
Component Tools: A vision of a tool

Alexander Gepting, Joel Greenyer, Ekkart Kindler, Andreas Maas,
Sebastian Munkelt, Csaba Páles, Thorsten Pivl, Oliver Rohe, Vladimir Rubin,
Markus Sanders, Andreas Scholand, Christian Wagner, and Robert Wagner

University of Paderborn, Department of Computer Science
pg-components@upb.de

Abstract. Petri nets are a powerful technique for modelling, analysing
and verifying dynamic aspects of all kinds of systems. And so are many
other techniques from the field of formal methods, e. g. State Charts or
timed automata.
All of these techniques have their particular strengths and weaknesses,
which often make it necessary to have models in different notations for
the very same system. Or it might be necessary to have one abstract
model and another more detailed model of the same system for perform-
ing different analysis tasks. The problem, however, is that the different
techniques come with their own composition mechanisms, which make
it very expensive to use and to maintain different models of the same
system.
In this paper, we discuss some concepts that deal with the above prob-
lems. The basic idea is to define component types with their interfaces
and their possible connections completely independently from any par-
ticular modelling technique. For each component type, a set of possible
models in different notations and on different levels of abstractions can
be defined. From these component definitions, which we call a compo-
nent library, an engineer can build a system and can fully automatically
generate an overall model. Then, this overall model can be analysed or
verified with the techniques provided for this particular technique. The
generation of the overall model will be defined by triple graph grammar
(TGG) rules, which will be interpreted by a TGG-interpreter.

1 Introduction

Petri nets as well as many other techniques from formal methods are a powerful
means for modelling, analysing, validating, and verifying all kinds of systems.
Each of these techniques has its particular strength and its particular weakness.
They are useful for some purposes, but they may fail with respect to another
purpose. Therefore, it is necessary to apply different techniques to modelling
the same system for different purposes and possibly even combine different tech-
niques. It might even be useful to have different models in the same notation,
but on different levels of abstraction.

Moreover, system engineers would like to construct systems from some com-
ponents in a way that is independent from the specific composition mechanism

Administrator
In: E. Kindler: Algorithmen und Werkzeuge für Petrinetze (AWPN) - Algorithms and Tools for Petri Nets.
     Sept. 30 & Oct. 1, 2004, Paderborn, Germany. Proceedings.
     pp. 37-42




provided by the underlying formal method. And they would like to switch be-
tween different aspects or views of their system. Still, they would like to use
the power of different techniques, once they have constructed their systems or
subsystems.

In this paper, we present the concepts of a tool that will help to solve these
problems, where some parts of the tool have already been implemented as a
prototype [1]. The rest of it will be implemented in a course called project group1

at the University of Paderborn. The tool will be called ComponentTools since
it will support many different concepts to build a system from components, to
transform these models, to export these models to analysis tools, and to import
analysis results.

The basic idea of ComponentTools is a mechanism for defining compo-
nent libraries from which systems can be built, where each component defined
in the library can be equipped with different models from different modelling
techniques. These models of the components, however, are not directly visible
to the engineer. Once the engineer has built a system from the available com-
ponents, ComponentTools provides a mechanism to build system models in
the different notations that will be used for analysis and verification purposes.
To this end, ComponentTools provides a general mechanism for defining such
transformations, which will be based on triple graph grammars (TGGs) [4].

Originally, the Component Tools project was inspired by the modelling and
verification of flexible manufacturing systems. Therefore, we will use a simplified
example from this area for explaining the basic concepts of ComponentTools.
The concepts, however, are much more general and we are pretty sure that there
are more application areas where ComponentTools can be applied.

Fig. 1. A toy train built from components

1 The authors of this papers are the supervisors and the participants of this course.
See http://wwwcs.upb.de/cs/kindler/Lehre/SS04/PG/ for more details.



2 Component Libraries

In this section, we discuss the idea of component libraries by means of a simple
example. We have chosen a very simple toy train system, resembling a project
in flexible manufacturing systems.

Components, Ports, and Connections Figure 1 shows a simple toy train sys-
tem built from components. In this example, there are four different component
types: straight tracks, curved tracks, tracks with a stop signal, and switches2.
Each component type has some ports, which are graphically represented as small
boxes and circles at the border of the components, and which can be used for
connecting the different components. In our particular example, we have ports
that represent physical connections of tracks: the connections from white squares
to white circles. Moreover, there are ports for controlling the switches and the
signals, which are indicated as black circles and squares; these would correspond
to electrical wires attached to these components. But we did not connect the toy
train to a controller in our example.

In order to build such a system, we must provide a component library : A
component library defines all the available ports, which typically correspond to
mechanical, electrical, or logical plugs for connecting different devices. The com-
ponent library defines which types of ports are available as well as their graphical
appearance. Moreover, the component library defines the component types. For
each component type, it defines the ports and the position of these ports. Fur-
thermore, the component library defines how ports may be connected, which is
called a connection paradigm. There may be different types of connections, for
example for mechanical connections, for pneumatic pipes, for electrical wires (of
different voltages), or for signal lines. The connection paradigm defines all avail-
able connections and their graphical appearance; and the connection paradigm
defines which connections may be attached to which ports as well as the fan-in
and fan-out of the corresponding ports. In addition, a component type can be
equipped with some parameters, which must be provided for each instance of
this type. In our example, the speed of the train on a particular track could be
such a parameter.

In addition to all this formal information, a component library provides in-
formal or textual information on all defined elements. There are textual descrip-
tions for the meaning and intended use of the defined ports, components and
connections. These descriptions could refer to the terminology of this particular
application area. For example, it could describe the plugs and the voltages for
some electrical wires, or it could give the diameters and the maximal pressure
of some pressure pipes.

Once a component library has been defined, ComponentTools can be used
for building a system from these components; moreover, it guarantees that the
user provides the required parameters for each component instance and that

2 For simplicity, we have splitter switches only. The joining switches are built by con-
necting two tracks to a single one.



the connections meet the requirements of the connection paradigm. This part of
ComponentTools is already implemented [1] and running, though some nice
features are still missing3.

Models So far, ComponentTools allows us to build a system from compo-
nents, and the tool guarantees that components and connections are used in a
syntactically correct way. But, how about analysis, verification, and validation
of the system?

Fig. 2. Two models for components

In order to deal with these issues, each component type of the component
library can be equipped with a model that defines its behaviour. Figure 2 shows
the Petri net models for two of the components. In fact, we can provide even
more models for each component. For example, there can be very abstract mod-
els like the ones shown in Fig. 2, and there can be more detailed ones. Or there
can be additional models in different notation such as State Charts [2] or other
notations. From these models and the system built by the user, Component-
Tools can generate one or several overall models of the system, which can then
be analysed by the appropriate tool for this formalism.

Model Generation and Transformation There are many different ways how to
build an overall model from the different models of the component. Component-
Tools itself does not know any of them. The idea is that these transformations
are defined by the component library itself.

An easy way to define a translation would be to implement a program that
performs this translations. The disadvantage of this approach, however, is that
making available a component library would also require some programming.
Moreover, in many cases we need not only a generation of an overall model, but

3 Right now, components cannot be rotated and there are no user defined components.
But, these features can be easily added.



we need to translate analysis results back to a component system in order to
visualize these results.

Therefore, we decided that these translations and transformations should be
defined on a higher level of abstraction. We chose to use triple graph grammar
(TGGs) [4] for this purpose. The component library will include one TGG for
each type of translation, and ComponentTools will interpret these TGGs for
performing the translations among the different models (see [3] for more details).

Altogether, ComponentTools with a given component library allows an
engineer to construct a system and to analyse it without even knowing the
underlying techniques. The informal descriptions of all ports, connections, and
components should give enough information to use the component library.

3 Additional Features

In the previous sections, we have discussed the basic concepts of Component-
Tools. To complete the picture, we briefly discuss some other important fea-
tures.

Constraints For some components, there are dynamic constraints for their use.
The switch in our toy train, for example, has the constraint that its direction
must not be changed when there is a train on it, because the train could derail
in this situation. In order to keep track of such dynamic constraints, each defi-
nition of a component type in a component library can be equipped with such
constraints, which could be a temporal logic formula or a property formalized in
some other notation. Again, ComponentTools has no fixed notation for con-
straints. The interpretation of a constraint will be defined by translation rules
similar to the translation of the models, in such a way that some analysis tool
or model checker can check whether the constraints are met for all component
instances, once the system is constructed.

Again, there will be an informal description of each constraint, so that an
engineer knows their meaning without knowing the notation of the constraint.

Views When building flexible manufacturing systems, different users with dif-
ferent background and interest are involved. Some are more interested in the
mechanical parts and connections, other are more interested in the electrical
wiring, and others might be more interested in the control part. To this end, we
introduce the concept of views, which allows us to edit different aspects of the
system independently from each other. In our example, there could be a physical
or geometrical view for editing the layout of the tracks; in another view a user
could add the electrical wiring, etc. In the component library, we can define a set
of independent views. Each view basically consists of a set of ports, connections,
and components that are visible in this view, and it consists of a subset of these
components and connections that may be edited in this view.

There could be even different kinds of editors for the views. For the geometri-
cal view, there could be an editor where one-to-one-connections are represented



by placing the corresponding ports at the same position. Figure 3 shows an
example of such a geometrical view, where the ports of the right circle have
not yet ‘snapped’. In the original ‘wiring’ view from Fig. 1, we would see all
these connections, but they would not be editable, in order not to introduce
inconsistencies with the geometrical view.

Fig. 3. A toy train built from components

4 Conclusion

The main idea of the ComponentTools concept is a general mechanism for
the definition of component libraries in different application areas. Component-
Tools will support the construction of systems from these libraries, and it will
provide a mechanism for defining different views for the different involved users.
In particular, it will not be necessary that a user knows the underlying for-
mal methods, still these models will play an essential role in the analysis and
verification or even controller synthesis for such systems.

References

1. Joel Greenyer. Maintaining and using component libraries for the design of material
flow systems: Concept and prototypical implementation. Bachelor thesis, Depart-
ment of Computer Science, University of Paderborn, October 2003.

2. David Harel. Statecharts: A visual formalism for computer systems. Science of
Computer Programming, 8(3):231–274, June 1987.

3. Ekkart Kindler, Vladimir Rubin, and Robert Wagner. An adaptable TGG inter-
preter for in-memory model transformation. Unpublished manuscript, July 2004.

4. Andy Schürr. Specification of graph translators with triple graph grammars. In
Ernst W. Mayr, Gunther Schmidt, and Gottfried Tinhofer, editors, Graph-Theoretic
Concepts in Computer Science, 20th International Workshop, WG ’94, Herrsching,
Germany, Proceedings, Lecture Notes in Computer Science 903, pages 151–163, June
1995.




