
AMFIBIA: A Meta-Model for the Integration of
Business Process Modelling Aspects?

Björn Axenath, Ekkart Kindler, Vladimir Rubin

Software Engineering Group, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany
[axenath|kindler|vroubine]@uni-paderborn.de

Abstract. AMFIBIA is a meta-model that formalizes the essential as-
pects and concepts of business process modelling. Though AMFIBIA is
not the first approach to formalizing the aspects and concepts of busi-
ness process modelling, it is more ambitious in the following respects:
First, it is independent from particular modelling formalisms of busi-
ness processes and it is designed in such a way that any formalisms for
modelling some aspect of a business process can be plugged into AM-
FIBIA. Therefore, AMFIBIA is formalism-independent. Second it is not
biased toward any aspect of business process and the different aspects
can be, basically, considered and modelled independently of each other.
Moreover, it is not restricted to a fixed set of aspects; further aspects
of business processes can be easily integrated. Third, AMFIBIA does
not only name and relate the concepts of business process modelling,
as it is typically done in ontologies or architectures for business process
modelling. Rather, AMFIBIA also captures the interaction among the
different aspects and concepts, and therefore fully defines the dynamic
behaviour of a business process model, with its different aspects modelled
in different notations. To prove this claim, we implemented a prototype
of a formalism-independent workflow engine based on AMFIBIA: This
workflow engine, also called AMFIBIA, is open for new aspects of busi-
ness process modelling and new modelling formalisms can be added to
it.
In this paper, we will present AMFIBIA and the prototype workflow
engine based on this meta-model and discuss the principles and concepts
of its design.

1 Introduction

Today, there is a good understanding on what business processes are, how they
should be modelled, and which aspects and concepts are important in such mod-
els. In the literature on business process modelling and workflow manangement
of the last ten years, the three aspects of control, information, and organization
have consistently been identified as the most important aspects of a business

? This is a revised version of the report “The Aspects of Business Processes: An Open
and Formalism-Independent Ontology” released in April 2005.

process model. Sometimes called perspectives or views and sometimes with dif-
ferent names, these three aspects have been identified quite early when the topic
of business process modelling and workflow management became an issue. The
resulting insights were formulated as architectures, ontologies or meta-models
for business process modelling [35, 20, 24].

Though there is a wide agreement on theses aspects and concepts, the con-
crete formalisms, notations, and, in particular, the business process modelling
tools vary and are not compatible to each other. The reason is that each for-
malism and notation set out from one or two particular aspects and later on
integrated the concepts for other aspects, or they were focussed on solving one
particular problem and later on were generalised. Moreover, the formalisms for
the different aspects are tightly integrated with each other, though the aspects
are conceptually independent of each other. Therefore, the fact that the different
aspect are, basically, independent of each other is concealed by these approaches.
The actual aspects, the concepts modelled in these aspects, as well as their inde-
pendence get blurred and distorted by the concrete formalisms and notations of
the tools. And most formalisms and tools are biased towards one aspect and ne-
glect others. In particular, integrating new aspects or new formalisms in existing
tools and exchanging models among different tools is virtually impossible.

Altogether, the architectures, frameworks, ontologies, or meta-models for
business process modelling proposed so far provide a good overview on which
aspects and concepts need to be modelled and to compare different formalisms
and tools on a high conceptual level. These models, however, do not deal with
the details of the aspects, their concepts, and, in particular, the interplay of these
aspects independently from a particular formalism. A formalization of this finer
fabric of the aspects and concepts of business process modelling is still missing.
Actually, this insight struck us at a workshop on ‘XML Interchange Formats
for Business Process Models’ [31]: At this workshop, different proposals for ex-
change formats for business process models were made. Some where based on a
particular notation for business process models such as BPEL, EPCs, or Petri
nets; others set out from XML technologies such as XMI or GXL. Altogether,
there was a wide agreement that it would be nice to have a standard interchange
format for business process models; but, the variety of different proposals showed
that there is a long way to go before such a general standard will be generally
accepted. In fact, the essential problems are not so much in the syntactic differ-
ences or in the different XML technologies underlying the proposals. The real
problems are the different comprehension of what business processes are, of what
the important aspects of business processes are, and of which formalisms should
be used for representing them. Most proposals for interchange formats are biased
towards one or two aspects of business process models and are neglecting others;
and they use – or at least favour – particular formalisms.

This was the starting point of our research on AMFIBIA: A Meta-Model
for the Integration of Business Process Modelling Aspects. AMFIBIA should not
only capture the rough outline of the different aspects and concepts of business
process models, but also the fine details and the exact interplay of the different

concepts – independently from a particular formalism. In order to be formalism-
independent, there needs to be an interface for mapping a formalisms to the
concepts of a particular aspect. Moreover, AMFIBIA should not be biased toward
one aspect of business process modelling and should be open for integrating new
aspects.

In this paper, we present AMFIBIA and formalize it in terms of a UML meta-
model; for proving that these concepts work, we1 have implemented a workflow
engine based on the concepts and the meta-models of AMFIBIA, which is also
called AMFIBIA: a formalism independent workflow engine that is open for
adding new aspects and new formalisms. Altogether, the objectives of AMFIBIA
are the following:

– It should cover all basic aspects of business process models and should not
be biased toward or focused on one of these aspects.

– It should be open so that other aspects can be easily added and integrated
to it.

– In particular, there should be clear interfaces for the different aspects and a
mechanism for their integration.

– It should be independent of a particular formalism or notation for business
process models. But, it should be easily possible to map existing business
process modelling notations to it.

The first ideas of AMFIBIA were already presented in [5]. At that time, the
focus was on structuring and relating the concepts; the interaction between the
different aspects were quite informal at that time. Here, we present the structural
meta-models of AMFIBIA as well as the interfaces and the interaction between
the different models. This – together with the prototype implementation of a
workflow management system – proves that the concepts of AMFIBIA work. In
order to model the dynamics for each aspect, our meta-model provides automata
defining the behaviour for each aspect, where the state changes of this automata
are triggered by events. The events may be shared by automata for different
aspects. The overall behaviour of all aspects is defined by executing all these
automata concurrently, where shared events are synchronized.

Actually, the AMFIBIA project has another quite different objective: Due the
independent aspects, AMFIBIA is a good example for aspect-oriented modelling
(AoM). Though there are many ideas and approaches toward aspect-oriented
modelling, there is no final and mature technology for aspect oriented modelling
in the context of the model driven architecture (MDA) yet. We think that AM-
FIBIA is a good example for studying the concepts necessary in the context
of MDA and to develop and refine this technology from a software engineering
point of view. This, however, is not the focus of this paper2.

1 Actually, it was a group of eight students who have implemented AMFIBIA in a
one-year master’s project (see Acknowledgement in the end of this paper).

2 Note that, in the literature on aspect oriented modelling, our aspects would often
be called ‘concerns’ rather than aspects.

2 Concepts of Business Process Modelling

In this section, we introduce the basic concepts and terminology used in business
process modelling and define a controlled vocabulary for the domain of business
process modelling. Later in this paper, we will formalize these concepts as a
UML meta-model. In the literature, there are many different proposals using
different terms, which are not consistent and no terminology is fully accepted.
Our definitions and terminology has been strongly influenced by the work of the
Workflow Management Coalition (WfMC) [20, 22], by van der Aalst and van Hee
[37], and by Leymann and Roller [29].

2.1 Overview

A business process involves a set of activities that are executed in some enter-
prise or administration according to some rules in order to achieve certain goals.
A business process model is a more or less formal and more or less detailed de-
scription of the persons and artefacts involved in the execution of a particular
business process and its activities as well as of the rules governing their execu-
tion. An instance, i. e. a particular execution of a business process model, is often
also called a business process. In order to avoid confusing instances and models,
we call an instance of a business process model a case, and we will, henceforth,
use the term business process informally only.

As for models in general, business process models are used for different pur-
poses:

– Documentation of the business process.
– Better understanding of the business process.
– Collaborative design of the business process.
– Communication and teaching of the business process.
– Analysis and verification of the business process.
– Optimisation and re-engineering of the business process.
– Computer support and automated execution of the business process (which

is often called workflow management or enactment).

The purpose of a model governs the choice of the formalism and notation as well
as the level of abstraction or detail for modelling a business process.

It is now well-accepted that there are three basic aspects of business pro-
cesses that can be modelled and investigated more or less independently of each
other. These aspects are shown in Fig. 1. The control aspect basically describes
the order in which the different activities are executed. The organization aspect
describes the organization structure and, in particular, the resources and agents,
and in which way they are involved in the business process. The information as-
pect describes the information that is involved in a business process, how it is
represented, and how it is propagated among different activities. The details of
theses aspects, the concepts modelled in each particular aspect, and how the
aspects are integrated will be discussed below.

Business
Process

Organisation
Aspect

Information
Aspect

Aspect
Control

Fig. 1. A business process and its basic aspects

In the literature on business process modelling, the most salient aspect of a
business process is the control aspect. In many modelling formalisms and nota-
tions, this aspect is used for integrating all other aspects. Actually, in ARIS it
was introduced for integrating all other aspects [36]. In our proposal, we do not
use the control aspect for the integration of the other aspects. Rather, we single
out the concepts that are common to all aspects. We call this the core of a busi-
ness process, which are basically the activities of the process. An activity itself
is an instance of some particular task ; only when a particular case is executed
the tasks will be instantiated to an activity.

A task comprises pieces of work that conceptually belong to each other. A
task can be either atomic or compound. An atomic task is not split into further
parts on the given level of abstraction. Dependent on the purpose of the model,
an atomic task can be associated with a procedure or an program that supports
the execution of this task; this, however, is subject to a different aspect already:
the application aspect. A compound task refers to a subprocess, which defines the
details of this task; this can be defined by another business process. Actually,
the distinction of atomic and compound tasks belongs to the structuring aspect
of a business process, which will not be discussed in detail here.

Altogether, the concepts activity, task, process (short for business process),
and case belong to the core of business process modelling, which occur in virtu-
ally all other aspects.

In the following sections, we will discuss the main aspects of business process
modelling, where we concentrate on the aspects necessary for enacting business
processes. Note that we omit the very important functional aspect, which defines
the objectives and goals that are achieved by a business process or a task. Since,
this aspect is not needed for enacting business process, we do not formalize it
here.

2.2 Control aspect

The control aspect defines the order in which the tasks of a business process are
instantiated and in which the corresponding activities are executed. Note that
the order of the execution does not need to be sequential; it can be a partial
order representing the dependencies among the activities, some of which may be
concurrent.

For defining this order, the formalism refers to the tasks defined in the core of
the business process. There are many different ways, formalisms, and notations
for defining the order in which tasks, resp. the corresponding activities must
be executed. In Sect. 3.1, for example, we will use Petri nets for modelling the
control aspect. In order to be universal, however, we do not fix a particular
formalism for defining the control aspect of a business process. We assume only
that there is a concept of a state. In a given state, it must be clear which tasks are
activated or enabled (i. e. which tasks can be instantiated to activities), how the
instantiation of a task to an activity changes the state, and how the termination
of an activity changes the state. We will discuss this in more detail later in
Sect. 3.3.

2.3 Information aspect

The information aspect of a business process model defines the information in-
volved in a business process as well as the propagation of information among
different activities. All information involved in a business process can be con-
sidered to be documents3, where a document is an artefact representing some
piece of information. The information aspect of a business process basically de-
fines the structure of the involved documents and their relation. Moreover, the
information aspect defines how documents are propagated among activities.

Similarly to processes and cases and to tasks and activities, we must distin-
guish between document instances (documents for short) and document models,
where a document model defines the structure of a document instance. The in-
formation model comprises all document models as well as the relation among
the different documents. As for tasks, a document can be atomic or compound.
An atomic document is an unstructured text or piece of data (resp. the structure
is not represented in the model), whereas a compound document is structured
and consists of two or more sub-documents.

2.4 Organization aspect

The organization aspect of a business process model defines the structure of the
organization in which the business process is executed, its organization units and
the relations among them; and it defines the resources and agents within these

3 In some systems, information is stored in a relational database. In that cases, we
can consider the tuples in the database as documents. This point of view allows us
to unify the terminology.

organization units, where we use the term agents in order to refer to persons
as human resources. Moreover, the organization aspect of a business process
model defines which resources and agents could possibly execute a particular
task resp. activity; these are called the possible assignments for that task. In a
business process model each task will be equipped with a resource descriptor,
which defines the possible assignments once the task becomes enabled.

The structure of the organization is modelled in the organization model. Note
that the organization model captures only that part of the organization which
is more or less fixed, such as departments and groups. It does not deal with
the concrete agents and resources, which change much more rapidly. Therefore,
the possible assignments of agents and resources to some task are defined by a
resource descriptor, possibly via their positions, roles or via relations (such as
substitute) among resources.

When it comes to the execution of a business process model in a workflow
management system, the concrete resources and agents, their positions and roles
will be maintained by some administrator, such that the workflow management
system can assign tasks to the concrete agents.

2.5 Further Aspects

The three aspects mentioned above are generally agreed to be the most important
aspects of business process. But, depending on the context, there can be more
or even less aspects. Which of them are applicable or relevant depends on the
context and the purpose of the model. Figure 2 shows some additional aspects
that will be briefly discussed below. There could be even more aspects, such as

Transaction

Authentication
Authorization

Assignment

Control

Organisation

Information

Core

Fig. 2. More aspects of business processes

the structuring aspect. But, we do not deal with the details of this aspect here.

The assignment aspect defines in which way tasks are assigned to resources
or agents. Note that the organization aspect does not define who will do some
work, it defines only who could do some work. The assignment policy defines
how the work will be assigned to the resources. The choice could be either with
the agents who choose it from some work-list, or the choice could be made by the
workflow management system. The first policy is called pull policy, the second is
called the push policy. And there are all kinds of assignment policies in between,
which could be defined by a sophisticated assignment scheme, in order to define
escalation policies. The assignment aspect of a business process captures the
concepts for defining assignment policies for tasks.

The security aspect defines which agents or resources may read, access, and
change information. Moreover, it makes sure that documents are authentic.

The transaction aspect defines which chunks of work and associated changes
on documents must appear to be executed in isolation from the perspective
of other business processes. This involves transaction protocols, compensation
schemes, or nested transactions known from classical transaction theory [8, 18].

In this paper, we will not go into the details of these special aspects. But, we
will demonstrate that our meta-model allows us to add new aspects.

2.6 Models and Instances

In the presentation of the concepts of business processes, we have dealt with
two kinds of concepts. The first kind were the concepts occurring in the business
process model such as the process itself, its tasks, the document models, the
roles etc. We call these modelling concepts. The second kind are the instances of
the first ones such as cases, activities, document (instances), and resources. We
call these concepts instance concepts.

In the business process models, there will be only modelling concepts. The
instance concepts are necessary only for the definition of the dynamic behaviour
and for discussing the dynamic behaviour of the modelling concepts – and when
implementing a workflow management system. In the following discussions and,
in particular, in the meta-model, we will carefully distinguish between concepts
of these categories, which are often confused: when someone is talking about a
business process, one can never be sure whether he is talking on the model or
on the case. Still the distinction is very important.

3 Structural Integration of Aspects and Formalisms

Up to now, we have presented the concepts of the business process modelling
aspects. Now we formalize these concepts in terms of UML models and show
how the aspects can be integrated with each other and how formalisms can be
mapped to an aspect. These techniques are formalized in the following subsec-
tions with the help of an example. The dynamic interaction of the aspects is
defined separately in the next section as it is the major contribution of our
approach.

3.1 A Conference Trip Example

Before we explain how the concepts from Section 2 are formalized, we introduce
an example to make our explanations better understandable. This example de-
scribes which administrative tasks have to be done by a member of a company
to perform a business trip. In our example, we selected the control and the in-
formation aspect to show how business process can be described by different
aspects. Furthermore, the order in which the aspects are presented is arbitrary.
Nevertheless, we start with the control aspect as is the more common aspect.

The Control Aspect of the Example In Fig. 3, we can see the control aspect
of the business process model. The formalism is a special version of Petri nets
called workflow nets [37]. It defines the different tasks of a conference trip and
the order in which they are executed. The tasks are the transitions (represented
as rectangles) of the Petri net. A Petri net defines this control by a firing rule
referring to a marking, which is a number of tokens on its places (represented as
black dots in the circles). Initially, there is only one token on the initial place in.
At this stage, only transition “apply for trip” is enabled. After starting and fin-
ishing the corresponding task, the transitions “support trip”, which corresponds
to the task of a superior countersigning the trip application, and the transition
“book trip” are enabled. This means that these two tasks can be executed con-
currently. Note that the actual trip may be made only if the trip application was
approved before. After the trip, the employee may apply for reimbursement of
the travel expenses. Note that, at this stage, there might be an iteration: If the
bills for the trip are rejected, the billing activity will be repeated. The process
is finished, when a token arrives at the place out.

in

out

Fig. 3. Control aspect of the example

The Information Aspect of the Example In our example, the information
needed for the business trip is stored in a database and is modelled by an ER
diagram as shown in Fig. 4.

For the process, it is necessary to compose documents out of this data. To
apply for the trip, the user has to fill the table Trip Application out with the

Trip Application Invoiceaccounted contains

Item

Name

Location

Date

Granted

Name

Location

Date

Granted

Purpose

Value

Granted

Fig. 4. The Information Aspect of the Example

attributes Name, Location and Date. When the trip is approved, the attribute
Granted is filled out. After the trip, the bill is written by creating an entry in
the Invoice table, which has to be linked to the corresponding entry in the Trip
Application. Furthermore, to write the bill, all expenses have to be listed in the
Item table. All these entries have to be linked to the Invoice. When the Bill is
approved, it can be reimbursed.

Notice, that we write about tasks that are also mentioned in the control
aspect of our example. These tasks are not defined in the control aspect but in
the core of the business process. The control aspect and the information aspect
refer to tasks which are defined in the core, as the tasks are relevant for all
aspects.

3.2 The Core of Business Process Modelling

In Section 2.1 we motivated already that we use a core to integrate the aspects.
In this subsection we formalize the core.

The core consists of concepts that are common to all aspects (see Figure 5).
There is, first of all, the business process model (BPM) itself which consists of a
set of tasks. A case is an instance of a particular business process. While running
a case, different tasks will be instantiated to activities; each activity corresponds
to exactly one task. As we have motivated in Section 2.6, we distinguish between
models and instances. We do this by introducing an instance-of relation. Fur-
thermore we group the elements by using packages. The left package shows the
concepts of the model itself, whereas the right package shows the concepts con-
cerning the instantiation of these models when the models are executed.

Every aspect adds new concerns to the elements of the core. We introduce the
UML stereotypes aspect and use packages to show that an element is extended by
an aspect, like it is shown in Figure 6. Here, the BPM from the core is extended
by the control aspect, which is denoted by the package name. The meaning of
the stereotype aspect is, that there is a relation to an element in the core as it is
shown in Figure 7. Consequently, the aspect-of relation defines that the element

Fig. 5. The Core of the AMFIBIA-Model

from the core has a corresponding element in the aspect. Here we can also see,
that the BPM from core consists of several other classes defined in the aspects.

Fig. 6. BPM of Core in Control Aspect Fig. 7. Aspect-of relation

3.3 Aspects and Formalisms

The integration of the aspects shown in the previous subsection is still formalism-
independent. In the next paragraphs we will formalize the aspect independent
meta-models and show how the formalism-dependent meta-models can be inte-
grated, like it is illustrated in Figure 8. We will exclude the organization aspect
from this paper as all ideas can be explained by the help of the information
aspect and the control aspect. Furthermore, the concepts of integration of the
organization aspect is similar to integration from the information aspect. Like
in the example, we start with the control aspect.

Informational
Aspect

Organizational
Aspect

Control
Aspect

 Core

Formalism
Independent
Meta-Model

Formalism
Independent
Meta-Model

Formalism
Independent
Meta-Model

Formalism
Dependent
Meta-Model

Formalism
Dependent
Meta-Model

Formalism
Dependent
Meta-Model

Fig. 8. Mapping of the formalism-dependent meta-models

Control Aspect In this section, we present the meta-model for the control
aspect of business process models. To this end, we refer to the concepts of the
core (see Fig. 5) and extend them by additional features. These are shown in the
UML diagram in Fig. 9.

Fig. 9. The meta-model for the control aspect

For the control aspect, a process model is equipped with initial and final
tasks. The initial tasks define those tasks that initiate a new case. The final
tasks identify those tasks that terminate the execution of the corresponding
case.

In order to define the process control, there is the concept of a state, which
actually sits in the middle between the model and the instance concepts of
business processes. Each case has a current state, which in turn defines the tasks

that could possibly be started in the current state; these are called the activated
tasks. Each task defines, how the initialization of this tasks changes the state
and how the finalization of the corresponding activity changes the state of the
case. Moreover, a case consists of a set of activities that are active at a particular
moment, and it consists of activities that are finished already.

Thus far, the meta-model for the control aspect is independent of a particular
formalism for modelling the control. It only requires that there is a concept
of state and state changes. This can be implemented by different formalisms.
Here, we show how Petri nets can be used for implementing the control aspect.
Figure 10 shows the meta-model of Petri nets implementing the concepts of
the control aspect of business processes. It consists of transitions and places.
A marking consists of a multi set of places. The transitions implement tasks,
the markings implement states, and the firing rule of Petri nets implements
the state changes. The method initialize removes one token from each of its
input places, and the method finalize adds a token on each of its output places.
The enabledness of a transition in a particular marking implements the set of
activated tasks.

Fig. 10. A Petri net implementation

Here, we used Petri nets for implementing a formalism for the control aspect
of business process models. But, it is easy to see that any other formalism that
has a semantics based on transition systems can be used for implementing the
control aspect.

Information Aspect The information aspect (see Fig. 11) describes which
documents are needed to instantiate a Task to an Activity. Therefore a Docu-
mentDescriptor is introduced, which describes what kind of document is needed
for the execution of a task. The type of document is given by the interface

DocumentType. Furthermore, for the selection of a Document the DocumentDe-
scriptor regards further Constraints according to the context, which is given by
the Case.

Fig. 11. Information aspect

Documents are usually structured so that we differentiate between Atom-
icDocument and ComposedDocument. The meaning of atomic is, that in the
context of the business process the document cannot be split into parts. The
ComposedDocument implements its composing property by an association to its
parent class Document. Documents are related to other documents by Links.
Both, Documents and Links, have definitions called DocumentTypes resp. Re-
lations. Analogously to Documents, DocumentTypes can be either atomic or
complex. An example for a Relation is a dependency. According to our drawn
distinction of model and instance, Documents and Links belong to the instance
part and DocumentTypes and Relations belong to the model part.

Figure 12 shows an excerpt of a meta-model for the entity relationship model,
which was used for our example. It also shows how this formalism-specific model
is integrated in the information aspect. Notice, the documents being used for
our conference trip are tuples contained by our model. Consequently, for the
mapping from the formalism-independent model to the formalism-dependent
model we need a construct extracting the documents from the data described
by the model. In the formalism-dependent model, this is done by SQL queries,
which create result sets. Consequently, result sets are documents. Depending on
the inner structure of the query, the documents are atomic or composed.

Fig. 12. Excerpt of Meta-Model for Entity-Relationship-Model with the Mapping to
Information Aspect

4 Dynamic Interaction of Aspects

In the previous sections, we presented the structural meta-models for the core
part of business process models and the meta-models for two different aspects
of business process models. We have shown how the aspects can be conceptually
integrated and how the meta-models of formalisms can be mapped to the meta-
models of aspects.

In this section, we deal with the concepts of the behaviour of aspects and
the concepts of the dynamic integration of aspects. Moreover, we present the
behavioural models and discuss how to implement our ideas in a workflow engine.
This workflow engine has to support integration and dynamic interaction of
business process modelling aspects. The prototype of the workflow engine was
implemented in a Project Group AMFIBIA at the University of Paderborn.

The main points discussed in this section are the execution of processes and
the dynamic interaction of aspects. A business process model, which includes
different aspects has to be instantiated and executed, i.e. a case is created. Dur-
ing the case execution, it is decided, which tasks are enabled: all the aspects are
asked which tasks are enabled from their point of view. This decision is specific
for each aspect, it depends on the available information, resources, control flow,
etc. The tasks enabled for all aspects are instantiated, thus, the activities are
started. The aspects fill the activities with information, resources, or decide who
will execute them (this functions are also aspect-specific). Thus, the main chal-
lenge here is to come from the conceptual integration of aspects in meta-models
and models to the concepts of dynamic integration of aspects and, furthermore,
practical ideas about execution of them in a working workflow system.

4.1 Aspects Automata and Synchronization

In the following, we discuss the functionality described above in more details
and with the help of the examples. Here, we present a set of simplified automata
models. These automata have some restrictions: e.g. they do not support the
concurrent executions of activities of a single case. But they clearly show the idea
of the modelling of the dynamic behaviour and the integration of the behaviour
of different aspects.

The basic functionality of the workflow engine is covered by the core, it is the
essential component. The core is responsible for executing cases and activities.
The new aspects are plugged into the core, their execution is synchronized with
the execution of the core.

For describing the behaviour of the core, we identify the events that can
be emitted. First, we start with the events produced during the lifecycle of a
case. So, these events occur for every case and they are: “start Case”, “finish
Case”, “request Tasks”, “receive Tasks”, “create Activity”, “finish Activity”.
The events define the points of a case execution, which are especially interesting
in respect to aspect coordination or to the functionality of the core4.

The case execution behaviour in the core can be modelled as a case core
automaton, see Fig. 13. When a case is started, the automaton goes to the state
initial ; then, the core requests enabled tasks from aspects and goes to the next
state. After the enabled tasks are received, i.e. event receive Tasks is emitted,
the core creates an activity. When the activity is started, the core goes to the
next state and waits for the finish Activity event. Then, a set of enabled tasks
is requested again and the whole loop of receiving tasks and executing activities
is repeated until the case is finished.

Like we model the case execution behaviour in the core, we model the case
execution behaviour in the aspects. The automaton of the control aspect, called
case control automaton, is shown in Fig. 14. It has such events as “request Tasks”,
“calculate Tasks” and “receive Tasks”.

After we have presented the core and the control aspect automata, we can
explain the ideas of the synchronization of aspects on these examples. As it
was mentioned earlier, aspects are synchronized with the core and with each
other. First of all, we assume that all the automata are executed in the system
concurrently and that they are started synchronously, when the case is started.
The events in the core will be synchronized with the events of the aspects. In
our examples, the events that are synchronized have identical names and we use
to add “(sync)” to the end of the names. For example, event “request Tasks” in
the core has to be synchronized with the event “request Tasks” in the control
aspect; the same is about “receive Tasks” and other events.

The synchronization works the following way: if the core can execute an
event, for example “request Tasks”, it waits until all the aspects that have the
same event can execute it. Then, the core and the aspects execute this event
4 We can draw here the analogy to the formal approaches from the area of aspect-

oriented programming (AOP) [13], where events are abstractions of the points of
interest.

CASE_Core 2006/08/21

Initial

finish Activity (notify)

Activity started

start Activity (notify)

Activity automaton running

request Tasks (sync)

Tasks requested

receive Tasks (sync)

finish Case (sync)
create Activity

Tasks received

Fig. 13. Case Core Automaton

CASE_Control 2006/08/21

initial

request Tasks (sync)

Tasks requested

calculate Tasks

receive Tasks (sync)

Tasks calculated

finish Case (sync)

Fig. 14. Case Control Automaton

concurrently and go to the next state. After it, the core can execute the next
event “receive Tasks” and starts waiting. When the “request Tasks” event is
executed by the aspects, the aspects do their job; for example, the control as-
pect calculates the enabled Tasks (“calculate Tasks” event) depending on the
semantics of the control aspect formalism and on the process model. Then the
aspects execute their further events; as soon as all the aspects execute the event
the core is waiting for, the core and the aspects go to the next state again.

In our examples in Fig. 13 and in Fig. 14, the synchronization is done for
the following events: “request Tasks”, “receive Tasks”, and “finish Case”. The
automata of the information aspect looks exactly like the automata of the control
aspect, the synchronization is based on the same events, but the calculation of
tasks expressed in the corresponding event is based on the information model.

Along with the execution of cases, the engine manages the execution of ac-
tivities. Activities are created within a case. The activity execution behaviour
in the core is also modelled as an automaton shown in Fig. 15. This automaton
contains two events: “start Activity” and “finish Activity”.

When the activity is started, the case has to be notified about it and has
to start waiting for this activity to be finished. Thus, there is another type of
synchronization between the automata: it synchronizes the events of the activity
core automaton with the events of the case core automaton. We use to add
“(notify)” to the end of the names of such events. For example, events “start
Activity” and “finish Activity” in the activity core automaton synchronize with
the corresponding events in the case core automaton.

ACTIVITY_Core 2006/08/21

finish Activity (notify) (sync)

Active

start Activity (notify) (sync)

Initial

Fig. 15. Activity Core Automaton

ACTIVITY_Control 2006/08/21

finish Activity (sync)

Active

start Activity (sync)

Initial

Fig. 16. Activity Control Automaton

ACTIVITY_Information 2006/08/21

Initial

start Activity (sync)

Active

add Documents

finish Activity (sync)

Documents added

Fig. 17. Activity Information Automaton

To describe the whole picture, we present the activity control aspect and the
activity information aspect automata in Fig. 16 and Fig. 17 respectively. These
automata synchronize with the activity core automaton. The activity control
automaton looks exactly like the activity core automaton, because there is no
additional functionality in the control aspect except starting and finishing the
activity. But the information aspect, for example, has to add documents to the
started activity, it is described by the event “add Documents” in the automaton.

The overall scheme of all the automata and the ways of their synchronization
is presented in Fig. 18. It depicts different types of automata and two dimensions
of their interaction.

Case Core
Automaton

Case Control
Automaton

Activity Core
Automaton

Case Information
Automaton

Activity Control
Automaton

Activity Information
Automaton

Aspects Synchronization

C
as

e
A

ct
iv

ity
 S

yn
ch

ro
ni

za
tio

n

Fig. 18. The Overall Scheme of Automata and Synchronization

4.2 Architecture of the Workflow Engine

In this section, we briefly describe the extension of the architecture of the work-
flow management system in order to support the integration of new aspects and
new formalisms. In Fig. 19, we present the Workflow Reference Architecture with
a new component called Aspects and Formalisms Definition and a new interface
between it and the workflow engine.

Aspects and
Formalisms
Definition

Fig. 19. WfMC Reference Model with the Aspects Interface

The aspects and formalisms definition component should be used by a devel-
oper and a designer in the following way:

– for introducing a meta-model for the aspect and integrating it with the
existing ones;

– for inserting a formalism for a particular aspect and integrating the meta-
model of the formalism to the meta-model of the aspect;

– for developing an editor for the formalism and integrating it with the existing
editors for the other formalisms;

– for modelling and implementing the behaviour of the aspect and synchroniz-
ing it with the behaviour of the core and of the other aspects;

4.3 Implementation

In the previous sections, we have presented the meta-models for AMFIBIA. They
covered the concepts of business process modelling, their relation as well as their
dynamic behaviour in terms of automata. Based on these concepts, we have im-
plemented a workflow engine. Actually, we simplified the meta-models in this
paper, since we could not go into all the details of the actual meta-models of the
implementation. In particular, the automata defining the behaviour and the in-
teraction among the different aspects are more complex in the implementation –
as mentioned earlier, the automata presented in this paper cannot execute activ-
ities of the same case concurrently. The automata used for the implementation
take care of concurrency.

The meta-models were presented in an Aspect-oriented Modelling style, though
we did not use a specific formalism: The basic concepts of business process mod-
elling, the business process itself, the task, the case, and the activity are defined
for each aspect separately5. The events defined for an aspect correspond to the
join points of AoM, and the synchronization of the same event in the automata
for different aspects correspond to cross cuts. The unsynchronized events resem-
ble actions. The automata for the core of business process models corresponds
to the base program. A technical difference, though, is that in most approaches
to AoM, there is step of weaving which generates a single program that has code
for all the aspects resp. concerns. Our approach rather executes the different au-
tomata independently of each other, and synchronizes the shared events. This,
however, is an implementation issue only.

Since there is no mature software-technology for generating code from these
models, we translated the concepts of Aspect-oriented Modelling to object-
oriented models first. For example, for defining aspects of some concept such as
a case or an activity there is an interface for registering aspects with a concept.
Each class implementing this interface, can register with the concept which it is
an aspect of, as was discussed in Fig. 7 already. This interface along with a com-
position relation is the object-oriented representation of aspects. These models
where formalized in EMF, the Eclipse technology supporting UML. From these
models, the basic Java classes of the workflow engine could be generated fully
automatically. Moreover, we defined an interface for events and automata. Each
aspects defines some events and registers with some of the events defined by
other aspects so that the automata defining the dynamic behaviour of the as-
pects can be synchronized. Up to now, the automata are implemented directly

5 Note that in most papers on Aspect-oriented Modelling, the term aspect is used on
a more technical level. What we call aspect is often called a concern in AoM; but,
we think that aspect is the better term.

in Java code. And there is a manager that coordinates the execution of the dif-
ferent automata belonging to all the aspects of a case: triggers their transitions
and synchronizes the shared event by a two-phase-commit protocol.

In the future, we will develop a software technology, which supports the
concepts of Aspect-oriented Modelling directly, so that we can generate the basic
parts of the workflow engine from the AoM style meta-models as presented
in this paper – without a detour to purely object-oriented models. Moreover,
the automata defining the dynamic behaviour of the aspects could either be
interpreted for implementing the workflow engine, or there could be translation
to Java code. The development of the exact concepts and notations for these
models as well as the technology for Aspect-oriented Modelling on top of EMF,
however, is a long-term project in the field of software engineering; more details
on this technology will be discussed in a separate paper addressed to software
engineers. Moreover, we will also deal with a formal foundation of the interaction
and sychronization of the automata defining the dynamic behaviour, e. g. in
terms of process algebras.

Actually, there are some further implementation issues that are not covered
in this paper, since they are more interesting from the software engineering point
of view than from the business process modelling point of view. The workflow
engine interacts with the agents of business processes via the work-list; moreover,
it provides an interface for accessing the relevant documents, which is a kind of
a light-weight application interface. Parts of these interfaces need information
that comes from different aspects. In order for AMFIBIA to be fully aspect inde-
pendent, the parts of an aspect that are relevant to the graphical user interface
for the agents need to be implemented with each aspect. Our implementation
takes care of this, but we do not discuss the details here.

5 Related Work

Wil van der Aalst and Kees van Hee, in their book about Workflow Manage-
ment [37] present a reference framework for defining the business processes. They
define the business-process management context of workflow management sys-
tems. The authors define an ontology, where “business process management”
is the domain of interest. They deal with the processes, management of the
processes and information systems related to them. This work serves as a back-
ground of the current paper, which aims to develop a meta-model, which requires
usage of more formal techniques and technologies.

The book of Leymann and Roller [29] discusses the basics of the workflow
technology and its aspects, the models of business processes, and the basics of
workflow management systems. The book also discusses the meta-models and
constructs that have to be provided to model their environment. The concepts
and necessary terms in the area of workflow management are presented for the
process model, organizational model, versioning model and others. One part of
this book precisely describes the fundamental part of the meta-model, which
is very close to the implemented one in MQSeries Workflow. The syntax and

the semantics of the meta-model are described using process model graphs and
elementary operations of the set theory. The book influences significantly this
paper, since it presents the definitions of the meta-model constructs with precise
syntax and semantics. Therefore, this meta-model can be instantiated to the
modelling level and used for the formal workflow modelling.

In the book of Jablonski, Böhm and Schulze [24] also the topic of meta-
modelling is discussed. The meta-model or “metaschema”, as it was called by
the authors, describes the properties of all the products of the workflow language.
The book presents the schema of the meta-levels and describes relations between
them. In the other work of Jablonski [25], it is analysed how workflow man-
agement can support enterprise application integration tasks and e-commerce
applications.

The book of Scheer describes the Architecture of Integrated Information
Systems (ARIS) and their approach for integrating different business process
modelling aspects [35]. They divide the general business process model context
into views: organization, data, control and function.

Zur Muehlen and Rosemann [34] analyse the usage of the workflow meta-
models in particular workflow management systems. They present the ideas of
evaluation and comparison of meta-models of different tools, such as WorkParty
and FlowMark. An important result of their paper is the necessity of independent
reference models, which could serve as the evaluation benchmark of meta-models.

The Organizational Structure Facility (OSF) Specification [1] from OMG
presents an organizational meta-model in MOF compliant form, illustrated as a
set of UML diagrams.

The Workflow Reference Model of WfMC [20, 22] provides a common vocab-
ulary for describing a business process and its aspects, functional description of
software components of the workflow management system and interface between
them. The “Reference Model” provides a framework supplying different specifi-
cations of the workflow management systems to be developed within a common
context. The Reference Model also defines the object technology as a possible
target implementation model for workflow systems. A discussion paper of WfMC
about the common object model [21] can be regarded as a proposal for usage of
object-oriented technology on the level of implementation for workflow.

In XML Process Definition Language Specification of WfMC [4], the meta-
model of the process definition, containing the main entities, their relationships
and attributes, was defined. This meta-model could be used for exchange of
process definitions. The textual description of semantics of these entities is also
provided.

In the Workflow Management Facility Specification [2], OMG and WfMC
joined together to define a set of IDL interfaces for introducing of the workflow
technology to the OMG architecture. They defined the interfaces for workflow
execution control, monitoring, and interoperability between workflows. This in-
terface model is actually a UML class diagram and is specified by IDL interfaces.
The specification is actually done on the modelling level (comparing to MOF M1
layer) and can be instantiated to particular objects.

In the work about conceptual modelling of workflows [10], the authors try to
make an effective convergence between workflow management and databases by
means of formalization of specification and providing a language for workflow
applications at the conceptual level.

Karagiannis and Kühn present the meta-modelling concepts and a generic
architecture for the meta-modelling platforms in their paper [26]. This work also
includes three best practise examples from the industry.

The other part of the work, related to the current one, is dealing with the
enterprise process modelling. For example, the work “Toward and Integrated
Framework for Modeling Enterprise Processes” [12] presents the motivation and
concepts of using the Enterprise Process Modelling Language (EPML), which
builds on IDEF, DFDs and EPCs, for modeling the enterprise processes, includ-
ing different aspects of business process management. This specifications in this
visual language can be converted to the Petri net models, and thus, have formal
semantics.

The other area, which is tightly related to the dynamic interaction of aspects
described in Sect. 4, is the area of aspect-oriented programming and aspect-
oriented modelling. The works of Rémi Douence et al. [13, 14] discuss formal
automata-based approaches for aspect-oriented modelling of program executions.
Two general surveys on aspect-oriented analysis and design and on languages
and models [11, 9] serve as a background knowledge in this area.

In this Section, we have enumerated a set of different formalisms for defin-
ing the meta-models and the ontologies for business processes. Since there are
different aspects of the business process management covered by one or the
other mentioned approaches, we have defined a meta-model, which contains the
independent meta-models for different aspects but can also integrate the meta-
models. This meta-model is not only on the conceptual level but also prescribes
the future implementation. Therefore, the meta-model fits to the concept of
the Model-Driven Architecture (MDA), and, consequently, is implemented in a
workflow engine. Since there exists a variety of meta-modelling approaches, we
have defined a general formalism-independent meta-model, which can prescribe
a common exchange format between them. Such an exchange format can be de-
fined using XML Metadata Interchange (XMI), cause the mapping from MOF
to XMI is defined in the OMG specification. The implementation of the dynamic
interaction of aspects proceeds from the ideas of aspect-oriented modelling and
from introducing and adapting these ideas to the business process modelling
domain.

6 Conclusion

In this paper, we outlined the ideas of AMFIBIA, a meta-model for business pro-
cess modelling, which captures not only the aspects, concepts and their relation,
but also the dynamic behaviour and the interaction among the different aspects.
The main justification of yet another ‘ontology’ for business process modelling

is that it covers the dynamics of such systems. Moreover, AMFIBIA is more
ambitious than existing ‘ontologies’, architectures, frameworks or meta-models:

– AMFIBIA shows that, conceptually, the different aspects of business pro-
cesses can be modelled independently of each other and that it is possible
to integrate them via the integral parts.

– AMFBIA is open for additional aspects and is not biased towards any aspect.
– AMFIBIA is independent of any particular modelling formalism and, actu-

ally, defines an interface that can be implemented by most formalisms for
that particular aspect.

The implementation of a prototype workflow-engine based on AMFIBIA
shows that its concepts really work.

Acknowledgement We would like to thank Elżbieta Pielenz and Ranghild van
der Straeten for many discussions on business processes and on Aspect-oriented
Modelling, which eventually resulted in the ideas presented in this paper.

Moreover, we thank the members of the ‘Projektgruppe AMFIBIA’ at the
University of Paderborn for implementing the concepts of AMFIBIA in a one-
year master’s project. During this implementation, we had many discussions
which helped to clarify and refine the concepts of AMFIBIA, and to make it
run. The members of the ‘Projektgruppe AMFIBIA’ are: Achim Heynen, Andrè
Altenau, Christiane Klapdohr, David Schmelter, Dennis Goeken, Elmar Köhler,
Patrick Könemann, and Peter Pietrzyk.

References

1. Organizational Structure Facility (OSF) specification. Technical Report bom/2000-
02-03, Object Management Group, February 2000.

2. Workflow Management Facility specification, v1.2. Technical report, OMG, April
2000.

3. Capability Maturity Model Integration (CMMISM), Version 1.1. Technical Report
CMU/SEI-2002-TR-012, Carnegie Mellon, Software Engineering Institute, March
2002.

4. Workflow Process Definition Interface – XML process definition language. Tech-
nical Report WFMC-TC-1025, Workflow Management Coalition, October 2002.
Version 1.0.

5. Björn Axenath, Ekkart Kindler, and Vladimir Rubin. An open and formalism in-
dependent meta-model for business processes. In E. Kindler and M. Nüttgens, ed-
itors, Workshop on Business Process Reference Models 2005 (BPRM 2005), Satel-
lite event of the third International Conference on Business Process Management,
pages 45–59, September 2005.

6. J. Becker and P. Delfmann, editors. Referenzmodellierung. Physica-Verlag, 2004.
7. Jörg Becker, Michael Rosemann, and Christoph von Uthmann. Guidelines of busi-

ness process modeling. In Business Process Management, Models, Techniques, and
Empirical Studies, pages 30–49, London, UK, 2000. Springer-Verlag.

8. Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Con-
trol and Recovery in Database Systems. Addison-Wesley, 1987.

9. Johan Brichau and Michael Haupt. Survey of aspect-oriented languages and ex-
ecution models. Technical Report AOSD-Europe-VUB-01, AOSD-Europe, May
2005.

10. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual modeling of workflows. In
M. P. Papazoglou, editor, Proceedings of the OOER’95, 14th International Object-
Oriented and Entity-Relationship Modelling Conference, volume 1021, pages 341–
354. Springer-Verlag, 1995.

11. Ruzanna Chitchyan, Awais Rashid, Pete Sawyer, Alessandro Garcia, Mónica Pinto
Alarcon, Jethro Bakker, Bedir Tekinerdogan, and Andrew Jackson Siobhán
Clarke and. Survey of aspect-oriented analysis and design approaches. Techni-
cal Report AOSD-Europe-ULANC-9, AOSD-Europe, May 2005.

12. Nikunj P. Dalal, Manjunath Kamath, William J. Kolarik, and Eswar Sivaraman.
Toward an integrated framework for modeling enterprise processes. Commun.
ACM, 47(3):83–87, 2004.

13. Rémi Douence, Olivier Motelet, and Mario Südholt. A formal definition of cross-
cuts. Lecture Notes in Computer Science, 2192:170–184, 2001.

14. Rémi Douence and Jacques Noyé. Towards a concurrent model of event-based
aspect- oriented programming. In European Interactive Workshop on Aspects in
Software (EIWAS 2005), Brussels, Belgium, 2005.

15. Joerg Evermann and Yair Wand. Towards ontologically based semantics for UML
constructs. In Proceedings of the 20th International Conference on Conceptual
Modeling, pages 354–367. Springer-Verlag, 2001.

16. P. Fettke and P. Loos. Referenzmodelle für den Handel. HMD - Praxis
Wirtschaftsinform., 235, 2004.

17. P. Fettke and P. Loos. Der Beitrag der Referenzmodellierung zum Business Engi-
neering. HMD - Praxis der Wirtschaftsinformatik, (241):18–26, 2005.

18. Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

19. David Harel and Bernhard Rumpe. Modeling languages: Syntax, semantics and all
that stuff. Technical report, The Weizmann Institute of Science, Rehovot, Israel,
MCS00-16, 2000.

20. David Hollingsworth. The Workflow Reference Model. Technical Report TC00-
1003, The Workflow Management Coalition (WfMC), January 1995.

21. David Hollingsworth. A common object model discussion paper. Technical Report
WfMC-TC-1023, WfMC, March 1999.

22. David Hollingsworth. The Workflow Reference Model: 10 years on. Technical
report, WfMC, 2004.

23. International Standard ISO/IEC. Software and systems engineering – High-level
Petri nets, part 2: Transfer format. Technical Report 15909-2. Working Draft
Version 0.9.0, ISO/IEC, June 2005.

24. Stefan Jablonski, Markus Böhm, and Wolfgang Schulze. Workflow-Management
Entwicklung von Anwendungen und Systemen. dpunkt.verlag, 1997.

25. Steffen Jablonski. Workflow management as an integration platform. In Proc.
of 2nd Int. Coll. on Petri Net Technologies for Modelling Communication Based
Systems, pages 135–138, 2001.

26. D. Karagiannis and H. Kühn. Metamodeling platforms. In K. Bauknecht, A.Min
Tjoa, and G. Quirchmayer, editors, Proceedings of the Third International Confer-
ence EC-Web, volume 2455 of LNCS, page 182. Springer-Verlag, September 2002.

27. E. Kindler. Using the Petri Net Markup Language for Exchanging Busi-
ness Processes? Potential and Limitations. In M. Nüttgens and J. Mendling,

editors, XML4BPM 2004, Proceedings of the 1st GI Workshop XML4BPM
– XML Interchange Formats for Business Process Management at 7th GI
Conference Modellierung 2004, Marburg Germany, March 2004, pages 43–
60, http://wi.wu-wien.ac.at/˜mendling/XML4BPM/xml4bpm-2004-proceedings-
pnml.pdf, March 2004.

28. J.C. Laprie. Dependability: Basic Concepts and Terminology in English, French,
German, Italian and Japanese, volume 5 of Dependable Computing and Fault Tol-
erant Systems. Springer, 1992.

29. Frank Leymann and Dieter Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

30. Meta Object Facility (MOF) specification. Technical report, Object Management
Group, April 2002.

31. M. Nüttgens and J. Mendling. XML4BPM 2004, proceedings of the 1st
GI workshop XML4BPM – XML interchange formats for business process
management at 7th GI conference modellierung 2004, marburg germany,
march 2004. http://wi.wu-wien.ac.at/˜mendling/XML4BPM/xml4bpm-2004-
proceedings-pnml.pdf, March 2004.

32. Woody Pidcock. What are the differences between a vocabulary, a taxon-
omy, a thesaurus, an ontology, and a meta-model?, 2004. Web Page URL:
http://www.metamodel.com/article.php?story=-20030115211223271.

33. Jan H.P. Eloff Reinhardt A. Botha. A security interpretation of the Workflow
Reference Model. In Information Security - from Small systems to management of
secure infrastructures, volume 2, pages 43–51, August 1998.

34. Michael Rosemann and Michael zur Muehlen. Evaluation of workflow management
systems - a meta model approach. In Keng Siau, Yair Wand, and Jeffrey Parsons,
editors, 2nd CAiSE/IFIP 8.1 International Workshop on Evaluation of Modeling
Methods in Systems Analysis and Design (EMMSAD ‘97), Barcelona, 1997.

35. A.W. Scheer. Architecture of integrated information systems - bases for company
modeling, 2nd edition. Springer, Berlin, 1992.

36. A.W. Scheer. Wirtschaftsinformatik. Studienausgabe. Referenzmodelle für indus-
trielle Geschäftsprozesse. Springer, Heidelberg, 1997.

37. Wil van der Aalst and Kees van Hee. Workflow Management: Models, Methods,
and Systems. Cooperative Information Systems. The MIT Press, 2002.

38. Michael Weber and Ekkart Kindler. The Petri Net Markup Language, pages 124–
144. LNCS 2472. Springer, 2003.

39. Mathias Weske, Thomas Goesmann, Roland Holten, and Rüdiger Striemer. A
reference model for workflow application development processes. In WACC ’99:
Proceedings of the international joint conference on Work activities coordination
and collaboration, pages 1–10, New York, NY, USA, 1999. ACM Press.

40. Workflow Management Coalition: Workflow security considerations - white pa-
per. Technical Report WFMC-TC-1019, The Workflow Management Coalition
(WfMC), February 1998.

41. Workflow Management Coalition: Terminology & glossary. Technical Report
WFMC-TC-1011, The Workflow Management Coalition (WfMC), February 1999.

42. Wenming Wu and Yisheng Dong. Metamodeling-based Semantic Web languages.
In EC-Web, pages 339–347, 2003.

43. Michael zur Muehlen. Organizational management in workflow applications. In-
formation Technology and Management, 5(3):271–291, 2004.

