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Abstract. The ePNK is a platform for Petri net tools based on the
PNML transfer format. One of its important features is its extensibility,
which allows developers to plug in new Petri net types and new functions
and applications for different kinds of Petri nets.

The basic version of the ePNK provides an editor for high-level Petri nets,
but no analysis or simulation functionality. In this paper, we present a
simulator for high-level Petri nets, which supports most of the built-in
operators of ISO/IEC 15909-2. As an additional feature, this simulator
allows the simulation of so-called network algorithms.

In this paper, we briefly show how to use this simulator from the end
user’s point of view. Moreover, we discuss some of the concepts underly-
ing this simulator and its implementation.

Keywords: ePNK, high-level Petri net, high-level Petri net schema, network
algorithm, simulator, PNML, ISO/IEC 15909.

1 Introduction

The ePNK [11, 12] is a platform for Petri net tools based on the PNML transfer
format and, in particular, on the underlying PNML core model [6]. One of the
important features of the ePNK is its extensibility: it is easy to plug in new Petri
net types and new functions and applications. The basic version of the ePNK
supports high-level Petri nets: there is a graphical editor which can load, edit,
and save high-level nets3 and check their syntactical correctness. But, there is
no real functionality for high-level nets. In particular, there is no simulator for
high-level nets yet.

3 In ISO/IEC 15909-2:2011, high-level nets are called High-level Petri Net Graphs
(HLPNGs).
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In this paper, we present an extension to the ePNK that allows simulating
high-level nets. This simulator was developed as part of a master’s project [15].
In addition to simulating normal high-level nets, this simulator allows the sim-
ulation of network algorithms [14], which are a special kind of high-level net
schemas that can be instantiated with a concrete network on which the net-
work algorithm should run. In this paper, we briefly discuss high-level nets and
network algorithms and how to use this simulator from an end user’s point of
view.

One of the key issues of simulators for high-level Petri nets is the way of
computing the firing modes in which a transition is enabled. In this paper, we
discuss a data-driven way of computing possible variable bindings, which in par-
ticular allows us to extend high-level nets with new operators without changing
the binding algorithm itself. In some cases, our simulator automatically finds
firing modes of enabled transitions where other tools like CPN Tools [1] do not.

Concerning efficiency, however, our simulator cannot compete with the sim-
ulators for high-level nets such as CPN Tools [5, 19], PROD [23], and Maria [16].
The effort for developing these simulators amounts to several person years4. By
contrast, the simulator presented here was developed by a single student in half
a year [15] – including the integration of the Petri net simulation with a 3D visu-
alisation, similar to the one of PNVis [13] which we do not discussed here. Even
though our simulator, is not the most efficient simulator, it makes an important
contribution: it is the first high-level net simulator that directly simulates HLP-
NGs as of ISO/IEC 15909-2. For simple nets, it will be a nice additional feature
on top of a mere graphical editor for HLPNGs. In the long run, the flexible
and extensible architecture of our simulator might prove the stepping stone for
developing a more efficient simulator for HLPNGs in the ePNK – developed and
extended driven by the needs and requirements of people using the ePNK and
its extensions.

The rest of this paper is structured as follows: In Sect. 2, we present high-
level nets and network algorithms by the help of an example, and we discuss the
idea of how our simulator calculates the enabled firing modes of a transition. In
Sect. 3, we discuss this idea and the underlying concepts and mechanisms in more
detail; moreover, some of the deviations in the implementation and some other
implementation aspects are briefly discussed. Sect. 3.3 discusses the relation to
existing simulation algorithms.

Though we briefly discuss the use of the high-level net simulator for the
ePNK, this paper does not replace a manual. We refer to the ePNK manual [12]
for details: Chap. 3 of the manual discusses the use of the ePNK in general,
Sect. 3.5.2 discusses high-level nets, and Sect. 3.6.3 discusses the use of the
high-level net simulator specifically.

4 In reply to a question after the presentation of his paper [19], Mortensen estimated
the overall effort for developing the efficient simulator of CPN Tools at about 5
person years.
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2 Examples

In this section, we discuss two examples of high-level nets and how they can be
simulated with the new ePNK simulator. The first example is a normal high-level
net, the second one is a high-level net schema, which actually models a network
algorithm.

2.1 Simple high-level net: Prime numbers

Figure 1 shows a simple high-level net which computes all the prime numbers up
to some upper limit5. The net essentially models the principle of the “Sieve of
Eratosthenes” starting out from all the numbers from 2 to some upper bound.
In our example, the upper bound is 11, and the multiset of all the numbers is
defined as constant N(). Initially, the place numbers contains all these numbers,
the type of the place is POS, which is a built-in sort representing all positive
numbers.

ops

  N() = 1`2 ++ 1`3 ++ 1`4 ++ 1`5 ++ 1`6 ++

            1`7 ++ 1`8 ++ 1`9 ++ 1`10 ++ 1`11;

vars

  x: POS,

  y: POS;

numbers

POS

N()

t

1`x ++ 1`x*y

1`x

Fig. 1. A high-level net computing prime numbers

The constant N() is actually an operator without parameters, which is the
reason it is defined in the operator declaration section – indicated by the keyword
ops. The term 1‘2 ++ 1‘3 ++ 1‘4 ++ 1‘5 ++ 1‘6 ++ 1‘7 ++ 1‘8 ++ 1‘9 ++ 1‘10
++ 1‘11 represents the multiset containing all numbers from 2 to 11 exactly once;
the notation resembles the one of CPN Tools6. The number in front of the prime
symbol (‘) indicates how many times the value after the prime symbol occurs in

5 This example is included in the set of examples devised for the ePNK 1.0.0, which
can be obtained from the ePNK Home Page [3].

6 Note that ISO/IEC 15909-2:2011 does not define a concrete syntax for terms and
sorts of HLPNGs. The ePNK implements its own concrete syntax, which, for simple
terms, comes close to CPN Tools. But, the syntax of the ePNK is not identical to the
syntax of CPN Tools. For details of the legal syntax of terms and sorts of HLPNGs
in the ePNK, we refer to Sect. 3.5.2 of the ePNK manual [12].
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the multiset. The second declaration of this net defines the two variables x and
y, which both are positive numbers. The single transition t of this net captures
the principle of the “Sieve of Eratosthenes”: if there is a number x on place
numbers, and there is a multiple of x on that place – represented by x*y – then
this multiple is removed. Actually, the transition removes both numbers, x and
its multiple x*y, but the out-going arc of the transition returns the x. Only when
there is no number on place numbers that is a multiple of another number on
that place, transition t is not able to fire anymore. Eventually, transition t will
have removed all multiples from place numbers – leaving only prime numbers on
place numbers.

For simulating a transition in a given marking, the simulator must find an
enabled firing mode for the transition, which means finding possible values for
the variables x and y so that the multiset that results from evaluating the term
1‘x ++ 1‘x*y with these values is contained in the current marking of place num-
bers. The values bound to the variables are called a variable binding. Finding
candidates for such variable bindings is simple when the variable x occurs in a
term like 1‘x on the top-level of the multiset term; in this case, the only possible
candidates for the values of x are the numbers contained in the marking of place
numbers. For the other term, 1‘x*y, finding such a variable binding is not so
simple any more, but it is still possible: we know that the result of x*y must be
a number that is contained in the marking of place numbers. Since we know the
possible values of x already and since the multiplication operator, is invertible in
each argument7 the possible values of y can be derived too. Exploiting operators
that are invertible in each argument – and operators with some other character-
istics – all the way down in more complex terms is at the core of our simulation
algorithm for finding possible variable bindings. This makes it possible that the
simulator works fully automatically in many practical cases. More details are
discussed in Sect. 3.1.

Figure 2 shows the ePNK and the simulator for high-level nets running on
this example. The blue textual overlay on the top right of the place represents its
current marking. The green square shown as an overlay over the transition shows
that the transition is enabled in some firing mode. Once the user clicks on that
transition, all the different firing modes in which the transition is enabled will
be shown, and the user can select one. Of course, the simulator can also simulate
automatically – firing transitions at random. In the “Simulation View” on the
bottom left, you can see the complete firing sequence from the initial marking
up to the current point of the simulation. The user can go back and forth in this
sequence by clicking into this sequence or by using the back an forth buttons
in the “ePNK: Applications” view (shown at the bottom right of Fig. 2). For
details on how to start the simulator and on how to open these views, we refer
to Chap. 3.6.3 of the ePNK user manual [12].

7 If we know the value of x * y and we know the value of either x or y, we can derive
the possible value of the other variable too.
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Fig. 2. The simulator running on the prime number example

2.2 Network algorithm: Minimal distance algorithms

Next, we discuss an example of a high-level Petri net schema. Except for syn-
tactic sugar, the example is almost identical to the first publications that used
algebraic net schemas for modelling and verifying network algorithms [14, 25, 21].
The example models a simple algorithm that, for a given network of computing
agents with some distinguished root agents, computes the minimal distance of
each agent from a root agent. The algorithm works in a distributed way, where
each agent is part of the computation, and agents communicate via the commu-
nication channels of the network only. The Petri net8 modelling the algorithm
is shown in Fig. 3.

One of the main features of a Petri net schema is that, the Petri net model
itself is completely independent from the actual network of agents on which the
algorithm is working – that is why it is called a Petri net schema. In the model
from Fig. 3, the set of agents of the network is represented by the sort AGENT,
but this is a symbol only – which still needs some interpretation. The multiset
constant ROOT represents the set of root nodes, and the constant I represents
the set of non-root nodes (or inner nodes).

Moreover, there is an operator N, which takes an AGENT and a natural num-
ber as a parameter. This function represents sending a message from one agent

8 In the example projects deployed for the ePNK 1.0.0, you will find this net in the
sub-folder min-distance of folder network-algorithms.
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sortsymbols

   AGENT;

sorts

   MESSAGE=(AGENT*NAT),

   DISTANCE=(AGENT*NAT);

opsymbols

   ROOT:->MS(AGENT),

   I:->MS(AGENT),

   N:AGENT,NAT->MS(MESSAGE);

vars

   x:AGENT,

   n:NAT,

   m:NAT;

root nodes

AGENT

ROOT() init root

inner nodes

AGENT

I()

init inner

messages

MESSAGE

distances

DISTANCE

update

n<m

1`x

1`x

N(x,1)

1`(x,n)
N(x,n+1)

1`(x,0)

1`(x,n)

1`(x,n)

N(x,n+1)

1`(x,m)

1`(x,n)

Fig. 3. Network algorithm computing the minimal distance to a root

to all its neighbours in the network – where the message itself is a natural num-
ber. A MESSAGE to an agent is represented by a pair, where the first component
is the receiver AGENT and the second component is the actual content of the
message. If there is a distance computed for some agent already, this is also rep-
resented as a pair of an AGENT and a number NAT – for making the difference
clear, we call this pair DISTANCE.

Initially, the place root nodes contains all the root nodes of the network; the
place inner nodes contains all the inner nodes. The transition init root models
the initial step of the root nodes: a root note x sets its own distance to 0, which
is represented as a pair (x,0), and sends a message to all its neighbours that
they might have distance 1 from a root node – the set of all these messages is
represented by N(x,1). Transition init inner models the initial step of the inner
nodes: when an inner node x initially receives some message with some distance
n, it stores this distance as a potential shortest distance, and sends a message
to all its neighbours with distance n+1, which is represented by N(x,n+1). An
inner node x can later receive other messages with another distance n; if the
other distance n is less than its current distance m, the agent takes distance n as
its new distance, and sends a message with distance n+1 to all its neighbours.
This is modelled by transition update.

As said before, the Petri net model from Fig. 3 models the minimal distance
algorithm for any network. If we want to simulate the algorithm, we need to
know on which network it should run. To this end, a very simple network editor
is deployed together with the high-level simulator of the ePNK. Figure 4 shows an
example of a simple network, which was created with this editor. In this case, it is
a network with directed arcs. Note that boxes with rounded edges define different
categories for nodes, and each node (represented as a circle) can be associated
with one or more categories. In our example, there are two categories: ROOT for
root nodes, and I for inner nodes. The colours of the categories and the nodes
indicate which node belongs to which category. When the network simulator is
started (see ePNK manual for details), the simulator will look for a file with the
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Fig. 4. A network on which the algorithm could work

same name as the PNML document – just with a extension “.networkmodel”
or will prompt the user for picking a file with a network. Once the network is
selected, the interpretations of the sort AGENT, the constant symbols ROOT and
I, as well as the function N (sending a message to all the neighbours of the agent)
are defined by this network. For the network of Fig. 4, the set associated with
the sort AGENT is { A, B, C, D, E }; the constant ROOT denotes the multiset
[A, B], the constant I denotes the multiset [ C, D, E ]; for x = A and n = 5, the
term N(x,n) evaluates to the multiset [ (C,5), (D,5) ] – representing the message
5 sent to the neighbors C and D of agent A. These interpretations will be used
for simulating the net.

Figure 5 shows the network simulator running the minimal distance algorithm
from Fig. 3 on the network from Fig. 4 – after the root node A and the inner
node D have taken their initial step. The interaction with the simulator and the
way to control the simulation is exactly the same as for normal high-level nets.

In general, for a given network, the sort AGENT is associated with the set
of nodes of the network; for every category, the respective constant symbol is
associated with the multiset of nodes that are in that category (in our example,
these are the root nodes and the inner nodes). For the operator N, N(x,m) denotes
a multiset of pairs, where for each outgoing arc from x to y there is a pair (y,m)
in the multiset. Note that the network simulator supports a few more operators,
which, however, are not discussed here.

3 Computing variable bindings

The ePNK comes with a Petri net type definition for high-level Petri nets, which
are called High-level Petri net Graphs (HLPNGs) according to the International
Standard ISO/IEC 15909-2:2011. Implementing HLPNGs requires the imple-
mentation of a complete type system for terms: for every term, its associated
sort can be computed. This is needed for checking syntactical and type correct-
ness of terms themselves, but also for checking whether the terms for the initial
marking and the arc annotations fit the type of the respective place, as well as
for checking whether transition conditions have the required type BOOL.
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Fig. 5. Network simulator running on the minimal distance algorithm

For implementing a simulator for HLPNGs, we needed to implement the set
of possible values for each sort of HLPNGs (the sorts domain) – in particular we
needed to implement the domain for multiset sorts, which represent the markings
of a place. Moreover, we needed to implement an evaluation function for terms:
for a given binding of values to some variables, a term in which only these
variables occur is evaluated to a value – using the values of the variables, and
the meaning of the operators occurring in the term. We will later use the notation
from algebraic specifications [2], were β stands for a binding of variables to values
(of the appropriate type), and β(e) denotes the value to which a term e evaluates
under this binding. Since HLPNGs have quite many built-in sorts and operators,
and several of the sorts (like multisets) and operators are generic, implementing
this evaluation of terms is quite some work; the implementation, however, is
straightforward, following through the inductive (bottom up) definition of the
evaluation of terms: implementing the domain of values for each basic sort, each
generic sort, and implementing the evaluation for each operator of HLPNG.

The challenging part of implementing a simulator for high-level Petri nets,
is to automatically compute the firing modes in which transitions are enabled.
For high-level nets with a Turing complete annotation language, this is not even
computable (otherwise, it would be decidable whether a program would return a
certain result for some input value). And even in restricted settings it, very often,
cannot be computed efficiently (since finding a binding effectively computes the
inverse of a function, which is not efficiently possible for one-way functions). Still,
in many typical situations – as in our examples from Fig. 1 and 3 – the possible
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firing modes can be computed efficiently. Due to the general undecidability, the
last resort is prompting the user for possible values for variables. But, this should
happen only in rare occasions.

In Sect. 3.1, we discuss some general principles and concepts of how to com-
pute possible firing modes for high-level nets – with the focus on the underlying
concepts, but without formalizing them. In Sect. 3.2, we discuss some aspects
of the implementation of the simulator for high-level nets in the ePNK, which
follows the general idea, but deviates in some details.

3.1 Principles and concepts

Before discussing what possible firing modes are and how they can be computed,
let us have a brief look at the problem of finding potential variable bindings for
which a transition is enabled (i. e. finding possible firing modes of a transition).
To this end, we have a look at the example from Fig. 1 again. Let us assume
that the marking9 m of place numbers is 1‘2 ++ 1‘3 ++ 1‘5 ++ 1‘6 ++ 1‘7
++ 1‘11 as shown in Fig. 2. Now we need to find values for variables x and y
– a variable binding – such that the term 1‘x ++ 1‘x*y evaluates to a subset
(actually a sub-multiset) of the marking m. From the structure of the term, we
can derive right away that the only way to achieve this is that x is bound to
one of the values contained in the multiset m, i. e. to 2, 3, 5, 6, 7, or 11. And
likewise we know that x*y should evaluate to one of these values. This is actually,
were some simulators for high-level nets would stop already; they find possible
values for x, but not for y. We checked the example from Fig. 1 in the probably
most used tool for high-level Petri nets, CPN Tools [1]: CPN Tools could not
automatically fire the transition10 .

Knowing the possible values for x and the possible values for x*y, however,
can be exploited further. If we know a possible value of x, say 3, and a possible
value for x*y, say 6, we can derive a possible value for y: in this case, it would
be 2. Of course, there could be combinations of result and argument values, for
which there is no possible value for y at all. The reason that we were able to
derive a value for y in the above example is, that the multiplication operator on
positive numbers is invertible in each argument : i. e. if we know the value of the
result and that of one argument of the operator, we can derive the value of the
other argument – or we can conclude that, for the given combination of values,
there would be no argument that could produce the result. The latter would, for
example be, the case if we chose the possible value for argument x to be 6 and
the possible result value for x*y to be 11.

9 Note that we use the syntax of terms for representing values since we need to rep-
resent values somehow. A value, however, is fundamentally different from a term
representing it. In order to emphasize this, we typeset terms that we use for repre-
senting a value in italics.

10 To be fair, let us mention that, with a minor change, CPN Tools would be able to
automatically compute the binding again; likewise adding a pattern (see discussion in
Sect. 3.3) to CPN Tools´ binding mechanism would make the computation possible
again.
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This way, operators that are invertible in each argument allow us to derive
possible values of other sub-terms, and eventually possible values of some vari-
ables in a top-down fashion. Once we find new possible bindings for variables, we
can evaluate some other sub-terms bottom up; if, this way, all but one argument
of an operator that is invertible in each argument are available, the possible
values of the sub-term for the remaining argument can be computed too.

Before we discuss some more details, let us have a brief look at a slightly
different situation. Suppose that we have a term x+y, where both variables are
of sort POS, and suppose that 4 is a possible value of the term x+y. Then, we
can derive possible values of both arguments of the + operator – in this case the
two variables x and y: both variable could take values between 1 and 3. In this
case, out of a single possible value for the term, we can derive more than one,
but finitely many possible values for both arguments. Note that this is no longer
possible if the variables are of type INT: as soon as we allow negative numbers,
there would be infinitely many possibilities. We call an operator like the + on
positive numbers an operator with finitely many inverse images.

Above, we have discussed how to derive the possible bindings for variables
that would make a term evaluate to some result value. When actually calculating
possible firing modes of a Petri net, there is a minor twist. The arc annotations
of a Petri net do not need to evaluate to the value of the marking of the attached
place, but to a sub-multiset of this marking. We will discuss this special case on
the top-level later in the implementation section. In order to avoid this special
case in our conceptual discussion, however, we slightly change the setting now:
for the arc, we introduce a fresh and unique variable Z with sort MS(POS), which
denotes the multisets over the positive numbers; instead of computing variable
bindings that evaluate the term 1‘x ++ 1‘x*y to a sub-multiset of marking m, we
now compute variable bindings that evaluate 1‘x ++ 1‘x*y ++ Z to m – which
is equivalent. We call the term 1‘x ++ 1‘x*y ++ Z the extended arc annotation
of the respective arc.

In general, a transition t can have more than one incoming arc. In that case,
we need to find a variable binding β so that the extended arc annotation ei
of every in-coming arc evaluates to the current marking mi of the source place
of that arc, and the transition condition c needs to evaluate to true. We call
a variable binding β an equalizer11 for transition t in the current marking, if
β(c) = true and, for each ei, we have β(ei) = mi.

Our examples above gave an idea already on how possible variable bindings
can be identified, by identifying possible values for sub-terms, and by evaluating
all sub-terms for which the possible values for variable bindings are known.
The crucial point now is to characterize the different classes of operators, which
allow us to derive possible values for all arguments, when the result value and,
possibly, the value of some arguments are known. We distinguish three kinds of

11 We do not call it unification, since unification – though similar in spirit – is typically
used for syntactical equality. Our equalizer means semantic equality.
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operators: constructors12, operators that are invertible in each argument, and
operators with finitely many inverses images. These are explained below.

Constructors An operator is a constructor, if for any given result value, the
values of all its arguments can be uniquely determined, so that the opera-
tor applied to the argument values gives the result value – or there are no
arguments for the operator that would provide the result value at all.
Examples of constructors are: the tuple operator (x,y,z), the list append
operator append(L,x) that appends a single element x to a list L, and the
multiset operator n’x.
An example of a situation where there would not be any possible argument
value for a constructor is the following: there are no argument values for
L and x which could make append(L,x) evaluate to the empty list. This,
typically, means that there is another constructor for this data type; in the
case of lists, this would be the empty list.

Invertible in each argument An operator is invertible in each argument, if
for any given result value and any given values for all but one argument of the
operator, the value of the remaining argument can be uniquely determined
so that the operator applied to all argument values gives the result value –
or there is no value for the last argument at all for which the operator would
provide the result value.
Note that, in order to be precise, we should call this kind of operators “par-
tially” invertible in each argument, since it is okay, if no value for the last
argument exists. But, in order not to be too verbose, we drop the “partially”
from our terminology.
Examples of operators that are invertible in each argument are: multiset ad-
dition ++, addition +, and subtraction - on all kinds of numbers13. Actually,
also the equality on each sort and the boolean negation are invertible in each
argument.
Note that the multiplication * is almost invertible in each argument – the
only exception is the case of the result value and one argument value being
0. In that case, the remaining argument could be any number. For positive
numbers, however, multiplication * is invertible in each argument – which
we exploit in our example.
By definition, every constructor is invertible in each argument – we do not
need the argument values at all for determining the value of the remaining
argument in a constructor.

Finitely many inverse images An operator has finitely many inverse images
if, for any given result value, there are only finitely many possible values
for its arguments, for which the operator would evaluate to the given result
value (note that there might be no arguments at all).

12 Note that our notion of constructors resembles the notion of constructors in func-
tional programming. It is different from constructors in object oriented programming
languages; in Scala the constructors would be case classes.

13 With floats, there would be some numerical issues, though, which we do not want
to go into here.
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Examples of operators with finitely many inverse images are the addition
operator + on natural and positive numbers14, and all the binary boolean
operators have finitely many inverse images. Also the multiplication on pos-
itive numbers * and the multiset addition ++ has finitely many inverse
images – as long as we restrict ourselves to finite multisets.

Again, every constructor has only finitely many inverse images by definition.

If we now have a set of equations that are supposed to be equalized, the
characteristics above can be exploited to systematically derive a set of possible
values of some sub-terms. To this end, we start with the possible values of the
top-level terms, since these are given by the equations. Operators with the above
characteristics can be used to compute possible values of sub-terms. At first, i. e.
when no values of the other arguments are known, this would be possible only for
constructors and operators with finitely many inverse images, but as soon as we
have identified possible values of variables, also operators that are invertible in
each argument can be exploited to compute possible values of the remaining sub-
terms. Note that from the characteristics of the operators above, we can assign
also the empty set to a sub-term, indicating that there would be no possible
value for this sub-term. When we obtain a value for a sub-term that happens to
be a variable, we know the possible value for this variable. Knowing the possible
values of a variable, in turn, allows us to compute values of possible sub-terms
in a bottom up way, for terms in which only these known variables occur. This
way, we can compute possible values of more sub-terms, which – in turn – allow
us applying operators that are invertible in each argument for deriving values
of other sub-terms. Iterating this as long as new possible values of sub terms
can be found will eventually terminate. There are two different cases: if all sub-
terms and, in particular, all variables were assigned some set of possible values –
including the empty set, we know that these are all the possible values for these
variables. If the set of possible values for some sub-term is empty, we would
know that there is no possible binding. If the set of possible values for all sub-
terms is non-empty, this gives us the possible values for all variables. If some
sub-term was not assigned anything, not even the empty set, then the result is
inconclusive: in this case, the simulator would need to interact with the end-user
to ask for possible values for the non-assigned variables.

Note that, in principle, the above idea works just driven by the already
calculated values for the different sub-terms and the rules for deriving new values
for sub-terms based on the above categories of operators. The implementation,
however, uses some more specific strategies, which are discussed in Sect. 3.2. The
idea above does not require the operators to fall into any of the categories above.
In that case, however, the possible values of its sub-terms can be determined only
if the value of all its variables can be derived from other sub-terms. If this is not
possible, user interaction will be necessary.

Actually, the idea above would require to keep track of possible combination
of values for the different variables. The reason is that, by the last category

14 Note that + has infinitely many inverse images when negative numbers are included.
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of operators (finitely many inverse images), a sub-term is not assigned a single
value, but a set of values. The conceptually easiest way to deal with this is to
maintain each combination of possible values for sub-terms separately – each of
which would corresponds to a partially computed binding. As soon as several
new values need to be added for one sub-term, the existing partial binding would
be copied as many times as there are new values for the new sub-term. Since our
current implementation works in a different way, we do not discuss the details
here. Experiments with different strategies and implementing the above idea in
a completely data driven way might be an interesting direction for future work.

Our implementation maintains sets of possible values for all sub-terms, and
only in the end tries all combinations of values for the variables, by re-evaluating
the terms again. This is needed anyway, as soon as possible values for variables
are provided by the end-user since we can never be sure that they are actually
possible. Therefore, we need to validate all computed possible values in the end
anyway.

3.2 Implementation

In the previous section, we have discussed the general idea of how to compute
the possible firing modes of a transition. As discussed already, the actual im-
plementation of our simulator does not work completely data-driven. There are
two main differences: First, the top-level terms of arc annotations are handled
differently exploiting that an arc annotation needs to evaluate to a subset of the
marking directly. Second, the order in which the values of sub-terms and vari-
ables are computed, is not implemented in a purely data-driven way; instead,
the sub-term for which the next value is calculated is determined by the number
of yet un-assigned variables: the sub-term with the least un-assigned variables
is chosen. In case, the value for this sub-term cannot be derived, the user is
prompted for input.

Let us discuss the way our simulator handles the top-level terms in a little
more detail. The simulator assumes that the arc annotations have the structure
n1‘m1 ++ n2‘m2 ++ ... ++ nk‘mk, where the ni are terms of sort POS and
mi are terms of the multiset sort over the places sort15. For each of the sub-
terms ni‘mi, the possible values for ni and mi are determined by the value of the
current marking of that place. For each value v contained in the multiset, v is
a possible value for sub-term mi; and all the values from 0 up to the number of
times v occurs in the multiset are possible values for ni. This is (almost) what an
application of the operators ++ as an operator with finitely many inverses and
the operator ‘ as a constructor would give as a bindings for the term n1‘m1 ++
n2‘m2 ++ ... ++ nk‘mk ++ Z. But, since it exploits the structure directly, we
deemed that doing this directly would be more efficient – in particular, this seems
to be what other tools do as well (see Sect. 3.3). Since the possible values for
the different terms ni‘mi are now determined independently of each other, there

15 If the term does not have this structure, the value of its variables must be derived
from the other terms – or user input will be required.
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might be some overlap between the different terms in using the same available
tokens; therefore, we need to do a final evaluation in the end whether the bound
values do really match.

In order to make the implementation more flexible and easier to extend,
the simulator has a registry to which the evaluation for each operator can be
registered. Likewise the computation of the inverse for the remaining argument of
an argument can be registered with the simulator. This way, it is straight-forward
to implement the remaining operators of ISO/IEC 15909-2, if need should be,
and also to implement the inverse for more operators.

As mentioned above, the binding algorithm is not yet implemented in a
fully data-driven way. This is left for future experiments, which would probably
require much fine-tuning in order to obtain the necessary performance.

3.3 Discussion

Above, we have distilled the basic idea and concepts for computing the enabled
firing modes of a transition, which is at the core of all simulators for high-level
Petri nets that do not unfold the high-level net to a low-level net. High-level nets
and simulators for high-level Petri nets have been around for quite a while now
[4, 9, 20, 22, 8, 10] and different kinds of simulators have been implemented for
high-level Petri nets, with similar ideas underlying the computation of enabled
firing modes. We do not claim that our ideas are specifically original or that our
simulator is more efficient than some existing ones – actually it is less efficient.
But, to the best of our knowledge, our simulator is the first supporting HLPNGs
as of ISO/IEC 15909-2 directly. In addition, our simulator is able to automati-
cally simulate some nets, which cannot be simulated automatically with two of
the most powerful simulators CPN Tools [1], and probably16 Maria [17].

Another contribution of this paper is distilling the essence of the algorithm
that computes the firing modes of a transition in such a way that it is completely
data driven. The concepts used are close to the ones described in the algorithm
underlying CPN Tools [5], PROD [23, 24] and Maria [16]. But our concepts and
our implementation is sightly more general – and therefore less efficient. One
of our main concerns was that, in most cases, the end-user should be presented
with all possible firing modes, from which he can select. And in case the firing
mode cannot be computed, it should be possible for the end-user to provide
some suggestions for bindings for some variables, based on which a full binding
is computed automatically– in the GUI, this will be indicated by grey overlays
instead of green ones.

Let us briefly relate the concepts used in CPN Tools and Maria to our con-
cepts. In both tools, much effort was put into the efficient implementation of the
binding algorithm and, in particular, in efficiently updating possible bindings

16 We checked the example of Fig. 1 in CPN Tools, and it could not compute a firing
mode. We do not have a running version of Maria, but from the analysis of the
binding algorithm [16], Maria would not be able to find a binding in this case.
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after a has transition fired. CPN Tools algorithm [5, 19], basically, use two tech-
niques to automatically compute the bindings: patterns are very similar to what
we call constructors; moreover, CPN Tools uses dividables, which, in particular,
are used to split up multisets. And patterns could also be used to deal with
inverse functions. The dividables are similar to our implementation of splitting
up the multiset addition ++. Haagh and Hansen [5] briefly mention the possi-
bility of invertible operators, but this is not followed up on – and is probably
not implemented. Haagh and Hansen also exploit the equations in the transition
condition for deriving values of some variables. In our conceptual approach, it
is not necessary to do this explicitly since the boolean operators have finitely
many inverse images, and the equality operator is invertible in each argument:
with this information it is possible to deduce the value of the variable without
introducing this special case – except for efficiency.

In Maria, Mäkelä [16] used three notions, which are constructors, unary in-
vertible operators, and splitting of arcs. Our notion of constructors is identical
with his, and splitting of arcs is very similar to the dividable arcs of Haag and
Hansen and our implementation for top-level annotations. Mäkelä explicitly ex-
ploits invertible operators, but only in the case of unary operators – in the special
case of unary operators, our notion of being invertible in each argument is iden-
tical to being invertible. But our algorithm can deal with operators with more
than one argument, which is slightly more general – as shown by our example.

In his PhD thesis [18], Mäkelä points out that many other simulators and
state space generators actually do not directly compute a firing mode, but rather
unfold the high-level net. CPN Tools, PROD – a kind of precursor of Maria
– and Maria are some of the few notable exceptions. With our simulator, we
add another one. And the conceptual presentation should give some room for
future experimentation with different kinds of implementations of simulators for
HLPNGs based on the ePNK.

4 Conclusion

In this paper, we have presented a simulator application for the ePNK, which
allows simulating high-level Petri nets. To the best of our knowledge, this is the
first simulator directly supporting HLPNGs of ISO/IEC 15909-2. The ePNK,
the simulator and more details on how to install, how to use the ePNK and the
simulator as well as some example nets can be found on the ePNK home page
[3].

In our presentation, we distilled some characteristics of operators of high-level
nets which can be exploited to compute the enabled firing mode in a completely
data driven way. Though this idea is not completely new, some concepts are
slightly more general, which allows our simulator to automatically simulate some
nets which cannot be simulated by other high-level Petri net simulators.

The simulator was developed as a master’s project at the Technical Univer-
sity of Denmark [15] with the focus on flexibility and extensibility. We hope that
this provides the stepping stone for a stepwise improvement of the simulator,
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which eventually leads to an efficient simulator for HLPNGs [7] as an applica-
tion for the ePNK.
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17. Marko Mäkelä. Maria: Modular reachability analyser for algebraic system nets. In
J. Esparza and C. Lakos, editors, Application and Theory of Petri Nets 2002, 23rd

International Conference, volume 2360 of LNCS, pages 434–444. Springer, June
2002.
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