High-level Petri Nets — Transfer Syntax
— Proposal for the International Standard ISO/IEC 15909-2 —

Draft Version 0.3.0

Ekkart Kindler
April 21, 2004

Contents

1 Scope

(3.2 Glossary|

[4 General Principles|
4.1 Overviewl.

[4.2.1 Petri nets and objects.|

[4.2.3 Graphical information.|

[4.2.4 Tool specific information.|.

[4.2.5 Pages and reference nodes.|

[5 PNML Syntax (and Semantics)|

[5.2.3 Graphics.| . .
[6.2.4 Example| . .
|s[i|;5 E‘!E:IIlgllll l(::il ''''''

[5.4 Graphical representation (non-normative)[.

[>.4.1 Graphical appearence|.
Isilllz II;!ll{i[gzl]ll:!!ig!ll lgz Ei!!;l ------------------

6 F Definition T faca

[7 Type Definition Interface]

8 Some Standard Types|

8.1 Place/Transition Systems|,

8.2 High-level Petri Nets

12
12
12
12
13
14
15
15
15
17
18

20

21

[8.2.2 Concept|

[A' RELAX NG Grammar for PNML (Normative)|

[A.1 RELAX NG Grammar for Basic PNML|

B PNTD for HLPNSs

Preface

This is a draft version of a proposal for an International Standard (ISO/IEC 15909-
2) for a Transfer Syntax for High-level Petri Nets. It is based on [22 4] and
supposed to stir the discussion on this upcoming standard — formally and
informally.

Informal comments can be sent to Ekkart Kindler (kindler@upb.de) or can
be discussed on the PNX-Mailinglist (see http://www.informatik.hu-berlin.
de/top/PNX/ for details).

Ekkart Kindler, Paderborn, April 2004

1 Scope

This International Standard defines a transfer syntax (interchange format)
for Petri nets, which is based on XML: The Petri Net Markup Language
(PNML). PNML facilitates the exchange of Petri nets among different Petri
net tools.

There are many different versions and variants of Petri nets. High-level Petri
Nets as defined in ISO/IEC 15909-1 are but one version. The transfer syn-
tax defined in this International Standard is independent from the particular
version or variant of Petri nets and supports the exchange of any version
of Petri nets. This International Standard defines techniques for the defini-
tion of different extensions (features) of Petri nets and for the definition of
different versions of Petri net types: Petri Net Type Definitions (PNTDs).
This International Standard gives a Petri Net Type Definition for Place/-
Transition Nets and High-level Petri Nets as defined in ISO/IEC 15909-1.
This way, it defines a transfer syntax for High-level Petri Nets. The defi-
nition of extensions of Petri nets and of other versions of Petri nets will be
defined in ISO/IEC 15909-4.

This International Standard also defines a simple concept for structuring
Petri nets into different pages. More complex structuring mechanisms and a
module concept are not part of this International Standard. These will be
defines in ISO/IEC 15909-3.

< maybe, we should include modular PNML already into this Standard

kindler@upb.de
http://www.informatik.hu-berlin.de/top/PNX/
http://www.informatik.hu-berlin.de/top/PNX/

2 Normative References

ISO/IEC 15909-1
XML

XML Schema
XSLT

CSS

SVG

RELAX NG
UML

SVG

3 Terms and Definitions

3.1 General

For the purpose of this International Standard, the following terms and def-
initions are used.

3.2 Glossary

Annotation A label that is graphically represented as a text near the
corresponding object.

Arc A directed edge that connects two nodes of a graph. Typically, an arc
is graphically represented by an arrow. The start node of the edge is called
the source of the edge, the end node is called the target node of the edge.
In most types of Petri nets, an arc may connect a place to a transition or a
transition to a place only.

Attribute A label that is graphically represented in the form or shape of
the corresponding object.

Feature Definition A feature is a particular extension of a Petri net. The
same feature may occur in different versions of Petri nets. For a uniform use,
this International Standard provides a technique for defining features: the
Features Definition Interface.

A feature definition that is defined in some (informal or formal) standard is
called a Standard Feature Definition.

Graphical Information Each object of a Petri net as well as annotations
of a Petri net may be equipped with information on its graphical represen-
tation. The type of graphical information depends on the object. But, each
object has an absolute position (on the page it belongs to) and each annota-
tion has a relative position (with respect to the object it correspond to).

Global Label A label that is not attached to an object but is attached to
the Petri net itself.

Label Each object of the Petri net may carry additional information. This
information is attached to the corresponding object as a label. Moreover the
Petri net itself may have labels which are called global labels.

Typically, labels are graphically represented by a text near to the correspond-
ing object. In that case, the label is called an annotation.

Sometimes the annotation is not represented as a text, but it is represented
in the shape of the corresponding arc. In that case, the label is called an
attribute.

Node The nodes of a Petri net are its places and its transitions. In Petri
nets with pages, there are also reference places and reference transitions,
which are also considered as nodes.

Object (of a Petri net) The arcs, places and transitions of a Petri net. In
a Petri net with pages, also the pages and the reference places and reference
transitions are objects of this net.

Page For representing large Petri nets, the net may be split into different
pages. Each node of the Petri net belongs to a page, and arcs may only
connect nodes that belong to the same page. In order to connect nodes on
different pages, reference nodes can be used.

6

Petri Net A Petri net consists of two types of nodes, the places and the
transitions and arcs that connect these nodes. Additional information can be
attached to all objects of the Petri net by labels. For structuring purposes,
a Petri net may also consist of pages and reference nodes.

Petri Net Document A document that contains one or more Petri nets.

Petri Net Type Definition (PNTD) There are many different versions
and variants of a Petri net. The Petri Net Type Definition Interface is a
technique for defining the syntax of a particular version of Petri net. A Petri
Net Type Definition, can refer to features defined in the Feature Definitions
from some Feature Definition Document.

A Petri Net Type Definition that is published in this or other (formal or
informal) standards is called a Standard Petri Net Type Definition.

Reference Node A reference place or a reference transition. A reference
node is used in Petri nets with pages as a representative of a node defined
on another page.

Reference Place A reference node that is a place. Its reference must point
to another reference place or to a place.

Reference Transitions A reference node that is a place. Its reference
must point to another reference transition or to a transition.

Source Node The start node of an arc.
Target Node The end node of an arc.

Tool Specific Information FEach object of a Petri net can be equipped
with information that is specific to a particular tool and is not meant to be
used by other . This information is called tool specific information.

3.3 Abbreviations

< here is a list of important abbreviations; the definitions will
be added later >

- PNML

- PNTD

- RELAX NG

- SVG

- UML

- XML

- HLPNGs

4 General Principles

4.1 Overview

This International Standard defines a transfer syntax for different versions
and variants of Petri nets. This transfer syntax should be not restricted to
particular versions and variants of Petri nets. In particular, it should be open
for future extensions and future versions of Petri nets. In order to obtain this
flexibility, the transfer syntax, basically, represents a Petri net as a labelled
graph, where all type specific information of a net is attached as a label to
some node or to some arc of the net. This basic structure is called the PNML
Meta Model, which will be discussed in Clause

The PNML Meta Model has no restrictions concerning the labels attached
to the net and its objects. Therefore, it is apt for representing any kind
of Petri net. In order to give a unique meaning to the attached labels, the
used labels must be defined somewhere. To this end, PNML provides two
mechanism: the Features Definition Interface for defining legal labels and
the Type Definition Interface for defining new Petri net types.

Some features of Petri nets and some types will be defined in Clause [§ of this
International Standard. However, there can be new features and new types
defined in the future.

Figure|l|gives an overview on the different parts of PNML and their relation.

<more information to be added>

Petri Net Petri Net PNML
File File Files

Petri Net
File

F Petri Net
eatures PNML
Definition Ey[:: .. Types &
efinition o
Document | Features
Feature Definition Interface Type Definition Interface
PNML
Technology
Meta Model

Figure 1: Overview on the structure of PNML

4.2 Meta Model

Figure [2| shows the PNML Meta Model as an UML class diagram. This meta
model will be discussed in the following Clauses.

4.2.1 Petri nets and objects.

A document that meets the requirements of PNML is called a Petri net doc-
ument; it may contain several Petri nets. Each Petri net consists of objects,
which, basically, represent the graph structure of the Petri neiﬂ. Each ob-
ject within a Petri net document has a unique identifier, which can be used
to refer to this object. An object is a place, a transition or an arc. For
convenience, a place or a transition is called a node.

For structuring a Petri net, there are three other kinds of objects, which will
be explained later in this section: pages, reference places, and reference tran-
sitions, where a reference place or a reference transition is called a reference
node.

!'Note that the PNML meta model allows arcs between nodes of the same kind. The
reason is that there are Petri net types with such arcs. Since Petri net types only restrict
the meta model, the meta model should not forbid such arcs.

* —
PetriNetDoc £ PetriNet .| Toollnfo
id tool
type version
! &

il Object # Label
id value
graphics

‘ Annomtion‘ ‘ Attribute ‘

1 1 source
ref 1 target

/\

1 /repr /repr 1 .
Place H RefPlace ‘ ‘ RefTrans Transition

Figure 2: The PNML meta model

4.2.2 Labels.

In order to assign further meaning to an object, each object may have labels.
Typically, a label represents the name of a node, the initial marking of a
place, the guard of a transition, or the inscription of an arc. In addition,
the Petri net itself may have some labels. For example, the declarations of
functions and variables that are used in the arc inscriptions could be labels of
a high-level Petri net. The legal labels and the legal combinations of labels
are defined by the Petri net type. The type of a Petri net is defined by
a reference to a unique Petri Net Type Definition (PNTD), which will be
discussed in Clause. [7.

Two kinds of labels are distinguished: annotations and attributes. An an-
notation comprises information that is typically displayed as text near the
corresponding object. Examples are names, initial markings, arc inscrip-
tions, transition guards, and timing or stochastic information. In contrast,

10

the values of an attribute are chosen from a fixed and small domain. An
attribute is not displayed as a text near the corresponding object. Rather,
the attribute has an effect on the shape of the corresponding object. For
example, an attribute arc type could have domain normal, read, inhibitor,
reset. PNML does not define the effect on the graphical appearance of an
attribute, although the Standard Features Definition Document may provide
directions.

< actually, we could equip the Features Defintion Interface with

a mechanism for defining the graphical appearance of objects with
a particular attribute. But, this will require some effort to make
it really work. I don’t know whether we have capacity for that.

>

4.2.3 Graphical information.

Each object and each annotation is equipped with graphical information. For
a node, this information includes its position; for an arc, it includes a list
of positions that define intermediate points of the arc; for an annotation, it
includes its relative position with respect to the corresponding ob jectﬂ There
can be additional information concerning size, colour, and shape of nodes or
arcs, or concerning colour, font, and font size of labels (see Clause for
details).

4.2.4 Tool specific information.

For some tools, it might be necessary to store tool specific information, which
is not supposed to be used by other tools. In order to store this information,
each object and each label may be equipped with such tool specific informa-
tion. Its format depends on the tool and is not specified by PNML. PNML
provides a mechanism for clearly marking tool specific information along
with the name and the version of the tool adding this information. There-
fore, other tools can easily ignore it, and adding tool specific information will
never compromise a Petri net document.

2For an annotation of the net itself, the position is absolute.

11

4.2.5 Pages and reference nodes.

For structuring large Petri nets, PNML supports a page concept: Different
parts of a net may be split into separate pages. A page is an object that may
consist of other objects — it may even consist of other pages. An arc, however,
may connect nodes on the same page only’} A reference node, which can be
either a reference transition or a reference place represents an appearance
of a node. It can refer to any node on any page of the Petri net as long as
there are no cyclic references among reference nodes; this guarantees that,
ultimately, each reference node refers to exactly one place or transition of
the Petri net.

Reference nodes may have labels but these labels can only specify information
about their appearance. They cannot specify any information about the
referenced node itself, which already has its own labels for this purpose.

5 PNML Syntax (and Semantics)

5.1 Syntax

In this Clause, the syntax of PNML will be presented, i.e. how the concepts
of PNML are mapped to XML. Here, we give an immediate translation from
the concepts of PNML to XML. Appendix[A] gives a formal definition of valid
PNML documents in terms of a RELAX NG grammar.

5.2 PNML Meta Model

The PNML meta model is translated into XML syntax in a straightforward
manner.

5.2.1 PNML elements.

Basically, each concrete clasg’| of the PNML meta model is translated into an
XML element. This translation along with the attributes and their data types
is given in Tab. [} These XML elements are the keywords of PNML and are

3The reason is that an arc cannot be drawn from one sheet of paper to another when
printing the different pages.
4A class in a UML diagram is concrete if its name is not displayed in italics.

12

Table 1: Translation of the PNML meta model into PNML elements

Class XML element XML Attributes
PetriNetFile <pnml>
PetriNet <net> id: ID

type: anyURI
Place <place> id: ID
Transition <transition> id: ID
Arc <arc> id: ID

source: IDRef (Node)
target: IDRef (Node)

Page <page> id: ID
RefPlace <referencePlace> id: ID

ref: IDRef (Place or RefPlace)
RefTrans <referenceTransition> id: ID

ref: IDRef (Transition or RefTrans)
Toollnfo <toolspecific> tool: string

version: string
Graphics <graphics>

called PNML elements for short. For each PNML element, the aggregations
of the meta model define in which elements it may occur as a child element.
The data type ID in Tab. [I] refers to a set of unique identifiers within the
PNML document. The data type IDRef refers to the set of all identifier
occurring in the document, i.e. they are meant as references to identifiers.
A referenc at some particular position, however, is restricted to a subset. For
instance, the attribute ref of a reference place must transitively refer to a
place of the same net. The set to which a reference is restricted, is indicated
in the tabld’]

5.2.2 Labels.

There are no PNML elements for labels because the meta model does not
define any concrete labels. Concrete labels are defined by the Petri net
types. An XML element that is not defined by the meta model (i.e. not
occurring in Tab. [1]) is considered as a label of the PNML element in which

5Note, that the RELAX NG grammar for PNML cannot capture this requirement right
now. But, in order to conform to this standard, these restrictions must be met, too

13

Table 2: Elements in the <graphics> element depending of the parent element

Parent element class Sub-elements of <graphics>

Node, Page <position> (required)
<dimension>
<fill>
<line>

Arc <position> (zero or more)
<line>

Annotation <offset> (required)
<fill>
<line>

it occurs. For example, an <initialMarking> element could be a label for a
place, which represents its initial marking. Likewise <name> could represent
the name of an object, and <inscription> an arc inscription. A legal element
for a label may consist of further elements. The value of a label appears as a
string in a <text> element. Furthermore, the value may be represented as an
XML tree in a <structure> element’] An optional PNML <graphics> element
defines its graphical appearance, and further optional PNML <toolspecific>
elements may add tool specific information to the label.

5.2.3 Graphics.

PNML elements and labels include graphical information. The structure
of the PNML <graphics> element depends on the element in which it oc-
curs. Table |2 shows the elements which may occur in the substructure of a
<graphics> element.

The <position> element defines an absolute position and is required for each
node, whereas the <offset> element defines a relative position and is required
for each annotation. The other sub-elements of <graphics> are optional. For
an arc, the (possibly empty) sequence of <position> elements defines its
intermediate points. Each absolute or relative position refers to Cartesian
coordinates (z,y). As for many graphical tools, the z-axis runs from left to

In order to be compatible with earlier versions of PNML, the text element <value>
may occur alternatively to the <text> <structure> pair.

14

right and the y-axis from top to bottom. More details on the effect of the
graphical features can be found in Sect. [5.4.1]

5.2.4 Example.

ready 2
: j |

Figure 3: A simple P/T-system

In order to illustrate the structure of a PNML document, we given an example
PNML document representing the Petri net shown in Fig. [3| Listing [1] shows
the corresponding PNML code. It is a straightforward translation, where we
have labels for the names of objects, for the initial markings, and for arc
inscriptions. Note that we assume that the dashed outline of the transition
results from the tool specific information <hidden> from an imaginary tool
PNjall.

< it should be discussed whether we should include modular PNML
this part already; from the feedback I (E.K.) have got, I think
should include it

5.3 Semantics

<

Flattening for pages / reference nodes
- No Semantics for other features

5.4 Graphical representation (non-normative)

< maybe, we should make this even normative? >

In this Clause, we discuss the graphical features of PNML and their effect
on the graphical presentation of a PNML document. Clause gives an
informal overview of all graphical features. Clause [5.4.2defines the graphical
presentation of a PNML document by an XSLT transformation from PNML
to the Scalable Vector Graphics (SVG).

15

into
we

Listing 1: PNML code of the example net in Fig.

<pnml xmlns="http://www.ezample.orqg/pnml">
<net id="n1" type="http://www.ezample.orqg/pnml/PTNet">
<name>
<text>An example P/T-net</text>

10

15

20

25

30

40

</name>
<place id="p1">
<graphics>
<position x="20" y="20"/>
</graphics>
<name>
<text>ready</text>

<graphics>
<offset x="-10" y="-8"/

</graphics>
</name>
<initialMarking>
<text>3</text>
</initialMarking>
</place>
<transition id="t1">
<graphics>
<position x="60" y="20"/>
</graphics>

<toolspecific tool="PN4all" version="0.1">

<hidden/>

</toolspecific>
</transition>

<arc id="al" source="pl" target="t1">

<graphics>
<position x="30" y="5"/>
<position x="60" y="5"/>

</graphics>

<inscription>
<text>2</text>

<graphics>
<offset x="15" y="-2"/>

</graphics>
</inscription>
</arc>
</net>
</pnml>

>

16

5.4.1 Graphical appearence

Table |3|lists the graphical elements that may occur in the PNML <graphics>
element along with their attributes. The domain of the attributes refers to
the data types of either XML Schema, or Cascading Stylesheets 2 (CSS2), or
is given by an explicit enumeration of the legal values.

Table 3: PNML graphical elements

XML element Attribute Domain
<position> x decimal
y decimal
<offset> X decimal
y decimal
<dimension> x nonNegativeDecimal
y nonNegativeDecimal
<£fill> color CSS2-color
image anyURI
gradient-color CSS2-color
gradient-rotation {vertical, horizontal, diagonal}
<line> shape {line, curve}
color CSS2-color
width nonNegativeDecimal
style {solid, dash, dot}
 family CSS2-font-family
style CSS2-font-style
weight CSS2-font-weight
size CSS2-font-size
decoration {underline, overline, line-through}
align {left, center, right}
rotation decimal

The <position> element defines the absolute position of a net node or a
net annotation, where the x-coordinate runs from left to right and the y-
coordinate from top to bottom. The <offset> element defines the position
of an annotation relative to the position of the object.

For an arc, there may be a (possibly empty) list of <position> elements.
These elements define intermediate points of the arc. Altogether, the arc is
a path from the source node of the arc to the destination node of the arc

17

via the intermediate points. Depending on the value of attribute shape of
element <line>, the path is displayed as a polygon or as a (quadratic) Bezier
curve, where points act as line connectors or Bezier control points.

The <dimension> element defines the height and the width of a node. De-
pending on the ratio of height and width, a place is displayed as an ellipse
rather than a circle. A Transition is displayed as a rectangle of the corre-
sponding size.

The two elements <fill> and <line> define the interior and outline colours
of the corresponding element. The value assigned to a colour attribute must
be a RGB value or a predefined colour as defined by CSS2. When the at-
tribute gradient-color is defined, the fill colour continuously varies from
color to gradient-color. The additional attribute gradient-rotation defines
the orientation of the gradient. If the attribute image is defined, the node is
displayed as the image at the specified URI, which must be a graphics file in
JPEG or PNG format. In this case, all other attributes of <fil11> and <line>
are ignored.

For an annotation, the element defines the font used to display the
text of the label. The complete description of possible values of the dif-
ferent attributes can be found in the CSS2 specification. Additionally, the
align attribute defines the justification of the text with respect to the label
coordinates, and the rotation attribute defines a clockwise rotation of the
text.

5.4.2 Transformation to SVG

In order to give a precise defintion of the graphical presentation of a PNML
document with all its graphical features, we define a translation to SVG. Petri
net tools that support PNML can visualise Petri nets using other means
than SVG, but the SVG translation can act as a reference model for such
visualisations. Technically, this translation is done by means of an XSLT
stylesheet. The basic idea of this transformation was already presented in.
A complete XSLT stylesheet can be found on the PNML web pages.

< the tranformations still need some polishing; then they could
to the Appendix (non-normative) > .

Transformations of basic PNML. The overall idea of the translation
from PNML to SVG is to transform each PNML object to some SVG object,

18

g0

where the attributes of the PNML element and its child elements are used to
give the SVG element the intended graphical appearance.

As expected, a place is transformed into an ellipse, while a transition is
transformed into a rectangle. Their position and size are calculated from
the <position> and <dimemnsion> elements. Likewise, the other graphical
attributes from <£i11> and <line> can be easily transformed to the corre-
sponding SVG attributes.

An annotation is transformed to SVG text such as name: someplace. The lo-
cation of this text is automatically computed from the attributes in <offset>
and the position of the corresponding object. For an arc, this reference posi-
tion is the centre of the first line segment. If there is no <offset> element, the
transformation uses some default value, while trying to avoid overlapping.
An arc is transformed into a SVG path from the source node to the target
node — possibly via some intermediate points — with the corresponding at-
tributes for its shape. The start and end points of a path may be decorated
with some graphical object corresponding to the nature of the arc (e.g. in-
hibitor). The standard transformation supports arrow heads as decorations
at the end, only. The arrow head (or another decoration) should be exactly
aligned with the corresponding node. This requires computations using com-
plex operations that are neither available in XSLT nor in SVG — the current
transformation uses recursive approximation instead.

Transformations for structured PNML. Different pages of a net should
be written to different SVG files since SVG does not support multi-image
files. Unfortunately, XSLT does not support output to different files yet, but
XSLT 2.0 will. Hence, a transformation of structured PNML to SVG will be
supported once XSLT 2.0 is available.

The transformations for reference places and reference transitions are sim-
ilar to those for places and transitions. In order to distinguish reference
nodes from other nodes, reference nodes are drawn slightly translucent and
an additional label gives the name of the referenced object.

Type specific transformations. Above, we have discussed a transforma-
tion that works for all PNML documents, where all annotations are displayed
as text. For some Petri net types, one would like to have other graphical
representations for some annotations. This can be achieved with customized
transformations. The technical details of customized transformations are not

19

Listing 2: Label definition

<define name="PTMarking"
xmlns:poml="http://www. informatik.hu-berlin.de/top/pnml ">
<element name="initialMarking'">
<interleave>
5 <element name="text'">
<data type="nonlNegativelnteger"
datatypeLibrary="http://www.w3. orq/2001/XMLSchema-datatypes"/>
</element>
<ref name="pnml:StandarddnnotationContent"/>
10 </interleave>
</element>
</define>

yet fixed. Due to the rule-based transformations of XSLT, equipping the Type
Definition Interface and the Feature Definition Interface of PNML with some
information on their graphical appearance seems to be feasible. Basically,
each new feature can be assigned its own transformation to SVG. Adding
these transformations to the standard ones for PNML gives us a customized
transformation for this Petri net type.

< type specific graphical transformations are very preliminary; I
think we should not include them into this standard, because the
might need much work for making this really work >

6 Feature Definition Interface

In this Clause, we show how new labels can be defined in PNML, by the help
of the Features Definition Interface.

Listing |2] shows the RELAX NG definition of the label <initialMarking>,
which represents the initial marking of a place of a P/T-system (cf. List. [I]).
Its value (in a <text> element) should be a natural number, which is for-
malized by referring to the corresponding data type nonNegativeInteger of
the data type system of XML Schema. Note that the optional graphical and
tool specific information do not occur in this label definition; this is not nec-
essary, because these standard elements for annotations are inherited from

20

10

15

Listing 3: PNTD for P/T-Systems

<grammar ns="http://www.ezample.orqg/pnml"
xmlns="http://relazng.org/ns/structure/1.0"
xmlns:conv="http://www. informatik.hu-berlin.de/top/pnml/conv">

<include href="http://www.informatik.hu-berlin.de/top/pnml/pnml.rng"/>
<include href="http://www.informatik.hu-berlin.de/top/pnml/conv.rng"/>
<define name="NetType" combine="replace'>

<text>http://www.example.org/pnml/PTNet</text>
</define>
<define name="Net" combine="interleave'>

<optional><ref name="conv:Name"/></optional>
</define>
<define name="Place" combine="interleave'>

<interleave>

<optional><ref name="conv:PTMarking"/></optional>
<optional><ref name="conv:Name"/></optional>

</interleave>
</define>
<define name="Arc" combine="interleave>

<optional><ref name="conv:PTArcInscription’/></optional>
</define>

</grammar>

the standard annotation of PNML. Such label definitions can either be given
explicitly for each Petri net type, or they can be included in the Conventions
Document, such that Petri net type definitions can refer to these definitions.

< a precise definition is missing yet >

7 Type Definition Interface

Listing [3| shows the Petri Net Type Definition (PNTD) for P/T-Systems
as a RELAX NG grammar. Firstly, it includes both the definitions for the
meta model of PNML (pnml.rng) and the definitions of the Conventions
Document (conv.rng) (Sect. ?7), which, in particular, contains the definition
from List. , a similar definition for arc inscriptions of P/T-systems, and a

21

definition for names.

Secondly, the PNTD defines the legal labels for the whole net and the different
objects of the net. In our example, the net and the places may have an
annotation for names. Furthermore, the places are equipped with an initial
marking and the arcs are equipped with an arc inscription. Note that all
labels are optional in this type. The labels are associated with the net objects
by giving a reference to the corresponding definitions in the Conventions
Document. Technically, the definition extends the original definition of the
net, places and arcs of the RELAX NG grammar for PNML.

< the precise definition of how to define a Petri type will be added
later >

8 Some Standard Types

8.1 Place/Transition Systems

< Michael’s examples >

8.2 High-level Petri Nets

< this is very preliminary stuff and the presentation is a little
bit redundant; but it is a start >

8.2.1 Basic idea

Here, we will briefly sketch the idea of a PNTD for HLPNGs as defined in
Part 1 of this International Standard. Note that this definition is an example
for having a textual as well as a structural representation of the value of a
label.

The PNTD defines labels for the corresponding concepts of HLPNGs: sig-
natures, variables, initial markings, arc-inscriptions, and transition guards.
Arc-inscriptions and transition guards are terms over the signature and the
variables of the HLPNG. No concrete syntax is defined, but terms are defined
in the usual inductive manner, providing an abstract syntax.

< maybe, we should also define a concrete syntax >

22

In the PNTD for HLPNGs, the value of a label may be represented by using a
concrete or abstract syntax. The value in a concrete syntax is represented as
pure text within the label’s <text> element, the value in an abstract syntax
is represented within the label’s <structure> element. An XML substructure
within the <structure> element represents the inductive construction of a
term from its subterms. This way, we can exchange high-level nets between
two tools that use different concrete syntaxes, but have the same underlying
structure (which is fixed for HLPNGs). Tools are not required to export or
import abstract syntax, but if they do, interoperability with other tools is
increased.

8.2.2 Concept
A HLPNG is a Petri net with the following extensions.

o A signature defines the domains and the functions that are used in the
Petri net. In fact, it does not define the domains. It only names the
sorts and the operations along with their arity. The sorts bool and nat
are implicitly defined for each signature, so are the constants true and
false.

For each sort, the signature implicitly defines a multiset sort which de-
notes the multiset over the domain of the original sort. The operations
may have the multiset sorts as parameter sorts as well as result sorts.

o A set of variables along with their type. From the variables and the
operations of the signature, terms of the corresponding sorts can be
built. If the sort of a term is a multiset sort, it is called multiset term.
A term without any variables is called a ground term.

e Each place is equipped with a sort, which defines the domain of the
legal tokens on this place. The marking of a place is a multiset over
the corresponding domain, which can be represented as a ground term
of the corresponding multiset sort. The initial marking of the place is
represented by such a term.

e Each arc is annotated with a multiset term over the sort of the involved
place. This term is often called the arc-inscription. The arc-inscription
defines which tokens are removed from or added to the corresponding
place when the transition fires.

23

e Each transition is equipped with a term of sort bool. This transition
guard imposes additional restrictions on the firing of a transition.

In the following, we will discuss how to represent this additional information
of HLPNGs by a Petri Net Type Definition.

The Petri Net Type Definition for HLPNG, basically defines a label for each
of the above extensions. Note that all labels for HLPNGs are annotations.
The different labels are strongly related, and, in particular, the structure of
arc-inscriptions is dependent on the signature. Hence, we try to capture as
much of this structure as possible within the labels. To this end, we use the
feature of PNML that allows us to have structured labels as well as a textual
representation of this structure. This way, it is even possible to exchange
HLPNGs with a different concrete syntactical representation as long as the
abstract syntax conforms to the Standard. The element <text> represents
the textual representation of the extension in some concrete syntax. The
element <structure> represents the structure of the extension in the fixed
abstract syntax of HLPNGs.

An annotation <definitions> for the net in a whole defines the signature and
the variables that are used in the net. The element <text> gives the defini-
tion in textual representation in some concrete syntax. This concrete syntax
could be the concrete syntax of some programming language such as ML for
Design/CPN. This textual definition could even cover aspects that are not
captured in the definition of signatures at all, e.g. it could contain the def-
inition of functions, not only their functionality. The element <structure>,
however, represents the declaration in its abstract syntax, which must con-
form to the abstract syntax of signatures for HLPNGs. This abstract syntax
will be sketched in Appendix [Bl Here, we will go though the basics labels.
It starts with an element <declaration>.

< actually, I think we should allow a signature to consist of several
declarations, which could be several global labels on different pages
>

Each place has an annotation <domain>, which defines the domain of the legal
tokens on that place. Again, it consists of a textual representation within the
element <text> in some concrete syntax and of a structural representation
within an element <structure> in the abstract syntax of HLPNGs, a sort.

24

The sort must be defined in the <declaration>.

Each place has an annotation <initialMarking> too, which defines the ini-
tial marking of the place. The element <text> gives the initial marking in
some textual representation, the element <structure> gives it in the ab-
stract syntax of HLPNGs, a multiset ground term of the sort of that place:
<msgroundterm>.

Each arc has an annotation <inscription>, which, again consists of a textual
part <text> and a structural part <structure>. The structural part is a
multiset term <msgroundterm> over the sort of the place.

A transition has an annotation <guard>, where the structural part is a boolean
term: <boolterm>.

References

[1] R. Bastide, J. Billington, E. Kindler, F. Kordon, and K. H. Mortensen,
editors. Meeting on XML/SGML based Interchange Formats for Petri
Nets, Arhus, Denmark, June 2000. 21st ICATPN.

[2] F. Bause, P. Kemper, and P. Kritzinger. Abstract Petri net notation.
Petri Net Newsletter, 49:9-27, October 1995.

[3] G. Berthelot, J. Vautherin, and G. Vidal-Naquet. A syntax for the
description of Petri nets. Petri Net Newsletter, 29:4-15, April 1988.

[4] Jonathan Billington, Sgren Christensen, Kees van Hee, Ekkart Kindler,
Olaf Kummer, Laure Petrucci, Reinier Post, Christian Stehno, and
Michael Weber. The Petri Net Markup Language: Concepts, technol-
ogy, and tools. In W. van der Aalst and E. Best, editors, Application
and Theory of Petri Nets 2003, 24" International Conference, volume
2679 of LNCS, pages 483-505. Springer, June 2003.

[5] B. Bos, H. W. Lie, C. Lilley, and I. Jacobs (ed.). Cascading Style Sheets,
level 2 — CSS2 Specification. URL http://www.w3.org/TR/CSS2, 1998.

[6] J. Clark. TREX — tree regular expressions for XML. URL http://www.
thaiopensource.com/trex/. 2001/01/20.

[7] J. Clark and M. Murata (eds.). RELAX NG specification. URL http:
//www.oasis-open.org/committees/relax-ng/. 2001/12/03.

25

http://www.w3.org/TR/CSS2
http://www.thaiopensource.com/trex/
http://www.thaiopensource.com/trex/
http://www.oasis-open.org/committees/relax-ng/
http://www.oasis-open.org/committees/relax-ng/

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

J. Clark (eds.). XSL Transformations (XSLT) Version 1.0. URL http:
//www.w3.org/TR/XSLT/xslt.html, 1999.

J. Ferraiolo, F. Jun, and D. Jackson (eds.). Scalable Vector Graphics
(SVG) 1.1 Specification. URL http://www.w3.org/TR/SVG11/, 2003.

ISO/IEC/JTC1/SC7. Software Engineering - High-Level Petri Nets -
Concepts, Definitions and Graphical Notation. ISO/TEC 15909-1, Final
Committee Draft, May 2002.

M. Jiingel, E. Kindler, and M. Weber. The Petri Net Markup Language.
Petri Net Newsletter, 59:24-29, 2000.

M. Jiingel, E. Kindler, and M. Weber. The Petri Net Markup Lan-
guage. In S. Philippi, editor, 7. Workshop Algorithmen und Werkzeuge
fur Petrinetze, pages 47-52, Universitat Koblenz-Landau, Germany,
June 2000. AWPN. URL http://www.informatik.hu-berlin.de/
top/pnml/.

E. Kindler and M. Weber. A universal module concept for Petri nets. An
implementation-oriented approach. Informatik-Berichte 150, Humboldt-
Universitat zu Berlin, June 2001.

Ekkart Kindler and Michael Weber. A universal module concept for Petri
nets — an implementation-oriented approach. Informatik-Bericht 150,
Humboldt-Universitat zu Berlin, Institut fiir Informatik, April 2001.

A. M. Koelmans. PNIF language definition. Technical report, Comput-
ing Science Department, University of Newcastle upon Tyne, UK, July
1995. version 2.2.

R. B. Lyngsg and T. Mailund. Textual interchange format for high-
level Petri nets. In Proc. Workshop on Practical use of Coloured Petri
Nets and Design/CPN, pages 47-63, Department of Computer Science,
University ofArhus, Denmark, 1998. PB-532.

T. Mailund and K. H. Mortensen. Separation of style and content with
XML in an interchange format for high-level Petri nets. In Bastide et al.
[1], pages 7-11.

26

http://www.w3.org/TR/XSLT/xslt.html
http://www.w3.org/TR/XSLT/xslt.html
http://www.w3.org/TR/SVG11/
http://www.informatik.hu-berlin.de/top/pnml/
http://www.informatik.hu-berlin.de/top/pnml/

18]

[19]

[20]

[21]

[22]

Petri Net Markup Language. URL http://www.informatik.
hu-berlin.de/top/pnml/. 2001/07/19.

M. Sperberg-McQueen and H. Thompson (eds.). XML Schema. URL
http://www.w3.org/XML/Schema, April 2000. 2002-03-22.

C. Stehno. Petri Net Markup Language: Implementation and Applica-
tion. In J. Desel and M. Weske, editors, Promise 2002, volume P-21 of
Lecture Notes in Informatics, pages 18-30. Gesellschaft fiir Informatik,
2002.

O. Sy, M. Buffo, D. Buchs, F. Kordon, and R. Bastide. An experi-
mental approach towards the XML representation of Petri net models.
Technical Report 2000/336, Ecole Polytechnique Fédéral de Lausanne,
Departement D’Informatique, June 2000.

M. Weber and E. Kindler. The Petri Net Markup Language. In H. Ehrig,
W. Reisig, G. Rozenberg, and H. Weber, editors, Petri Net Technology
for Communication Based Systems, number 2472 in Lecture Notes in
Computer Science, pages 124-144. Springer, Berlin Heidelberg, 2003.

G. Wheeler. A textual syntax for describing Petri nets. Foresee design
document, Telecom Australia Research Laboratories, 1993. version 2.

World Wide Web Consortium (W3C) (ed.). Extensible Markup Lan-
guage (XML). URL http://www.w3.org/XML/. 2000/10/06.

< these references are very prelimary and the strong bias on my
own publications should be eliminated >

A

RELAX NG Grammar for PNML (Norma-
tive)

This appendix gives a complete definition of PNML in terms of a RELAX NG
grammar. We start with a definition of basic PNML and then give the exten-
sions for structured PNML. Note that some syntactical restrictions cannot
be expressed in RELAX NG. Still, these restrictions are mandadory for valid
PNML documents.

27

(E.K.)

http://www.informatik.hu-berlin.de/top/pnml/
http://www.informatik.hu-berlin.de/top/pnml/
http://www.w3.org/XML/Schema
http://www.w3.org/XML/

10

15

20

25

30

A.1 RELAX NG Grammar for Basic PNML
<?xml version="1.0" encoding="UTF-8"7>

<grammar xmlns="http://relazng.org/ns/structure/1.0"
xmlns:a="http://relazng.org/ns/compatibility/annotations/1.0"
datatypeLibrary="http://www.w3.orq/2001/XMLSchema-datatypes">

<a:documentation>
Petri Net Markup Language schema
RELAX NG implementation of basic PNML
version: 1.3.2b
according to the paper by Billington et al
(c) 2001-2004
Michael Weber (mweber@informatik.hu-berlin.de),
Ekkart Kindler,
Christian Stehno (for the graphical elements)
</a:documentation>

<start>
<ref name="pnml.element"/>
</start>

<define name="pnml.element">
<element name="pnml'">
<a:documentation>
A PNML document consists of one or more Petri nets.
</a:documentation>
<oneOrMore>
<ref name="pnml.content"/>
</onelrMore>
</element>
</define>

<define name="pnml.content">
<ref name="net.element"/>

</define>

<define name="net.element'>
<element name='"net'>

28

40

45

55

60

70

75

<a:documentation>
A net has a unique identifier (id) and refers to
its Petri Net Type Definition (PNTD) (type).
</a:documentation>
<attribute name=":d">
<data type="ID"/>
</attribute>
<attribute name="type'">
<ref name="nettype.urs"/>
</attribute>
<a:documentation>
The sub-elements of a net may occur in any order.

A net consists of several net labels (net.labels), several
objects (net.content), tools specific information, and a set of

graphical information in any order.
</a:documentation>
<interleave>
<ref name="net.labels"/>
<zeroOrMore>
<ref name='"net.content'/>
</zero0rMore>
<zeroOrMore>
<ref name="toolspecific.element"/>
</zero0rMore>
<optional>
<element name="graphics'>
<ref name="netgraphics.content"/>
</element>
</optional>
</interleave>
</element>
</define>

<define name="nettype.uri'">
<a:documentation>

The net type (nettype.uri) of a net should be redefined in a PNTD.

</a:documentation>
<data type="anyURI"/>
</define>

29

80

85

90

95

100

105

110

115

<define name="net.labels">
<a:documentation>
A net may have unspecified many labels. This pattern should be used
within a PNTD to define the net labels.
</a:documentation>

<empty/>
</define>

<define name="net.content'>
<a:documentation>
A net object is either a place, or a tramsition, or an arc.
</a:documentation>
<choice>
<element name="place">
<ref name="place.content"/>
</element>
<element name="transitzion'>
<ref name="transition.content"/>
</element>
<element name="arc">
<ref name="arc.content'/>
</element>
</choice>
</define>

<define name="place.content'">
<a:documentation>
A place may have several labels (place.labels) and the same content
as a node.
</a:documentation>
<interleave>
<ref name="place.labels"/>
<ref name='"node.content"/>
</interleave>
</define>

<define name="place.labels">
<a:documentation>
A place may have unspecified many labels. This pattern should be used
within a PNTD to define the place labels.

30

120

125

130

135

140

145

</a:documentation>

<empty/>
</define>

<define name="transttion.content'">
<a:documentation>
A transition may have several labels (transition.labels) and the same
content as a node.
</a:documentation>
<interleave>
<ref name="transition.labels'/>
<ref name='"node.content'/>
</interleave>
</define>

<define name="transition.labels">
<a:documentation>
A transition may have unspecified many labels. This pattern should be
used within a PNTD to define the transition labels.
</a:documentation>

<empty/>
</define>

<define name="node.content'>
<a:documentation>
A node has a unique identifier.
</a:documentation>
<attribute name="7d">
<data type="ID"/>
</attribute>
<interleave>
<a:documentation>
The sub-elements of a node occur in any order.
A node may consist of grahical and tool specific information.
</a:documentation>
<optional>
<element name="graphics'>
<ref name="nodegraphics.content"/>
</element>

</optional>

31

<zeroOrMore>
<ref name="toolspecific.element"/>
</zero0rMore>
</interleave>
</define>

<define name="arc.content'>
<a:documentation>
An arc has a unique identifier (id) and
refers both to the node’s 2d of its source and
the node’s id of its target.
In general, if the source attribute refers to a place,
then the target attribute refers to a transition and vice versa.
</a:documentation>
<attribute name="7d">
<data type="ID"/>
</attribute>
<attribute name="source'>
<data type="IDREF"/>
</attribute>
<attribute name="target'>
<data type="IDREF"/>
</attribute>
<a:documentation>
The sub-elements of an arc may occur in any order.
An arc may have several labels. Furthermore, an arc may consist of
grahical and tool specific information.
</a:documentation>
<interleave>
<ref name="arc.labels"/>
<optional>
<element name="graphics'>
<ref name="edgegraphics.content"/>
</element>
</optional>
<zeroOrMore>
<ref name="toolspecific.element"/>
</zero0rMore>
</interleave>
</define>

32

200

205

210

215

220

225

<define name="arc. labels">
<a:documentation>
An arc may have unspecified many labels. This pattern should be used
within a PNTD to define the arc labels.
</a:documentation>

<empty/>
</define>

<define name="netgraphics.content'>
<a:documentation>
Currently, there is no content of the graphics element of net defined.
</a:documentation>

<empty/>
</define>

<define name="nodegraphics.content'>
<a:documentation>
The sub-elements of a node’s graphical part occur in any order.
At least, there must be exzactly one position element.
Furthermore, there may be a dimension, a fill, and a line element.
</a:documentation>
<interleave>
<ref name="postition.element"/>
<optiomnal>
<ref name="dimension.element'/>
</optional>
<optiomnal>
<ref name="fill.element"/>
</optional>
<optiomnal>
<ref name="line.element"/>
</optional>
</interleave>
</define>

<define name="edgegraphics.content">
<a:documentation>
The sub-elements of an arc’s graphical part occur in any order.
There may be zero or more position elements.

33

240

245

255

260

265

Furthermore, there may be a fill and a line element.
</a:documentation>
<interleave>
<zero(OrMore>
<ref name='"position.element"/>
</zero0rMore>
<!--

<optiomal>
<ref name="fill.element"/>

</optional >
-

<optional>
<ref name="line.element'/>

</optional>
</interleave>
</define>

<define name="annotationgraphics.content">

<a:documentation>
An annotation’s graphics part requires an offset element describing
the offset the lower left point of the surrounding text bozx has to
the reference point of the net object on which the annotation occurs.
Furthermore, an annotation’s graphic element may have a fill, a line,
and font element.

</a:documentation>

<ref name="offset.element"/>

<optiomnal>
<ref name="f7ll.element"/>

</optional>

<optional>
<ref name="line.element"/>

</optional>

<optional>
<ref name="font.element"/>

</optional>
</define>

<define name="position.element'">

<a:documentation>
A position element describes a Cartesian coordinate.

34

280

285

290

295

300

305

310

315

</a:documentation>
<element name="position'>
<ref name="coordinate.attributes'/>
</element>
</define>

<define name="offset.element ">
<a:documentation>
An offset element describes a Cartesian coordinate.
</a:documentation>
<element name="offset'>
<ref name='"coordinate.attributes'/>
</element>
</define>

<define name="coordinate.attributes'>
<a:documentation>
The coordinates are decimal numbers and refer to an appropriate
xy-system where the x-axis runs from left to right and the y-axis
from top to bottom.
</a:documentation>
<attribute name="z'>
<data type="decimal"/>
</attribute>
<attribute name="y">
<data type="decimal"/>
</attribute>
</define>

<define name="dimension.element'>

<a:documentation>

A dimension element describes the width (x coordinate) and height

(y coordinate) of a node.

The coordinates are actually positive decimals.
</a:documentation>
<element name="dimension'>

<attribute name="z'">

<data type="decimal"/>
</attribute>
<attribute name="y">

35

320

325

330

335

340

345

350

355

<data type="decimal"/>
</attribute>
</element>
</define>

<define name="fill.element'>
<a:documentation>

A fill element describes the interior colour, the gradient colour,

and the gradient rotation between the colours of an object.

image is available the other attributes are ignored.
</a:documentation>
<element name="f411">
<optional>
<attribute name="color">
<ref name="color.type'"/>
</attribute>

</optional>

<optional>
<attribute name="gradient-color'>

<ref name="color.type"/>
</attribute>

</optional>

<optional>
<attribute name="gradient-rotation'>

<choice>
<value>vertical</value>
<value>horizontal</value>
<value>diagonal</value>
</choice>
</attribute>

</optional>

<optional>
<attribute name="image'>

<data type="anyURI"/>
</attribute>
</optional>
</element>
</define>

<define name="line.element'">

36

If an

360

365

370

375

380

385

390

395

<a:documentation>

A line element describes the shape, the colour, the width, and the

style of an object.
</a:documentation>
<element name="line'">
<optional>
<attribute name="shape'>
<choice>
<value>line</value>
<value>curve</value>
</choice>
</attribute>

</optional>

<optional>
<attribute name="color">

<ref name="color.type'"/>
</attribute>
</optional>

<optional>
<attribute name="width'">

<data type='"decimal"/> <!-- actually, positive decimal -->

</attribute>

</optional>

<optional>
<attribute name="style">

<choice>
<value>solid</value>
<value>dash</value>
<value>dot</value>

</choice>

</attribute>
</optional>
</element>
</define>

<define name="color. type'>
<a:documentation>

This describes the type of a color attribute. Actually, this comes

from the CSS2 data type system.
</a:documentation>

37

400

405

410

415

420

425

<text/>
</define>

<define name="font.element'">
<a:documentation>
A font element describes several font attributes, the decoration,
the alignment, and the rotation angle of an annotation’s tezt.
The font attributes (family, style, weight, size) should be conform
to the CSS2 data type system.
</a:documentation>
<element name="font">
<optiomnal>
<attribute name="family">
<text/> <!-- actually, CSS2-font-family -->
</attribute>
</optional>
<optiomal>
<attribute name="style'">
<text/> <!-- actually, CSS2-font-style —-->
</attribute>
</optional>
<optiomnal>
<attribute name="weight">
<tezxt/> <!-- actually, CSS2-font-weight -->
</attribute>
</optional>
<optiomnal>
<attribute name="size'">
<tezt/> <!-- actually, CSS2-font-size -->
</attribute>
</optional>
<optiomnal>
<attribute name="decoration'>
<choice>
<value>underline</value>
<value>overline</value>
<value>line-through</value>
</choice>
</attribute>
</optional>

38

440

445

455

<optiomnal>
<attribute name="align'">
<choice>
<value>left</value>

<value>center</value>

<value>right</value>
</choice>
</attribute>
</optional>
<optiomnal>

<attribute mame="rotation">

<data type="decimal"/>
</attribute>
</optional>
</element>
</define>

<define name="toolspecific.element">
<a:documentation>
The tool specific information refers to a tool and its wversion.
The further substructure is up to the tool.

460

465

</a:documentation>

<element mame="toolspecific">

<attribute mame="tool">
<text/>

</attribute>

<attribute name="version'>
<text/>

</attribute>

<ref name="anyElement"/>

</element>
</define>

<define name="anyElement'">
<element>
<anyName>
<except>
<nsName/>
</except>
</anyName>

39

480

485

490

ot

10

15

20

25

<zeroOrMore>
<choice>
<attridbute>
<anyName/>
</attribute>
<tezt/>
<ref name="anyElement"/>
</choice>
</zero0rMore>
</element>
</define>
</grammar>

A.2 RELAX NG Grammar for Structured PNML
<?xml version="1.0" encoding="UTF-8"7>

<grammar xmlns="http://relazng.org/ns/structure/1.0"
xmlns:a="http://relazng.org/ns/compatibility/annotations/1.0"
datatypeLibrary="http://www.w3. o0rq9/2001/XMLSchema-datatypes ">

<a:documentation>
Petri Net Markup Language schema
RELAX NG implementation of structured PNML
version: 1.3.2c
according to the paper by Billington et al
(c) 2001-2004
Michael Weber, mweber@informatik.hu-berlin.de
Ekkart Kindler
</a:documentation>

<include href="basicPNML.rng"/>

<define name="net.content” combine="choice'>
<a:documentation>
Now, a net object is additionally a page, a reference place, or
a reference transition.
</a:documentation>
<choice>
<element name="page'>

40

30

35

40

45

55

60

65

<ref name="page.content"/>
</element>
<element name="referencePlace'>
<ref name='"refplace.content"/>
</element>
<element name="referencelransition'>
<ref name="reftrans.content"/>
</element>
</choice>
</define>

<define name="page.content">
<a:documentation>
A page has a unique identifier (id). It consists of several objects
(the same as for a net), tool specific information, and graphical
information.
</a:documentation>
<attribute name="7id">
<data type="ID"/>
</attribute>
<interleave>
<zero(OrMore>
<ref name='"net.content'/>
</zero0rMore>
<zeroOrMore>
<ref name="toolspecific.element"/>
</zero0rMore>
<optional>
<element name="graphics'>
<ref name="pagegraphics.content"/>
</element>
</optional>
</interleave>
</define>

<define name="reference'>
<a:documentation>
Here, we define the attribute ref including its data type.
Modular PNML will extend this definition in order to change
the behavior of references to export nodes of module instances.

41

</a:documentation>
<attribute name="ref">
<data type="IDREF"/>
</attribute>
70 </define>

<define name="refplace.content ">
<a:documentation>
A reference place is a reference node.
75 </a:documentation>
<a:documentation>
Validating instruction:
- _ref_ MUST refer to _id_ of a reference place or of a place.
- _ref_ MUST NOT refer to _id_ of its reference place element.
80 - _ref_ MUST NOT refer to a cycle of reference places.
</a:documentation>
<ref name="refnode.content"/>
</define>

85 <define name="reftrans.content">
<a:documentation>
A reference transition is a reference node.
</a:documentation>
<a:documentation>
90 Validating instruction:
- The reference (ref) MUST refer to a reference transition or to a
transition.
- The reference (ref) MUST NOT refer to the identifier (id) of its
reference transition element.
95 - The reference (ref) MUST NOT refer to a cycle of reference transitions.
</a:documentation>
<ref name="refnode.content"/>
</define>

100 <define name="refnode.content ">
<a:documentation>
A reference node has the same content as a node.
It adds a reference (ref) to a (reference) node.
</a:documentation>
105 <ref name="node.content"/>

42

<ref name="reference'/>
</define>

<define name="pagegraphics.content'>
110 <a:documentation>
Currently, there is no content of the graphics element of page defined.
</a:documentation>
<empty/>
</define>

115 </grammar>

B PNTD for HLPNs

< This is just to inform you about the current state of the discussion.
It is the RELAX NG grammar for high-level labels. Some text explaining
the concepts can be found in Clause [8.2.2. The full and correct

PNTD is still to be provided. I hope that Michael Weber can help

us at this point. Fabrice Kordon, and Micheal Westergaard could

help with the concepts and, maybe with concrete syntax >

<!-- A declaration will go as an annotation of the net.
It defines the sorts, operations and variables used in
the net. Note that a sort may be made a subsort of a
supersort by using attribute super.

Furthermore, a declaration may include all kinds of
definitions, which are considered as a comment by now.

We will assume that some sorts (boolean and naturals)
and some operations (+, <=, on naturals and multisets
are predefined). Moreover, we assume that with the
defined sorts we have also the tuples over these sorts
and multisets over each sort.

-—>

<define name="DECL">
<element name="declaration">
<zeroOrMore>
<choice>

43

<ref name="SORTDECL"/>
<ref name="(QPDECL"/>
<ref name="VARDECL"/> LP: why do VARDECL and
<ref name="SORTDECL"/> SORTDECL appear twice?
</choice>
</zero0rMore>
</element>
</define>

<define name="SORTDECL">
<element name="sortdecl">
<attribute name="name">
<data type="xsd:ID"/>
</attribute>
<optional>
<attribute name="super">
<!-- a possible supersort -->
<data type="xsd:IDREF"/>
</attribute>
</optional>
</element>
</define>

<define name="0OPDECL">
<element name="opdecl">
<attribute name="name">
<data type="xsd:ID"/>
</attribute>
<optional>
<element name="parameters">
<one(OrMore>
<ref name="SORT"/>
</oneOrMore>
</element >
</optional>
<ref name ="SORT"/>
</element>
</define>

44

<define name="VARDECL">
<element name="vardecl">
<attribute name="name">
<data type="xsd:ID"/>
</attribute>
<ref name ="SORT"/>
</element>
</define>

<define name="DEFINITIONS">
<element name="definitions">
<anyString/>
</element>
</define>

<I-- A sort will go as an annotation of places. The marking of
the place will be a multiset over this sort. Note that the
sort may be a multiset sort; in that case the markings is
a multiset over multisets.

Currently, I don’t know how to check this requirement in TREX.

In XML-Schema this could be checked by a keyref constraint.
-=>

<define name="SORT">
<choice>
<!-- We could admit the definition of sorts, by simply
using them.
<ref name="SORTDECL"/>
-—>
<ref name="MSSORT">
<element name="sort">
<attribute name="name">
<data type="xsd:IDREF"/>
</attribute>
</element>
</choice>

45

</define>

<define name="MSSORT">
<element name="mssort">
<ref name="SORT/>
</element>
</define>

<I-- A multiset term will go as an annotation of
arcs (arc inscription). Its sort must be a

multiset over
-—>

<define name="MSTERM">

<I-- I dont know how to impose the requirement on MSTERMS

that they have a multiset sort in TREX;

will help me with that.
-—>
<ref name="TERM"/>
</define>

<define name="TERM">
<choice>
<ref name="VAR"/>
<ref name="OPAPP"/>
</choice>
</define>

<define name="VAR">
<element name="var">
<attribute name="name">
<data type="xsd:IDREF"/>
</attribute>
</element>
</define>

<define name="OPAPP">
<element name="op">

46

I hope Michael

<attribute name="name">
<data type="xsd:IDREF"/>
</attribute>
<optional>
<I-- currently the sorts of the arguments are not
checked with respect to the parameter sorts;
I don’t know how to do this in TREX. In XML
Schema, this could be done by a keyref constraint
-—>
<element name="arguments">
<zeroOrMore>
<ref name="TERM"/>
</oneOrMore>
</element >
</optional>
</define>

<!-- A boolean term will go as an annotation of
transtions (transition guard).
-=>

<define name="BOOLTERM">
<I-- T dont know how to impose the requirement on a BOOLTERM
that it must have (built-in) sort boolean in TREX;
I hope Michael will help me with that.
-—>
<ref name="TERM"/>
</define>

47

	1 Scope
	2 Normative References
	3 Terms and Definitions
	3.1 General
	3.2 Glossary
	3.3 Abbreviations

	4 General Principles
	4.1 Overview
	4.2 Meta Model
	4.2.1 Petri nets and objects.
	4.2.2 Labels.
	4.2.3 Graphical information.
	4.2.4 Tool specific information.
	4.2.5 Pages and reference nodes.

	5 Syntax (and Semantics)
	5.1 Syntax
	5.2 Meta Model
	5.2.1 elements.
	5.2.2 Labels.
	5.2.3 Graphics.
	5.2.4 Example.

	5.3 Semantics
	5.4 Graphical representation (non-normative)
	5.4.1 Graphical appearence
	5.4.2 Transformation to

	6 Feature Definition Interface
	7 Type Definition Interface
	8 Some Standard Types
	8.1 Place/Transition Systems
	8.2 High-level Petri Nets
	8.2.1 Basic idea
	8.2.2 Concept

	A Grammar for (Normative)
	A.1 Grammar for Basic
	A.2 Grammar for Structured

	B for HLPNs

