
22 May 2017: 15:32 : Incomplete DRAFT — Version 7

Urban Planning Processes
A Research Note1

Version 7. Incomplete Draft

Dines Bjørner
Fredsvej 11, DK-2840 Holte, Danmark

E–Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜db

Abstract. 2 We examine concepts of urban planning. That is, we emphasize, in this research note, the
processes of urban planning.3 In so doing we abstract from the information (the ‘data’) that urban planning
is based on and results in. We distinguish between two kinds of urban planning processes: the basic, ‘ab
initio’ (or base), process of determining “the general layout of the land (!)”, and the derived, ‘follow-up’,
processes focused on social and technological infrastructures. Base urban planning applies to descriptions of
“the land”: geographic, that is, geodetic, geotechnical, meteorological, and, in general, such information as
are based in the given nature. Examples of derived urban plannings are such which are focused on humans
and on social and technological artifacts: transport, electricity, water, waste, health care, schools, etc. This
incomplete research note also discusses issues of urban planning project management, cf. Sect. 5.2, and urban
planning document, cf. Sect. 5.3.

Contents

1 Introduction
1.1 A Triptych of Software Development 3
1.2 On Domain Modeling 3
1.3 On Formality 3
1.4 On Formal Notations 3
1.5 On the Form of This Research Note 4

1 c© Dines Bjørner, 2017
Correspondence and offprint requests to: Dines Bjørner, Fredsvej 11, DK2840 Holte, Denmark
2 This is Version 7 of the present document.

• Version 1 was issued on 28 April 2017, 13:15.

• Version 2 was issued on 30 April 15:36.

• Version 3 was issued on 1 May 17:29.

• Version 4 was issued on 9 May 2017, 13:58.

• Version 5 was issued 14 May 2017, 10:06 am.

• Version 6 was issued 19 May 2017, 9:42 am.

• Version 7 is now being worked on: 22 May 2017: 15:32 .

3 This research note is being prepared for my stay at the China Intelligent Urbanization Co-creation Center for High Density
Region, College of Architecture & Urban Planning (CAUP, http://en.tongji-caup.org/) at TongJi University, Shanghai, in
September 2017 as hosted by Prof.Otthein Herzog.

2 c© Dines Bjørner 2017. Urban Planning Processes Version 7 Incomplete Draft

2 An Urban Planning System
3 Base Urban Planning

3.1 Urban Planning Information Categories 5
3.2 The Iterative Nature of Urban Planning 6
3.3 Initialisation 7
3.4 A Simple Functional Form 7
3.5 Oracles and Repositories 7

3.5.1 The Base ’Input’ Oracle 8
3.5.2 The Base Resumption Repository 8

3.6 A Simple Behavioural Form 9
4 Derived Urban Plannings

4.1 Derived Urban Plan Indices 10
4.2 A “Reservoir” of Derived Urban Planning Indices 10
4.3 A Derived Urban Planning Index Selector 10
4.4 The Derived Urban Plan Generator 11
4.5 The Revised Base Urban Planning Behaviour 11
4.6 The Derived Urban Planning Functions 11
4.7 The Derived Urban Planning Behaviour 12
4.8 The Derived Resumption Repository 12

4.8.1 The Consolidated Derived Resumption Map 12
4.8.2 The Consolidated Derived Resumption Repository Channel 12
4.8.3 The Consolidated Derived Resumption Repository 13
4.8.4 Initial Consolidated Derived Urban Plannings 13
4.8.5 Initialisation of The Derived Quintuplet Oracle 13

4.9 A Visual Rendition of Urban Planning Development 13
4.10 Revised Selection of Derived Urban Plannings 14

4.10.1 Review 14
4.10.2 A Potential Derived Urban Plan Indices Selector 14
4.10.3 A Revised Derived Urban Plan Index Set Selector 14
4.10.4 Revision of Derived Urban Plan Invocation 15

4.11 The Urban Planning System 15
5 Further Work

5.1 Reasoning About Deadlock, Starvation, Livelock and Liveness 15
5.2 Urban Planning Project Management 15
5.3 Document Handling 16
5.4 Information Categories 16

6 Conclusion
7 Bibliography

7.1 Bibliographical Notes 16
7.2 Domain Modeling Experiments 16
7.3 References 17

A A Document System
A.1 The System 20
A.2 Time 20
A.3 Unique Identification 20
A.4 Documents 21

A.4.1 Attributes 21
A.4.2 A Meta-linguistic “Trick” 22

A.5 Handlers 22
A.5.1 Attributes 22
A.5.2 Operations 22

A.6 Behaviours 22
A.6.1 Generic Behaviours 22
A.6.2 Document Behaviours 23
A.6.3 Handler Behaviours 23

A.7 Mereology 23

1. Introduction

Urban planning is a technical and political process concerned with the development and use of land, planning
permission, protection and use of the environment, public welfare, and the design of the urban environment,

c© Dines Bjørner 2017. A Research Note Version 7 Incomplete Draft 3

including air, water, and the infrastructure passing into and out of urban areas, such as transportation,
communications, and distribution networks.4

In this research note we shall try to understand one of the aspects of the domain underlying urban
planning, namely that of some possible urban planning (development) processes. We are trying to understand
and describe a domain, not requirements for IT for that domain and certainly not the IT (incl. its software).

1.1. A Triptych of Software Development

Before hardware and software systems can be designed and coded we must have a reasonable grasp of “its”
requirements; before requirements can be prescribed we must have a reasonable grasp of “the underlying”
domain. To us, therefore, software engineering contains the three sub-disciplines:

• domain engineering,

• requirements engineering and

• software design.

By a domain description we understand a collection of pairs of narrative and commensurate formal texts,
where each pair describes either aspects of an endurant (i.e., a data) entity or aspects of a perdurant (i.e.,
an action, event or behaviour) entity.

1.2. On Domain Modeling

This research note is part of a series of experiments in domain modeling [23, 35, 41, 29, 27, 30, 17, 10, 60, 7,
62, 61, 6, 48, 4] – see Sect. 7.2 on Page 16. The concept of domain modeling is explored in a series of papers
and reports [39, 37, 40, 36, 38, 32, 34, 22, 25, 12, 21, 46, 11]. The purpose of the present experiment, besides
its hopeful contribution to urban planning research & development at TongJi University (Shanghai), is to
explore modeling principles, techniques and tools not yet identified in [39, 37].

1.3. On Formality

We consider software programs to be formal, i.e., mathematical, quantities — rather than of social/psychological
interest. We wish to be able to reason about software, whether programs, or program specifications, or re-
quirements prescriptions, or domain descriptions. Although we shall only try to understand some facets of
the domain of urban planning we shall eventually let such an understanding, in the form of a precise, formal,
mathematical, although non-deterministic, i.e., “multiple choice”, description be the basis for subsequent re-
quirements prescriptions for software support, and, again, eventually, “the real software itself”, that is, tools,
for urban planners. We do so, so that we can argue, eventually prove formally, that the software is correct
with respect to the (i.e., its) formally prescribed requirements, and that the software meets customer, i.e.,
domain users’ expectations – as expressed in the formal domain description.

1.4. On Formal Notations

To be able to prove formal correctness and meeting customer expectations we avail ourselves of some formal
notation. In this research note we use the RAISE [54] Specification Language, RSL, [53]. Other formal notations,
such as Alloy [56], Event B [1], VDM-SL [49, 50, 52] or Z [63] could be used We choose RSL since it, to our
taste, nicely embodies Hoare’s concept of Communicating Sequential Processes, CSP [55]. In general we refer
to the following set of textbooks [8]:

4 https://en.wikipedia.org/wiki/Urban planning

4 c© Dines Bjørner 2017. Urban Planning Processes Version 7 Incomplete Draft

also published by QingHua University Press:

See [13, 14, 15, 18, 19, 20].

1.5. On the Form of This Research Note

The present form of this research note, as of 22 May 2017: 15:32 , is that of recording a development. The
development is that of trying to come to grips with what urban planning is. We have made the decision,
from an early start, that urban planning “as a whole” is a collection of one base and an evolving number
of (initially zero) derived urban planning behaviours. Here we have made the choice to model the various
behaviours of a complext of urban planning functions.

2. An Urban Planning System

We think of urban planning to be “dividable” into base urban planning, base up beh, and derived urban
plannings, der up beh, where subindex i indicate that there may be several, i.e., i ∈ {d1, d2, ..., dn}, such
derived urban plannings. We think of base urban planning to “convert” physical (geographic, that is, geodetic,
geotechncal, meteorological, etc.) information about the land area to be developed into a base plan, that is,
cartographic, cadestral and other such information (zoning, etc.). And we think of derived urban planning
to “convert” base plans into technological and/or societal plans. Technological and societal urban planning
concerns are typical such as transport, electricity, water, waste, health care, schools, etc.Each urban planning
behaviour, whether ‘base’ or ‘derived’, is seen as a sequence of the application of “the same” urban planning
function, i.e., an urban planning action. Each urban planning action takes a number of information arguments
and yield information results. The base urban planning behaviour may start one or more derived urban
planning behaviours, der up behi, at the end of “completion” of a base urban planning action. Let (indices)
{d1, d2, ..., dn} identify a set of separate derived urban plannings, each concerned with a distinct, reasonably
delineated technological and/or societal urban planning concern. During a base urban planning development
the actions start any of these derived urban plannings once. Thus we think of urban planning as a system
of a single base urban planning process (i.e., behaviour), base up beh, which “spawns” zero, one or more
(but a definite number of) derived urban planning processes (i.e., behaviours), der up behi. A derived urban
planning processes, der up behi, may themselves start other derived urban planning processes, der up behj ,
der up behk, ..., der up behℓ. Figure 1 on the next page is intended to illustrate the following: At time t0
a base urban planning is started. At time t1 the base urban planning initiates a number of derived urban
development, D1, ..., Di. At time t2 the base urban planning initiates the Dj derived urban planning. At

c© Dines Bjørner 2017. A Research Note Version 7 Incomplete Draft 5

B:

Derived Urban Planning

Base Urban Planning

Derived Urban Planning

Derived Urban Planning

Derived Urban Planning

D1:

Dj:

Dk:

Di:

t0 t1 t3 t4 t5t2

time

Dl: Derived Urban Planning

...

Fig. 1. An Urban Planning Development

time t3 the derived urban planning Di initiates two derived urban plannings, Dk and Dℓ. At time t4 the base
urban planning ends. And at time t5 all urban plannings have ended. Urban planning actions are provided
with “input” in the form of either geographic, geodetic, geotechnical, meteorological, etc., information,
b geo:bGEO5, or auxiliary information, b aux:bAUX, or requirements information, b req:bREQ. The auxiliary
(“management”) information is such as time and date, name (etc.) of information provider, “trustworthiness”
of information, etc. The requirements information serves to direct, to inform, the urban planners towards
what kind of urban plan is desired.

3. Base Urban Planning

We begin this section with abstractions of the, perhaps, two most important aspects of urban planning,
such as it may be seen by its individual practitioners: the information being handled: the “input”, so-to-
speak, to urban planning function(s) and these urban planning function(s). In two sections, in-between the
information and the function sections (3.1 and 3.4), we very briefly discuss the iterative nature of urban
planning, Sect. 3.2 on the following page, and initial values, Sect. 3.3, of the various information values.

3.1. Urban Planning Information Categories

Among the arguments of urban planning are

1 information, bGEO, about the geographic area subject to planning: its geodetic “make-up”, its geotech-
nical and meteorological properties, etc.,

2 related, but not geographic, information, bAUX,

3 and some requirements, bREQ.

type
1 bGEO
2 bAUX
3 bREQ

Among results of urban planning are

4 “the plan” (or “plans”), bPLA,

5 and possibly some other (ancillary) documents, bANC.

5 The b value prefixes and the b type prefixes shall designate base urban planning entities.

6 c© Dines Bjørner 2017. Urban Planning Processes Version 7 Incomplete Draft

type
4 bPLA
5 bANC

For this research note we shall leave the bGEO, bAUX, and bREQ argument types and the bPLA, and bANC
result types further undefined6 Typically bGEO would be be heavily text-annotated graphical documents
which would show “the lay of the land”, its geodetic7, its geotechnical8, and its meteorological9, properties.
Typically bAUX would then be some mixture of graphical and text documents that would “explain”, in usually
informal, casual ways, some of the relations between the geographic documents, when they were recorded,
how they were vetted, their accuracy, etc. Typically bREQ would be informal, casual text documents, perhaps
including pseudo-technical terms, which expresses expectations as to what the “powers-to-be” might consider
suitable urban plans10 and urban designs11.

3.2. The Iterative Nature of Urban Planning

We take it that urban planning proceeds in “cycles”:

6 In each cycle the base urban planning function, base up fct, is applied to an input argument triple,
(b geo,b aux,b req):(bGEO×bAUX×bREQ):bTRI, of “fresh” geodetic/geotechnical/meteorological (etc.),
auxiliary and requirements information.

type
6 bTRI = bGEO × bAUX × bREQ

7 Each cycle, that is, each application of base up fct, results in a “most recent”, not necessarily “final”,
plan and ancillary information, (b pla,b anc):bPLA×bANC:bRES.

type
7 bRES = bPLA × bANC

8 But, to “drive” the urban planning process, base up beh, towards “final”, that is, an adequately satis-
factory plan etc., the urban planning function, base up fct, need also be provided with the results of the
previous iteration’s result — which we take to be a (“quintuplet”) pair of an (i.e., the “previous”) “input”
triple and the previous result pair.

type
8 bQUI = bTRI × bRES

We shall refer to the input argument triple as ‘the triplet’ and the “driver” quintuplet (also) as a resumption.
The above decisions on triplet arguments and quintuplet resumptions, including the latter’s “feedback” to
a next iteration function invocation is motivated as follows. We think of each invocation, i.e., step, of the
urban planning function to “apply” itself to a small fragment of urban planning. Each such “small” step is to
result in useful contributions to the evolving urban plan. The ancillary information emerging from each step
informs about which aspects of urban planning was pursued in that step: where, in the plans, the outcome of
those analysis and plan development can be seen. The reason for small step invocations are to allow ongoing
reviews (not shown here), to pass on the intermediary results to other urban planning developments, etc.
The decision to “feed” back “records” of the entire state of urban planning development motivated by the
need for these “small step” invocations to analyse the ongoing, full state.

6 Understanding the bGEO, bAUX, bREQ, bPLA and the ANC types is a major urban planning issue.
7 https://en.wikipedia.org/wiki/Geodesy
8 https://en.wikipedia.org/wiki/Geotechnical investigation
9 https://en.wikipedia.org/wiki/Meteorology
10 https://en.wikipedia.org/wiki/Urban planning
11 https://en.wikipedia.org/wiki/Urban design

c© Dines Bjørner 2017. A Research Note Version 7 Incomplete Draft 7

3.3. Initialisation

Urban planning proceeds in iterating from initial

9 geographic, auxiliary and requirements information, as well as

10 (usually “empty”) plans and ancillaries.

We extend the notion of initial values to

11 triplet arguments,

12 result pairs, and

13 “quintuplet” argument/result pairs.

towards such results (plans and ancillaries) that are deemed satisfactory.

value
9 b geo init: bGEO, b aux init:bAUX, b req init:bREQ
10 b pla init: bPLA, b anc init:bANC
11 b tri init: bTRI = (b geo init,b aux init,b req init) assert: b tri fit(b tri init,b tri init)
12 b res init: bRES = (b pla init,b anc init)
13 b qui init: bQUI = (b tri init,b res init)

We refer to Item 23 on the next page for an explanation of the b tri fit predicate.

3.4. A Simple Functional Form

14 The base urban planning function, base up fct, thus applies to

• (i) a “most recent” triplet of geographic, auxiliary and requirements information, and to

• (ii) a “past quintuplet”, a resumption, that is, pair of geographic, auxiliary and requirements infor-
mation as well as plan and ancillary information and yields such a resumption “quintuplet” pair of a
triplet and a pair.

15 The application of base up fct to such arguments, i.e., base up fct(b geo,b aux,b req)(b qui) yields a “quin-
tuplet” result, a resumption, ((b geo′′,b aux′′,b req′′),(b pla′′,b anc′′)).

We “explain” the relations between “input” arguments and “output” (as) results:

16 The “input” argument (geo,aux,req) is “carried forward”, (b geo′′,b aux′′,b req′′), to be redeposited as
part of the result.

17 The main part of the result, (b pla′′,b anc′′), is related, P , to the input argument including the previous
“result”, the resumption.

14 base up fct: bTRI → bQUI → bQUI
15 base up fct(b tri)(b qui) as (b tri′,(b pla,b anc))
16 b tri = b tri′ ∧
17 Pbase(b tri)(b qui)(b pla,b anc)

For the time being we shall leave the base urban planning function, base up fct, that is, Pbase, uninterpreted.

3.5. Oracles and Repositories

Oracles are simple behaviours that provide functions (via behaviours) with information. Repositories are
simple behaviours that functions (via behaviours) provide with information and which can then “reproduce”
this information to continued behaviours (and functions).

8 c© Dines Bjørner 2017. Urban Planning Processes Version 7 Incomplete Draft

3.5.1. The Base ’Input’ Oracle

An urban planning oracle, when so requested, will select some information – usually in some non-deterministic
fashion, and usually subject to some constraint – and present this information to the requestor, i.e., an urban
planning behaviour. In this section, i.e. Sect. 3.5.1, we shall deal with one specific oracle, b tri beh: one that
“assembles” triplets, b tri, of geographic, b geo:bGEO, auxiliary, b aux:bAUX, and requirements, b req:bREQ,
information. We introduce a pair of specification components:

18 a channel, b tri ch, over which a base urban planning behaviour,base up beh, offers to receive triplets,
b tri:bTRI, from an oracle, b tri beh,

19 and the oracle, b tri beh, which “remembers” its most recently communicated triplet12.

channel
18 b tri ch:bTRI
value
19 b tri beh: (bGEO × bAUX × bREQ) → out b tri ch Unit

20 The oracle assembles (b geo:bGEO, b aux:bAUX, b req:bREQ) a base triplet which satisfies a predicate
b tri fit(tri,(b geo,b aux,b req)) – see Item 23.

21 That triplet is offered, b tri ch ! (b geo,b aux,b req), to the base urban behaviour –

22 whereupon the oracle resumes being the oracle, now, however, with the recently assembled base triplet
as its resumption.

19 b tri beh(tri) ≡
20 let b geo:bGEO, b aux:bAUX, b req:bREQ • b tri fit(tri,(b geo,b aux,b req)) in
21 b tri ch ! (b geo,b aux,b req) ;
22 b tri beh(b geo,b aux,b req)
19 end
24 pre: b tri fit(tri,tri)

23 The fitness predicate, b tri fit(tri,tri′), checks whether a “newly” assembled base triplet, tri, stands in the
relation P(tri,tri′) to a a similar base triplet, tri′.

24 The fitness predicate holds for b tri fit(tri,tri).

25 The oracle, b tri beh, is initialised with the initial triplet value b tri init, cf. formula Item 11 on the
previous page.

23 b tri fit: bTRI × bTRI → Bool
23 b tri fit(tri,tri′) ≡ P(tri,tri′)

23 b tri beh(b tri init): assert: b tri fit(b tri init,b tri init)

3.5.2. The Base Resumption Repository

The “quintuplet” pair of an (i.e., the “previous”) “input” triple and the previous result pair, ((b geo:bGEO,-
b aux:bAUX,-b req:bREQ),(b pla:bPLA,b anc:bANC)) — a “quintuplet” which is also the result of each urban
planning action — is thought of as residing in a repository behaviour, qui beh, which “receives” (b qui ch?)
“quintuplets” from the urban planning behaviour, or “offers” (b qui ch!(b qui)) such to the urban planning
behaviour.

26 There is therefore a channel, quin ch, between the urban planning behaviour and the “quintuplet” be-
haviour,

27 quin beh.

28 It either

12 The oracle is initialised with b tri beh(geo init,b aux init,b req init).

c© Dines Bjørner 2017. A Research Note Version 7 Incomplete Draft 9

29 accepts or

30 offers quintuplets.

channel
26 b qui ch:bQUI
value
27 b qui beh: bQUI → in,out b qui ch Unit
27 b qui beh(b qui) ≡
29 b qui beh(b qui ch?)
28 ⌈⌉⌊⌋
30 b qui ch!(b qui) ; b qui beh(b qui)

3.6. A Simple Behavioural Form

Urban planning, however, is a time-consuming “affair”. So we model it as a behaviour.

31 The base up beh 013 behaviour takes no argument, Unit, avails itself of the input channel for obtaining
proper input, b tri and b qui, for the base urban function, base up fct, and output channel, for depositing
a resumption, and (then) “goes on forever”, as indicated by Unit.

32 The simple (version of the) base up beh 0 behaviour

33 obtains the base triplet and the base resumption information,

34 performs the base up fct planning function and

35 provides its result, a resumption, to the base quintuplet repository –

36 whereupon it reverts to being base up beh 0.

value
31 base up beh 0: Unit → in b tri ch out b qui ch Unit
32 base up beh 0() ≡
33 let (b tri,b qui) = (b tri ch?,b qui ch?) in
34 let b qui = base up fct(b tri)(b qui) in
35 b qui ch ! b qui end end ;
36 base up beh 0()

The base up beh 0 behaviour repeatedly “performs” urban planning, “from scratch”, as if new geographical,
auxiliary and requirements information was “new” in every re-planning — “ad infinitum” ! We now revise
base up beh 0 into base up beh 1 — a behaviour “almost” like base up beh 0, but one which may terminate.

37 base up beh 1

38 first behaves like base up beh 0 (Items 33–35)

39 then checks whether the obtained base resumption is satisfactory, that is, is OK as an end-result of base
urban planning.

40 If so then base up beh 1 terminates,

41 else it resumes being base up beh 1.

value
37 base up beh 1() ≡
38 let b qui = b base up fct(b tri ch?)(b qui ch?) in b qui ch!b qui ;
39 if b qui satisfactory(b qui)
40 then skip
41 else base up beh 1() end
37 end

39 b qui satisfactory: bQUI → Bool

13 As there will be several versions, from simple towards more elaborate, of the base up beh behaviour, we index them.

10 c© Dines Bjørner 2017. Urban Planning Processes Version 7 Incomplete Draft

The b qui satisfactory predicate inquires the base quintuplet, b qui, as for its suitability as a final candidate
for an urban plan14.

4. Derived Urban Plannings

4.1. Derived Urban Plan Indices

We think of base urban planning function, modeled by base up fct, as being concerned with the overall “di-
vision” of the geographical area, land and water, into zones for building, recreation, and other. Aggregations
of these zones, one, more or all (usually several), can then be further “[derive] planned” into

• (d1) light, medium and heavy industry zones,

• (d2) mixed shopping and residential zones,

• (d3) apartment bldg. zones,

• . . . , etc., etc.,

• (dm−1) villa zones, and

• (dm) recreational zones.

Additional forms of derived plannings are:

• (dm+1) transport,

• (dm+2) electricity supply,

• (dm+3) water supply,

• (dm+4) waste management,

• (dm+5) health care,

• (dm+6) fire brigades,

• . . . , etc., etc.,

• (dn) schools.

We refer to the di’s as derived urban plan indices.

42 We think of this variety of “derived” plannings thus as indexed as hinted at above,

43 and dups as the set of all indices.

type
42 DP == {|d1,d2,...,dn|}
value
43 dups:DP-set = {d1,d2,...,dn}

4.2. A “Reservoir” of Derived Urban Planning Indices

44 To secure that at most one derived planning is initiated we introduce a global variable, dps var, initialised
to an empty set of derived planning tokens and updated with the addition of selected DP tokens.

variable
44 dps var:DP-set := {} comment dps var denotes a reference

4.3. A Derived Urban Planning Index Selector

45 A function, sel dps, selects zero, one or more DP “fresh” indices, that is, DP tokens that have not been
selected before.

value
45 sel dps: Unit → DP-set
45 sel dps() ≡ let dps:DP-set•dps⊆dups \ c dps var in dps var := c dps var ∪ dps; dps end
comment
44 [c denotes a contents-taking operator]

We shall revise the above selector in Sect. 4.10.3 on Page 14.

14 The b qui satisfactory argument, b qui, embodies not only that plan, but also the basis for its determination.

c© Dines Bjørner 2017. A Research Note Version 7 Incomplete Draft 11

4.4. The Derived Urban Plan Generator

46 We therefore edit the base up beh 1 behaviour slightly by inserting, “in parallel” (‖) with the “re-
sumption” of base up beh 1 (cf. Item 41 on Page 9), an internal non-deterministic choice behaviour,
der up behi()

15, which selects zero, one of more DP tokens, and initiates corresponding derived planning
behaviours, der up behi(), as well as their corresponding “input” triplet oracles, d tri behi() — but only
at most once. These derived planning behaviours, der up behi, and “input” triplet oracles, d tri behi()
are like base up beh 1, respectively b tri beh, only now they are “tuned” to the specific derived planning
issues (i.e., i).

value
46 der up: Unit → Unit
46 der up() ≡ let dps = sel dps() in ‖{der up behi()‖d tri behi()|i:DP•i ∈ dps} end

We shall introduce the der up behi and d tri behi behaviours below.

4.5. The Revised Base Urban Planning Behaviour

We “take over” the basic structure and definition (“contents”) of the urban planning function and behaviour
from that of the base versions.

47 We think of zero, one or more derived plannings (der up beh1, der up beh2, . . . , der up behn) being initi-
ated after some stage of base function, base up fct, has concluded.

value
37” base up beh d() ≡
41” let b qui=base up fct(b geo ch?,b aux ch?,b req ch?)(b qui ch?) in b qui ch!b qui ;
39” if base satisfactory(b qui ch?)
37” then skip
38” else
47 der up() ‖
40” base up beh d() end end

4.6. The Derived Urban Planning Functions

An important form of information for each derived urban planning function is the resumption, i.e., the
quintuplet information from the base urban behaviour: bQui.

48 The new forms of information are: the derived urban planning auxiliary, dAUXi, and derived urban
planning requirements information, dREQi, as well as the derived urban planning plans, dPLAi, and their
ancillary information, dANCi.

49 The primary arguments for the derived urban planning function, base up fct, is therefore a derived triplet
of the base urban planning “quintuplet”, b qui:bQUI, the derived urban planning auxiliary information,
d auxi:dAUXi, and the derived urban planning requirements information, d reqi:dREQi,

50 The result of derived urban planning function, der up fct, as for the base urban planning function, base -
up fct, is that of a “quintuplet”, also a resumption, dQUIi, of the three primary arguments and

51 the result, a pair of a derived plan, d plai, and derived ancillaries, d anci.

52 As for the base urban planning function, base up fct, it has a secondary, derived “quintuplet” argument
(which, as for base up fct, helps “kick-start” urban planning). This second argument is the result of a
previous application of the der up fct.

15 When behaviour and function invocations where the names of these behaviors or functions names are prefixed with der ,
e.g., der name, and are indexed by some i, i.e., der namei, then we mean the invocation of one specific i indexed behaviour or
function from the indexed set of such, as defined by their behaviour and function definitions, see below.

12 c© Dines Bjørner 2017. Urban Planning Processes Version 7 Incomplete Draft

53 The derived urban planning function der up fcti signature is therefore that of a function from a triplet of
a most recent base quintuplet, derived urban planning auxiliary and derived urban planning requirements
information to functions from derived “quintuplet” arguments to derived “quintuplet” results.

54 The triplet argument, d trii, and the first part of the result, also a triplet, d tri′i, are the same.

55 The derived urban planning function der up fcti is further characterised by a predicate, Pderi , which we
leave further undefined.

type
48 dAUX1, dAUX2, ..., dAUXn

48 dREQ1, dREQ2, ..., dREQn

48 dPLA1, dPLA2, ..., dPLAn

48 dANC1, dANC2, ..., dANCn

49 dTRIi
16= bQUI×dAUXi×dREQi [i:DP•i∈dups]

51 dRESi = dPLAi × dANCi [i:DP•i∈dups]
50 dQUIi = dTRIi×dRESi [i:DP•i∈dups]
value

52 der up fcti
17: dTRIi → dQUIm → dQUI m: i:DP

53 der up fcti(d trii)(d quii) as (d tri′i,d resi)
54 d trii = d tri′i ∧
55 Pderi(d tri′i,d resi)

55 Pderi : dTRIi × dRESi → Bool

4.7. The Derived Urban Planning Behaviour

56 We think of zero, one or more derived plannings (der up behi1 , der up behi2 , . . . , der up behim) being
initiated after some stage of the der up fcti function has concluded.

value
37”’ der up behi() ≡
41”’ let d qui=der up fcti(b geo ch?,b aux ch?,b req ch?)(b qui ch?) in d qui ch[i]!d qui ;
39”’ if der satisfactoryi(d qui ch[i]?)
37”’ then skip
38”’ else
56 der up() ‖
40”’ der up behi() end end

4.8. The Derived Resumption Repository

4.8.1. The Consolidated Derived Resumption Map

57 The derived urban planning functions (and thus behaviours) operate, not on simple resumptions, as do
the base urban planning functions (and behaviours), but on the aggregation of all derived functions’
(etc.) quintuplets, that is, an indexed set of quintuplets – modeled as a derived resumptions map.

type
57 dQUIm = DP →m dQUIi

4.8.2. The Consolidated Derived Resumption Repository Channel

58 Communications between the individual derived urban planning behaviours and the consolidated derived
resumption repository are via an indexed set of channels communicating derived resumptions maps.

c© Dines Bjørner 2017. A Research Note Version 7 Incomplete Draft 13

derived
urban

derived
urban
planning

d2 dn

:= dps_var

dups = {d1,d2,...,dn}

d1

d_
qu

i_
ch

[d
1]

d_
qu

i_
ch

[d
2]

d_
qu

i_
ch

[d
n]

d_qui_beh

aux: auxiliary information query
req: requirements query
pla: plan
anc: ancillary information

rep: repository
b_qui: ((b_geo,b_aux,b−req),(b_pla,b_anc)) "quintuplet"

ora: oracle

b_tri: (b_geo,b_aux,b_req) "triplet"

d_tri: (b_qui,d_aux,d_req) "triplet"

map: d_qui map
d_qui: (d_tri,(d_pla,d_anc)) "quintuplet"

dps_var: derived urban planning index set variable
repository behaviourrep := variable

value

urban planning behaviour

input [query] channel
input/output [query/deposit] channel

geo: geodetic, geotechnical, meteorological query

b_, d_: base, derived

oracle behaviourora

beh: behaviour

b_tri
ora

b_tri_ch

base
urban
planning

b_qui_beh

b_
qu

i_
ch

d_tri
oraora

d_trid_tri
ora d_

tr
i_

be
h_

n

d_
tr

i_
be

h_
2

d_
tr

i_
be

h_
1

d_tri_ch[d2]d_tri_ch[d1] d_tri_ch[dn]

b_qui_ch[dn]

Legend:

rep
map

beh

beh beh beh

derived
urban
planningplanning

rep b_qui_ch[d2]
b_qui_ch[d1]

Fig. 2. An Urban Planning: n+1 Planning Behaviours, 2 Repository Behaviours, n+1 Oracles, a Variable, a Value and 3n+2 Channels

channel
58 {d qui ch[i]:dQUIm|i:DP• i ∈ dups}

4.8.3. The Consolidated Derived Resumption Repository

59 The consolidated derived resumption repository behaviour either (⌈⌉⌊⌋) updates its state map with recieved
individual derived resumptions, or offers the entire such state maps to whichever derived urban planning
behaviour so requests.

value
59 d qui beh: dQUIm → in,out der qui ch[i] Unit i:DP
59 d qui beh(d qui m) ≡ d qui beh(d qui m†[i 7→d qui ch[i]?]) ⌈⌉⌊⌋ d qui ch[i]!(d qui m) ; d qui beh(d qui m)

4.8.4. Initial Consolidated Derived Urban Plannings

value
d qui m = [d1 7→ init d qui1, ..., dn 7→ init d quin]

4.8.5. Initialisation of The Derived Quintuplet Oracle

As for base oracle and repository behaviours we initialise the derived quintuplet oracle:

der qui beh(init d qui m)

4.9. A Visual Rendition of Urban Planning Development

The urban planning domain, when “operating at full speed”, consists of the base urban planning behaviour
(i.e., project), zero, one or more derived urban planning behaviours, each of the latter initiated by either the
base urban planning project or a derived urban planning project. See Fig. 2. To provide the urban planning
project with information there is the geodetic, geo-technical, meteorological, etc., source of information, here

14 c© Dines Bjørner 2017. Urban Planning Processes Version 7 Incomplete Draft

modeled as a channel being inquired: b geo ch ?; the auxiliary information, here modeled as a channel being
inquired: b aux ch ?; and the requirements information, here modeled as a channel being inquired: b req ch ?.
To each of these three kinds of queries there are therefor corresponding channels: one for the base urban
planning geodetic, geotechnical, meteorological, etc., source of information, and one + n channels for both
the auxiliary and the requirements information for both the base and the full set of derived urban planning
projects. Here n is the number of all foreseen derived urban plannings. The planning behaviours, both the
base and the derived, invoke respective urban planning functions, and these produce, such as we have modeled
them, quintuplets of information, which are deposited with respective quintuplet repository behaviours: the
base quintuplet repository behaviour, and the derived quintuplet repository behaviour — which maintains
these quintuplets for all (invoked and thus ongoing) derived urban planning projects. We kindly ask you to
review Fig. 2 on the previous page. All you have to ‘master’ is the fact that there is one base urban planning
project, with its repository of base urban planning “quintuplets”, and between 0 and n derived urban
planning projects, with their shared, derived urban planning “quintuplets”, Then there are the channels:
the query (input) channels providing auxiliary and requirements information to both the one base urban
planning project and the n derived urban planning projects; and the query/repository channels providing
“quintuplet” aggregated information to the base urban planning project, as well as “quintuplet” aggregated
information to the derived urban planning projects. Finally there are the “global” value representing the
index set of derived urban planning indices, and variable which holds the index set of derived urban planning
indices of ongoing derived urban planning projects.

4.10. Revised Selection of Derived Urban Plannings

4.10.1. Review

The derived urban planning generator function, der up, cf. Item 46 on Page 11,

value
46 der up: Unit → Unit
46 der up() ≡ let dps = sel dps() in ‖{der up behi()‖d tri behi()|i:DP•i ∈ dps} end

was invoked with no arguments, der up(), cf. Item 47 on Page 11 and Item 56 on Page 12

47 der up() ‖ [respectively]
56 der up() ‖

4.10.2. A Potential Derived Urban Plan Indices Selector

Selection of potential derived urban planning indices was therefore rather arbitrary. We now let the selection
depend on the aggregated resumption state of all (ongoing and) derived urban planning behaviours.

60 Function sel dups examines either the base resumption or the aggregated resumption state of all (ongoing
and) derived urban planning behaviours and yields a set of derived urban planning indices.

61 How it does that is, of course, not defined here.

value
60 sel dups: (bQUI|dQUIm) → DP-set
61 sel dups(dquim) ≡ ...

4.10.3. A Revised Derived Urban Plan Index Set Selector

62 We revise the derived urban plan index se selector fuction give earlier, cf. Item 45 on Page 10. A function,
sel dps, selects zero, one or more DP “fresh” indices, that is, DP tokens that have not been selected before.

value
62 sel dps: DP-set → DP-set
62 sel dps(dups) ≡ let dps:DP-set•dps⊆dups∩dups \ c dps var in dps var := c dps var ∪ dps; dps end

c© Dines Bjørner 2017. A Research Note Version 7 Incomplete Draft 15

4.10.4. Revision of Derived Urban Plan Invocation

We need to revise the two occurrences of der up() – in the base urban planning behaviour, and in the (indexed
set of) derived urban planning behaviours. Thus

47 der up() ‖ [respectively]
56 der up() ‖

is to be replaced by:

47 der up(b qui ch?) ‖ ... [respectively]
56 der up(d qui ch[i]?) ‖ ...

4.11. The Urban Planning System

63 Finally we can define an urban planning development as a system of concurrent behaviours:

• the base urban planning behaviour,

• the base “quintuplet” repository and

• the derived and consolidate “quintuplet” repository

value
63 up sys: Unit → Unit
63 up sys() ≡ base up beh() ‖ b qui beh(b qui init) ‖ d qui beh(d qui m)

Recall that the derived urban planning behaviours as well as the derived triplet behaviours are started by
the base as well as the derived urban planning behaviours.

5. Further Work

5.1. Reasoning About Deadlock, Starvation, Livelock and Liveness

The current author is quite unhappy about the way in which he has defined the urban planning, oracle and
repository behaviours. Such issues as which invariants are maintained across behaviours are not addressed.
In fact, it seems to be good practice, following Dijkstra, Lamport and others, to formulate appropriate such
invariants and then “derive” behaviour definitions accordingly. In a rewrite of this research note, if ever, into
a proper paper, the current author hopes to follow proper practices.

5.2. Urban Planning Project Management

In this research note we have focused on the urban planning project behaviours, their interactions, and their
information “passing”. Usually publications about urban planning: research papers, technical papers, survey
papers, etcetera, focus on specific “functions”. In this research note we do not. Such “functions” are, in this
note, embodied in

• b tri fit (formula Item 23 on Page 8),

• base up fct (formula Item 14 on Page 7 and
Item 34 on Page 9),

• base satisfactory (formula Item 39 on Page 9),

• der satisfactoryi (formula Item 39 on Page 9)
and

• der up fcti (formula Item 52 on Page 11).

We focus instead on what we can say about the domain of urban planning: the fact, or the possibility, that an
initial, a core, here referred to as a base, urban planning effort (i.e., project, hence behaviour) can “spew off”,
generate, a number of (derived, i.e., in some sense subsidiary), more specialised, urban planning projects.

more to come

16 c© Dines Bjørner 2017. Urban Planning Processes Version 7 Incomplete Draft

5.3. Document Handling

5.4. Information Categories

Urban planning consumes information and produces urban planning documents, i.e., plans — referred to in
Sects. 3–4 as information (“contained” in triplets and in quintuplets).

type
1 bGEO
2 bAUX
3 bREQ
4 bPLA
5 bANC
6 bTRI = bGEO × bAUX × bREQ
7 bRES = bPLA × bANC
8 bQUI = bTRI × bRES

48 dAUX1, dAUX2, ..., dAUXn

48 dREQ1, dREQ2, ..., dREQn

48 dPLA1, dPLA2, ..., dPLAn

48 dANC1, dANC2, ..., dANCn

49 dTRIi = bQUI×dAUXi×dREQi [i:DP • i∈dups]
51 dRESi = dPLAi × dANCi [i:DP • i∈dups]
50 dQUIi = dTRIi×dRESi [i:DP • i∈dups]
57 dQUIm = DP →m dQUIi [i:DP • i∈dups]

6. Conclusion

to be written

7. Bibliography

7.1. Bibliographical Notes

I have thought about domain engineering for more than 20 years. But serious, focused writing only started
to appear since [9, Part IV] — with [5, 2] being exceptions: [11] suggests a number of domain science and
engineering research topics; [21] covers the concept of domain facets; [46] explores compositionality and Galois
connections. [12, 45] show how to systematically, but, of course, not automatically, “derive” requirements
prescriptions from domain descriptions; [24] takes the triptych software development as a basis for outlining
principles for believable software management; [16, 31] presents a model for Stanis law Leśniewski’s [51]
concept of mereology; [22, 25] present an extensive example and is otherwise a precursor for the present
paper; [26] presents, based on the TripTych view of software development as ideally proceeding from domain
description via requirements prescription to software design, concepts such as software demos and simulators;
[28] analyses the TripTych, especially its domain engineering approach, with respect to [57, 58, Maslow]’s
and [59, Peterson’s and Seligman’s]’s notions of humanity: how can computing relate to notions of humanity;
the first part of [33] is a precursor for [39] with the second part of [33] presenting a first formal model of the
elicitation process of analysis and description based on the prompts more definitively presented in [39]; and
with [34] focus on domain safety criticality. The published paper [39] now constitutes the base introduction
to domain science & engineering.

7.2. Domain Modeling Experiments

• Credit Card System18, [35] 2016. Result of my PhD lec-
tures at Uppsala, May 2016

• Weather Information Systems19 [41] Result of my PhD
lectures at Bergen, November 2016

• Documents20 [27] 2013.

18 http://www.imm.dtu.dk/ dibj/2016/uppsala/accs.pdf
19 http://www.imm.dtu.dk/ dibj/2016/wis/wis-p.pdf
20 http://www.imm.dtu.dk/˜dibj/doc-p.pdf
21 http://www.imm.dtu.dk/˜dibj/comet/comet1.pdf

c© Dines Bjørner 2017. A Research Note Version 7 Incomplete Draft 17

• Transport Systems21 [30] 2010.

• The Tokyo Stock Exchange Trading Rules22

and23 [42] 2010.

• On Development of Web-based Software24 2010.

• What is Logistics ?25 [17] 2009.

• Pipelines – a Domain Description26

and27, [29] 2009.

• Platooning28,

• A Container Line Industry Domain29, [10] 2007

• Models of IT Security: Security Rules & Regulations30

[43] 2006.

• Markets31 [4]

• Railway Systems Descriptions: 1996–2003

⋄⋄ Dines Bjørner: Formal Software Techniques in Rail-
way Systems32 [3]

⋄⋄ Chris George, Dines Bjørner and Søren Prehn:
Scheduling and Rescheduling of Trains33, [47] 1996

⋄⋄ Dines Bjørner: A Railway Systems Domain34

An ”old” UNU-IIST report, 1997

⋄⋄ Dines Bjørner: Formal Software Techniques in Rail-
way Systems35, 2002

⋄⋄ Albena Strupchanska, Martin Penicka and Dines
Bjørner: Railway Staff Rostering36, 2003 [62]

⋄⋄ Dines Bjørner: Dynamics of Railway Nets37, 2003 [6]

⋄⋄ Martin Penicka, Albena Strupchanska and Dines
Bjørner: Train Maintenance Routing38, 2003 [61]

⋄⋄ Panagiotis Karras and Dines Bjørner: Train Com-
position and Decomposition: Domain and Require-
ments39, 2003

⋄⋄ Dines Bjørner: Dynamics of Railway Nets: On an
Interface between Automatic Control and Software
Engineering40 [6] 2003

7.3. References

[1] Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings and Modeling in Event-B: System and
Software Engineering. Cambridge University Press, Cambridge, England, 1996 and 2009.

[2] Dines Bjørner. Michael Jackson’s Problem Frames: Domains, Requirements and Design. In Li ShaoYang and
Michael Hinchley, editors, ICFEM’97: International Conference on Formal Engineering Methods, Los Alamitos,
November 12–14 1997. IEEE Computer Society. Final Version.

[3] Dines Bjørner. Formal Software Techniques in Railway Systems. In Eckehard Schnieder, editor, 9th IFAC Sympo-
sium on Control in Transportation Systems, pages 1–12, Technical University, Braunschweig, Germany, 13–15 June
2000. VDI/VDE-Gesellschaft Mess– und Automatisieringstechnik, VDI-Gesellschaft für Fahrzeug– und Verkehrstechnik.
Invited talk.

[4] Dines Bjørner. Domain Models of ”The Market” — in Preparation for E–Transaction Systems. In Practical
Foundations of Business and System Specifications (Eds.: Haim Kilov and Ken Baclawski), The Netherlands,
December 2002. Kluwer Academic Press. Final draft version.

[5] Dines Bjørner. Domain Engineering: A ”Radical Innovation” for Systems and Software Engineering ? In Verifi-
cation: Theory and Practice, volume 2772 of Lecture Notes in Computer Science, Heidelberg, October 7–11 2003.
Springer–Verlag. The Zohar Manna International Conference, Taormina, Sicily 29 June – 4 July 2003. .

[6] Dines Bjørner. Dynamics of Railway Nets: On an Interface between Automatic Control and Software Engineering.
In CTS2003: 10th IFAC Symposium on Control in Transportation Systems, Oxford, UK, August 4-6 2003. Elsevier
Science Ltd. Symposium held at Tokyo, Japan. Editors: S. Tsugawa and M. Aoki. Final version.

[7] Dines Bjørner. Towards a Formal Model of CyberRail. In Building the Information Society, IFIP 18th World
Computer Congress, Tpical Sessions, 22–27 August, 2004, Toulouse, France — Ed. Renéne Jacquart, pages 657–
664. Kluwer Academic Publishers, August 2004. Original report also listed some of DB’s students as co–authors.

[8] Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling; Vol. 2: Specification of Systems and

22 http://www.imm.dtu.dk/˜dibj/todai/tse-1.pdf
23 http://www.imm.dtu.dk/˜dibj/todai/tse-2.pdf
24 http://www.imm.dtu.dk/˜dibj/wfdftp.pdf
25 http://www.imm.dtu.dk/˜dibj/logistics.pdf
26 http://www.imm.dtu.dk/˜dibj/pipeline.pdf
27 http://www.imm.dtu.dk/˜dibj/pipe-p.pdf
28 http://www.imm.dtu.dk/˜dibj/platoon-p.pdf
29 http://www.imm.dtu.dk/˜dibj/container-paper.pdf
30 http://www.imm.dtu.dk/˜dibj/it-security.pdf
31 http://www2.imm.dtu.dk/˜db/themarket.pdf
32 http://www2.compute.dtu.dk/˜dibj/rails.pdf
33 http://www.imm.dtu.dk/ dibj/amore/docs/scheduling.pdf
34 http://www.imm.dtu.dk/ dibj/UNU-IIST-railways.pdf
35 http://www.imm.dtu.dk/ dibj/amore/docs/dines-ifac.pdf
36 http://www.imm.dtu.dk/ dibj/amore/docs/albena-amore.pdf
37 http://www.imm.dtu.dk/ dibj/amore/docs/ifac-dynamics.pdf
38 http://www.imm.dtu.dk/ dibj/amore/docs/martin-amore.pdf
39 http://www.imm.dtu.dk/ dibj/amore/docs/panos-amore.pdf
40 http://www2.imm.dtu.dk/˜db/ifac-dynamics.pdf

18 c© Dines Bjørner 2017. Urban Planning Processes Version 7 Incomplete Draft

Languages; Vol. 3: Domains, Requirements and Software Design. Texts in Theoretical Computer Science, the
EATCS Series. Springer, 2006.

[9] Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design. Texts in Theoretical
Computer Science, the EATCS Series. Springer, 2006.

[10] Dines Bjørner. A Container Line Industry Domain. Techn. report, Fredsvej 11, DK-2840 Holte, Denmark, June
2007. Extensive Draft.

[11] Dines Bjørner. Domain Theory: Practice and Theories, Discussion of Possible Research Topics. In ICTAC’2007, vol-
ume 4701 of Lecture Notes in Computer Science (eds. J.C.P. Woodcock et al.), pages 1–17, Heidelberg, September
2007. Springer.

[12] Dines Bjørner. From Domains to Requirements. In Montanari Festschrift, volume 5065 of Lecture Notes in
Computer Science (eds. Pierpaolo Degano, Rocco De Nicola and José Meseguer), pages 1–30, Heidelberg, May
2008. Springer.

[13] Dines Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Qinghua University Press, 2008.
[14] Dines Bjørner. Software Engineering, Vol. 2: Specification of Systems and Languages. Qinghua University Press,

2008.
[15] Dines Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design. Qinghua University

Press, 2008.
[16] Dines Bjørner. On Mereologies in Computing Science. In Festschrift: Reflections on the Work of C.A.R. Hoare,

History of Computing (eds. Cliff B. Jones, A.W. Roscoe and Kenneth R. Wood), pages 47–70, London, UK, 2009.
Springer.

[17] Dines Bjørner. What is Logistics ? A Domain Analysis. Techn. report, Incomplete Draft, Fredsvej 11, DK-2840
Holte, Denmark, June 2009.

[18] Dines Bjørner. Chinese: Software Engineering, Vol. 1: Abstraction and Modelling. Qinghua University Press.
Translated by Dr Liu Bo Chao et al., 2010.

[19] Dines Bjørner. Chinese: Software Engineering, Vol. 2: Specification of Systems and Languages. Qinghua University
Press. Translated by Dr Liu Bo Chao et al., 2010.

[20] Dines Bjørner. Chinese: Software Engineering, Vol. 3: Domains, Requirements and Software Design. Qinghua
University Press. Translated by Dr Liu Bo Chao et al., 2010.

[21] Dines Bjørner. Domain Engineering. In Paul Boca and Jonathan Bowen, editors, Formal Methods: State of the
Art and New Directions, Eds. Paul Boca and Jonathan Bowen, pages 1–42, London, UK, 2010. Springer.

[22] Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Informatics, Part I of II:
The Engineering Part. Kibernetika i sistemny analiz, (4):100–116, May 2010.

[23] Dines Bjørner. The Tokyo Stock Exchange Trading Rules. R&D Experiment, Fredsvej 11, DK-2840 Holte, Denmark,
January, February 2010.

[24] Dines Bjørner. Believable Software Management. Encyclopedia of Software Engineering, 1(1):1–32, 2011.
[25] Dines Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of Informatics Part II of II:

The Science Part. Kibernetika i sistemny analiz, (2):100–120, May 2011.
[26] Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas and Suggestions.

In Rainbow of Computer Science, Festschrift for Hermann Maurer on the Occasion of His 70th Anniversary.,
Festschrift (eds. C. Calude, G. Rozenberg and A. Saloma), pages 167–183. Springer, Heidelberg, Germany, January
2011.

[27] Dines Bjørner. Documents – a Domain Description41. Experimental Research Report 2013-3, DTU Compute and
Fredsvej 11, DK-2840 Holte, Denmark, Spring 2013.

[28] Dines Bjørner. Domain Science and Engineering as a Foundation for Computation for Humanity, chapter 7,
pages 159–177. Computational Analysis, Synthesis, and Design of Dynamic Systems. CRC [Francis & Taylor],
2013. (eds.: Justyna Zander and Pieter J. Mosterman).

[29] Dines Bjørner. Pipelines – a Domain Description42. Experimental Research Report 2013-2, DTU Compute and
Fredsvej 11, DK-2840 Holte, Denmark, Spring 2013.

[30] Dines Bjørner. Road Transportation – a Domain Description43. Experimental Research Report 2013-4, DTU
Compute and Fredsvej 11, DK-2840 Holte, Denmark, Spring 2013.

[31] Dines Bjørner. A Rôle for Mereology in Domain Science and Engineering. Synthese Library (eds. Claudio Calosi
and Pierluigi Graziani). Springer, Amsterdam, The Netherlands, October 2014.

[32] Dines Bjørner. Domain Analysis: Endurants – An Analysis & Description Process Model. In Shusaku Iida, José
Meseguer, and Kazuhiro Ogata, editors, Specification, Algebra, and Software: A Festschrift Symposium in Honor
of Kokichi Futatsugi. Springer, May 2014. (paper44, slides45).

[33] Dines Bjørner. Domain Analysis: Endurants – An Analysis & Description Process Model. In Shusaku Iida, José
Meseguer, and Kazuhiro Ogata, editors, Specification, Algebra, and Software: A Festschrift Symposium in Honor
of Kokichi Futatsugi. Springer, May 2014.

[34] Dines Bjørner. Domain Engineering – A Basis for Safety Critical Software. Invited Keynote, ASSC2014: Australian
System Safety Conference, Melbourne, 26–28 May, December 2014.

41 http://www.imm.dtu.dk/˜dibj/doc-p.pdf
42 http://www.imm.dtu.dk/˜dibj/pipe-p.pdf
43 http://www.imm.dtu.dk/˜dibj/road-p.pdf
44 http://www.imm.dtu.dk/˜dibj/jaist-da.pdf
45 http://www.imm.dtu.dk/˜dibj/jaist-s.pdf

c© Dines Bjørner 2017. A Research Note Version 7 Incomplete Draft 19

[35] Dines Bjørner. A Credit Card System: Uppsala Draft. Technical Report: Experimental Research, Fredsvej 11,
DK–2840 Holte, Denmark, November 2016. http://www.imm.dtu.dk/˜dibj/2016/credit/accs.pdf.

[36] Dines Bjørner. Domain Analysis and Description – Formal Models of Processes and Prompts. Submitted for
consideration to Formal Aspects of Computing, 2016. http://www.imm.dtu.dk/˜dibj/2016/process/process-p.pdf.

[37] Dines Bjørner. Domain Facets: Analysis & Description. Submitted for consideration to Formal Aspects of Com-
puting, 2016. http://www.imm.dtu.dk/˜dibj/2016/facets/faoc-facets.pdf.

[38] Dines Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas and Suggestions. Ex-
perimental Research, Fredsvej 11, DK–2840 Holte, Denmark, 2016. http://www.imm.dtu.dk/˜dibj/2016/demos/-
faoc-demo.pdf.

[39] Dines Bjørner. Manifest Domains: Analysis & Description. Formal Aspects of Computing, ...(...):1–51, 2016. DOI
10.1007/s00165-016-0385-z http://link.springer.com/article/10.1007/s00165-016-0385-z.

[40] Dines Bjørner. To Every Manifest Domain a CSP Expression — A Rôle for Mereology in Computer Science.
Submitted for consideration to Journal of Logical and Algebraic Methods in Programming, Fredsvej 11, DK–2840
Holte, Denmark, December 2016. http://www.imm.dtu.dk/˜dibj/2016/mereo/mereo.pdf.

[41] Dines Bjørner. Weather Information Systems: Towards a Domain Description. Technical Report: Experimental
Research, Fredsvej 11, DK–2840 Holte, Denmark, November 2016. http://www.imm.dtu.dk/˜dibj/2016/wis/wis-
p.pdf.

[42] Dines Bjørner. The Tokyo Stock Exchange Trading Rules. R&D Experiment, Fredsvej 11, DK-2840 Holte, Denmark,
January and February, 2010. Version 1, 78 pages: many auxiliary appendices, Version 2, 23 pages: omits many
appendices and corrects some errors..

[43] Dines Bjørner. [44] Chap. 9: Towards a Model of IT Security — – The ISO Information Security Code of Practice
– An Incomplete Rough Sketch Analysis, pages 223–282. JAIST Press, March 2009.

[44] Dines Bjørner. Domain Engineering: Technology Management, Research and Engineering. A JAIST Press Research
Monograph #4, 536 pages, March 2009.

[45] Dines Bjørner. The Rôle of Domain Engineering in Software Development. Why Current Requirements Engineering
Seems Flawed! In Perspectives of Systems Informatics, volume 5947 of Lecture Notes in Computer Science, pages
2–34, Heidelberg, Wednesday, January 27, 2010. Springer.

[46] Dines Bjørner and Asger Eir. Compositionality: Ontology and Mereology of Domains. Some Clarifying Observations
in the Context of Software Engineering in July 2008, eds. Martin Steffen, Dennis Dams and Ulrich Hannemann.
In Festschrift for Prof. Willem Paul de Roever Concurrency, Compositionality, and Correctness, volume 5930 of
Lecture Notes in Computer Science, pages 22–59, Heidelberg, July 2010. Springer.

[47] Dines Bjørner, Chris W. George, and Søren Prehn. Scheduling and Rescheduling of Trains, chapter 8, pages 157–
184. Industrial Strength Formal Methods in Practice, Eds.: Michael G. Hinchey and Jonathan P. Bowen. FACIT,
Springer–Verlag, London, England, 1999.

[48] Dines Bjørner, Chris W. George, and Søren Prehn. Computing Systems for Railways — A Rôle for Domain
Engineering. Relations to Requirements Engineering and Software for Control Applications. In Integrated Design
and Process Technology. Editors: Bernd Kraemer and John C. Petterson, P.O.Box 1299, Grand View, Texas
76050-1299, USA, 24–28 June 2002. Society for Design and Process Science. Extended version.

[49] Dines Bjørner and Cliff B. Jones, editors. The Vienna Development Method: The Meta-Language, volume 61 of
LNCS. Springer, 1978.

[50] Dines Bjørner and Cliff B. Jones, editors. Formal Specification and Software Development. Prentice-Hall, 1982.
[51] R. Casati and A. Varzi. Parts and Places: the structures of spatial representation. MIT Press, 1999.
[52] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and Techniques in Software Develop-

ment. Cambridge University Press, The Edinburgh Building, Cambridge CB2 2RU, UK, 1998. ISBN 0-521-62348-0.
[53] Chris W. George, Peter Haff, Klaus Havelund, Anne Elisabeth Haxthausen, Robert Milne, Claus Bendix Nielsen,

Søren Prehn, and Kim Ritter Wagner. The RAISE Specification Language. The BCS Practitioner Series. Prentice-
Hall, Hemel Hampstead, England, 1992.

[54] Chris W. George, Anne Elisabeth Haxthausen, Steven Hughes, Robert Milne, Søren Prehn, and Jan Storbank
Pedersen. The RAISE Development Method. The BCS Practitioner Series. Prentice-Hall, Hemel Hampstead,
England, 1995.

[55] Charles Anthony Richard Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer Science.
Prentice-Hall International, 1985. Published electronically: http://www.usingcsp.com/cspbook.pdf (2004).

[56] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cambridge, Mass., USA,
April 2006. ISBN 0-262-10114-9.

[57] Abraham Maslow. A Theory of Human Motivation. Psychological Review, 50(4):370–96, 1943. http://psych-
classics.yorku.ca/Maslow/motivation.htm.

[58] Abraham Maslow. Motivation and Personality. Harper and Row Publishers, 3rd ed., 1954.
[59] Christopher Peterson and Martin E.P. Seligman. Character strengths and virtues: A handbook and classification.

Oxford University Press, 2004.
[60] Martin Pěnička and Dines Bjørner. From Railway Resource Planning to Train Operation — a Brief Survey

of Complementary Formalisations. In Building the Information Society, IFIP 18th World Computer Congress,
Topical Sessions, 22–27 August, 2004, Toulouse, France — Ed. Renéne Jacquart, pages 629–636. Kluwer Academic
Publishers, August 2004.

[61] Martin Pěnička, Albena Kirilova Strupchanska, and Dines Bjørner. Train Maintenance Routing. In FORMS’2003:
Symposium on Formal Methods for Railway Operation and Control Systems. L’Harmattan Hongrie, 15–16 May
2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and E. Schnieder, Germany. Final
version.

20 c© Dines Bjørner 2017. Urban Planning Processes Version 7 Incomplete Draft

[62] Albena Kirilova Strupchanska, Martin Pěnička, and Dines Bjørner. Railway Staff Rostering. In FORMS2003:
Symposium on Formal Methods for Railway Operation and Control Systems. L’Harmattan Hongrie, 15–16 May
2003. Conf. held at Techn.Univ. of Budapest, Hungary. Editors: G. Tarnai and E. Schnieder, Germany. Final
version.

[63] J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement. Prentice Hall International Series
in Computer Science, 1996.

A. A Document System

A.1. The System

64 From a document system

65 one can observe an aggregate of documents

66 and an aggregate of document handlers.

67 From an aggregate of documents one can observe a set of documents.

68 From an aggregate of document handlers one can observe a set of document handlers.

type
64 DS
65 ADS
66 AHS
value
65 obs ADS: DS → ADS
66 obs AHS: DS → AHS
type

67 DOC, DOCS = DOC-set
value
67 obs DOCS: ADS → DOCS
type
68 HAN, HANS = HAN-set
value
68 obs HANS: AHS → HANS

A.2. Time

69 We postulate a notion of time, one that covers both a calendar date (from before Christ up till now and
beyond). But we do not specify any concrete type (i.e., format such as: YY:MM:DD, HH:MM:SS).

70 And we postulate a notion of (signed) time interval — between two times (say: ±YY:MM:DD:HH:MM:SS).

71 Then we postulate some operations on time: Adding a time interval to a time obtaining a time; subtracting
one time from another time obtaining a time interval, multiplying a time interval with a natural number;
etc.

72 And we postulate some relatioins between times and between time intervals.

type
69. TIME
70. TIME INTERVAL
value
71. add: TIME INTERVAL × TIME → TIME
71. sub: TIME × TIME → TIME INTERVAL
71. mpy: TIM INTERVALE × Nat → TIME INTERVAL
72. <,≤,=, 6=,≥,>: ((TIME×TIME)|(TIME INTERVAL×TIME INTERVAL)) → Bool

A.3. Unique Identification

73 From a document one can observe its/a unique [document] identifier.

74 From a handler one can observe its/a unique [handler] identifier.

c© Dines Bjørner 2017. A Research Note Version 7 Incomplete Draft 21

type
73. DI
74. HI

value
73. uid DI: DOC → DI
74. uid HI: HAN → HI

A.4. Documents

A.4.1. Attributes

From documents one can observe:

75 the “most current” textual46 “contents”, txt:TXT:

type
75 TXT

value
75 attr TXT: DOC → TXT.

76 We can refer to a position in any text.

77 A pair of proper and ascending text positions delineate a text.

type
76 Pos
value

77 delineate: TXT → (Pos×Pos)
∼

→ TXT
77 delineate(txt)(p1,p2) as txt′

77 pre: proper txt pos(p1)(txt) ∧ proper txt pos(p2)(txt) ∧ ascending txt pos(p1,p2)(txt)

77 proper txt pos: Pos → TXT → Bool
77 proper txt pos(p)(txt) as ...
77 ascending txt pos: (Pos×Pos) → TXT → Bool
77 ascending txt pos(p1,p2)(txt) as ... pre: proper txt pos(p1)(txt) ∧ proper txt pos(p2)(txt)

76 From document we further observe pairs of

77 editing functions, edf:EDIT, which was “most recently” applied to the (predecessor) of a document text,
txt:TXT, if any, and

78 undo functions, undo:UNDO, which “bring back” the document text, txt:TXT, which was edited.

79 Hence we can postulate a predicate, was edited, which, when applied to a document that has been edited,
yields true, otherwise false.

80 An axiom expresses that the composition of the an undo function with its “corresponding” edit function
designates the identity function.

type
77 EDIT = TXT → TXT
78 UNDO = TXT → TXT
value
76 attr undo edit: DOC → (UNDO×EDIT)
79 edited: DOC → Bool
axiom
80 ∀ doc:DOC•edited(doc)⇒let txt=attr TXT(doc),(u,e)=attr undo edit(doc) in e(u(txt))=txt end

81 From a document we can observe the time at which the most recent operation was peformed on that
document:

46 By text we mean text as in a book of fiction: novel or poetry, as in a mathematics text monograph or lecture notes, or
we mean graphics, as in a geographic map, or in a visualisation of scientific data, or we mean tables of data as in a statistics
yearbook, or we mean any form of combinations of these forms of text.

22 c© Dines Bjørner 2017. Urban Planning Processes Version 7 Incomplete Draft

value 81. attr TIME: DOC → TIME

82 And we can observe the identity of the handler who most recently performed an operation on a document:

value 82. attr HI: DOC → HI

83 ***

83.

84 ***

84.

A.4.2. A Meta-linguistic “Trick”

85 Let attr fcts designate the set of all the attribute observers defined on documents.

86 Let attr fct denote a specific one of these attribute observers.

87 Then by

• attr fcts\{attr fct}

we shall mean the set attr fcts without (say “minus”) the element attr fct.

88 Now, if we were to express that two documents, doc’ and doc” are identical except for their unique
identifiers and except for a given attribite observer, say attr XYZ, then we would write

• doc’/{attr XYZ} = doc”/{attr XYZ}, i.e.: ∀ f ∈ attr fcts\{attr XYZ} • f(doc′)=f(doc′′)

A.5. Handlers

A.5.1. Attributes

A.5.2. Operations

A.6. Behaviours

A.6.1. Generic Behaviours

We can, according to [39, Manifest Domains: Analysis & Description] “equate” parts (i.e., aggregates of
documents and handlers, and document and handlers, as parts, respectively composite and atomic) with be-
haviours. So we shall introduce document and, later, handler behaviours. Document (and handler) behaviours
are uniquely identified by document (respectively handler) identifiers.

value
89 parti: Static Attrs → Programmable Attrs →
90 in {i ch[j]|j:J•i∈Jx(i)}, out {o ch[k]|k:K•j∈Kx(i)} Unit
91 parti(sai1 ,...,saim)(pai1 ,...,pain) ≡
91a let pa′i1 = Pi1(sai1 ,...,saim)(pai1 ,...,pain),
91b ...,
91c pa′in = Pin(sai1 ,...,saim)(pai1 ,...,pain) in
92 Qi(i ch[f(i)],o ch[g(i)])(sai1 ,...,saim)(pa′i1 ,...,pa

′

in) ;
93 parti(sai1 ,...,saim)(pa′i1 ,...,pa

′

in) end

89 parti is the name of a generic behaviour. It has a number of arguments:

c© Dines Bjørner 2017. A Research Note Version 7 Incomplete Draft 23

• First there are those that reflect the static attributes, sai1 ,...,saim :Static Attrs, of the part that the
behaviour models. The static attributes are those properties that remain unchanged “through the
life” of the part. Examples of static attributes of documents could be: document type: whether an
urban planning geographic, or an auxiliary, or a requirements document.

• Then there are the programmable attributes, pai1 ,...,pain :Programmable Attrs. The programmable
attributes are those whose value change in response to concerted actions. Examples of programmable
attributes of documents are: text:TXT, (undo,edit):(UNDO×EDIT), etcetera.

90 parti behaviours synchronize and communicate with other behaviours over channels. Inputs from other
behaviours are “declared” by {i ch[j]|j:J•i∈Jx(i)}; outputs to other behaviours are “declared” by out
{o ch[k]|k:K•j∈Kx(i)}. The Unit clause indicates that parti behaviours “go on forever and leave no
“state” changes” !

91 The template pattern for behaviour invocation and continuation is parti(sai1 ,...,saim)(pai1 ,...,pain) – and
conforms with the behaviour signature of formula lines 89–90. The behaviour, typically, but not neces-
sarily, “updates” all its programmable attributes,

a pa′i1 , b ..., and c pa′im ,

by evaluating corresponding clauses Pix(sai1 ,...,saim)(pai1 ,...,pain) where respective Pix need not “con-
tain” all their listed attributes.

92 The Qi(i ch[f(i)],o ch[g(i)])(sai1 ,...,saim)(pa′i1 ,...,pa
′

in) clause really is not “proper syntax”. The clause
is intended to express that behaviour parti may or may not exchange information with other beaviours.
Here that is shown to “occur after” evaluation of new programmable attributes. It could as well have
“occurred before” in which case we would have to express “other forms” of updated programmable
attribute values.

93 Finally behaviour parti resumes being behaviour parti, only now with updated programmable attributes
(the static attributes having not changed).

A.6.2. Document Behaviours

94 ***

type
94
94
94

94
94
94

95 ***

type
95
95
95

95
95
95

A.6.3. Handler Behaviours

A.7. Mereology

96 ***

96

97 ***

24 c© Dines Bjørner 2017. Urban Planning Processes Version 7 Incomplete Draft

97

98 ***

98

