
High-level Petri Nets – Transfer Format
– Working Draft of the International Standard ISO/IEC 15909 Part 2 –

Version 0.5.0

Ekkart Kindler
University of Paderborn

November 8, 2004

1

Contents

1 Scope 6

2 Conformance 8

3 Normative References 9

4 Terms and Definitions 10

4.1 Definitions from Part 1, ISO/IEC 15909-1 10

4.2 Definitions for Part 2 . 11

4.3 Abbreviations . 14

5 PNML Concepts 14

5.1 General Principles . 14

5.2 Core Model . 16

5.2.1 Petri nets and objects. 17

5.2.2 Labels. 19

5.2.3 Graphical information 21

5.2.4 Tool specific information (ToolInfo) 21

5.2.5 Pages and reference nodes. 22

5.3 Petri Net Type Models . 23

5.3.1 Place/Transition Systems 24

5.3.2 High-Level Petri Net Graphs 25

5.3.3 BuiltIn Sorts and Functions 29

2

6 PNML Syntax 31

6.1 PNML Core Model . 33

6.1.1 PNML elements. 33

6.1.2 Labels . 34

6.1.3 Graphics . 35

6.1.4 Example . 36

6.2 Graphical representation (non-normative) 38

6.2.1 Graphical appearance 38

6.2.2 Transformation to SVG 40

7 Features and Type Definition Interfaces 42

7.1 Feature Definition Interface 42

7.2 Type Definition Interface . 44

A RELAX NG Grammar for PNML (Normative) 46

A.1 RELAX NG Grammar for Basic PNML (without pages) 46

A.2 RELAX NG Grammar for Structured PNML (with pages) . . . 59

B RELAX NG Grammar for Conventions (Normative) 62

C RELAX NG Grammars for PNTDs (Normative) 66

C.1 Place/Transition-Systems . 66

C.2 HLPNGs . 68

D Guidelines for Introducing New Net Classes 73

3

Preface

...

Editor’s note: At the meeting in Brisbane (May 2004), there was a
request to use a Word template in order to make this document
conform to JTC1 format. The problem with this request is that
we use much material from scientific papers, which are all written
in LaTeX format. There is no easy or efficient way to convert La-
TeX to Word (in particular concerning formating issues of XML
and code examples). Moreover, working with Word on this kind
of material requires extra effort, even after the material has been
converted to Word (for example, there is no way to properly main-
tain a Word document under the control of a version management
system).

Therefore, this document is still written in LaTeX. I hope that,
eventually, we will have a LaTeX style, which makes this docu-
ment appear in the required format.

If ISO/IEC insist on using Word for these working drafts, I (Ekkart
Kindler) am asking for someone else to do the editor’s job.

Introduction

0.0.0.1 This is the working draft (version 0.5) of ISO/IEC 15909-2 for
a Transfer Format for High-level Petri Nets. It is based on [22, 4, 15] and
comments from the ISO/IEC JTC1/SC7/WG19 meeting in Brisbane 10-14
May 2004.

0.0.0.2 At its meeting in Brisbane, WG19 agreed that the scope of Part
2 will be restricted to the scope of Part 1. Thus no modularity constructs will
be included in this initial standard. The inclusion of modularity will occur
in Part 3 of the standard, and then once this is done, the Transfer Format
will be enhanced either by addenda or as part of the 5 year revision cycle.

4

There is no problem with including ideas for extensions, such as modular-
ity and time, in an informative annex of Part 2. There is also no problem
with commencing a draft of Part 3, if resources permit. It was agreed that
publishing a first cut at the Transfer Format in a timely manner was much
more important than trying to get a more complete version published, and
not meeting our schedule. The work is currently delayed by one year from
the schedule proposed in the NWI. A new schedule for Part 2 is as follows:

Due Date Action
1 July 2004 Circulate WD to SC7 after discussion

at Bologna Workshop
September 2004 Format according to JTC1 Word Template
October 2004 Complete P/T system syntax, revise Meta Model

and its explanation
November 2004 Interim Meeting of WG19: Discuss and resolve

National Body comments on WD
April 2005 Include HLPNG syntax and circulate to WG19
May 2005 Plenary Incorporate WG19 comments, advance to CD
1 July 2005 Send to SC7 for CD registration and ballot
1 July 2006 Send to SC7 for FCD ballot
1 July 2007 Send to SC7/ITTF for FDIS ballot

Editor’s note: I agree to the statement that the work on Part 2 should
not be delayed by introducing concepts that were not covered in
Part 1 of the International Standard. But, I feel that including
modularity would not delay the work; actually, at the Bologna
meeting there were many request to include modularity and there
was aggreement on the concepts of modular PNML.

It is correct that Part 1 does not deal with pages and modules.
But when it comes to transfer formats, we must deal with such
concepts. Todays nets are much to large to fit on a single paper.
Therefore, most tools support one concept or another for split-
ting a net up into different parts. If the transfer format does not
support splitting a single net into parts, it will be completely use-
less. Even worse, every tool will come up with its own extension
to deal with this problem, which will undermine the standard.

5

PNML’s page concept was accepted by the Petri net community
right away. Therefore, pages are included in this draft.

Even modular PNML got strong support at the Bologna meeting.
Therefore, including this module concept should be seriously con-
sidered, because some tools have problems mapping there struc-
turing concepts to the page concept alone.

0.0.0.3 National Bodies are asked to comment on this draft.

0.0.0.4 Informal comments can be sent directly to the editor (Ekkart
Kindler, kindler@upb.de) or can be discussed on the PNX-Mailinglist (see
http://www.informatik.hu-berlin.de/top/PNX/ for details).

1 Scope

1.0.0.1 This International Standard defines a transfer format for Petri
nets. It is based on XML and called the Petri Net Markup Language (PNML).
PNML facilitates the exchange of Petri nets among different Petri net tools.

1.0.0.2 There are many different variants of Petri nets. High-level Petri
Nets as defined in ISO/IEC 15909-1 are one version that attempts to cover
many variants of Petri nets, although not all. This has been achieved by using
the widely accepted coloured Petri net semantics as the semantic model, and
an abstract mathematical syntax based on algebraic specification techniques.
This covers Petri net classes such as Elementary nets, Place/Transition sys-
tems, well formed nets and many-sorted algebraic nets.

1.0.0.3 One objective of this transfer format is to support the exchange
of Petri Nets among different tools, even if the tools support slightly different
versions of Petri Nets. Features of Petri nets not known to other tools, should
be easily ignored without losing all information.

6

kindler@upb.de
http://www.informatik.hu-berlin.de/top/PNX/

Editor’s note: This is the main reason for introducing the concepts of
the PNML Core Model, the Features Definition Interface, and the
Petri Net Type Definition Interface first, which might appear a
bit complicated on first glance. The reason for introducing it was
a major requirement on an interchange format that was identified
by the Petri net community (in Aarhus in June 2000): the format
must support the exchange of Petri Nets or at least most parts of
it, even if the tools do not support exactly the same type of Petri
net.

Maybe, we should stress this even more in this section

1.0.0.4 Therefore, this International Standard defines the core concepts
that are common to all kinds of Petri nets. These concepts are captured in the
PNML Core Model. Based on this Core Model, this International Standard
defines an interface for defining the special features of particular versions of
Petri nets, the Features Definition Interface. Moreover, this International
Standard defines an interface for choosing and combining features defined
according to the Features Definition Interface in order to define a transfer
format for a particular version of Petri nets. This is called the Petri Net
Type Definition Interface. A definition of a Petri Net Type according to this
interface is called a Petri Net Type Definition (PNTD).

1.0.0.5 In order to define a concrete transfer format for Petri Nets, this
International Standard specifies also a Petri Net Type Definition for Place/-
Transition Nets and for High-level Petri Nets as defined in Part 1 of this
International Standard (ISO/IEC 15909-1). It thus defines a transfer format
for High-level Petri Nets. Well-Formed Petri Nets are defined as a special
case of High-level Petri Nets. The definition of other features of Petri nets
and of other versions of Petri nets, such as those incorporating time, will be
defined in Part 3 of this International Standard (ISO/IEC 15909-3).

1.0.0.6 The PNML Core Model as defined in this International Standard
also includes a simple concept for structuring Petri nets into different pages.
More complex structuring mechanisms and a module concept are not part of
this International Standard. These will be defined in ISO/IEC 15909-3.

7

Editor’s note: Including modularity into Part 2 should be seriously
considered. See editor’s comment in the introduction.

2 Conformance

2.0.0.1 There are different kinds of Conformance to this International
Standard.

2.0.0.2 First, documents can be conformant to the Features Definition
Interface as defined in this International Standard. Such a document is called
a Feature Definition.

2.0.0.3 Second, documents can be conformant to the Petri Net Type
Definition Interface as defined in this International Standard. Such a docu-
ment is called a Petri Net Type Definition (PNTD).

2.0.0.4 This International Standard itself defines three Petri Net Types:
Place/Transition Nets, Well Formed Nets, and High-level Petri Net Graphs
as defined in Part 1 of this International standard. These three Petri Net
Types are called Standard Petri Net Types.

Editor’s note: Right now, I am not sure whether we need separate
Type Definitions for High-level Petri Net Graphs and Well-Formed
Nets. I think that we could use the same Type Definition, with
some additional restrictions on the built-in sorts and operations.
This needs to be discussed.

8

Editor’s note: There could be more Standard Petri Net Types. But,
these three are the ones included right now in this International
Standard. Perhaps, we should mention somewhere that more
Standard Petri Net Types could be defined, and a procedure how
to publish such Standard Petri Net Types. This could be done in
Appendix D.

2.0.0.5 Third, a document can be conformant to the PNML Core Model,
but not (necessarily) referring to a Petri Net Type. Such documents are called
PNML documents.

2.0.0.6 Forth, a PNML document can be conformant to some Petri Net
Type Definition. Such a document is called a PNML document of this par-
ticular Petri Net Type.

2.0.0.7 Fifth, a PNML document that are conformant to a Petri Net
Type Definition, which is defined within this International Standard, are
called PNML documents of this Standard Petri Net Type.

3 Normative References

3.0.0.1 The following references are indispensable for the application of
this International Standard.

Editor’s note: Here is only a list of standards with their names, with-
out the necessary details. These details need to be filled in later.

• ISO/IEC 15909-1 Software and system engineering – High-level Petri
Nets, Concepts, definition and graphical notation.

• UML

9

Editor’s note: Currently, we do not use special concepts of UML.
Therefore, the precise version of UML should not matter. Do
we refer to UML 1.4.1 (ISO/IEC 19501) or to UML 2.0?

There was a proposal to use XMI for making the meta model
an XML transfer format. This is not yet captured here. In
case we use XMI, it must be added here. When using XMI,
the problem of exchanging Petri nets sharing some features
but are not exactly of the same type is yet to be solved.

• XML

• XML Schema

• XSLT

• CSS

• SVG

• RELAX NG

4 Terms and Definitions

4.0.0.1 For the purpose of this International Standard, the following
terms and definitions apply.

4.1 Definitions from Part 1, ISO/IEC 15909-1

4.1.0.1 The following terms and definitions are adopted from Part 1 of
this International Standard.

4.1.0.2 Arc, Arc Annotation, Arity, Basis Set, Declaration, High-level
Petri Net, High-level Petri Net Graph, Many Sorted Algebra, Marking (of
a net), Marking of a place, Multiset, Net, Net Graph, Node, Petri Net,
Node, Place/Transition Net, Operator, Place, Place Type, Signature, Sort,
Argument Sort, Range Sort, Term, Closed Term (Ground Term), Transition,
Transition Condition, Type.

10

4.2 Definitions for Part 2

4.2.0.1 Annotation A label represented as text near the corresponding
object in a net graph.

4.2.0.2 Attribute A label that governs the form or shape of the corre-
sponding object in a net graph.

4.2.0.3 Conventions Document A document containing Feature Def-
initions that are considered to be Standard Features. These Features can be
used in Petri Net Type Definitions.

Editor’s note: If this Standard will be confined to a transfer format
for P/T-Systems and HLPNGs only, the Conventions Document
could be omitted here. This Standard defines all mechanisms for
defining Features and Petri Net Types anyway. So it does not
hurt to introduce the concept of a Conventions Document.

4.2.0.4 Feature A Feature is a particular extension used in some version
or several versions of Petri nets. A feature is represented by a label that may
be or must be present at some arc or node of the net or as a label of the
net itself. A feature definition defines the structure of the information within
such a label. The same feature may occur in different variants of Petri nets.
Therefore, there is a separate interface for defining features, which can then
be used in Petri Net Type Definitions.

4.2.0.5 Features Definition The definition of a feature according to
the Features Definition Interface. Basically, it defines a label that may or
must be present at a node or arc of the net graph or in the net itself.

4.2.0.6 Features Definition Interface An interface used for defining a
feature or a set of features. It defines the structure of a document containing
Feature Definitions. Basically, it defines the structure of labels that may or
must be present at an object of the net graph or in the net itself.

11

4.2.0.7 Standard Feature A feature that is defined in a (informal or
formal) standard. It could be published in a Conventions Document.

4.2.0.8 Graphical Information The information required to define the
graphics associated with each object of a net graph as well as its labels.

4.2.0.9 Global Label A label associated with the Petri net graph itself,
rather than with a Petri net object.

4.2.0.10 Label Information associated with a net graph or one of its
objects. The labels that may be used in a Net Graph will be defined in a
Petri Net Type Definition.

4.2.0.11 High-level Petri Net graph with pages A high-level Petri
net graph that is structured using pages.

4.2.0.12 Net Graph with Pages A net graph that is structured using
pages.

4.2.0.13 Object (of a Net Graph) The arcs and nodes a net graph.
In a net graph with pages, pages and reference nodes are also considered
objects.

4.2.0.14 Page A structuring mechanism used to split large Petri net
graphs into smaller parts. The Petri net will be split into parts called pages.

4.2.0.15 Petri Net Document A document that contains one or more
Petri nets (of some type).

4.2.0.16 Petri Net Type Definition (PNTD) A document defining
the format of a particular version of Petri nets. The structure of this doc-
ument is defined by the Petri Net Type Definition Interface. A Petri Net
Type Definition, can refer to Features defined in some Feature Definitions
documents.

12

4.2.0.17 Petri Net Type Definition Interface There are many dif-
ferent versions and variants of a Petri net. Basically, all versions of Petri
Net Graphs share the underlying net structure. The specifics of a particular
version of Petri nets will be defined in terms of labels that may or must be
attached to the objects of a Petri Net Graph. The Petri Net Type Definition
Interface is a technique for defining the format of a particular version of Petri
net. It defines the structure of a document defining a Petri net type.

4.2.0.18 Standard Petri Net Type Definition (PNTD) A Petri Net
Type Definition that is published in this or other (formal or informal) stan-
dards. In this International Standard we define Standard Petri Net Types
for Place/Transition-Systems, High-level Petri Net Graphs, and Well-Formed
Nets.

4.2.0.19 PNML Core Model The model of the graph structure that is
common to all versions of Petri nets.

4.2.0.20 Reference Node A representative of a node defined on another
page of a HLPNG with pages. This node does not carry any semantical
information itself. Rather, it has a pointer to the other node.

4.2.0.21 Reference Place A reference node that is a place. Its reference
must point to another reference place or to a place.

4.2.0.22 Reference Transition A reference node that is a transition.
Its reference must point to another reference transition or to a transition.

4.2.0.23 Source Node The node associated with the start of an arc.

4.2.0.24 Target Node The node associated with the end of an arc.

4.2.0.25 Tool Specific Information Information associated with net
graph objects that is specific to a particular tool and is not meant to be used
by other tools.

13

4.3 Abbreviations

• HLPNG: High-level Petri Net Graph

• WFN: Well-Formed Petri Net

• PNML: Petri Net Markup Language

• PNTD: Petri Net Type Definition

• UML: Unified Modelling Language

• XML: eXtensible Markup Language

• SVG: Scalable Vector Graphics

• XSLT: eXtensible Stylesheet Language Transformations

• CSS: Cascading Stylesheets

5 PNML Concepts

5.1 General Principles

5.1.0.1 This International Standard defines a transfer format for High-
level Petri Net Graphs. This transfer format has been designed to be ex-
tended for other or future variants of Petri nets and possibly for other use,
such as the transfer of results associated with the analysis of Petri nets, e.g.,
reachability graphs. In order to obtain this flexibility, the transfer format
considers a Petri net as a labelled directed graph, where all type specific
information of the net is represented in labels attached to the objects of this
graph or attached to the graph itself. A label may be associated with a node
or an arc of the net or with the net itself. This basic structure is defined in
the PNML Core Model, which is discussed in Clause 5.2.

14

Editor’s note: The term “PNML Meta Model” was replaced by the
term “PNML Core Model”, which is a consequence of comments
and discussions at the Brisbane meeting and the Bologna meeting.
Now, we have meta models for the concrete Petri Net Types, too.
Therefore, we must clearly distinguish the part of the Meta Model
belonging to PNML, which is called Core Model, and the part
defined by a Petri Net Type Definition, which is called a Type
Model (or Petri Net Type Model).

5.1.0.2 Note that the Core Model will be presented by the help of UML
class diagrams in this Clause, which does not define the concrete XML syntax
of for PNML documents. Clause 6 will define the mapping of the UML Meta
Models to XML syntax by the help of RELAX NG technology.

5.1.0.3 The PNML Core Model imposes no restrictions on labels. There-
fore, the Core Model can represent any kind of Petri net. Due to this gen-
erality of the Core Model, there can be even models that do not correspond
to a Petri net at all. In order deal with this problem, PNML comes with a
Petri Net Type Definition Interface, which supports the definition or Petri
net types. Such a Petri Net Type Definition defines the instances which make
up a Petri net of this particular kind. Basically, a Petri Net Type Definition
defines the legal labels of this type. So the PNML Core Model in combination
with a Petri Net Type Definition define the graphs that are legal Petri nets
of this particular kind.

5.1.0.4 Many versions of Petri nets have many features in common and
differ only in some features. In order to identify the same features in different
Petri net types, PNML provides a mechanism for defining features separately,
which can then be used in Petri Net Type Definitions. To this end, this
International Standard defines a Features Definition Interface. This way, it
is possible to define the legal labels representing a particular feature of a Petri
net once and for all, and common aspects of a Petri net be exchanged among
tools, even when the tools support different versions of Petri nets only.

5.1.0.5 Figure 1 gives an overview of the different parts of PNML and
their relationships. The PNML Technology provides the Core Model, which

15

PNML
Types &
Features

Definition

Petri Net
Type

PNML
Technology

Features
Definition
Document

Petri Net
Document

Petri Net
Document

Petri Net
Document

PNML
Document

...

Feature Definition Interface Type Definition Interface

Core Model

Figure 1: Overview on the structure of PNML

defines the general structure of a Petri net graph and all possible labels
attached to it. The Features Definition Interface defines how to define par-
ticular labels. The Type Definition Interface defines how to define the labels
belonging to a particular version of Petri net and which labels may or must
be attached to which objects of the net. In a concrete Petri Net Type Defi-
nition, one can refer to the labels defined in a Features Definition Document
so that different Petri net types may use the same features (with a common
understanding). In a Petri Net Document, each Petri net must refer to a
particular Petri Net Type Definition, which defines the features resp. labels
it may contain.

5.1.0.6 Place/Transition nets and High-level Petri Net Graphs are de-
fined in Clause 5.3 of this International Standard. New features and new
types may be defined in the future.

5.2 Core Model

16

Editor’s note: Initially, the UML diagram discussed in this clause
was designed for providing an overview on the syntax of PNML
only. Over the time it gained more an more meaning, as the dis-
cussions on the Core Model at the Brisbane meeting have shown.
Right now, the UML model does not capture all requirements
on PNML. For example, the condition that arcs can only connect
nodes on the same page or the condition that a reference tran-
sition must refer to reference transition or to a transition is not
formally captured in the UML models. It would be possible to
express most of these additional conditions in OCL (the only con-
dition that – to the best of my knowledge – cannot be expressed
in OCL is that references must not be cyclic). Should we use
OCL? Or is it sufficient to state the additional constraints in the
text?

5.2.0.1 Figure 2 shows the PNML Core Model as a UML class diagram.
This Core Model will be discussed in the following Clauses.

Editor’s note: Do we need to refer to a concrete version of UML? In
this and the following diagrams, it does not really matter.

5.2.1 Petri nets and objects.

5.2.1.1 A document that meets the requirements of PNML is called a
Petri net document (PetriNetDoc). It may contain several Petri nets. Each
Petri net includes a unique identifier and type. The type will be an URL
to the document with its Petri Net Type Definition (the structure of these
documents will be defined in Clause 7.2).

5.2.1.2 A Petri net consists of objects, which, basically, represent the
graph structure of the Petri net. Each object within a Petri net document
has a unique identifier, which can be used to refer to this object. Moreover,
each object may be equipped with graphical information defining its position,
size, colour, shape and other attributes on its graphical appearance. The
precise attributes depend on the particular type of object (see Clause 5.2.3).

17

PetriNetDoc

Annotation Attribute

Place

Node Arc
target

RefNode

source

RefPlace RefTrans Transition
/repr

1

1ref
Page

1

11 /repr

*

Graphics

PetriNet ToolInfo

LabelObject
id

*

tool
versiontype

id

*
*

*

*

*
*

text

Figure 2: The PNML Core Model

5.2.1.3 An object is a place, a transition or an arc. For convenience,
a place or a transition is generalized to a node, which can be connected by
arcs.

5.2.1.4 Note that it is legal to have an arc from a place to a place or from
a transition to a transition according to this Core Model. The reason is that
there are versions of Petri nets that support such arcs. So the Core Model
must cover such arcs, since Petri Net Type Definitions can only restrict this
Core Model. If a Petri net type does not support such arc, this restriction
will be defined in the particular Petri Net Type Definition.

5.2.1.5 Three other kinds of objects are used for structuring a Petri
net: pages ; reference places ; and reference transitions. A page may consist

18

of other objects; they may even consists of further pages, which defines a
hierarchy of subpages.

5.2.1.6 This International Standard requires that an arc must connect
nodes on the same page only. The idea is that arcs connecting nodes on
different pages do not have a graphical representation.

5.2.1.7 For establishing a connections between objects on different pages,
a representative of this node may be drawn on another page. Then, this rep-
resentative may be connected with nodes on this other page by arcs. Such
a representative is called a reference node, because it has a reference to the
node it represents (see Clause 5.2.5).

5.2.1.8 Since reference places and reference transitions enjoy basically
the same structure, we generalize them to reference nodes.

5.2.2 Labels.

5.2.2.1 In order to assign further meaning to an object, each object may
have labels. Typically, a label represents the name of a node, the initial mark-
ing of a place, the guard of a transition, or an arc annotation. In addition,
the Petri net itself may have some labels. For example, the declarations of
a HLPNG are included as a label of a high-level Petri net. The legal labels
and the legal combinations of labels are defined by the Petri Net Type. The
type of a Petri net is determined by a unique reference to a Petri Net Type
Definition (PNTD), which is discussed in Clause 7.2.

5.2.2.2 This International Standard distinguishes two kinds of labels:
annotations and attributes. An annotation comprises information that is
typically displayed as text near the corresponding object. Examples of anno-
tations are names, initial markings, arc inscriptions, transition guards, and
timing or stochastic information.

19

Editor’s note: There was a comment that text should be defined here.
In XML documents text will be represented as XML PCDATA el-
ements, i.e. a sequence of characters. But, I am not sure whether
we should say this here, because the mapping of concepts to XML
syntax is only later.

5.2.2.3 In contrast, an attribute is not displayed as a text near the cor-
responding object. Rather, an attribute has an effect on the shape or colour
of the corresponding object. For example, an attribute arc type could have
domain normal, read, inhibitor, reset. This International Standard, how-
ever, does not define the effect on the graphical appearance of an attribute.

Editor’s note: This Standard could define some Standard Features
including some guidelines on there graphical representation.

The Features Definition Interface could provide a mechanism for
defining the graphical appearance of an attribute. But, this would
mean some extra work. So, the Brisbane comments suggest that
we should not include this mechanism here

5.2.2.4 Note that Label, Annotation and Attribute are abstract classes
in the Core Model, which means that they do not define concrete labels,
annotations, and attributes here. The concrete labels are not defined in the
Core Model. The concrete labels will be defined in the Features Definition
and will be used in Petri Net Type Definitions (see Clauses 7.1 and 7.2).

Editor’s note: At the Brisbane meeting there was some discussion on
these abstract classes. The above text should clarify this point.
Concrete classes come in when defining a concrete Petri Net Type
or a Feature.

Another way to express this in UML would be interfaces, which
must be implemented by the Petri Net Type Definition.

20

5.2.2.5 In order to support the exchange of information among tools that
have different textual representation for the same concepts (i.e. have different
concrete syntax), there are two ways of representing the information within
an annotation: textual in concrete syntax and structurally as an abstract
syntax tree (see Clause 6.1.2 for details).

5.2.3 Graphical information

5.2.3.1 Graphical information is associated with each object and each
annotation. For a node, this information includes its position; for an arc,
it includes a list of positions that define intermediate points of the arc; for
an object’s annotation, it includes its relative position with respect to the
corresponding object; and for an annotation of the net itself, the position is
absolute. There can be further information concerning the size, colour and
shape of nodes or arcs, or concerning the colour, font and font size of labels
(see Clauses 6.1.3 and 6.2 for details).

Editor’s note: There was a proposal of a much more detailed meta
model for the graphical information on the PNX Mailing list from
Celso Gonzalez from Canada, which covers most of the details.
This could be included somewhere in this standard. But, I feel
that it is much to detailed to be included right here.

5.2.4 Tool specific information (ToolInfo)

5.2.4.1 For some tools, it might be necessary to store tool specific infor-
mation, which is not meant to be used by other tools. In order to store this
information, tool specific information may be associated with each object
and each label. Its format depends on the tool and is not specified by PNML.
PNML provides a mechanism for clearly marking tool specific information
along with the name and the version of the tool adding this information.
Therefore, other tools can easily ignore it, and adding tool specific informa-
tion will never compromise a Petri net document.

21

5.2.4.2 The same object may be equipped with tool specific information
from different tools. This way, the same document can be used and changed
by different tools at the same time. The intention is that another tool should
not change or delete the information added by another tool as long as the
corresponding object is not deleted. Moreover, the tool specific information
should be self contained and not referring to other objects of the net, because
the deletion of other objects by a different tool might make this reference
invalid and leave the tool specific information inconsistent. Clearly, this
intended use of the tool specific information cannot be enforced; but it can
serve as a guideline for its purpose and its use.

Editor’s note: At the Brisbane meeting, there was a discussion that
the tool specific information should be precisely defined within
the meta model. But, the idea of the tool specific information
is that we do not know what a tool might want to store here.
So we cannot fix a concrete structure. So, the tool may use any
structure it likes (within the tool specific information). Maybe,
we should make this even more explicit by making this class ab-
stract. Then, it would be clear that the tool must provide its
own implementation. Another possibility would be making it an
interface.

5.2.5 Pages and reference nodes.

5.2.5.1 For structuring large Petri nets, PNML supports a page concept:
Different parts of a net may be split into separate pages. A page is an object
that may consist of other pages or objects. An arc, however, may connect
nodes on the same page only1. A reference node, which can be either a
reference transition or a reference place represents an appearance of a node.
It can refer to any node on any page of the Petri net as long as there are
no cyclic references among reference nodes; this guarantees that, ultimately,
each reference node refers to exactly one place or transition of the Petri net,
which is indicated by the derived association /ref.

1The reason is that an arc cannot be drawn from one sheet of paper to another when
printing the different pages.

22

5.2.5.2 Reference nodes may have labels but these labels can only specify
information about their appearance. They cannot specify any information
about the referenced node itself, which already has its own labels for this
purpose.

Editor’s note: There was a comment that we should not include
pages in Part 2 of this International Standard. I left this concept
in because, this concept does not include any difficulties. More-
over, the Petri net experts at Bologna strongly recommended to
have it in the Standard (there was even strong support for mod-
ules). As argued earlier having an transfer syntax not even sup-
porting pages would be of no use at all.

Since pages and references are a stable concept in PNML, there is
no reason for assuming that they could result in additional delays
in finalising this Standard.

5.3 Petri Net Type Models

5.3.0.3 This Clause defines meta models for three versions of Petri nets:
Place/Transition Systems, Well-Formed Nets (WFNs), and High-Level Petri
Net Graphs (HLPNGs). These meta models are called Type Models in order
to distinguish them from the PNML Core Model.

5.3.0.4 Well-Formed Nets and High-Level Petri Net Graphs have the
same underlying model. The only difference is in the built-in sorts and
operations and in the built-in mechanism for defining new Sorts. So we
present a general model for High-Level Nets first and then discuss the built-
in Sorts and Operations for Well-Formed Nets

Editor’s note: Conceptually, Place/Transition-Systems can be con-
sidered as a special version of HLPNGs (as defined in Part 1 of
this International Standard). But, there are syntactical differ-
ences! The transfer format for Place/Transition-Systems should

23

not force tools not supporting HLPNGs to use the syntax of HLP-
NGs, which is much more complicated than the one typically used
for simple Place/Transition-Systems. Therefore, Place/Transition-
Systems are not a special case of HLPNGs on the syntactical level!

This Standard could, however, define a transformation between
these two formats.

5.3.1 Place/Transition Systems

5.3.1.1 We start with the Type Model for Place/Transition systems. A
Place/Transition-System is a Petri Net Graph, where the places and transi-
tions have names, and where each place is labelled with a natural number
(the Initial Marking), and each arc is labelled with a non-zero natural number
(the Arc Annotation). The details are defined in Part 1 of this International
Standard.

5.3.1.2 Figure 3 shows the Type Model for Place/Transition-Systems.

Name

Place PTMarking

Arc PTInscription

Text

Node

NonNegativeInteger PositiveInteger

Annotation

Figure 3: The Type Model of Place/Transition Systems

5.3.1.3 This Type Model basically, defines that each node of the Core
Model must have an Annotation Name that consists of a Text (in addition to
the standard information for annotations such as graphical and tool specific

24

information, which are defined in the Core Model). In addition, each Place
must have an Annotation PTMarking that consists of a NonNegativeInte-
ger, and each Arc must have an Annotation PTInsciption that consists of a
PositiveInteger.

5.3.1.4 Remember that the UML Meta Models do not yet fix the XML
syntax for these elements. The classes Text, NonNegativeInteger, and Posi-
tiveInteger will be immediately mapped to RELAX NG constructs or to the
corresponding XML Schema data types (see Clause 7 for details).

5.3.1.5 Actually, the only classes defined here are Name, PTMarking,
and PTInscription. The classes Node, Place, Arc, and Annotation come
from the PNML Core Model. They are imported here in order to define
the concrete Labels attached to these Nodes in this particular type, i.e. in
Place/Transition-Systems.

Editor’s note: This Type Model does not yet exclude arcs from places
to places or from transitions to transitions. This could be ex-
pressed in the text or it could be formalized in OCL. What should
we do?

5.3.2 High-Level Petri Net Graphs

5.3.2.1 In this Clause the Type Model for High-Level Petri Net Graphs
will be defined.

5.3.2.2 A HLPNG is a Petri Net Graph that is equipped with a Dec-
laration that defines Sorts, Functions, and Variables that are the basis for
defining Terms. The Declaration itself will become an Annotation of the
Petri Net Graph itself; the Sorts will used as an Annotation defining the Do-
main of the Place; the Terms will be used for representing the Initial Marking
of each Place, the Arc Annotations, as well as the Transition Guards. The
details are defined in Part 1 of this International Standard.

25

5.3.2.3 Figure 4 shows the first part of the Type Model, which defines
the structure of a Signature. A Signature consists of Sort Declarations, Vari-
able Declarations, and Function Declarations. In addition to the Sorts that
are defined within the Signature (UserDefined), there can be other Sorts:
BuiltIn Sorts, the MultisetSort corresponding to another sort, and Product-
Sorts of a sequence of existing Sorts. A list of BuiltInSorts for HLPNGs

Signature

FunctionDecl
name

UserDefFunc

Tuple

MultConstr

Function

name
BuiltInFuncBuiltInSort

name

UserDefSort

ProductSort

Sort

SortDecl
name

VariableDecl
name

MultisetSort

1

*

1

{ordered}*

1

1
1 output

* input

1 output
1

input

*

1 1

{ordered}

{ordered}

{ordered}

* * *

basis

multi
0..1

Figure 4: The model for Signatures

will be given later. Likewise, there can be Functions that are defined in the
Signature (UserDefinedFunctions) and there are BuiltInFunctions: Functions
that convert a sequence of values of a basis set to the corresponding Mul-
tiset, which is called a MultisetConstructor. Moreover, there are Function
for building Tuples (a product) from elements of the component Sorts. Each
Function has a sequence of input Sorts as well as a sequence of output Sorts.
For the UserDefined Functions the input Sorts and the Output Sorts are de-
fined in the FunctionDeclaration. For the MulitsetConstructors, there is a
restriction: All the elements of the sequence of input Sorts refer to the same
Sort and the output Sort must be the multiset Sort corresponding to this
Sort. For the Type Function, the output Sort must be the ProductSort of
the sequence of input Sorts.

26

Editor’s note: This requirements could be expressed in OCL. Should
we do that?

5.3.2.4 For a particular Signature, we can construct Terms as defined
in Part 1 of this International Standard. Terms are captured in the UML
diagram of Fig. 5. A Term can be built up from Variables and Function-

Variable

Function

Sort
isGround():bool
isBool():bool

Term

VariableDecl
1

FunctionAppl

1

1 *

name

operation

{ordered}subterm

\sort

Figure 5: The model for Terms

Applications on subterms. The sort of a Term can be derived from the Sort
of the corresponding Variable or the output Sort of the Function. For this
model, there is an additional requirement that the sequence of sorts of sub-
terms in a FunctionApplication must be the sequence of input Sorts of the
corresponding Function.

Editor’s note: Again, this requirements could be expressed in OCL.

5.3.2.5 In Part 1 of this International Standard, special Terms have been
defined. These are Ground Terms, which are Terms without Variables. And
there are Boolean Terms, which are Terms of builtin sort Boolean. This is
reflected in the methods isGround and isBool, which return true if the Term
is a Ground Term or a Boolean Term respectively.

27

5.3.2.6 Based on these Models for Signatures and Terms, Fig. 6 defines
the Type Model for High-Level Petri Net Graphs. Again Nodes, have an An-

Name

Place
HLPNGDomain

HLPNGMarking

Text

Sort

Term

Transition HLPNGGuard Term

Net SignatureHLPNGDeclaration

Arc TermHLPNGInscription

Node

Figure 6: The Type Model of HLPNGs

notation with their name, the net itself has a Declaration as its Annotation,
which is a Signature (as defined in Fig. 4). Note that this model defines an
abstract syntax for Signatures only. In order to allow tools to store some
concrete text, the Annotation has also a text, which should be the same Sig-
nature in concrete syntax. The concrete syntax, however, will not be defined
in this International Standard.

The same applies to all other labels defined below.

5.3.2.7 A Place has two Annotations: A HLPNGDomain, which defines
the Sort of the place, and a Term, which defines the initial Marking. This
Term is required to be of the multiset Sort of the Sort of the Place; moreover,
it must be a Ground Term.

28

Editor’s note: Again, this requirements could be expressed in OCL.

5.3.2.8 A Transition has one Annotation: a HLPNGGuard, which is the
Transition Guard, i.e. a Term of sort Boolean.

5.3.2.9 An Arc also has one Annotation: a HLPNGInscription, which is
a Term, which has the multiset Sort of the Sort of the Sort associated with
the corresponding Place of the arc.

5.3.2.10 In addition to the Annotations defined above, the Type Model
for HLPNGs requires that arcs must not connect two places and must not
connect two transitions.

5.3.3 BuiltIn Sorts and Functions

5.3.3.1 HLPNGs and WFN are defined using the very same Meta Model
as defined in Clause 5.3.2. The only difference is in the builtin Sorts, the
builtin Functions, and the Sorts that can be defined by the User.

Editor’s note: The Type Model for HLPNGs is an abstract version
of the RELAX NG definitions circulated in the previous draft.
Moreover, it seems to match the AFNOR proposal (cf. [15]).

5.3.3.2 For defining HLPNGs and WFNs we must define the builtin
Sorts and Functions only. These will be defined blow:

Editor’s note: This is a first proposal that is based on the Bologna
discussions.

29

5.3.3.3 HLPNGs

• boolean with all boolean operations: and, or, not, implication, equality.

• integer with addition, subtraction, multiplication, div, and mod and
the operations for comparison (=, <=, <, >, >=, <>).

Editor’s note: At the Bologna the question was raised how to
deal with the finiteness of integers. Should this standard give
a particular definition or do we leave it open.

• ranges of integers with comparison (=, <=, <, >, >=, <>).

• explicit enumerations with successor and predecessor operation and
with equality and comparison operations.

• strings with concatenation and comparison operations.

• For each Sort, there are implicit operations, converting a sequence of
elements of this Sort to a multiset [a1, a2, a3].

Editor’s note: Products are included explicitly in the Meta Model;
so it is not necessary to include this here

Editor’s note: At the Bologna meeting List and Disjoint Sets
were discussed. As far as I remember, it was not yet decided
whether to include them or not.

5.3.3.4 WFN

Editor’s note: This should be contributed by AFNOR based on their
proposal of WFNs.

30

Basically WFN have the singleton sort and all kinds of finite subsets of in-
tegers, with predecessor, successor operations and comparison operations.
Moreover, there are the Booleans. For each Sort, there is a Function (Con-
stant) that denotes the multiset in which each element occurs exactly once
(broadcast).

6 PNML Syntax

6.0.3.1 In Clause 5, we have defined the PNML Core Model and we
have shown how Type Models can be obtained extending the Core Model.
These Meta Models, however do not immediately provide an XML syntax for
exchanging such models.

6.0.3.2 In this Clause, the XML syntax of PNML will be defined, i. e. it
will be defined how the Meta Model concepts of PNML are mapped to XML.
Here, we give an immediate translation from the concepts of PNML to XML.
Annex A, gives a formal definition of valid PNML documents in terms of
RELAX NG technology.

Editor’s note: Today, there are different Techniques for mapping Meta
Models immediately to XML. MOF and XMI are probably the
most prominent candidates. There has been a discussion with
AFNOR experts on using XMI for mapping the PNML Meta
Model(s) to XML. This sound appealing on a first glance. But,
there are two problems with this approach:

1. The resulting XML syntax will be quite different from the
syntax of PNML as it was up to now. Therefore, tools imple-
menting the current version of PNML will have to completely
reimplement their export and import modules. Moreover ex-
isting PNML documents will not be readable with the new
PNML. This will strongly decrease the acceptance of this
Standard.

31

2. I (E. Kindler) am no an expert in XMI. But, I have talked to
several experts concerning the following problem: One major
objective of PNML was to support the exchange of Petri nets
among tools even if the tools do not support exactly the
same version of Petri Nets (i.e. with slightly variants in the
underlying Meta Model). The experts I have been talking
to told me that this is not possible with XMI.

Given these problems, using XMI might be an option some time
in the future, but it is not an option right now.

Right now, we use the RELAX NG technology for defining the
syntax of PNML. The reason was that, at the time when PNML
was developed, RELAX NG appeared to be the most mature tech-
nology. Today XML Schema could be used also (actually, we are
using XML Schemas data types). But, it would require much ex-
tra effort, to make everything work (and I don’t know whether
we have an expert who could and would do that). If we want
to publish this Standard soon, RELAX NG seems to be the only
option.

As long as only concrete Petri Net Types are considered, it does
not make any difference whether the PNML syntax is defined in
terms of RELAX NG or in terms of XML Schema or by a simple
DTD (except for the fact that DTD cannot capture some con-
straints that can be captured by XML Schema or RELAX NG).
But, it makes a difference when own PNTDs should be defined,
because the PNTDs must be formulated as RELAX NG grammars
(or as XML Schemas). This ist where RELAX NG or XML Schema
come in explicitly.

6.0.3.3 This Clause is only concerned with the mapping of the concepts
of PNML Core Model concepts to PNML. The mapping of Type Models will
be defined along with the Petri Net Type Definition through RELAX NG
grammars, which will be discussed in Clause 7.

32

Editor’s note: Some of the element names or attribute names chosen
below, might be a bit misleading. But, for sake of compatibility
with exiting implementations, we should have very good reasons
for changing them. Incompatibilities will inevitably result, when
we change PNML keywords.

6.1 PNML Core Model

The PNML Core Model is translated to XML syntax in a straightforward
manner.

6.1.1 PNML elements.

6.1.1.1 Basically, each concrete class2 of the PNML Core Model is trans-
lated to an XML element. This translation along with the attributes and
their data types is given in Table 1. These XML elements are the keywords
of PNML and are called PNML elements for short. For each PNML element,
the aggregations of the Core Model define in which elements it may occur as
a child element.

6.1.1.2 The data type ID in Table 1 refers to a set of unique identifiers
within the PNML document. The data type IDRef refers to the set of all
identifiers occurring in the document, i. e. they are meant as references to
identifiers. A reference at some particular position, however, is restricted to
objects of a particular type. For instance, the attribute ref of a reference
place must transitively refer to a place of the same net. The set to which a
reference is restricted, is indicated in the table (e.g.).

Editor’s note: The RELAX NG grammar for PNML cannot capture
this requirement right now. But, in order to conform to this
standard, these restrictions must be met, too.

At the Petri Net Conference in Eindhoven (June 2003), there was
a wide agreement that it is acceptable to have a syntax definition

2A class in a UML diagram is concrete if its name is not displayed in italics.

33

Table 1: Translation of the PNML Core Model into PNML elements
Class XML element XML Attributes

PetriNetDoc <pnml>
PetriNet <net> id: ID

type: anyURI
Place <place> id: ID
Transition <transition> id: ID
Arc <arc> id: ID

source: IDRef (Node)
target: IDRef (Node)

Page <page> id: ID
RefPlace <referencePlace> id: ID

ref: IDRef (Place or RefPlace)
RefTrans <referenceTransition> id: ID

ref: IDRef (Transition or RefTrans)
ToolInfo <toolspecific> tool: string

version: string
Graphics <graphics>

with some technology (RELAX NG or XML Schema) even if some
requirements cannot be formally captured. Actually, even when
using XMI and OCL there remain some conditions that cannot be
formally captured. These requirements can and must be stated
in this or other Standard documents.

6.1.2 Labels

6.1.2.1 There are no PNML elements for labels because the Core Model
does not define any concrete labels. Concrete labels are defined by the Petri
Net Types. An XML element that is not defined by the Core Model (i. e. not
occurring in Table 1) is considered as a label of the PNML element in which
it occurs. For example, an <initialMarking> element could be a label of a
place, which represents its initial marking. Likewise <name> could represent
the name of an object, and <inscription> an arc inscription. A legal element
for a label may consist of further elements. The value of a label appears as a
string in a <text> element. Furthermore, the value may be represented as an

34

Table 2: Elements in the <graphics> element depending on the parent ele-
ment

Parent element class Sub-elements of <graphics>

Node, Page <position> (required)
<dimension>
<fill>
<line>

Arc <position> (zero or more)
<line>

Annotation <offset> (required)
<fill>
<line>

XML tree in a <structure> element3. An optional PNML <graphics> element
defines its graphical appearance, and further optional PNML <toolspecific>

elements may add tool specific information to the label.

6.1.3 Graphics

6.1.3.1 PNML elements and labels include graphical information. The
structure of the PNML <graphics> element depends on the element in which
it occurs. Table 2 shows the elements which may occur in the substructure
of a <graphics> element.

6.1.3.2 The <position> element defines an absolute position and is re-
quired for each node, whereas the <offset> element defines a relative position
and is required for each annotation. The other sub-elements of <graphics>
are optional. For an arc, the (possibly empty) sequence of <position> el-
ements defines its intermediate points. Each absolute or relative position
refers to Cartesian coordinates (x, y). As for many graphical tools, the x-
axis runs from left to right and the y-axis from top to bottom. More details
on the effect of the graphical features can be found in Sect. 6.2.1.

3In order to be compatible with earlier versions of PNML, the text element <value>
may occur alternatively to the <text> <structure> pair.

35

6.1.4 Example

Editor’s note: At the Brisbane meeting, there was a proposal that
there should be a better example. I do agree to that. unfortu-
nately, I had no time for producing a better example. But, I hope
that with the support from others, we can have a better example
in the next version of the Working Draft. This could be a running
example.

2ready

Figure 7: A simple Place/Transition-System

6.1.4.1 In order to illustrate the structure of a PNML document, we
given an example PNML document representing the Petri net shown in Fig. 7.
Listing 1 shows the corresponding PNML Document. It is a straightforward
translation, where we have labels for the names of objects, for the initial
markings, and for arc inscriptions. Note that we assume that the dashed
outline of the transition results from the tool specific information <hidden>

from an imaginary tool PN4all. This tool specific information says, that in
this tool PN4all, this particular transition should be hidden. Since hiding a
node is no concept of PNML, the tool is forced to encode this information
into a tool specific element. The tool has chosen to use an element <hidden>.

Editor’s note: I am looking forward to better examples for tool spe-
cific information.

36

Listing 1: PNML code of the example net in Fig. 7

<pnml xmlns="http://www.example.org/pnml">
<net id="n1" type="http://www.example.org/pnml/PTNet">
<name>

<text>An example P/T-net</text>
5 </name>

<place id="p1">
<graphics>

<position x="20" y="20"/>
</graphics>

10 <name>
<text>ready</text>
<graphics>

<offset x="-10" y="-8"/>
</graphics>

15 </name>
<initialMarking>
<text>3</text>

</initialMarking>
</place>

20 <transition id="t1">
<graphics>

<position x="60" y="20"/>
</graphics>
<toolspecific tool="PN4all" version="0.1">

25 <hidden/>
</toolspecific>

</transition>
<arc id="a1" source="p1" target="t1">

<graphics>
30 <position x="30" y="5"/>

<position x="60" y="5"/>
</graphics>
<inscription>

<text>2</text>
35 <graphics>

<offset x="15" y="-2"/>
</graphics>

</inscription>
</arc>

40 </net>
</pnml>

37

6.2 Graphical representation (non-normative)

6.2.0.1 In this Clause, we discuss the graphical features of PNML and
their effect on the graphical presentation of a PNML document. Clause 6.2.1
gives an informal overview of all graphical features. Clause 6.2.2,defines the
graphical presentation of a PNML document by an XSLT transformation from
PNML to the Scalable Vector Graphics (SVG).

Editor’s note: If the graphical appearance of a PNML Net is consid-
ered to be non-normative, it might be sufficient to include the
informal overview. Clause 6.2.2 could be deleted. If we decide to
have it in the Standard, it can be made more formal (with some
support from the resp. expert) and the Appendix could include
the XSLT stylesheet.

6.2.1 Graphical appearance

6.2.1.1 Table 3 lists the graphical elements that may occur in the PNML
<graphics> element along with their attributes. The domain of the attributes
refers to the data types of either XML Schema, or Cascading Stylesheets 2
(CSS2), or is given by an explicit enumeration of the legal values.

6.2.1.2 The <position> element defines the absolute position of a net
node or a net annotation, where the x-coordinate runs from left to right
and the y-coordinate from top to bottom. The <offset> element defines the
position of an annotation relative to the position of the object.

6.2.1.3 For an arc, there may be a (possibly empty) list of <position>
elements. These elements define intermediate points of the arc. Altogether,
the arc is a path from the source node of the arc to the destination node of the
arc via the intermediate points. Depending on the value of attribute shape of
element <line>, the path is displayed as a polygon or as a (quadratic) Bezier
curve, where points act as line connectors or Bezier control points.

38

Table 3: PNML graphical elements

XML element Attribute Domain

<position> x decimal
y decimal

<offset> x decimal
y decimal

<dimension> x nonNegativeDecimal
y nonNegativeDecimal

<fill> color CSS2-color
image anyURI
gradient-color CSS2-color
gradient-rotation {vertical, horizontal, diagonal}

<line> shape {line, curve}
color CSS2-color
width nonNegativeDecimal
style {solid, dash, dot}

 family CSS2-font-family
style CSS2-font-style
weight CSS2-font-weight
size CSS2-font-size
decoration {underline, overline, line-through}
align {left, center, right}
rotation decimal

6.2.1.4 The <dimension> element defines the height and the width of a
node. Depending on the ratio of height and width, a place is displayed as an
ellipse rather than a circle. A Transition is displayed as a rectangle of the
corresponding size.

6.2.1.5 The two elements <fill> and <line> define the interior and out-
line colours of the corresponding element. The value assigned to a colour at-
tribute must be a RGB value or a predefined colour as defined by CSS2. When
the attribute gradient-color is defined, the fill colour continuously varies
from color to gradient-color. The additional attribute gradient-rotation

defines the orientation of the gradient. If the attribute image is defined, the
node is displayed as the image at the specified URI, which must be a graphics
file in JPEG or PNG format. In this case, all other attributes of <fill> and

39

<line> are ignored.

6.2.1.6 For an annotation, the element defines the font used to
display the text of the label. The complete description of possible values of
the different attributes can be found in the CSS2 specification. Additionally,
the align attribute defines the justification of the text with respect to the
label coordinates, and the rotation attribute defines a clockwise rotation of
the text.

6.2.2 Transformation to SVG

6.2.2.1 In order to give a precise definition of the graphical presentation
of a PNML document with all its graphical features, we define a translation
to SVG. Petri net tools that support PNML can visualise Petri nets using
other means than SVG, but the SVG translation can act as a reference model
for such visualisations. Technically, this translation is done by means of an
XSLT stylesheet. The basic idea of this transformation was already presented
in. A complete XSLT stylesheet can be found on the PNML web pages.

Editor’s note: The transformations still need some polishing; then
they could go to the Appendix (normative or non-normative)

6.2.2.2 Transformations of basic PNML. The overall idea of the trans-
lation from PNML to SVG is to transform each PNML object to some SVG
object, where the attributes of the PNML element and its child elements are
used to give the SVG element the intended graphical appearance.

6.2.2.3 As expected, a place is transformed into an ellipse, while a tran-
sition is transformed into a rectangle. Their position and size are calculated
from the <position> and <dimension> elements. Likewise, the other graph-
ical attributes from <fill> and <line> can be easily transformed to the
corresponding SVG attributes.

40

6.2.2.4 An annotation is transformed to SVG text such as name: someplace.
The location of this text is automatically computed from the attributes in
<offset> and the position of the corresponding object. For an arc, this ref-
erence position is the center of the first line segment. If there is no <offset>

element, the transformation uses some default value, while trying to avoid
overlapping.

6.2.2.5 An arc is transformed into a SVG path from the source node to
the target node – possibly via some intermediate points – with the corre-
sponding attributes for its shape. The start and end points of a path may
be decorated with some graphical object corresponding to the nature of the
arc (e.g. inhibitor). The standard transformation supports arrow heads as
decorations at the end, only. The arrow head (or another decoration) should
be exactly aligned with the corresponding node. This requires computations
using complex operations that are neither available in XSLT nor in SVG –
the current transformation uses recursive approximation instead.

6.2.2.6 Transformations for structured PNML. Different pages of
a net should be written to different SVG files since SVG does not support
multi-image files. Unfortunately, XSLT does not support output to different
files yet, but XSLT 2.0 will. Hence, a transformation of structured PNML to
SVG will be supported once XSLT 2.0 is available.

6.2.2.7 The transformations for reference places and reference transi-
tions are similar to those for places and transitions. In order to distinguish
reference nodes from other nodes, reference nodes are drawn slightly translu-
cent and an additional label gives the name of the referenced object.

6.2.2.8 Type specific transformations. Above, we have discussed a
transformation that works for all PNML documents, where all annotations
are displayed as text. For some Petri net types, one would like to have other
graphical representations for some annotations. This can be achieved with
customized transformations. The technical details of customized transfor-
mations are not yet fixed. Due to the rule-based transformations of XSLT,
equipping the Type Definition Interface and the Feature Definition Interface
of PNML with some information on their graphical appearance seems to be

41

feasible. Basically, each new feature can be assigned its own transformation
to SVG. Adding these transformations to the standard ones for PNML gives
us a customized transformation for this Petri net type.

Editor’s note: At some point, we need to talk about how to get rid
of pages and reference nodes, because these are concepts that are
not present in HLPNGs and Place/Transition nets. The idea is
simple: Omit pages and merge all reference nodes to the node
they refer to (by omitting the labels of the reference nodes). This
way, one gets a net with Places, Transitions and Arcs only. The
details can be taken from [13]. Where does this belong to?

7 Features and Type Definition Interfaces

7.0.2.1 This Clause defines how to extend the Labels of the PNML Core
Model and how new Petri Net Types can be defined by using the RELAX NG
technology. In these definitions, the RELAX NG technology plays two roles
at a time: First we use it as syntactic representation of the Meta Model (to
be more precise the Type Model); i.e. we define the structure of the Label.
Second, we use it for defining the mapping from the Type Model to XML
syntax.

7.1 Feature Definition Interface

7.1.0.1 In this Clause, we show how new labels can be defined in PNML,
by the help of the Features Definition Interface.

To this end, we consider the initial marking of places of Place/Transition-
Systems again. Figure 8 shows a section of the Type Model for Place/Transition-
Systems again, where PTMarking is defined as an Annotation for places.

42

Place PTMarking

NonNegativeInteger

Annotation

Figure 8: Example: Annotation PTMarking

Listing 2: Label definition

<define name="PTMarking"
xmlns:pnml="http://www.informatik.hu-berlin.de/top/pnml">
<element name="initialMarking">

<interleave>
5 <element name="text">

<data type="nonNegativeInteger"
datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"/>

</element>
<ref name="pnml:StandardAnnotationContent"/>

10 </interleave>
</element>

</define>

43

7.1.0.2 Listing 2 shows the RELAX NG definition of this PTMarking.
Line one starts with the definition of PTMarking. Line two refers to the
PNML namespace. Line 3 states that the XML syntax for a PTMarking is a
<initialMarking> element4. Lines 4 to 6 define the contents of this element.
There is an element <text> which contains a non-negative integer, a data
type defined in XML Schema. Line 9 includes all the standard information of
Annotations. Note that RELAX NG does not support explicit inheritance; the
<ref> statement is the RELAX NG counterpart to inheritance. It guarantees
that the PTMarking has all graphical and tool specific information, defined
for Annotations in the Core Model.

7.1.0.3 The Annotation defined above is used in lines 16–18 of List. 1.

7.1.0.4 The translation of other Concrete Labels works in the very same
way. Remember that, i addition to the information given in the Type Model,
the RELAX NG grammar must provide the XML syntax for the elements
representing it.

7.1.0.5 Such label definitions can either be given explicitly for each Petri
net type, or they can be included in the Conventions Document, such that
Petri net type definitions can refer to these definitions. The example from
Listing 2 was taken from the Conventions Document (see Appendix B).

7.2 Type Definition Interface

7.2.0.1 This Clause shows how to define a Petri Net Type by RELAX NG
technology. As an example, we choose Place/Transition systems as defined
by the Meta Model shown in Fig. 3.

7.2.0.2 Listing 3 shows the Petri Net Type Definition (PNTD) as a RE-
LAX NG grammar. Firstly, it includes both the definitions of the PNML
Core Model (pnml.rng) and the definitions of the Conventions Document
(conv.rng) (see Appendix B), which, in particular, contains the definition

4Note that there is no standard name derived from the PTMarking; the concrete XML

syntax for this concept is encoded explicitly in the RELAX NG grammar.

44

Listing 3: PNTD for P/T-Systems

<grammar ns="http://www.example.org/pnml"
xmlns="http://relaxng.org/ns/structure/1.0"
xmlns:conv="http://www.informatik.hu-berlin.de/top/pnml/conv">

<include href="http://www.informatik.hu-berlin.de/top/pnml/pnml.rng"/>
5 <include href="http://www.informatik.hu-berlin.de/top/pnml/conv.rng"/>

<define name="NetType" combine="replace">
<text>http://www.example.org/pnml/PTNet</text>

</define>
<define name="Net" combine="interleave">

10 <optional><ref name="conv:Name"/></optional>
</define>
<define name="Place" combine="interleave">

<interleave>
<optional><ref name="conv:PTMarking"/></optional>

15 <optional><ref name="conv:Name"/></optional>
</interleave>

</define>
<define name="Arc" combine="interleave">

<optional><ref name="conv:PTArcInscription"/></optional>
20 </define>

</grammar>

45

from List. 2, a similar definition for arc inscriptions of P/T-systems, and a
definition for names.

7.2.0.3 Secondly, the PNTD defines the legal labels for the whole net
and the different objects of the net. In our example, the net and the places
may have an annotation for names. Furthermore, the places are equipped
with an initial marking (PTMarking) and the arcs are equipped with an
arc inscription (PTArcInscritption). Note that all labels are optional in this
type. The labels are associated with the net objects by giving a reference
to the corresponding definitions in the Conventions Document. Technically,
the definition extends the original definition of the net, places and arcs of
the RELAX NG grammar for PNML.

Editor’s note: This needs a more careful explanation and a more pre-
cise definition how a RELAX NG grammar for a PNTD must look
like.

I hope that M. Weber can provide some support here.

A RELAX NG Grammar for PNML (Norma-

tive)

This appendix gives a complete definition of the PNML Core Model in terms
of a RELAX NG grammar. We start with a definition of basic PNML (i.e.
PNML without pages) and then give the extensions for structured PNML (i.e
PNML with pages). Note that some syntactical restrictions of the Core Model
cannot be expressed in RELAX NG. Still, these restrictions are mandatory
for valid PNML documents.

A.1 RELAX NG Grammar for Basic PNML (without pages)

46

<?xml version="1.0" encoding="UTF-8"?>

<grammar xmlns="http://relaxng.org/ns/structure/1.0"
xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"

5 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

<a:documentation>
Petri Net Markup Language schema
RELAX NG implementation of basic PNML

10 version: 1.3.2b
according to the paper by Billington et al
(c) 2001-2004

Michael Weber (mweber@informatik.hu-berlin.de),
Ekkart Kindler,

15 Christian Stehno (for the graphical elements)
</a:documentation>

<start>
<ref name="pnml.element"/>

20 </start>

<define name="pnml.element">
<element name="pnml">
<a:documentation>

25 A PNML document consists of one or more Petri nets.
</a:documentation>
<oneOrMore>
<ref name="pnml.content"/>

</oneOrMore>
30 </element>

</define>

<define name="pnml.content">
<ref name="net.element"/>

35 </define>

<define name="net.element">
<element name="net">

<a:documentation>
40 A net has a unique identifier (id) and refers to

47

its Petri Net Type Definition (PNTD) (type).
</a:documentation>
<attribute name="id">
<data type="ID"/>

45 </attribute>
<attribute name="type">

<ref name="nettype.uri"/>
</attribute>
<a:documentation>

50 The sub-elements of a net may occur in any order.
A net consists of several net labels (net.labels), several
objects (net.content), tools specific information, and a set of
graphical information in any order.

</a:documentation>
55 <interleave>

<ref name="net.labels"/>
<zeroOrMore>

<ref name="net.content"/>
</zeroOrMore>

60 <zeroOrMore>
<ref name="toolspecific.element"/>

</zeroOrMore>
<optional>
<element name="graphics">

65 <ref name="netgraphics.content"/>
</element>

</optional>
</interleave>

</element>
70 </define>

<define name="nettype.uri">
<a:documentation>

The net type (nettype.uri) of a net should be redefined in a PNTD.
75 </a:documentation>

<data type="anyURI"/>
</define>

<define name="net.labels">
80 <a:documentation>

48

A net may have unspecified many labels. This pattern should be used
within a PNTD to define the net labels.

</a:documentation>
<empty/>

85 </define>

<define name="net.content">
<a:documentation>

A net object is either a place, or a transition, or an arc.
90 </a:documentation>

<choice>
<element name="place">
<ref name="place.content"/>

</element>
95 <element name="transition">

<ref name="transition.content"/>
</element>
<element name="arc">
<ref name="arc.content"/>

100 </element>
</choice>

</define>

<define name="place.content">
105 <a:documentation>

A place may have several labels (place.labels) and the same content
as a node.

</a:documentation>
<interleave>

110 <ref name="place.labels"/>
<ref name="node.content"/>

</interleave>
</define>

115 <define name="place.labels">
<a:documentation>

A place may have unspecified many labels. This pattern should be used
within a PNTD to define the place labels.

</a:documentation>
120 <empty/>

49

</define>

<define name="transition.content">
<a:documentation>

125 A transition may have several labels (transition.labels) and the same
content as a node.

</a:documentation>
<interleave>

<ref name="transition.labels"/>
130 <ref name="node.content"/>

</interleave>
</define>

<define name="transition.labels">
135 <a:documentation>

A transition may have unspecified many labels. This pattern should be
used within a PNTD to define the transition labels.

</a:documentation>
<empty/>

140 </define>

<define name="node.content">
<a:documentation>

A node has a unique identifier.
145 </a:documentation>

<attribute name="id">
<data type="ID"/>

</attribute>
<interleave>

150 <a:documentation>
The sub-elements of a node occur in any order.
A node may consist of grahical and tool specific information.

</a:documentation>
<optional>

155 <element name="graphics">
<ref name="nodegraphics.content"/>

</element>
</optional>
<zeroOrMore>

160 <ref name="toolspecific.element"/>

50

</zeroOrMore>
</interleave>

</define>

165 <define name="arc.content">
<a:documentation>

An arc has a unique identifier (id) and
refers both to the node’s id of its source and

the node’s id of its target.
170 In general, if the source attribute refers to a place,

then the target attribute refers to a transition and vice versa.
</a:documentation>
<attribute name="id">

<data type="ID"/>
175 </attribute>

<attribute name="source">
<data type="IDREF"/>

</attribute>
<attribute name="target">

180 <data type="IDREF"/>
</attribute>
<a:documentation>

The sub-elements of an arc may occur in any order.
An arc may have several labels. Furthermore, an arc may consist of

185 grahical and tool specific information.
</a:documentation>
<interleave>

<ref name="arc.labels"/>
<optional>

190 <element name="graphics">
<ref name="edgegraphics.content"/>

</element>
</optional>
<zeroOrMore>

195 <ref name="toolspecific.element"/>
</zeroOrMore>

</interleave>
</define>

200 <define name="arc.labels">

51

<a:documentation>
An arc may have unspecified many labels. This pattern should be used
within a PNTD to define the arc labels.

</a:documentation>
205 <empty/>

</define>

<define name="netgraphics.content">
<a:documentation>

210 Currently, there is no content of the graphics element of net defined.
</a:documentation>
<empty/>

</define>

215 <define name="nodegraphics.content">
<a:documentation>
The sub-elements of a node’s graphical part occur in any order.

At least, there must be exactly one position element.

Furthermore, there may be a dimension, a fill, and a line element.

220 </a:documentation>

<interleave>

<ref name="position.element"/>

<optional>

<ref name="dimension.element"/>

225 </optional>

<optional>

<ref name="fill.element"/>

</optional>

<optional>

230 <ref name="line.element"/>

</optional>

</interleave>

</define>

235 <define name="edgegraphics.content">

<a:documentation>

The sub-elements of an arc’s graphical part occur in any order.
There may be zero or more position elements.
Furthermore, there may be a fill and a line element.

240 </a:documentation>

52

<interleave>
<zeroOrMore>
<ref name="position.element"/>

</zeroOrMore>
245 <!--

<optional>
<ref name="fill.element"/>
</optional>

-->
250 <optional>

<ref name="line.element"/>
</optional>

</interleave>
</define>

255

<define name="annotationgraphics.content">
<a:documentation>

An annotation’s graphics part requires an offset element describing

the offset the lower left point of the surrounding text box has to

260 the reference point of the net object on which the annotation occurs.

Furthermore, an annotation’s graphic element may have a fill, a line,
and font element.

</a:documentation>
<ref name="offset.element"/>

265 <optional>
<ref name="fill.element"/>

</optional>
<optional>

<ref name="line.element"/>
270 </optional>

<optional>
<ref name="font.element"/>

</optional>
</define>

275

<define name="position.element">
<a:documentation>
A position element describes a Cartesian coordinate.

</a:documentation>
280 <element name="position">

53

<ref name="coordinate.attributes"/>
</element>

</define>

285 <define name="offset.element">
<a:documentation>

An offset element describes a Cartesian coordinate.
</a:documentation>
<element name="offset">

290 <ref name="coordinate.attributes"/>
</element>

</define>

<define name="coordinate.attributes">
295 <a:documentation>

The coordinates are decimal numbers and refer to an appropriate
xy-system where the x-axis runs from left to right and the y-axis
from top to bottom.

</a:documentation>
300 <attribute name="x">

<data type="decimal"/>
</attribute>
<attribute name="y">
<data type="decimal"/>

305 </attribute>
</define>

<define name="dimension.element">
<a:documentation>

310 A dimension element describes the width (x coordinate) and height
(y coordinate) of a node.
The coordinates are actually positive decimals.

</a:documentation>
<element name="dimension">

315 <attribute name="x">
<data type="decimal"/>

</attribute>
<attribute name="y">

<data type="decimal"/>
320 </attribute>

54

</element>
</define>

<define name="fill.element">
325 <a:documentation>

A fill element describes the interior colour, the gradient colour,
and the gradient rotation between the colours of an object. If an
image is available the other attributes are ignored.

</a:documentation>
330 <element name="fill">

<optional>
<attribute name="color">
<ref name="color.type"/>

</attribute>
335 </optional>

<optional>
<attribute name="gradient-color">
<ref name="color.type"/>

</attribute>
340 </optional>

<optional>
<attribute name="gradient-rotation">
<choice>

<value>vertical</value>
345 <value>horizontal</value>

<value>diagonal</value>
</choice>

</attribute>
</optional>

350 <optional>
<attribute name="image">
<data type="anyURI"/>

</attribute>
</optional>

355 </element>
</define>

<define name="line.element">
<a:documentation>

360 A line element describes the shape, the colour, the width, and the

55

style of an object.
</a:documentation>
<element name="line">

<optional>
365 <attribute name="shape">

<choice>
<value>line</value>
<value>curve</value>

</choice>
370 </attribute>

</optional>
<optional>

<attribute name="color">
<ref name="color.type"/>

375 </attribute>
</optional>
<optional>

<attribute name="width">
<data type="decimal"/> <!-- actually, positive decimal -->

380 </attribute>
</optional>
<optional>

<attribute name="style">
<choice>

385 <value>solid</value>
<value>dash</value>
<value>dot</value>

</choice>
</attribute>

390 </optional>
</element>

</define>

<define name="color.type">
395 <a:documentation>

This describes the type of a color attribute. Actually, this comes
from the CSS2 data type system.

</a:documentation>
<text/>

400 </define>

56

<define name="font.element">
<a:documentation>

A font element describes several font attributes, the decoration,
405 the alignment, and the rotation angle of an annotation’s text.

The font attributes (family, style, weight, size) should be conform

to the CSS2 data type system.

</a:documentation>

<element name="font">

410 <optional>

<attribute name="family">

<text/> <!-- actually, CSS2-font-family -->

</attribute>

</optional>

415 <optional>

<attribute name="style">

<text/> <!-- actually, CSS2-font-style -->

</attribute>

</optional>

420 <optional>

<attribute name="weight">

<text/> <!-- actually, CSS2-font-weight -->

</attribute>

</optional>

425 <optional>

<attribute name="size">

<text/> <!-- actually, CSS2-font-size -->

</attribute>

</optional>

430 <optional>

<attribute name="decoration">

<choice>

<value>underline</value>

<value>overline</value>

435 <value>line-through</value>

</choice>

</attribute>

</optional>

<optional>

440 <attribute name="align">

57

<choice>

<value>left</value>

<value>center</value>

<value>right</value>

445 </choice>

</attribute>

</optional>

<optional>

<attribute name="rotation">

450 <data type="decimal"/>

</attribute>

</optional>

</element>

</define>

455

<define name="toolspecific.element">

<a:documentation>

The tool specific information refers to a tool and its version.

The further substructure is up to the tool.

460 </a:documentation>

<element name="toolspecific">

<attribute name="tool">

<text/>

</attribute>

465 <attribute name="version">

<text/>

</attribute>

<ref name="anyElement"/>

</element>

470 </define>

<define name="anyElement">

<element>

<anyName>

475 <except>

<nsName/>

</except>

</anyName>

<zeroOrMore>

480 <choice>

58

<attribute>

<anyName/>

</attribute>

<text/>

485 <ref name="anyElement"/>

</choice>

</zeroOrMore>

</element>

</define>

490 </grammar>

A.2 RELAX NG Grammar for Structured PNML (with
pages)

<?xml version="1.0" encoding="UTF-8"?>

<grammar xmlns="http://relaxng.org/ns/structure/1.0"
xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"

5 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

<a:documentation>
Petri Net Markup Language schema
RELAX NG implementation of structured PNML

10 version: 1.3.2c
according to the paper by Billington et al
(c) 2001-2004

Michael Weber, mweber@informatik.hu-berlin.de
Ekkart Kindler

15 </a:documentation>

<include href="basicPNML.rng"/>

<define name="net.content" combine="choice">
20 <a:documentation>

Now, a net object is additionally a page, a reference place, or
a reference transition.

</a:documentation>
<choice>

25 <element name="page">
<ref name="page.content"/>

59

</element>
<element name="referencePlace">

<ref name="refplace.content"/>
30 </element>

<element name="referenceTransition">
<ref name="reftrans.content"/>

</element>
</choice>

35 </define>

<define name="page.content">
<a:documentation>

A page has a unique identifier (id). It consists of several objects
40 (the same as for a net), tool specific information, and graphical

information.
</a:documentation>
<attribute name="id">

<data type="ID"/>
45 </attribute>

<interleave>
<zeroOrMore>

<ref name="net.content"/>
</zeroOrMore>

50 <zeroOrMore>
<ref name="toolspecific.element"/>

</zeroOrMore>
<optional>
<element name="graphics">

55 <ref name="pagegraphics.content"/>
</element>

</optional>
</interleave>

</define>
60

<define name="reference">
<a:documentation>

Here, we define the attribute ref including its data type.
Modular PNML will extend this definition in order to change

65 the behavior of references to export nodes of module instances.
</a:documentation>

60

<attribute name="ref">
<data type="IDREF"/>

</attribute>
70 </define>

<define name="refplace.content">
<a:documentation>
A reference place is a reference node.

75 </a:documentation>
<a:documentation>
Validating instruction:
- _ref_ MUST refer to _id_ of a reference place or of a place.
- _ref_ MUST NOT refer to _id_ of its reference place element.

80 - _ref_ MUST NOT refer to a cycle of reference places.
</a:documentation>
<ref name="refnode.content"/>

</define>

85 <define name="reftrans.content">
<a:documentation>
A reference transition is a reference node.

</a:documentation>
<a:documentation>

90 Validating instruction:
- The reference (ref) MUST refer to a reference transition or to a

transition.
- The reference (ref) MUST NOT refer to the identifier (id) of its

reference transition element.
95 - The reference (ref) MUST NOT refer to a cycle of reference transitions.

</a:documentation>
<ref name="refnode.content"/>

</define>

100 <define name="refnode.content">
<a:documentation>

A reference node has the same content as a node.
It adds a reference (ref) to a (reference) node.

</a:documentation>
105 <ref name="node.content"/>

<ref name="reference"/>

61

</define>

<define name="pagegraphics.content">
110 <a:documentation>

Currently, there is no content of the graphics element of page defined.
</a:documentation>
<empty/>

</define>
115 </grammar>

Editor’s note: It appears that pages do not have names according to
this definition. I think, we agreed that pages could have names.
This must be checked.

B RELAX NG Grammar for Conventions (Nor-

mative)

This Appendix is a first draft of the Conventions Document with some Stan-
dard Feature Definitions, that will be used in the PNTDs for Place/Transition-
Systems and for High-Level Petri Net Graphs.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE grammar PUBLIC "-//thaiopensource//DTD RNG 20010705//EN" "">

5 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0">

<a:documentation>
Conventions Document (conv.rng)

10 RELAX NG implementation
version: 0.1 (2003-06-18)
(c) 2003

Michael Weber, mweber@informatik.hu-berlin.de
</a:documentation>

15

62

<a:documentation>
First, we define several short cuts for label definitions. They are
used for simple data or if the label data are not really specified.
The usage of these short cuts is documented at the end of this file.

20 Furthermore, these short cuts also can be used if the rest of the
Conventions Document is ignored.

</a:documentation>

<define name="attribute.content">
25 <a:documentation>

The definition attribute.content describes the content of a
simple text label without graphics (i.e. attribute to net objects).
It can be used as a schema for those labels.

</a:documentation>
30 <optional>

<element name="text">
<a:documentation>

A text label may have a value;
if not, then there must be a default.

35 </a:documentation>
<text/>
</element>
</optional>

</define>
40

<define name="annotationstandard.content">
<a:documentation>

The definition annotationstandard.content describes the
standard stuff of an annotation.

45 Each annotation may have graphical or tool specific information.
</a:documentation>
<optional>
<element name="graphics">
<ref name="annotationgraphics.content"/>

50 </element>
</optional>
<zeroOrMore>
<ref name="toolspecific.element"/>
</zeroOrMore>

55 </define>

63

<define name="simpletextlabel.content">
<a:documentation>

A simple text label is an annotation to a net object containing
60 unspecified text.

Its sub-elements occur in any order.
A simple text label behaves like an attribute to a net object.
Furthermore, it contains the standard annotation content.

</a:documentation>
65 <interleave>

<ref name="attribute.content"/>
<ref name="annotationstandard.content"/>
</interleave>

</define>
70

<define name="nonnegativeintegerlabel.content">
<a:documentation>

A non negative integer label is an annotation with a natural
number as its value.

75 Its sub-elements occur in any order.
It contains the standard annotation content.

</a:documentation>
<interleave>
<element name="text">

80 <data type="nonNegativeInteger"
datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"/>

</element>
<ref name="annotationstandard.content"/>
</interleave>

85 </define>

<define name="complexlabel.content">
<a:documentation>

A complex label is a sub-structured annotation to a net object.
90 The definition complexlabel.content can be used as a general

schema for those labels.
A complex label is at least a simple text label. It may further
contain XML structured data. The subelement text contains the
string representation of the structured data.

95 </a:documentation>

64

<interleave>
<ref name="attribute.content"/>
<optional>
<element name="structure">

100 <ref name="anyElement"/>
</element>
</optional>
<ref name="annotationstandard.content"/>
</interleave>

105 </define>

<!-- The following definitions are the Conventions Document’s

label definitions -->

110 <define name="Name">

<a:documentation>

Label definition for a user given identifier of an element describing

its meaning.

<contributed>Michael Weber</contributed>

115 <date>2003-06-16</date>

</a:documentation>

<element name="name">

<ref name="simpletextlabel.content"/>

</element>

120 </define>

<define name="PTMarking">

<a:documentation>

Label definition for initial marking in nets like P/T-nets.

125 <contributed>Michael Weber</contributed>

<date>2003-06-16</date>

<reference>

W. Reisig: Place/transition systems. In: LNCS 254. 1987.

</reference>

130 </a:documentation>

<element name="initialMarking">

<ref name="nonnegativeintegerlabel.content"/>

</element>

</define>

135

65

<define name="PTArcInscription">

<a:documentation>

Label definition for arc inscriptions in nets like P/T-nets.

<contributed>Michael Weber</contributed>

140 <date>2003-06-16</date>

<reference>

W. Reisig: Place/transition systems. In: LNCS 254. 1987.

</reference>

</a:documentation>

145 <element name="inscription">

<ref name="nonnegativeintegerlabel.content"/>

</element>

</define>

150 </grammar>

C RELAX NG Grammars for PNTDs (Norma-

tive)

C.1 Place/Transition-Systems

<?xml version="1.0" encoding="UTF-8"?>

<grammar ns="http://www.informatik.hu-berlin.de/top/pnml/ptNetb"
xmlns="http://relaxng.org/ns/structure/1.0"

5 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0">

<a:documentation>
Petri Net Type Definition for Place/Transition nets (bases on basic PNML)
RELAX NG implementation of ptNetb.pntd

10 version: 1.0
(c) 2001-2003

Michael Weber, mweber@informatik.hu-berlin.de
</a:documentation>

15 <a:documentation>
We include PNML with the correct URI for our Petri Net Type Definition.

66

</a:documentation>
<include href="http://www.informatik.hu-berlin.de/top/pnml/basicPNML.rng">
<define name="nettype.uri" combine="choice">

20 <a:documentation>
We define the net type URI declaring the namespace of this
Petri net type definition.

</a:documentation>
<value>http://www.informatik.hu-berlin.de/top/pntd/ptNetb</value>

25 </define>
</include>

<a:documentation>
All labels of this Petri net type come from the Conventions Document.

30 </a:documentation>
<include href="http://www.informatik.hu-berlin.de/top/pnml/conv.rng"/>

<define name="net.labels" combine="interleave">
<a:documentation>

35 A P/T net may have a name.
</a:documentation>
<optional><ref name="Name"/></optional>

</define>

40 <define name="place.labels" combine="interleave">
<a:documentation>

A place of a P/T net may have a name and an initial marking.
</a:documentation>
<interleave>

45 <optional><ref name="PTMarking"/></optional>
<optional><ref name="Name"/></optional>
</interleave>

</define>

50 <define name="transition.labels" combine="interleave">
<a:documentation>

A transition of a P/T net may have a name.
</a:documentation>
<optional><ref name="Name"/></optional>

55 </define>

67

<define name="arc.labels" combine="interleave">
<a:documentation>

An arc of a P/T net may have an inscription.
60 </a:documentation>

<optional><ref name="PTArcInscription"/></optional>
</define>

</grammar>

Editor’s note: There seems to be a slight difference between the Type
Model of Place/Transtion-Systems as defined in Clause 5.3.1. For
example, there can be Arc Annotations with value 0 according to
the RELAX NG PNTD, which is not possible in the Meta Model.

This needs to be checked and corrected.

C.2 HLPNGs

Editor’s note: This is not yet the RELAX NG grammar for HLPNGs!
This is just an outline, how the definition could look like. But
the part making it a PNTD is still missing.

The work on the RELAX NG grammar should be started (with
some support from F. Kordon, M. Westergaard, and M. Weber),
when the concepts of the Type Model for HLPNGs are fixed (cf.
Clause ??) and RELAX NG is the the technology of choice.

<!-- A declaration will go as an annotation of the net.

It defines the sorts, operations and variables used in

the net. Note that a sort may be made a subsort of a

supersort by using attribute super.

Furthermore, a declaration may include all kinds of

definitions, which are considered as a comment by now.

68

We will assume that some sorts (boolean and naturals)

and some operations (+, <=, on naturals and multisets

are predefined). Moreover, we assume that with the

defined sorts we have also the tuples over these sorts

and multisets over each sort.

-->

<define name="DECL">

<element name="declaration">

<zeroOrMore>

<choice>

<ref name="SORTDECL"/>

<ref name="OPDECL"/>

<ref name="VARDECL"/> LP: why do VARDECL and

<ref name="SORTDECL"/> SORTDECL appear twice?

</choice>

</zeroOrMore>

</element>

</define>

<define name="SORTDECL">

<element name="sortdecl">

<attribute name="name">

<data type="xsd:ID"/>

</attribute>

<optional>

<attribute name="super">

<!-- a possible supersort -->

<data type="xsd:IDREF"/>

</attribute>

</optional>

</element>

</define>

<define name="OPDECL">

<element name="opdecl">

<attribute name="name">

<data type="xsd:ID"/>

69

</attribute>

<optional>

<element name="parameters">

<oneOrMore>

<ref name="SORT"/>

</oneOrMore>

</element >

</optional>

<ref name ="SORT"/>

</element>

</define>

<define name="VARDECL">

<element name="vardecl">

<attribute name="name">

<data type="xsd:ID"/>

</attribute>

<ref name ="SORT"/>

</element>

</define>

<define name="DEFINITIONS">

<element name="definitions">

<anyString/>

</element>

</define>

<!-- A sort will go as an annotation of places. The marking of

the place will be a multiset over this sort. Note that the

sort may be a multiset sort; in that case the markings is

a multiset over multisets.

Currently, I don’t know how to check this requirement in TREX.

In XML-Schema this could be checked by a keyref constraint.

-->

<define name="SORT">

<choice>

70

<!-- We could admit the definition of sorts, by simply

using them.

<ref name="SORTDECL"/>

-->

<ref name="MSSORT">

<element name="sort">

<attribute name="name">

<data type="xsd:IDREF"/>

</attribute>

</element>

</choice>

</define>

<define name="MSSORT">

<element name="mssort">

<ref name="SORT/>

</element>

</define>

<!-- A multiset term will go as an annotation of

arcs (arc inscription). Its sort must be a

multiset over

-->

<define name="MSTERM">

<!-- I don’t know how to impose the requirement on MSTERMS

that they have a multiset sort in TREX; I hope Michael

will help me with that.

-->

<ref name="TERM"/>

</define>

<define name="TERM">

<choice>

<ref name="VAR"/>

<ref name="OPAPP"/>

</choice>

</define>

71

<define name="VAR">

<element name="var">

<attribute name="name">

<data type="xsd:IDREF"/>

</attribute>

</element>

</define>

<define name="OPAPP">

<element name="op">

<attribute name="name">

<data type="xsd:IDREF"/>

</attribute>

<optional>

<!-- currently the sorts of the arguments are not

checked with respect to the parameter sorts;

I don’t know how to do this in TREX. In XML

Schema, this could be done by a keyref constraint

-->

<element name="arguments">

<zeroOrMore>

<ref name="TERM"/>

</oneOrMore>

</element >

</optional>

</define>

<!-- A boolean term will go as an annotation of

transitions (transition guard).

-->

<define name="BOOLTERM">

<!-- I don’t know how to impose the requirement on a BOOLTERM

that it must have (built-in) sort boolean in TREX;

I hope Michael will help me with that.

-->

<ref name="TERM"/>

72

</define>

D Guidelines for Introducing New Net Classes

Editor’s note: Yet to come.

References

[1] R. Bastide, J. Billington, E. Kindler, F. Kordon, and K. H. Mortensen,
editors. Meeting on XML/SGML based Interchange Formats for Petri
Nets, Århus, Denmark, June 2000. 21st ICATPN. 17

[2] F. Bause, P. Kemper, and P. Kritzinger. Abstract Petri net notation.
Petri Net Newsletter, 49:9–27, October 1995.

[3] G. Berthelot, J. Vautherin, and G. Vidal-Naquet. A syntax for the
description of Petri nets. Petri Net Newsletter, 29:4–15, April 1988.

[4] Jonathan Billington, Søren Christensen, Kees van Hee, Ekkart Kindler,
Olaf Kummer, Laure Petrucci, Reinier Post, Christian Stehno, and
Michael Weber. The Petri Net Markup Language: Concepts, technol-
ogy, and tools. In W. van der Aalst and E. Best, editors, Application
and Theory of Petri Nets 2003, 24th International Conference, volume
2679 of LNCS, pages 483–505. Springer, June 2003. 0.0.0.1

[5] B. Bos, H. W. Lie, C. Lilley, and I. Jacobs (ed.). Cascading Style Sheets,
level 2 – CSS2 Specification. URL http://www.w3.org/TR/CSS2, 1998.

[6] J. Clark. TREX – tree regular expressions for XML. URL http://www.

thaiopensource.com/trex/. 2001/01/20.

[7] J. Clark and M. Murata (eds.). RELAX NG specification. URL http:

//www.oasis-open.org/committees/relax-ng/. 2001/12/03.

[8] J. Clark (eds.). XSL Transformations (XSLT) Version 1.0. URL http:

//www.w3.org/TR/XSLT/xslt.html, 1999.

73

http://www.w3.org/TR/CSS2
http://www.thaiopensource.com/trex/
http://www.thaiopensource.com/trex/
http://www.oasis-open.org/committees/relax-ng/
http://www.oasis-open.org/committees/relax-ng/
http://www.w3.org/TR/XSLT/xslt.html
http://www.w3.org/TR/XSLT/xslt.html

[9] J. Ferraiolo, F. Jun, and D. Jackson (eds.). Scalable Vector Graphics
(SVG) 1.1 Specification. URL http://www.w3.org/TR/SVG11/, 2003.

[10] ISO/IEC/JTC1/SC7. Software Engineering - High-Level Petri Nets -
Concepts, Definitions and Graphical Notation. ISO/IEC 15909-1, Final
Committee Draft, May 2002.

[11] M. Jüngel, E. Kindler, and M. Weber. The Petri Net Markup Language.
Petri Net Newsletter, 59:24–29, 2000.

[12] M. Jüngel, E. Kindler, and M. Weber. The Petri Net Markup Lan-
guage. In S. Philippi, editor, 7. Workshop Algorithmen und Werkzeuge
für Petrinetze, pages 47–52, Universität Koblenz-Landau, Germany,
June 2000. AWPN. URL http://www.informatik.hu-berlin.de/

top/pnml/.

[13] E. Kindler and M. Weber. A universal module concept for Petri nets. An
implementation-oriented approach. Informatik-Berichte 150, Humboldt-
Universität zu Berlin, June 2001. 6.2.2.8

[14] A. M. Koelmans. PNIF language definition. Technical report, Comput-
ing Science Department, University of Newcastle upon Tyne, UK, July
1995. version 2.2.

[15] F. Kordon and L. Petrucci. Structure of abstract syntax trees for
coloured nets in PNML. version 0.2 (draft), June 2004. 0.0.0.1, 5.3.3.1

[16] R. B. Lyngsø and T. Mailund. Textual interchange format for high-
level Petri nets. In Proc. Workshop on Practical use of Coloured Petri
Nets and Design/CPN, pages 47–63, Department of Computer Science,
University ofÅrhus, Denmark, 1998. PB-532.

[17] T. Mailund and K. H. Mortensen. Separation of style and content with
XML in an interchange format for high-level Petri nets. In Bastide et al.
[1], pages 7–11.

[18] Petri Net Markup Language. URL http://www.informatik.

hu-berlin.de/top/pnml/. 2001/07/19.

[19] M. Sperberg-McQueen and H. Thompson (eds.). XML Schema. URL
http://www.w3.org/XML/Schema, April 2000. 2002-03-22.

74

http://www.w3.org/TR/SVG11/
http://www.informatik.hu-berlin.de/top/pnml/
http://www.informatik.hu-berlin.de/top/pnml/
http://www.informatik.hu-berlin.de/top/pnml/
http://www.informatik.hu-berlin.de/top/pnml/
http://www.w3.org/XML/Schema

[20] C. Stehno. Petri Net Markup Language: Implementation and Applica-
tion. In J. Desel and M. Weske, editors, Promise 2002, volume P-21 of
Lecture Notes in Informatics, pages 18–30. Gesellschaft für Informatik,
2002.

[21] O. Sy, M. Buffo, D. Buchs, F. Kordon, and R. Bastide. An experi-
mental approach towards the XML representation of Petri net models.
Technical Report 2000/336, École Polytechnique Fédéral de Lausanne,
Departement D’Informatique, June 2000.

[22] M. Weber and E. Kindler. The Petri Net Markup Language. In H. Ehrig,
W. Reisig, G. Rozenberg, and H. Weber, editors, Petri Net Technology
for Communication Based Systems, number 2472 in Lecture Notes in
Computer Science, pages 124–144. Springer, Berlin Heidelberg, 2003.
0.0.0.1

[23] G. Wheeler. A textual syntax for describing Petri nets. Foresee design
document, Telecom Australia Research Laboratories, 1993. version 2.

[24] World Wide Web Consortium (W3C) (ed.). Extensible Markup Lan-
guage (XML). URL http://www.w3.org/XML/. 2000/10/06.

Editor’s note: These references are very prelimary. The strong bias
on my (E.K.) own publications should be eliminated.

75

http://www.w3.org/XML/

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	4.1 Definitions from Part 1, ISO/IEC 15909-1
	4.2 Definitions for Part 2
	4.3 Abbreviations

	5 Concepts
	5.1 General Principles
	5.2 Core Model
	5.2.1 Petri nets and objects.
	5.2.2 Labels.
	5.2.3 Graphical information
	5.2.4 Tool specific information (ToolInfo)
	5.2.5 Pages and reference nodes.

	5.3 Petri Net Type Models
	5.3.1 Place/Transition Systems
	5.3.2 High-Level Petri Net Graphs
	5.3.3 BuiltIn Sorts and Functions

	6 Syntax
	6.1 Core Model
	6.1.1 elements.
	6.1.2 Labels
	6.1.3 Graphics
	6.1.4 Example

	6.2 Graphical representation (non-normative)
	6.2.1 Graphical appearance
	6.2.2 Transformation to

	7 Features and Type Definition Interfaces
	7.1 Feature Definition Interface
	7.2 Type Definition Interface

	A Grammar for (Normative)
	A.1 Grammar for Basic (without pages)
	A.2 Grammar for Structured (with pages)

	B Grammar for Conventions (Normative)
	C Grammars for [s] (Normative)
	C.1 Place/Transition-Systems
	C.2 HLPNGs

	D Guidelines for Introducing New Net Classes

