The TSE Trading Rules

Dines Bjgrner
Fredsvej 11, DK-2840 Holte, Danmark
E-Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/~db

January 28, 2010

2 January 28, 2010 Dines Bjgrner

The reason why these notes are written is the appearance of [1].

I have taken the liberty of including that paper in this document, cf. Appendix C.
I had the good fortune of visiting Prof. Tetsuo Tamai, Tokyo Univ., 8Dec.8, 2009.
I read [1] late November.

I then had wished that Tetsuo had given it to me upon my arrival.

I was, obviously ignorant of its publication some five months earlier.

I have now reread [1] (late January 2010).

I mentioned to Tetsuo that I would try my hand on a formalisation.
A description, both by a narrative, and by related formulas.

What you see here, in Chap. 1, is a first attempt!®.

At present (January 28, 2010) Chap. 2 is not written.

I have included some notes, Appendix A.

Their origin goes back to December 1996.

Appendix Sect. A.4 should be of particular relevance to Chaps. 1 and 2.
A few, smaller updates, were added till about 2004.

'Earlier versions of this document will have Chap. 1 being very incomplete.

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010

Contents

1 The Tokyo Stock Exchange
1.1 Introduction e
1.2 The Problem
1.3 A Domain Description
1.3.1 Market and Limit Offers and Bids
1.3.2 Order Books
1.3.3 Aggregate Offers
1.3.4 The TSE ltayose “Algorithm”
1.3.5 Match Executions
1.3.6 Order Handling

2 The New Tokyo Stock Exchange
3 Bibliographical Notes

A Some 1996-1999 Models of “Abstracted” Financial Services
A.1 Financial Service Industry Business Processes

A.1.1 Some Modelling Comments — An Aside
A.1.2 Examples Continued
The Context e
The State
AModel

A2 Bank Scripts
A.2.1 Bank Scripts: A Denotational, Ideal Description
Bank State

Bank State

State Well-formedness
Syntax of Client Transactions
Semantics of Open Account Transaction
Semantics of Close Account Transaction
Semantics of Deposit Transaction
Withdraw Transaction
Semantics of Withdraw Transaction
Semantics of Open Mortgage Account Transaction
Semantics of Close Mortgage Account Transaction
Semantics of Loan Payment Transaction

A.2.2 Bank Scripts: A Customer Language
Open Account Transaction

Close Account Transaction
Deposit Transaction
Withdraw Transaction
Obtain Loan Transaction

Close Loan Transaction

Loan Payment Transaction

© © 0o 0o~ I

11
13
13

15

17

19
19
25
25
26
27
27
28
28
28
28
29
29
29
30
30
30
30
31
31
31
32
32
32
33
34
34
35
35

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

4 January 28, 2010 Dines Bjgrner

A.2.3 Syntax of Bank Script Language 36
Routine Headers 36
Example Statements Lo 0oL 37
Example Expressions oo oo 37
Abstract Syntax for Syntactic Types 38
Bank Script Language Syntax 38

A.2.4 Semantics of Bank Script Language 39
Semantics of Bank Script Language 39
Semantic Types Abstract Syntax 39
Semantic Functions L 40

A.2.5 A Student Exercise 45

A.3 Financial Service Industry 45

A3.1 Banking 45

Domain Analysis o 45
Account Analysis: 45
Account Types: 45
Contract Rules & Regulations: 46
Transactions: oL 46
Immediate & Deferred Transaction Handling: 46
Summary 47

Abstraction of Immediate and Deferred Transaction Processing 48
Account Temporality: 48

SUMMAry: oo 48

Modelling 49
Client Transactions: 50
Insert One Transaction: 50
Insertion of Arbitrary Number of Transactions: 50
Merge of Jobs: Client Transactions: 50
The Banking Cycle: 51
Auxiliary Repository Inspection Functions: 51
Merging the Client and the Bank Cycles: 52

A4 Securities Tradingo 53

A4.1 “What is a Securities Industry 77 oL 53
SYNOPSIS « .« v v o 53
A Stock Exchange “Grand” State. 54
Observers and State Structure 55
Main State Generator Signatures 55
A Next State Function 56
Next State Auxiliary Predicates 56
Next State Auxiliary Function 57
Auxiliary Generator Functions 59

A42 Discussion 59

B Tetsuo Tamai’s Paper 57

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 5
C Tokyo Stock Exchange arrowhead Announcements 67
C.1 Change of trading rules . 67
C.2 Points to note when placing orders 71

January 28, 2010, 00:00, A Financial Services Industry

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

6 January 28, 2010 Dines Bjgrner

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

Chapter 1

The Tokyo Stock Exchange

This chapter was begun on January 24. It is being released, first time, January 28.

1.1 Introduction

This chapter shall try describe: narrate and formalise some facets of the (now “old”!) stock
trading system of the TSE: Tokyo Stock Exchange (especially the ‘matching’ aspects).

1.2 The Problem

The reason that I try tackle a description (albeit of the “old” system) is that Prof. Tetsuo
Tamai published a delightful paper [1, IEEE Computer Journal, June 2009 (vol. 42 no. 6)
pp. 58-65)], Social Impact of Information Systems, in which a rather sad story is unfolded:
a human error key input: an offer for selling stocks, although “ridiculous” in its input data
(“sell 610 thousand stocks, each at one (1) Japanese Yen”, whereas one stock at 610,000 JPY
was meant), and although several immediate — within seconds — attempts to cancel this
“order”, could not be cancelled ! This lead to a loss for the selling broker at around 42 Billion
Yen, at today’s exchange rate, 26 Jan. 2010, 469 million US $s !> Prof. Tetsuo Tamai’s paper
gives a, to me, chilling account of what I judge as an extremely sloppy and irresponsible design
process by TSE and Fujitsu. It also leaves, I think, a strong impression of arrogance on the
part of TSE. This arrogance, I claim, is still there in the documents listed in Footnote 1.
So the problem is a threefold one of

1 We write “old” since, as of January 4, 2010, that ‘old’ stock trading system has been replaced by the
so-called arrowhead system. We refer to the following documents:

e http://www.tse.or.jp/english/rules/equities/arrowhead/pamphlet.html
e http://www.tse.or.jp/english/rules/equities/arrowhead/pamphlet-e.pdf

e http://www.tse.or.jp/english/rules/equities/arrowhead/pamphletie.pdf
We have reproduced the “points to note when placing orders” in Appendix Sect. C.2 (Pages 71-74).

e http://www.tse.or.jp/english/rules/equities/arrowhead/pamphlet2e.html
We have reproduced the “points to note when placing orders” in Appendix Sect. C.1 (Pages 67-70).

280 far three years of law court case hearing etc., has, on Dec. 4, 2009, resulted in complainant be-
ing awarded 10.7 billion Yen in damages. See http://www.ft.com/cms/s/0/e9d89050-e0d7-11de-9f58-
-00144feab49a.html.

January 28, 2010 Dines Bjgrner

e Proper Requirements: How does one (in this case a stock exchange) prescribe (to

the software developer) what is required by an appropriate hardware/software system
for, as in this case, stock handling: acceptance of buy bids and sell offers, the possible
withdrawal (or cancellation) of such submitted offers, and their matching (i.e., the actual
trade whereby buy bids are marched in an appropriate, clear and transparent manner).

Correctness of Implementation: Hhow does one make sure that the software/hard-
ware system meets customers’ expectations.

Proper Explanation to Lay Users: How does one explain, to the individual and
institutional customers of the stock exchange, those offering stocks for sale of bids for
buying stocks — how does one explain — in a clear and transparent manner the applicable
rules governing stock handling.?

I shall only try contribute, in this document, to a solution to the first of these sub-problems.

1.3 A Domain Description

1.3.1 Market and Limit Offers and Bids

1.

5.
6.

type

1

la

A market sell offer or buy bid specifies

(a) the unique identification of the stock,
(b) the number of stocks to be sold or bought, and

(c) the unique name of the seller.

A limit sell offer or buy bid specifies the same information as a market sell offer or buy
bid (i.e., Items la—1c), and

(d) the price at which the identified stock is to be sold or bought.

A trade order is either a (mkMkt marked) market order or (mkLim marked) a limit
order.

A trading command is either a sell order or a buy bid.

Itt

The sell orders are made unique by the mkSell “make” function.

The buy orders are made unique by the mkBuy “make” function.

Market = Stock id x Noumber of Stocks x Name of Customer
Stock_id

b Number_ of Stocks = {|nen:NatAn>1|}

1c

Name_of Customer

2 Limit = Market x Price
2d Price = {|n'n:NatAn>1|}

3The rules as explained in the Footnote 1 on the previous page listed documents are far from clear and
transparent: they are full of references to fast computers, overlapping processing, etc., etc.: matters with which
these buying and selling customers should not be concerned — so, at least, thinks this author !

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 9

3 Trade == mkMkt(m:Market) | mkLim(l:Limit)
4 Trading_ Command = Sell_Order | Buy_Bid
5 Sell_Order == mkSell(t:Trade)

6 Buy_Bid == mkBuy(t:Trade)

1.3.2 Order Books
7. We introduce a concept of linear, discrete time.
8. For each stock the stock exchange keeps an order book.

9. An order book for stock s;q : ST keeps track of limit buy bids and limit sell offers (for
the identified stock, s;4), as well as the market buy bids and sell offers; that is, for each
price

(d) the number stocks, by unique order number, offered for sale at that price, that is,
limit sell orders, and

(e) the number of stocks, by unique order number, bid for buying at that price, that
is, limitbuy bid orders;
(f) if an offer is a market sell offer, then the number of stocks to be sold is recorded,

and if an offer is a market buy bid (also an offer), then the number of stocks to be
bought is recorded,

10. Over time the stock exchange displays a series of full order books.

11. A trade unit is a pair of a unique order number and an amount (a number larger than
0) of stocks.

12. An amount designates a number of one or more stocks.

type
7T
8 All Stocks Order Book = Stock Id 7 Stock Order Book
9 Stock_Order_Book = (Price 7 Orders) x Market_ Offers
9 Orders:: so:Sell Orders x bo:Buy Bids
9d Sell_Orders = On 7 Amount
9¢ Buy Bids = On 7 Amount
9f Market_ Offers :: mkSell(n:Nat) x mkBuy(n:Nat)
10 TSE =T + All Stocks Order Book
11 TU = On x Amount
12 Amount = {|n*NatAn>1|}

1.3.3 Aggregate Offers

13. We introduce the concepts of aggregate sell and buy orders for a given stock at a given
price (and at a given time).

14. The aggregate sell orders for a given stock at a given price is

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

10 January 28, 2010 Dines Bjgrner

(g) the stocks being market sell offered and

(h) the number of stocks being limit offered for sale at that price or lower
15. The aggregate bur bids for a given stock at a given price is

(i) including the stocks being market bid offered and
(j) the number of stocks being limit bid for buying at that price or higher

value
14 aggr_sell: All_Stocks_Order_Book x Stock_Id x Price — Nat
14 aggr sell(asob,sid,p) =
14 let ((sos,_),(mkSell(ns),_)) = asob(sid) in
1l4g ns +
14h all_sell_summation(sos,p) end
15 aggr buy: All Stocks Order_ Book x Stock Id x Price — Nat
15 aggr_buy(asob,sid,p) =
15 let ((_,bbs),(_,mkBuy(nb))) = asob(sid) in
151 nb +
15) nb + all_buy_summation(bbs,p) end

all_sell summation: Sell Orders x Price — Nat
all_sell summation(sos,p) =
let ps = {p'|p':Prices * p’ € dom sos A p’ > p} in accumulate(sos,ps)(0) end

all_buy_ summation: Buy Bids x Price — Nat
all_buy summation(bbs,p) =
let ps = {p/[p":Prices * p’ € dom bos A p’ < p} in accumulate(bbs,ps)(0) end

The auxiliary accumulate function is shared between the all sell summation and the all -
buy summation functions. It sums the amounts of limit stocks in the price range of the
accumulate function argument ps. The auxiliary sum function sums the amounts of limit
stocks — “pealing off” the their unique order numbers.

value
accumulate: (Price 7z Orders) x Price-set — Nat — Nat
accumulate(pos,ps)(n) =
case ps of {} — n, {p}U ps’ — accumulate(pos,ps’) (n+sum(pos(p)){dom pos(p)}) end

sum: (Sell_Orders|Buy_Bids) — On-set — Nat
sum(ords)(ns) =
case ns of {} — 0, {n}U ns’ — ords(n)+sum(ords)(ns’) end

To handle the sub_limit_sells and sub_limit_buys indicated by Item 17c¢ on the facing page of
the ltayose “algorithm” we need the corresponding sub sell summation and sub buy sum-

mation functions:

value

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 11

sub sell summation: Stock Order Book x Price — Nat
sub_sell_summation(((sos,_),(ns,_)),p) = ns +
let ps = {p'|p/:Prices * p’ € dom sos A p’ > p} in accumulate(sos,ps)(0) end

sub_buy_summation: Stock_Order_Book x Price — Nat
sub_buy_summation(((__,bbs),(_,nb)),p) = nb +
let ps = {p/[p":Prices » p’ € dom bos A p’ < p} in accumulate(bbs,ps)(0) end

1.3.4 The TSE Itayose “Algorithm”

16. The TSE practices the so-called Itayose “algorithm” to decide on opening and closing
prices*. That is, the Itayose “algorithm” determines a single so-called ‘execution’ price,
one that matches sell and buy orders®:

17. The "matching sell and buy orders” rules:

(a) All market orders must be ‘executed’.

(b) All limit orders to sell/buy at prices lower/higher than the ‘execution price™

be executed.

must

(¢) The following amount of limit orders to sell or buy at the execution prices must
be executed: the entire amount of either all sell or all buy orders, and at least one
‘trading unit® from ‘the opposite side of the order book™.

value
17 match: All_Stocks Order Book x Stock Id — Price-set
17 match(asob,sid) as ps
17 pre: sid € dom asob
17 post: V p/:Price s p' € ps =

17 3 0s:On-set ¢

174/ market_ buys(asob(sid))

17p’ + sub_limit_ buys(asob(sid))(p’)

17¢ + all_priced_buys(asob(sid))(p’)

173/ = market_sells(asob(sid))

17v + sub_limit_ sells(asob(sid))(p’)

17¢ + some_ priced buys(asob(sid))(p’)(os) V
17" 3 0s:On-set *

178" market_buys(asob(sid))

17p” + sub_limit_ buys(asob(sid))(p)

17¢” + some_ priced _buys(asob(sid))(p’)(os)
173" = market_sells(asob(sid))

“[1, pp 59, col. 1, lines 4-3 from bottom, cf. Page 59

5 [1, pp 59, col. 2, lines 1-3 and Items 1.-3. after yellow, four line ‘insert’, cf. Page 59] These items 1.-3.
are reproduced as “our” Items 17a-17c.

5To execute an order:

"Execution price:

8Trading unit:

9The opposite side of the order book:

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

12 January 28, 2010 Dines Bjgrner

17b” + sub_limit_sells(asob(sid))(p’)
17¢” + all_priced_buys(asob(sid))(p) Vv

The match function calculates a set of prices for each of which a match can be made. The set
may be empty: there is no price which satisfies the match rules (cf. Items 17a—17c below). The
set may be a singleton set: there is a unique price which satisfies match rules Items 17a—17c.
The set may contain more than one price: there is not a unique price which satisfies match
rules Ttems 17a-17c. The single () and the double (") quoted (17a-~17¢) group of lines, in the
match formulas above, correspond to the Itayose “algorithm”s Item 17c ‘opposite sides of the
order book’ description. The existential quantification of a set of order numbers of lines 17/
and 17”7 correspond to that “algorithms” (still Ttem 17c) point of at least one ‘trading unit’.
It may be that the post condition predicate is only fullfilled for all trading units — so be it.

value
market buys: Stock Order Book — Amount
market_buys((_,(__,mkBuys(nb))),p) = nb

market _sells: Stock Order_Book — Amount
market_sells((__,(mkSells(ns),_)),p) = ns

sub_limit buys: Stock Order Book — Price — Amount
sub_ limit_ buys(((,bbs),_))(p) = sub_buy_summation(bbs,p)

sub_limit_sells: Stock Order_Book — Price — Amount
sub_ limit_sells((sos,_))(p) = sub_sell summation(sos,p)

all_priced__buys: Stock_Order_Book — Price — Amount
all_priced_buys((_,bbs),_)(p) = sum(bbs(p))

all priced sells: Stock Order Book — Price — Amount
all_priced_sells((sos,_),_)(p) = sum(sos(p))

some_priced buys: Stock Order Book — Price — On-set — Amount
some_ priced_buys((_,bbs),)(p)(os) =
let tbs = bbs(p) in if {}7#0sAosCdom tbs then sum(tbs)(os) else 0 end end

some_priced sells: Stock Order Book — Price — On-set — Amount
some_ priced_sells((sos,_),_)(p)(os) =
let tss = sos(p) in if {}7#0sAosCdom tss then sum(tss)(os) else 0 end end

The formalisation of the Itayise “algorithm”, as well as that “algorithm” [itself], does not
guarantee a match where a match “ought” be possible. The “stumbling block” seems to be
the Itayose “algorithm”s Item 17c. There it says: ‘at least one trading unit’. We suggest that a
match could be made in which some of the stocks of a candidate trading unit be matched with
the remaining stocks also being traded, but now with the stock exchange being the buyer and
with the stock exchange immediately “turning around” and posting those remaining stocks
as a TSE marked trading unit for sale.

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 13

Much more to come: essentially I have only modelled column 2, rightmost column, Page 59
of [1, Tetsuo Tamai, “TSE”]. Next to be modelled is column 1, leftmost column, Page 60
of [1]. See these same page numbers of the present document !

1.3.5 Match Executions

to come

1.3.6 Order Handling

to come

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

14 January 28, 2010 Dines Bjgrner

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

Chapter 2

The New Tokyo Stock Exchange

15

16 January 28, 2010 Dines Bjgrner

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

Chapter 3

Bibliographical Notes

Bibliography

[1] T. Tamai. Social Impact of Information System Failures. Computer, IEEE Computer
Society Journal, 42(6):58-65, June 2009.

17

18 January 28, 2010 Dines Bjgrner

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

Appendix A

Some 1996—-1999 Models of
“Abstracted” Financial Services

A.1 Financial Service Industry Business Processes

Example A.1 Financial Service Industry Business Processes: The main business process
behaviours of a financial service system are the following: (i) clients, (ii) banks, (iii) se-
curities instrument brokers and traders, (iv) portfolio managers, (v) (the, or a, or several)
stock exchange(s), (vi) stock incorporated enterprises and (vii) the financial service industry
“watchdog”. We rough-sketch the behaviour of a number of business processes of the financial
service industry.

(i) Clients engage in a number of business processes: (i.1) they open, deposit into, with-
draw from, obtain statements about, transfer sums between and close demand /deposit, mort-
gage and other accounts; (i.2) they request brokers to buy or sell, or to withdraw buy/sell
orders for securities instruments (bonds, stocks, futures, etc.); and (i.3) they arrange with
portfolio managers to look after their bank and securities instrument assets, and occasionally
they reinstruct portfolio managers in those respects.

(ii) Banks engage with clients, portfolio managers, and brokers and traders in exchanges
related to client transactions with banks, portfolio managers, and brokers and traders, as well
as with these on their own behalf, as clients.

(iii) Securities instrument brokers and traders engage with clients, portfolio managers and
the stock exchange(s) in exchanges related to client transactions with brokers and traders,
and, for traders, as well as with the stock exchange(s) on their own behalf, as clients.

(iv) Portfolio managers engage with clients, banks, and brokers and traders in exchanges
related to client portfolios.

(v) Stock exchanges engage with the financial service industry watchdog, with brokers
and traders, and with the stock listed enterprises, reinforcing trading practices, possibly
suspending trading of stocks of enterprises, etc.

(vi) Stock incorporated enterprises engage with the stock exchange: They send reports,
according to law, of possible major acquisitions, business developments, and quarterly and
annual stockholder and other reports.

(vii) The financial industry watchdog engages with banks, portfolio managers, brokers
and traders and with the stock exchanges. .

19

20 January 28, 2010 Dines Bjgrner

Wh/bw[L.b]:WB[BW

WHAW[L t]:WT|TW =
[=J
o
£ =}
cr g T[] S
i R g
= | Stock ;
cbibef1.c,1.bJ:CBIBC 2 | bubpbigere | Exchange -
g | Exc 2
C[2] ciitel1. L :CTITC s T2 ' wiSW @
' [y = H =1
: i : . k=l
: . |« Brokers : SE wews | g
Lol . PUPLLp.LUPTITP [: :
Clients = CpIpell.c.L.pLCPIPC = Traders §
! a
£
Cle] T[] b
[
=]
[

Wp/pw(1..p):WP|PW

P[] P2 b Plp]

Portfolio Managers

Figure A.1: A financial behavioural system abstraction

Example A.2 Atomic Component — A Bank Account: When we informally speak of the
phenomena that can be observed in connection with a bank account, we may first bring up
such things as: (i) The balance (or cash, a noun), the credit limit (noun), the interest rate
(noun), the yield (noun); and (ii) the opening (verb) of, the deposit (verb) into, the withdrawal
(verb) from and the closing (verb) of an account. Then we may identify (iii) the events that
trigger the opening, deposit, withdrawal and closing actions. We may thus consider a bank
account — with this structure of (i) values, (ii) actions (predicates, functions, operations),
and (iii) ability to respond to external events (to open, to deposit, etc.) — to be a component,
i.e., a process. .

Example A.3 Composite Component — A Bank: Likewise, continuing the above example,
we can speak of a bank as consisting of any number of bank accounts, i.e., as a composite
component of proper constituent bank account components. Other proper constituent com-
ponents are: the customers (who own the accounts), the bank tellers (whether humans or
machines) who services the accounts as instructed by customers, etc. .

In the above we have stressed the “internals” of the atomic components. When considering
the composite components we may wish to emphasise the interaction between components.

Example A.4 One-Way Composite Component Interaction: We illustrate a simple one-
way client-to-account deposit. A customer may instruct a bank teller to deposit monies
handed over from the customer to the bank teller into an appropriate account, and we see
an interaction between three “atomic” components: the client(s), the bank teller(s) and the
account(s).

Figure A.2 shows a set of distinct client processes. A client may have one or more accounts
and clients may share accounts. For each distinct account there is an account process. The
bank (i.e., the bank teller) is a process. It is at any one time willing to input a cash-to-account
(a,d) request from any client (c). There are as many channels into (out from) the bank process
as there are distinct clients (resp. accounts).

Using formal notation we can expand on the informal picture of Fig. A.2.

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 21

Clients Accounts

V| cbfL.m] |V

m, respectively n,
nondeterministic
external choices

Figure A.2: A fifth schematic “rendezvous” class

type
Cash, Cash, Cidx, Aidx
channel
{ cb[c]:(Aidxx Cash) | c:Cidx }
{ ba[a]:Cash | a:Aidx }
value
S5: Unit — Unit
S5() = Clients() || B() || Accounts()

Clients: Unit — out { cb[c] | c:Cidx } Unit
Clients() = || { C(c) | ¢:Cidx }

C: ¢:Cidx — out cp[c]| Unit
C(c) = let (a,d):(AidxxCash) = ... in cb[c] ! (a,d) end ; C(c)

type
A Bals = Aindex 4 Cash

value

abals: A Bals

Accounts: Unit — in { ba[a] | a:Alndex } Unit
Accounts() = || { A(a,abals(a)) | a:Alndex }

A: a:Aindex x Balance — in ba[a] Unit
A(a,d) = let d’ = ba[a] ? in A(a,d+d’) end

B: Unit — in { cb[c]| | c:Cidx } out { ba[a] | a:Aidx } Unit
B() = [] {let (a,d) = cb[c] ? in baa] ! d end | c:Cidx} ; B()

We comment on the deposit example. With respect to the use of notation above, there are

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

22 January 28, 2010 Dines Bjgrner

Cindex client-to-bank channels, and Aindex bank-to-account channels. The banking system
(S5) consists of a number of concurrent processes: Cindex clients, Aindex accounts and one
bank. From each client process there is one output channel, and into each account process
there is one input channel. Each client and each account process cycles around depositing,
respectively cashing monies. The bank process is nondeterministically willing ([]) to engage in
a rendezvous with any client process, and passes any such input onto the appropriate account.

Generally speaking, we illustrated a banking system of many clients and many accounts.
We only modelled the deposit behaviour from the client via the bank teller to the account.
We did not model any reverse behaviour, for example, informing the client as to the new
balance of the account. So the two bundles of channels were both one-way channels. We shall
later show an example with two-way channels. .

Example A.5 Multiple, Diverse Component Interaction: We illustrate composite compo-
nent interaction. At regular intervals, as instructed by some service scripts associated with
several distinct kinds of accounts, transfers of monies may take place between these. For
example, a regular repayment of a loan may involve the following components, operations
and interactions: An appropriate repayment amount, p, is communicated from client k to the
bank’s script servicing component se (3).!Based on the loan debt and its interest rate (d,ir) (4),
and this repayment (p), a distribution of annuity (a), fee (f) and interest (i) is calculated.?The
loan repayment sum total, p, is subtracted from the balance, b, of the demand/deposit ac-
count, dd_ a, of the client (5). A loan service fee, f, is added to the (loan service) fee account,
f_a, of the bank (7). The interest on the balance of the loan since the last repayment is added
to the interest account, i_a, of the bank (8), and the difference, a, (the effective repayment),
between the repayment, p, and the sum of the fee and the interest is subtracted from the
principal, p, of the mortgage account, m_a, of the client (6).

In process modelling the above we are stressing the communications. As we shall see, the
above can be formally modelled as below.

type
Monies,Deposit,Loan,
Interest Income,Fee Income = Int,
Interest = Rat
channel
cp,cd,cddp,cm,cf,ci:Monies, cmi:Interest
value
sys: Unit — Unit,
sys() = se() | k() | dd_a(b) || m_a(p) || f_a(f) || i_a(i)

k: Unit — out cp,cd Unit
k() =

(let p:Nat ¢ /% p is some repayment, 1 */ in cp ! p end

1

let d:Nat « /+ d is some deposit, 2 */ in cd ! d end)
k()

'For references (3-8) we refer to Fig. A.3.
2See line four of the body of the definition of the se process below.

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 23

(> \ Accounts
Client: k f
: m--t----- EERE & . _cddp _ ’5 . Demand
o | : : : .
e L N 5 y : Deposit
¥ ! P - dda
o_lep ST : ~
i ! : :
AR | ;
- : | : :
i cd 2 oo e--bed-T T g . Mortgage
i 6 Y__[_L___°MmM__ ¥6 " ma
i A AN N : T
; I e
| B A S St M I N
o :
T :
o s & Fee:fa
N/
e D el :
Bank Service: se Vo §
Lo 8 Interest: i_a
. Bank
sys()=k() Il se() Il dd_a() Il m_a() Il f_a() Il i_a()

Accounts

Figure A.3: A loan repayment scenario

se: Unit — in cd,cp,cmi out cddp,cm,cf,ci Unit

se() =
(letd=cd ? incddp ! d end) /x 1,2 %/

(let (p,(ir,¢)) = (cp 7,cmi 7) in /* 3,4 */

let (a,f,iv) = o(p,l,ir) in

(cddp! (=p) |[em ! a | cf! f| ci! iv) end end)) /* 5,6,7,8 x/
> se()

dd a: Deposit — in cddp Unit
dd_a(b) =dd_a(b + cddp ?) /* 2,5 %/

m_ a: Interest x Loan — out cmi in cm Unit
m_a(ir) = cmi! (ir,d) ; m_a(ir,/— cm ?) /% 4;6 */

f a: Fee Income — in cf Unit
faf)y=1f a(f+cf?) /x7x/

i a: Interest Income — in c¢i Unit
i_a(i)=i_a(i+c?) /x8x%/

The formulas above express:

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

24 January 28, 2010 Dines Bjgrner

e The composite component, a bank, consists of:

* a customer, k, connected to the bank (service), se, via channels cd, cp

%

that customer’s demand/deposit account, dd_a, connected to the bank (service)
via channels cdb, cddp

* that customer’s mortgage account, m_a, connected to the bank (service) via chan-
nel cm

%

a bank fees income account, f_a, connected to the bank (service) via channel cf

* a bank interest income account, i_a, connected to the bank (service) via channel
Ci

e The customer demand/deposit account is willing, at any time, to nondeterministically
engage in communication with the service: either accepting (?) a deposit or loan re-
payment (2 or 5), or delivering (!) information about the loan balance and interest rate

(4).

e We model this “externally inflicted” behaviour by (what is called) the external nonde-
terministic choice, D3, operation.

e The service component, in a nondeterministic external choice, [], either accepts a cus-
tomer deposit (cd?) or a mortgage payment (cp?).

e The deposit is communicated (cddp!d) to the demand/deposit account component.

e The fee, interest and annuity payments are communicated in parallel (]|) to each of
the respective accounts: bank fees income (cf!f), bank interest income (cili) and client
mortgage (cmla) account components.

e The customer is unpredictable, may issue either a deposit or a repayment interaction
with the bank.

e We model this “self-inflicted” behaviour by (what is called) the internal nondeterministic
choice, []*, operation.

Characterisation: By a nondeterministic external choice we mean a nondeterministic deci-
sion which is effected, not by actions prescribed by the text in which the [] operator occurs,
but by actions in other processes. That is, speaking operationally, the process honouring the
[] operation does so by “listening” to the environment. .

Characterisation: By nondeterministic internal choice we mean a nondeterministic decision
that is implied by the text in which the [| operator occurs. Speaking operationally, the decision
is taken locally by the process itself, not as the result of any event in its surroundings. .

3See the definition of what is meant by nondeterministic external choice right after this example.
4See the definition of what is meant by nondeterministic internal choice right after this example.

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 25

A.1.1 Some Modelling Comments — An Aside

Examples A.4 and A.5 illustrated one-way communication, from clients via the bank to ac-
counts. Example A .4 illustrated bank “multiplexing” between several (m) clients and several
(n) accounts. Example A.5 illustrated a bank with just one client and one pair of client
demand/deposit and mortgage accounts. Needless to say, a more realistic banking system
would combine the above. Also, we have here chosen to model each account as a process. It
is reasonable to model each client as a separate process, in that the collection of all clients can
be seen as a set of independently and concurrently operating components. To model the large
set of all accounts as a similarly large set of seemingly independent and concurrent processes
can perhaps be considered a “trick”: It makes, we believe, the banking system operation more
transparent. In the next — and final — example of this introductory section we augment
the first example with an account balance response being sent back from the account via the
bank to the client.

A.1.2 Examples Continued

- i

I
I | |
These "channels" > |
are really bundles - |
(i.e., arrays) of such, < ! |

as illustrated below:

Client (am)=cplll? Account
% calii(am,)
B
cplilr
(i,r)=cqlk1?

Bank

Figure A.4: Two-way component interaction

Example A.6 Two-Way Component Interaction: The present example “contains” that of
the one-way component interaction of Example A.4. Each of the client, bank and account
process definitions are to be augmented as shown in Fig. A.4 and in the formulas that follow
(cf. Fig. A.2 and the formulas in Example A.4).

type
Cash, Balance, Clndex, Alndex
CtoB = Alndex x Cash,
BtoC = Balance,

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

26 January 28, 2010 Dines Bjgrner

BtoA = Cindex x Cash,
AtoB = Cindex x Balance

channel

cb[1..m] CtoB|BtoC, ba[1l..n| BtoA|AtoB
value

S6: Unit — Unit

S6() =

I { C(c) | e:Cndex } || B() |
|| { A(a,b,r) | a:Alndex, b:Balance, r:Response « ... }

C: ¢:CIndex — out cp[c| Unit
C(c) =
let (a,d):(AlndexxCash) = ... in
cb[c]! (d,a) end let r = Cb[] 7 in C(c) end

B: Unit — in,out {cb[c]|c:CIndex} in,out {ba]a]la:Alndex} Unit
B() = [] {let (d,a) = cb[c] 7 in bala] ! (c,d) end | c:Cindex} []
[] {let (c,b) = ba[a] ? in bc[c]! b end | a:Aindex} ; B()

A: a:Aindex x Balance — in,out bala] Unit
A(a,b) = let (c,m) = ba[a] ? in ba[a] ! (m+b) ; A(a,m+b) end

We explain the formulas above. Both the C and the A definitions specify pairs of communica-
tions: deposit output followed by a response input, respectively a deposit input followed by a
balance response output. Since many client deposits may occur while account deposit regis-
trations take place, client identity is passed on to the account, which “returns” this identity to
the bank — thus removing a need for the bank to keep track of client-to-account associations.
The bank is thus willing, at any moment, to engage in any deposit and in any response com-
munication from clients, respectively accounts. This is expressed using the nondeterministic
external choice combinator []. .

Example A.7 A Bank System Context and State:

The Context

We focus in this example on the demand/deposit aspects of an ordinary bank. The bank
has clients k:K. Clients have one or more numbered accounts c:C. Accounts, a:A, may be
shared between two or more clients. Each account is established and “governed” by an initial
contract, ¢:L (‘L’ for legal). The account contract specifies a number of parameters: the yield,
by rate (i.e., percentage), y:Y, due the client on positive deposits; the interest, by rate (i.e.,
percentage), i:l, due the bank on negative deposits less than a normal credit limit, n:N; the
period (frequency), f:F, between (of) interest and yield calculations; the number of days,
d:D, between bank statements sent to the client; and personal client information, p:P (name,
address, phone number, etc.).

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 27

The State

Above we focused on the “syntactic” notion of a client/account contract and what it pre-
scribed. We now focus on the “semantic” notion of the client account. The client account a:A
contains the following information: the balance, b:B (of monies in the account, whether debit
or credit, i.e., whether positive or negative), a list of time-stamped transactions “against” the
account: establishment, deposits, withdrawals, transfers, interest/yield calculation, whether
the account is frozen (due to its exceeding the credit limit), or (again) freed (due to restoration
of balance within credit limits), issue of statement, and closing of account. Each transaction
records the transaction type, and if deposit, withdrawal or transfer and the amount involved,
as well as possibly some other information.

A Model

We consider contract information a contextual part of the bank configuration, while the
account part is considered a state part of the bank configuration. We may then model the
bank as follows:

type
K,C,Y,IN,D, P, B, T
[Bank: Configuration |
Bank =T x X
[I: Context |
I'=(K # C-set) x (C # L)
L == mkL(y:Y,i:In:N,f:F,d:D,p:P)
[3: State]
X=C m» A
A = {free|frozen} x B x (T x Trans)*
Trans = Est|Dep|Wth|Xfr|Int|Yie|Frz|Fre|Stm|Sha|Clo
Dep == deposit(m:Nat)
Wth == withdraw(m:Nat)
Xfr == toxfer(to:C,m:Nat) | fmxfer(fm:C,m:Nat)
Sha == share(new:C,old:C)

Bank is here the configuration.® I' is the context. 3 is the state. .

The banking system so far outlined is primarily a dynamic, programmable system: Most
transactions, when obeyed, change the (account) state o:X. A few (to wit: establish, share)
change the context ~:I'. Establishment occurs exactly once in the lifetime of an account.
Initially contracts, from which the v:I' configuration component is built, are thought of as
specifying only one client. Hence the share transaction, which “joins” new clients to an
account, could as well be thought of as an action: one changing the state, rather than the
context. We have arbitrarily chosen to model it as a context changing “action”! All this to
show that the borderline between context and state is “soft”: It is a matter of choice.

Notice that, although time enters into the banking model, we did not model time flow
explicitly. Here, in the man-made system model, it is considered “outside” the model. We

5But, the bank configuration could, in more realistic situations, include many other components not related
directly to the client/account “business”.

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

28 January 28, 2010 Dines Bjgrner

claim that the concepts of context and state enter, in complementary ways, into both phys-
ical systems and man-made systems. Before proceeding with more detailed analysis of the
configuration (cum context @ state) ideas, let us recall that these concepts are pragmatic.

18. No money printing: Financial transactions between financial institutions (transfers of
monies between banks, or to or from insurance companies, stockbrokers, portfolio man-
agers, etc.) do not themselves “generate monies”: The sum total of monies within the
system is unchanged — money is only “moved”.

19. Life is like a sewer, what you put into it is what you get out of it (II): The only
changes in the sum total of monies of a financial system (of banks, insurance companies,
stockbrokers, funds managers, etc.) is when clients residing outside this system deposits
or withdraws funds.

20. Financial services:

The system of banks (including a national or federal, etc., bank), insurance companies,
stockbrokers and traders, stock exchanges, portfolio managers, and the external clients
of these “components” (bank account holders, insurance holders, buyers and sellers of
securities instruments, etc.), as well as the externally observable events within as well
as between these “system” components and between these and their clients, could form
a domain. Some of these events trigger actions, such as: opening an account, depositing
monies, withdrawing monies, transferring monies, buying or selling stocks, etc.

A.2 Bank Scripts

A.2.1 Bank Scripts: A Denotational, Ideal Description

Example A.8 Bank Scripts, I: Without much informal explanation, i.e., narrative, we define
a small bank, small in the sense of offering but a few services. One can open and close
demand /deposit accounts. One can obtain and close mortgage loans, i.e., obtain loans. One
can deposit into and withdraw from demand/deposit accounts. And one can make payments
on the loan. In this example we illustrate informal rough-sketch scripts while also formalising
these scripts.

In the following we first give the formal specification, then a rough-sketch script. You may
prefer to read the pairs, formal specification and rough-sketch script, in the reverse order.

Bank State
Bank State

type
C,A,M
AY' = Real, AY = {| ay:AY’ « 0<ay<10 |}
MI' = Real, MI = {| mi:MI' « 0<mi<10 |}
Bank’ = A_Register x Accounts x M_Register x Loans
Bank = {| 3:Bank’ » wf_Bank(3)|}
A_Register = C # A-set
Accounts = A # Balance

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 29

M _ Register = C 7 M-set
Loans = M # (Loan x Date)
Loan,Balance = P

P = Nat

There are clients (c:C), account numbers (a:A), mortgage number (m:M), account yields
(ay:AY), and mortgage interest rates (mi:MI). The bank registers, by client, all accounts
(p:A_Register) and all mortgages (u:M_ Register). To each account number there is a balance
(a:Accounts). To each mortgage number there is a loan (¢:Loans). To each loan is attached
the last date that interest was paid on the loan.

State Well-formedness

value
ay:AY, mi:MI

wf Bank: Bank — Bool

wi_Bank(p,a,u,l) = U rng p = dom a A U rng y = dom /¢
axiom

al<mi

We assume a fixed yield, ai, on demand/deposit accounts, and a fixed interest, mi, on loans.
A bank is well-formed if all accounts named in the accounts register are indeed accounts, and
all loans named in the mortgage register are indeed mortgages. No accounts and no loans
exist unless they are registered.

Syntax of Client Transactions

type
Cmd = OpA | CloA | Dep | Wdr | OpM | CloM | Pay
OpA == mkOA(c:C)
CloA == mkCA(c:C,a:A)
Dep == mkD(c:C,a:A,p:P)
Wdr == mkW(c:C,a:A,p:P)
OpM == mkOM(c:C,p:P)
Pay == mkPM(c:C,a:A,;m:M,p:P)
CloM == mkCM(c:C,m:M,p:P)
Reply = A | M | P | OkNok
OkNok == ok | notok

The client can issue the following commands: Open Account, Close Account, Deposit monies
(p:P), Withdraw monies (p:P), Obtain loans (of size p:P) and Pay installations on loans (by
transferring monies from an account). Loans can be Closed when paid down.

Semantics of Open Account Transaction

value
int_ Cmd: Cmd — Bank — Bank x Reply

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

30 January 28, 2010 Dines Bjgrner

int_ Cmd(mkOA(c))(p,a,u,l) =
let a:A * a ¢ dom « in
let as = if ¢ € dom p then p(c) else {} end U {a} in
let p' = p 1 [c—as],
o = aUla—0]in
((p',/,p,0),a) end end end

When opening an account the new account number is registered and the new account set to
0. The client obtains the account number.

Semantics of Close Account Transaction

int_ Cmd(mkCA(c,a))(p,a,u,l) =
let g/ = p T [cplc)\{a}],
o = a\ {a}in
((#/0 p0),0:(a) end
pre c € dom p A a € p(c)

When closing an account the account number is deregistered, the account is deleted, and its
balance is paid to the client. It is checked that the client is a bona fide client and presents a
bona fide account number. The well-formedness condition on banks secures that if an account
number is registered then there is also an account of that number.

Semantics of Deposit Transaction

int_ Cmd(mkD(c,a,p))(p,c,p,l) =
let ' = at[a—a(a)+p] in
((p, ,u1,0),0k) end
pre c € dom p A a € p(c)

When depositing into an account that account is increased by the amount deposited. It is
checked that the client is a bona fide client and presents a bona fide account number.

Withdraw Transaction

Withdrawing monies can only occur if the amount is not larger than that deposited in the
named account. Otherwise the amount, p:P, is subtracted from the named account. It is
checked that the client is a bona fide client and presents a bona fide account number.

Semantics of Withdraw Transaction

int_ Cmd(mkW(c,a,p))(p,a,u,l) =
if a(a)>p
then
let «/ = af[a—a(a)—p]in
((p,a,p,),p) end
else

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 31

((p7a7/1/7€)7n0k)
end

prec € dom p A a € dom «

Semantics of Open Mortgage Account Transaction

int_ Cmd(mkOM(c,p))(p,a,pu,f) =
let m:M ¢« m ¢ dom /in
let ms = if ¢ € dom p then pu(c) else {} end U {m} in
let mu’ = p 7 [c—ms],
of = af [ag—alag)—p],
¢ = ¢ Ulm—p|in
((p,o/ i/ ¢"),m) end end end

To obtain a loan, p:P, is to open a new mortgage account with that loan (p:P) as its initial
balance. The mortgage number is registered and given to the client. The loan amount,
p, is taken from a specially designated bank capital acount, ay. The bank well-formedness
condition should be made to reflect the existence of this account.

Semantics of Close Mortgage Account Transaction

int_ Cmd(mkCM(c,m))(p,a,u,0) =

if /(m) =0
then
let i/ = p 1 [c—pu(c) \ {m}],
¢ =/\ {m} in
((p,c,pt’,0"),0k) end
else
((pscv,1,£) ,n0k)
end

pre c € dom pu A m € p(c)

One can only close a mortgage account if it has been paid down (to 0 balance). If so, the
loan is deregistered, the account removed and the client given an OK. If not paid down the
bank state does not change, but the client is given a NOT OK. It is checked that the client
is a bona fide loan client and presents a bona fide mortgage account number.

Semantics of Loan Payment Transaction

To pay off a loan is to pay the interest on the loan since the last time interest was paid. That
is, interest, 7, is calculated on the balance, b, of the loan for the period d’ — d, at the rate of
mi. (We omit defining the interest computation.) The payment, p, is taken from the client’s
demand /deposit account, a; 7 is paid into a bank (interest earning account) a; and the loan is
diminished with the difference p —i. It is checked that the client is a bona fide loan client and
presents a bona fide mortgage account number. The bank well-formedness condition should
be made to reflect the existence of account a;.

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

32 January 28, 2010 Dines Bjgrner

int_ Cmd(mkPM(c,a,m,p,d"))(p,a,p,f) =
let (b,d) = ¢(m) in
if a(a)>p
then
let i = interest(mi,b,d’'—d),
¢ = 0t [met(m)—(p—i)]
o = a1 la—a(a)—p,a;—ala;)+i] in
((p,o,11,0"),0k) end
else
((p,o,11,0) ,nok)
end end
pre c € dom p A m € p(c)

This ends the first stage of the development of a script language. .

A.2.2 Bank Scripts: A Customer Language

Example A.9 Bank Scripts, II: From each of the informal/formal bank script descriptions
we systematically “derive” a script in a possible bank script language. The derivation, for
example, for how we get from the formal descriptions of the individual transactions to the
scripts in the “formal” bank script language is not formalised. In this example we simply
propose possible scripts in the formal bank script language.

Open Account Transaction

value
int_ Cmd(mkOA(c))(p,a,u,l) =
let a:A e a ¢ dom « in
let as = if ¢ € dom p then p(c) else {} end U {a} in
let p' = p 1 [c—as],
o = aU[a—0] in
((p',a,u,0),a) end end end

Derived Bank Script: Open Account Transaction

routine open_account(c in “client”,a out "account”) =
do
register ¢ with new account a ;
return account number a to client c
end

Close Account Transaction

int_ Cmd(mkCA(c,a))(p,a,u,l) =
let o/ = p T [cplc)\{a}],
o = a\ {a}in
(¢ i0),0(a)) end
pre c € dom p A a € p(c)

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 33

Derived Bank Script: Close Account Transaction

routine close_account(c in “client” a in "account” out "monies”) =
do
check that account client c is registered ;
check that account a is registered with client c ;

if
checks fail
then
return NOT OK to client ¢
else
do
return account balance a to client c ;
delete account a
end
fi
end

Deposit Transaction

int_ Cmd(mkD(c,a,p))(p,c,u,l) =
let o/ = af[a—a(a)+p] in
((p,a,p1,0),0k) end
pre c € dom p A a € p(c)

Derived Bank Script: Deposit Transaction

routine deposit(c in “client” a in "account” ma in "monies”) =
do
check that account client c is registered ;
check that account a is registered with client c ;

if
checks fail
then
return NOT OK to client ¢
else
do
add ma to account a ;
return OK to client ¢
end
fi
end

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

34 January 28, 2010 Dines Bjgrner

Withdraw Transaction

int_ Cmd(mkW(c,a,p))(p,a,u,l) =
if a(a)>p
then
let «/ = af[a—a(a)—p]in
((p,o,p1,6),p) end
else
((pv,p1,€) mok)
end
pre c € dom p A a € dom «

Derived Bank Script: Withdraw Transaction

routine withdraw(c in "client” a in "account”,
ma in "amount” out "monies”) =
do
check that account client c is registered ;
check that account a is registered with client c ;
check that account a has ma or more balance;

if
checks fail
then
return NOT OK to client ¢
else
do
subtract ma from account a ;
return ma to client c
end
fi
end

Obtain Loan Transaction

int_ Cmd(mkOM(c,p))(p,a,p,f) =
let m:M ¢« m ¢ dom /in
let ms = if ¢ € dom p then pu(c) else {} end U {m} in
let mu' = p 1 [c—ms],
o/ = af[ag—alag)-pl,
=/ U[m—p]in
((p, o/, ,¢"),m) end end end

Derived Bank Script: Obtain Loan Transaction

. . " . " . " " i n
routine get loan(c in “client”,p in "amount”,m out "loan number”) =
do
register ¢ with loan m amount p;

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 35

subtract p from account bank’s loan capital
return loan number m to client c
end

Close Loan Transaction

int_ Cmd(mkCM(c,m))(p,a,u,0) =

if /(m) =0
then
let i/ = p it [c—p(c)\{m}],
=17 \ {I’Il} in
((p,a,p’ 0"),0k) end
else
((psv,p1,€),n0k)
end

pre c € dom pu A m € p(c)

Derived Bank Script: Close Loan Transaction

routine close_loan(c in "client” m in "loan number”) =
do
check that loan client c is registered ;
check that loan m is registered with client c ;
check that loan m has 0 balance;

if
checks fail
then
return NOT OK to client ¢
else
do
close loan m
return OK to client ¢
end
fi
end

Loan Payment Transaction

int_ Cmd(mkPM(c,a,m,p,d"))(p,c,1,f) =
let (b,d) = ¢(m) in
if a(a)>p
then
let i = interest(mi,b,d’—d),
¢ = 01 [met(m)—(p-i)]
o = a1 la—a(a)—p,a;—ala;)+i] in
((p,o,11,0"),0k) end

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

36 January 28, 2010 Dines Bjgrner

else
((p,a,p,¢) ,nok)
end end
pre c € dom pu A m € p(c)

Derived Bank Script: Loan Payment Transaction

routine pay_loan(c in “client”.m in “"loan number”,p in "amount”) =
do
check that loan client c is registered ;
check that loan m is registered with client c ;
check that account a is registered with client c ;
check that account a has p or more balance ;

if
checks fail
then
return NOT OK to client ¢
else
do
compute interest i for loan m on date d ;
subtract p—i from loan m ;
subtract p from account a ;
add i to account bank’s interest
return OK to client c ;
end
fi
end
This ends the second stage of the development of a script language. .

A.2.3 Syntax of Bank Script Language

Example A.10 Bank Scripts, I11: We now examine the proposed scripts. Our objective is to
design a syntax for the language of bank scripts. First, we list the statements as they appear
in Example A.9 on page 32, except for the first two statements.

Routine Headers

We first list all routine “headers”:

open_account(c in “client”,a out "account”)

close_account(c in “client”,a in "account” out "monies”)

deposit(c in "client” a in "account” ma in "monies”)

withdraw(c in "client” a in "account” ma in “amount” out "monies”)
get_loan(c in "client” p in "amount” m out “loan number”)
close_loan(c in "client”,m in "loan number”)

pay_loan(c in "client” m in "loan number”p in "amount”)

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 37

We then schematise a routine “header”:

"o /
t

. . /) " : ! nm —
routine name(vl io "t",v2 io "t2",...,vn io "tn") =

where:
io = in | out
and:

ti is any text

Example Statements

do stmt_list end
if test _expr then stmt else stmt fi

register ¢ with new account a
register ¢ with loan m amount p

add p to account a

subtract p from account a

subtract p—i from loan m

add i to account bank’s interest

subtract p from account bank’s loan capital
add p to account bank’s loan capital
compute interest i for loan m on date d

delete account a
close loan m

return ret _expr to client c
check that check expr

The interest variable i is a local variable. The date variable d is an “oracle” (see below), but
will be treated as a local variable.

Example Expressions

test__expr:
checks fail
ret_expr:

account number a
account balance a

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

38 January 28, 2010 Dines Bjgrner

NOT OK
OK

p
loan number m

check expr:

account client c is registered
account a is registered with client c
account a has p or more balance
loan client c is registered

loan m is registered with client c
loan m has 0 balance

Abstract Syntax for Syntactic Types

We analyse the above concrete schemas (i.e., examples). Our aim is to find a reasonably simple
syntax that allows the generation of the scripts of Example A.9. After some experimentation
we settle on the syntax shown next.

Bank Script Language Syntax

type
RN, V,C, A, M, P, 1,D

Routine = Header x Clause

Header == mkH(rn:RN,vdm:(V # (IOL x Text)))
IOL == in | out | local

Clause = DoEnd | IfThEl | Return | RegA | RegL | Check
| Add | Sub | 2Sub | DelA | DelM | Coml | RetE |

DoEnd == mkDE(cl:Clause*)
IfThEl == mkITE(tex:Test_ Expr,cl:Clause,cl:Clause)

Return == mkR(rex:Ret_ Expr,c:V)
RegA == mkRA(c:V,a:V)
Regl, == mkRL(c:V,m:V,p:V)
Chk = mkC(cex:Chk_Expr)
Add == mkA(p:V,t:(V|BA))
Sub == mkS(p:V,t:(V|BA))
2Sub == mk2S(p:V,i:V,t:(AN|MN|BA))
AN == mkAN(a:V)
MN == mkMN(m:V)
BA == bank_i | bank_c

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 39

DelA == mkDA(c:V,a:V)
DelM == mkDM(c:V,m:V)
Comp == mkCP(m:V fn:Fn,argl:(V|D)*)

Fn == interest | ...
Test_Expr = mkTE()

Chk_Expr == CisAReg(c:V) | AisReg(a:V,c:V) | AhasP(a:V,p:V)
| CisMReg(c:V) | MisReg(m:V,c:V) | MhasO(m:V)

RetE == mkAN(a:V)|mkAB(a:V)|ok|nok|/mkP (p:V)|mkMN(m:V)

A.2.4 Semantics of Bank Script Language
Example A.11 Bank Scripts, IV:

Semantics of Bank Script Language

We now give semantics to the bank script language of Example A.10 on page 36.

Semantic Types Abstract Syntax

type
V,C, A, M, P, 1
type
AY' = Real, AY = {| ay:AY’ » 0<ay<10 |}
MI' = Real, MI = {| mi:MI' « 0<mi<10 |}
Bank’ = A_Register x Accounts x M_Register x Loans
Bank = {| 3:Bank’ » wf_Bank(3)|}
A Register = C A-set
Accounts = A # Balance
M Register = C + M-set
Loans = M 7 (Loan x Date)
Loan,Balance = P
P = Nat
= (V m (CIAMPID) U (Fn o FCT)
FCT = (...|Date)* — Bank — (P|...)
value
ag,ai:A
axiom
V (p,a,p1,0):B {ap,a;} € dom «

The only difference between the above semantics types and those of Example A.9 is the X
state. The purpose of this auxiliary bank state component is to provide (i) a binding between
the (always fixed) formal parameters of the script routines and the actual arguments given by

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

40 January 28, 2010 Dines Bjgrner

the bank client or bank clerk when invoking any one of the routines, and (ii) a binding of a
variety of “primitive”, fixed, banking functions, FCT, named Fn, like computing the interest
on loans, etc.

Semantic Functions

channel
k:(C|A|M|P|Text), d:Date

There is, in this simplifying example, one channel, k, between the bank and the client. It
transfers text messages from the bank to the client, and client names (c:C), client account
numbers (a:A), client mortgage numbers (m:M), and amount requests and monies (p:P) from
the client to the bank. There is also a “magic”, a demonic channel, d, which connects the
bank to a date “oracle”.

value
date: Date — out d Unit
date(da) = (d!da ; date(da+A))

Each routine has a header and a clause. The purpose of the header is to initialise the auxiliary
state component o to appropriate bindings of formal routine parameters to actual, client-
provided arguments. Once initialised, interpretation of the routine clause can take place.

int Routine: Routine — Bank — out k BankxX
int_ Routine(hdr,cla)(5) =

let o = initialise(hdr)([]) in

Int_ Clause(cla)(o)(true)(3) end

For each formal parameter used in the body, i.e., in the clause, of the routine, there is a formal
parameter definition in the header, and only for such. We have not expressed the syntactic
well-formedness condition — but leave it as an exercise to the reader. And for each such
formal parameter of the header a binding has now to be initially established. Some define
input arguments, some define local variables and the rest define, i.e., name, output results.
For each input argument the meaning of the header therefore specifies that an interaction is
to take place, with the environment, as here designated by channel k, in order to obtain the
actual value of that argument.

initialise: Header — ¥ — out,in k X
initialise(hdr)(o) =
if hdr = []
then o
else
let v:V ¢ v € dom hdr in
let (iol,txt) = hdr(v) in
let o' =
case iol of
in — kltxt ; 0 U [v — k7],

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 41

_ — 0 U[v ~ undefined|
end in
initialise(hdr\{v})(o”)
end end end end

In general, a clause is interpreted in a configuration consisting of three parts: (i) the local,
auxiliary state, o : ¥, which binds routine formal parameters to their values; (ii) the current
‘check’ state, tf:Check, which records the “sum total”, i.e., the conjunction status of the check
commands so far interpreted, i.e., initially tf = true; and (iii) the proper bank state, 5:Bank,
exactly as also defined and used in Example A.9. The result of interpreting a clause is a
configuration: (X xCheckxBank).

type
Check = Bool
value
Int_ Clause: Clause—3>—Check—Bank—out k,in d (X xCheckxBank)

A do ... end clause is interpreted by interpreting each of the clauses within the clauses in
the do ... end clause list, and in their order of appearance. The result of a check clause is
“anded” (conjoined) to the current tf:Check status.

Int_ Clause(mkDE(cll)) (o) (tf)(8) =
if cll = ()
then (o,tf,3)
else
let (o/,tf',3") = Int_ Clause(hd cl)(o)(tf)(3) in
Int_ Clause(mkDE(t1 cll)) (o) (tfAtF) (3)
end end

if ... then ... else fi clauses only test the current check status (and propagate this status).

Int_ Clause(mkITE(tex,ccl,acl)) (o) (tf)(8) =
if tf
then
Int_ Clause(ccl) (o) (true)(5)
else
Int_ Clause(acl)(o)(false)(3)
end

Interpretation of a return clause does not change the configuration “state”. It only leads to
an output, to the environment, via channel k, of a return value, and as otherwise directed by
any of the six return expressions (rex).

Int_ Clause(mkRet(rex)) (o) (tf)(p,a,p,l) =
k!(case rex of
mkAN(a)

" "
— "Your new account number:” o(a),

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

42 January 28, 2010 Dines Bjgrner

mkAB(a)

— "Your account balance paid out:” a(a),
mkP (p)

— "Monies withdrawn:” o(p),
mkMN (m)

— "Your loan number:” o(m),
OK

— "Transaction was successful”,
NOK

— "Transaction was not successful”

end);

(U7true7(p7a7/’[/7€))

Interpretation of a register account clause is as you would expect from Example A.9 —
anything else would “destroy” the whole purpose of having a bank script. That purpose is,
of course, to effect basically the same as the not yet “script-ised” semantics of Example A.9.

Int_ Clause(mkRA(c,a)) (o) (tf) (p,c,pu,l) =
let av:A ¢ av € dom « in
let o/ =0 1 [a+— av],
as = if ¢ € dom p then p(c) else {} end,
p'=pTlc— asU{av}],
o =aUlav— 0] in

(o 6,00/ 1,0)
end end

The same holds for the register loan clause (as for the register account clause).

Int_ Clause(mkRL(c,m,p)) (o) (tf) (p,c,p,¢) =
let mv:M » mv ¢ dom /in
let o' =0 1 [m — mv],
ms = if ¢ € dom p then u(c) else {} end,
W= it [er ms U {mv}],
! =¢U [mv— plin

(Ul7tf7 (p7a7ul761))
end end

It can be a bit hard to remember the “meaning” of the mnemonics, so we repeat them here
in another form:

e CisAReg: Client named in c is registered:
o(c) € dom p.

e AisReg: Client named in ¢ has account named in a:
o(c) € dompAa(o(a)) €p(a(c)).

e AhasP: Account named in a has at least the balance given in p:
a(o(a))=o(p).

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 43

e CisMReg: Client named in c has a mortgage:
o(c) € dom .

e MisReg: Client named in ¢ has mortgage named in m:

o(c) € dompuAo(m) €p(o(c)).

e Mhas0: Mortgage named in m is paid up fully:
¢(o(m))=0.

Then it should be easier to “decipher” the logics:

Int(Clause(kahk(ceX))(U)(tf)(p,a,,u,ﬁ) =

o,case cex of
CisAReg(c) — o(c)
AisReg(a,c) — o(c)

€ dom p,
€ dompAo(o(a)) €p(o(c)),

AhasP(a,p) — a(o(a))>o(p),

ClsMReg() — o(c) € dom p,

MisReg(m,c) — o(c) € dompuAo(m) €p(o(c)),
Mhas0(m) — ¢(o(m))=0

end, (p,a,u,l))

There are a number of ways of adding amounts, designated in p, to accounts and mortgages:
e mkAN(a): to account named in a
e mkMN(m): to mortgage named in m
e bank i: to the bank’s own interest account

e bank c: to the bank’s own capital account

Int_ Clause(mkA (p,t)) (o) (tf) (p,c,1,l) =
case t of
mkAN(a) — (o,true,(p,af|a—a(o(a))+o(p)],uf))
mkMN(m) — (0,tue, (9,04 [(m)— (o (m))+(p)])
bank_i — (o,true,(p,af[a;—a(a;)+o(p)],u,l))
Eankic — (o,true,(p,af[ag—a(ap)+o(p)]ul))

The case, as above for adding, also holds for subtraction.

Int_ Clause(mkS(p,t)) (o) (tf)(p,c,p,0) =
case t of
mkAN(a) — (o,true,(p,af[o(a)—a(c(a))—ac(p)],u,f))
mkMN(m) — (o,true,(p,a,u,l1[o(m)n—>£(a(m)) a(p)])
bank_i — (o,true,(p,af|a;—a(a;)— (P)]
Eankic — (otrue,(p,at[aj—a(ay)—0o

A

/\
_/\-

And it holds as for subtraction, but subtracting two amounts, of values designated in p and i.

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

44 January 28, 2010 Dines Bjgrner

Int_ Clause(mk2S(p,i,t)) (o) (tf)(p,a,p,l) =

let pi = o(p)—o(i) in

case t of
mkAN(a) — (o, true,(p,0f[o(a)—al(o(a))~pil b))
IAN(m) - (:true o) (o) -pi])
bank i — (o,true,(p,af[a;—a(a;)—pil,u,f))
bank_c¢ — (a,true,(p,aﬂagr—mx(ag)—pi],,u,)

end end

To delete an account is to remove it from both the account register and the accounts.

Int_ Clause(mkDA (c,a)) (o) (tf)(p,a,p,l) =
(o\{a}true,(pf[o(c)—a(o(c)\{o(a)} L.a\{o(a)}.m.))

Similarly, to delete a mortgage is to remove it from both the mortgage register and the
mortgages.

Int_ Clause(mkDM(c,m)) (o) (tf) (p,a,p1,0) =
(0\{m} true,(p,a,pfo(c)[—p(o(c))\{o(m)} |,A{H(m)}))

To compute a special function requires a place, i, to put, i.e., to store, the resulting, the
yielded, value. It also requires the name, fn, of the function, and the actual argument list,
aal, i.e., the list of values to be applied to the named function, fct. As an example we illustrate
the “built-in” function of computing the interest on a loan, a mortgage.

Int_ Clause(mkCP(i,fn,aal)) (o) (tf) (p,c,p,0) =
let fct = o(fn) in
let val = case fn of
"interest” —
let (m,d) = aal in fct({(u(o(m)),d?)) end
end in
(of[o(i)—val],true,(p,a,u,f)) end end

This ends the last stage of the development of a script language. .

Example A.12 Script Reengineering: We refer to Examples A.8-A.11. They illustrated the
description of a perceived bank script language. One that was used, for example, to explain
to bank clients how demand/deposit and mortgage accounts, and hence loans, “worked”.

With the given set of “schematised” and “user-friendly” script commands, such as they
were identified in the referenced examples, only some banking transactions can be described.
Some obvious ones cannot, for example, merge two mortgage accounts, transfer money be-
tween accounts in two different banks, pay monthly and quarterly credit card bills, send and
receive funds from stockbrokers, etc.

A reengineering is therefore called for, one that is really first to be done in the basic
business processes of a bank offering these services to its customers. We leave the rest as an
exercise, cf. Exercise A.13. .

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 45

A.2.5 A Student Exercise

Example A.13 Financial Service Industry Business Processes: Banking Script Language.
We refer to Example A.12 — and all of the examples referenced initially in Example A.12.
Redefine, as suggested there, the banking script language to allow such transactions as: (i)
merge two mortgage accounts, (ii) transfer money between accounts in two different banks,
(iii) pay monthly and quarterly credit card bills, (iv) send and receive funds from stockbrokers,
etc. =

A.3 Financial Service Industry

We model only two of the players in the financial services market:

* Banks and

* securities (typically stock and bond) exchanges.

Also: We do not model their interaction, that is, transfers of securities between banks
and stock exchanges.

Such as was done in earlier examples.

The models presented now lend themselves to such extensions rather easily.

A.3.1 Banking
Domain Analysis

We start out with a major analysis cum domain narrative!

Account Analysis: We choose a simple, ordinary person oriented banking domain.

(This is in contrast to for example an import/export, or an investment, or a portfolio
bank domain. And it is in contrast to the many other perspectives that one could model:
securities and portfolio management, foreign currency trading, customer development, etc.)

On one hand there are the s, k:K, and on the other hand there is the . (We initially
assume that the is perceived, by the s, as a single, “monolithic thing” — although it may
have a geographically widely distributed net of branch offices.) Each person or other legal
entity, who is a , may have several s.

Each has an identity, ¢:C, and is an otherwise complex quantity, a:A, whose properties
will be unfolded slowly. A , k:K, may have more than one , but has at least one — otherwise
there would be no need to talk about “a ” (but perhaps about a prospective). (So the ing
domain includes all the accounts and the .) Two or more may share .

Account Types: have : Some are ; and some are ; yet other are (or) ; salary/earnings
, etc. With each we associate a which is set up when the is first established.

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

46 January 28, 2010 Dines Bjgrner

Contract Rules & Regulations: The establishes that determine several properties.

Example are The account (in question)(i) s y% , and (ii) has a of £ currency units. (iii)
When the is between 0 and the (negative) , then the owed the is j%; (iv) s carry from
the day after ; (v) on a is otherwise calculated as follows: ...,% (vi) the client is sent a of
s every d days (typically every month, or every quarter, or for every d transactions, or some
such arrangement), ... the lists, in chronological order, all as well as initiated s involving
this and as from (ie. since) the last time a was issued. (vii) s for handling certain (or any)
s could be as follows: ment e, s, i,ing (overdraw) oy, t,etc. The , also called the s
(of the), for any specific of , may differ from to , and may change over time.

The are set up when the is ed. Some may be changed by the , and some by the —
giving to the . ing an , its s and an are examples of joint / or just s.

Transactions: Depending on the a number of different kinds of s can be issued “against”,
ie. concerning (primarily) a specifically named, c:C, , a:A.

® S

can (i) monies into and (ii) monies from a (rather freely — and the may stipulate
s0); (iii) can money in a (and the contract may stipulate minimum monthly savings);
(iv) clients can money from their (and the will undoubtedly state frequency and size
limits on such s).

(v) may obtain a large loan whereafter one regularly, as stipulated in the , (vi) repays
the by ing — for example — three kinds of monies: (vi.1) on the (these are monies
that go to a of the), (vi.2) on the (this is a quantity which is deducted from the s’
) and (vi.3) s (again monies that go to some [other|). (vii) And a may produce a ()
ofa .

A is a list of summaries of s. The listed s give the and of the s, its nature”, the
amounts involved (and, in cases according to which they were calculated), the resulting
(current) , etc., etc. | A also lists the “executed against” the but by the . See next.

e Bank Transactions:

The bank regularly performs s “against” several accounts: (viii) calculation of s due
the s (say on demand/deposit and), and (ix) calculation of s due the (say on n and
on loan accounts). The may regularly inform as to the of their : (x) , (xi) s of s
(s, , s), (xil) warnings on overdue payments, information on or s (say of salary) into
(salary) accounts, etc. (xiil) Finally the may the rules & regulations of s, and (xiv)
may transactions on (ie.) an .

Immediate & Deferred Transaction Handling: When a is issued, say at time ¢, some
of its implications are “immediately”, some are red. Examples are: installation of , and s on
a is expected to immediately lead to the on and s, while a , to be issued by the , namely
for a to be issued, say, some period prior to a quarter later, to that (concerning amounts of
next s), is deferred. Other s are also red in relation to this example. A red will be if the
has not responded — as assumed — to a by providing a . That red will be ed if a proper

6
7

...: here follows a detailed (pseudo-algorithmic) explanation on how is calculated.
,, (alfrom a), ation of , and s on a (ment), between , including salary and other payment deposits as
well as s on for example s of other , on credit cards, etc.

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 47

takes place. The , if eventually , as its time “comes up”, will lead to further s as well as of
rates, etc. s concerning these s and s, etc., are also contained in the .

Thus we see, on one hand, that the is a serious and complex document. In effect its
rule & regulation conditions define a number of named s that are applied when relevant s are
handled (executed). These s, in the domain, are handled either manually, semi-automatically
or (almost fully) automated. The staff (or, in cases, perhaps even s) who handle the manual
parts of these s may and will make mistakes. And the semi or fully automated s may be
incorrect !

Summary We can summarise the analysis as follows:
e Transactions are initiated by:

* Clients:

<

Establishment and closing of accounts
demand (withdrawal) and deposits of monies
borrowing and repayment of loans

transfer of monies into or out of accounts

SO0 O O

request for (instantaneous or regular) statements
o He.

* and the bank:

¢ Regular calculation of yield and interest

¢ regular payment of bills

regular issue of statements

reminder of loan repayments

warning on overdue payments

annual account reports

change in (and advice about) account conditions
éc.

[R R R VR

e Transactions are handled by the bank:

* immediately: certain parts of f.ex. als, s, s, etc.

* overnight:® remaining parts of f.ex. above

* deferred: issue of s and preparation for s, of s, s, and s. etc.
* conditionally:? issue of s, etc.

e In the domain this handling may be by any combination of human and machine (incl.
computer) labour.

e Support technology is here seen as the various means whereby transactions are pro-
cessed and their effect recorded.

8We will treat overnight transactions as deferred transactions.
9We will treat conditional transactions as deferred transactions.

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

48 January 28, 2010 Dines Bjgrner

e Examples of support technology are: The paper forms, including (paper) books, used
during transaction and kept as records; mechanical, electro-mechanical and electronic,
hand-operated calculators; chops (used in authentication on paper forms); typewriters;
computers (and hence data communication equipment).

Abstraction of Immediate and Deferred Transaction Processing

We proceed by first giving — again — a rather lengthy analysis, cum narrative, of transaction
processing related concepts of a bank.

We have a situation where s are either “immediately” handled, or are red. For the domain
we choose to model this seeming “distinction” by obliterating it ! Each is instead red and
affixed the time interval when it should be . If a is issued at time ¢ and if parts or all of it
is to be handled “immediately” then it is red to the time interval (¢,¢). There is therefore,
as part of the , a of time interval marked transaction requests. The (staff, computers, etc.)
now is expected to repeatedly, ie. at any time ¢/, inspect the . Any s that remain in the such
that ¢’ falls in the interval of requests are then to be handled “immediately”. In the model
we assume that the handling time is 0, but that requests that are eligible for “immediate”
handling are chosen non-deterministically. This models the reality of a domain, but perhaps
not a desirable one!

Account Temporality: Time is a crucial concept in banking: s are calculated over time
during which the changes and so do the rates — with no synchronisation between for
example these two. Because of that temporality, we shall — in the domain model — “stack”
all s (initialisations and updates) to the ual s () such that all such s are remembered and with
a time-stamp of their occurrence.

Likewise most other account components will be time-stamped and past component values
kept, likewise time-stamped.

Summary:

We shall subsequently repeat and expand on the above while making it more precise and
while also providing an emerging formal specification of a domain model.
Before we do so we will, however, summarise the above:

e There are s, k:K, and s may have more than one , and s are identified, c:C.

e With each there is a . The lists the , including all the that shall govern the handling
of any “against” the .

e are either client initiated such as , , , , s, etc., or are bank initiated such as interest s,
s, s, issuance of requested regular s, etc.

e are expected handled within a certain time-interval — which may be “now” or later.
For simplicity we treat all as red (till now or later!).

e So there are requests and processing. The latter corresponds to the actual, possibly
piecemeal, handling of requests.

e And there are . This term — which is also a computing science and software engineering
term — has here a purely banking connotation.

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 49

e And there are commands. The actual handling of a is decribed by means of a program
in a hypothetical , BaPL. Programs in BaPL are commands, and commands may be
composite and consist of other commands !

e So please keep the five concepts separate: Transaction requests, transaction processing,
statements, routines and commands. Their relations are simple: Transaction requests
lead to the eventual execution of one or more routines, each as described by means of
commands. The excution of transaction request related routines constitute the trans-
action (ie. the transaction processing). One kind of transaction request may be that of
“printing” a client account statement.

We have given a normative overview of the structure and the logic of some base operations
of typical banks.

That is: We have mentioned a number of important bank state components and hinted at
their inter-relation. But we have not detailed what actions actually occur when a transaction
is “executed”: what specific arithmetic is performed on account balances, what specific logic
applies to conditional actions on account components, etc.

We shy away from this as it is normally not a normative property, but highly specialised:
differs from bank to bank, from account to account, etc. These arithmetics and logics are
properties of instantiated banks and accounts. With repect to the latter the arithmetic and
logic transpire from the bank rules & regulations.

Modelling

The essence of the above analysis is the notion of deferred action. The consequence of this
modelling decision is twofold: (i) First we are able to separate the possibly human (inter)action
between clients and tellers, or between clients and ‘automatic teller machines’ (ATMs) from
the actual “backroom” (action) processing; (ii) and then we are able to abstract this latter
considerably wrt. for example the not so abstract model we shall later give of bank accounts.

There are client, k:K, account identifiers, c:C, accounts a:A, and transactions, tr:Trans.
And there is the repository r:R. The repository contains for different time intervals (t,t’)
[where t may be equal to t'] and for different client account identifiers zero, one or more
“deferred” transactions (to be executed).

Each transaction is modelled as a pair: a transaction routine name, rn:Rn, and a list of
arguments (values) to be processed by the routine.

We assume that (for example) client accounts, a:A, contain routine descriptions (scripts).

type
K, C, A
B=({} m (K m C-set))
U{} = (Cw A)

(
U{} = R)
J ({conditions} 7 (C # (Rn s Routine-set)))
R=(T x T) # Jobs
Jobs = C + Trans-set
Trans == mk_ Trans(rn:Rn,vI: VAL*)
Routine = /* BaPL Program */

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

20 January 28, 2010 Dines Bjgrner

Client Transactions: A client may issue a transaction, tr:Trans, w.r.t. to an account,
¢:C, and at time t:T. Honouring that request for a transaction the banking system defers the
transaction by repositing it for execution in the (instantaneous) time interval (t,t). The client
may already, for some reason or another, have a set of such reposited transactions.

Insert One Transaction:

value
client: C x Trans - T — B — B
client(c,trans)(t)(b) = insert([(t,t) — [c — {trans}]])(b)

We can safely assume that no two identical:
[(£t) — [c— tsk]]
can be submitted to the bank since time passes for every one client or bank transaction.

Insertion of Arbitrary Number of Transactions: You may wish to skip the next two
function definitions. They show that one can indeed express the insertion and merge of
deferred transactions into the bank repository.

value
insert: R > B 5 B
insert(r)(5) =
ifr =[]
then beta
else
let ' = 3(), (t,t'):(TxT) « (t,t') € dom 1 in
let v =
if (t,t') € dom 1/
then

let bjobs = 1'(t,t’), cjobs = r(t,t’) in
' 1 [(t,t) — merge(bjobs,cjobs)] end
else
U [(t,t) + cjobs] end
insert(r \ {tHHB 1 [= 1)

end end end

Merge of Jobs: Client Transactions:

value
merge: Jobs x Jobs = Jobs
merge(bjobs,cjobs) =
if cjobs=[]
then bjobs
else

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 51

let c:C ¢ ¢ € dom cjobs in
let jobs =
if ¢ € dom bjobs
then [c — cjobs(c) U bjobs(c)]
else [¢ — cjobs(c)] end in
merge(bjobs { jobs,cjobs \ {c}) end end
end

The Banking Cycle: The bank at any time t:T investigates whether a transaction is
(“defer”) scheduled [ie. “deferred” for handling] at, or around, that time. If not, nothing
happens — and the bank is expected to repeat this investigation at the next time click ! If
there is a transaction, tr:Trans, then it is fetched from the repository together with the time
interval (¢',t”) for which it was scheduled and the identity, c:C, of the client account. (¢ may
be the identity of an account of the bank itself!)

value
bank: B — T = B
bank(5)(t) =
if () =[] then [else
if is_ready_ Task(3)(t)
then
let (((t't"”),c,mk_Task(rn,al)),3") = sel_rmv_Task(8)(t) in
let rout:Routine « rout € (('(conditions))(c))(rn) in
let (3';r) = E(c,rout)(al)(t,t',t")(8") in
bank (insert(r)(5”))(t) end end end
else
let t":T « t” = t + A7 in bank(3)(t"') end
end end

~

E: C x Routine = VAL* & (TxTxT) = B = B x R
The expression A 7 yields a minimal time step value.

Auxiliary Repository Inspection Functions:

value
is_ready_ Task: B — T = Bool
is_ready_ Task(f3)(t) =
J ') TxT e t't") € dom B() At/ <t At <t

sel_rmv_Task: B — T = (((TxT) x C x Task) x B)
sel _rmv_Task(B)(t) =
let r = 3() in
let (t/,t"):TxTs (t't") €edomr At <tAt<t'in
let jobs = r(t't") in
let c:C ¢ ¢ € dom jobs in

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

52 January 28, 2010 Dines Bjgrner

let tasks = jobs(c) in
let task:Task « task € tasks in
let jobs' = if tasks\{task} = {}

then jobs\{c} else jobs } [c — tasks\{task}]| end in
let ' = if jobs' = []

then r\{(t't")} else r f [(t/;t”) — jobs'] end in
((¢4") c task), 8 [1'])

end end end end end end end end

e Performing the execution as prescribed by the transaction, tr:Trans, besides a changed
bank — except for “new” deferred transactions — results in zero, one or more new
deferred transactions, trs.

e These are inserted in the bank repository.

e And the bank is expected to “re-cycle”: ie. to search for, ie. select new, pending trans-
actions “at that time”!

e That is: the bank is expected to handle, ie. execute all its deferred transactions before
advancing the clock!

Merging the Client and the Bank Cycles:

e On one hand clients keep coming and going: submitting transactions at irregular, un-
predictable times.

e On the other hand the bank keeps inspecting its repository for “outstanding” tasks.
e These two “processes” intertwine.
e The client step function extends the client function.

e The bank_step function “rewrites” the (former) bank function:

value
cycle: B 5 B
cycle(B) = let 3 = client_step(3) [] bank_step(3) in cycle(3') end

client step: B = B

client_step(8) =
let (c,tr) = client_ch?, t = clock ch? in client(c,tr)(t)(5) end

bank_ step: B = B

bank(f) =
if 3() =[]
then

else

let t = clock ch? in

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 53

if is_ready Task(()(t)

then
let (((t',t"),c,mk_Task(rn,al)),3’) = sel_rmv_Task(3)(t) in
let rout:Routine * rout € ((4’(conditions))(c))(rn) in
let (3 ,r) = E(c,rout)(al)(t,t',t") (') in
insert(r)(5”) end end end

else § end

end end

e The cycle function (internal choice) non—deterministically chooses between either a
client step or a bank step.

e The client step inputs a transaction at time t from some client.
e This is modelled by a channel communication.

e Both the client and the bank steps “gets to know what time it is” from the system
clock.

A.4 Securities Trading

A.4.1 “What is a Securities Industry ?”

In line with our approach, we again ask a question — see the section title line just above!
And we give a synopsis answer.

Synopsis
The securities industry consists of:

e the following components:

one or more stock exchanges,

one or more commodities exchanges,
ée.

one or more brokers,

one or more traders,

ée.

and associated regulatory agencies,

b . D S s

e together with all their:

stake-holders,

states,

events that may and do occur,

actions (operations) that change or predicates that inspect these states,

intra and inter behaviours and

b S . .

properties of the above!

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

54 January 28, 2010 Dines Bjgrner

A Stock Exchange “Grand” State

e Domain-wise we will just model a simple stock exchange — and from that model “derive”
domain models of simple brokers and traders.

e Technically we model the “grand” state space as a sort, and name a few additional sorts
whose values are observable in states.

e To help your intuition we “suggest” some concrete types for all sorts, but they are only
suggestions.

type
S,0,T,Q,P, R
SE = (Buy x Sell) x CIRm
Buy, Sell =S # Ofrs
Ofrs = O Ofr !
Ofr = (TXT) #w (Q x (lo:Pxhi:P) x ...)
CIRm = O # Clrd | Rmvd
Clrd =S x P x T x Ofrs x Ofrs
Rmvd =S x T x O x Ofr
Market = T — SE

sell < T | i

many buy R [many sell
few sell offers few buy offers

The ... low - high ... price ranges
for several buy, resp. sell offers
of one particular stock

Figure A.5: A “Snapshot” Stock Exchange View of Current Offers of a Single Stock

e The main (state) components of a stock exchange — reflecting, as it were, ‘the market’
— are the current state of stocks offered

* ie. placed)

* for buying Buy,

* respectively selling Sell,

* and a summary of those cleared (that is bought & sold)

* and those removed.

e The placement of an offer of a stock, s:S, results, r:R, in the offer being marked by a
unique offer identification, 0:0.

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 55

e The offer otherwise is associated with information about the time interval, (bt,et):TxT,
during which the offer is valid — an offer that has not been cleared during that time
interval is to be removed from buy or sell status, or it can be withdrawn by the placing
broker — the quantity offered and the low to high price range of the offer. (There may
be other information (...).)

Observers and State Structure

e Having defined abstract types (ie. sorts) we must now define a number of observers.
Which one we define we find out, successively, as we later sketch signatures of functions
as well as sketching their definition.

e As we do the latter we discover that it would “come in handy” if one had “such and
such an observer”!

e Given the suggested concrete types for the correspondingly named abstract ones we can
also postulate any larger number of observers — most of which it turns out we will
(rather: up to this moment has) not had a need for!

value
obs_Buy: SE — Buy, obs_Sell: SE — Sell,
obs CIRm: SE — CIRm
obs_Ss: (Buy|Sell) — S-set
obs_Ofrs: S x (Buy]|Sell) = Ofrs
obs_Q: Ofr — Q
obs_Qs: Ofrs — Q
obs_lohi: Ofr — PxP
obs TT: Oftr — TxT
obs O:R — O
obs_ OK: R — {ok|nok}

Main State Generator Signatures

The following three generators seems to be the major ones:

e place: expresses the placement of either a buy or a sell offer, by a broker for a quantity
of stocks to be bought or sold at some price suggested by some guiding price interval
(lo,hi), such that the offer is valid in some time (bt,et) interval.t’

value
place: {buy|sell} xBxQxSx (lo:Pxhi:P)x (bt:Txet:T)x... — SE
= SE x R

1%We shall [probably] understand the buy (lo,hi) interval as indicating: buy as low as possible, do not buy
at a pricer higher than hi, but you may buy when it is lo or as soon after it goes below lo. Similarly for sell
(lo,hi): sell as high as possible, do not sell at a pricer lower than lo, but you may sell when it is hi or as soon
after it goes above hi; the place action is expected to return a response which includes giving a unique offer
identification o:0.

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

o6 January 28, 2010 Dines Bjgrner
e wthdrw: expresses the withdrawal of an offer 0:O (by a broker who has the offer identi-
fication).

e next: expresses a state transition — afforded just by inspecting the state and effecting
either of two kinds of state changes or none!

value
wthdrw: O x T — SE = SE x R
next: T x SE — SE

A Next State Function

e At any time, but time is a “hidden state” component,

e the stock exchange either clears (fclr) a batch of stocks —
e if some can be cleared (pclr) —

e or removes (frmv) elapsed (prmv) offers,

e or does nothing!

value
next: T x SE — SE
next(t,se) =

if pclr(t,se)
then fclr(t,se)
else

if prmv(t,se)
then frmv(t,se)
else se

end end

pclr: T x SE — Bool, fclr: T x SE — SE
prm: T x SE — Bool, frm: T x SE — SE

Next State Auxiliary Predicates

e A batch (bs,ss) of (buy, sell) offered stocks of one specific kind(s) can be cleared if a
price (p) can be arrived at,

e one that satisfies the low to high interval buy, respectively sell criterion —
e and such that the batch quantities of buy, resp. sell offers

e either are equal or their difference is such that the stock exchange is itself willing to
place a buy,

e respectively a sell offer for the difference.

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 57

value
pelr(t,se) = 3 s:S,88:01rs,bs:Ofrs,p:P ¢ apler(s,ss,bs,p)(t,se)

apclr: SxOfrsx OfrsxP — TxSE — Bool
apclr(s,bs,ss,p)(t,se) =
let buy = obs_Buy(se), sell = obs_ Sell(se) in
s € obs_Ss(buy) N obs_ Ss(sell)
A bs C obs_ Ofrs(s,buy) A ss C obs_ Ofrs(s,sell)
A buysell(p,bs,ss)(t)
A let (bq,sq) = (obs_Qs(bs),obs_Qs(ss)) in
acceptable_ difference(bq,sq,s,se) end end

buysell: PxOfrsxOfrs — T — Bool
buysell(p,bs,ss)(t) =
V ofr:Ofr « ofr € bs =

let (lo,hi) = obs_lohi(ofr) in p < hi end

let (bt,et) = obs_ TT(ofr) in bt < t < et end
A Y ofr:Ofr « ofr € ss =

let (lo,hi) = obs_lohi(ofr) in p > lo end

let (bt,et) = obs_TT(ofr) in bt < t < et end

Next State Auxiliary Function

e We describe the result of a clearing of buy, respectively sell offered stocks by the prop-
erties of the stock exchange before and after the clearing.

e Before the clearing the stock exchange must have suitable batches of buy (bs), re-
spectively sell (ss) offered stocks (of identity s) for which a common price (p) can be
negotiated (apclr).

e After the clearing the stock exchange will “be in a different state”.

e We choose to characterise here this “different state” buy first expressing that the cleared
stocks must be removed as offers (rm_ Ofrs).

e If the buy batch contained more stocks for offer than the sell batch then the stock
exchange becomes a trader and places a new buy offer in order to make up for the
difference.

e Similarly if there were more sell stocks than buy stocks. A

e t the same time the clearing is recorded (updCIRm).

felr(t,se) as se’
pre pclr(t,se)
post
let s:S,bs:Ofrs,ss:Ofrs,p:Peapclr(s,ss,bs,p)(t,se) in
let (bq,sq) = (obs_Qs(bs),obs_Qs(ss)),

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

o8 January 28, 2010 Dines Bjgrner

buy = obs_Buy(se), sell = obs_Sell(se) in
let buy’ = rm_ Ofrs(s,bs,buy), sell' = rm_ Ofrs(s,ss,sell) in
obs_Buy(se’) = if bq > sq
then updbs(buy’,s,bq—sq,tt_buy(s,bq—sq)(t,se))
else buy’ end A
obs_Sell(se’) = if bq < sq
then updss(sell’;s,sq—bq,tt_sell(s,bq—sq)(t,se))
else sell’ end A
let clrm = obs_ ClRm(se) in
obs_ CIRm(se’) = updCIRm(s,p,t,bs,ss,clrm) end
end end end

Many comments can be attached to the above predicate for clearability, respectively the
clearing function:

e First we must recall that we are trying to model the domain.

e That is: we can not present too concrete a model of stock exchanges, neither what
concerns its components, nor what concerns its actions.

e The condition, ie. the predicate for clearable batches of buy and sell stocks must nec-
essarily be loosely defined — as many such batches can be found, and as the “final
clinch”, ie. the selection of exactly which batches are cleared and their (common) prices
is a matter for “negotiation on the floor”.

e We express this looseness in several ways:

* the batches are any subsets of those which could be cleared such that any possible
difference in their two batch quantites is acceptable for the stock exchange itself
to take the risk of obtaining a now guaranteed price (and if not, to take the loss
— or profit!);

* the batch price should satisfy the lower/upper bound (buysell) criterion, and it is
again loosely specified;

* and finally: Which stock (s) is selected, and that only exactly one stock is selected,
again expresses some looseness, but does not prevent another stock (s#s') from
being selected in a next “transition”.

There is no guarantee that the stock s buy and sell batches bs and ss and at the price
p for which the clearable condition pclr holds, is also exactly the ones chosen — by
apclr — for clearing (fclr), but that only could be said to reflect the “fickleness” of the
“market”!

e Time was not a parameter in the clearing part of the next function.

It is assumed that whatever the time is all stocks offered have valid time intervals that
“surround” this time, ie. the current time is in their intervals.

Then we must recall that we are modelling a number of stake-holder perspectives:

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 59

* buyers and sellers of stocks,
* their brokers and traders,
* the stock exchange and the securities commission.
e In the present model there is no clear expression, for example in the form of distinct
formulas (distinct functions or lines) that reflect the concerns of precisely one subset of

these stake-holders as contrasted with other formulas which then reflect the concerns of
a therefrom distinct other subset of stake-holders.

e Now we have, at least, some overall “feel” for the domain of a stock exchange.

e We can now rewrite the formulas so as to reflect distinct sets of stake-holder concerns.
We presently leave that as an exercise!

Auxiliary Generator Functions

value
rm_ Ofrs: S x Ofrs x (Buy|Sell) = (Buy|Sell)
rm_ Ofrs(s,os,busl) as busl’
pre s € obs_ Ss(busl) A subseteq(os,obs_ Ofrs(s,busl))
post if s € obs_Ss(busl) then ~3 ... else ... end

A.4.2 Discussion

e We have detailed two “narrow” aspects of a financial industry: How banks may choose
to process client (and own) transactions, and how securities are traded.

e The former model is chosen so as to reflect all possibilities as they may occur in the
domain, ie. in actual situations.

e The latter model is sufficiently “loose” to allow a widest range of interpretations, yet it
is also sufficiently precise in that it casts light on key aspects of securities trading.

e In this section of the talk we have not shown, as we did in several other sections, how
the two infrastructure stake-holders: Banks and securities traders interact.

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

60 January 28, 2010 Dines Bjgrner

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

Appendix B

Tetsuo Tamai’s Paper

For private, limited circulation only, I take the liberty of enclosing Tetsuo Tamai’s IEEE
Computer Journal paper.

o7

o8

I\I]i.

January 28, 2010 Dines Bjgrner

COVER FEATURE

SOCIAL IMPAGT

letswo Tamal, University of Tokyo

OF INFORMATION
SYSTEM FAILURES

The social impact of information sysiems
becomes visible when serious system [ail
ures occur. A case of mistyping in enlering
a stock order by Mizuho Securities and the
following lawsuil between Mizdho and the
Tokyo Stock Exchange sheds light on the
critical role of software in society

Imast daily, we hear news of system failures

that have had a sericus impact on socisty: The

ACM Rizks Forum moderated by Peter Meu-

mann is an informatiee source that compiles

variaus reported instances of computer-
related rigks (http:fcatle== nclac oklrisks).

Cne of purnalieEm's shertcomings is that 1 makes a load
autery when trouble cocurs with a caomputer-bassd sy=tem,
but it rermains sil=nt when nothing goes wrong. This ghes
the general poblic the wrong impression that computer
systems are highly unreliable Indesd, as software isimvis-
ible and not easy for ordinary people to understand, they
generally perceive software to be something unfathomable
and undependable,

Another problerm is that when a system Failure occors,
news zources affer no technical details. Reporiers usualhy

COMPUTER Publihed by the EEE Compuier Sacety

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

dan’t have the knowledge about saftwares and informa
tion systems needed ta report technically significant facts,
and the stakeholders are generally reluctant to disclose
details. The Londan Ambulance Service failure case is
aften cited in softwars enginesring literature becan=s itz
detailed inguiry repart is open ta the public, which only
emphasizes how rare such cases are (wwwesuclacukd
stafffa.Ank=lsteinflaslascase0.2 pdF.

MIZUHO SECURITIES VERSUS
THE TOKYO 5TOCK EXCHANGE

The case of Mizuho S=curities versos the Tokyo Stock
Exchange (TSE] is archived in the |2 December 2005 issue
of the Risks Digest thtt ptcatless nclacukdrisks’ 241 2.hemnly,
and additianal infarmation can be chtained from sources
such asthe Times paww timesonline coukital newsworld/
asiafarticleT55598 . =ce) and the New York Times (wwwe
nytimes.corm' 2005 12 Fbusiness' worldbusiness'L 3glitch.
html?_r=1). among others.

The incident started with the mistyping of an arder
to sell a share of [-Com, a start-up recruiting company,
an the day its shares were frst offered to the public. An
employes at Mizoho Securities, intending to s=llone share
at 610,000 yen, mistakenly typed an order to ==l] 610,000
shares at | yen.

0018916200 ,%525,00 & 2009 1EEE

A Financial Services Industry January 28, 2010, 00:00

January 28, 2010

99

What happened after that was beyond imagination. The
order went through and was accepted by the Tokyo Stock
Exchange Order Systern. Mizuho noticed the blunder and
tri=d to withdraw the order, but the cancel command Failed
repeatedly. Thus, it was obliged to start buying back the
shares itself to cut the loss. [n the end, Mizuho's total loss
amounted to 40 billion yen (5225 millicn). Faur days later,
TSE called a news conference and admitted that the cancel
command isved by Mizuho failed because of a program
errar in the TSE system. Mizuho demanded compensation
For the loss, but TSE refussd. Then, Mizuho sus=d TSE Ffor
damages.

When such a cass goes to court, we can gain access to
documents presented as evidence, which provides a rare
opportunity to obiain information about the technical de-
tails behind =ystemn failures. Still, requesting and acquiring
documents from the court requires considerable effort by
the third party. A= it happenad, Mizuho contacted me to
Hive an expert opinion, thus 1 had access to all materials
presented to the court. Admittedly, thers is always the
possibility of bias, but as a scientist. | have endemored to
report this case as impartially as possible.

Another reason for examining this case is that it in-
volved several typical and interesting software engineering
issues including human interface design, fail=afety issoes,
design anamalies, =rror injection by Axing code, ambigu-
ous requirements specification, insufficient regression
testing, subcontracting, product liability, and corporate
Howernance.

WHAT HAPPENED

J-Com was initially affered on the Tokya Stock Exchange
Mather Index on B December 2005, On thatday, a Mizubo
employee got a call from a cliznt tzlling him ta sella single
share of [-Com at 610,000 ven. At 9:27 a.m., the employes
entered an order to sell 610000 =hares at | yen through
a Fidessa (Mizuho's securities ordering system) terminal.
Although a “Beyand price limit™ warning appesared on the
screen, he ignored it (pushing the Enter key twice meant
“ignare warning” by the specification], and the arder was
sent to the T2E Stock Order System. |-Com's outstanding
shares totaled (4,500, which m=ans the srroneous order
was to sell 42 times the total number of shares.

At Q28 a.m., this arder was displayed on the TSE system
beard, and the initial price was set at 672,000 yen.

Price determinotion mechanism

T5E stock prices are determined by two method= lhgpons
imatching an the board) and Zerzba (regular markst). The
Itanyose method is mainhy used to decide opening and clos-
ing prices; the Zaraba methad is used during continuous
auction trading for the rest of the trading se==ion. In the

January 28, 2010, 00:00, A Financial Services Industry

J-Com case, the Itayoss method was used as it was the frst
day of determining the [-Com stock price.

There are twa order types for selling or buying stock=s
mizrkeet orders and Nt orders. Market orders do not
specify the price to buy or sell and accept the price the
market determines, while limit orders specify the price.
When sell and biny orders are matched to execute trading,
market orders of both sell and buy are always given the
first priarity.

Market participants gen=ralhy want to buy low and sell
high. But when the [taycse method is applied, there is no
current market price to refer to, and thus there can be
a variety of s=llibuy orders, resulting in a wide range of

An employee at Mizuho Securities,
intending to sell one share at 610,000
yven, mistakenly typed an order to sell
610,000 shares at 1 yen.

prices. With the ltayos= method, a single sxecution price is
determined that matches s=l1 and buy orders by sarisfying
the following rules

1. All market orders must ke executed .

2. All limit orders to selllbuy at prices lower'higher than
the execution price must be executed.

3. The fallowing ameount of limit orders to sell or buny at the
ax=cution price et be executed: the entire amount of
aitherall ==l ar all buy orders, and at least ane trading
unit From the opposite side of the arder bocoks.

The third rule is complicated but Functions as a tie-
breaker when the Arst two rules do not determine a unique
price. Looking at an example helps to understand how the
rules work.

Takble | repre==nts an instance of the arder book. The
center column gives the prices, The left center column
shows the valume of sell offers at the corresponding price,
whil= the right center celumn shows the volume of the buy
bids. The volume of the market ==1] orders and the markst
by orders is displayed at the bottemn line and at the top
line, raspectively. The leftmost column shows the aggre-
gate volume of sell affers fworking from the bottom. to the
top in the order of priorityl, and the rightmost column gives
the aggregate velume of buy bids (working from the top to
the bottom in the arder of pricrity)

We start by focusing on rules (1) ard (2] to determine
the op=ning price. First, the price level is searched where
the amounts of the aggregated sell ard the aggregated buy
cross aveT. [n this case, the line & betwesn 500 yenand 499

JUNE 209

59

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

60

COVER FEATURE

January 28, 2010 Dines Bjgrner

Table 1. Orderboak example ilustrating ayose methad
Sall offar Buy bid
Aggragate sl orders Shares offered athbid Prica (yan] Buy offars at bid Aggragats buy orders
Market 4000
48,300 8,000 -z o 4,000
40,000 20,000 501 2,000 000
20,00 5000 =0 2000 a0
15,000 &,000 459 15,000 24000
9,000 3,000 423 2,000 32,000
4,000 o 497 20000 52,000
6,000 Markest

wen. These two prices satiefy conditions (1) and 2], so they
are the opening price candidates. Then, applying rule (3},
the price iz Anally determined as 499 yen.

Of course, this algorithm does not always determine
the price. For example, if the arders are all buy and no
sell, there is no sohition that satisfi=s all three ruless. An
additional mechanism that holds back transactions even
if the matching price is found by the Itayose method is a
measure to prevent sudden price leaps or drops. On the
TSE, an immediate execution only takes place if the next
execution price is within a certain range from the previ-
ous execution price. The price level determines the range.
Faor example, if the most recently executed price was 500
wen, the next execution price must be within the range of
490-510 yen. In other words, it can only fluctuate up o 10
wen in either direction.

Supposs the matched price is beyond this range—for
example, 550 yen when the previous price was 500 yen.
Then, execution doe=s not take place; inst=ad a special
bid quets of 510 yen is indicated to call for offers at this
price. If no offers at this price are received, the special
bid guete will be raised ta 520 yen after & minutes, and
o on until equilibriam is achiswed. This machanism is
intended to make a smaoth transition between widely
divergent prices.

EBut on the marning of B December,]-Cam had ne pre-
vious price. [n such cases, the publicly assessed value is
used in place of the previous price, which was 610,000 yen.
Becau=s the matched price was much higher, a special bid
guets af 610,000 yen was shown at 200 a.m., then raised
to 641,000 yen at 210 a.m., which means the rangs was
£ 31,000 yen, and rais=d again to 672,000 yen at 2:20 a.m.
Tabl= 2 shows the order book at that moment, when the
L-y=n sell offer came in.

Initial price dete mination

The term “reverse special quote” denotes this particu-
larly rare event. It means that when a special buy bid quote
iz displayed, a sell order of low price with a significant

60 compuTER

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

amount that reversss the situation to a special sell offer
quate comes in (or conversely a special sell offer quote is
rewversed to a special buy bid quate)l TSE has ancther rule
that applies to such a case. This rule stipulates that the
previous special quote is Axed as the execution price, and
the transacticn procesds. Thus, the initial price of |-Com
was o determined to ke 672,000 yen. In addition to the
step price range set for reducing sudden price change,
there iz alsa a price limit range For a day. The upper and
Jower limits of the price for each stock are defined based
an the initial price of the dany. [n the |-Com case, the limit=s
were defined at the moment when the initial price was
determinad: The upper limit was 772,000 yen, and the
Jower Limit was 572,000 yen.

In regular trading, the price limits are Axed at the start of
the= market day, and arders with prices exces=dirg the limit
(=ither upper or lower) are rejectad. But when the initial
price & determined during the markst time, as in the [-Cam
case, orders received before the price limits are set are not
#nored. Instead, the price of an order exceeding the vpper
limit is adjuested to the upper price limit, and an order under
the kower limit is adjusted to the lawer price limit. Thus, the
I-yen arder by Mizuho was adjusted to 572,000 yen.

Moticing the mistake, Mizuho entered a cancel com-
mand through a Fidessa terminal at 9:2%21, but it failed.
Petween 23307 and 23540, Mizuho trizd to cancel the
arder several times through TSE systemn terminals that are
installed at the Mizuho site, but the cancellations Failed.
Mizuha called TSE asking for a cancellation on the TSE
side, but the answer was no.

At @:35:33, Mizuho started to buy back |-Com shares.
In the end, it coul only buy back 510000 shares; neardy
100,000 shares were bowght by others and never restored.

Aftermath

Cn 12 December, four days after the incident, TSE
president Takuo Tsurushima held a press conference and
admitted that the order cancellation by Mizuhe failed be-
cause of a defect in the TSE Stock Order System.

A Financial Services Industry January 28, 2010, 00:00

January 28, 2010

Talble 2. Order

cfor J-Comstack at 9:20 a.m

61

Prica [yan] Aggregate
1432 =] OvE" 1479 1,732
a7 5,750 4 1,735
737 5,740 [1742
737 5,730 [1,748
727 2 o720 = 1,776
724 &30 2 1778
724 6,700 2 1,781
724 1 6,690 1 1,782
733 6,680 1 1,783
733 14 UDpE=== 1230 1203
(6] market
" Mo than S5 [0 yan " q| ="Lma S Ty

Mizuho could not by back 96,236 shares, and it was
impoe=ible far Mizuho to deliver real shares to those wha
had bonght them. An exceprional measure was taken ta
settle trading by paying 912,000 yen per share in cash.
The result was a 30-billion-yen loss to Mizuho, Mizuha
had already suffered a lo== of 10 billion yen by buying
back 510,000 shares, thus the total loss amount=d to 40
billion yen.

Mizubo and TSE started negotiations on compensation
For damages in March 2006, but they failed to reach an
agresment. Mizuho sent a formal letter to TSE in August
200& requesting compensation, which TSE declined by
sending a letter of refusal.

Mizuha fil=d a suit against TSE in the Tokyo District
Court on 27 Cotaber 2006, demanding compensation of
41.5 billion yen. The Arst oral pleadings took place on
15 December 2006, and trials wers held 13 times in twa
wears, the last on 19 December 2008, The court’s decision
in that trial was scheduled to be given on 27 February
2009, but the court decided to pastpone the decision.

In the contract between TSE and =ach user of the TSE
Stock Order System, including Mizuho, there is a clause
on exemption from responsibility on the TSE side except
when a serious mistake iz attributed to TSE. The crucial
issue was whether the damage caused by the sy=stem defect
was due to a sericue mistake beyond the rangs of exemp-
tion. TSE alse argued that as the incident started with a
mistake on the Mizuho side, the mistakes and the resulting
damagies should be canceled out.

PROBABLE CAUSE

The T3E system unduly rejected the Mizuho order
cancellation because the module for processing arder
cancellation erroneously judged that the |-Com target

January 28, 2010, 00:00, A Financial Services Industry

sell order had been completehy executed, thus keaving no
transactions to be canceled. This bug had been hiding For
Froe years

Fujitsu developed the system under contract with TSE
and released it for use in ¥May 2000. An evidence document
submitted to the court reparted that a similar error was
found during integration testing in February 2200 and that
the current Fauh aocurred as a result of Axing that error.

But ther= are several myst=ries surrounding this appar-
ently simple failure ca==. Initially, TSE maintained that the
target cancellation order could nat be found becauss its
price had been changed from 1 yen to the adjusted price
of 572,000 y=n, whereas the designated cancel price com-
mard was the original | yen. This explanation i= bizarre
as it implies that the arder data is ssarched in the databas=
using price a= a key when it is obvicws that price cannot be
akey becauss there can be multiple orders with the same
price. In addition, a= this case shows, the price of the same
order can be modified during the transaction. This expla-
nation turned out to be wrong, but it came from the fact
that thers was ind=ed a logic in the procedure that partly
us=d price to search crder data. TSE also maintained that if
biny orders did net flaw in continuenshy and thus the target
=2ll arders were not always being matched to by orders,
the order cancel module would not have been imoked
within the order matching madule but instead invoked in
the erder entry madule, and then the cancellation would
have succeeded. However, this explanaticn implies that
different cancel medules are called or the same medule
behaves differently according to when it is imoked.

The third questian, and probably the mast crucial ane
with respect to the direct cause of the error, is how data
handling identifies arders causing a reverse special quots,
That information is written into a database containing

JUNE 209

61

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

62

COVER FEATURE

the order book data, but once the information is used in
determining the execution price, it is immediatehy cleared.
The rationale behind this design decision is mysterions.
The programmer who was charged with hxing the Febru-
ary 2000 bug intended to use this data to judge the type
of order to be canceled but he did not know that the data
no longer exiseed.

TSE and Fujitsu claimed that this incident occurred in
a highly exceptional situation when the Following sewen
conditions held at the same fime

. The daily price limits hawve not besn determined.
The special quote is displayed.
The reverse special quote accurs.

oL R =

. The price of the order that has caused the reverse
special quote is ot of the newly defined daily price
lirnits.

5. The target arder of cancellation caused the reverse
special quote.

. The target cancellation arder is in the process of ==[]

o

and buy matching, which forces the cancellation pro-
ce== o wait.
The target order is continually being matched.

|

The order cancellation module
appears to have insufficient cohesion
as different functions are overloaded.

62

A general procedurs for the arder cancellation modules
would be as follows:

1. Find th= order to be cancelad.

2. Determine if the arder satisfies conditions for
cancellation.

3. Execute cancellation if the conditions are met.

Becauss each order has a few simple ateributes—stock
name, =ell or buy, remaining number of =shares to be
processed (if O, the order is completed), and price—the
candition that an order can be canceled is straightfor-
ward: “the remaining number of sharesto be processed is
greater than zera” There is cnly one other candition that
cannat be determined by the arder attribute data butcan
be determined by its execution state: [f the target order is
in the process of matching, the cancel process must wait.

A remarkable point to note is that factors such as un-
defined limit price, display of special quote, reversing
special quote, price adjustment to the limit, and so forth
have na influence an the cancellation judgment. Thinking
in this way, it s=ems that the system design artificially in-
traduced the s=ven complicated conditions listed by TSE
ard Fujitsu.

COMPUTER

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

January 28, 2010 Dines Bjgrner

DESIGM ANOMALY

Figure | shows a flowchart of the madule that handles
order cancellaticn. Because order cancellation and order
change are processad in the same way, the two functions
are overloaded in this =ames module, but for the sahe of
simplicity | only deal with order cancellation.

The flowchart is not shown to provide details but to
illustrate the kind of documents presented to the court.
It is extracted and modified from a document submitted
as evidence by the defendant, which was an analysis of
the error reported by a TSE system engineesr. The plaintiff
required the defendant to prowide the entire design speci-
fication and source code, but the defendant refused and
the judge=did not farce the issue, being reluctant to go inta
technical details in court.

Part & of the Aowchart deals with the logic of price adjust-
ment to limit if necessany. The decision logic is as fallows:

* ifthe order to cancel is s=lland the price is lower than
the lower limit, it is adjusted to the lower limit; and

= if the order to cancel is buy and the price is higher
than the upper limit, it is adjusted to the upper limit.

Part B af the flowchart is the logic inserted in February
2000 when an error was found during testing and cansed
afailure in December 2005, 1= logic is a= folkows: IF called
in the order matching process; and limit prices are already
set: and the order to cancel is a buy over the limit price
ar a s=|] under the limit price and is not a reverse special
quate order, then a cancellation is infeasible because all
shares are already executed. Although this logic is unduly
complicated, it is sound anly if all the if-conditions are
correctly judged. Unfartunately, the judgment an “if not
a reverse special quote” gave a wrong answer of “trus” in
this Mizuho case, and the decision erronsously judged that
the cancellation was inferasible.

[nsufficient infarmatian is available te allow capturing
details of the system design, baut from what is available we
can infer the following design flaws.

Problems in database design

Thres databamss are related to the problem in this case:
Order DB, S=lBuy Price DB, and Stock Brand DE. The Crder
DR stares data of all emtersd orders. This databass should
include the current attribates of sach order, including thase
necessary for judging whether the designated arder can be
canceled, For example, because there is a record Aeld for
the executed shares in this databa=e, determining if all the
shares of the order have been executed or not should be a
trivial process. However, due to the time gap between usage
and update of the data, the process is much more compli-
cated. [fthe principle of databa=ze integrity is respected, the
k=glic would be much clearer, but performance seemsto be
diven higher priority than integrity.

A Financial Services Industry January 28, 2010, 00:00

January 28, 2010

Part A of the Aowchart in Figure 1 calculares price ad-
justment within the cancellation handling module, which
implies that the price data in the Order OB does not reflect
the current status.

The SelliBuy Price DB sorts selibuy orders by price for
each stock brard. This is by nature a secondary database
constructed From the Order DB, The secondary index is
price, but identifying an order uniquely in the database
requires the order [0 The explanation that price is used
to ==arch the databasze must refer to s=arch in this data-
base, and the price adjustment Jogic embedded in the order
cancel module should be related toil. The daka handling
over the Price DB and the Crder OB appears to be unduly
complicated.

The Stock Brand DB corresponds io a physical order book
For mach stock, bt s subsrartial data is stored in the S=llEury
Price DBand only some specific data for each stock brand is
kept here, Howewer, to implement a rule that an arder that
has cansed a rewerse special guote has an exceptional prior
ity in matching—lower than the regular caz=—the custormer
D and order 1D of such a skock s writk=n in this database,
and they are cleared as scom as the matching is dane, This
kind of temporary usage of a database goes against the gen-
eral principle that a database should =ave persistent data
aocessed by multiple modules

Problems in module design.

The part of the system that handles order cancellation
appears to have low modulacity. The logic in part B of the
Aowehart made awrong judgrment because the information
telling it that the target order had induced the reverse spe-
cial quote had been temporarily written on the Stoch Brand
DF by the arder matching modul= and had already be=n
cleared. Thiz implies an accidantal module coupling be-
tween the order matching and order cancelling madales.

The arder cancellation moduls appears to have insuf
fcient cohesion as different functions are overloaded.
Itis not cle=ar how the tasks of ==arching the targ=t order
ta be canceled. determining cancellabilicy, executing
cancellation, and updating the dalabase are this modul="s
responsibility.

LESSONS LEARNED

In addition 1o the insights into the associated software
design problems, this caze provides lessons learned with
regard to software enginesring technologies, processes,
and social aspect=

Sofety and human interface

If the arder entry system on sicher the Mizuho or TSE
side had been equipped with more elaborate safety mea-
sures, the accident could have been avoaded. [t was not the
brst time that the mistyping of a stock arder resulted ina
big lo= For instance, in December 2001, a trader at LBS

January 28, 2010, 00:00, A Financial Services Industry

63

-hart of the order cancellation module.

Warburg, the Swiss imsestment bank, lost more than 10
billion yen while trying 1o sell 16 shares of the [apanes=
adwertising company Dentsu at £10,000 ven each. He seld
10000 shares at six yen each. (The similarity betwean
thess two cases, inchding the commen Agure of 610,000,
is remarkable.)

JUNE 203

63

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

64

COVER FEATURE

Englnasring imus Applicabls ACMAEEE-CS Principle

Desigraramaly am

- Sirfvefar high quality, scoeptable cost and a resaable schedule,

January 28, 2010 Dines Bjgrner

Tabba 3. atrons between the Seftware Engineering Code of Ethics and Prafessional Practice and the TSE-

Ethics daiza

ereuing dgntficant rackafs are clear to and accepted by the
employer ard the client, ard are availsble for consideration by the
us=rand the public,

204

Kaintain the ntegrity of data, being sensttive to cutdated or flawed
CCOUTEreES

5 afety and buman interface 1o3

A pprove saftwane only If they have 8 well-founded belef that i 15 safe,
meerts spectications, passss approgriate tests, and does not diminish
cualtyaf e, diminish privacy or harm theensvranment. The ulimate
effectof thewark should be to the public gaed.

Requirements specification a7

Sirtve to fuly understand the speciications Tor software anwhich
they work.

s

Ermure that spedfications for softwane on which they work hiave been
welldocumerted, satisfy the usar requirements and have the appo-
priate approvak.

Verification and valdation 210

Ersuns adequate b= sting debugging, and review of seftwareand
related documents anwhich they work.

Fale of userand developer 403

Cnly endorse doomnentsetiher prepared under their supersision or
within theirarsasaf compet ence ard with which Ehey arein
acreement;

501

Ereure good maragement for ary project on which they wark, nodud-
Irg eflectve procedunss for promation of qualtty and reduction of
i

Chalnof subcontracting 201

Frowide service in their ansas of competence, being borest and forth-
rightabout arlimitations of theirexperierce and education.

R

Ereurethat they ar= qualified far ary project on which they wark o
proposs towark by an appropriatecombination of education and
tralring, and experience.

The habit of ignoring warning messagess is comman,
but it was a critical factor in these cases. [t raises the
guestion of how to design a safe—but not clumsy—human
interface.

Requirements speciication

Development of the current TSE Stock Order System
started with the request for proposal (RFP) that TSE
presanted to the software industry in Janoary 1993,
Two companies submitted proposals, and TSE s=lected
Fujitzu as the vendor with which to contract. After
several discussions between T3E and Fujitsu, Fuojitsu
wrote the requirements specification, which TSE
approved.

With respect to the order cancellation requirement, it
15 enly mentiocned as a function to “Cancel arder™in the
BFF, and no Further details are ghven there, In the requirs-
ments specification, six conditions are listed when cance]
lor changsl orders are not allowed, but none of them At
the Mizuho case. The document also states that “inall the

other cases. changeicancel condition checking should be

64 compuTER

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

the same as the current system.” Here, “current systerm’
refers to the prior wversion of the TSE Stock Order System,
also developed by Fujitsu, which had been in use until
May 2000

The phrass “the zame as the current =ysterm” Frequenthy
appears in this requirements specification, which was
criticized by software experes after the Mizuho incident
was publicized. The phraze may be acceptable if there is
aconsensus berween the user and the developer cn what
it means in each context, but when things go wrang, the
gquestion arises whether the specification descriptions
were adeguates.

Vertheation and validation

The Fact that an errar was injected while Axing a bug
found in testing is so typical thatevery textbook an testing
warns about this possibility. It is obvious that regression
testing was not properly done, [t is perhaps too easy to
criticize this owersight, but it would be worthavhile to stody
why it happenead in this particular cas=. So far, not many
detailz have been disclosed,

A Financial Services Industry January 28, 2010, 00:00

January 28, 2010

Robe of userand developer

It is conceivable that communication betwesn the us=r
and the developer was inadequate during the T5E system
development. The user, TSE, basically did not partici-
pate in the process of design and implementation. Mare
involvement of the user during the entire development
process would have promoted deeper understanding of
the requirsments by the developer, and the defect injected
during testing might have been avoided.

Subcontracting chain

Az in many large-scale information system develop-
ment projects, the TSE systemn project was crganized ina
hierarchical subcontracting structure. The engineer wha
was in charge of hxing the code in question had a low
pasition in the subcontracting chain. This organizational
structure was the likely causes of the misunderscanding
about database usage. Such a subcontract structure has
often been studied From the industry and labor problem
paint af visw, but it is also important o sxamine it from
the engineering point of wiew.

Product linbility

The sxtent to which software is regarded a= a produci
amenable to product liability lvws may depend on legaland
cultural boundaries, but there is a general worldwide trend
demanding stricter liability for software. More lawsuits
are being filed, and thus saftware enginesrs must be more
knowledgeable about software product liability issues.

ETHICAL ISSUES

This case raises several questions about professicnal
ethics. However, we should be careful in relating ethical
izsues and legal rmatters. Hlegal comduct and unethical con-
duct are of course not equivalent. Moreover, the Mizuha
incident is a civil case, nota criminal case.

The Saftware Enginesring Code of Ethics and Professional
Practice developed by an ACY and [EEE Computer Society
joirt tash foree provides a good framewarks far discussing
ethical issues. The Code comprises sight principles. and
each clmes is numbered by = principle category and the
sequence within the principle. The principles are mumbered
as I: Public, 2 Client and Ermployer, & Preduct. 4: Judgment,
&: Management, & Frofession, T Colleagues, and & Self

fis Table 3 shows, some clauses in the Code have rel-
atively strong associations with various aspects of the
TEE-Mizuha case Howewer, this discussion iz by no means
imended to blame the software enginesrs who participated
in planning, soliciting requirements. designing, imple-
menting, testing, aor maintaining the TSE system or ather
ralated activities, or to sugdesr negligence of athicalohbliga-
ticn=. First, the Code was not intended o be us=d in thiz
Fashiom. Second, the collected factsand disclosesd materials
are insufficieni to precisely judge what kind of specific

January 28, 2010, 00:00, A Financial Services Industry

conduct caused the unfortunate result. However, linking
the problems in this case with plausibly related ethical
obligation clauses as shown in Table 3 can provide a basis
for considering the ethical aspects of this incident and
other similar cases.

n addition to individual ethical conduct, the

¥izuho TSE case raises issues pertaining to corpo-

rate governance. Why did such an erroneous order

by a trader gao through unnoticed at Mizuho? Did

the TSE staff respond appropriately when they wers
consulted about the order cancellation? How did Fujitsu
manage subcontractors? Corporate governance is another
domain where software engineering must deal with social
and ethical iz=ues.

If we can learn valuakle lessons from this unfortonate
incident. it would be beneficial, We should also encour-
age peaple whao have access to information about similar
system Failures having significant social impact to anahze
and report those cases. [@

Tetsuo Tamai is @ professor in the Gradueete Schoo! of Arts
and Sciences at the University of Tolyo. His research in-
teresis incliade requiremends engineering and forma and
informa approaches to domain modaing. He received @ Drs
in mathemeticel enginsering from the Undversity of Tolgo
He is @ member of the JEEE Computer Society, the ACH.
the Information Processing Socicty of fapan, and the fepen
Society for Software Scienoe and Engineering. Contact kim
at tamei@graco.c u-tokyo.acjp.

COMPUTING
THEN

A\ \ "'. Learn about computing history
\'{ and the people who shaped it.
\ http:/fcomputingnow.
computerorg/fct

W

ts i
-

JUNE 203

'
L]
F—

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

66 January 28, 2010 Dines Bjgrner

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

Appendix C

Tokyo Stock Exchange arrowhead
Announcements

C.1 Change of trading rules

3. Change of trading rules

»

Fule for allocation
of simultaneous
arders (execution

Until Wed., Dec. 30, 2009
{current system)

= Adier soinling fior each iradisg participant,
(1) S eyeles of | unit esch,

@) 13 of remaining uniss placed

() 1/2 of remuining unis placed,

Planned changes to several trading rules are planned with arrowhead launch.

arrowhead ¢

“ ffier soieling for each irading participant, allocase | unitin each i fum

L (1]
current system®

*Revert to current rule.

Ty ltayaose) (&) remaining unizs placed {Foe stop allceation 2
dlaily limit price, pro rasa raiso applies from slcp-?:
cowards.)
Half-day trading = Full-day tradisg session, incloding Wed., Dec. 30, “Full-day iradizg sessice *Full-day rrading session
session o0
Tick sime {mee mexi pape) “Fizer-tumed fick size sucture ia considention of aveszll halance and simplicity. | Implement new rule.

“E.g-, Tik sze of TPY1 for issses whose prices are in the JFY2, (N} meage. {see

mexi page)

Daily price limits,

{=ee mexi pape}

«Slight expansion i considerution of oveszll halesce and simpliciy.

Mo chasge in dme imervels o renew special qeoies)

Implement new rule.

special ql:"'ztc “E.g-, Daily limit price mage of issues with price more than ar equal io JEY 700

!'nuwal price be fesss thas JPY 1,000 will be changed s JP% 150 {currendly JBY100)

intervals, etc.

Sequential trade =Nao existing rale «When sequeniial execution of 2 siagle buy/sell onder causes the price in excesd *Revert to current rule.
quaote the last execaiion price plusiminus fwice dhe daily price limit, » sequeniial

rnde quose will be displayed for 1 minwe, 2md ihen the onder is maiched by
Tiayose meihod.

Mo rule)

Matehing condition
during Itayese
stop allocation

(LAl msricet ardess s limitarders a beer prices

&A1 limnit ordess s the meschizg peice on one side
af onder koo

oA least oo tradizg wai an the oihes side 21 ihe
maicking price of & order book is exeewied.
During stop 2llocation, there & no exscutian il
each trading pariicipant is noi allocaied at beasi
ane trading uniz.

*Abaolish conditi

(3.
E.g-, In the case of unfulfilled [ayose comd Rion, 2 coder will be maiched w2
price near the last execution price. During swop allecation, e executica will
cuconar iff there is 24 least oo irading wnit on e aiher side of the cader book.

*Revert to current rule.

67

68 January 28, 2010 Dines Bjgrner

arrawhesd -2

3. Change of trading rules

»Sequential Trade Quote

Mew rule to be introduced with arrewhead launch.

If a single order that canses a Series of sfecutions arrwes in the order book, and such sxecutions cause the price to axceed twice the special
guate renswal price interval Trom the last afecution price, 4 Sequential trade quote will be displayed at this price for 1 minute and conduct
ruatching using, Itayoss.

MO Place 10 By M. p—-"14 MO, 7 Mo, & M. T
Ewecite Bunika at [P 101
2 Nz . 2 | nz 2 K R L
1 m
1 m 1 m 1 m 1 m Rl
— — — naf | K o=
1a 1a 1140 114 [
108
4 108 4 108 4 108 q 108

104
1 104 1 104 1 04 4
— . 11
1 4 o kg ar
3 [3 [1 e

100

Q] Q] 10
Exacud= 1 unial = o
) 2) 23 =) 23 [IPride 23

{Aggumptiong on the aboere chart)

“Zamata You right aapect that 1 unit will ke
-Ladl eseculion prics: TRY |00

Speri L . sazcuted at TPY 111, Howewar, Bacauss this
- Bpenia| quede enewa | price imeral: P55 X .

- Bequential trade quate: TRV 10 price sxceeds the sequential trade quote
[TEY 114}, a sequential trade quate (K] is
displayed tor 1 minuts.

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 69

arrawhesd -2

3. Change of trading rules

¥» Revision of tick sizes

Stock prics (JPY) Cumrent (JFY) | Revised (JPY)
-w 2,000 or less 1 1
abose 2,000 -w 3,000 b 5 1
i 3,000 i 5,000 it 1 &
" 5, [HH} e 300,000 i 10 10
it 3000 o~ S0H000 it Al a0
E A0 0H0 i 00, D0] 100 100
w 3000, BHE e SOHE, GO " 1,0HH} SiHr
w SO0, GO0 e 300, OO it 1,00 1,000
" 3, (R, OO p 5 CHHE, CHOH i 10k CHOH b 11413
w 5, CHHC, OO e 20, CHERCE CHOMH " 10k CHOH 10k (M
w 200 CHOHE CHCH e 30, CHERCH CHOMCH " S0 CHHY Tk (Hibd
w 301, CHOHE CHOH e SO, RO RO " 1 CHH, CHHY b1 (4131113
" 5 (GO CHCHY 1O, OH0H 1 O, 300

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark

January 28, 2010, 00:00, A Financial Services Industry

70 January 28, 2010 Dines Bjgrner

arrawhesd -2

3. Change of trading rules

» Revision of daily price limits and special quote renewal price intervals

R Ipr
Priee ot i Priee ot Revemal price fomeal
Price QY ™ Price
cumat | Revied | cumat | Revisad Comrent | Revisd | Coment | Revisa
Lasa add Lama

Lo m W u i 3 Impm PR 120pm nam wom =am Amm.
m o - . am n F] 4 2 l:apm - :mpm anmm a0 amm +om.
2m ~ am m m a B 2mpm - ampm wpm oo apm aOm
am - m Im m n n mpm - ampm mnpm nom pm Iom
m - 1.om Im = n smpm - mpm o o inmm o
1 - 1.Am am am] mam e I.ompm | laom lonom lamm
1am - = m HE k) 2 1.anpm - L.ampm “mpm Anomm Hom
2pm - amm “m zm @ @ 1. ampm - =mopn ampm mpm A
m ~ aam 4m am a] =mpm ~ pmpm wnpm Znam aam
imm ~ .o .om I.om m i ompm . A mmEn amnpm Jnom mom
Tam - ogm .om LA m 1= Apmpm - . |.omnpm |.omnpm mpm mmm
1o - s | zpm amm m am »pm - wpmpn | o Lanam 1mgm 1zam
15m - zmm L0 m 0 iopm.an - g | zpmm amnam ampm man
oo = imm amm am m 1am om - A mn immpm AEENED mpm Anom
0.0 - a0 Lom «m o . om - A0 o anpm alnmm o 2nom
e - 4mm loom am 1o npEn om - A0 o A onpm Lomom mpn r.
mmm - Imom nmm 1A0m 1.mm 150 anpm om oo Inpmpm 1.ompm 1 o pm

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 71

C.2 Points to note when placing orders

arrawhand 7

5. Points to note when placing orders

» With high speed execution processing, there may be
sharp fluctuations in stock prices. During the time from
order placement by a customer after visual
confirmation of the order book to entry of the order
into the order book after processing in the trading
system, executions of a large volume of orders could
already occur, possibly in the scale of hundreds of
times especially when there are frequent price
movements.

» Caution is advised, in particular, when placing market
orders, as executions may occur outside a price range

you initially expected.

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK—2840 Holte, Denmark

72 January 28, 2010 Dines Bjgrner

arrawhand 7

5. Points to note when placing orders

(Case) Current price in the order book is JPY 100.
An order for 10 units of market buy orders is placed.

Cumulative Sell Price Buy Cumulative
Sell | Buy
7 M.O. 10 10

7 2 102 Place 10 units of buy M.O.
5 5 101 10
100 1 11
99 4 15
I 08 3 18

What is the difference in execution speed between
the current system and arrowhead?

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

January 28, 2010 73

-rmwh--ﬂ_'_j_;;r

5. Points to note when placing orders

B How the order book looks like in the current system

Sell Price Buy Sell Price Buy
M.O. o+ M.O. 5 __
102 2 1 102
101 101
100 1 100 |
99 | 09 4
Execute 5 L 98 3 Exe_cutez 93 3
units at :Ir":;il?; I
JPY101 -

Matching (execution) is performed every few seconds, so placing orders while
monitoring the order book was feasible,

January 28, 2010, 00:00, A Financial Services Industry © Dines Bjgrner 2008, Fredsvej 11, DK—2840 Holte, Denmark

74 January 28, 2010 Dines Bjgrner

-rmwh--ﬂ_'_j_;;r

5. Points to note when placing orders

B How the order book looks like in arrowhead

Sell Price Buy Sell Price Buy
M.O. 10 M.O.
f 2z | w4 104
i | 103 103
I 2 102 102
I J_ . 101 101
Immediale execulion of 100 1 The price locks as if it
10 units of buy M.O. — has jumped
againsi sell orders . instantanesusly be
JPY104

beiween JPY 101-104

Matching (execution) is immediate, and the price in the erder beek may jump instantanecusly frem
JPYT00 te JPY 1. You are advised te cengider this risk when placing eirders while menitering the erder

book.

© Dines Bjgrner 2008, Fredsvej 11, DK-2840 Holte, Denmark A Financial Services Industry January 28, 2010, 00:00

