
Reconciling Scenario-Centered Controller Design
with State-Based System Models ∗

Holger Giese, Ekkart Kindler, Florian Klein
†

, Robert Wagner
Software Engineering Group

Department of Computer Science
University of Paderborn
Warburger Straße 100

33098 Paderborn, Germany

[hg|kindler|fklein|wagner]@upb.de

ABSTRACT
Scenarios are an effective means for defining the expected
behavior of a system during the design and implementation
phase. The ‘Come Let’s Play’ approach has demonstrated
that scenarios can fully define a system’s behavior. In prac-
tice, however, the expected behavior defined by scenarios
must be achieved in the context of existing components that
cannot be changed. Therefore, the scenario-based approach
must be reconciled with existing state-based models. In this
paper, we present such an approach for the design of flexi-
ble production systems which employs scenarios not only for
describing and synthesizing the required system functiona-
lity, but also for recording observed behavior for analysis or
3D-visualization. We illustrate our approach using an exi-
sting material flow system which is a major part of a real
production system.

1. INTRODUCTION
Scenarios such as Message Sequence Charts (MSCs), Life
Sequence Charts (LSCs) or UML Sequence Diagrams pro-
vide a suitable abstraction for the communication among
systems engineers who need to define the expected behavior
of a system during the design and implementation phase.

Scenarios can do much more than only describing a single
execution or folded set of executions of a system. They can
fully define the behavior of a system. With their ‘Come Let’s

∗This work was developed in the course of the Special Re-
search Initiative 614 - Self-optimizing Concepts and Struc-
tures in Mechanical Engineering - University of Paderborn,
and was published on its behalf and funded by the Deutsche
Forschungsgemeinschaft.
†Supported by the International Graduate School of Dyna-
mic Intelligent Systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCESM’05 at ICSE’05,May 20th, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0002 ...$5.00.

Play’ approach, Harel and Marelly [7] carry this idea to the
extreme. Their play engine, and in particular the smart play
out mechanism [6], impressively demonstrate that a system
can be fully defined in terms of scenarios without providing a
state-based model of the underlying components. They show
that the operational state-based behavior of the components
can be synthesized from the scenarios [5, 1]. In all, the ‘Come
Let’s Play’ approach represents a major advance: scenarios
are the system or, at least, fully define the system’s behavior.

In many situations, however, we do not need to define
the full system behavior from scratch. Instead, major parts
of the system are either reused or consist of pre-fabricated
components with a fixed behaviour. So, these components
cannot be changed during the design; rather, the rest of the
system, in particular the controller, must be built around
the existing components. Thus, scenarios as the means to
describe the expected behavior of the new parts of the sy-
stem have to be incorporated with existing, usually state-
based behavioral models for the pre-fabricated components.
In flexible production systems, for example, there are parts
of the system that are fully characterized by the combinati-
on of standard components (the plant) and other parts that
have yet to be designed for each system (the controller).

In this paper, we discuss how to combine models and sce-
narios in the design of flexible production systems, in parti-
cular in the controller design and synthesis, where scenarios
are used to describe the expected behavior of the controller.
We will show that scenarios can be used for even more than
that: they can be used as a means for the communication
between all kinds of tools involved in the development of
flexible production systems. For example, scenarios can be
used for recording the system’s behavior and for analyzing
its causes or for visualizing observed behavior in 3D (possib-
ly in slow motion) and indicating the sources of misbehavior.

The paper is structured as follows: In Section 2, the do-
main of flexible production systems as well as our case stu-
dy are introduced. Our vision for a scenario-centered envi-
ronment for the development of flexible production systems
follows in Section 3. Section 4 presents the elements of our
scenario-centered development environment that are already
implemented and sketches ideas and the underlying concepts
for the remaining parts.

1

2. A FLEXIBLE PRODUCTION SYSTEM
In order to illustrate our ideas, we present a case study of
a flexible production control system. The experimental se-
tup implements a manufacturing system for the production
of bottle openers (see Fig. 5). The system consists of sever-
al processing machines, robots, stations, and manual work
places. They are connected by a rail-bound material flow sy-
stem with transportation units, which will be called shuttles
in the rest of this paper.

A shuttle is electrically propelled and moves in exactly one
direction. It circles around the main loop until the control
assigns a production task to it. When a task is assigned to
a shuttle, the shuttles moves to the stations and manual
work places where the production and assembly steps are
executed. If the control does not assign a new task to the
shuttle, it will circle around the main loop until it gets one.

The employed production control system consists of PCs
on the supervisory control level and Programmable Logic
Controllers (PLCs) on the cell level. Higher-level tasks, e.g.
planning, order assignment, and coordination of local ac-
tivities of all controllers are dealt with at the supervisory
control level. The PLCs on the cell level are connected to
actuators and sensors and are responsible for the control of
local components such as stations or robots.

In our case study, the used PLCs run much faster than the
environment. Hence, signals are always caught. The control
system can be seen as a reactive system with a negligib-
ly short reaction time to signals and events stimulated by
the environment. Hence, the perfect synchrony hypothesis
regarding the interaction between the environment and the
controller on the cell level is fulfilled.

In this paper, we neither consider time aspects nor the
supervisory level of our production control system. We con-
centrate on the cell level design and present a simple control
task which serves as a running example. A more detailed de-
scription of our case study containing further control tasks
and a description of the software development process defi-
ned in an earlier project can be found in [13, 16].

In our case study, shuttles are equipped with an opto-
electronic distance sensor to prevent rear-end collisions with
other shuttles. However, the range of the sensor is reduced
laterally in order to prevent unintentional stops of a shuttle
caused by objects near the track. As a consequence, howe-
ver, the collision avoidance does not work properly in curves.
In order to prevent rear-end collisions in curves, the control
must ensure that only one shuttle enters a curve at a time.
This is achieved by a start/stop unit with additional sensor
and actuator technology (cf. Fig. 1).

Figure 1: Curve monitoring for collision avoidance

When a shuttle enters a curve, the shuttle is detected by a
proximity sensor. The control stops all following shuttles by
activating a stopper actuator. The stopper is released only
if the proximity sensor at the end of the curve indicates a
shuttle leaving the curve area.

In order to build a controller for our curve monitoring
example, the engineer has to design a controller model ma-
nually using some formal specification technique. This is te-
dious and error-prone. Hence, we provide additional support
for validation by means of simulation. For this purpose, we
have developed simulation components for the plant model.
Note that the simulation components have to be designed
only once and can be reused for different plant topologies.

In Fig. 2, the simulation components are specified as clas-
ses with boolean attributes representing actuators and sen-
sors. Note that, later on, these attributes will be accessed
by the controller model.

Figure 2: Static structure of our simulation model

The operational behavior of the simulation components is
specified using state charts and story diagrams. Story dia-
grams are a combination of activity and collaboration dia-
grams with graph grammar semantics. They are described
in more detail in [3, 21].

These simulation components can be instantiated and con-
nected to an overall plant model which is simulated and vi-
sualized by an attached visualizer. This allows the engineer
to validate the designed controller model before it is used to
control the real plant.

After the controller model is validated and the produc-
tion system is built, the ramp-up phase starts. We support
this phase by automated PLC-code generation from the con-
troller model. Additionally, we use Augmented Reality (AR)
technology to augment the engineer’s field of view with addi-
tional information about the state of the plant and the con-
trol software. From the difference between operating states
of the control software and the real plant the engineer can
deduce failures of the system.

Although the current approach has many advantages li-
ke validation by simulation, automated code generation and
ramp-up support, it requires good domain knowledge as well
as advanced software design skills. Since engineers are mo-

2

re used to thinking in scenarios, we propose to extend our
modeling approach as described in the following section.

3. VISION
In order to illustrate the idea of our approach, we discuss the
different tasks of an engineer when developing a controller.
Figure 3 gives an overview on the artifacts and tasks.

S
ys

te
m

M
od

el
s

E
ng

in
ee

r
S

ce
na

rio
s

an
d

To
ol

s
In

te
rf

ac
e

TransformerObserver

Simulator

Synthesis
Fault

Detector

Panel

Controller
Interface

Controller
Model

Plant
Model

Scenarios

Plant
Fault Model

Visualizer Editor

Plant
Interface

Deployment

Constraint
Model

PLC Code

Model
Checker

Plant PLC

Figure 3: The vision: An overview

The core parts are the interfaces of the plant, i. e. its ac-
tuators and sensors and the interfaces of the controller. We
assume that there already is a construction plan for the plant
and a deployment descriptor mapping all sensors and actua-
tors in the interfaces to the physical sensors of the PLC and
the plant. Moreover, we assume that there is a model for
each component of the plant and that we have some cons-
traints for the components of the model, which are states
that should never be reached – formally expressed by state
formulas. In our example, we have the constraint that there
should never be two shuttles in a curve at the same time.

Now, an engineer starts developing the code for the PLC.
For specifying the controller, an engineer can play with the
model in a way similar to Harel’s and Marelly’s play-in me-
chanism. To this end, the engineer sees a panel with all ac-
tuators and sensors, which allows him to interact with the
plant (resp. its model). These interactions will be recorded
in a scenario and, at the same time, the behavior will be
animated in a 3D-visualization. Note that the behavior re-
sulting from these interactions comes from simulating the
state-based model of the plant – in contrast to Harel’s ap-
proach, where such models do not exist at all. In order to
animate the behavior in 3D, there must be some additional
information, which we call visualization model (cf. PNVis

[8]). At the end of this stage, the engineer has provided some
scenarios to the system, which he might also edit by hand.
Some scenarios might be marked as inadmissible behavior.

An example of a scenario is shown in Fig. 4. It could be
a part of a specification of the control of a curve segment of
the plant, where the StartStopUnit guards the entry of the
curve segment and the SensorTrack monitors the sensor at
the end of a curve.

arrive()

setStart(true)

depart()

setStart(false)

arrive()

:StartStopUnit :SensorTrack:Controller

Figure 4: A scenario

In the next step, controller synthesis algorithms can be
used to synthesize a state-based model of a controller that
allows the scenarios provided by the engineer and additio-
nally meets the constraints attached to the models of the
plant; in our example, it would guarantee that there are no
two shuttles on a curve segment at the same time. The resul-
ting controller could be simulated along with the model in
order to validate and to visualize it; or the controller could
be analyzed and some additional properties could be verified
by a model checker. Once the engineer is convinced that the
controller is correct, the code for the PLC can be be auto-
matically generated from the state-based controller model
(taking into account the deployment mappings).

Then, the real plant can be run with this PLC code. An
observer can record the behavior of the plant and store it as a
scenario, which can be inspected by the engineer or anima-
ted in a 3D-visualization. Typically, some of the observed
behaviour will be wrong, which we call failure behaviour.
The failures could result from not providing enough scena-
rios as input to the controller synthesis algorithm (i. e. from
a wrong or incomplete specification), or it could be due to
faults in the hardware1.

At this point, we can use the recorded scenario for another
purpose. We assume that we have a refined state-based mo-
del of the plant that covers all possible hardware faults and
the resulting failure behaviors. Then, a fault detector, which
uses techniques from model checking, could identifying how
particular scenarios (that are impossible in the ideal model)
could arise from faults. The output are more detailed sce-
narios including the faults that resulted in the misbehavior.
These could be visualized in order to allow the engineer to
fix them in the hardware. This way, the ramp-up procedu-
re of a new plant can be significantly speeded up because
hardware faults that caused some failure behavior can be
identified automatically. Identifying these faults can even

1A fault is a defect (in the hardware) that might or might
not have negative effect on the behaviour of the system.
When the fault results in an unexpected or unspecified be-
haviour, this is called a failure [11].

3

be combined with augmented reality technology in order to
visualize faults in the real plant.

4. REALIZATION
In this section, we give an overview of the existing tool sup-
port for the integrated design of production control systems.
We also discuss the needed conceptual and tool-related ex-
tensions in order to be able to realize our vision for produc-
tion control system development in the near future.

4.1 Existing Tools
The provided tool support is based on the integrated envi-
ronments Fujaba Tool Suite [18], ComponentTools [4],
and PNVis [8].

The simulation components for the Plant Model are spe-
cified using the Fujaba Tool Suite. They consist of UML
object diagrams, corresponding class diagrams, state charts
and story diagrams (cf. Section 2). These simulation com-
ponents are connected to a concrete plant model according
to a particular plant topology. The plant topology is created
using a tool called Lontrol [16]. In the future, we plan to
use a more general tool for this purpose. It is called Com-
ponentTools and supports building a system from library
components with underlying models.

The Controller Model is built using the same specificati-
on techniques as for the plant model. Note that up to now
the controller model has to be designed manually. For this
purpose Fujaba includes editors as well as a code generator.

From the plant and controller model, Fujaba generates
executable code for the Simulator. In order to simulate the
entire production system on standard hardware, the gene-
rated code is pure Java. Hence, the simulation is platform
independent.

The simulator is equipped with a Visualizer, which com-
bines geometry information with 3D models and renders
them in real-time using Virtual Reality (VR) technology.
The screenshot in Fig. 5 shows such a 3D model of our com-
plete case study. This visualization stems from an earlier
project, where the control software was hard coded into the
simulation. In order to become more flexible, we plan to
connect the PNVis tool to our simulator.

visualisation3d.tif (1141x723x24b tiff)

Figure 5: 3D visualization of the simulation

After a successful validation, we ensure a correct imple-
mentation by generating the PLC-code automatically from

the controller model [16]. This Transformer module is also
part of the Fujaba Tool Suite.

4.2 Required Extensions
A key requirement for our scenario-centered approach is the
Panel, which will allow the engineer to play in scenarios.
Using code generation combined with a set of user inter-
face templates for different sensor and actuator types, such
a control panel can be derived from the Plant Interface Mo-
del and integrated with the Simulator generated from the
Plant Model in a straight-forward way. Templates using in-
formation from the 3D model used by the Visualizer would
even allow the seamless integration of the control panel into
the simulated VR environment.

The appropriate Editor for revising played-in scenarios
depends on the formalism used to express them. Taking the
respective expressive power of different notations and the
preferences of the engineer users into consideration, we in-
tend to implement the editor based on Fujaba’s support for
UML 2.0 sequence diagrams, extending it where necessary.

Synthesis will be integrated into Fujaba seamlessly to
allow immediate inspection of the generated state charts.
Unfortunately, none of the existing approaches for the syn-
thesis of operational state-based behavior from scenarios [5,
1, 9, 12, 17, 20]) supports the integration of existing state-
based models. State-based approaches for controller synthe-
sis [15] in turn require state-based constraints rather than
scenario-like input. However, both scenarios and state-based
models can, in principle, be mapped to temporal logic for-
mulae. The existence of approaches for synthesis from tem-
poral logic specifications, such as [14] for linear time logic
(LTL), [2] for computational tree logic (CTL), or [10] for
the µ-calculus, therefore suggests the intended synthesis is
indeed possible. We still need to work out a specific solution,
though.

The Observer will generate scenarios in a way similar to
our play-in mechanism, but use the activations of the actual
sensors and actuators as its input. In the case of deviations
from the specified behavior, the engineer can pass the re-
corded scenarios to a Fault Detector in order to generate a
scenario identifying the source of the observed failure beha-
vior. The Fault Detector achieves this by using the refined
Plant Fault Model and model checking techniques to genera-
te witnesses for that behavior; the faults occurring in such a
witness are the potential causes of the failure behavior. For
the implementation of a proof of concept, we intend to use
the MCiE [19] library. As a more direct approach to fault
diagnosis, redundant or dedicated additional sensors could
also be added to the plant in order to detect equipment fai-
lures and system states that violate constraints.

5. CONCLUSION AND FUTURE WORK
The presented vision of a scenario-centered development en-
vironment for flexible production systems suggests that sce-
narios in combination with state-based models can serve as
the basis for the automated development of the control func-
tionality. In addition, scenarios can further be used to ana-
lyze an existing plant and identify possible sources of unex-
pected or faulty behavior.

The main idea is reconciling scenarios with state-based
models of pre-defined components and using scenarios as an
interface for exchanging executions of the system between

4

different models of the system which can be in different for-
malisms and on different levels of abstraction.

Future work will include the adjustment of existing syn-
thesis techniques for mixed specifications consisting of sce-
narios and state-based models as well as tool support for the
recording of plant behavior and the succeeding analysis.

6. REFERENCES
[1] Y. Bontemps and P. Heymans. As fast as sound

(lightweight formal scenario synthesis and
verification). In In Proc. of the 3rd International
Workshop on Scenarios and State Machines: Models,
Algorithms, and Tools (SCESM04) ICSE Workshop
W5S Edinburgh, UK. IEE, 2004.

[2] E. M. Clarke and E. A. Emerson. Design and
Synthesis of Synchronization Skeletons using
branching time temporal logic. In Proceedings of the
IBM Workshop on Logics of Programs, volume 131 of
Lecture Notes in Computer Science, pages 52–71.
Springer Verlag, 1981.

[3] T. Fischer, J. Niere, L. Torunski, and A. Zündorf.
Story diagrams: A new graph rewrite language based
on the unified modeling language. In G. Engels and
G. Rozenberg, editors, Proc. of the 6th International
Workshop on Theory and Application of Graph
Transformation (TAGT), Paderborn, Germany, LNCS
1764. Springer-Verlag, 1998.

[4] A. Gepting, J. Greenyer, E. Kindler, A. Maas,
S. Munkelt, C. Pales, T. Pivl, O. Rohe, V. Rubin,
M. Sanders, A. Scholand, C. Wagner, and R. Wagner.
Component tools: A vision of a tool. In Proc. of the
11th Workshop on Algorithms and Tools for Petri
Nets (AWPN), Paderborn, Germany, September 30 -
October 1, Tech. Rep. tr-ri-04-251, pages 37–42,
September 2004.

[5] D. Harel and H. Kugler. Synthesizing State-Based
Object Systems from LSC Specifications. In Proc. 5th
Int. Conf. on Implementation and Application of
Automata, volume 2088 of Lecture Notes in Computer
Science, pages 1–33. Springer Verlag, 2001.

[6] D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart
play-out. In Conference on Object Oriented
Programming Systems Languages and Applications,
OOPSLA ’03, pages 68–69, October 2003.

[7] D. Harel and R. Marelly. Specifying and Executing
Behavioral Requirements: The Play In/Play-Out
Approach. Software and System Modeling (SoSyM),
2003.

[8] E. Kindler and C. Páles. 3D-visualization of Petri net
models: Concept and realization. In J. Cortadella and
W. Reisig, editors, Application and Theory of Petri
Nets 2004, 25th International Conference, volume
3099 of LNCS, pages 464–473. Springer, June 2004.

[9] I. Krüger, R. Grosu, P. Scholz, and M. Broy. From
MSCs to Statecharts. In F. J. Rammig, editor,
Distributed and Parallel Embedded Systems, pages
61–71. Kluwer Academic Publishers, 1999.

[10] O. Kupferman and M. Y. Vardi. µ-Calculus Synthesis.
In M. Nielsen and B. Rovan, editors, Proceedings of
the on 25th International Symposium Mathematical
Foundations of Computer Science (MFCS 2000),
Bratislava, Slovakia, volume 1893 of Lecture Notes in

Computer Science. Springer Verlag,
August/September 2000.

[11] J. C. Laprie, editor. Dependability : basic concepts and
terminology in English, French, German, Italian and
Japanese [IFIP WG 10.4, Dependable Computing and
Fault Tolerance], volume 5 of Dependable computing
and fault tolerant systems. Springer Verlag, Wien,
1992.

[12] E. Mäkinen and T. Systä. MAS - an interactive
synthesizer to support behavioral modeling in UML.
In Proceedings of the 23rd International Conference on
Software Engineering (ICSE 2001), Toronto, Canada,
pages 15–24, May 2001.

[13] U. Nickel, W. Schäfer, and A. Zündorf. Integrative
specification of distributed production control systems
for flexible automated manufacturing. In M. Nagl and
B. Westfechtel, editors, DFG Workshop: Modelle,
Werkzeuge und Infrastrukturen zur Untersttzung von
Entwicklungsprozessen, pages 179–195. Wiley-VCH
Verlag GmbH and Co. KGaA, 2003.

[14] A. Pnueli and R. Rosner. On the synthesis of a
reactive module. In Proceedings of the sixteenth annual
ACM symposium on Principles of programming
languages, Austin, Texas, United States, 1989.

[15] P. Ramage and W. Wonham. Supervisory control of a
class of discrete event processes. SIAM J. Control
Optim., 25(1), January 1987.

[16] W. Schäfer, R. Wagner, J. Gausemeier, and R. Eckes.
An engineers workstation to support integrated
development of flexible production control system. In
H. Ehrig, editor, Integration of Software Specification
Techniques for Applications in Engineering, volume
3147 of LNCS. Springer-Verlag, 2004.

[17] S. Uchitel and J. Kramer. A workbench for
synthesising behaviour models from scenarios. In
Proceedings of the 23rd international conference on
Software engineering, pages 188–197. IEEE Computer
Society, 2001.

[18] University of Paderborn, Germany. Fujaba Tool Suite.
Online at http://www.fujaba.de/.

[19] University of Paderborn, Germany. Model Checking in
Education. Online at
http://www.upb.de/cs/kindler/Lehre/MCiE.

[20] J. Whittle and J. Schumann. Generating statechart
designs from scenarios. In Proceedings of the 22nd
international conference on on Software engineering
June 4 - 11, 2000, Limerick Ireland, 2000.

[21] A. Zündorf. Rigorous Object Oriented Software
Development. University of Paderborn, 2001.

5

