
Compositionality: Ontology and Mereology of Domains⋆

Some Clarifying Observations in the Context of Software Engineering

Dines Bjørner1 and Asger Eir2

1 DTU Informatics, Techn. Univ. of Denmark, DK-2800 Kgs. Lyngby, Denmark⋆⋆

2 Maconomy, Vordingborggade 18-22, DK–2100 Copenhagen Ø, Denmark⋆⋆⋆

Summary. In this discursive paper we discuss compositionality of (i) simple enti-
ties, (ii) operations, (iii) events and (iv) behaviours. These four concepts, (i)–(iv),
together define a concept of entities. We view entities as “things” characterised by
properties. We shall review some such properties. Mereology, the study of part-
whole relations is then applied to a study of composite entities. We then speculate
on compositionality of simple entities, operations, events and behaviours in the light
of their mereologies. entities. We end the paper with some speculations on the rôle
of Galois connections in the study of compositionality and domain mereology.

1 A Prologue Example

We begin with an example: an informal and formal description of fragments
of a domain of transportation. The purpose of such an example is to attach
this example to our discussion of entities, and to enlarge the example with
further examples to support this discussion of entities, and hence of mereology
and ontology. The formalisation of the example narratives is expressed in the
RAISE Specification Language, RSL [30, 32, 6, 7, 8, 31, 29, 13] — but could as
well have been expressed in Alloy, ASM, Event B, VDM or Z [43, 58, 59, 1,
18, 15, 16, 26, 25, 64, 65, 68, 36, 35].

Narrative: (0.) There are links and there are hubs, (1.) Links and hubs have
unique identifiers. (2.) Transport net consists of links and hubs. We can either
model nets as sorts and then observe links and hubs from nets:

⋆ Invited paper for the Willem-Paul de Roever Festschrift, July 2008; eds.: Martin
Steffen, Dennis Dams and Ulrich Hannemann. This paper is a full draft version of
the paper. It should appear in an pre-publication hand-out at that Festschrift. A
final version is expected to appear in a Springer Festschrift volume later in 2008.
It is hoped that that published paper will be a shortened version of the present.

⋆⋆ Home address: Fredsvej 11, DK-2840 Holte, Denmark. Professor Emeritus. E-
mail: bjorner@gmail.com

⋆⋆⋆ E-mail: aei@maconomy.dk, asger@eir-home.dk, URL: www.eir-home.dk

2 Dines Bjørner and Asger Eir

type
N, L, H,

value
obs Ls: N → L-set,
obs Hs: N → H-set

or

type
L, H,
N = L-set × H-set

(3.) Links connect exactly two distinct hubs. (4.) Hubs are connected to one or
more distinct links. (5.) From a link one can observe the two unique identifiers
of the hubs to which it is connected. (6.) From a hub one can observe the set
of one or more unique identifiers of the links to which it is connected. (7.)
Observed unique link (hub) identifiers are indeed identifiers of links (hubs) of
the net in which the observation takes place.

Formalisation:

type
0.−1. L, LI, H, HI,
2. N = L-set × H-set
axiom
3.−4. ∀ (ls,hs):N • card ls ≥ 1 ∧ card hs ≥ 2
value
1. obs LI: L → LI, obs HI: H → HI,
5. obs HIs: L → HI-set axiom ∀ l:L • card obs HIs(l)=2,
6. obs LIs: H → LI-set axiom ∀ h:H • card obs LIs(l)≥1
axiom
7. ∀ (ls,hs):N •

∀ l:L • l ∈ ls ⇒
∀ hi:HI • hi ∈ obs HIs(l) ⇒ ∃ h:H • hi=obs HI(h)∧h ∈ hs

∧ ∀ h:H • h ∈ hs ⇒
∀ li:LI • li ∈ obs LIs(l) ⇒ ∃ l:L • li=obs LI(k)∧l ∈ ls

Narrative: (8.) There are vehicles (private cars, taxis, buses, trucks). (9.)
Vehicles, when “on the net”, i.e., “in the traffic” (see further on), have po-
sitions. Vehicle positions are (10.) either at a hub, in which case we could
speak of the hub identifier as being a suitable designation of its location, (11.)
or along a link, in which case we could speak of of a quadruple of a (from)
hub identifier, a(n along) link identifier, a real (a fraction) properly between
0 and 1 as designating a relative displacement “down” the link, and a (to)
hub identifier, as being a suitable designation of its location, (12.) Time is
a discrete, dense well-ordered set of time points and time points are further
undefined. (13.) Traffic can be thought of as a continuous function from time
to vehicle positions. We augment our model of traffic with the net “on which
it runs”!

Formalisation:

type
8. V

Compositionality: Ontology and Mereology of Domains 3

9. VPos == HubPos | LnkPos
10. HubPos = HP(hi:HI)
11. LnkPos = LP(fhi:HI,li:LI,f:Real,thi:HI)
12. Time
13. TRF = (Time → (V →m VPos)) × N

Closing Remarks: We omit treatment here of traffic well-formedness: that
time changes and vehicle movement occurs monotonically; that there are no
“ghost” vehicles (vehicles “disappear” only to “reappear”), that two or more
vehicles “one right after the other” do not “suddenly” change relative positions
while continuing to move in the same direction, etc.

2 Introduction

The narrow context of this essay is that of domain engineering: the principles,
techniques and tools for describing domains, as they are, with no consideration
of software, hence also with no consideration of requirements. The example of
Sect. 1 describes (narrates and formalises) some aspects of a domain.

The broader context of this essay is that of formal software engineering: the
phase, stage and stepwise development of software, starting with Domain de-
scriptions, evolving into Requirements prescriptions and ending with Software
design in such a way that D,S |= R, that is: software can be proven correct
with respect to requirements with the proofs and the correctness relying on
the domain as described.

2.1 Domain Engineering

The Domain Engineering Dogma: Before software be designed, we must
understand its requirements. Before requirements can be expressed, we must
understand the application domain.

The Software Development Triptych: Thus, we must first describe the
domain as it is. Then we can prescribe the requirements as we would like to
see them implemented in software. First then can we specify the design of
that software.

Domain Descriptions: A domain description specifies the domain as it
is. (The example traffic thus allows vehicles to crash.) A domain description
does not hint at requirements let alone software to be designed. A domain
description specifies observable domain phenomena and concepts derived from
these.

Example: a vehicle is a phenomenon; a vehicle position is also a phenomenon,
but the way in which we suggest to model a position is a concept; similarly
for traffic

4 Dines Bjørner and Asger Eir

A domain description does not describe human sentiments (Example: the
bus ride is beautiful), opinions and thoughts (Example: the bus ride is a bit
too expensive), knowledge and belief (Example: I know of more beautiful
rides and I believe there are cheaper bus fares), promise and commitment
(Example: I promise to take you on a more beautiful ride one day) or other
such sentential, modal structures.

A domain description primarily specifies semantic entities of the domain
intrinsics (Example: the net, links and hubs are semantics quantities), se-
mantic entities of support technologies already “in” the domain, semantic
entities of management and organisation domain entities, syntactic and se-
mantic of domain rules and regulations, syntactic and semantic of domain
scripts (Example: bus time tables respectively the bus traffic) and seman-
tic aspects of human domain behaviour.

The domain description, to us, is (best) expressed when both informally
narrated and formally specified. A problem, therefore, is: can we formalise
all the observable phenomena and concepts derived from these? If they are
observable or derived, we should be able to formalise. But computing science
may not have developed all the necessary formal description tools. We shall
comment on that problem as we go along.

2.2 Compositionality

We shall view compositionality “in isolation”! That is, not as in the conven-
tional literature where the principle of compositionality is the principle
that the meaning of a complex expression is determined by the meanings of its
constituent expressions and the rules used to combine them. We shall look at
not only composite simple entities but also composite operations, events and
behaviours in isolation from their meaning but shall then apply the principle
of compositionality such that the meaning of a composite operation [event,
behaviour] is determined by the meanings of its constituent operations [event,
behaviours] and the rules used for combining these. We shall, in this paper
only go halfway towards this goal: we look only at possible rules used to
combine simple entities, functions, events and behaviours.

For simple entities we can say the following about compositionality. A key
idea seems to be that compositionality requires the existence of a homomor-
phism between the entities of a universe A and the entities in some other
universe B.

Let us think of the entities of one system, A, as a set, U , upon which a num-
ber of operations are defined. This gives us an algebra A = (U ,Fν)ν∈Γ where
U is the set of (simple and complex) entities and every Fν is an operation on A
with a fixed arity. The algebra A is interpreted through a meaning-assignment
M; a function from U to V , the set of available meanings for the entities of U .
Now consider Fν ; a k-ary syntactic operation on A. M is Fν-compositional
just in case there is a k-ary function G on V such that whenever Fν(u1, . . . , uk)
is defined

Compositionality: Ontology and Mereology of Domains 5

Fν(u1, . . . , uk)) = G(M(u1), . . . ,M(uk).

In denotational semantics we take this homomorphism for granted, while ap-
plying to, as we shall call them, syntactic terms of entities. We shall, in this
paper, speculate on compositionality of non-simple entities. That is, composi-
tionality of operations, events and behaviours; that is, of interpretations over
non-simple entities (as well as over simple entities).

2.3 Ontology

By an ontology we shall understand an explicit, formal specification of a shared
conceptualisation3.

We shall claim that domain engineering, as treated in [6, 9, 11], amounts
to principles, techniques and tools for formal specification of shared concep-
tualisations. The conceptualisation is of a domain, typically a business, an
industry or a service domain.

One thing is to describe a domain, that is, to present an ontology for
that domain. Another thing is for the description to be anchored around a
description ontology: a set of principles, techniques and tools for structuring
descriptions. In a sense we could refer to this latter as a meta-ontology, but
we shall avoid the prefix ‘meta-’ and instead understand it so. The conceptu-
alisation is of the domain of software engineering methodology, especially of
how to describe domains.

2.4 Mereology

Mereology is the theory of parthood relations: of the relations of part to whole
and the relations of part to part within a whole.

The issue is not simply whether an entity is a proper part, pp, of another
part, pω (for example, “the whole”), but also whether a part, pι, which is a
proper part of pp can also be a part of another part, pξ which is not a part
of pp, etcetera. To straighten out such issues, axiom systems for mereology
(part/whole relations) have been proposed [46, 19, 20]. See Appendix A.1.

The term mereology seems to have been first used in the sense we are using
it by the Polish mathematical logician Stanis law Leśniewski [49, 66].

The concept of Calculus of Individuals [47, 20, Leonard & Goodman (1940)
and Clarke (1981)] is related to that of Mereology. See Appendix A.2.

We shall return to the issue of mereology much more in this paper. In fact,
we shall outline “precisely” what our entity mereologies are.

2.5 Paper Outline

The paper is structured as follows: after Sect. 2’s brief characteristics of do-
main engineering, compositionality, ontology and mereology, Sect. 3 overviews

3 http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

6 Dines Bjørner and Asger Eir

what we shall call an ontological aspect of description structures, namely that
of entities (having properties). Sections 4–7 will then study (i) simple, (ii) op-
eration, (iii) event and (iv) behaviour entities in more detail, both atomic and
composite. For the composite entities we shall then speculate on their mereol-
ogy. Section 8 concludes our study of some mereological aspects of composite
entities by relating these to definitions and axioms of proposed axiom sys-
tems for mereology, cf. Appendix A. Section 9 takes a brief look at rôles that
the concept of Galois Connections may have in connection with composite
entities.

3 An Ontology Aspect of Description Structures

This section provides a brief summary of Sects. 4–7.
The choice of analysing a concept of compositionality from the point of

view of simple entities, operations, events and behaviours reflects an ontologi-
cal choice, that is a choice of how we wish to structure our study of conceptions
of reality and the nature of being.

We shall take the view that an ontology for the domain of descriptions
evolves around the concepts of entities inseparably from their properties. More
concretely, “our” ontology consists of entities of the four kinds of specification
types: simple entities, operations, events and behaviours. One set of properties
is that of an entity being ‘simple’, being ‘an operation’ (or function), being
‘an event’ or being ‘a behaviour’. We shall later introduce further categories
of entity properties.

3.1 Simple Entities4

In a rather concrete, “mechanistic” sense, we understand simple entities as
follows: simple entities have properties which we model as types and values.
When a simple entity is concretely represented, “inside” a computer, it is
usually implemented in the form of data.

By a state, σ:Σ, we shall understand a designated set of entities.
Entities are the target of operations: function being applied to entities and

resulting in entities.
In Sect. 4 we shall develop this view further.

Examples: The nets, links, hubs, vehicles and vehicle positions of our guiding
example are simple entities

Simple domain entities are either atomic or composite. Composite entities are
here thought of (i.e., modelled as) finite or infinite sets of (simple) entities:

4 The term ‘simple entity’ is chosen in contrast to the (‘complex’) function, event
and behaviour entities. We shall otherwise not use the term ‘complex’ as it has
no relation to composition, but may be confused with it.

Compositionality: Ontology and Mereology of Domains 7

{e1,e2,. . . ,en}, finite Cartesians (i.e., groupings [records, structures] of (sim-
ple) entities): (e1,e2,. . . ,en), finite or infinite lists (i.e., ordered sequences of
(simple) entities): 〈e1,e2,. . . ,en〉, maps (i.e., finite associations of (simple) enti-
ties to (simple) entities: [ed1

7→er1
,ed2

7→er2
,. . . ,edn

7→ern
], and functions (from

(simple) entities to (simple) entities): λv : E(v).5

3.2 Operations

To us, an operation (synonym for function) is something which when applied
to an entity or an attribute6 yields an entity or an attribute.

If an operation op argument and the resulting entity qualify as states
(σ:Σ), then we have a state-changing action: op: [. . .×]Σ→Σ.

If an operation argument entity qualifies as a state and if the resulting
entity can be thought of as a pair of which (exactly) one element qualifies as
a state, then we have a value yielding action with a, perhaps, beneficial side
effect: op: [. . .×]Σ→(Σ×VAL).

If the operation argument does not qualify as a state then we have a value
yielding function with no side effect on the state.

Since entities have types we can talk of the signature of an operation as
consisting of the name of the operation, the structure of types of its argument
entities, and the type of the resulting entities. We gave two such signatures (for
operation op) above. (The [. . .×] indicate that there could be other arguments
than the explicitly named state entity Σ.)

Example: The unique identifier observer functions of our guiding example
are operations

They apply to entities and yields entities or attributes: obs Ls:N→L-set and
obs Hs:N→H-set yield entities and obs LI:L→LI and obs HI:H→HI yield at-
tributes.

“First Class” Entities: Before closing this section, Sect. 3.2, we shall “lift”
operations, hence actions and functions to be first class entities!

3.3 Events

In [45, Lamport] events are the same as executed atomic actions. We shall not
really argue with that assumption. In [45, Lamport] events are of interest only
in connection with the concept of processes (for which we shall use the term
‘behaviours’). We shall certainly follow that assumption. We wish to reserve
the term ‘event’ for such actions which (i) are either somehow shared between
two or more behaviours, (ii) or ‘occur” in just one behaviour. We assume

5 Note: The decorated es in set, Cartesian, list and map enumerations stand for
actual entities whereas the v in λv : E(v) is a syntactic variable and E(v) stand
for a syntactic expression with a free variable v.

6 See Sect. 4.1 for distinction between entity and attribute

8 Dines Bjørner and Asger Eir

an “external”, further undefined behaviour. For both of these two cases we
need a way of “labelling” events. We do so by labelling, βℓi, behaviours, βi,
that is, ascribing names to behaviours. Let the eχternal behaviour have a
distinguished, “own” label (e.g., βχℓ). Now we can label an event by the set
of labels of the processes “in” which the event occur. That is, with either
two or more labels, or just one. When the external behaviour label βχℓ is
in the set then it shall mean that the event either “originates” outside the
behaviours of the other labels, or is “directed” at all those behaviours. We
do not, however, wish to impose any direction! Here we wish to remind the
reader that “our” behaviours take place “in the domain”, that is, they are
not necessarily those of computing processes, unless, of course, the domain
is, or (“strongly”) includes that of computing; and “in the domain” we can
always speak “globally”, that is: we may postulate properties that may not
be computable or even precisely observable, that is: two time stamps may be
different even though they are of two actions or events that actually did or do
take place simultaneously.

Thus: we are not bothered by clocks, that is, we do not enforce a global
clock; we do not have to sort out ordering problems of events, but can leave
that to a later analysis of the described domain, recommendably along the
lines of [45, Lamport].

Time and Time Stamps: Time is some dense set of time points.
A time stamp is just a time designator, t. Two time stamps are consecutive

if they differ by some infinitesimal time difference, tδ. We shall assume the
simplifying notion of a “global” clock. For the kind of distributed systems
that are treated in [45, Lamport] this may not be acceptable, but for a any
actual domain that is not subject to Einsteinian relativity, and most are, it
will be OK. Once we get to implementation in terms of actual systems possibly
governed by erroneously set clocks one shall have to apply for example [45,
Lamport]’s treatment.

Definition: Event: To us, an event, E : {(βℓ1, σ1, P1, σ′

1
, τ1), (βℓ2, σ2, P2,

σ′

2, τ2), . . . , (βℓn, σn, Pn, σ′

n, τn)} involves a set of behaviours, βi, and is
expressed in terms of a set of event designators, quintuplets containing:

⋆1 a label βℓi,
⋆2 a before state σi;
⋆3 a predicate Pi;
⋆4 an after state σ′

i;
◦ such that Pi(σi, σ

′

i)
◦ but where it may be the case that σi = σ′

i;
⋆5 and a time stamp τi

◦ which is either a time ti
◦ or a time interval [t′i, t

′′

i]
∗ such that t′′i − t′i = τδi

> 0
∗ but where τδi

is otherwise considered “small”

Compositionality: Ontology and Mereology of Domains 9

An event, E, may change one or more behaviour states, selectively, or may
not — in which latter case σi = σ′

i for some i.
Thus we do not consider the time(s) when expressing conditions Pi.

Definition: Same Event: We assume two or more distinct behaviours β1,
β2, . . . , βn. Two or more events E1i

, E2i
and Eni

are said to reflect, i.e., to
be the same event iff their models, as suggested above, are ‘identical’ modulo
predicates7 and time stamps, iff these time stamps differ at most “insignifi-
cantly”, a decision made by the domain describer8, and iff this model involves
the label sets βℓ1, βℓ2, . . . , βℓn for behaviours β1, β2, . . . , βn

This means that any one event which is assumed to be the same and thus
to occur more-or-less simultaneously in several behaviours is “identically”
recorded (modulo predicates and time stamps) in those behaviours.

We can accept this definition since it is the domain describer who de-
cides which events to model and since it is anyway only a postulate: we are
“observing the domain”!

Definition: Event Designator:: The event E : {(βℓ1, σ1, P1, σ′

1
, τ1), (βℓ2,

σ2, P2, σ′

2
, τ2), . . . , (βℓn, σn, Pn, σ′

n, τn)} consists of n event designators (βℓi,
σi, Pi, σ

′

i, τi), that is: an event designator is that kind of quintuplet.

Example: Withdrawal of funds from an account (i.e., a certain action) leads
to either of two events: either the remaining balance is above or equal to the
credit limit,or it is not

The withdrawal effects a state change (into state σ′), but “below credit limit”
event does not cause a further state change (that is: σ = σ′). In the latter
case that event may trigger a corrective action but the ensuing state change
(from some (possibly later state) σ′′ to, say, σ′′′, that is, σ′′′ is usually not a
“next state” after σ′).

Example: A national (or federal) bank changes its interest rate.This is an
action by the behaviour of a national (or federal) bank, but is seen as an event
by (the behaviour of) a(ny) local bank, and may cause such a bank to change
(i.e., an action) its own interest rate

Example: A local bank goes bankrupt at which time a lot of bank clients
loose a lot of their money

Some events are explicitly willed, and are “un-interesting”. Other events are
“surprising”, that is, are not willed, and are thus “interesting”. Being inter-
esting or not is a pragmatic decision by the domain describer.

“First Class” Entities: Before closing this section, Sect. 3.3, we shall “lift”
events to be first class entities !

7 The predicates can all “temporarily”, for purposes of “identicality”, be set to
true.

8 The time stamps can all “temporarily”, for purposes of “identicality”, be set to
the smallest time interval within which all time stamps of the event are included.

10 Dines Bjørner and Asger Eir

3.4 Behaviours

A simple, sequential behaviour, β, is a possibly infinite, possibly empty se-
quence of actions and events.

Example: The movement of a single vehicle between two time points forms
a simple, sequential behaviour

We shall later construct composite behaviours from simple behaviours. In
essence such composite behaviours is “just” a set of simple behaviours. In
such a composite behaviour one can then speak of “kinds” of consecutive
or concurrent behaviours. Some concurrent behaviours can be analysed into
communicating, joined, forked or “general” behaviours such that any one con-
current behaviour may exhibit two or more of these ‘kinds’.

Section 7.3 presents definitions of composite behaviours.

“First Class” Entities: Before closing this section, Sect. 3.4, we shall “lift”
behaviours to be first class entities!

3.5 First-class Entities

Operations are considered designators of actions. That is, they are action
descriptions. We do not, in this paper, consider forms of descriptions of events
(labels) and behaviours. In that sense, of not considering, this section is not
“completely” symmetrical in its treatment of operations, actions, events and
behaviours as first-class entities. Be that as it may.

Operations as Entities: Operations may be (parametrised by being) ap-
plicable to operation entities — and we then say that the operations are
higher-order operations: Sorting a set of rail units according to either length
or altitude implies one sorting operation with either a select rail unit length
or a select altitude parameter. (The ‘select’ is an operation.)

Actions as Entities: Similarly operations may be (parametrised by being)
applicable to actions: Let an action be the invocation of the parametrised
sorting function — cf. above. Our operation may be that of observing stor-
age performance. There are two sorting functions: one according to rail unit
length, another according to rail unit altitude. We may now be able, given
the action parameter, to observe, for example the execution time!

Events as Entities: Operations may be (parametrised by being) applica-
ble to a set of event entities: Recall that events are dynamic, instantaneous
‘quantities’. A ‘set of event entities’ as a parameter can be such a quantity.
One could then inquire as to which one or more events occurred first or last,
or, if they had a time duration, which took the longest to occur! This general
purpose event handler may then be further parametrised by respective rail or
air traffic entities!

Compositionality: Ontology and Mereology of Domains 11

Behaviours as Entities: Finally operations may be (parametrised by be-
ing) applicable to behaviours. We may wish to monitor and/or control train
traffic. So the monitoring & control operation is to be real-time parametrised
by train traffics. Similar for air traffic, automobile performance, etc.

• • •

We are not saying that a programming language must provide for the above
structures. We are saying that, in a domain, as it is, we can “speak of” these
parametrisations. Therefore we conclude that actions, events and behaviours
— that these dynamic entities which occur in “real-time” — are entities.
Whether we can formalise this “speaking of” is another matter.

3.6 The Ontology: Entities and Properties

On the background of the above we can now summarise our ontology: it con-
sists of (“first class”) entities inseparable from their properties. We hinted at
properties, in a concrete sense above: as something to which we can ascribe a
name, a type and a value. In contrast to common practice in treatises on ontol-
ogy [27, 33, 48, 52, 67], we “fix” our property system at a concrete modelling
level around the value types of atomic simple entities (numbers, Booleans,
characters, etc.) and composite simple entities (sets, Cartesians, lists, maps
and functions); and at an abstract, orthogonal descriptional level, following
Jackson [44], static and inert, active (autonomous, biddable, programmable)
and reactive dynamic types; continuous, discrete and chaotic types; tangible
and intangible types; one-, two-, etc., n-dimensional types; etc.

Ontologically we could claim that an entity exists qua its properties; and
the only entities that we are interested in are those that can be formalised
around such properties as have been mentioned above.

4 Simple Atomic and Composite Entities

Entities are either atomic or composite. The decision as to which entities are
considered what is a decision taken sôlely by the describer. The decision is
based on the choice of abstraction level being made.

4.1 Simple Attributes — Types and Values

With any entity whether atomic or composite, and then also with its sub-
entities, etcetera, one can associate one or more simple attributes.

• By a simple attribute we understand a pair of a designated type and a
named value.

Attributes are not entities: they merely reflect some of the properties of an
entity. Usually we associate a name with an entity. Such an association is
purely a pragmatic matter, that is, not a syntactic and not a semantic issue.

12 Dines Bjørner and Asger Eir

4.2 Atomic Entities

• By an atomic entity we intuitively understand a simple attributes entity which
‘cannot be taken apart’ (into other, the sub-entities).

Example: We illustrate attributes of an atomic entity.

Atomic Entity: Bus Ticket

Type Value

Bus Line Greyhound

From, Departure Time San Francisco, Calif.: 1:30 pm

To, Arrival Time Reno, Nevada: 6:40 pm

Price US $ 52.00

‘Removing’ attributes from an entity destroys its ‘entity-hood’, that is, at-
tributes are an essential part of an entity.

4.3 Composite Entities

• By a composite entity we intuitively understand an entity (i) which “can be
taken apart” into sub-entities, (ii) where the composition of these is described
by its mereology, and (iii) which further possess one or more attributes.

Example: We “diagram” the relations between sub-entities, mereology and
attributes of transport nets.

Composite Entity: Transport Net

Sub-entities: Links
Hubs

Mereology: “set” of one or more ℓ(inks) and
“set” of two or more h(hub’s)

such that each ℓ(ink) is delimited by two h(cub’s)
and such that each h(ub) connects one or more ℓ(inks)
Attributes

Types: Values:
Multimodal Rail, Roads, Sea Lane, Air Corridor
Transport Net of Denmark
Year Surveyed 2008

4.4 Discussion

Attributes: Domain entity attributes whether of atomic entities or of com-
posite entities are modelled as a set of pairs of distinctly named types and
values. It may be that such entity attributes, some or all, could be modelled
differently, for example as a map from type names to values, or as a list of
pairs of distinctly named types and values, or as a Cartesian of values, where

Compositionality: Ontology and Mereology of Domains 13

the position determines the type name — somehow known “elsewhere” in the
formalisation, etcetera

But it really makes no difference as remarked earlier: one cannot really
remove any one of these attributes from an entity.

Compositions: We formally model composite entities in terms of its imme-
diate sub-entities, and we model these as observable, usually as sets, immedi-
ately from the entity (cf. obs Hs, obs Ls, N). In the example composite entity
(nets) above the net can be considered a graph, and graphs, g:G, are, in Graph
Theory typically modelled, for example, as

type
V
G = (V × V)-set

where vertexes (v:V) are thought of a names or references.
We shall comment on such a standard graph-theoretic model in relation

to a domain model which somehow expresses a graph: First it has abstracted
away all there may otherwise be to say about what the graph actually is an
abstraction of. In such models we model edges in terms of pairs of vertexes.
That is: edges do not have separate “existence” — as have segments. In other
words, since we can phenomenologically point to any junction and a segment
we must model them separately, and then we must describe the mereology of
nets separate from the description of the parts.

5 Atomic and Composite Operations

Entities are either atomic or composite. The decision as to which operations
are considered what is a decision sôlely taken by the describer.

5.1 Signatures — Names and Types

With any operation whether atomic or composite, and then also with its sub-
operations, etcetera, one can associate a signature which we represent as a
triple: the name of the operation, the arguments to which the operation is
applicable, and the result, whether atomic or composite.

• By an argument and a result we understand the same as an attribute or an
entity.

5.2 Atomic Operations

We understand operations as functions in the sense of recursive function the-
ory [51]9 but extended with postulated primitive observer (obs ...), constructor

9 See: http://www-formal.stanford.edu/jmc/basis1/basis1.html

14 Dines Bjørner and Asger Eir

(mk...) and selector (s ...) functions, non-determinacy10 and non-termination
(i.e., the result of non-termination is a well-defined chaotic value).

• By an atomic operation we intuitively understand an operation which ‘cannot
be expressed in terms of other (phenomenological or conceptual), primitive
recursive functions.

Example Atomic Operations: The operation of obtaining the length of a
segment, obs Lgth, is an atomic operation. The operation of calculating the
sum, sum, of two segment lengths is an atomic operation.

type
Lgth

value
obs Lgth: L → Lgth,
sum: Lgth × Lgth → Lgth

5.3 Composite Operations

• By a composite operation we intuitively understand an operation which can
best be expressed in terms of other (phenomenological or conceptual) primitive
recursive functions, whether atomic or themselves composite.

Example Composite Operations: Finding the length of a route, R Lgth,
where a route is a sequence of segments joined together at junctions is a
composite operation — its sub-operations are the operation of observing a
segment length from a segments, obs length, and the recursive invocation of
route length. Finding the total length of all segments of a net is likewise a
composite operation.

value
length: L∗ → Lgth,
zero lgth:Lgth,
length(〈〉) ≡ zero lgth,
length(ℓ̂ℓ′) ≡ sum(ℓ,ℓ′)

The Composition Homomorphism: Usually composite operations are ap-
plied to composite entities. In general, we often find that the functions applied
to composite entities satisfy the following homomorphism:

G(e1, e2, . . . , em) = H(G(e1),G(e2), . . . ,G(en))

where G and H are suitable functions.

• • •

10 Hinted at in [51] as ambiguous functions, cf. Footnote 9 on the preceding page.

Compositionality: Ontology and Mereology of Domains 15

Example: Consider the Factorial and the List Reversal functions. This ex-
ample is inspired by [50]. Let φ be the sentence:

∃F • ((F (a) = b) ∧ ∀x • (p(x) ⊃ (F (x) = H(x, F (f(x))))))

which reads: there exists a mathematical function F such that, •, the following
holds, namely: F (a) = b (where a and b are not known), and, ∧, for every
(i.e., all) x, it is the case, •, that if p(x) is true, then F (x) = H(x, F (f(x)))
is true.

There are (at least) two possible (model-theoretic) interpretations of φ. In
the first interpretation, we first establish the type Ω of natural numbers and
operations on these, and then the specific context ρ:

[F 7→ fact, a 7→ 1, b 7→ 1, f 7→ λ n.n−1,
H 7→ λ m.λ n.m+n,
p 7→ λ m.m>0]

We find that φ is true for the factorial function, fact. In other words, φ char-
acterises properties of that function.

In the second interpretation we first establish the type Ω of lists and
operations on these: and then the specific context ρ:

[F 7→ rev, a 7→ 〈〉, b 7→ 〈〉, f 7→ tl,
H 7→ λℓ1.λℓ2.ℓ1̂〈hd ℓ1〉,
p 7→ λℓ.ℓ 6=〈〉]

And we find that φ is true for the list reversal function, rev, as well. In other
words, φ characterises properties of that function, and the two Hs express a
mereological nature of composition

6 Atomic and Composite Events

Usually events are considered atomic. But for the sake of argument — that
is, as a question of scientific inquiry, of the kind: why not investigate, seek-
ing “orthogonality” throughout, now that it makes sense to consider atomic
and composite entities and operations — we shall explore the possibility of
considering composite events.

Let us first recall that we model an event by: E : {(βℓ1, σ1, P1, σ
′

1, τ1),
(βℓ2, σ2, P2, σ

′

2
, τ2), . . . , (βℓn, σn, Pn, σ

′

n, τn)}, where E is just a convenient
name for us to refer to the event, βℓi is the label of a behaviour βi, σi and σ′

i

are (before event, resp. after event) states (of behaviour βi), Pi is a predicate
which characterises the event as seen by behaviour βi, and τi is a time, ti, or
a time interval, [tib

,tie
], time stamp.

16 Dines Bjørner and Asger Eir

6.1 Atomic Events

Examples: (i) E1: a vehicle “drives off” a net link at high velocity; (ii) E2:
a link “breaks down”: (ii.a) E21

: a bridge collapses, or (ii.b) E22
: a mud slide

covers the link That is E2 is due to either E21
or E22

.

One can discuss whether these examples really can be considered atomic:
(ii.a) the bridge may have collapsed due to excess load and thus the moment
at which the load exceeded the strength limit could be considered an event
causing the bridge collapse; (ii.b) the mud slide may have been caused by
excessive rain due to rainstorm gutters exceeding their capacity and thus the
moment at which capacity was exceeded could be considered an event causing
the mud slide.

We take the view that it is the decision of the domain describer to “fix” the
abstraction level and thus decide whether the above are atomic of composite
events.

In general we could view an event, such as summarised above, which in-
volves two or more distinct behaviours as a composite event. We shall take
that view.

6.2 Definitions: Atomic and Composite Events

Definition: Atomic Event: An atomic event is either a single [atomic] inter-
nal event: {(βℓi, σi, Pi, σ

′

i, τi)}, that is, consists of just one event designator,
or is a single [atomic] external event, that is, is a pair event designators where
one of these involves the eχternal behaviour: {(βχℓ, σnil, true, σnil, τχ), (βℓi,
σi, Pi, σ

′

i, τi)}, that is, consists of two event designators, an external and an
internal

Definition: Composite Event: A composite event is an event which con-
sists of two or more internal “identical” event designators, that is, event des-
ignators from two or more simple, non-eχternal behaviours, and possibly also
an event designator from an eχternal behaviour “identical” to these internal
event designators

6.3 Composite Events

Examples: (i) two or more cars crash and (ii) a bridge collapse causes one
or more cars or bicyclists and people to plunge into the abyss

Synchronising Events: Events in two or more simple behaviours are said
to be synchronising iff they are identical.

Example: Two cars crashing means that the surfaces of the crash is a channel
on which they are synchronising and that the messages being exchanged are
“you have crashed with me”

Compositionality: Ontology and Mereology of Domains 17

Sub-Events: A composite event defines one or more sub-events.

Definition Sub-event: An event Es:eds′, is a sub-event of another event
E:eds, iff eds′ ⊂ eds, that is the set eds′ of event designators of Es is a proper
subset eds of the event designators of E

Sequential Events: One way in which a composite event is structured can
be as a “sequence” of “follow-on” sub-events. One sub-event: Es12

: {(βℓ1, σ1,
P1, σ′

1
, τ1), (βℓ2, σ2, P2, σ′

2
, τ2)}, for example, “leads on” to another sub-

event: Es23
: {(βℓ2, σ′′

2
, P ′

2
, σ′′′

2
, τ ′

2
), (βℓ3, σ3, P3, σ′

3
, τ3)}, etcetera, “leads on”

to a final event: Esmn
: {(βℓm, σ′′

m, Pm, σ′′′

m, τm), (βℓn, σn, Pn, σ′

n, τn)}. The
“leads on” relation should appear obvious from the above expressions.

Example: The multiple-car crash in which the cars crash, “immediately” one
after the other, as in a accordion movement (This is, of course, an idealised
assumption.)

Embedded Events: Another way in which a composite event is structured is
as an “iteratively” (or finite “recursively”) embedded “repetition” of (albeit
distinct) sub-events. Here we assume that the τs stand for time intervals and
that τs′ ⊑ τs it means that the time interval τs′ is embedded with τs, that
is, let τs = [tb, te] and τs′ = [t′b, t

′

e], then for τs′ ⊑ τs means that tb ≤ t′b
and t′e ≤ te, Now we postulate that one event (or sub-event) Ei embeds a
sub-event Eij

, . . . , embeds an “innermost” sub-event Eij...k
.

Example: The following represents an idealised description of how a com-
puting system interrupt is handled.

• (i) A laptop user hits the enter keyboard key at time tb.
• (ii) The computing system interrupt handler reacts at time t′b (tb ≤ t′b), to

the hitting of the enter keyboard key.
• (iii) The interrupt handler forwards, at time t′′b , the hitting of the enter

keyboard key to the appropriate input/output handler of the computing
system keyboard handler.

• (iv) The keyboard handler forwards, at time t′′′b , the hitting of the enter

keyboard key to the appropriate application program routine.
• (v) The application program routine calculates an appropriate reaction

between times t′′′b and t′′′e .
• (vi) The application program routine returns its reaction to the keyboard

handler at time t′′e .
• (vii) The keyboard handler returns, at time t′′e , that reaction to the inter-

rupt handler.
• (viii) The interrupt handler marks the interrupt as having been fully served

at time t′e,
• (ix) while whatever (if anything that has been routed to, for example, the

display associated with the keyboard) is displayed at time te

The pairs (i,ix), (ii,viii), (iii,vii) and (iv,vi) form pairwise embedded events:
(ii,vii) is directly embedded, ⊑, in (i,ix), (iii,vii) is directly embedded, ⊑, in
(ii,viii) and (iv,vi) is directly embedded, ⊑, in (iii,vii).

18 Dines Bjørner and Asger Eir

We have abstracted the time intervals to be negligible.

Event Clusters: A final way of having composite events, is for them, as a
structure, to be considered a set of sub-events, each eventually involving a
time or a time period that is “tightly” related to those of the other sub-events
in the set and where the relation is not that of “follow-on” or embeddedness.

Example: A (i) car crash results in a (ii) person being injured, while a (iii)
robber exploits the confusion to steal a purse, etcetera

7 Atomic and Composite Behaviours

Our treatment of behaviours in Sect. 3.4 was very brief. In this section it will
be more detailed. First a preliminary.

7.1 Modelling Actions and Events

In modelling behaviours, we model actions by a triple, (βℓ, α, τs), consisting of
a behaviour label, βℓ:BehLbl, an operation denotation, α:[. . .×]Σ → Σ[×. . .],
and a time stamp, τs. Events are modelled by as above.

7.2 Atomic Behaviours

Time-stamped actions and atomic events are the only atomic behaviours. We
shall model atomic behaviours as singleton sequences of a time-stamped action
or an event.

7.3 Composite Behaviours

Simple Traces: A simple (finite/infinite) trace, τ , is a (finite/infinite) se-
quence of one or more time-stamped atomic actions and time-stamped (atomic
or composite) events. Trace time stamps occur in monotonically increasing
dense order, i.e., separated by consecutive (overall) time stamps. That is, two
traces may operate not only on different clocks, but have varying time in-
tervals between consecutive actions or events. The “overall” time stamp of a
composite event is the smallest time interval which encompasses all time and
time stamps of event designators of the composite event.

Simple Behaviours: A simple behaviour, β, is a simple trace of length two
or more.

Example: The movement of two or more vehicles between two time points
forms a simple, concurrent behaviour

One can usually decompose a simple behaviour into two or more consecutive
behaviours, and hence one can compose a consecutive behaviour from two or
more simple behaviours. Consecutive behaviours are simple behaviours.

Compositionality: Ontology and Mereology of Domains 19

Consecutive Behaviours: A consecutive behaviour is a pair of simple be-
haviours, of which the first is finite, such that the time stamp of the first
action or event of the second behaviour is consecutive to the time stamp of
the last action or event of the first behaviour, cf. Fig. 1 on the next page.

Example: A train travel, seen from the point of view of one train passenger,
from one city to another, involving one or more train changes, and including
the train passenger’s behaviours at train stations of origin, intermediate sta-
tions and station of destination as well as during the train rides proper, forms
a consecutive behaviour

Concurrent Behaviours: A concurrent behaviour is a set of two or more
simple behaviours {β1, β2, . . . , βn} such that for each behaviour βi ∈{β1, β2,
. . . , βn} there is a set of one or more different behaviours {βij

, βik
, . . . ,βiℓ

} ⊆
{β1, β2, . . . , βn} such that there is a set of one or more consecutive (dense)
time stamps that are shared between behaviours βi and {βij

, βik
, . . . ,βiℓ

}.

Example: The movement of two vehicles between two time points (i.e., in
some interval) forms a concurrent behaviour

Concurrent behaviours come in several forms. These are defined next.

Communicating Behaviours: A communicating behaviour is a concurrent
behaviour in which two or more (simple) behaviours contain identical (modulo
predicate and time stamp) events.

Example: The movement of two vehicles between two time points (i.e., in
some interval), such that, for example, the two vehicles, after some time point
in the interval, at which both vehicles have observed their “near-crash”, keeps
moving along, may be said to be a simple, cooperating behaviour. Their “near-
crash” is an event. In fact the vehicles may be engaged in several such “near-
crashes” (drunken driving!)

Example: The action of a vehicle, at a hub, which effects both a turning
to the right down another link, and a sequence of one or more gear changes,
throttling down, then up, the velocity, while moving along in the traffic, forms
a general, structured behaviour

Example: A crash between two vehicles defines an event with the two vehicles
being said to be synchronised and exchanging messages at that event

Joined Behaviours: A joined behaviour is a pair of a finite set, {β1, β2, . . . ,
βn}, of finite (“first”) simple behaviours and a (“second”) simple behaviour,
such that the time stamp of the first action or event of the second behaviour
is consecutive to the time stamp of the last action or event of each of the the
first behaviours. You can think of the joined behaviour as pictured in Fig. 1
on the following page.

Example: This example assumes a mode of travel by vehicles in which they
(sometimes) travel in platoons, or convoys, as do military vehicles and —
maybe future private cars. A behaviour which starts with n (n being two or
more) vehicles travelling by themselves, as n concurrent behaviours; where

20 Dines Bjørner and Asger Eir

..........

β1
β2

βη

A simple behaviour

A concurrent behaviour

.....

β β
β

β

i

j
k

Communicating behaviours

β

Consecutive behaviours

A joined behaviour A forked behaviour

time

identical
event

identical
event

Fig. 1. Two simple and four composite behaviours
Each rectangle designates a simple behaviour. Figure indicates 17 such

independent vehicles, at one time or another, join into convoy behaviours
involving two or more vehicles, form a joined behaviour

Forked Behaviours: A forked behaviour is a pair of a finite (“first”) simple
behaviour β and a finite set, {β1, β2, . . . , βn}, of (“second”) simple behaviours,
such that the time stamp of the first action or event of each of the second
behaviours is consecutive to the time stamp of the last action or event of the
first behaviour. You can think of the joined behaviour as pictured in Fig. 1.

Example: Continuing the example just above: A behaviour which starts as
the joined, convoy behaviour of two or more (i.e., n) vehicles which then
proceeds by individual vehicles, at one time or another, leaving the convoy,
i.e., “forking out” into concurrent behaviours, forms a forked behaviour

7.4 General Behaviours

We claim that any set of behaviours can be formed from atomic behaviours by
applying one or more of the compositions outlined above: simple, concurrent,
communicating, consecutive, joined and forked behaviours.

By “any set of behaviours” you may well think of any multi-set of time
stamped actions and time stamped events, i.e., of atomic behaviours. From
this set one can then “glue” together one or more behaviours first forming
a set of simple behaviours; then concurrent behaviours; then identifying pos-

Compositionality: Ontology and Mereology of Domains 21

sible communicating behaviours; then possibly joining and forking suitable
behaviours, etc.

There may very well be many “solutions” to such a “gluing” construction
from a basic set of atomic behaviours.

7.5 A Model of Behaviours

type
ActBeh, EvnBeh,
Beh = ABeh|CBeh,
ABeh = ActBeh|EvnBeh,
CBeh = fSimBeh|ifSimBeh|CurBeh|ComBeh|CnsBeh|FrkBeh|JoiBeh,
fSimBeh == mkSi(s sb:ABeh∗),
ifSimBeh == mkSi(s sb:ABehω),
CurBeh == mkConc(s cb:SimBeh-set),
ComBeh == mkComm(s cb:SimBeh-set),
CnsBeh == mkCons(s fst:fSimBeh,s lst:ifSimBeh),
FrkBeh == mkFork(s fst:fSimBeh,s lst:ifSimBeh-set),
JoiBeh == mkJoin(s fst:fSimBeh-set,s lst:ifSimBeh)

value
wf Beh: Beh → Bool
wf Beh(beh) ≡ ...

8 Mereology and Compositionality Concluded

8.1 The Mereology Axioms

We wish to explain the compositionality constructs of simple entities (Sect. 8.2),
operations (Sect. 8.3), events (Sect. 8.4) and behaviours (Sect. 8.5), where the
references are to sections where the compositionality constructs are informally
summarised. We wish that the explanation be in terms of the predicates of
known axiomatisations of mereology, that is, of proposed such mereologies.
We refer to Appendices A.1 on page 42 and A.2 on page 44 where such pred-
icates are brought forward. Let x, y, and z denote “first class” entities. Then:

1. Pxy expresses that x is a part of y;
2. PPxy expresses that x is a proper part of y;
3. Oxy expresses that x and y overlap;
4. Uxy expresses that x and y underlap;
5. Cxy expresses that x is connected to y;
6. DCxy expresses that x is disconnected from y;
7. DRxy expresses that x is discrete from y;
8. T Pxy expresses that x is a tangential part of y; and
9. NT Pxy expresses that x is a non-tangential part of y.

22 Dines Bjørner and Asger Eir

8.2 Composite Simple Entities

Mereology: The part-whole mereological relations of composite simple en-
tities are typically expressed by such defining phrases as: (i) “An x consists
of a set of ys” (modelled by X=Y-set); (ii) “an x consists of a grouping of
a y, a z, . . . and a u” (modelled by X=Y×Z×...×U); (iii) “an x consists of
a list of ys” (modelled by X=Y∗); (iv) “an x consists of an association of ys
to zs” (modelled by X=Y →m Z); and some more involved phrases, including
recursively expressed ones.

Usually such defining phrases define too much. In such cases further sen-
tences are needed in order to properly delimit the class of xs being defined.

Example: 14. A bus time table lists the bus line name 15. and one or more
named journey descriptions, that is, journey names are associated with (maps
into) journey descriptions. 16. Bus line and journey names are further unde-
fined. 17. A journey description sequence of two or more bus stop visits. 18. A
bus stop visit is a triple: the name of the bus stop, the arrival time to the bus
stop, and the departure time from the bus stop. 19. Bus stop names are hub
identifiers. 20. A bus time table further contains a description of the transport
net. 21. The description of the transport net of the transport net. associates
(that is, maps) each bus stop name hub identifier to a set of one or more bus
stop name hub identifiers. 22. A bus time table is well-formed iff 23. adjacent
bus stop visits name hubs that are associated in the transport net description;
24. arrival times are before departure times; etc.

type
16. BLNm, JNm
14.,20. BTT′ = BLNm × NmdBusJs × NetDescr
22. BTT = {| btt:BTT′

• wf BTT(btt) |}
15. NmdBusJs = JNm →m BusJ
17. BusJ = BusStopVis∗

18. BusStopVis = Time × HI × Time
21. NetDesr = HI →m HI-set
value
22. wf BTT: BTT × NetDesr → Bool

wf BTT(,jrns,nd) ≡
∀ bj:BusJ • bj ∈ rng jrns ⇒

∀ (at,hi,dt):BusStopVis • (at,hi,dt) ∈ elems bj ⇒
hi ∈ dom nd ∧ at<dt ∧ ...

The well-formedness predicate expresses part of the mereology of how bus
time tables are composed. Note that we have not said that net description is
commensurate with the actual transportation net

That is, we go from regular via context free to context sensitive and even
generally computable or, alas, not necessarily computable forms. Thus there
are rich opportunities to study suitable subsets of natural language mereology
descriptions.

Compositionality: Ontology and Mereology of Domains 23

For the specific example of transportation nets, and as formalised in
Sect. 1, we can prove that the following axiom system predicates hold as
theorems:

• PPxy (Item 2 on page 21) holds for x=links or hubs of net, n, and y=n;
• Cxy (Item 5 on page 21) holds for such links x which connect hubs y,

respectively such hubs x from which links y emanate; and
• T Pxy (Item 8 on page 21) holds for such links x which connect hubs y,

respectively such hubs x from which links y emanate.
• Let us introduce a notion of link/hub connectors. Any link x which is

incident upon a hub y is said to define a connector  : J such that for

type J
value obs J: (L|H) → J-set
axiom

∀ l:L,h:H • card obs J(l)=2 ∧
obs J(l)∩ obs J(h)6={} ⇒ obs HIs(l)∩ obs HI(h)6={}

Now let x be the connector of link y and hub z, then Oxy and Oxz (Item 3
on page 21) hold.

• Etcetera.

Compositionality: The conventional compositionality principle implied a
syntax of composite expressions and spoke of the semantics of composite ex-
pressions. We extend this principle to cover other than utterings of natural or
formal specification and programming languages. We extend the principle to
cover any structures that we may wish to contemplate.

To get the reader “tuned” to that idea we fist give three, perhaps slightly
“surprising” examples, and then return to examples in line with the main, the
transport, example of this paper.

Example: The design of a bread-toaster denotes the infinite set of all bread-
toasters that satisfy the design, or the infinite set of all the production pro-
cesses that construct such bread toasters, etc.

Example: The request from the marketing department of the producer of
the bread toaster to the design department suggesting a bread toaster that
satisfies certain market requirements denote the set of all bread-toaster designs
that satisfy these market requirements, etc.

Example:The request from executive management to the marketing depart-
ment requesting that measures be taken too win market share denote, amongst
others, the kind of requests alluded to in the previous example

Now to the examples that fit into the main example of this paper.

Examples: (i) A meaning of a link could be the set of all paths that vehicles
can traverse the link, where a link path could be modelled as a triple of
link connected hub identifiers and the link identifier. (ii) A meaning of a hub

24 Dines Bjørner and Asger Eir

could be the set of all paths that vehicles can traverse the hub, where a hub
path could be modelled as a triple of link identifiers and the connecting hub
identifier; (iii) A meaning of a net could be the set of all routes through the
net, where a route is a suitable sequence of either link paths or of hub paths

Compositionality of Simple Composite Entities: The meaning of atomic
entities are expressed by simple (recursive) functions.

The meaning of composite entities, in order to follow the principle of com-
positionality, must be a function of the meanings of the immediate sub-entities.
Here the possibilities are “ad-infinitum” ! Classically, in computing, the princi-
ple of compositionality was first applied to programming, then to specification
languages. Typically the meaning of an atomic statement, as a syntactic sim-
ple entity, of an imperative programming language was that of a function from
environments to state to state transformers, so the meaning of the composition
of two or more statements was then the function composition of the meaning
of each statement. The meaning of a logic program could be modelled as a
set of resolutions: bindings of identifiers to terms. The meaning of a parallel,
say CSP [39, Hoare], program can be denotationally, that is, according to the
principle of compositionality, for example, given either one of three kinds of
semantics: in terms of traces, in terms of failures, and in terms of divergences
— as all explained in [60, Roscoe, Chapter 8].

• • •

Whether all reasonably expressed meanings of all conceivable composite sim-
ple entities can be expressed compositionally is not known, well, is not know-
able.

8.3 Composite Operations

Mereology: It appears that H (in G(e1, e2, . . . , em) = H(G(e1), G(e2), . . . ,
G(en))), and the way in which G distributes over (e1, e2, . . . , em), in the ab-
stract expresses the mereology of function composition. In the concrete the
mereological nature of a given composite operation is reflected in the way in
which it is structured from primitive recursive functions and other composite
operations.

In the sense of recursive function theory it does not seem to make any
sense to apply any of the 9 operators (Page 21) of Sect. 8.1.

Compositionality: The compositionality of functions is here taken to be
expressed by the function composers of extended recursive function theory.
Extended recursive function theory defines (i) constant entities, f() (i.e., val-
ues as zero-ary functions); (ii) variables, v (as functions from an environment
to an entity); (iii) sets {e1, e2, . . . , en}, Cartesians (e1, e2, . . . , en), and lists
〈e1, e2, . . . , en〉 of entities; (iv) a finite set of primitive functions, fn, of arity n
and type fn: Entity∗→Entity (v) a finite set of primitive predicates, pn, of arity
n and type pn: Entity∗→Bool (vi) function composition f(g(e1, e2, . . . , en)),

Compositionality: Ontology and Mereology of Domains 25

(vii) conditionals (c1 → e1, c2 → e2, . . . , cn → en), (viii) . . . , and (ix)
Recursive function theory then tells us how to interpret these forms in come
context ρ which binds variables to entities and function and predicate function
symbols to their functions and predicates. The extended recursive function
theory is a simple encoding from recursive function theory. So compositional-
ity of operations is explained by recursive function theory.

8.4 Composite Events

Mereology: Mereologically events can be (i) sequenced, “connected” in time;
(ii) “recursively” embedded, with the time interval for an “outer”, embedding
event embracing the time interval for an immediately embedded event, and
so forth; or can be (iii) clustered.

For specific, formalised examples of the three kinds of events it may then
be possible to prove the following: (i) PPxy where x is an event of either
a sequenced event, or of a recursively embedding, or of a clustered event y
(x is embedded in the recursively embedding event y); (ii) Cxy where x and
y are two consecutive events of a sequenced event z (that is, (ii:A) PPxz ∧
PPxz, (ii:B) T Pxy and (ii:C) Uxy (of z)), (ii:D) while DCuv where (PPuz∧
PPvz)∧ ∼ Cuv; (iii) Oxy may hold for x and y being part of a clustered event
z (that is, PPxz ∧ PPxz and Uxy (of z)). Etcetera.

Compositionality: Please note that we are not giving meaning to syntactic
designators whose meaning is that of events. We are confronted with the
issue of giving meaning, in some sense, to events. Simple such meanings are
concerned with concrete event analysis: did to events occur at the same time,
or in a given time period, or one before the other. For such analyses we refer
to [45, Lamport]. We can think of obtaining more elaborate meanings for
sequenced and recursively embedded events, but first we would need to build
up a rather elaborate set of definitions, find elaborate examples, etcetera, and
that would blow the size of this paper way out of proportion. So the best is
to say, and this also applies to clustered events, here is an interesting research
topic: to come up with compositionality interpretations for composite events !

8.5 Composite Behaviours

Mereology: Let {β1, β2, . . . , βn} be, for each case below, the suitable set
of (simple) behaviours. From the point of view of the mereology of the com-
position of behaviours, such as we have modelled behaviours, there are the
following composition operators:

• (i) creating simple behaviours, βs:(fSimBeh|ifSimBeh), from suitable atomic
ones (a1, a2, . . . , am, e1, e2, . . . , en);

• (ii) creating concurrent behaviours, βcon:CurBeh, from suitable simple be-
haviours;

26 Dines Bjørner and Asger Eir

• (iii) creating communicating behaviours, βcom:ComBeh, from a set of suit-
able simple behaviours;

• (iv) creating consecutive behaviours, βseq:CnsBeh, from a set of suitable
simple behaviours;

• (v) creating joined behaviours β:JoiBeh from a set of suitable simple be-
haviours; and

• (vi) creating forked behaviours, β:FrkBeh, from a set of suitable simple
behaviours.

Given a specific composite behaviour is may then be possible to prove

• (i) For all distinct atomic behaviours β′

αǫ and β′′

αǫ and for all sim-
ple behaviours, βs, for which Pβ′

αǫβs ∧ Pβ′′

αǫβs holds to prove that
PPβ′

αǫβs ∧ PPβ′′

αǫβs; holds;
• (ii) for a set, βs, of suitable simple behaviours to prove that PPβimkCon-

curBeh(βs) holds for any βi in βs;
• etcetera.

Compositionality: Behaviours are the meaning of domain descriptions, or
or requirements prescriptions or software programs that specify concurrency.
So the meaning functions that we might apply to behaviours would then
typically be those of analysing behaviours: comparing behaviours, say with
respect to efficiency, or to access to shared resources, or (say human) interface
response times. We leave it to the reader to continue this line of thought.

9 Galois Connections

In the following sections, we look at some rôles Galois connections may have
in relation to composition of entities. Galois connections is a fundamental
mathematical concept from order– and lattice theory. The reason for bringing
it up here is that it involves set–based composition of elements as well as
the composition of dual, order-decreasing functions. However, this is just the
reason why we considered Galois connections in the first place. In fact we want
to argue that it is beneficial to incorporate nontraditional modelling aspects
in order to get more insight; both in the discipline of domain engineering, and
in a current domain of discourse.

In the following, we shall (i) define the notion of Galois connections, (ii)
outline some of the different uses of that concept, and (iii) consider the concept
in context of modelling composite entities (following the ontology presented
in this paper). The sections are driven by examples.

Example: Toasters and Their Designs. Let (d:D) be a design of a toaster
(t:T). From the design we may be able to produce a collection of different
toasters because the design does not specify everything, and due to the fact
that we could produce the “same” kind of toaster over and over again. Let
us look at a “time glimp” and let (ts:T-set) denote the set of such toasters

Compositionality: Ontology and Mereology of Domains 27

obeying the design11. If we impose that “sequentially” further designs are all
for the same toaster, then the number of toasters decreases12 because they all
need to satisfy the new designs too. Between the set of designs and the set of
toasters they denote, is a Galois connection

Example: Designs and Market Analysis. The designs are also the deno-
tation of something. It could be the market analysis indicating the need for
certain toaster products — or more generally, for certain new kinds of kitchen
equipment. Between the market analysis and the designs also stands a Ga-
lois connection; hence there is also a Galois connection between the market
analysis and the toasters. The Galois connection (being an order–decreasing
pair of functions) ensures that we can only produce toasters which obeys the
designs, and that we can only design toasters which satisfy the needs outlined
in the market analysis

9.1 Definition

Definition 1. A Galois connection is a dual pair of mappings (F , G) between
two orderings (P,⊑) and (Q,⊑). Most often P and Q are ordered sets based
on set-inclusion (⊆) and this is also the version we shall use in this paper. In
order to avoid misinterpretation, we write ⊑ and not ≤ or ⊆ as seen in other
treatments of the subject. The mappings must be monotonically decreasing13:

type
P, Q

value
F : P-set → Q-set
G: Q-set → P-set

axiom
∀ ps1, ps2:P-set, qs1, qs2:Q-set •

ps1 ⊑ ps2 ⇒ F ps2 ⊑ F ps1,

11 We shall — as common in modelling — assume a possible worlds semantics in
the sense that the collection of toasters are the toasters existing in one possible
world. Are there more produced or some destroyed, it is another possible world.
We shall not be further concerned with this, nor the many philosophical issues
that can be claimed. We refer to [62] and [2] which among many other issues take
up this discussion.

12 Actually, the number could stay the same but that would mean including identical
designs. In general, we shall not be that concerned with the equal-situation for
that same reason.

13 Note, that there are in fact two different definitions of Galois connections in the
literature: the monotone Galois connection and the antitone Galois connection.
We follow Ganter and Wille and assume the former [28].

28 Dines Bjørner and Asger Eir

qs1 ⊑ qs2 ⇒ G qs2 ⊑ G qs1,

ps1 ⊑ G F ps1,

qs1 ⊑ F G qs1

The dual ordering of Galois connections is illustrated on Figure 2.

C

G: D-set →m C-set

F : C-set →m D-set

Ds
′′

Ds

Ds
′

Cs
′′

Cs
′

D

Cs

Fig. 2. A Galois connection.

In [28, Ganter & Wille: FCA], the following Theorem is given on Galois con-
nections:

Theorem 1 (Galois Connection14). For every binary relation R ⊆M×N ,
a Galois connection (ϕR, ψR) between M and N is defined by

ϕRX := XR (= y ∈ N |xRy for all x ∈ X)

ϕRY := Y R (= x ∈M |xRy for all y ∈ Y).

From the above, we see that all y must stand in the relation R to each x

in order for the connection to hold. However, R could mean “does not stand

in a relation to”. That would still yield a Galois connection but the domain
knowledge it expresses is different. Let X be a collection of coffee cups and
let Y be a collection properties concerning form, colour, texture and material.
We may define R to be “coffee cup x has property y”. However, we could also
define it as “coffee cup x does not have property y. In both cases we would
have a Galois connection. However, the latter may be somewhat strange from
a classification point of view.

The notion of Galois connections has served as foundation for a variety of
applications like order theory, the theory of dual lattices, and — in computer
science — semantics of programming languages and program analysis.

14 In [28] this is named Theorem 2.

Compositionality: Ontology and Mereology of Domains 29

However, it has also been utilized in a number of conceptualization prin-
ciples. These principles are not pure mathematical treatments, but utilize
Galois connections in specific domains. We shall look at three such areas in
the following.

9.2 Concept Formation in Formal Concept Analysis [FCA]

In the area of formal concept analysis [28, Ganter & Wille: FCA], the notion of
Galois connections is used as foundation for the lattice-oriented theory used for
concept formation. In FCA, concepts are defined from a collection of objects
by looking at which objects have common properties. The approach includes
algorithms for automatic concept formation, given a collection of objects or a
collection of properties. The fact that we can choose either to form concepts
from objects (the extension of the concepts) or the properties (the intensions
of the concepts) shows the duality between objects and properties.

9.3 Classification of Railway Networks

In [42, 40, 41] Ingleby et al. use Galois connections in order to classify railway
networks. The approach is similar to the approach of concept formation in
FCA, but Ingleby understands the notion of properties in a broader sense: a
property of a route may be the segments involved in the route. Here Ingleby
understands routes and segments in a safety–security sense as his quest is to
cluster routes and segments such that the complexity of safety proof over the
railway network, is reduced. That is, the Galois connection is used for defining
cluster segments (in FCA, corresponding to concepts) such that the number of
free variables are reduced when proving safety properties of software/hardware
for instance.

9.4 Relating Domain Concepts Intensionally

In [23, 24, Eir], we utilized the notion of Galois connections for relating domain
concepts intensionally. The domain concepts related were concepts that were
not bound under subsumption; i.e. they are not specialization/generalization
pairs.

Consider the domain concepts: Budgets and Project Plans. From a budget
we can observe the set of project plans that can be executed within the finan-
cial restrictions of the budget. From a project plan we can observe the set of
budgets that designate the necessary figures for executing the project plan.
Generalizing this gives two interpretation functions: one from a set of budgets
to the set of project plans that are all executable within the restriction of
each budget in the set; and another from a set of project plans to the set of
budgets that all designate the necessary expenses for executing each project
plan.

30 Dines Bjørner and Asger Eir

The pair of interpretation functions is a Galois connection. This approach
is utilized in order to suggest a modelling approach for relating domain con-
cepts and placing their models (i.e. their abstractions) in conceptual struc-
tures. For the two concepts mentioned above, the conceptual structure main-
tains the systematics of concretising information from budgeting to project
planning.

9.5 Further Examples

We may easily produce other examples of domain concept pairs of which the
objects relate in some way. Consider the following examples:

Example: Bus Time Tables and Traffic. Let btt be some bus time table
(btt:(bln,busjs,nd)). To btt there corresponds a set of bus traffics, sobustrfs, on
the net. Express such bus traffic as (bustrf,n) where (bustrf,n)∈sobustrfs and
where bustrf is the time-varying function from buses to their positions on the
net, and nd is related to n in some way (one is a net description, the other is
“the” (or that) net). We furthermore stipulate that each bus traffic (bustrf,n)
“obeys” the timetable (bln,busjs,nd). To a set of timetables, sobustts, over
the same net there corresponds the union set of all those sets of bus traffics,
usosobustrfs, that “obey” all timetables in sobustts

We seek to understand the relationship between sobustts and usosobustrfs in
terms of the concept of Galois connections.

Example: Traffic and Buses – The Dual Case. We reverse the relation.
We start with a bus traffic (bustrf,nd) and can, by arguments similar to above,
postulate a set of bus timetables, sobustts (on the same net), such that each
bus timetable properly records the arrival and departure times of buses at bus
stops on that net. We can then “lift” this relation (((bustrf,nd)),sobustts) to a
relation from sets of bus traffics to the union set of sets of bus timetables

We seek to understand the relationship between sobustrfs and usosobustts in
terms of the concept of Galois connections.

The two examples above each define what we in 9.4 called interpretation

functions. They are interpretation functions in the sense that they — in the
domain — “interpret” the time table entities as traffic entities; and vice versa.

9.6 Generalisation

The element that these example have in common is that the values of one
concept characterize the values of the other concept — in some way.

This is similar to FCA where we have a Galois connection between values
and their common properties. However, in this case the properties are extrinsic
properties. The budget relates to a specific set of project plans because it
possesses the property of standing in a certain relation to these other values.
The property is extrinsic as the property is possessed assuming the existence
of other values; as opposed to intrinsic properties.

Compositionality: Ontology and Mereology of Domains 31

In a sense it means that we break the traditional distinction between values
and properties as assumed in FCA. Furthermore, we utilize the same principles
as utilized in denotational semantics — namely that we can assign meaning
to values (e.g., a budget) and the meaning to composition of values (e.g.,
a set of budgets). The meaning of the composition is here more than the
meanings of the individual parts because the composition of budgets (the
budget set inclusion) implies a more narrow restriction of the set of executable
project plans. It is so because combining two budgets has influence on the
meaning in the sense that the meaning is the composition of the corresponding
project plans as well (satisfying the Galois functions of being “decreasing”).
Mereologically, what is added when composing a whole is actually the axioms
in the Galois connection.

However, we go a little further than denotational semantics of program-
ming languages because we may consider any domain concept a subject for
defining a Galois connection.

Another observation is that the notion of Galois connection is domain

neutral. The Galois connection is a general mathematical framework and hence
not what contributes to why two concepts relate intensionally.

9.7 Galois Connections and Ontology

In the ontology presented throughout this paper, we have exercised the im-
portance of compositionality. I.e. we have defined compositionality for each
of the four entity parametrisations made. In this sections, we shall look at
how these can be understood in the general, domain and ontology neutral
framework of Galois connections. When we say that Galois connections in
this sense are ontologically neutral it is not entirely true. Many ontologies
— especially in philosophy — concerns the existence of (say) mathematical
entities; hence also heavily touching (perhaps disturbing) the foundation on
which Galois connections are defined. However, this is not our quest here.
When we consider Galois connections ontologically neutral it is in fact similar
to saying that they are neutral to the ontology of entities that we have sug-
gested. Whether entities include mathematical entities or these is “outside”,
that is, is outside the scope of this paper. For further exploration, we refer to
[62].

If simple entities, events, behaviour and operations are all entities, it should
imply that we can make the same considerations involving such values in
Galois connections. We shall try to do so in the following, and we intend
in that context to outline the issues as we go along. The important thing
is, however, not whether Galois connections can be established, but whether
the Galois connection complies with the current intuition as the connection
between objects and their common properties does.

The traditional use of Galois connections — as ‘exercised order theory’
and as used by Ganter and Wille focuses on the properties that objects have
in common. However, we may turn this order upside-down such that we look

32 Dines Bjørner and Asger Eir

at the total set of properties. This will be a Galois connection as well but
in the case of domains, it expresses a different aspect. In some situations, it
is natural to consider the former — in other situations, we may prefer the
latter. This depends on how we perceive the domain and — perhaps also —
the purpose of our domain model; i.e. our perspective.

By the above we indicate that the study of Galois connections in the
context of domain engineering could be interesting because it has to do with
how we choose to perceive, abstract, model and formalize the domain. Hence,
what we present in the following may open up for such research areas for
further clarification. We are, however, not saying that these will be interesting
or that it does make sense to make distinctions like the one above. We just
say that this area deserves further exploration.

Let us in the following assume that Galois connections concern relations
between two ordered sets of entities and the essence that the entities in these
sets characterize each other. The issue is now that in some cases, character-
ization usually obeys the axioms of Galois; but in some situations it may
not.

Composite Entities

We have already seen a couple of examples of Galois connections between two
ordered sets of elements, where the ordering has been set-inclusion.

We assume the understanding of composite entities as presented in Sects. 4
and 8.2.

Example: Hospital Staff and Rostering (I). Doctors and nurses forming
surgery teams. From a team (possibly empty or singleton), we can observe
the collection of time slots where they are all available. If we include more
doctors and nurses, we will have a smaller set of time slots. And vice versa.
This is an important domain aspect when we are going to talk about planning
and staffing (either in domain descriptions and specifications, or in software
requirements). This is a Galois connection

Example: Hospital Staff and Rostering (II). Again consider doctors and
nurses forming surgery teams. From a team, we can observe the collection of
possible surgeries they may perform. If we include more doctors and nurses,
we increase the collection of surgeries. And vice versa

This is not a Galois connection, though interesting from a domain perspective
anyway.

Composite Operations

We assume the understanding of composite entities as presented in Sects. 5
and 8.3.

Example: Building Constructions and Parts. Consider a set of building
constructions: molding of foundations, mounting of bricks into walls, and es-
tablishing the roof, etc. Then consider the set of building parts involved in a

Compositionality: Ontology and Mereology of Domains 33

construction. By building parts, we shall both understand the materials and
elements consumed by constructions, and the results of other constructions.
Thus, a building part can be a specific brick, a pre-cast concrete wall, the foun-
dation, etc. That is, the building parts are those either created, mounted on,
changed in some way, or demolished. For each construction, we can observe
the building parts involved: consumed or produced. Building constructions
can be composite in the sense that one construction constructs the founda-
tion and another construction mounts the walls on the foundation. The former
construction is a function from certain amounts of sand, stone, cement and
water, to a foundation (here we shall exclude the tools needed). The latter
construction is a function from a foundation, a collection of bricks, water,
cement and insulation, to the product consisting of foundation and walls. For
a construction — atomic or composite — we can observe the building parts
involved in all constructions. If we include more constructions in a composite
construction, the building parts involved in all constructions will decrease

The connection between composite constructions and building parts involved
is a Galois connection.

The connection is interesting when modelling the planning and scheduling
of construction works as a crucial element is that construction workers cannot
always work on the same building parts at the same time.

Example: Building Operations and Consumed Materials. Now con-
sider the approach where for each building operation we observe the materials
needed. For a collection of operations, we can likewise observe the total quan-
tity of materials needed. That is, the total amount of sand, stones, bricks;
the total quantity of beams, doors, windows of each type and measure; etc.
Including more building operation will increase the amount and quantity of
materials needed; simply because we then build more. Then we have a sit-
uation where the more operations we include, the more products. That is,
set-inclusion of operations implies an increase of the observed materials and
parts. The reason is that we here that each building operation contributes
with a result. Instead of considering the common materials as characterizing
the composite operation, we shall consider that the complete set of materials
involved characterize the composite operation

In a sense this is more natural as we then include all the aspects of the com-
positionality. However, in the present case, we do not have Galois connection
because including more operations in the composite, implies including more
materials and results. Hence, dual ordering is increasing; not decreasing.

Composite Events

We assume the understanding of composite entities as presented in Sects. 6
and 8.4.

Example: Traffic Accidents and Responsible Persons. Consider a traf-
fic accident. This is an event and for the accident, we can observe the collection

34 Dines Bjørner and Asger Eir

of persons involved and of these the persons bearing some kind of responsi-
bility in the accident. Assume that we look at a collection of traffic accidents.
Here, we can observe the persons involved in all accidents and for these the
ones being responsible for the accidents. Including more traffic accidents will
reduce the number of persons involved in all accidents; hence, also the number
of persons being responsible in all accidents

The connection between sets of traffic accident events and the set of persons
being responsible, is a Galois connection.

The connection may be interesting when modelling the analysis of traffic
accident patterns and statistics which may influence the definition of insurance
premium.

Example: Traffic Accidents and Persons Involved. Now, consider traffic
accidents as events again. From a traffic accident, we can observe the insurance
policies of the involved persons. Likewise, from a collection of traffic accidents
(i.e. a composite event being a cluster of individual events), we can observe
the collection of persons involved in at least one of the accidents; that is,
the total collection of persons involved in one or more of the accidents. If we
include more accidents, the collection of persons involved will increase

This is not a Galois connection. Though the connection may be interesting
when modelling correlation between accidents.

We should also be able to construct examples for composite events being
sequential or embedded.

Composite Behaviours

We assume the understanding of composite entities as presented in Sects. 78.5.

Example: Meetings and Applicable Rooms. Consider a collection of
persons engaged in a meeting. We shall consider having a meeting a behaviour.
The meeting can be composite in the sense that we may join two or more
meetings held in the same time interval and involving the same persons. In
the present case we shall consider behaviour composition as communicating.
E.g. we may join department meetings for several company departments if the
topic of the meetings is common and should be shared. From a meeting, we can
observe the rooms applicable. We shall assume that a room is only applicable
if it can host the number of meeting participants, has the equipment necessary
for the meeting, etc. If we include more meeting behaviours in a composite
behaviour, the collection of rooms applicable will decrease

This is a Galois connection. The connection is interesting when planning col-
laborative work among meeting participants.

Example: Engineering Work and Skills. Consider a collection of engi-
neers engaged in a project. We shall consider their work a behaviour which is
concurrent — perhaps also communicating to an extent. From each engineer-
ing behaviour we can observe the engineering skills utilized and practiced. If

Compositionality: Ontology and Mereology of Domains 35

we include a collection of work behaviours as a composite behaviour, it implies
that we include more engineers and thus also more engineering skills

This is not a Galois connection; though interesting when modelling skills,
skills management, project communication and interaction, staffing, etc.

9.8 Galois Connections Concluded

So what went wrong in the cases where we did not have a Galois connection?
Or we could ask: what did we explore by looking at the domain through Galois
eyes? The examples examined above clearly shows that their are two different
kinds of connections between entity compositions; hence, orderings.

• The former yields a Galois connection. It does so because composite en-
tities of the one ordering are all characterizing composite entities of the
other. Thereby, we believe to have outlined how Galois connections and
ordering theory in general plays an important rôle in compositionality of
entities.

• The latter does not yield a Galois connection as it is an order-preserving
connection. In the examples examined we have seen a general pattern
composition of the one kind of entity, yields composition (actually just
set-inclusion) of the other kind of entity.

Both kinds of connections show that even though the connections (Galois
being order-reversing and the order-preserving) are ontologically and domain
neutral, they do express interesting domain intrinsics when it comes to compo-
sitionality. We suggest that the rôle, use and axioms/theorems of such order-
ing connections are explored further within the context of domain engineering.
Furthermore, we encourage exploring other such concepts and their ability of
promoting domain engineering as a discipline.

10 Conclusion

10.1 Ontology

Ontology plays an important rôle in studies of epistemology and phenomenol-
ogy. In the time-honoured tradition of philosophical discourse philosophers
present proposals for one or another ontology, and discusses these while usu-
ally not settling definitively on any specific ontology; and many issues are
deliberately left open.15 In this paper we cannot afford this “luxury”. Our
objective is to clarify notions of ontology in connection with the use of spe-
cific ways of informally and formally describing domains where the formal
description language is fixed.

15 Such as whether properties of entities are themselves entities, etc.

36 Dines Bjørner and Asger Eir

Many of the issues of domain modelling evolve close to issues of meta-
physics. We find [48, Michael J. Loux] Metaphysics, a contemporary intro-
duction, [33, Pierre Grenon and Barry Smith] SNAP and SPAN: Towards
Dynamic Spatial Ontology, [63, Peter Simons] Parts: A Study in Ontology,
and [52, D. H. Mellor and Alex Oliver] Properties, relevant for a deeper study
of the meta-physical issues of the current essay.

10.2 Mereology

Mereology has been given a more concrete interpretation in this paper com-
pared to the “standard” treatments in the (mostly philosophical) literature. It
seems that Douglass T. Ross [61] was among the first computing scientists to
see the relevance of Leśniewski’s ideas [49, 66]. Too late for a study we found
[57, Chia-Yi Tony Pi]’s 287 page PhD (linguistics) thesis: Mereology in Event
Semantics. Perhaps it is worth a study.

10.3 Research Issues

The paper has touched upon many novel issues. Some are reasonably well
established, at least from a programming methodological point of view. Several
issues could benefit from some deeper study. We mention three.

Compositionality: A precise study of how composite functions, events and
behaviours can be understood according to the principle of compositionality.

Mereology: A more precise presentation of a mereology axiom system for the
kind of simple entities, function entities, event entities and behaviour entities
outlined in Sects. 4–7.

Ontology: A more precise comparison of the “computability”–motivated on-
tology of this paper as compared with for example the ontological systems
mentioned in [48, Michael J. Loux], [33, Pierre Grenon and Barry Smith], [63,
Peter Simons] and [27, Chris Fox].

Galois Connections: A further study, going beyond that of [23, 24, Asger
Eir], of relations between compositionally and Galois connections. For that
study one should probably start with [37, Hoare and He].

• • •

That we have not really studied the compositionality issue as listed above
is a major drawback of this paper but we needed to clarify first the nature
of “compositeness” of events, functions and behaviours before taking up the
future study of their compositionality.

10.4 Acknowledgement

The first author is most grateful to his former PhD student, Dr. Asger Eir,
for his willingness to co-author this paper.

Compositionality: Ontology and Mereology of Domains 37

11 Bibliographical Notes

[11, to appear] gives a concise overview of domain engineering; [12, to appear]
gives a “complete” example of domain and requirements engineering; and [10,
to appear] relates domain engineering, requirements engineering and software
design to software management. [9] presents a number of domain engineering
research challenges.

References

1. Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Tracts in
Theoretical Computer Science. Cambridge University Press, Cambridge, Eng-
land, 1996.

2. Mark Balaguer. Platonism and Anti–Platonism in Mathematics. Oxford Uni-
versity Press, 1998.

3. Dines Bjørner. Programming in the Meta-Language: A Tutorial. In Dines
Bjørner and Cliff B. Jones, editors, The Vienna Development Method: The Meta-
Language, [15], LNCS, pages 24–217. Springer–Verlag, 1978.

4. Dines Bjørner. Software Abstraction Principles: Tutorial Examples of an Oper-
ating System Command Language Specification and a PL/I-like On-Condition
Language Definition. In Dines Bjørner and Cliff B. Jones, editors, The Vi-
enna Development Method: The Meta-Language, [15], LNCS, pages 337–374.
Springer–Verlag, 1978.

5. Dines Bjørner. The Vienna Development Method: Software Abstraction and
Program Synthesis. In Mathematical Studies of Information Processing, vol-
ume 75 of LNCS. Springer–Verlag, 1979. Proceedings of Conference at Research
Institute for Mathematical Sciences (RIMS), University of Kyoto, August 1978.

6. Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts
in Theoretical Computer Science, the EATCS Series. Springer, 2006.

7. Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and Lan-
guages. Texts in Theoretical Computer Science, the EATCS Series. Springer,
2006. Chapters 12–14 are primarily authored by Christian Krog Madsen.

8. Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and
Software Design. Texts in Theoretical Computer Science, the EATCS Series.
Springer, 2006.

9. Dines Bjørner. Domain Theory: Practice and Theories, Discussion of Possible
Research Topics. In ICTAC’2007, volume 4701 of Lecture Notes in Computer
Science (eds. J.C.P. Woodcock et al.), pages 1–17, Heidelberg, September 2007.
Springer.

10. Dines Bjørner. Believable Software Management. Encyclopedia of Software
Engineering, 1(1):1–32, 2008. (This is a new journal, published by Taylor &
Francis, New York and London, edited by Philip Laplante).

11. Dines Bjørner. Domain Engineering. In BCS FACS Seminars, Lecture Notes in
Computer Science, the BCS FAC Series (eds. Paul Boca and Jonathan Bowen),
pages 1–42, London, UK, 2008. Springer. To appear.

12. Dines Bjørner. From Domains to Requirements. In Montanari Festschrift, vol-
ume 5065 of Lecture Notes in Computer Science (eds. Pierpaolo Degano, Rocco
De Nicola and José Meseguer), pages 1–30, Heidelberg, May 2008. Springer.

38 Dines Bjørner and Asger Eir

13. Dines Bjørner. Software Engineering, Vol. I: The Triptych Approach, Vol. II:
A Model Development. To be submitted to Springer for evaluation, expected
published 2009. This book is the basis for guest lectures at Techn. Univ. of Graz,
Politecnico di Milano, University of the Saarland (Germany), etc., 2008–2009.

14. Dines Bjørner and Martin C. Henson, editors. Logics of Specification Languages
— see [59, 18, 22, 55, 34, 29, 54, 25, 35]. EATCS Monograph in Theoretical
Computer Science. Springer, Heidelberg, Germany, 2008.

15. Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method:
The Meta-Language, volume 61 of LNCS. Springer–Verlag, 1978. This was the
first monograph on Meta-IV. [3, 4, 5].

16. Dines Bjørner and Cliff B. Jones, editors. Formal Specification and Software
Development. Prentice-Hall, 1982.

17. Dominique Cansell and Dominique Méry. Logical Foundations of the B Method.
Computing and Informatics, 22(1–2), 2003. This paper is one of a series: [58,
21, 56, 31, 53, 36] appearing in a double issue of the same journal: Logics of

Specification Languages — edited by Dines Bjørner.
18. Dominique Cansell and Dominique Méry. Logics of Specification Languages,

chapter The event-B Modelling Method: Concepts and Case Studies, pages 47–
152 in [14]. Springer, 2008.

19. R. Casati and A. Varzi. Parts and Places: the structures of spatial representation.
MIT Press, 1999.

20. Bowman L. Clarke. A calculus of individuals based on “connection”. Notre
Dame J. Formal Logic, 22(3):204–218, 1981.

21. Ražvan Diaconescu, Kokichi Futatsugi, and Kazuhiro Ogata. CafeOBJ: Logical
Foundations and Methodology. Computing and Informatics, 22(1–2), 2003. This
paper is one of a series: [58, 17, 56, 31, 53, 36] appearing in a double issue of the
same journal: Logics of Specification Languages — edited by Dines Bjørner.

22. Răzvan Diaconescu. Logics of Specification Languages, chapter A Methodologi-
cal Guide to the CafeOBJ Logic, pages 153–240 in [14]. Springer, 2008.

23. Asger Eir. Construction Informatics — issues in engineering, computer science,
and ontology. PhD thesis, Dept. of Computer Science and Engineering, Institute
of Informatics and Mathematical Modeling, Technical University of Denmark,
Building 322, Richard Petersens Plads, DK–2800 Kgs.Lyngby, Denmark, Febru-
ary 2004.

24. Asger Eir. Formal Methods and Hybrid Real-Time Systems, chapter Relating Do-
main Concepts Intensionally by Ordering Connections, pages 188–216. Springer
(LNCS Vol. 4700, Festschridt: Essays in Honour of Dines Bjørner and Zhou
Chaochen on the Occasion of Their 70th Birthdays), 2007.

25. John S. Fitzgerald. Logics of Specification Languages, chapter The Typed Logic
of Partial Functions and the Vienna Development Method, pages 453–487 in
[14]. Springer, 2008.

26. John S. Fitzgerald and Peter Gorm Larsen. Developing Software using VDM-SL.
Cambridge University Press, The Edinburgh Building, Cambridge CB2 1RU,
England, 1997.

27. Chris Fox. The Ontology of Language: Properties, Individuals and Discourse. .
CSLI Publications, Center for the Study of Language and Information, Stanford
University, California, ISA, 2000.

28. Bernhard Ganter and Rudolf Wille. Formal Concept Analysis — Mathematical
Foundations. Springer-Verlag, January 1999. ISBN: 3540627715, 300 pages,
Amazon price: US $ 44.95.

Compositionality: Ontology and Mereology of Domains 39

29. Chris George and Anne E. Haxthausen. Logics of Specification Languages, chap-
ter The Logic of the RAISE Specification Language, pages 349–399 in [14].
Springer, 2008.

30. Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen,
Robert Milne, Claus Bendix Nielsen, Søren Prehn, and Kim Ritter Wagner.
The RAISE Specification Language. The BCS Practitioner Series. Prentice-Hall,
Hemel Hampstead, England, 1992.

31. Chris W. George and Anne E. Haxthausen. The Logic of the RAISE Specifica-
tion Language. Computing and Informatics, 22(1–2), 2003. This paper is one of
a series: [58, 17, 21, 56, 53, 36] appearing in a double issue of the same journal:
Logics of Specification Languages — edited by Dines Bjørner.

32. Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne,
Søren Prehn, and Jan Storbank Pedersen. The RAISE Method. The BCS
Practitioner Series. Prentice-Hall, Hemel Hampstead, England, 1995.

33. Pierre Grenon and Barry Smith. SNAP and SPAN: Towards Dynamic Spatial
Ontology. Spatial Cognition and Computation, 4(1):69–104, 2004.

34. Michael R. Hansen. Logics of Specification Languages, chapter Duration Calcu-
lus, pages 299–347 in [14]. Springer, 2008.

35. Martin C. Henson, Moshe Deutsch, and Steve Reeves. Logics of Specification
Languages, chapter Z Logic and Its Applications, pages 489–596 in [14]. Springer,
2008.

36. Martin C. Henson, Steve Reeves, and Jonathan P. Bowen. Z Logic and its
Consequences. Computing and Informatics, 22(1–2), 2003. This paper is one of
a series: [58, 17, 21, 56, 31, 53] appearing in a double issue of the same journal:
Logics of Specification Languages — edited by Dines Bjørner.

37. Charles Anthony Richard Hoare and Ji Feng He. Unifying Theories of Program-
ming. Prentice Hall, 1997.

38. Tony Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Com-
puter Science. Prentice-Hall International, 1985.

39. Tony Hoare. Communicating Sequential Processes. Published electronically:
http://www.usingcsp.com/cspbook.pdf, 2004. Second edition of [38]. See also
http://www.usingcsp.com/.

40. M. Ingleby. Safety properties of a control network: local and global reasoning
in machine proof. In Proceedings of Real Time Systems. Paris, January 1994.

41. M. Ingleby. A galois theory of local reasoning in control systems with compo-
sitionality. In Proceedings of Mathematics of Dependable Systems. Oxford UP
(UK), 1995.

42. M. Ingleby and I.H. Mitchell. Proving Safety of a Railway Signaling System
Incorporating Geographic Data. In H.H. Frey, editor, SAFECOM’92 Conference
Proceedings of IFAC, pages 129–134, Zürich (CH), November 1992. Pergamon
Press.

43. Daniel Jackson. Software Abstractions Logic, Language, and Analysis. The MIT
Press, Cambridge, Mass., USA, April 2006. ISBN 0-262-10114-9.

44. Michael A. Jackson. Software Requirements & Specifications: a lexicon of prac-
tice, principles and prejudices. ACM Press. Addison-Wesley Publishing Com-
pany, Wokingham, nr. Reading, England; E-mail: ipc@awpub.add-wes.co.uk,
1995. ISBN 0-201-87712-0; xiv + 228 pages.

45. Leslie Lamport. Time, Clcoks, and the Ordering of Events in a Distributed
System. Communications of the ACM, 21(7):558–565, August 1978.

40 Dines Bjørner and Asger Eir

46. C. Lejewski. A note on Leśniewksi’s axiom system for the mereological notion
of ingredient or element. Topoi, 2(1):63–71, June, 1983.

47. H.S. Leonard and N. Goodman. The Calculus of Individuals and Its Uses.
Journal of Symbolic Logic, 5:45–55, 1940.

48. Michael J. Loux. Metaphysics, a contemporary introduction. Routledge Con-
temporary Introductions to Philosophy. Routledge, London and New York, 1998
(2nd ed., 2020).

49. E.C. Luschei. The Logical Systems of Leśniewksi. North Holland, Amsterdam,
The Netherlands, 1962.

50. Z. Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.
51. John McCarthy. Towards a Mathematical Science of Computation. In C.M.

Popplewell, editor, IFIP World Congress Proceedings, pages 21–28, 1962.
52. D. H. Mellor and Alex Oliver. Properties. Oxford Readings in Philosophy.

Oxford Univ Press, , May 1997. ISBN: 0198751761, 320 pages, Amazon price:
US $ 19.95.

53. Stephan Merz. On the Logic of TLA+. Computing and Informatics, 22(1–2),
2003. This paper is one of a series: [58, 17, 21, 56, 31, 36] appearing in a double
issue of the same journal: Logics of Specification Languages — edited by Dines
Bjørner.

54. Stephan Merz. Logics of Specification Languages, chapter The Specification
Language TLA+, pages 401–451 in [14]. Springer, 2008.

55. T. Mossakowski, A. Haxthausen, D. Sannella, and A. Tarlecki. Logics of Spec-
ification Languages, chapter Casl – the Common Algebraic Specification Lan-
guage, pages 241–298 in [14]. Springer, 2008.

56. Till Mossakowski, Anne E. Haxthausen, Don Sanella, and Andzrej Tarlecki.
CASL — The Common Algebraic Specification Language: Semantics and Proof
Theory. Computing and Informatics, 22(1–2), 2003. This paper is one of a
series: [58, 17, 21, 31, 53, 36] appearing in a double issue of the same journal:
Logics of Specification Languages — edited by Dines Bjørner.

57. Chia-Yi Tony Pi. Mereology in Event Semantics. Phd, McGill University, Mon-
treal, Canada, August 1999.

58. Wolfgang Reisig. The Expressive Power of Abstract State Machines. Computing
and Informatics, 22(1–2), 2003. This paper is one of a series: [17, 21, 56, 31,
53, 36] appearing in a double issue of the same journal: Logics of Specification

Languages — edited by Dines Bjørner.
59. Wolfgang Reisig. Logics of Specification Languages, chapter Abstract State Ma-

chines for the Classroom, pages 15–46 in [14]. Springer, 2008.
60. A. W. Roscoe. Theory and Practice of Concurrency. C.A.R. Hoare Se-

ries in Computer Science. Prentice-Hall, 1997. Now available on the net:
http://www.comlab.ox.ac.uk/people/bill.roscoe/publications/68b.pdf.

61. Douglas T. Ross. Toward foundations for the understanding of type. In Pro-
ceedings of the 1976 conference on Data : Abstraction, definition and structure,
pages 63–65, New York, NY, USA, 1976. ACM.

62. Stewart Shapiro. Philosophy of Mathematics — structure and ontology. Oxford
University Press, 1997.

63. Peter M. Simons. Parts: A Study in Ontology. Clarendon Press, 1987.
64. J. M. Spivey. Understanding Z: A Specification Language and its Formal Seman-

tics, volume 3 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, January 1988.

Compositionality: Ontology and Mereology of Domains 41

65. J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, 2nd edition, 1992.

66. J.T.J. Srzednicki and Z. Stachniak, editors. Leśniewksi’s Lecture Notes in Logic.
Dordrecht, 1988.

67. Steffen Staab and Rudi Stuber, editors. Handbook on Ontologies. International
Handbooks on Information Systems. Springer, Heidelberg, 2004.

68. J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement.
Prentice Hall International Series in Computer Science, 1996.

42 Dines Bjørner and Asger Eir

A Two Axiom Systems for Mereology

A.1 From: Parts and Places [19]

A mereological system requires at least one primitive binary relation (dyadic
predicate). The most conventional choice for such a relation is Parthood (also
called ”inclusion”), “x is a part of y,” written:

Pxy

Nearly all systems require that Parthood partially order the universe. The
following defined relations, required for the axioms below, follow immediately
from Parthood alone:
An immediate defined predicate is “x is a proper part of y,” written PPxy,
which holds (i.e., is satisfied, comes out true) if Pxy is true and Pyx is false.
If Parthood is a partial order, ProperPart is a strict partial order:

PPxy ↔ (Pxy∧ ∼ Pxy) (1)

An object lacking proper parts is an atom. The mereological universe consists
of all objects we wish to think about, and all of their proper parts:

Overlap: x and y overlap, written Oxy, if there exists an object z such
that Pzx and Pzy both hold.

Oxy ↔ ∃z[Pzx ∧ Pzy] (2)

The parts of z, the “overlap” or “product” of x and y, are precisely those
objects that are parts of both x and y.

Underlap: x and y underlap, written Uxy, if there exists an object z such
that x and y are both parts of z.

Uxy ↔ ∃z[Pxz ∧ Pyz] (3)

Overlap and Underlap are reflexive, symmetric, and intransitive.
Systems vary in what relations they take as primitive and as defined. For

example, in extensional mereologies (defined below), Parthood can be defined
from Overlap as follows:

Pxy ↔ (Ozx→ Ozy) (4)

The Axioms

Parthood partially orders the universe:

M1, Reflexive: An object is a part of itself.

Pxx (5)

Compositionality: Ontology and Mereology of Domains 43

M2, Antisymmetric: If Pxy and Pyx both hold, then x and y are the same
object.

(Pxy ∧ Pyx) → x = y (6)

M3, Transitive: If Pxy and Pyz, then Pxz.

(Pxy ∧ Pyz) → Pxz (7)

M4, Weak Supplementation: If PPxy holds, there exists a z such that Pzy
holds but Ozx does not.

PPxy → ∃z[Pzy∧ ∼ Ozx] (8)

M5, Strong Supplementation: Replace “PPxy holds” in M4 with “Pyx does
not hold.”

∼ Pyx→ ∃z[Pzy∧ ∼ Ozx] (9)

M5′, Atomistic Supplementation: If Pxy does not hold, then there exists an
atom z such that Pzx holds but Ozy does not.

∼ Pxy→∃z[Pzx∧ ∼Ozy∧∼∃x[PPvz]] (10)

Top: There exists a “universal object”, designated Ω, such that PxΩ holds
for any x.

∃Ω∀x[PxΩ] (11)

Bottom: There exists an atomic “null object”, designated 0oid, such that
P0oidx holds for any x.

∃0oid∀x[P0oidx] (12)

M6, Sum: If Uxy holds, there exists a z, called the “sum” or “fusion” of x and
y, such that the parts of z are just those objects which are parts of either x
or y.

Uxy → ∃z∀v[Ovz ↔ (Ovx ∨Ovy)] (13)

M7, Product: If Oxy holds, there exists a z, called the ”product” of x and y,
such that the parts of z are just those objects which are parts of both x and
y.

Oxy → ∃z∀v[Pvz ↔ (Pvx ∧ Pvy)] (14)

If Oxy does not hold, x and y have no parts in common, and the product of
x and y is defined iff Bottom holds.

M8, Unrestricted Fusion: Let φ(x) be a first-order formula in which x is a free
variable. Then the fusion of all objects satisfying φ exists.

44 Dines Bjørner and Asger Eir

∃xz[φ(x) → ∀y[Oyz ↔ (φ(x) ∧ Oyx)]] (15)

M8′, Unique Fusion: The fusions whose existence M8 asserts are also unique.

M9, Atomicity: All objects are either atoms or fusions of atoms.

∃yz[Pyx∧ ∼ PPzy] (16)

A.2 From: A Calculus of Individuals Based on ‘Connection’ [20]

Taking Cxy as a rendering of x is connected to y we can introduce a definition
of DCxy (x is disconnected from y) and the standard mereologial definitions
of Pxy (x is a part of y), PPxy (x is a proper part of y), Oxy (x overlaps y),
and DRxy (x is discrete from y) as follows:

DCxy ≡ ∼ Cxy (17)

Pxy ≡ (∀z)(Czx ⊃ Czy) (18)

PPxy ≡ Pxy∧ ∼ Pyx (19)

Oxy ≡ (∃z)(Pzx ∧ Pxy) (20)

DRxy ≡ ∼ Oxy (21)

oindent This distinction between Cxy and x, constitutes the virtue of this new
calculus. It gives us the power to define ECxy (x is externally connected to y),
T Pxy (x is a tangential part of y), and NT Pxy (x is a nontangential part of
y) as follows:

ECxy ≡ Cxy∧∼Cxy (22)

T Pxy ≡ (∀z)(ECzx ∧ ECxy) (23)

NT Pxy ≡ Pxy∧∼(∀z)(ECzx∧ECxy) (24)

Our axiomatization requires only two axioms: a mereological axiom,

(∀x)[Cxx ∧ (∀y)Cxy ⊃ Cyx) (25)

and an axiom involving identity, analogous to the axiom of extension in set
theory,

(∀x)(∀y)[(∀z)(Czx = Czy) ⊃ x = y]. (26)

Compositionality: Ontology and Mereology of Domains 45

B Laudatio

Willem-Paul, how am I, a lowly, modest ’software engineering’ researcher, to
formulate an appropriate Laudatio, to You, a towering, vocal computer scien-
tist? Our interests are far and wide apart: You delve deeply and successfully
into computer science: the study of the “things” that can exist inside com-
puters, I delve into computing science: the study of how to construct those
“things”. Thanks for Your always vigilant, shameless observance of precision,
conciseness, Etcetera.

Yet our roads have crossed; many time. And all of these encounters have
been delightful. Despite Your throwing of rotten apples, despite Your swinging
of mighty swords and despite Your utterings of foul condemnations16. Never
boring. Sometimes a bit lofty, dispensing, with absolute authority, “wise-man”
advice to, well, a bit more experienced people. But a conference without
Willem-Paul is not as fun as one with him — and when she’s there, and
we can’t stand Your antics, we can always enjoy Corinne ...

16 The story of the six issues that any conference session chairman should observe
was inspired by a WPdR incident at the 1986 IFIP World Computer Congress in
Dublin, Ireland:

1. Introduce the speaker on time;
2. “terminate” the speaker on time;
3. ensure that questions are asked;
4. and that questions are answered;
5. protect the audience from abuse from the speaker;
6. and protect the speaker from abuse from the audience.

The last two “rules” are also referred to a “Lex de Roever”.

