and a reference transition must refer to a transition or a
reference transition (generalised to a class TransitionNode). Cyclic references among reference
nodes, however, are not allowed.

2.2.3 Labels

In order to assign further meaning to an object, each object may have labels. Typically, a label
represents the name of a node, the initial marking of a place, the transition condition, or an arc
annotation. In addition, the Petri net itself and its pages may have some labels. These are called
global labels. For example, the package for HLPNGs defines type declarations as global labels
of a HLPNG.

PNML distinguishes two kinds of labels: annotations and attributes. An annotation comprises
information that is typically displayed as text next to the corresponding object. Examples of
annotations are names, initial markings, arc annotations, transition conditions, and timing or
stochastic information. In contrast, an attribute is not displayed as text next to the corresponding
object. Rather, an attribute has an effect on the shape or colour of the corresponding object. For
example, an attribute arc type could have the domain {normal, read2, inhibitor,

2 Sometimes the read arcs are called test arcs.

reset}. PNML, however, does not mandate the effect of attributes on the graphical
appearance.

Note that the classes for label, annotation and attribute are abstract in the PNML Core Model,
which means that the PNML Core Model does not define concrete labels, annotations, and
attributes. The only concrete label defined in the PNML Core Model is the name, which is a
label that can be used with any Petri net type. The text of this label is given as XML PCDATA,
which is expressed in the UML model by referring to the class XML::PCDATA (see Sect. 3.3).
The other concrete labels will be defined in the packages for the concrete Petri net type
definitions (see Sect. 2.3).

In order to support the exchange of information among tools that have different textual
representations for the same concept (i.e. when they have different concrete syntax), there are
two ways for representing the information within an annotation: textually in some concrete
syntax and structurally as an abstract syntax tree (see Sect. 3.1.2 for details).

Note that reference nodes may have labels, but these labels do not carry any meaning.
Semantically, labels of reference nodes will be ignored. They cannot specify any information
about the referenced node, since this node has its own labels. This choice simplifies the
definition of the semantics of Petri nets with pages by simply removing all pages and reference
nodes and connecting the referenced nodes by arcs directly. This is called flattening [KW01,
WK03].

2.2.4 Graphical information

Graphical information can be associated with each object and each annotation. For a node, this
information includes its position; for an arc, it includes a list of positions that define
intermediate points of the arc; for an object's annotation, it includes its relative position with
respect to the object it is attached to; for an annotation of a page, the position is absolute. There
can be further graphical information concerning the size, colour and shape of nodes or arcs, or
concerning the colour, font and size of labels (see Sect. 3.1.3 for more information).

2.2.5 Tool specific information

For some tools, it might be necessary to store tool specific information, which is not meant to be
used by other tools. In order to store this information, tool specific information (ToolInfo) may
be associated with each object and each label. Its internal structure depends on the tool and is not
specified by PNML. PNML provides a mechanism for clearly marking tool specific information
along with the name and the version of the tool adding this information. Therefore, other tools
can easily ignore it, and adding tool specific information will never compromise a Petri net
document.

The same object may be tagged with tool specific information from different tools. This way, the
same document can be used and changed by different tools at the same time. The intention is that
a tool should not change or delete the information added by another tool as long as the
corresponding object is not deleted. Moreover, tool specific information should be self contained
and should not refer to other objects of the net because the deletion of other objects by a
different tool might make this reference invalid and leave the tool specific information
inconsistent. This use of tool specific information is strongly recommended; however, it is not
normative!

2.3 Petri net type definitions

Next, we discuss the meta models for two versions of Petri nets: P/T-Nets and HLPNGs. These
meta models define the labels of the respective Petri net type.

Though HLPNGs conceptually generalise P/T-Nets, there are differences in syntax. Of course,
there are mappings from the syntax of the concepts of P/T-Nets to HLPNGs. But, in order not to
force tools that support P/T-Nets only to use the more complicated and verbose syntax of
HLPNGs, we introduce a simple syntax for P/T-Nets. The transfer syntax for HLPNGs, however,
also includes the syntax of P/T-Nets (cf. Fig. 1).

Note that Symmetric Nets, which are defined in an Addendum to Part 1 of ISO/IEC 15909, are a
special version of HLPNGs with a restricted set of built-in types and operations. This is a
semantical restriction which is imposed in addition to the restrictions of HLPNGs, which will not
be discussed in this paper.

2.3.1 Place/Transition-Nets

This section defines the meta model for P/T-Nets in terms of a UML package PT-Net. Note that
the UML meta models do not fully specify the XML-syntax for these concepts. The exact
mapping to XML-syntax will be defined in Sect. 3.2.

A P/T-Net is a Petri net, where each place is labelled with a natural number representing the
initial marking, and each arc is labelled with a non-zero natural number representing the arc
annotation. Figure 3 shows the package PT-Net. This model defines that each place can have an
annotation PTMarking that represents a natural number. Technically, the type and the
representation of the contents of this label is defined by referring to the data type
NonNegativeInteger of XMLSchema [SMe00]. If this label is missing, it is assumed to be 0.
Each arc can have an annotation PTAnnotation that consists of a non-zero natural number,
where the representation of this label is defined by the data type PositiveInteger of
XMLSchema. If this label is missing, it is assumed to be 1. The OCL expression on the lower
left side of Fig. 3 expresses that, in P/T-Nets, an arc must not connect a place to a place or a
transition to a transition.

Note that the only classes defined here are PTMarking and PTAnnotation. The classes Place,
Arc, and Annotation come from the PNML Core Model package. They are imported here in
order to define the concrete labels attached to these nodes in this particular Petri net type, i.e. in
P/T-Nets. Likewise, the classed prefixed with XML and XMLSchema are defined in other
packages in order to refer to standard concepts of XML and standard data types of XMLSchema
(see Sect. 3.3).

1text

Annotation

Place
{redefines label}

initialMarking

PTMarking0..1

1text

Arc

 (self.source.isKindOf(PlaceNode) and
 self.target.isKindOf(TransitionNode))

or
 (self.source.isKindOf(TransitionNode) and
 self.target.isKindOf(PlaceNode))

context Arc inv:
−− no arcs between nodes of the same kind

{redefines label}
0..1

inscription

PTAnnotation

PT−Net

XML_Schema::
NonNegativeInteger PositiveInteger

XML_Schema::

PNML Core Model

<<merge>>

Figure 3: The package PT-Net

Place

Transition

PetriNet

Arc

Declaration

HLAnnotation

{redefines label}
declaration

*

HLPNG

Annotation

Page

*

Type structure
0..1

structure

structure

structure

0..1

0..1

Condition

declaration

0..1
{redefines label}

condition

{redefines label}

HLMarking
0..1

structure{redefines label}

0..1
0..1

{redefines label}
condition

hlinitialMarking

0..1

0..1
{redefines label}

hlinscription

XML::PCDATA0..1
text

Declaration

Expression

BoolExpression

GroundExpression

TypeExpression

<<merge>>

PT−Net

Figure 4: The Package HLPNG

2.3.2 High-Level Petri Net Graphs

This section discusses the basic concepts for HLPNGs. Note that this is still under discussion
and subject to change. Therefore, we do not discuss the exact XML-syntax for HLPNGs in this
paper.

A HLPNG is a Petri net that is equipped with declarations that define types, functions, and
variables that are the basis for constructing expressions. The declarations can be annotations of
the Petri net itself or of some of its pages; the types can be annotations of places; and a place
can also have an annotation with its initial marking which is an expression for some multiset; an
arc annotation is some expression; a transition can have a condition as its annotation, which is
an expression of type boolean.

The basic structure of a package defining the concepts of HLPNGs is outlined in Fig. 4. The
exact meta model for all these concepts is still under discussion. Eventually, these concepts will
be mapped to some MathML elements.

Note that this meta model will define an abstract syntax for the HLPNG concepts only. In order
to allow tools to store some concrete text representing these concepts, the annotation may also
consist of text, which should be the same expression in the concrete syntax of some tool. The
concrete syntax, however, is not defined in PNML. For properly exchanging HLPNGs it will be
necessary to have the abstract syntax for all HLPNG labels. This will give rise to two levels of
conformance to HLPNGs: the textual conformance does not require that the structural
information is there, whereas the structural conformance requires that there is the structural
information for all HLPNG labels (see Sect. 4.1 for more details).

In addition to the annotations defined above, the package for HLPNGs also requires that arcs
must not connect two places and must not connect two transitions; this however, is a property
inherited from P/T-Nets. Therefore, it is not necessary to include this condition here again.

3 PNML syntax

In Sect. 2, we have defined the concepts of the PNML Core Model and the concepts of P/T-Nets.
We did not define the precise XML-syntax for representing these concepts. The precise XML-
syntax for the PNML Core Model and for P/T-Nets will be defined below by mapping the
concepts defined in the meta models to XML elements.

Section 3.1 defines the mapping of the PNML Core Model to XML. Section 3.2 defines the
mapping of P/T-Nets to XML. In fact, we give general rules, how the concepts of a package
defining some Petri net type are mapped to XML-syntax.

The final version of ISO/IEC 15909-2 will include a RELAX grammar [ClMu] defining the
precise XML-syntax of PNML and the different versions of Petri nets. Here, we will not give
this RELAX grammar because it is not yet finalised. A preliminary version can be found on the
PNML web pages and in the current working draft of ISO/IEC 15909-2 [PNML, ISO05].

3.1 PNML Documents

The mapping of the PNML Core Model concepts to XML-syntax is defined for each class of the
PNML Core Model package.

3.1.1 PNML elements

Each concrete class3 of the PNML Core Model is mapped to an XML element. The mapping of
these classes along with the attributes and their data types is given in Table 1. These XML
elements are the keywords of PNML and are called PNML elements for short. For each PNML

3 A class in a UML diagram is concrete if its name is not displayed in italics.

element, the UML compositions of the PNML Core Model define in which elements it may occur
as a child element.

The data type ID in Table 1 refers to a set of unique identifiers within the PNML Document. The
data type IDRef refers to the set of all identifiers occurring in the document, i.e. they are meant
as references to identifiers. A reference at some particular position, however, is restricted to
objects of a particular type – as defined in the PNML Core Model. For instance, the attribute
ref of a reference place must refer to a place or to a reference place of the same net. The set to
which a reference is restricted, is indicated in the table (e.g. for a reference place, the attribute
ref should refer to the id of a place or a reference place).

3.1.2 Labels

Except for names, there are no PNML elements for labels because the PNML Core Model does
not define any other concrete labels. For concrete Petri net types, such as P/T-Nets and

Table 1: Mapping of the PNML Core Model concepts to PNML elements

Class XML element XML attributes

PetriNet Doc <pnml>

PetriNet <net> id:ID
type:anyURL

Place <place> id:ID

Transition <transition> id:ID

Arc <arc> id:ID

source:IDRef (Node)
target:IDRef (Node)

Page <page> id:ID

RefPlace <referencePlace> id:ID

ref:IDRef (Place or RefPlace)

RefTrans <referenceTransition> id:ID

ref:IDRef (Transition or RefTrans)

ToolInfo <toolspecific> tool:string
version:string

Graphics <graphics>

HLPNGs, the corresponding packages define these labels. The mapping of the name label of the
PNML Core Model will follow the general rules for mapping labels to XML as discussed below
and in Sect. 3.2. The name will be included in the XML element <name>.

In PNML Documents, any XML element that is not defined in the PNML Core Model (i.e. not
occurring in Table 1) is considered as a label of the PNML element in which it occurs. For
example, an <initialMarking> element could be a label of a place, which represents its initial
marking. Likewise, <inscription> could represent the arc inscription.

A legal XML element for a label must contain at least one of the two following elements, which
represents the actual value of the label: a <text> element represents the value of the label as a
simple string; the <structure> element can be used for representing the value as an abstract
syntax tree.

An optional PNML element <graphics> defines its graphical appearance; and optional PNML
elements <toolspecific> may add tool specific information to the label.

3.1.3 Graphics

All objects and all labels may be equipped with graphical information. The internal structure of
the corresponding PNML <graphics> element, i.e. the legal XML children, depends on the
element in which the graphics element occurs. Table 2 shows the elements which may occur
within the <graphics> element, all of which are optional.

The <position> element defines the absolute position of a node, whereas the <offset> element
defines the relative position of an annotation. Each absolute or relative position refers to
Cartesian coordinates (x, y). As for many graphical tools, the x-axis runs from left to right and
the y-axis from top to bottom. The reference point of a node is its middle. For an arc, the
(possibly empty) sequence of <position> elements defines its intermediate points (bend points).

Table 3 defines the attributes for each graphical element defined in Table 2. The domain of the
attributes refers to the data types of either XML Schema [SMe00], or Cascading Stylesheets 2
(CSS2) [BLLe98], or is given by an explicit enumeration of the legal values.

The <position> element defines the absolute position of a node on its page. The <offset>
element defines the position of an annotation relative to the position of the object – for a global
annotation, it defines the absolute position on that page.

For an arc, the (possibly empty) list of <position> elements define intermediate points (bend
points) of the arc – the start and end point, however, are not given explicitly since these points
come from the source and the target node of the arc. Altogether, the arc is a path from the source
node of the arc to the target node of the arc via the intermediate points. Depending on the value
of the attribute shape of element <line>, the path is displayed as a broken line or as a
(quadratic) Bezier curve, where the points act as line connectors or Bezier control points.

The <dimension> element defines the height and the width of a node. Depending on the ratio of
height and width, a place is displayed as an ellipse rather than a circle. A transition is displayed
as a rectangle of the corresponding size. If the dimension of an element is missing, each tool is
free to use its own default value for the dimensions.

The two elements <fill> and <line> define the interior and outline colours of the
corresponding element. The value assigned to a colour attribute must be a RGB value or a
predefined colour as defined by CSS2. When the attribute gradient-color is defined, the fill
colour continuously varies from color to gradient-color. The additional attribute gradient-
rotation defines the orientation of the gradient. If the attribute image is defined, the node is

Table 2: Possible child elements of the <graphics> element

Parent element
class

Sub-elements of
<graphics>

Node, Page <position>
<dimension>
<fill>
<line>

Arc <position> (zero or more)
<line>

Annotation <offset>
<fill>
<line>

displayed as the image at the specified URI, which must be a graphics file in JPEG or PNG
format. In this case, all other attributes of <fill> and <line> are ignored.

For an annotation, the element defines the font used to display the text of the label. The
complete description of possible values of the different attributes can be found in the CSS2
specification [BLLe98]. Additionally, the align attribute defines the justification of the text
with respect to the label's coordinates. Depending on the value of this attribute, the reference
point of the label is the lower left or right corner or the center of the label; the default is the
lower left corner. The rotation attribute defines a clockwise rotation of the text.

Table 3: PNML graphical elements

XML
element

Attribute Domain

<position> x
y

decimal
decimal

<offset>

x
y

decimal
decimal

<dimension> x
y

nonNegativeDecimal
nonNegativeDecimal

<fill> color
image
gradient-color
gradient-rotation

CSS2-color
anyURI
CSS2-color
{vertical, horizontal, diagonal}

<line>

shape
color
width
style

{line, curve}
CSS2-color
nonNegativeDecimal
{solid, dash, dot}

 family
style
weight
size
decoration
align
rotation

CSS2-font-family
CSS2-font-style
CSS2-font-weight
CSS2-font-size
{underline, overline, line-through}
{left, center, right}
decimal

3.1.4 Example

In order to illustrate the structure of a PNML Document, we give an example representing the
Petri net shown in Fig. 5, which actually is a P/T-Net. Listing 1 shows the corresponding PNML
Document. It is a straight-forward translation, where there are labels for the names of objects, for
the initial markings, and for arc annotations.

Note that a tool would typically display the initial marking as a textual label. But, we assume
that this net is viewed by an imaginary tool PN4all; in the PNML Document, this tool has added
some tool specific information in the annotation for the initial marking. We assume that the
imaginary tool interprets its own tool specific information in such a way that it shows the tokens
at individual positions as given in the elements <tokenposition>

Since there is no information on the dimensions in this example (in order to fit the listing on a
single page), the tool has chosen its default dimensions for the place and the transition.

2ready

10 20 30 40 50 60

10

20

y

x

Figure 5: A simple Place/Transition-Net

Listing 1: PNML code of the example net in Fig. 5

1. <pnml xmlns="http://www.example.org/pnml">

2. <net id="n1" type="http://www.example.org/pnml/PTNet">

3. <page id="top-level">

4. <name>

5. <text>An example P/T-net</text>

6. </name>

7. <place id="p1">

8. <graphics>

9. <position x="20" y="20"/>

10. </graphics>

11. <name>

12. <text>ready</text>

13. <graphics>

14. <offset x="-10" y="-8"/>

15. </graphics>

16. </name>

17. <initialMarking>

18. <text>3</text>

19. <toolspecific tool="PN4all" version="0.1">

20. <tokenposition x="-2" y="-2" />

21. <tokenposition x="2" y="0" />

22. <tokenposition x="-2" y="2" />

23. </toolspecific>

24. </initialMarking>

25. </place>

26. <transition id="t1">

27. <graphics>

28. <position x="60" y="20"/>

29. </graphics>

30. </transition>

31. <arc id="a1" source="p1" target="t1">

32. <graphics>

33. <position x="30" y="5"/>

34. <position x="60" y="5"/>

35. </graphics>

36. <inscription>

37. <text>2</text>

38. <graphics>

39. <offset x="15" y="-2"/>

40. </graphics>

41. </inscription>

42. </arc>

43. </page>

44. </net>

45. </pnml>

3.2 Mapping a Petri net type definition to XML

Based on the PNML Core Model of Section 2.2, Sections 2.3.1 and 2.3.2 define the concepts of
two particular Petri net types, which restrict PNML Documents to the particular labels as defined
in the corresponding packages.

These packages define the labels that can or must be used in the particular Petri net type. Here,
we will show how to map such a package to the corresponding XML-syntax. If not stated
otherwise, this mapping is according to the same rules for each Petri type definition. We will
explain these rules by the help of the example of P/T-Nets (see Fig. 3 and the PNML Document
in Listing 1).

The P/T-Net package defines two new labels that can be used in a P/T-Net: PTMarkings and
PTAnnotations. Each place can have an annotation PTMarking, and each arc can have an
annotation PTAnnotation. This is indicated by the compositions in the UML diagram.

The XML-syntax for these labels is derived from the roles of these compositions. For example,
an annotation PTMarking is mapped to an XML element <initialMarking>, and an annotation
PTAnnotation is mapped to an element <inscription> (see Listing 1).

Since all labels in this package are derived from annotation, all graphical elements defined for
annotations may occur as children in these elements. In the P/T-Net package, each label consists
of a <text> element, which defines the actual content of this annotation. For P/T-Nets we do not
need the structured element. The corresponding classes define the XML content of the <text>
element as defined by the references to external definitions.

3.3 External definitions

In the above definitions, we refer to XML or XML Schema for defining the internal structure of
some labels. For example, the name label refers to XML's PCDATA; other labels refer to data
types of XML Schema. In order to refer to external XML technologies, we use the notation
XML::PCDATA or XMLSchma::NonNegativeNumber in the corresponding classes of the UML
meta models.

4 Conformance, status, and future directions

In the previous sections, we have discussed the concepts and the XML-syntax of PNML. In this
section, we discuss what will or could be in the forthcoming International Standard
ISO/IEC 15909-2. Note that this standard is, basically, interested in the transfer syntax for
HLPNGs, but it also deals with the general structure of Petri nets, with P/T-Nets, and with a
restricted version of HLPNGs, called Symmetric Nets.

4.1 Conformance

From the structure of PNML, there are different levels of conformance to PNML. The first level
is a general conformance to the PNML Core Model, which does not impose any restrictions on
the Petri net type or on the labels attached to it. An XML document is conformant to the PNML
Core Model if it meets the definitions of Sect. 2.2 (PNML Core Model) and 3.1 (its XML
representation). Such a document is called a PNML Document or a Petri Net Document.

The other levels of conformance concern the different Petri Net Types. A PNML Document is a
conformant Place/Transition-Net, if it meets the additional restrictions of Sect. 2.3.1 (P/T-Net
Model) and Sect. 3.2 (mapping to XML). Such a document is called a PNML Place/Transition
Net Document.

For High-level Petri Nets, there are two different levels of conformance. The first level is
conformance on the textual level, which basically ignores the meaning of the high-level
inscriptions. This level does not require that there are structural elements in the high-level labels.
A PNML Document is a textually conformant High-level Petri Net, if it meets the additional
restrictions of Sect. 2.3.2. Such a document is called a textually conformant PNML High-level
Petri Net Document. If there are the abstract syntax trees for all high-level inscriptions, and these
inscriptions are syntactically correct, the PNML Document is a structurally conformant High-
level Petri Net Document.

A structurally conformant High-level Document is a conformant Symmetric Net Document if, in
addition, the structural inscriptions use the built-in sorts, functions and constants of Symmetric
Nets only.

4.2 Status

Note that ISO/IEC 15909-2 is still under discussion. Once it will be finished, it will be PNML
version 2.0. From the latest discussions in the editorial meetings, it appears that the concepts and
the XML-syntax of the PNML Core Model and the type definition for P/T-Nets will not change
any more.

For HLPNGs as well as for Symmetric Nets, however, there are still open issues and a final
version was not yet agreed on. This is the reason for not including details on these types here.
The publication of a reliable draft for this part of the standard is scheduled for June 2006. There
will be a meta model for HLPNGs, which was first outlined in WD 0.5.0 of ISO/IEC 15909-2;
the concrete XML-syntax will map these concepts to MathML.

In addition to the meta models defining the PNML Core Model and the different types, the final
version of ISO/IEC 15909-2 will also contain a RELAX grammar for precisely defining the
XML-syntax, which should help to easily validate PNML Documents. A preliminary version of

this RELAX grammar can be found in [ISO05], where the part for the PNML Core Model needs
some minor polishing, the part for HLPNGs, however, needs major revisions. Note that some
restrictions of PNML cannot be captured by current XML technologies and will not be covered
by the RELAX grammar. Still, these restrictions are normative for conformant PNML
Documents.

ISO/IEC 15909-2 will probably also contain two informative annexes. One annex will deal with
the graphical appearance of PNML Documents, which will be an XSLT transformation of PNML
Documents to SVG; this is based on the ideas of Stehno [Ste02]. The other will deal with a
framework and an API for the implementation of readers and writers for PNML Documents,
which is an implementation provided by Hillah et al. [HKPT05].

4.3 Future directions

Though the presentation of PNML in ISO/IEC 15909-2 is structured in the PNML Core Model
and the models for the different Petri net types, the formalisation of the concept of a Petri net
type definition was excluded from Part 2. This technique is subject to Part 3 of ISO/IEC 15909,
which is currently planned.

In Part 3, the concept and the technology for defining Petri net types will be explicitly defined.
Moreover, Part 3 will define more features of Petri nets such as read arcs, inhibitor arcs, and
reset arcs as well as timing concepts and concepts from stochastic Petri nets. Based on these
concepts, Part 3 will standardise further versions of Petri nets. Also the API framework for
reading and writing PNML Documents of a particular type could be included to this part of the
standard. Moreover, Part 3 might cover the definition and use of Petri net modules as proposed
in [KW01, WK03].

5 Conclusion

In this paper, we have outlined the concepts of the upcoming standard on a transfer format for
Petri nets: ISO/IEC 15909-2. Once finalised it will be PNML version 2.0 as compared to earlier
versions of PNML presented in scientific papers [JKW00a, WK03, BCvH+03]. In this
presentation, we concentrated on the part of PNML that seems to be agreed upon, which is the
PNML Core Model and P/T-Nets. In particular, the definition of P/T-Nets illustrates how new
Petri net types could be defined in the future, which will be subject to Part 3 of ISO/IEC 15909.

Actually, the focus of ISO/IEC 15909-2 is on the transfer syntax for high-level Petri nets. Here,
we could only sketch the basic idea of the XML-syntax for HLPNGs because the concepts and,
more importantly, the representation in MathML are still under discussion. The PNML home
page [PNML] will inform on new developments and the ongoing discussions, which should be
finalised by June 2006. The formal standardisation process, however, will take some more time.

Acknowledgements

I would like to thank all people who work on ISO/IEC 15909-2 and those who have contributed to or
commented on earlier versions of PNML, which are (in alphabetical order): Jonathan Billington, Søren
Christensen, Jörg Desel, Erik Fischer, Giuliana Franceschinis, Kees van Hee, Lom Hillah, Nisse Husberg,
Matthias Jügel, Albert Koelmans, Fabrice Kordon, Olaf Kummer, Kjeld Høyer Mortensen, Laure
Petrucci, Renier Post, Wolfgang Reisig, Stefan Roch, Karsten Schmidt (Wolf), Christian Stehno, Nicolas
Trèves, Kimmo Varpaaniemi, Michael Weber, and Lisa Wells.

6 Bibliography

 [BBK+00] R. Bastide, J. Billington, E. Kindler, F. Kordon, and K.H. Mortensen
(editors). Meeting on XML/SGML based Interchange Formats for Petri
Nets, Århus, Denmark, June 2000.

[BCvH+03] J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer,
L. Petrucci, R. Post, C. Stehno, and M. Weber. The Petri Net Markup
Language: Concepts, technology, and tools. In W. van der Aalst and
E. Best (editors), Application and Theory of Petri Nets 2003,
24th International Conference, LNCS 2679, pages 483–505. Springer,
June 2003.

[BLLe98] B. Bos, H. W. Lie, C. Lilley, and I. Jacobs (editors). Cascading Style
Sheets, level 2 – CSS2 Specification. 1998.
URL http://www.w3.org/TR/CSS2.

[CDFH91] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On Well-
Formed Coloured Nets and their Symbolic Reachability Graph.
In K. Jensen and G. Rozenberg (editors), Highlevel Petri Nets: Theory
and Application, pages 373–39. Springer 1991.

[ClMu] J. Clark and M. Murata (editors). RELAX NG specification.
URL http://www.oasis-open.org/committees/relax-ng/.

[Cla99] J. Clark (editor). XSL Transformations (XSLT) Version 1.0. 1999.
URL http://www.w3.org/TR/XSLT/xslt.html.

[FJe03] J. Ferraiolo, F. Jun, and D. Jackson (editors). Scalable Vector Graphics
(SVG) 1.1 Specification. 2003. URL http://www.w3.org/TR/SVG11/.

[HKPT05] L. Hillah, F. Kordon, L. Petrucci, and N. Trèves. Model engineeing on
Petri nets for ISO/IEC 15909-2: API framework for Petri net types
metamodels. Petri Net Newsletter, 69:22–40, 2005.

http://www.w3.org/TR/CSS2
http://www.oasis-open.org/committees/relax-ng
http://www.w3.org/TR/XSLT/xslt.html
http://www.w3.org/TR/SVG11/

[ISO04] ISO/IEC 15909-1. Software and System Engineering – High-Level Petri
Nets – Part 1: Concepts, Definitions and Graphical Notation.
December 2004.

[ISO05] ISO/IEC 15909-2 (Working Draft 0.9.0). Software and System
Engineering – High-Level Petri Nets – Part 2: Transfer Format.
June 2005. URL http://www.upb.de/cs/kindler/publications/
copies/ISO-IEC15909-2-WD0.9.0.Ballot.pdf.

[JKW00a] M. Jüngel, E. Kindler, and M. Weber. The Petri Net Markup Language.
Petri Net Newsletter, 59:24–29, 2000.

[JKW00b] M. Jüngel, E. Kindler, and M. Weber. The Petri Net Markup Language.
In S. Philippi (editor), 7.Workshop Algorithmen und Werkzeuge für
Petrinetze, AWPN, pages 47–52, Universität Koblenz-Landau, Germany,
June 2000.

[KP04] F. Kordon and L. Petrucci. Structure of abstract syntax trees for coloured
nets in PNML. Version 0.2 (draft), June 2004.
URL http://mefosyloma.cnam.fr/PDF/prop-tree-struc.pdf.

[KW01] E. Kindler and M. Weber. A universal module concept for Petri nets. An
implementation-oriented approach. Informatik-Berichte 150, Humboldt-
Universität zu Berlin, June 2001.

[PNML] The Petri Net Markup Language Home Page.
URL http://www.informatik.hu-berlin.de/top/pnml/.

[SMe00] M. Sperberg-McQueen and H. Thompson (editors). XML Schema.
April 2000. URL http://www.w3.org/XML/Schema.

[Ste02] C. Stehno. Petri Net Markup Language: Implementation and Application.
In J. Desel and M. Weske (editors), Promise 2002, Lecture Notes in
Informatics P-21, pages 18–30. Gesellschaft für Informatik, 2002.

[Ste05] C. Stehno. Interchangable high-level Petri nets. Petri Net Newsletter,
69:8–21, 2005.

[WK03] M. Weber and E. Kindler. The Petri Net Markup Language. In H. Ehrig,
W. Reisig, G. Rozenberg, and H. Weber (editors), Petri Net Technology
for Communication Based Systems, LNCS 2472, pages 124–144.
Springer 2003.

http://www.upb.de/cs/kindler/publications/
http://mefosyloma.cnam.fr/PDF/prop-tree-struc.pdf
http://www.informatik.hu-berlin.de/top/pnml/
http://www.w3.org/XML/Schema

