
Modular PNML revisited:
Some ideas for strict typing

Ekkart Kindler
Informatics and Mathematical Modelling

Technical University of Denmark
DK-2600 Lyngby

Denmark
eki@imm.dtu.dk

Abstract— The Petri Net Markup Language (PNML) is cur-
rently standardised by ISO/IEC JTC1/SC7 WG 19 as Part 2 of
ISO/IEC 15909. But, there is not yet a mechanism for structuring
large Petri nets and for constructing Petri nets from modules.
To this end, modular PNML has been proposed some time ago.
But, modular PNML has some problems. These problems along
with ideas for their solution will be discussed in this paper.

As a first step toward standardising a module concept for
PNML in Part 3 of ISO/IEC 15909, this paper proposes a refined
concept of modular PNML, which is independent of a particular
kind of Petri net, but still has a strict type system. This paper
focuses on the ideas and concepts; the technical details still need
to be worked out. To this end, this paper also raises some issues
and questions that need to be discussed before standardising
modular PNML.

I. INTRODUCTION

The Petri Net Markup Language (PNML) is an interchange
format for all kinds of Petri nets [5], [8], [2]. It is cur-
rently standardised as Part 2 of the International Standard
ISO/IEC 15909 [4]. The PNML Framework helps tool makers
implementing this standard [3].

However, Part 2 of ISO/IEC 15909 covers Place/Transition
nets, Symmetric Nets, and High-level Petri Nets only. It does
not cover other versions of Petri nets, such as timed or
stochastic Petri nets or features such as inhibitor or reset arcs.
This will be covered by Part 3 of ISO/IEC 15909. In addition,
Part 3 of ISO/IEC 15909 will cover concepts for structuring
large nets and for constructing nets from components.

In this paper, we discuss some ideas and concepts for defin-
ing Petri net modules and for constructing nets from different
instances of such modules. This should serve as a staring point
for the structuring and modularisation concepts of Petri nets
that will be defined in Part 3 of ISO/IEC 15909. Actually,
there was a proposal for defining and using Petri net modules
quite early in the development of PNML, which was called
modular PNML [7], [6], [8]. Since PNML is independent of a
specific kind of Petri net, modular PNML was also designed
to work with any kind of Petri net. The semantics of modules
and the Petri nets that are constructed from instances of these
modules is defined completely independent of the semantics
of a particular version of Petri nets. It is defined purely
syntactically by making copies of the module definitions, by
connecting them via reference nodes, and by flattening the

resulting net (see [7] for details) — without knowing anything
about the concrete Petri net type.

The universality of modular PNML came for a price,
however: The syntactical correctness of a system could only
be checked after the complete system was built from the
modules. Modules could be easily used in a way that was
syntactically incorrect, but this would be known only after the
system was complete. Therefore, modules had a very loose
concept of typing. Basically, there were two reasons for this
loose typing concepts: First, the focus of interfaces of modules
was on places and transitions (i. e. nodes of the Petri net).
Additional information attached to places or transitions, such
as types, markings, or transitions, was not taken into account.
Second, there was only a very simple concept for importing or
exporting other information such as operators or sorts from or
to a module. All this information was represented by symbols;
but — since the module concept should be independent of
a particular version of Petri nets — symbols did not have
any specific structure. Therefore, the first version of modular
PNML could not guarantee that symbols were combined in a
syntactically correct way. Moreover, the concepts for symbols
have never been worked out in full detail, since the concepts of
modular PNML were not included to Part 2 of ISO/IEC 15909.

In this paper, we will discuss some ideas how the problems
with the original version of modular PNML can be solved. To
this end, a refined concept of symbols is introduced so that
symbols can be used in a syntactically correct way—though
not knowing their meaning. Then we will show how this idea
carries over to labels of places and transitions. Altogether, this
will result in a strict typing of modules: the overall syntactical
correctness of a system built from modules can be checked
locally in every module definition and where it is used. Still,
these concepts retain one of the most important principles of
PNML: it works for any kind of Petri net. For each new Petri
net type, one needs to define only its symbols and how they
can be combined. The rest of the concepts of modular PNML
can be defined once and for all Petri net types.

Though these concepts are not yet worked out in full detail,
they should be detailed enough for discussing the pros and
cons of that approach and to discuss and decide on the future
direction of the structuring and modularisation concepts that
should be included to Part 3 of ISO/IEC 15909.

kindler
Textfeld
To appear in: Proceedings of the 14. Workshop Algorithmen und Werkzeuge für Petri Netze (AWPN 2007), September 2007,Universität Koblenz-Landau, Germany.

II. EXAMPLE

Though the concepts proposed in this paper are independent
of a particular kind of Petri net, we start with an example of
a module using high-level Petri nets.

A. Module definition

Figure 1 shows an example of a module channel that
transmits some information from a place in to a place out.
In fact, this example is a slightly modified version of the
example from [7], [8], where we represent the transmitted data
explicitly now. Figure 1 shows the definition of the module.

 var x:data

Channeltype: data type: data

import Sort: data

type: data type: data

[x] [x]

declarations

Fig. 1. The module Channel

This definition consists of two parts. The upper part in the
bold-faced box defines the interface of the module and its
name Channel. This interface consists of different parts: it
imports a place (the dashed circle on the left-hand side) and
it exports a place (the solid circle on the right-hand side). The
difference between import and export nodes will become clear
later in this paper. For now, it should be sufficient to know that
these are the places seen and useable from outside the module:
The import place will be provided by the environment of the
module when it is used; the export place is a place that can
be used by the environment of the module. In addition to the
import and export nodes, the module definition also imports a
symbol: a symbol representing a sort. As indicated by its name,
this sort represents the type of data that should be transmitted
over the channel. In order to make the symbol an import
symbol, we use the keyword import here1, the additional text
Sort indicates that this symbol is a sort.

The lower part of the module definition in the thinly outlined
box is the implementation of the module. It consists of a
normal place on the right-hand side, which is the place that
is exported – expressed by the dashed arrow. And there
is a reference place which actually represents the imported
place on the left-hand side – expressed by the dashed arrow
pointing to the import place. Moreover, there is a transition
between these two places; the arc annotations of the two arcs
is a variable x of sort data. This variable is also defined in
the implementation; in this declaration, we make use of the
imported symbol for sort data.

1Actually, the keywords import and export and the graphical notation for
import and export nodes, are not the point of this paper. In the end, the
concrete syntax will be some XML and, possibly, some recommendation for
the graphical representation. Since the focus of this paper is on concepts, we
use some abstract syntax here.

Note that both places in the implementation of the module
also have the type data, which exactly corresponds to the
type of the import and export places in the interface. Note
that we can check this net and, in particular, the labels of the
places for syntactical correctness – without knowing which
sort will be imported for symbol data, and which place will
be imported for the import place. But, the interface requires
that the imported symbol data is a sort, and the imported place
has this type.

B. Module instances

Next, we will build a simple system from the module
Channel. Figure 2 shows the use of three instances of module
Channel, which are named ch1, ch2, and ch3, respectively.
To indicate the instantiation, we use the name of the instance
followed by the name of the module definition – a notation
that is well-known from UML object diagrams. Moreover, the
instances graphically resemble the interface definition of the
module.

Here, we can actually understand the meaning of import
places and import symbols more clearly. For each instance
of the module, the import place needs to refer to some place
outside the module, which will be the one imported for that
instance. This is indicated by dashed arrows again. Note that
export nodes of module instances are also seen from outside a
module. So, we can use them for referring to them from import
nodes. This way, we get a sequence of three channels. Once
the data from the leftmost place are transmitted to the right-
most channel, the additional transition increments the value of
that token and sends it back to the start place.

This is where the import symbol data representing a Sort
comes in again. For each instance of the module Channel,
we must provide a sort for the symbol data. In this example,
we use the sort int, which is a built-in sort of high-level Petri
nets. This way, the chain of channels transmits integer values.
But, we could have used any other built-in or user-defined sort
for that.

Again, we can check the syntactical correctness of this Petri
net built from the module without having a look into the
implementation of the modules. We need to make sure only
that, for every import place, the attached type is the same as
the type of the place it refers to. Since data is now bound to
the sort int everywhere, this condition is obviously met.

From the model in Fig. 2 and the definition of the module
Channel as shown in Fig. 1, the actual Petri net defined is
the one shown in Fig. 3. It, basically, is obtained by making a
copy of the module implementation for each module instance
(and by prefixing all names inside the module implementation
with the name of that module instance) and then merging
every reference node with the node it refers to. For the nodes,
this process was defined in more detail in [7], [8]. Here, we
apply this idea also to symbols: Every occurrence of data in
the module implementation is now replaced by the sort it is
assigned in this instance of the module.

Actually, this idea was already mentioned in [7], [8]. The
new idea here is that we know more about a symbol, e. g.

data = int

 var x:int

type: int

type: int

[2,5]

ch1:Channeltype: data type: data ch2:Channeltype: data type: data ch3:Channeltype: data type: data

data = int

[x][x+1]

data = int

declarations

Fig. 2. Instances of module Channel

[ch2.x]

 var x:int

declarations
 var ch2.x:int

declarations
 var ch1.x:int

declarations
 var ch1.x:inttype: int

[2,5]

type: int type: int type: int

[x][x+1]

[ch2.x] [ch3.x][ch3.x][ch1.x][ch1.x]

declarations

Fig. 3. The resulting model

we know that symbol data represents a sort. This way, we
can make sure that module definitions and their use are
syntactically correct.

In the rest of this paper, we will discuss some of the details
necessary to make this idea work – independently of a specific
Petri net type.

III. CONCEPTS

In the previous section, we have seen the main concepts of
modular PNML. Here we briefly rephrase the concepts again
as defined in [7], [8].

A. Basic concepts

We distinguish between a module definition and a module
instance. The module definition defines the module interface
as well as the module implementation. The module interface
defines import and export nodes2. Once a module is defined,
we can use its module instances in other nets. We can even
use module instances in the definition of other modules. The
only condition on this uses relation among modules is that it
is acyclic. This way, modules form a hierarchy.

For every import node of a module instance, there must be
a reference to some node of the net or module which uses
this module. The export nodes of the module instances can
be used as if they were nodes defined in that net or module
itself. Note that the users of a module do not see – or at least
it is not necessary that they see – the implementation of the
module. For properly using a module (syntactically), they need
to know the interface definition only.

Of course, different modules might use the same iden-
tifier for naming places, transitions, or symbols. By using
namespaces, the same name in different instances can be
distinguished. In our example, this is indicated by prefixing
all names inside a particular module instance by the name

2In our example, we had import and export places only. But, in general, we
can also have import and export transitions. Concerning the module concept,
there is no difference between places and transitions.

of that instance. In the original proposal of modular PNML,
this concept was realised by the above mentioned prefixing
mechanism, which is a bit ad hoc. Today, we could use XML
namespaces for that purpose [1], but this technical issue is
beyond the scope of this paper.

B. The problem

In our example, we have used the very same idea for
importing symbols, and we can also export symbols. The
example, however, was quite simple. The imported symbol
was a sort, which has no further structure. It could be used,
basically, at every place where a sort was required. This is
no longer true for other kinds of symbols. When we import a
symbol for an operator, say f for example, it is not enough to
know that it is an operator. In order to construct syntactically
correct terms from this operator f, we need to know the number
of parameters it takes and their types. This is but one example
of a symbol with more structure.

Now, there are two question: How does modular PNML
know this structure of the symbols? And, how does it know
how to use a symbol in a syntactically correct way? Of course,
we could built in the structure of sorts and operations to
modular PNML. But, this would violate one of the principles
of PNML: its independence of a specific kind of Petri nets.
For example, for timed or stochastic Petri nets a module might
import some delays or some firing rates for some transitions.
And other types of Petri nets could have something completely
different. Therefore, we cannot make specific types of symbols
an integral part of modular PNML. Rather, it is necessary, to
have a general concept of symbols and along with a new Petri
net type, we need to define the structure of these symbols,
which will be closely related to the concepts occurring in a
type anyway.

In the rest, of this section, we illustrate how this can be
done. We start again with a concrete example of a high-
level Petri net module, where the symbols of interest are
sorts and operators. Then, we show how this structure can

be generalised and how the structure of the symbols can be
expressed along with a Petri net type definition.

C. Structured symbols

Figure 4 shows one of my favourite Petri net examples.
For some operation f : A → B and some value y of type B,
which is put to the import place, it calculates a pair (x, y)
such that f(x) = y and puts this pair to the output place – if
such a pair exists. So, it magically computes the inverse of f
for some given value y. Note that the module is independent
of a particular operator f; it works for any operator, which will
be provided when the module is instantiated.

import Sort: B

type: B type: A x B

import Operator: f

 output Sort B
 input Sort A

Inverter

[f(x)] [(x,f(x))]

 var x:A
declarations

type: B type: A x B

import Sort: A

Fig. 4. The module Inverter

Let us have a closer look at the symbols used in this
example. The module definition of Inverter imports three
symbols: two sorts A and B, and one operator f. Though, there
is no specific order in which the symbols are imported, there is
a dependency here. The operator f has some structure, which
is made explicit in the interface. It has one input sort and one
output sort. In principle, we could use any sort here. But, in
this specific example, we refer to the imported sorts A and B
as the input sort and output sort for that operator. Therefore,
the symbol f depends on the other two symbols. The import
sorts are also used for defining the type of the import place
and the export place of the module. Which are sort B and the
product A× B, respectively.

The module implementation is pretty standard, except for
the fact that instead of true sorts and operations, we use
imported symbols. The interesting part of this example is, that
we know the structure of the imported operator now; therefore,
we can check the syntactical correctness of the arc inscriptions.
And we can check that the sort of the arc inscriptions fit the
type of the corresponding place. In order to do that, the Petri
net type, here high-level Petri nets, just needs to know the
input and the output sort of an operator; this is exactly the
information that is provided in the module definition for the
imported symbol f. From the syntactical point of view, the
symbol f of high-level Petri nets is now as good as any built-
in or user defined operator.

The syntax of the definition of the structure of the operator
symbol f is quite verbose and appears a bit unusual. We might
rather expect something like import f : A → B. Again, this
is an issue of concrete syntax, which is not the issue of
this paper. Actually, an adequate concrete syntax for such

definitions depends on the Petri net type and even on the
particular kind of symbol. The syntax import f : A → B is
specific to operators. The syntax used here is closer to the
underlying concepts, which will become clearer in the next
section, when we discuss the definition of the symbols of a
particular kind of Petri net.

D. Defining symbol types

One important question is still open, however: How does
modular PNML know that sorts do not have an internal
structure, whereas operators have an internal structure. Even
more, how does modular PNML know that an operator needs
to have an input sort and an output sort; actually, we will see
in a minute that there can be any number of input sorts, but
there must be exactly one output sort for an operator.

In order to answer that question, we briefly revisit the way
in which Petri net types can be defined in PNML3. A Petri
net type is defined by the labels that can be attached to the
different objects of the net or the net itself. The structure of
these labels is defined by a UML meta model4. Such meta
models define which labels are there in a particular version of
Petri net and defines the relation between these concepts. For
lack of space, we do not present the full meta model for high-
level Petri nets – this alone would take over six pages. We
rather have a closer look to a small fragment of it, which is
shown in Fig. 5. It shows some classes of the package Terms,
in which all concepts related to terms are defined, but some
details are omitted.

VariableVariableDecl

name

1 output

* input
{ordered}

1 variableDecl

1
sort

1
sort

Term

Sort Operator

{ordered}
* subterm

Fig. 5. Fragment from the Terms package

It says that a term can be built from a variable or from an
operator and some subterms, where the conditions for correct
typing are also omitted here. The relevant concepts, resp.
classes, for our purpose are the Sort and the Operator, since
these are the symbols we would like to import and export for
high-level Petri nets. In this diagram, we can see the structure
of the operator symbol immediately: the directed association

3Note that this Petri net type concept is used for defining three different
versions of Petri nets in Part 2 of ISO/IEC 15909, but the concept for defining
Petri net types itself is not standardised in Part 2 of ISO/IEC 15909. The basic
concepts have been outlined in earlier papers [8] and it will be included as
Part 3 of ISO/IEC 15909.

4Originally, the meta model was defined in terms of a RELAX/NG
grammar, but now PNML uses UML meta models.

output to class Sort says that there must be exactly one output
sort for an operator; and the directed association input says
that there can be an arbitrary number of input sorts. Since
there are no such associations for class sort, symbols for sorts
do not have further structure (as far as modules are concerned).
This exactly corresponds to the structure of the information
that was provided for the imported operator symbol f in the
example of Fig. 4.

Altogether, the information on the structure of the symbols
can be derived from the meta model of the Petri net type.
But, not completely: In Fig. 5, we have some other classes
which we do not consider to be symbols, and, in the complete
package Terms of the standard, there are even more. So, we
need a mechanism to make explicit which concepts from
the meta model should or could be used as symbols in this
particular Petri net type. The simplest way is by marking
the relevant classes and relevant associations by a stereotype
〈〈symbol〉〉 as shown in Fig. 6.

VariableVariableDecl

name

1 output

* input
{ordered}

1 variableDecl

1
sort

1
sort

Term

Sort Operator

{ordered}
* subterm

<<symbol>> <<symbol>>

<<symbol>>

<<symbol>>

Fig. 6. Definition of symbols

Of course, there are other ways of making the symbols of
a Petri net type explicit for the use with modular PNML. For
example there could be two classes that inherit from Sort
or Operator, respectively, and in addition inherit from some
class Symbol. The latter is a more implementation oriented
realisation, whereas the first one is more on the conceptual
level. These details, however, are beyond the scope of this
paper.

In whichever way, this concept is realised, it guarantees
that symbols can be used in exactly the same way as their
conceptual counterparts. This is why, syntactical correctness
can be checked–without knowing its details.

IV. ISSUES

In the previous, section we have discussed the main idea and
concepts of a module concept for PNML, which supports strict
typing, i. e. syntactical correctness can be guaranteed locally
without computing the full flattened model. The technical
details, however, still need to be worked out. Moreover, there
are some conceptual issues that need to be discussed before
finalising the concepts and before implementing the technical
details. In this section, we will briefly enumerate some of these
issues.

Up to now, PNML ignored all labels of reference nodes
and, in modular PNML, import nodes where considered to
be reference nodes. Therefore, import and export nodes did
not have labels or the labels did not have any meaning. Our
examples, however, show that it is necessary to consider these
labels and to check whether the labels of an import node fits
the label of the place it refers to. The types should, basically,
be the same. Therefore, it might be worthwhile to drop the idea
of ignoring all labels of reference nodes and import nodes,
and rather check that the labels fit to each other. The issue
to be discussed here, is which labels need to be required for
guaranteeing syntactical correctness and which are not. For
example, names can always be ignored and they do not need to
fit to each other. Types, however, should coincide. A marking
might be missing; but, if present, it should be the same as in
the place it refers to – sometimes we might even want to add
the markings up.

In our examples, we briefly mentioned that, for one instance
of a module, an import node can refer to an export node of
another or even the same module instance. This, however,
needs some care in order to avoid cyclic references. This
can be achieved in different ways: One way would be not
to allow any direct or indirect references from export to
import nodes inside an implementation of a module. But,
there are examples where such references make sense. If we
want to have references from export nodes to import nodes
inside an implementation of a module, we could make these
dependencies explicit in the interface of the module. When
using these modules, we could check that the references do not
contain cyclic references. It needs to be discussed whether the
extra effort of maintaining the dependencies between export
and import nodes in the interfaces of a module is worth the
effort. For deciding on this issue, we needed some convincing
examples, with references from export to import nodes.

Another question is how strictly the typing should be
enforced resp. mandated. On the one hand, the concepts
presented in this paper could be used in such a way that,
we always guarantee the syntactical correctness and strictly
enforce it. But, it is not clear, whether we always want that.
For example, think of a module with two imported sorts, say
A and B and a place in the implementation of the module
has type A, but the inscription of an outgoing arc has type
B. Clearly, this is syntactically incorrect at this point. But, if
someone uses this model and instantiates both import sorts A
and B with the same sort, this use results in a correct overall
system. Whether such modules should be allowed or not needs
to be discussed.

For high-level nets and some other Petri net types with time
or some similar extensions, the proposed concepts seem to
have enough expressive power to construct systems in the way
the are usually built. Still, it is not clear whether this is true
for other kinds of Petri nets and, possibly, with completely
different constructs for building systems from components.
Since, modular PNML should eventually work for all Petri
net types, we need to investigate some more example Petri
net types in different application areas, and compare the

concepts from modular PNML with other existing structuring
mechanisms in Petri nets and Petri net tools.

In analogy to import and export nodes, we proposed import
and export symbols for modular PNML. This could, for
instance, be useful for defining some data types in some data
type module that can be used in other nets without revealing
the details of the data type. Still, this is more a data type issue
than a Petri net issue. Therefore, this is not a too convincing
example for the use of export symbols. All the other examples,
we could think of were quite artificial or could be easily
rephrased in terms of modules with import symbols only. So,
we are not sure whether we really need export symbols at
all. On the other hand, they come almost without any extra
cost; therefore, there is no real argument for excluding export
symbols.

At last, there are some more technical issues, which were
mentioned earlier already. One is the concept of namespacing
for the instances of modules. The other is the way in which
concepts of a Petri net typed are distinguished or marked to
be symbols in the meta model of that Petri net type. For
answering these questions we need some more experience with
existing XML tools and PNML implementations.

V. CONCLUSION

In this paper, we have revisited modular PNML. We have
presented some ideas that guarantee strict typing of Petri net
modules and still works for any version of Petri nets, at almost
no extra cost. The only extra effort in addition to defining a
new Petri net type itself is to make the concepts that can be
symbols explicit in the meta model of that Petri net type.

The focus of this paper is on the ideas of modular PNML
and the concepts necessary to achieve strict typing. Some
details of the realisation and, in particular, the exact XML
syntax for modules need to be discussed and defined.

Moreover, the issues raised in Sect. IV need a more detailed
discussion and investigation, in which the Petri net community
as well as the WG 19 of ISO/IEC JTC1/SC 7 should be
involved. Any kind of response, suggestion, or comments are
welcome.

REFERENCES

[1] Namespaces in XML 1.0 (second edition). W3C recommendation, The
Object Management Group, Inc., August 2006.

[2] Jonathan Billington, Søren Christensen, Kees van Hee, Ekkart Kindler,
Olaf Kummer, Laure Petrucci, Reinier Post, Christian Stehno, and
Michael Weber. The Petri Net Markup Language: Concepts, technology,
and tools. In W. van der Aalst and E. Best, editors, Application and
Theory of Petri Nets 2003, 24th International Conference, volume 2679
of LNCS, pages 483–505. Springer, June 2003.

[3] L. Hillah, F. Kordon, L. Petrucci, and N. Trèves. Model engineering
on Petri nets for ISO/IEC 15909-2: API framework for Petri net types
metamodels. Petri Net Newsletter, 69:22–40, October 2005.

[4] ISO/JTC1/SC7/WG19. Software and Systems Engineering - High-level
Petri Nets Part 2: Transfer Format. Technical Report FCD 15909-2,
v. 1.2.0, ISO/IEC, June 2007.

[5] Matthias Jüngel, Ekkart Kindler, and Michael Weber. The Petri Net
Markup Language. Petri Net Newsletter, 59:24–29, October 2000.

[6] Ekkart Kindler and Michael Weber. Modules in pictures. Petri Net
Newsletter, 61:5–8, October 2001.

[7] Ekkart Kindler and Michael Weber. A universal module concept for
Petri nets – an implementation-oriented approach. Informatik-Bericht
150, Humboldt-Universität zu Berlin, Institut für Informatik, April 2001.

[8] Michael Weber and Ekkart Kindler. The Petri Net Markup Language.
In H. Ehrig, W. Reisig, G. Rozenberg, and H. Weber, editors, Petri Net
Technologies for Modeling Communication Based Systems, volume 2472
of LNCS, pages 124–144. Springer, 2003.

