The DIVA optimization functions

Rune Fisker, Version 1.0, September 7, 2000
As a part of the DIVA framework is implemented a number of optimization functions. These functions use the VisSDK matrix classes and functions combined with the DIVA matrix classes. Some of the VisSDK matrix functions uses CLAPACK, so it mandatory to install CLAPACK under VisSDK to use all the optimization functions, see the CLAPACK instruction at the DIVA homepage.

The optimization framework is build upon two groups of classes. One group contains the optimization functions. The other groups contain the function to optimized. The organization of the following sections is:

· Base classes - describe the two base classes.

· The optimization methods - describe each optimization method and corresponding class.

· Examples - code examples of the use.

It is without the scope of this document to give a detail description of all member functions and variables in the classes, default parameter setting etc. For this kind of details we refer to the code and the comments herein. We apologize for this lack.

Base classes

The optimization functions are based on two base classes.

CDOptimizeFuncBase:

This is the abstract base class for the actual function to optimize. To optimize a function f(x) with respect to x, this function should be inserted in a derived class and evaluated when the member function double EvalFunction(CDVectorApp& vX) is called. To optimize a function you should always create a class derived from CDOptimizeFuncBase, where EvalFunction(...) is overloaded by the function f(x), which is to be optimized (examples are given below). Note that the function is always minimized.

In classes derived from the base classes, it is possible to have other classes as members, which is a fundamental request if the function, which should be optimized, is a part of another class. In general the derived class gives an easy way of handling function, which relays on other data than just the actual parameters x, which are to be optimized.

The member function in CDOptimizeFuncBase are:

virtual double EvalFunction(CDVectorApp& vX) = 0

This is the function, which actually evaluates the function f(x) given the parameters x (equivalent to vX in the actual function call). You should always overload this function in a derived class.

virtual void EvalGradient(CDVectorApp& vX, CDVectorApp& vGradient)

This function evaluates the analytic gradient at postion vX. This function should only be overloaded if an analytic gradient exists.

virtual void Update(CDVectorApp& vX)

This function can be overloaded if any other updates should be done during the optimization, e.g. updating the visualization of the optimization.

	Parameter
	Description

	VX
	Vector of parameters to be optimized, i.e. x

	VGradient
	Vector of the analytic gradients, i.e. df(x)/dx

CDOptimizeBase

This is the abstract base class for the functions, which actually performs the optimization. The different optimization methods are all derived from this class. The user should just call one of the functions Minimize(..) or MinimizeNum(..) to optimize the function specified in the class derived from CDOptimizeFuncBase. Even though non-gradient based methods are used, it might be necessary to call MinimizeNum to set relevant parameters, if these parameters have not been set by a call to SetMethodPar. The mentioned functions are defined by:

ETermCode Minimize(CDVectorApp& vX,CDOptimizeFuncBase* pFuncEvalBase) = 0;

The function which minimizes f(x) using analytic gradients (if gradient based methods are used). The function returns a termination code (see below for definition), i.e. the reason for stopping the optimization.

ETermCode MinimizeNum(CDVectorApp& vX,CDOptimizeFuncBase* pFuncEvalBase, CDVectorApp& vMethodPar)
The function which minimizes f(x) using numerical gradients (if gradient based methods are used). The function returns a termination code (see below for definition), i.e. the reason for stopping the optimization.

void SetMethodPar(const CDVectorApp& vMethodPar)

Sets the method parameters.

	Parameter
	Description

	vX
	Vector of Initial value of the parameters to be optimized, i.e. x_0. vX holds the result of the optimization as well.

	pFuncEvalBase
	Pointer to a class derived from CDOptimizeFuncBase, which contains the function f(x) to minimize.

	vMethodPar
	Vector of parameters, which are used by the actual minimization method, e.g. the step size for numerical gradient estimation.

Stop criteria

The implemented stop criteria are shown in the table bellow. The enabled stop criteria are controlled by the public variable m_iStopCriteria and the parameters corresponding to this criterion (third column). In general etermMaxIterations and/or etermMaxFuncEval should always be enabled. For the gradient based methods etermLineSearch should be enabled as well.

	Termination code (ETermCode)
	Description
	Corresponding public par./func.

	etermGradTol
	Abs max gradient defined as max_i(abs(g[i]*xplus[i] / f(xplus))) < m_dGradTol

	m_dGradTol

	etermStepTol
	Step tolerance defined as max_i(abs((xplus[i] - x[i])/xplus[i])) < m_dStepTol
	m_dStepTol

	etermLineSearch
	Termination from line search
	-

	etermConsecMaxStepMax
	Max number of conseccutive past steps whose scaled length was equal to maxstep
	m_nConsecMaxStepMax

	etermDeltaFuncVal
	Change in function value defined as (abs(f (x)- f(xplus)) < m_dDeltaFuncVal)
	m_dDeltaFuncVal

	etermMaxFuncEval
	Max number of function evaluations
	MaxFuncEval()

SetMaxFuncEval(…)

	etermMaxIterations
	Max number of iterations
	MaxIterations()

SetMaxIterations(…)

Logged variables

There are a large number of other member public variables, which define, measure and save relevant features and values during the optimization, see table bellow. Note that the logging of the last three parameters is enabled by m_fLogFuncValues. If m_vNFuncEval[4] = 12 then m_vFuncVal[4] and m_vvFuncParm[4] hold the function value, f(x), and parameters, x, after 12 function evaluations.

	Parameter (public members)
	Description

	int m_nIterations
	Number of iterations

	int m_nFuncEval
	Number of function evaluations

	int m_nGradEval
	Number of gradient evaluations

	bool m_fLogFuncValues
	Flag, which determines whether the parameters bellow should be logged

	CDVectorApp m_vNFuncEval
	Vector containing the number of function evaluations

	CDVectorApp m_vFuncVal
	Vector containing the function value, which correspond to the number of function evaluations in m_vNFuncEval

	std::vector<CDVectorApp> m_vvFuncParm
	Vector of vectors containing the parameters value, which correspond to the number of function evaluations in m_vNFuncEval

The optimization methods

The following optimization methods are implemented at the moment. All the classes are derived from the CDOptimizeFuncBase class:

Steepest Descent (class CDOptimizeCG)

This method performs minimization using the gradient based method steepest descent (see e.g. R. Fletcher (1987) or Dennis (1983)) and soft line search (Dennis 1983).

For Steepest Descent the vMethodPar is the step size used to estimate the numerical gradient.

Conjugrate Gradient (class CDOptimizeSD)

This method performs minimization using the gradient based method Conjugate Gradient with optional resetting (see e.g. R. Fletcher (1987) or Dennis (1983)) and soft line search (Dennis 1983).

For Conjugate Gradient the vMethodPar is the step size used to estimate the numerical gradient. Resetting is enabled by SetResetting(…) and is performed after each n iterations, where n is set by SetResetIteNumber(…).

BFGS (class CDOptimizeBFGS)

This method performs minimization using the quasi-Newton method BFGS (see e.g. R. Fletcher (1987) or Dennis (1983)) and soft line search (Dennis 1983).

For BFGS the vMethodPar is the step size used to estimate the numerical gradient.

Simulated Annealing (class CDOptimizeSA)

This method performs minimization using the stochastic method Simulated Annealing (Kirkpatrick and Schnabel 1983, Cerny 1985). Simulated annealing is implemented with the Metroplis algorithm (Metropolis et al. 1953), random walk and the temperature scheme T_t+1 = k T_t (Kirkpatrick and Schnabel 1983).

The generation of a new sample is performed by the random walk (noise added to the existing value), where the vMethodPar parameter defines the standard deviation for the corresponding parameter in vX. The start temperature and the k in the temperature scheme is set by SetStartTemperature(…) and SetDecFac(…), respectively. It is also possible to control the seed to the random generator by SetRandomSeed(…). The options are no seed, random seed or constant seed.

Pattern Search (class CDOptimizePS)

This method performs minimization using the non-gradient based deterministic method Pattern Search (Hooke and Jeeves, 1961). This simple but often efficient method evaluate f(x) individually for each parameter equal to x_i = x_i + delta_i and x_i = x_i - delta_i. If one of these values is lower than the original f(x), the corresponding x_i delta_i is accepted. This continues until no changes are accepted for any of the parameters x_i. Then delta is updated by delta_t+1 = delta_t/2. This continues until the stop criteria is fulfilled.

For Pattern Search the vMethodPar defines the initial step size, delta_0, for the corresponding parameters in vX.

Code Examples

The following two section give code examples of the use of the optimization functions.

Optimization of the Rosenbrock function

To optimize the very popular optimization test function Rosenbrock (see e.g. R. Fletcher (1987) or Dennis (1983)), the following class, derived from CDOptimizeFuncBase, is defined, see also the header file DOptimizeRosenbrock.h :

class CDOptimizeRosenbrock: public CDOptimizeFuncBase

{

// evaluates the function value at postion vX

double EvalFunction(CDVectorApp& vX);

// Gradient of Rosenbrock test function

void EvalGradient(CDVectorApp& vX, CDVectorApp& vGradient);

};

// Rosenbrock test function (Function to be minimized)

inline double CDOptimizeRosenbrock::EvalFunction(CDVectorApp& vX)

{

return (100.0*pow(vX[1] - vX[0]*vX[0],2)+pow(1.0 - vX[0],2)); // Rosenbrock's function

}

// Gradient of Rosenbrock test function

inline void CDOptimizeRosenbrock::EvalGradient(CDVectorApp& vX, CDVectorApp& vGradient)

{

// Gradient of the Rosenbrock's function

vGradient[0] = -400.0*vX[0]*(vX[1] - vX[0]*vX[0]) - 2.0*(1.0 - vX[0]);

vGradient[1] = 200.0*(vX[1] - vX[0]*vX[0]);

}

The Rosenbrock function can then be optimized using BFGS by the following lines:

// generate an instance of the BFGS method

CDOptimizeBFGS optBFGS;

// generate an instance of the Rosenbrock class

CDOptimizeRosenbrock optfuncRosenbrock

// initial values

CDVectorApp vX(2);

vX[0] = -1.2;

vX[1] = 1;

// set stop criterion

m_iStopCriteria = etermMaxFuncEval | etermMaxIterations | etermLineSearch | etermDeltaFuncVal;

m_dDeltaFuncVal = 0.0001;

SetMaxIterations(300);

SetMaxFuncEval(300);

// optimize it

int iStop = optBFGS.Minimiz(vX, &optfuncRosenbrock);

The output from the optimization method should be vX[0] = 1 and vX[1] = 1.

Optimization of a general function using numerical gradients

Assume the non-linear function beta = Func(x,alpha) is to be optimized with respect to x given N corresponding pairs of (alpha,beta), i.e. (alpha_1,beta_1),...,(alpha_N,beta_N). Assume Func(alpha) and x is members of the class CFunc, and it is impossible to evaluate an analytic gradient, so it is necessary to use numerical gradients. The actual criteria, which is to be minimized, is the Least Square Error, i.e. sum_i (beta_i - func(x,alpha_i))^2. During the optimization the visualization of the function should be updated on the screen, by call to the View class function Invalidate().

The CFunc class is defined by:

Class CFunc

{

public:

...

// evaluate the function Func(x,alpha), where x is a member of the class

double Func(const double dAlpha);

// set the attribute x

SetX(const double dX);

....

private:

....

// the x attribute

double m_dX;

....

}

The class derived from CDOptimizeFuncBase should the be defined as:

class CDOptimizeFunc: public CDOptimizeFuncBase

{

// constructor/destructor

CDOptimizeFunc(CFunc* pfunc, CScrollView* m_pview, CDVectorApp& vAlpha, CDVectorApp& vBeta);

CDOptimizeFunc() {}

// evaluates the function value at postion vX

double EvalFunction(CDVectorApp& vX);

// function used to update e.g. interface

virtual void Update(CDVectorApp& vX);

private:

// pointer to the actual CFunc class

CFunc* m_pfunc;

// pointer to the view class

CScrollView* m_pview;

// alpha coordinates

CDVectorApp m_vAlpha;

// beta coordinates

CDVectorApp m_vBeta;

};

// constructor

CDOptimizeFunc::CDOptimizeFunc (CFunc* pfunc, CScrollView* pview, CDVectorApp& vAlpha, CDVectorApp& vBeta)

{

m_pfunc = pfunc;

m_pview = pview;

m_vAlpha.Resize(vAlpha.Length()):

m_vAlpha = vAlpha;

m_vBeta.Resize(vBeta.Length()):

m_vBeta = vBeta;

}

// evaluates the function value at postion vX

double CDOptimizeFunc::EvalFunction(CDVectorApp& vX);

{

// set x

m_pfunc->SetX(vX[0]);

// calculate least square error

double dLSE = 0;

for (int i=0; i < m_vAlpha.Length(): i++)

{

double dBeta = m_pfunc->Func(m_vAlpha[i]);

dLSE += (m_vBeta[i] - dBeta)* (m_vBeta[i] - dBeta);

}

return dLSE;

}

// function used to update e.g. interface

void CDOptimizeFunc:: Update(CDVectorApp& vX)

{

// set x

m_pfunc->SetX(vX[0]);

// invalidate display

m_pview->Invalidate();

}

Assume the function is to be minimized by conjugate gradient from a function Minimize() in the CFuncView View class:

void CFuncView::Minimize()

{

// get the alpha and beta values

CDVectorApp vAlpha,vBeta;

GetMeasurements(vAlpha,vBeta) // measures N values of alpha and beta

// generate an instance of the conjugate gradients method

CDOptimizeCG optCG;

// generate an instance of CDOptimizeFunc

// (CFunc m_pfunc is assumed to be a member of the view class)

CDOptimizeFunc optfuncFunc(m_pfunc, this, vAlpha, vBeta)

// steep size for numerical gradinet

CDVector vStepSize(1);

vStepSize = 0.25;

// initial values

CDVectorApp vX(1);

vX[0] = 23;

// optimize it using the default stop criteria

int iStop = optCG.MinimizeNum(vX, &optfuncFunc, vStepSize);

}

References

Dennis and Schnabel, “Numerical Methods for Unconstrained Optimization and Nonlinear Equations”, 1983, Prentice-Hall

Cerny, V., “Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm”, Jour. of Optimization Theory and Applications, 1985, vol. 45, pp. 41-45

Fletcher, R., “Practical Methods of Optimization”, John Wiley & Sons, 1987

Hooke, R. and Jeeves, T. A., “Direct search: solution of numerical and statistical problems”, Jour. Assoc. Comput., 1961, vol. 8, pp. 212-229

Kirkpatrick, S. and Gellant, C. D. and Vecchi, M. P., “Optimization by simulated annealing”, Science, 1983, vol. 220, pp.671-680

Metropolis, N. and Rosenbluth, A. W. and Rosenbluth, M. N. and Teller A. H. and Teller E., “Equations of state calculations by fast computing machines”, Jour. Chemical Physics, 1953, 21, 1087-1092

