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Summary of PhD Course

• This document takes the view that software specifications and pro-
grams are best understood as mathematical objects.

⋄⋄ This is in contrast to other views,

⋄⋄ notably such which are dominant in the USA,

⋄⋄ that the development of software

⋄⋄ is best understood as sociological and psychological objects.
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• In this PhD course we cover two aspects of software engineering:

⋄⋄ domain engineering (Lectures 1–6) and

⋄⋄ requirements engineering (Lectures 7–10).

• We also cover some aspects of

⋄⋄ domain science.

• The lectures are supported by extensive material:

⋄⋄ A comprehensive set of lecture notes:

www.imm.dtu.dk/~dibj/portugal/Braga-MAP-i.pdf,

and

⋄⋄ each lectures by lecture slides:

www.imm.dtu.dk/~dibj/portugal/BL0.pdf--BL11.pdf.
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• We will be together Monday, Tuesday and Thursday 10:00–17:30

⋄⋄ ‘Formal Lectures’ alternate

⋄⋄ with ‘Workshop Sessions’.

• In workshop sessions we shall try, You and I, to describe a domain.

⋄⋄ We will select this domain right after lunch today

⋄⋄ and start describing it.

⋄⋄ You are supposed to think about this domain

◦◦ mornings, before wee meet

◦◦ and late afternoons, after we have “left”.

• Wednesday I will give a Faculty Seminar:

⋄⋄ A New Foundation for Computing Science

⋄⋄ 14:00–14:45, Room DI-A2
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Monday 25 May, 2015

• L0: Opening Lecture [Slides 1–8]

Monday, 25 May 2015: 10:00–10:20

• L1: An Overview of Domain Description [Slides 9–79]

Monday, 25 May 2015: 10:30–11:15

• L2: Parts [Slides 80–145]

Monday, 25 May 2015: 11:30–12:15

• 1. Workshop: An Example Domain

Monday, 25 May 2015: 12:30–13:00

• Lunch: 13:00–14:30

• L3: Unique Identifiers, Mereologies and Attributes [Slides 146–202]

Monday, 25 May 2015: 14:30–15:15

• 2. Workshop: An Example Domain

Monday, 25 May 2015: 15:30–16:15

• L4: Components, Materials – and Discussion of Endurants [Slides,203–241]

Monday, 25 May 2015: 16:45–17:30

A Prerequisite for Requirements Engineering 5 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



6

Tuesday 26 May, 2015

• L5: Perdurants [242–309]
Tuesday, 26 May 2015: 10:00–10:45

• 3. Workshop: An Example Domain
Tuesday, 26 May 2015: 11:00–11:45

• L6: A Summary Domain Description [310–351]
Tuesday, 26 May 2015: 12:00–13:00

• Lunch: 13:00–14:30

• 4. Workshop: An Example Domain
Tuesday, 26 May 2015: 14:30–15:15

• L7: Requirements – An Overview, and Projection [352–393]
Tuesday, 26 May 2015: 15:30–16:15

• L8: Domain Requirements: Instantiation and Determination [394–423]
Tuesday, 26 May 2015: 16:45–17:30
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Wednesday 27 May:

• 14:00–14:45 Faculty Seminar: Room DI-A2

Title: A New Foundation for Computing Science Pa-
per, Slides
Abstract: We argue that computing systems requirements
must be based on precisely described domain models — and
we argue that domain science & engineering offers a new di-
mension in computing. We review our work in this area and
we outline a research and experimental engineering programme
for the triptych of domain enginering, requirements engineering
and software design.
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Thursday 28 May, 2015

• L9: Domain Requirements: Extension and Fitting [Slides 424–468]
Thursday, 28 May 2015: 10:00–11:15

• 5. Workshop: Example Domain
Thursday, 28 May 2015: 11:30–12:00

• L10: Interface Requirements [Slides 469–556]
Thursday, 28 May 2015: 12:15–13:00

• Lunch: 13:00–14:30

• 6. Workshop: Example Domain
Thursday, 28 May 2015: 14:30–15:15

• L11: Conclusion [Slides 557–561]
Thursday, 28 May 2015: 15:30–16:30

• L12: Discussion of Research Topics [Slides 562–601]
Thursday, 28 May 2015: 16:45–17:30
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An Overview Of Domain Description
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91. Domain Analysis & Description

1. Domain Analysis & Description
Abstract

• We show that manifest domains,

⋄⋄ an understanding of which are

⋄⋄ a prerequisite for software requirements prescriptions,

can be precisely described:

⋄⋄ narrated and ⋄⋄ formalised.
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1. Domain Analysis & Description

• We show that manifest domains can be understood as a collection of

⋄⋄ endurant, that is, basically spatial entities:

◦◦ parts, ◦◦ components and ◦◦ materials,

and

⋄⋄ perdurant, that is, basically temporal entities:

◦◦ actions, ◦◦ events ◦◦ and behaviours.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29 10 Domain Science & Engineering



11

1. Domain Analysis & Description

• We show that parts can be modeled in terms of

⋄⋄ external qualities whether:

◦◦ atomic or

◦◦ composite

parts,

• having internal qualities:

⋄⋄ unique identifications,

⋄⋄ mereologies, which model relations between parts, and

⋄⋄ attributes.
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1. Domain Analysis & Description

• We show the manifest domain analysis endeavour can be supported
by a calculus of manifest domain analysis prompts:

• is entity,

• is endurant,

• is perdurant,

• is part,

• is component,

• is material,

• is atomic,

• is composite,

• has components,

• has materials,

• has concrete type,

• attribute names,

• is stationary, etcetera.
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1. Domain Analysis & Description

• We show how the manifest domain description endeavour can be
supported by a calculus of manifest domain description prompts:

⋄⋄ observe part sorts,

⋄⋄ observe part type,

⋄⋄ observe components,

⋄⋄ observe materials,

⋄⋄ observe unique identifier,

⋄⋄ observe mereology,

⋄⋄ observe attributes,

⋄⋄ observe location and

⋄⋄ observe position.
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1. Domain Analysis & Description

• We show how to model essential aspects of perdurants in terms of
their signatures based on the concepts of endurants.

• And we show how one can “compile”

⋄⋄ descriptions of endurant parts into

⋄⋄ descriptions of perdurant behaviours.

• We do not show prompt calculi for perdurants.

• The above contributions express a method

⋄⋄ with principles, technique and tools

⋄⋄ for constructing domain descriptions.
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1. Domain Analysis & Description 1. Introduction

1.1. Introduction

• The broader subject of this seminar is that of software development.

• The narrower subject is that of manifest domain engineering.

• We see software development
in the context of the TripTych approach.
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1. Domain Analysis & Description 1. Introduction

• The contribution of this seminar is twofold:

⋄⋄ the propagation of manifest domain engineering

◦◦ as a first phase of the development of

◦◦ a large class of software —

and

◦◦ a set of principles, techniques and tools

◦◦ for the engineering of the analysis & descriptions

◦◦ of manifest domains.
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1. Domain Analysis & Description 1. Introduction

• These principles, techniques and tools are embodied in a set of anal-
ysis and description prompts.

⋄⋄ We claim that this embodiment in the form of prompts is novel,

⋄⋄ that the (yet to be investigated) “calculus” is a first such “method
calculus”.
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1. Domain Analysis & Description 1. Introduction 1.1.

1.1.1. The TripTych Approach to Software Engineering

• We suggest a TripTych view of software engineering:

⋄⋄ before software can be designed and coded

⋄⋄ we must have a reasonable grasp of “its” requirements;

⋄⋄ before requirements can be prescribed

⋄⋄ we must have a reasonable grasp of “the underlying” domain.
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1. Domain Analysis & Description 1. Introduction 1.1. The TripTych Approach to Software Engineering

• To us, therefore, software engineering contains the three sub-disciplines:

⋄⋄ domain engineering,

⋄⋄ requirements engineering and

⋄⋄ software design.

A Prerequisite for Requirements Engineering 19 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



20

1. Domain Analysis & Description 1. Introduction 1.1. The TripTych Approach to Software Engineering

• This seminar contributes, we claim, to a methodology
for domain analysis &1 domain description.

• References [dines:ugo65:2008]

⋄⋄ show how to “refine” domain descriptions
into requirements prescriptions,

and reference [DomainsSimulatorsDemos2011]

⋄⋄ indicates more general relations between domain descriptions and

◦◦ domain demos,

◦◦ domain simulators and

◦◦ more general domain specific software.

1When, as here, we write A & B we mean A & B to be one subject.
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1. Domain Analysis & Description 1. Introduction 1.1. The TripTych Approach to Software Engineering

• In branches of engineering based on natural sciences

⋄⋄ professional engineers are educated in these sciences.

⋄⋄ Telecommunications engineers know Maxwell’s Laws.

◦◦ Maybe they cannot themselves “discover” such laws,

◦◦ but they can “refine” them into designs,

◦◦ for example, for mobile telephony radio transmission towers.

⋄⋄ Aeronautical engineers know laws of fluid mechanics.

◦◦ Maybe they cannot themselves “discover” such laws,

◦◦ but they can “refine” them into designs,

◦◦ for example, for the design of airplane wings.

⋄⋄ And so forth for other engineering branches.
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1. Domain Analysis & Description 1. Introduction 1.1. The TripTych Approach to Software Engineering

• Our point is here the following:

⋄⋄ software engineers must domain specialise.

⋄⋄ This is already done, to a degree, for designers of

◦◦ compilers,

◦◦ operating systems,

◦◦ database systems,

◦◦ Internet/Web systems,

etcetera.

⋄⋄ But is it done for software engineering

◦◦ banking systems,

◦◦ traffic systems,

◦◦ health care,

◦◦ insurance, etc. ?

⋄⋄ We do not think so, but we claim it should be done.
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1. Domain Analysis & Description 1. Introduction 1.2. The TripTych Approach to Software Engineering

1.1.2. Method and Methodology
1.1.2.1. Method

• By a method we shall understand

⋄⋄ a “somehow structured” set of principles

⋄⋄ for selecting and applying

⋄⋄ a number of techniques and tools

⋄⋄ for analysing problems and synthesizing solutions

⋄⋄ for a given domain 2

2Definitions and examples are delimited by respectively symbols.
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1. Domain Analysis & Description 1. Introduction 1.2. Method and Methodology 1.2.1. Method

• The ‘somehow structuring’ amounts,

⋄⋄ in this treatise on domain analysis & description,

⋄⋄ to the techniques and tools being related to a set of

⋄⋄ domain analysis & description “prompts”,

⋄⋄ “issued by the method”,

⋄⋄ prompting the domain engineer,

⋄⋄ hence carried out by the domain analyser & describer3 —

⋄⋄ conditional upon the result of other prompts.

3We shall thus use the term domain engineer to cover both the analyser & the describer.
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1. Domain Analysis & Description 1. Introduction 1.2. Method and Methodology 1.2.2. Method

1.1.2.2. Discussion

• There may be other ‘definitions’ of the term ‘method’.

• The above is the one that will be adhered to in this seminar.

• The main idea is that

⋄⋄ there is a clear understanding of what we mean by, as here,

◦◦ a software development method,

◦◦ in particular a domain analysis & description method.
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1. Domain Analysis & Description 1. Introduction 1.2. Method and Methodology 1.2.2. Discussion

• The main principles of the TripTych

domain analysis and description approach are those of

⋄⋄ abstraction and both

◦◦ narrative and

◦◦ formal

⋄⋄ modeling.

⋄⋄ This means that evolving domain descriptions

◦◦ necessarily limit themselves to a subset of the domain

◦◦ focusing on what is considered relevant, that is,

◦◦ abstract “away” some domain phenomena.
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1. Domain Analysis & Description 1. Introduction 1.2. Method and Methodology 1.2.2. Discussion

• The main techniques of the TripTych

domain analysis and description approach are

⋄⋄ besides those techniques which are in general associated with for-
mal descriptions,

⋄⋄ focus on the techniques that relate to the deployment of
of the individual prompts.
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1. Domain Analysis & Description 1. Introduction 1.2. Method and Methodology 1.2.2. Discussion

• And the main tools of the TripTych

domain analysis and description approach are

⋄⋄ the analysis and description prompts and the

⋄⋄ description language, here the Raise Specification Language RSL.
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1. Domain Analysis & Description 1. Introduction 1.2. Method and Methodology 1.2.2. Discussion

• A main contribution of this seminar is therefore

⋄⋄ that of “painstakingly” elucidating the

◦◦ principles, ◦◦ techniques and ◦◦ tools

of the domain analysis & description method.
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1. Domain Analysis & Description 1. Introduction 1.2. Method and Methodology 1.2.3. Discussion

1.1.2.3. Methodology

• By methodology we shall understand

⋄⋄ the study and knowledge

⋄⋄ about one or more methods4

4Please note our distinction between method and methodology. We often find the two, to us, separate terms used interchangeably.
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1. Domain Analysis & Description 1. Introduction 1.3. Method and Methodology

1.1.3. Computer and Computing Science

• By computer science we shall understand

⋄⋄ the study and knowledge of

◦◦ the conceptual phenomena

◦◦ that “exists” inside computers

⋄⋄ and, in a wider context than just computers and computing,

◦◦ of the theories “behind” their

◦◦ formal description languages

• Computer science is often also referred to as theoretical computer
science.
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1. Domain Analysis & Description 1. Introduction 1.3. Computer and Computing Science

• By computing science we shall understand

⋄⋄ the study and knowledge of

◦◦ how to construct

◦◦ and describe

those phenomena

• Another term for computing science is programming methodology.
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1. Domain Analysis & Description 1. Introduction 1.3. Computer and Computing Science

• This paper is a computing science paper.

⋄⋄ It is concerned with the construction of domain descriptions.

⋄⋄ It puts forward a calculus for analysing and describing domains.

⋄⋄ It does not theorize about this calculus.

⋄⋄ There are no theorems about this calculus and hence no proofs.

⋄⋄ We leave that to another study and paper.
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1. Domain Analysis & Description 1. Introduction 1.4. Computer and Computing Science

1.1.4. What Is a Manifest Domain ?

• We offer a number of complementary delineations of
what we mean by a manifest domain.

• But first some examples, “by name” !

Example 1 . Manifest Domain Names: Examples of suggestive
names of manifest domains are:

• air traffic,

• banks,

• container lines,

• documents,

• hospitals,

• pipelines,

• railways and

• road nets
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1. Domain Analysis & Description 1. Introduction 1.4. What Is a Manifest Domain ?

• A manifest domain is a

⋄⋄ human- and

⋄⋄ artifact-assisted

⋄⋄ arrangement of

◦◦ endurant, that is spatially “stable”, and

◦◦ perdurant, that is temporally “fleeting”

entities.

⋄⋄ Endurant entities are

◦◦ either parts ◦◦ or components ◦◦ or materials.

⋄⋄ Perdurant entities are

◦◦ either actions ◦◦ or events ◦◦ or behaviours
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1. Domain Analysis & Description 1. Introduction 1.4. What Is a Manifest Domain ?

Example 2 . Manifest Domain Endurants: Examples of (names
of) endurants are

⋄⋄ Air traffic: aircraft, airport, air lane.

⋄⋄ Banks: client, passbook.

⋄⋄ Container lines: container, container vessel, terminal port.

⋄⋄ Documents: document, document collection.

⋄⋄ Hospitals: patient, medical staff, ward, bed, medical journal.

⋄⋄ Pipelines: well, pump, pipe, valve, sink, oil.

⋄⋄ Railways: simple rail unit, point, crossover, line, track, station.

⋄⋄ Road nets: link (street segment), hub (street intersection)
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1. Domain Analysis & Description 1. Introduction 1.4. What Is a Manifest Domain ?

Example 3 .Manifest Domain Perdurants: Examples of (names
of) perdurants are

⋄⋄ Air traffic: start (ascend) an aircraft, change aircraft course.

⋄⋄ Banks: open, deposit into, withdraw from, close (an account).

⋄⋄ Container lines: move container off or on board a vessel.

⋄⋄ Documents: open, edit, copy, shred.

⋄⋄ Hospitals: admit, diagnose, treat (patients).

⋄⋄ Pipelines: start pump, stop pump, open valve, close valve.

⋄⋄ Railways: switch rail point, start train.

⋄⋄ Road nets: set a hub signal, sense a vehicle
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1. Domain Analysis & Description 1. Introduction 1.4. What Is a Manifest Domain ?

⋄⋄ A manifest domain is further seen as a mapping

◦◦ from entities

◦◦ to qualities,

that is, a mapping

◦◦ from manifest phenomena

◦◦ to usually non-manifest qualities
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1. Domain Analysis & Description 1. Introduction 1.4. What Is a Manifest Domain ?

Example 4 . Endurant Entity Qualities: Examples of (names of) endurant quali-
ties:

• Pipeline:

⋄⋄ unique identity of a pipeline unit,

⋄⋄ mereology (connectedness) of a pipeline unit,

⋄⋄ length of a pipe,

⋄⋄ (pumping) height of a pump,

⋄⋄ open/close status of a valve.

• Road net:

⋄⋄ unique identity of a road unit (hub or link),

⋄⋄ road unit mereology:

◦◦ identity of neighbouring hubs of a link,

◦◦ identity of links emanating from a hub,

⋄⋄ and state of hub (traversal) signal
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1. Domain Analysis & Description 1. Introduction 1.4. What Is a Manifest Domain ?

Example 5 . Perdurant Entity Qualities: Examples of (names of)
perdurant qualities:

• Pipeline:

⋄⋄ the signature of an open (or close) valve action,

⋄⋄ the signature of a start (or stop) pump action,

⋄⋄ etc.

• Road net:

⋄⋄ the signature of an insert (or remove) link action,

⋄⋄ the signature of an insert (or remove) hub action,

⋄⋄ the signature of a vehicle behaviour,

⋄⋄ etc.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29 40 Domain Science & Engineering



41

1. Domain Analysis & Description 1. Introduction 1.4. What Is a Manifest Domain ?

• Our definitions of what a manifest domain is

⋄⋄ are, to our own taste, not fully adequate;

⋄⋄ they ought be so sharp that one can unequivocally distinguish
such domains that are not manifest domains from those which are
(!).

⋄⋄ Examples of the former are:

◦◦ the Internet,

◦◦ language compilers,

◦◦ operating systems,

◦◦ data bases,

etcetera.

• As we progress we shall sharpen our definition of ‘manifest domain’.

We shall in the rest of this seminar just write ‘domain’ instead of
‘manifest domain’.
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1. Domain Analysis & Description 1. Introduction 1.5. What Is a Manifest Domain ?

1.1.5. What Is a Domain Description ?

• By a domain description we understand

⋄⋄ a collection of pairs of

⋄⋄ narrative and
commensurate

⋄⋄ formal

texts, where each pair describes

⋄⋄ either aspects of an endurant entity

⋄⋄ or aspects of a perdurant entity
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1. Domain Analysis & Description 1. Introduction 1.5. What Is a Domain Description ?

• What does it mean that some text describes a domain entity ?

• For a text to be a description text it must be possible

⋄⋄ to either, if it is a narrative,

◦◦ to reason, informally, that the designated entity

◦◦ is described to have some properties

◦◦ that the reader of the text can observe

◦◦ that the described entities also have;

⋄⋄ or, if it is a formalisation

◦◦ to prove, mathematically,

◦◦ that the formal text

◦◦ denotes the postulated properties
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1. Domain Analysis & Description 1. Introduction 1.5. What Is a Domain Description ?

Example 6 . Narrative Description of Bank System Endurants:

1 A banking system consists of a bank and collections of clients and of
passbooks.

2 A bank attribute is that of a general ledger.

3 A collection of clients is a set of uniquely identified clients.

4 A collection of passbooks is a set of uniquely identified passbooks.

5 A client “possess” zero, one or more passbook identifiers.

6 Two or more clients may share the same passbook.

7 The general ledger records, for each passbook identifier, amongst
others, the set of one or more client identifiers sharing that passbook,
etc.

Etcetera
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1. Domain Analysis & Description 1. Introduction 1.5. What Is a Domain Description ?

Example 7 . Formal Description of Bank System Endurants:

type
1. B, CC, CPB
value
1. obs part CC: B → CC,
1. obs part CPB: B → CPB
type
2. GL
value
2. attr GL: B → GL

type
3. C, CI, CC = C-set,
4. PB, PBI, CPB = PB-set
value
5. attr C: C → PBI-set
type
7. GL = PBI →m SH × ...

7. SH = PBI-set

Etcetera
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Example 8 . Narrative Description of Bank System Perdurants:

8 Clients and the bank possess cash (i.e., monies).

9 Clients can open a bank account and receive in return a passbook.

10 Clients may deposit monies into an account in response to which the
passbook and the general ledger are updated.

11 Clients may withdraw monies from an account: if the balance of
monies in the designated account is not less than the requested
amount the client is given the (natural number) designated monies
and the passbook and the general ledger are updated.

Etcetera
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Example 9 . Formal Description of Bank System Perdurants:

type
8. M
value
8. attr M: (B|C) → M
9. open: B → B × PB
10. deposit: PB → M → B → B × PB

11. withdraw: PB → B → Nat
∼
→ B × PB × M

Etcetera
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• By a domain description we shall thus understand a text
which describes

⋄⋄ the entities of the domain:

◦◦ whether endurant or perdurant,

◦◦ and when endurant whether

∗ discrete or continuous,

∗ atomic or composite;

◦◦ or when perdurant whether

∗ actions,

∗ events or

∗ behaviours.

⋄⋄ as well as the qualities of these entities.
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• So the task of the domain analyser cum describer is clear:

⋄⋄ There is a domain: right in front of our very eyes,

⋄⋄ and it is expected that that domain be described.
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1.1.6. Towards a Methodology of Domain Analysis & Description

1.1.6.0.1 Practicalities of Domain Analysis & Description

• How does one go about analysing & describing a domain ?

⋄⋄ Well, for the first,

◦◦ one has to designate one or more domain analysers cum

◦◦ domain describers,

◦◦ i.e., trained domain scientists cum domain engineers.

⋄⋄ How does one get hold of a domain engineer ?

◦◦ One takes a software engineer and educates and trains that per-
son in

∗ domain science &

∗ domain engineering.

◦◦ A derivative purpose of this seminar is to
unveil aspects of domain science & domain engineering.
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• The education and training consists in bringing forth

⋄⋄ a number of scientific and engineering issues

◦◦ of domain analysis and ◦◦ of domain description.

⋄⋄ Among the engineering issues are such as:

◦◦ what do I do when confronted

∗ with the task of domain analysis ? and

∗ with the task of description ? and

◦◦ when, where and how do I

∗ select and apply

∗ which techniques and which tools ?
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• Finally, there is the issue of

⋄⋄ how do I, as a domain describer, choose appropriate

◦◦ abstractions and ◦◦ models ?

1.1.6.0.2 The Four Domain Analysis & Description “Players”

• We can say that there are four ‘players’ at work here.

⋄⋄ the domain,

⋄⋄ the domain analyser & describer,

⋄⋄ the domain analysis & description method, and

⋄⋄ the evolving domain analysis & description.
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• The domain is there.

⋄⋄ The domain analyser & describer cannot change the domain.

⋄⋄ Analysing & describing the domain does not change it5.

⋄⋄ In a meta-physical sense it is inert.

⋄⋄ In the physical sense the domain will usually contain

◦◦ entities that are static (i.e., constant), and

◦◦ entities that are dynamic (i.e., variable).

5Observing domains, such as we are trying to encircle the concept of domain, is not
like observing the physical world at the level of subatomic particles. The experimental
physicists’ instruments of observation changes what is being observed.
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• The domain analyser & domain describer is a human,

⋄⋄ preferably a scientist/engineer6,

⋄⋄ well-educated and trained in domain science & engineering.

⋄⋄ The domain analyser & describer

◦◦ observes the domain,

◦◦ analyses it according to a method and

◦◦ thereby produces a domain description.

6At the present time domain analysis appears to be partly an art, partly a scien-
tific endeavour. Until such a time when domain analysis & description principles,
techniques and tools have matured it will remain so.
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• As a concept the method is here considered “fixed”.

⋄⋄ By ‘fixed’ we mean that its principles, techniques and tools do not
change during a domain analysis & description.

⋄⋄ The domain analyser & describer

◦◦ may very well apply these principles, techniques and tools

◦◦ more-or-less haphazardly,

◦◦ flaunting the method,

◦◦ but the method remains invariant.

⋄⋄ The method, however, may vary

◦◦ from one domain analysis & description (project)

◦◦ to another domain analysis & description (project).

⋄⋄ Domain analysers & describers do become
wiser from a project to the next.
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• Finally there is the evolving domain analysis & description.

⋄⋄ That description is a text, usually both informal and formal.

⋄⋄ Applying a domain description prompt to the domain

◦◦ yields an additional domain description text

◦◦ which is added to the thus evolving domain description.
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⋄⋄ One may speculate of the rôle of the “input” domain description.

◦◦ Does it change ?

◦◦ Does it help determine the additional domain description text ?

◦◦ Etcetera.

⋄⋄ Without loss of generality we can assume

◦◦ that the “input” domain description is changed and

◦◦ that it helps determine the added text.
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• Of course, analysis & description is a trial-and-error, iterative pro-
cess.

⋄⋄ During a sequence of analyses,

⋄⋄ that is, analysis prompts,

⋄⋄ the analyser “discovers”

⋄⋄ either more pleasing abstractions

⋄⋄ or that earlier analyses or descriptions

⋄⋄ were wrong.

⋄⋄ So they are corrected.
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1.1.6.0.3 An Interactive Domain Analysis & Description Dialogue

• We see domain analysis & description

⋄⋄ as a process involving the above-mentioned four ‘players’,

⋄⋄ that is, as a dialogue

⋄⋄ between the domain analyser & describer and the domain,

⋄⋄ where the dialogue is guided by the method

⋄⋄ and the result is the description.

• We see the method as a ‘player’ which issues prompts:

⋄⋄ alternating between:

⋄⋄ “analyse this” (analysis prompts) and

⋄⋄ “describe that” (synthesis or, rather, description prompts).
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1.1.6.0.4 Prompts

• In this paper we shall suggest

⋄⋄ a number of domain analysis prompts and

⋄⋄ a number of domain description prompts.

• The domain analysis prompts,

⋄⋄ (schematically: analyse named condition(e))

⋄⋄ directs the analyser to inquire

⋄⋄ as to the truth of whatever the prompt “names”

⋄⋄ at wherever part (component or material), e, in the domain
the prompt so designates.
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• Based on the truth value of an analysed entity the domain analyser
may then be prompted to describe that part (or material).

• The domain description prompts,

⋄⋄ (schematically: describe type or quality(e))

⋄⋄ directs the (analyser cum) describer to formulate

⋄⋄ both an informal and a formal description

⋄⋄ of the type or qualities of the entity
designated by the prompt.

• The prompts form languages, and there are thus two languages at
play here.
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1.1.6.0.5 A Domain Analysis & Description Language

• The ‘Domain Analysis & Description Language’ thus consists of a
number of meta-functions, the prompts.

⋄⋄ The meta-functions have names (say is endurant) and types,

⋄⋄ but have no formal definition.

⋄⋄ They are not computable.

⋄⋄ They are “performed”
by the domain analysers & describers.

⋄⋄ These meta-functions are systematically introduced
and informally explained in Sect. 2.
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1.1.6.0.6 The Domain Description Language

• The ‘Domain Description Language’ is RSL [39], the RAISE Specification
Language [40].

• With suitable, simple adjustments it could also be either of

⋄⋄ Alloy [45],

⋄⋄ Event B [1],

⋄⋄ VDM-SL [30, 31, 37] or

⋄⋄ Z [55].

• We have chosen RSL because of its simple provision for

⋄⋄ defining sorts,

⋄⋄ expressing axioms, and

⋄⋄ postulating observers over sorts.
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1.1.6.0.7 Domain Descriptions: Narration & Formalisation

• Descriptions

⋄⋄ must be readable and

⋄⋄ should be mathematically precise.7

• For that reason we decompose domain description fragments into
clearly identified “pairs” of

⋄⋄ narrative texts and

⋄⋄ formal texts.

7One must insist on formalised domain descriptions in order to be able to verify that
domain descriptions satisfy a number of properties not explicitly formulated as well
as in order to verify that requirements prescriptions satisfy domain descriptions.
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1.1.7. One Domain – Many Models ?

• Will two or more domain engineers cum scientists
arrive at “the same domain description” ?

• No, almost certainly not !

• What do we mean by “the same domain description” ?

⋄⋄ To each proper description we can associate
a mathematical meaning, its semantics.

⋄⋄ Not only is it very unlikely that the syntactic form of the
domain descriptions are the same or even “marginally similar”.

⋄⋄ But it is also very unlikely that the two (or more) semantics are
the same;

⋄⋄ that is, that all properties that can be
proved for one domain model can be proved also for the other,
and vice versa.
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• Why will different domain models emerge ?

⋄⋄ Two different domain describers will, undoubtedly,

⋄⋄ when analysing and describing independently,

⋄⋄ focus on different aspects of the domain.

◦◦ One describer may focus attention on certain phenomena,

◦◦ different from those chosen by another describer.

◦◦ One describer may choose some abstractions

◦◦ where another may choose more concrete presentations.

◦◦ Etcetera.
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• We can thus expect that a set of domain description developments
lead to a set of distinct models.

⋄⋄ As these domain descriptions

◦◦ are communicated amongst domain engineers cum scientists

◦◦ we can expect that iterated domain description developments

◦◦ within this group of developers

◦◦ will lead to fewer and more similar models.

⋄⋄ Just like physicists,

◦◦ over the centuries of research,

◦◦ have arrived at a few models of nature,

◦◦ we can expect there to develop some consensus model of “stan-
dard” domains.
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• We expect, that sometime in future, software engineers,

⋄⋄ when commencing software development
for a “standard domain”, that is,

⋄⋄ one for which there exists one or more “standard models”,

⋄⋄ will start with the development of a domain description

⋄⋄ based on “one of the standard models” —

⋄⋄ just like control engineers of automatic control

⋄⋄ “repeat” an essence of a domain model for a control problem.
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1.1.8. Formal Concept Analysis

• Domain analysis involves that of concept analysis.

• As soon as we have identified an entity for analysis
we have identified a concept.

⋄⋄ The entity is a spatio-temporal, i.e., a physical thing.

⋄⋄ Once we speak of it, it becomes a concept.

• Instead of examining just one entity the domain analyser shall ex-
amine many entities.

• Instead of describing one entity the domain describer shall describe
a class of entities.

• Ganter & Wille’s [38] addresses this issue.
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1.1.8.1. A Formalisation
Some Notation:

• By E we shall understand the type of entities;

• by E we shall understand an entity of type E ;

• by Q we shall understand the type of qualities;

• by Q we shall understand a quality of type Q;

• by E-set we shall understand the type of sets of entities;

• by ES we shall understand a set of entities of type E-set;

• by Q-set we shall understand the type of sets of qualities; and

• by QS we shall understand a a set of qualities of type Q-set.
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Definition: 1 Formal Context:

• A formal context K := (ES, I,QS) consists of two sets;

⋄⋄ ES of entities and

⋄⋄ QS of qualities,

and a

⋄⋄ relation I between E and Q.

• To express that E is in relation I to a Quality Q we write

⋄⋄ E · I ·Q, which we read as

⋄⋄ “entity E has quality Q”.
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• Example endurant entities are

⋄⋄ a specific vehicle,

⋄⋄ another specific vehicle,

⋄⋄ etcetera;

⋄⋄ a specific street segment (link),

⋄⋄ another street segment,

⋄⋄ etcetera;

⋄⋄ a specific road intersection (hub),

⋄⋄ another specific road intersection,

⋄⋄ etcetera,

⋄⋄ a monitor.

• Example endurant entity qualities are

⋄⋄ (a vehicle) has mobility,

⋄⋄ (a vehicle) has velocity (≥0),

⋄⋄ (a vehicle) has acceleration,

⋄⋄ etcetera;

⋄⋄ (a link) has length (>0),

⋄⋄ (a link)has location,

⋄⋄ (a link)has traffic state,

⋄⋄ etcetera.
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Definition: 2Qualities Common to a Set of Entities:

• For any subset, sES ⊆ ES, of entities we can define DQ for “de-
rive[d] set of qualities”.

DQ : E-set → (E-set × I × Q-set) → Q-set
DQ(sES)(ES, I,QS) ≡ {Q | Q:Q,E:E • E∈sES ∧ E · I ·Q}
pre: sES ⊆ ES

The above expresses: “the set of qualities common to entities in
sES”.
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Definition: 3 Entities Common to a Set of Qualities:

• For any subset, sQS ⊆ QS, of qualities we can define DE for “de-
rive[d] set of entities”.

DE : Q-set → (E-set × I × Q-set) → E-set
DE(sQS)(ES, I,QS) ≡ {E | E:E , Q:Q • Q∈sQ ∧ E · I ·Q },
pre: sQS ⊆ QS

The above expresses: “the set of entities which have all qualities
in sQS”.
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Definition: 4 Formal Concept:

• A formal concept of a context K is a pair:

⋄⋄ (sQ, sE) where

◦◦ DQ(sE)(E, I,Q) = sQ and

◦◦ DE(sQ)(E, I,Q) = sE;

⋄⋄ sQ is called the intent of K and sE is called the extent of K.
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1.1.8.2. Types Are Formal Concepts

• Now comes the “crunch”:

⋄⋄ In the TripTych domain analysis

⋄⋄ we strive to find formal concepts

⋄⋄ and, when we think we have found one,

⋄⋄ we assign a type (or a sort)

⋄⋄ and qualities to it !
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1.1.8.3. Practicalities

• There is a little problem.

⋄⋄ To search for all those entities of a domain

⋄⋄ which each have the same sets of qualities

⋄⋄ is not feasible.

• So we do a combination of two things:

⋄⋄ we identify a small set of entities

◦◦ all having the same qualities

◦◦ and tentatively associate them with a type, and

⋄⋄ we identify certain nouns of our national language

◦◦ and if such a noun

∗ does indeed designate a set of entities

∗ all having the same set of qualities

◦◦ then we tentatively associate the noun with a type.
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• Having thus, tentatively, identified a type

⋄⋄ we conjecture that type

⋄⋄ and search for counterexamples,

◦◦ that is, entities which

◦◦ refutes the conjecture.

• This “process” of conjectures and refutations is iterated

⋄⋄ until some satisfaction is arrived at

⋄⋄ that the postulated type constitutes a reasonable conjecture.
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1.1.8.4. Formal Concepts: A Wider Implication

• The formal concepts of a domain form Galois Connections [38].

⋄⋄ We gladly admit that this fact is one of the reasons why we em-
phasise formal concept analysis.

⋄⋄ At the same time we must admit that this seminar does not do
justice to this fact.

⋄⋄ We have experimented with the analysis & description of a number
of domains

⋄⋄ and have noticed such Galois connections

⋄⋄ but it is, for us, too early to report on this.

• Thus we invite the student to study this aspect of domain analysis.
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1.2. Endurant Entities

• In the rest of this seminar we shall consider entities in the context of their being
manifest (i.e., spatio-temporal).

1.2.1. General

Definition 1 . Entity:

• By an entity we shall understand a phenomenon, i.e., something

⋄⋄ that can be observed, i.e., be

◦◦ seen or ◦◦ touched

by humans,

⋄⋄ or that can be conceived

◦◦ as an abstraction

◦◦ of an entity.

⋄⋄ We further demand that an entity can be objectively described 8

8Definitions and examples are delimited by respectively
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Analysis Prompt 1 . is entity:

• The domain analyser analyses “things” (θ) into either entities
or non-entities.

• The method can thus be said to provide the domain analysis
prompt:

⋄⋄ is entity — where is entity(θ) holds if θ is an entity
9

• is entity is said to be a prerequisite prompt for all other prompts.

9Analysis prompt definitions and description prompt definitions and schemes are delimited by respectively .
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Whither Entities:

• The “demands” that entities

⋄⋄ be observable and objectively describable

raises some philosophical questions.

• Are sentiments, like feelings, emotions or “hunches” observable ?

• This author thinks not.

• And, if so, can they be other than artistically described ?

• It seems that

⋄⋄ psychologically and

⋄⋄ aesthetically

“phenomena” appears to lie beyond objective description.

• We shall leave these speculations for later.
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1.2.2. Endurants and Perdurants

Definition 2 . Endurant:

• By an endurant we shall understand an entity

⋄⋄ that can be observed or conceived and described

⋄⋄ as a “complete thing”

⋄⋄ at no matter which given snapshot of time.

Were we to “freeze” time

⋄⋄ we would still be able to observe the entire endurant

• That is, endurants “reside” in space.

• Endurants are, in the words of Whitehead (1920), continuants.

A Prerequisite for Requirements Engineering 83 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



84

1. Domain Analysis & Description 2. Endurant Entities 2.2. Endurants and Perdurants

Example 10 . Traffic System Endurants:
Examples of traffic system endurants are:

• traffic system,

• road nets,

• fleets of vehicles,

• sets of hubs,

• sets of links,

• hubs,

• links and

• vehicles
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1. Domain Analysis & Description 2. Endurant Entities 2.2. Endurants and Perdurants

Definition 3 . Perdurant:

• By a perdurant we shall understand an entity

⋄⋄ for which only a fragment exists
if we look at or touch them
at any given snapshot in time, that is,

⋄⋄ where we to freeze time we would only see or touch
a fragment of the perdurant

• That is, perdurants “reside” in space and time.

• Perdurants are, in the words of Whitehead(1920), occurrents.
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1. Domain Analysis & Description 2. Endurant Entities 2.2. Endurants and Perdurants

Example 11 . Traffic System Perdurants:
Examples of road net perdurants are:

• insertion and removal of hubs or links (actions),

• disappearance of links (events),

• vehicles entering or leaving the road net (actions),

• vehicles crashing (events) and

• road traffic (behaviour)
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1. Domain Analysis & Description 2. Endurant Entities 2.2. Endurants and Perdurants

Analysis Prompt 2 . is endurant:

• The domain analyser analyses an entity, φ, into an endurant as
prompted by the domain analysis prompt:

⋄⋄ is endurant — φ is an endurant if is endurant(φ) holds.

• is entity is a prerequisite prompt for is endurant

Analysis Prompt 3 . is perdurant:

• The domain analyser analyses an entity φ into perdurants as
prompted by the domain analysis prompt:

⋄⋄ is perdurant — φ is a perdurant if is perdurant(φ) holds.

• is entity is a prerequisite prompt for is perdurant
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1. Domain Analysis & Description 2. Endurant Entities 2.2. Endurants and Perdurants

• In the words of Whitehead(1920) — as communicated by Sowa(2000)
—

⋄⋄ an endurant has stable qualities that enable its various appear-
ances at different times to be recognised as the same individual;

⋄⋄ a perdurant is in a state of flux that prevents it from being recog-
nised by a stable set of qualities.
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1. Domain Analysis & Description 2. Endurant Entities 2.2. Endurants and Perdurants

Necessity and Possibility:

• It is indeed possible to make the endurant/perdurant distinction.

• But is it necessary ?

• We shall argue that it is ‘by necessity’ that we make this distinction.

⋄⋄ Space and time are fundamental notions.

⋄⋄ They cannot be dispensed with.

⋄⋄ So, to describe manifest domains without resort to space and time
is not reasonable.
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1. Domain Analysis & Description 2. Endurant Entities 2.3. Endurants and Perdurants

1.2.3. Discrete and Continuous Endurants

Definition 4 . Discrete Endurant:

• By a discrete endurant we shall understand
an endurant which is

⋄⋄ separate,

⋄⋄ individual or

⋄⋄ distinct

in form or concept
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1. Domain Analysis & Description 2. Endurant Entities 2.3. Discrete and Continuous Endurants

Example 12 . Discrete Endurants:

• Examples of discrete endurants are

⋄⋄ a road net,

⋄⋄ a link,

⋄⋄ a hub,

⋄⋄ a vehicle,

⋄⋄ a traffic signal,

⋄⋄ etcetera
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1. Domain Analysis & Description 2. Endurant Entities 2.3. Discrete and Continuous Endurants

Definition 5 . Continuous Endurant:

• By a continuous endurant we shall understand
an endurant which is

⋄⋄ prolonged, without interruption,

⋄⋄ in an unbroken series or pattern
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1. Domain Analysis & Description 2. Endurant Entities 2.3. Discrete and Continuous Endurants

Example 13 . Continuous Endurants:

• Examples of continuous endurants are

⋄⋄ water,

⋄⋄ oil,

⋄⋄ gas,

⋄⋄ sand,

⋄⋄ grain,

⋄⋄ etcetera
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1. Domain Analysis & Description 2. Endurant Entities 2.3. Discrete and Continuous Endurants

Analysis Prompt 4 . is discrete:

• The domain analyser analyse endurants e into discrete entities
as prompted by the domain analysis prompt:

⋄⋄ is discrete — e is discrete if is discrete(e) holds

Analysis Prompt 5 . is continuous:

• The domain analyser analyse endurants e into continuous enti-
ties as prompted by the domain analysis prompt:

⋄⋄ is continuous — e is continuous if is continuous(e) holds
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1. Domain Analysis & Description 2. Endurant Entities 2.4. Discrete and Continuous Endurants

1.2.4. Parts, Components and Materials
1.2.4.1. General

Definition 6 . Part:

• By a part we shall understand

⋄⋄ a discrete endurant

⋄⋄ which the domain engineer chooses

⋄⋄ to endow with internal qualities such as

◦◦ unique identification,

◦◦ mereology, and

◦◦ one or more attributes

We shall define the terms ‘unique identification’, ‘mereology’, and ‘at-
tributes’ shortly.
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1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.1. General

Example 14 . Parts: Example

• 10 on Slide 84 illustrated,

and examples

• 18 on Slide 109 and

• 19 on Slide 111 illustrate

parts
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1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.1. General

Definition 7 . Component:

• By a component we shall understand

⋄⋄ a discrete endurant

⋄⋄ which we, the domain analyser cum describer chooses

⋄⋄ to not endow with internal qualities
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1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.1. General

Example 15 . Components:

• Examples of components are:

⋄⋄ chairs, tables, sofas and book cases in a living room,

⋄⋄ letters, newspapers, and small packages in a mail box,

⋄⋄ machine assembly units on a conveyor belt,

⋄⋄ boxes in containers of a container vessel,

⋄⋄ etcetera
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1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.1. General

”At the Discretion of the Domain Engineer”:

• We emphasise the following analysis and description aspects:

⋄⋄ (a) The domain is full of observable phenomena.

◦◦ It is the decision of the domain analyser cum describer

◦◦ whether to analyse and describe some such phenomena,

◦◦ that is, whether to include them in a domain model.

⋄⋄ (b) The borderline between an endurant

◦◦ being (considered) discrete or

◦◦ being (considered) continuous

◦◦ is fuzzy.

◦◦ It is the decision of the domain analyser cum describer

◦◦ whether to model an endurant as discrete or continuous.
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1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.1. General

⋄⋄ (c) The borderline between a discrete endurant

◦◦ being (considered) a part or

◦◦ being (considered) a component

◦◦ is fuzzy.

◦◦ It is the decision of the domain analyser cum describer

◦◦ whether to model a discrete endurant as a part or as a compo-
nent.

⋄⋄ (d) We shall later show how to “compile” parts into processes.

◦◦ A factor, therefore, in determining whether

◦◦ to model a discrete endurant as a part or as a component

◦◦ is whether we may consider a discrete endurant as also repre-
senting a process.
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1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.1. General

Definition 8 . Material:

• By a material we shall understand a continuous endurant

Example 16 . Materials: Examples of material endurants are:

• air of an air conditioning system,

• grain of a silo,

• gravel of a barge,

• oil (or gas) of a pipeline,

• sewage of a waste disposal system, and

• water of a hydro-electric power plant.
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1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.1. General

Example 17 . Parts Containing Materials:

• Pipeline units are here considered discrete, i.e., parts.

• Pipeline units serve to convey material
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1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.2. General

1.2.4.2. Part, Component and Material Prompts

Analysis Prompt 6 . is part:

• The domain analyser analyse endurants e into part entities as
prompted by the domain analysis prompt:

⋄⋄ is part — e is a part if is part(e) holds

• We remind the reader that the outcome of is part(e)

• is very much dependent on the domain engineer’s intention

• with the domain description, cf. Slide 99.
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1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.2. Part, Component and Material Prompts

Analysis Prompt 7 . is component:

• The domain analyser analyse endurants e into component enti-
ties as prompted by the domain analysis prompt:

⋄⋄ is component — e is a component if is component(e) holds

• We remind the reader that the outcome of is component(e)

• is very much dependent on the domain engineer’s intention

• with the domain description, cf. Slide 99.
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1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.2. Part, Component and Material Prompts

Analysis Prompt 8 . is material:

• The domain analyser analyse endurants e into material entities
as prompted by the domain analysis prompt:

⋄⋄ is material — e is a material if is material(e) holds

• We remind the reader that the outcome of is material(e)

• is very much dependent on the domain engineer’s intention

• with the domain description, cf. Slide 99.

•
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1. Domain Analysis & Description 2. Endurant Entities 2.5. Parts, Components and Materials

1.2.5. Atomic and Composite Parts

• A distinguishing quality

⋄⋄ of parts,

⋄⋄ is whether they are

◦◦ atomic or

◦◦ composite.

• Please note that we shall,

⋄⋄ in the following,

⋄⋄ examine the concept of parts

⋄⋄ in quite some detail.
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1. Domain Analysis & Description 2. Endurant Entities 2.5. Atomic and Composite Parts

• That is,

⋄⋄ parts become the domain endurants of main interest,

⋄⋄ whereas components and materials become of secondary interest.

• This is a choice.

⋄⋄ The choice is based on pragmatics.

⋄⋄ It is still the domain analyser cum describers’ choice

◦◦ whether to consider a discrete endurant

◦◦ a part

◦◦ or a component.

⋄⋄ If the domain engineer wishes to investigate

◦◦ the details of a discrete endurant

◦◦ then the domain engineer choose to model

◦◦ the discrete endurant as a part

◦◦ otherwise as a component.
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1. Domain Analysis & Description 2. Endurant Entities 2.5. Atomic and Composite Parts

Definition 9 . Atomic Part:

• Atomic parts are those which,

⋄⋄ in a given context,

⋄⋄ are deemed to not consist of
meaningful, separately observable proper sub-parts

• A sub-part is a part
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1. Domain Analysis & Description 2. Endurant Entities 2.5. Atomic and Composite Parts

Example 18 . Atomic Parts: Examples of atomic parts of the above
mentioned domains are:

• aircraft (of air traffic),

• demand/deposit accounts (of banks),

• containers (of container lines),

• documents (of document systems),

• hubs, links and vehicles (of road traffic),

• patients, medical staff and beds (of hospitals),

• pipes, valves and pumps (of pipeline systems), and

• rail units and locomotives (of railway systems)
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1. Domain Analysis & Description 2. Endurant Entities 2.5. Atomic and Composite Parts

Definition 10 . Composite Part:

• Composite parts are those which,

⋄⋄ in a given context,

⋄⋄ are deemed to indeed consist of
meaningful, separately observable proper sub-parts
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1. Domain Analysis & Description 2. Endurant Entities 2.5. Atomic and Composite Parts

Example 19 . Composite Parts: Examples of atomic parts of the
above mentioned domains are:

• airports and air lanes (of air traffic),

• banks (of a financial service industry),

• container vessels (of container lines),

• dossiers of documents (of document systems),

• routes (of road nets),

• medical wards (of hospitals),

• pipelines (of pipeline systems), and

• trains, rail lines and train stations (of railway systems).
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1. Domain Analysis & Description 2. Endurant Entities 2.5. Atomic and Composite Parts

Analysis Prompt 9 . is atomic:

• The domain analyser analyses a discrete endurant, i.e., a part
p into an atomic endurant:

⋄⋄ is atomic(p): p is an atomic endurant if is atomic(p)

holds

Analysis Prompt 10 . is composite:

• The domain analyser analyses a discrete endurant, i.e., a part
p into a composite endurant:

⋄⋄ is composite(p): p is a composite endurant if is composite(p)

holds

• is discrete is a prerequisite prompt of both is atomic and
is composite.
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1. Domain Analysis & Description 2. Endurant Entities 2.5. Atomic and Composite Parts

Whither Atomic or Composite:

• If we are analysing & describing vehicles
in the context of a road net, cf. the Traffic System Example Slide 84,

⋄⋄ then we have chosen to abstract vehicles

⋄⋄ as atomic;

• if, on the other hand, we are analysing & describing vehicles
in the context of an automobile maintenance garage

⋄⋄ then we might very well choose to abstract vehicles

⋄⋄ as composite —

⋄⋄ the sub-parts being the object of diagnosis

⋄⋄ by the auto mechanics.
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1. Domain Analysis & Description 2. Endurant Entities 2.6. Atomic and Composite Parts

1.2.6. On Observing Part Sorts
1.2.6.1. Types and Sorts

• We use the term ‘sort’

⋄⋄ when we wish to speak of an abstract type,

⋄⋄ that is, a type for which we do not wish to express a model10.

⋄⋄ We shall use the term ‘type’ to cover both

◦◦ abstract types and ◦◦ concrete types.

10

◦◦ for example, in terms of the concrete types:

∗ sets,

∗ Cartesians,

∗ lists,

∗ maps,

or other.
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1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.2. Types and Sorts

1.2.6.2. On Discovering Part Sorts

• Recall from the section on Types Are Formal Concepts (Slide 76) that
we “equate” a formal concept with a type (i.e., a sort).

⋄⋄ Thus, to us, a part sort is a set of all those entities

⋄⋄ which all have exactly the same qualities.

• Our aim now

⋄⋄ is to present the basic principles that let

⋄⋄ the domain analyser decide on part sorts.
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1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.2. On Discovering Part Sorts

• We observe parts one-by-one.

⋄⋄ (α) Our analysis of parts concludes when we have

◦◦ “lifted” our examination of a particular part instance

◦◦ to the conclusion that it is of a given sort,

◦◦ that is, reflects, or is, a formal concept.

• Thus there is, in this analysis, a “eureka”,

⋄⋄ a step where we shift focus

⋄⋄ from the concrete to the abstract,

⋄⋄ from observing specific part instances

⋄⋄ to postulating a sort:

◦◦ from one to the many.
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1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.2. On Discovering Part Sorts

Analysis Prompt 11 . observe parts:

• The domain analysis prompt:

⋄⋄ observe parts(p)

• directs the domain analyser to observe the sub-parts of p

Let us say the sub-parts of p are: {p1,p2,. . . ,pm}

• (β) The analyser analyses, for each of these parts, pik,

⋄⋄ which formal concept, i.e., sort, it belongs to;

⋄⋄ let us say that it is of sort Pk;

⋄⋄ thus the sub-parts of p are of sorts {P1,P2,. . . ,Pm}.

• Some Pk may be atomic sorts, some may be composite sorts.
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1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.2. On Discovering Part Sorts

• The domain analyser continues to examine a finite number of other
composite parts: {pj, pℓ, . . . , pn}.

⋄⋄ It is then “discovered”, that is, decided, that they all consists of
the same number of sub-parts

◦◦ {pi1,pi2,. . . ,pim},

◦◦ {pj1
,pj2

,. . . ,pjm},

◦◦ {pℓ1
,pℓ2

,. . . ,pℓm},

◦◦ ...,

◦◦ {pn1,pn2,. . . ,pnm},

of the same, respective, part sorts.

⋄⋄ (γ) It is therefore concluded, that is, decided,
that {pi, pj,pℓ,. . . ,pn} are all of the same part sort P
with observable part sub-sorts {P1,P2,. . . ,Pm}.
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1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.2. On Discovering Part Sorts

• Above we have type-font-highlighted three sentences: (α, β, γ).

• When you analyse what they “prescribe” you will see that they entail
a “depth-first search” for part sorts.

⋄⋄ The β sentence says it rather directly:

⋄⋄ “The analyser analyses, for each of these parts, pk, which formal
concept, i.e., part sort it belongs to.”

⋄⋄ To do this analysis in a proper way, the analyser must
(“recursively”) analyse the parts “down” to their atomicity,

⋄⋄ and from the atomic parts decide on their part sort,

⋄⋄ and work (“recurse”) their way “back”,

⋄⋄ through possibly intermediate composite parts,

⋄⋄ to the pks.
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1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.3. On Discovering Part Sorts

1.2.6.3. Part Sort Observer Functions

• The above analysis amounts to the analyser

⋄⋄ first “applying” the domain analysis prompt

⋄⋄ is composite(p) to a discrete endurant,

⋄⋄ where we now assume that the obtained truth value is true.

⋄⋄ Let us assume that parts p:P consists of sub-parts of sorts
{P1,P2,. . . ,Pm}.

⋄⋄ Since we cannot automatically guarantee that our domain descrip-
tions secure that

◦◦ P and each Pi ([ 1≤i≤m ])

◦◦ denotes disjoint sets of entities

we must prove it.
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1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.3. Part Sort Observer Functions

Domain Description Prompt 1 . observe part sorts :

• If is composite(p) holds, then the analyser “applies” the de-
scription language observer prompt

⋄⋄ observe part sorts(p)

resulting in the analyser writing down the part sorts and part
sort observers domain description text according to the following
schema:
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1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.3. Part Sort Observer Functions

1. observe part sorts schema

Narration:
[ s ] ... narrative text on sorts ...
[ o ] ... narrative text on sort observers ...
[ i ] ... narrative text on sort recognisers ...
[ p ] ... narrative text on proof obligations ...

Formalisation:
type
[ s ] P,
[ s ] Pi [ 1≤i≤m ] comment: Pi [ 1≤i≤m ] abbreviates P1, P2, ..., Pm

value
[ o ] obs part Pi: P → Pi [ 1≤i≤m ]
[ i ] is Pi: Pi → Bool [ 1≤i≤m ]

proof obligation [Disjointness of part sorts ]
[ p ] ∀ p:(P1|P2|...|Pm) •

[ p ]
∧

{is Pi(p) ≡
∨

∼ {is Pj(p) | j ∈ {1..m} \ {i}} | i ∈ {1..m}}

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29 122 Domain Science & Engineering



123

1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.3. Part Sort Observer Functions

Example 20 . Composite and Atomic Part Sorts of Transporta-
tion:

• The following example illustrates the multiple use of the observe part sorts

function:

⋄⋄ first to δ, a specific transport domain, Item 12,

⋄⋄ then to an n : N , the net of that domain, Item 13, and

⋄⋄ then to an f : F , the fleet of that domain, Item 14.

12 A transportation domain is composed from a net, a fleet (of vehicles)
and a monitor.

13 A transportation net is composed from a collection of hubs and a
collection of links.

14 A fleet is a collection of vehicles.

• The monitor is considered an atomic part.
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1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.3. Part Sort Observer Functions

type
12. N, F, M
value
12. obs part N:∆→N, obs part F:∆→F, obs part M:∆→M
type
13. HC, LC
value
13. obs part HC:N→HC, obs part LC:N→LC
type
14. VC
value
14. obs part VC:F→VC
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• A proof obligation has to be discharged,

⋄⋄ one that shows disjointedness of sorts N, F and M.

⋄⋄ An informal sketch is:

◦◦ entities of sort N are composite and consists of two parts:

◦◦ aggregations of hubs, HS, and aggregations of links, LS.

◦◦ Entities of sort F consists of an aggregation, VS, of vehicles.

◦◦ So already that makes N and F disjoint.

◦◦ M is an atomic entity — where N and F are both composite.

◦◦ Hence the three sorts N, F and M are disjoint
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1.2.6.4. On Discovering Concrete Part Types

Analysis Prompt 12 . has concrete type:

• The domain analyser

⋄⋄ may decide that it is expedient, i.e., pragmatically sound,

⋄⋄ to render a part sort, P, whether atomic or composite, as a
concrete type, T.

⋄⋄ That decision is prompted by the holding of the domain anal-
ysis prompt:

◦◦ has concrete type(p).

⋄⋄ is discrete is a prerequisite prompt of has concrete type

• The reader is reminded that

⋄⋄ the decision as to whether an abstract type is (also) to be described concretely

⋄⋄ is entirely at the discretion of the domain engineer.
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Domain Description Prompt 2 . observe part type :

• Then the domain analyser applies the domain description
prompt:

⋄⋄ observe part type(p)11

• to parts p:P which then yield the part type and part type observers
domain description text according to the following schema:

11has concrete type is a prerequisite prompt of observe part type.
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2. observe part type schema

Narration:
[ t1 ] ... narrative text on sorts and types Si ...
[ t2 ] ... narrative text on types T ...

[ o ] ... narrative text on type observers ...
Formalisation:

type
[ t1 ] S1, S2, ..., Sm, ..., Sn,
[ t2 ] T = E(S1,S2,...,Sn)
value
[ o ] obs part T: P → T

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29 128 Domain Science & Engineering



129

1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.4. On Discovering Concrete Part Types

• The type names,

⋄⋄ T, of the concrete type,

⋄⋄ as well as those of the auxiliary types, S1,S2,...,Sm,

⋄⋄ are chosen by the domain describer:

◦◦ they may have already been chosen

◦◦ for other sort–to–type descriptions,

◦◦ or they may be new.
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Example 21 . Concrete Part Types of Transportation:
We continue Example 20 on Slide 123:

15 A collection of hubs is a set of hubs and a collection of links is a
set of links.

16 Hubs and links are, until further analysis, part sorts.

17 A collection of vehicles is a set of vehicles.

18 Vehicles are, until further analysis, part sorts.

type
15. Hs = H-set, Ls = L-set
16. H, L
17. Vs = V-set
18. V
value
15. obs part Hs:HC→Hs, obs part Ls:LC→Ls
17. obs part Vs:VC→Vs
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1.2.6.5. Forms of Part Types

• Usually it is wise to restrict the part type definitions, Ti = Ei(Q,R,...,S), to simple
type expressions.

⋄⋄ T=A-set or

⋄⋄ T=A∗ or

⋄⋄ T=ID→m A or

⋄⋄ T=At|Bt|...|Ct

where

⋄⋄ ID is a sort of unique identifiers,

⋄⋄ T=At|Bt|...|Ct defines the disjoint types

◦◦ At==mkAs(s:As),

◦◦ Bt==mkBs(s:Bs), ...,

◦◦ Ct==mkCs(s:Cs),

and where

⋄⋄ A, As, Bs, ..., Cs are sorts.

⋄⋄ Instead of At==mkA(a:As), etc., we may write At::As etc.
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1.2.6.6. Part Sort and Type Derivation Chains

• Let P be a composite sort.

• Let P1, P2, . . . , Pm be the part sorts “discovered” by means of
observe part sorts(p) where p:P.

• We say that P1, P2, . . . , Pm are (immediately) derived from P.

• If Pk is derived from Pj and Pj is derived from Pi, then, by transi-
tivity, Pk is derived from Pi.
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1.2.6.6.1 No Recursive Derivations

• We “mandate” that

⋄⋄ if Pk is derived from Pj
⋄⋄ then there

◦◦ can be no P derived from Pj
◦◦ such that P is Pj,

◦◦ that is, Pj cannot be derived from Pj.

• That is, we do not allow recursive domain sorts.

• It is not a question, actually of allowing recursive domain sorts.

⋄⋄ It is, we claim to have observed,

⋄⋄ in very many domain modeling experiments,

⋄⋄ that there are no recursive domain sorts !
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1.2.6.7. Names of Part Sorts and Types

• The domain analysis and domain description text prompts

⋄⋄ observe part sorts,

⋄⋄ observe material sorts and

⋄⋄ observe part type

— as well as the

⋄⋄ attribute names,

⋄⋄ observe material sorts,

⋄⋄ observe unique identifier,

⋄⋄ observe mereology and

⋄⋄ observe attributes

prompts introduced below — “yield” type names.

⋄⋄ That is, it is as if there is

◦◦ a reservoir of an indefinite-size set of such names

◦◦ from which these names are “pulled”,

◦◦ and once obtained are never “pulled” again.
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• There may be domains for which two distinct part sorts may be
composed from identical part sorts.

• In this case the domain analyser indicates so by prescribing a part
sort already introduced.

Example 22 . Container Line Sorts:

• Our example is that of a container line

⋄⋄ with container vessels and

⋄⋄ container terminal ports.
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19 A container line contains a number of container vessels and a number of container
terminal ports, as well as other components.

20 A container vessel contains a container stowage area, etc.

21 A container terminal port contains a container stowage area, etc.

22 A container stowage ares contains a set of uniquely identified container bays.

23 A container bay contains a set of uniquely identified container rows.

24 A container row contains a set of uniquely identified container stacks.

25 A container stack contains a stack, i.e., a first-in, last-out sequence of containers.

26 Containers are further undefined.

• After a some slight editing we get:
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type
CL
VS, VI, V, Vs = VI→m V,
PS, PI, P, Ps = PI→m P

value
obs part VS: CL → VS
obs part Vs: VS → Vs
obs part PS: CL → PS
obs part Ps: CTPS → CTPs

type
CSA

value
obs part CSA: V → CSA
obs part CSA: P → CSA

type
BAYS, BI, BAY, Bays=BI→m BAY
ROWS, RI, ROW, Rows=RI→m ROW
STKS, SI, STK, Stks=SI→m STK
C

value
obs part BAYS: CSA → BAYS,
obs part Bays: BAYS → Bays
obs part ROWS: BAY → ROWS,
obs part Rows: ROWS → Rows
obs part STKS: ROW → STKS,
obs part Stks: STKS → Stks
obs part Stk: STK → C∗

• Note that observe part sorts(v:V) and observe part sorts(p:P)
both yield CSA
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1.2.6.8. More On Part Sorts and Types

• The above “experimental example” motivates the below.

⋄⋄ We can always assume that composite parts p:P abstractly con-
sists of a definite number of sub-parts.

◦◦ Example 23. We comment on Example 20 on Slide 123: parts
of type ∆ and N are composed from three, respectively two
abstract sub-parts of distinct types

⋄⋄ Some of the parts, say piz of {pi1,pi2,. . . ,pim}, of p:P , may them-
selves be composite.

◦◦ Example 24. We comment on Example 20 on Slide 123: parts
of type N, F, HC, LC and VC are all composite
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⋄⋄ There are, pragmatically speaking, two cases for such composi-
tionality.

◦◦ Either the part, piz, of type tiz, is is composed from a definite
number of abstract or concrete sub-parts of distinct types.

∗ Example 25. We comment on Example 20 on Slide 123:
parts of type N are composed from three sub-parts

◦◦ Or it is composed from an indefinite number of sub-parts of the
same sort.

∗ Example 26. We comment on Example 20 on Slide 123:
parts of type HC, LC and VC are composed from an indefinite
numbers of hubs, links and vehicles, respectively
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Example 27 . Pipeline Parts:

27 A pipeline consists of an indefinite number of pipeline units.

28 A pipeline units is either a well, or a pipe, or a pump, or a valve, or
a fork, or a join, or a sink.

29 All these unit sorts are atomic and disjoint.

type
27. PL, U, We, Pi, Pu, Va, Fo, Jo, Si
27. Well, Pipe, Pump, Valv, Fork, Join, Sink
value
27. obs part Us: PL → U-set
type
28. U == We | Pi | Pu | Va | Fo | Jo | Si
29. We::Well, Pi::Pipe, Pu::Pump, Va::Valv, Fo:Fork, Jo::Join, Si::Sink
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1.2.6.8.1 Derivation Lattices

• Derivation chains

⋄⋄ start with the domain name, say ∆, and

⋄⋄ (definitively) end with the name of an atomic sort.

• Sets of derivation chains form join lattices [3].

Example 28 . Derivation Chains:

• Figure 1 on the following slide illustrates

⋄⋄ two part sort and type derivation chains.

⋄⋄ based on Examples 20 on Slide 123 and 22 on Slide 135, respectively.
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RTS

Hs=H−set

Legend:

F MN

HS LS VS

Hs Ls Vs

H L V

Ls=L−set
Vs=V−set

A

B

A

B=I−>C

means:

means: obs_B: A −> B

obs_B: A −> B

CL

VS PS

CSA

BAYS

Bays=BI−>BAY

Vs=VI−>V Ps=PI−>P

where:

ROWS

Rows=RI−>ROW

STKS

Stks=SI−>STK

Stk=SI−>C*

C

Figure 1: Two Domain Lattices: Examples 20 on Slide 123 and 22 on Slide 135

• The “–>” of Fig. 1 stands for →m
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1.2.6.9. External and Internal Qualities of Parts

• By an external part quality we shall understand the

⋄⋄ is atomic,

⋄⋄ is composite,

⋄⋄ is discrete and

⋄⋄ is continuous

qualities.

• By an internal part quality we shall understand the part qualities to be outlined
in the next sections:

⋄⋄ unique ids, ⋄⋄ mereology and ⋄⋄ attributes.

• By part qualities we mean the sum total of

⋄⋄ external endurant and ⋄⋄ internal endurant

qualities.
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1.2.6.10. Three Categories of Internal Qualities

• We suggest that the internal qualities of parts be analysed into three
categories:

⋄⋄ (i) a category of unique part identifiers,

⋄⋄ (ii) a category of mereological quantities and

⋄⋄ (iii) a category of general attributes.
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• Part mereologies are about sharing qualities between parts.

⋄⋄ Some such sharing expresses spatio-topological properties of how
parts are organised.

⋄⋄ Other part sharing aspects express relations (like equality) of part
attributes.

⋄⋄ We base our modeling of mereologies on the notion of unique part
identifiers.

⋄⋄ Hence we cover internal qualities in the order (i–ii–iii).
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1.2.7. Unique Part Identifiers

• Two parts are either identical or a distinct, i.e., unique.

⋄⋄ Two parts are identical

◦◦ if all their respective qualities

◦◦ have the same values.

That is, their location in space/time are one and the same.

⋄⋄ Two parts are distinct

◦◦ even if all the attribute qualities of the two parts,

◦◦ that we have chosen to consider have the same values,

◦◦ if, in that case, their space/time locations are distinct.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29 146 Domain Science & Engineering



147

1. Domain Analysis & Description 2. Endurant Entities 2.7. Unique Part Identifiers

• We can assume, without any loss of generality,

⋄⋄ (i) that all parts, p, of any domain P, have unique identifiers,

⋄⋄ (ii) that unique identifiers (of parts p:P) are abstract values
(of the unique identifier sort PI of P),

⋄⋄ (iii) such that distinct part sorts, Pi and Pj, have distinctly named
unique identifier sorts, say PIi and PIj,

⋄⋄ (iv) that all πi:PIi and πj:PIj are distinct, and

⋄⋄ (v) that the observer function uid P applied to p yields the unique
identifier, say π:PI, of p.
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Representation of Unique Identifiers:

• Unique identifiers are abstractions.

⋄⋄ When we endow two parts (say of the same sort) with distinct unique identifiers

⋄⋄ then we are simply saying that these two parts are distinct.

⋄⋄ We are not assuming anything about how these identifiers otherwise come
about.
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Domain Description Prompt 3 . observe unique identifier :

•We can therefore apply the domain description prompt:

⋄⋄ observe unique identifier

• to parts p:P resulting in the analyser writing down the unique
identifier type and observer domain description text according to
the following schema:
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3. observe unique identifier schema

Narration:
[ s ] ... narrative text on unique identifier sort ...
[ u ] ... narrative text on unique identifier observer ...
[ a ] ... axiom on uniqueness of unique identifiers ...

Formalisation:
type
[ s ] PI
value
[ u ] uid P: P → PI
axiom
[ a ] U
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Example 29 . Unique Transportation Net Part Identifiers:
We continue Example 20 on Slide 123.

30 Links and hubs have unique identifiers

31 and unique identifier observers.

type
30. LI, HI
value
31. uid LI: L → LI
31. uid HI: H → HI
axiom [Well−formedness of Links, L, and Hubs, H ]
30. ∀ l,l′:L • l 6=l′⇒uid LI(l) 6=uid LI(l′),
30. ∀ h,h′:H • h 6=h′⇒uid HI(h) 6=uid HI(h′)
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1.2.8. Mereology

•Mereology is the study and knowledge of parts and part relations.

⋄⋄ Mereology as a logical/philosophical discipline
can perhaps best be attributed to the Polish mathematician/logi-
cian
Stanis law Leśniewski [32, 21].
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1.2.8.1. Part Relations

• Which are the relations that can be relevant for part-hood ?

• We give some examples.

⋄⋄ Two otherwise distinct parts may share attribute values.

Example 30 . Shared Attribute Mereology:

◦◦ (i) two or more distinct public transport busses may run ac-
cording to the same, thus “shared”, bus time table;

◦◦ (ii) all vehicles in a traffic participate in that traffic, each with
their “share”, that is, position on links or at hubs – as observed
by the (thus postulated, and shared) traffic observer.

etcetera

A Prerequisite for Requirements Engineering 153 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



154

1. Domain Analysis & Description 2. Endurant Entities 2.8. Mereology 2.8.1. Part Relations

⋄⋄ Two otherwise distinct parts may be said to, for example, be
topologically “adjacent” or one “embedded” within the other.

Example 31 . Topological Connectedness Mereology:

◦◦ (i) two rail units may be connected (i.e., adjacent),

◦◦ (ii) a road link may be connected to two road hubs;

◦◦ (iii) a road hub may be connected to zero or more road links;

etcetera.

• The above examples are in no way indicative of the “space” of part
relations that may be relevant for part-hood.

• The domain analyser is expected to do a bit of experimental research
in order to discover necessary, sufficient and pleasing “mereology-
hoods” !
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1.2.8.2. Part Mereology: Types and Functions

Analysis Prompt 13 . has mereology:

• To discover necessary, sufficient and pleasing “mereology-hoods”
the analyser can be said to endow a truth value true to the
domain analysis prompt:

⋄⋄ has mereology
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• When the domain analyser decides that

⋄⋄ some parts are related in a specifically enunciated mereology,

⋄⋄ the analyser has to decide on suitable

◦◦ mereology types and

◦◦ mereology (i.e., part relation) observers.

• We can define a mereology type as a type Expression over unique
[part] identifier types.

⋄⋄ We generalise to unique [part] identifiers over a definite collection
of part sorts, P1, P2, ..., Pn,

⋄⋄ where the parts p1:P1, p2:P2, ..., pn:Pn are not necessarily (im-
mediate) sub-parts of some part p:P.

type
PI1, PI2, ..., PIn
MT = E(PI1, PI2, ..., PIn),
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Domain Description Prompt 4 . observe mereology :

• If has mereology(p) holds for parts p of type P,

⋄⋄ then the analyser can apply the domain description prompt:

◦◦ observe mereology

⋄⋄ to parts of that type

⋄⋄ and write down the mereology types and observers domain de-
scription text according to the following schema:
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4. observe mereology schema

Narration:
[ t ] ... narrative text on mereology type ...
[m ] ... narrative text on mereology observer ...
[ a ] ... narrative text on mereology type constraints ...

Formalisation:
type

[ t ] MT12= E(PI1,PI2,...,PIm)
value
[m ] obs mereo P: P → MT
axiom [Well−formedness of Domain Mereologies ]
[ a ] A(MT)

12MT will be used several times in Sect. .
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⋄⋄ Here E(PI1,PI2,...,PIm) is a type expression
over possibly all unique identifier types of the domain descrip-
tion,

⋄⋄ and A(MT) is a predicate
over possibly all unique identifier types of the domain descrip-
tion.

⋄⋄ To write down the concrete type definition for MT
requires a bit of analysis and thinking.

⋄⋄ has mereology is a
prerequisite prompt for observe mereology
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1. Domain Analysis & Description 2. Endurant Entities 2.8. Mereology 2.8.2. Part Mereology: Types and Functions

Example 32 . Road Net Part Mereologies: We continue Exam-
ple 20 on Slide 123 and Example 29 on Slide 151.

32 Links are connected to exactly two distinct hubs.

33 Hubs are connected to zero or more links.

34 For a given net the link and hub identifiers of the mereology of hubs
and links must be those of links and hubs, respectively, of the net.
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type
32. LM′ = HI-set, LM = {|his:HI-set • card(his)=2|}
33. HM = LI-set
value
32. obs mereo L: L → LM
33. obs mereo H: H → HM
axiom [Well−formedness of Road Nets, N ]
34. ∀ n:N,l:L,h:H• l ∈ obs part Ls(obs part LC(n))∧h ∈ obs part Hs(obs
34. let his=mereology H(l), lis=mereology H(h) in
34. his⊆∪{uid H(h) | h ∈ obs part Hs(obs part HC(n))}
34. ∧ lis⊆∪{uid H(l) | l ∈ obs part Ls(obs part LC(n))} end
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Example 33 . Pipeline Parts Mereology:

• We continue Example 27 on Slide 140.

• Pipeline units serve to conduct fluid or gaseous material.

• The flow of these occur in only one direction: from so-called input to so-called
output.

35 Wells have exactly one connection to an output unit.

36 Pipes, pumps and valves have exactly one connection from an input unit and one
connection to an output unit.

37 Forks have exactly one connection from an input unit and exactly two connections
to distinct output units.

38 Joins have exactly one two connection from distinct input units and one connection
to an output unit.

39 Sinks have exactly one connection from an input unit.

40 Thus we model the mereology of a pipeline unit as a pair of disjoint sets of unique
pipeline unit identifiers.
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type
40. UM′=(UI-set×UI-set)
40. UM={|(iuis,ouis):UI-set×UI-set•iuis ∩ ouis={}|}
value
40. obs mereo U: UM
axiom [Well−formedness of Pipeline Systems, PLS (0) ]

∀ pl:PL,u:U • u ∈ obs part Us(pl) ⇒
let (iuis,ouis)=obs mereo U(u) in
case (card iuis,card ouis) of

35. (0,1) → is We(u),
36. (1,1) → is Pi(u)∨is Pu(u)∨is Va(u),
37. (1,2) → is Fo(u),
38. (2,1) → is Jo(u),
39. (1,0) → is Si(u)

end end
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1.2.8.3. Update of Mereologies

• We normally consider a part’s mereology to be constant.

• There may, however, be cases where the mereology of a part changes.

• In order to update mereology values the description language offers
the “built-in” operator:

Mereology Update Function

⋄⋄ upd mereology: P → M → P

for all relevant M and P.
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• The meaning of upd mereology is, informally:

type
P, M

value
upd mereology: P → M → P
upd mereology(p)(m) as p′

post: obs mereo H(p′) = m
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1. Domain Analysis & Description 2. Endurant Entities 2.8. Mereology 2.8.3. Update of Mereologies

• The above is a simplification.

⋄⋄ It lacks explaining that all other aspects of the part p:P are left
unchanged.

⋄⋄ It also omits mentioning some proof obligations.

◦◦ The updated mereology must, for example,

◦◦ only specify such unique identifiers of parts

◦◦ that are indeed existing parts.

⋄⋄ A proper formal explication requires

⋄⋄ that we set up a formal model of the

⋄⋄ domain/method/analyser/description quadrangle.
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Example 34 . Mereology Update:

• The example is that of updating the mereology of a hub.

• Cf. Example 32 on Slide 160.

41 Inserting a link, l:L, between two hubs, ha:H,hb:H require the update of the mere-
ologies of these two existing hubs.

42 The unique identifier of the inserted link, l:L, is li, li=uid L(l) and h is either ha
or hb;

43 li is joined to the mereology of both ha or hb; and respective hubs are updated
accordingly.

value
41. update hub mereology: H → LI → H
42. update hub mereology(h)(li) ≡
43. let m = {li} ∪ obs mereo H(h) in upd mereology(h)(m) end
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1.2.8.4. Formulation of Mereologies

• The observe mereology domain descriptor, Slide 158,

⋄⋄ may give the impression that the mereo type MT can be described

⋄⋄ “at the point of issue” of the observe mereology prompt.

⋄⋄ Since the MT type expression may, in general, depend on any part
sort

⋄⋄ the mereo type MT can, for some domains,

⋄⋄ “first” be described when all part sorts have been dealt with.

• In Domain Analysis: Endurants – An Analysis & Description Pro-
cess Model we we present a model of one form of evaluation of the
TripTych analysis and description prompts.
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1.2.9. Part Attributes
1.2.9.1. Inseparability of Attributes from Endurants

• Parts are

⋄⋄ typically recognised because of their spatial form

⋄⋄ and are otherwise characterised by their intangible, but measur-
able attributes.

• We learned from our exposition of formal concept analysis that

⋄⋄ a formal concept, that is, a type, consists of all the entities

⋄⋄ which all have the same qualities.

• Thus removing a quality from an entity makes no sense:

⋄⋄ the entity of that type

⋄⋄ either becomes an entity of another type

⋄⋄ or ceases to exist (i.e., becomes a non-entity) !
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1.2.9.2. Attribute Quality and Attribute Value

• We distinguish between

⋄⋄ an attribute, as a logical proposition and

⋄⋄ an attribute value as a value in some value space.

Example 35 . Attribute Propositions and Other Values:

• A particular street segment (i.e., a link), say ℓ,

⋄⋄ satisfies the proposition (attribute) has length, and

⋄⋄ may then have value length 90 meter for that attribute.

• A particular road transport domain, δ,

⋄⋄ has three immediate sub-parts: net, n, fleet, f , and monitor m;

⋄⋄ typically nets has net name and has net owner proposition attributes

⋄⋄ with, for example, US Interstate Highway System respectively US Department

of Transportation as values for those attributes
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1.2.9.3. Endurant Attributes: Types and Functions

• Let us recall that attributes cover qualities other than unique iden-
tifiers and mereology.

• Let us then consider that parts have one or more attributes.

⋄⋄ These attributes are qualities

⋄⋄ which help characterise “what it means” to be a part.
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Example 36 . Atomic Part Attributes:

• Examples of attributes of atomic parts such as a human are:

⋄⋄ name,

⋄⋄ gender,

⋄⋄ birth-date,

⋄⋄ birth-place,

⋄⋄ nationality,

⋄⋄ height,

⋄⋄ weight,

⋄⋄ eye colour,

⋄⋄ hair colour,

etc.

• Examples of attributes of transport net links are:

⋄⋄ length,

⋄⋄ location,

⋄⋄ 1 or 2-way link,

⋄⋄ link condition,

etc.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29 172 Domain Science & Engineering



173

1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions

Example 37 . Composite Part Attributes:

• Examples of attributes of composite parts such as a road net are:

⋄⋄ owner,

⋄⋄ public or private net,

⋄⋄ free-way or toll road,

⋄⋄ a map of the net,

etc.

• Examples of attributes of a group of people could be: statistic dis-
tributions of

⋄⋄ gender,

⋄⋄ age,

⋄⋄ income,

⋄⋄ education,

⋄⋄ nationality,

⋄⋄ religion,

etc.

A Prerequisite for Requirements Engineering 173 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



174

1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions

• We now assume that all parts have attributes.

• The question is now, in general, how many and, particularly, which.

Analysis Prompt 14 . attribute names:

• The domain analysis prompt attribute names

⋄⋄ when applied to a part p

⋄⋄ yields the set of names of its attribute types:

⋄⋄ attribute names(p): {ηA1, ηA2, ..., ηAn}.

• η is a type operator. Applied to a type A it yields is name13

13Normally, in non-formula texts, type A is referred to by ηA. In formulas A denote
a type, that is, a set of entities. Hence, when we wish to emphasize that we speak of
the name of that type we use ηA. But often we omit the distinction
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• We cannot automatically, that is, syntactically, guarantee that our
domain descriptions secure that

⋄⋄ the various attribute types

⋄⋄ for an emerging part sort

⋄⋄ denote disjoint sets of values.

Therefore we must prove it.
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1.2.9.3.1 The Attribute Value Observer

• The “built-in” description language operator

⋄⋄ attr A

• applies to parts, p:P, where ηA∈attribute names(p).

• It yields the value of attribute A of p.
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Domain Description Prompt 5 . observe attributes :

• The domain analyser experiments, thinks and reflects about part
attributes.

• That process is initated by the domain description prompt:

⋄⋄ observe attributes.

• The result of that domain description prompt is that the
domain analyser cum describer writes down the attribute (sorts
or) types and observers domain description text according to the
following schema:
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5. observe attributes schema

Narration:

[ t ] ... narrative text on attribute sorts ...

[ o ] ... narrative text on attribute sort observers ...

[ i ] ... narrative text on attribute sort recognisers ...

[ p ] ... narrative text on attribute sort proof obligations ...

Formalisation:

type

[ t ] Ai [ 1≤i≤n ]

value

[ o ] attr Ai:P→Ai [ 1≤i≤n ]

[ i ] is Ai:Ai→Bool [ 1≤i≤n ]

proof obligation [Disjointness of Attribute Types ]

[ p ] ∀ δ:∆

[ p ] let P be any part sort in [the ∆ domain description]

[ p ] let a:(A1|A2|...|An) in is Ai(a) 6= is Aj(a) end end [ i 6=j, 1≤i,j≤n ]
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• The type (or rather sort) definitions: A1, A2, ..., An inform us
that the domain analyser has decided to focus on the distinctly
named A1, A2, ..., An attributes.

• And the value clauses

⋄⋄ attr A1:P→A1,

⋄⋄ attr A2:P→A2,

⋄⋄ ...,

⋄⋄ attr An:P→An

are then “automatically” given:

⋄⋄ if a part (type P) has an attribute Ai
⋄⋄ then there is postulated, “by definition” [eureka]
an attribute observer function attr Ai:P→Ai etcetera
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• The fact that, for example, A1, A2, ..., An are attributes of p:P,
means that the propositions

⋄⋄ has attribute A1(p),
has attribute A2(p),
..., and
has attribute An(p)

holds.

• Thus the observer functions attr A1, attr A2, ..., attr An

⋄⋄ can be applied to p in P

⋄⋄ and yield attribute values a1:A1, a2:A2, ..., an:An respectively.
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Example 38 . Road Hub Attributes: After some analysis a domain
analyser may arrive at some interesting hub attributes:

44 hub state: from which links (by reference) can one reach which links
(by reference),

45 hub state space: the set of all potential hub states that a hub may
attain,

46 such that

a. the links referred to in the state are links of the hub mereology

b. and the state is in the state space.

47 Etcetera — i.e., there are other attributes not mentioned here.

A Prerequisite for Requirements Engineering 181 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



182

1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions 2.9.3.1. The Attribute Value Observer

type
44. HΣ = (LI×LI)-set
45. HΩ = HΣ-set
value
44. attr HΣ:H→HΣ
45. attr HΩ:H→HΩ
axiom [Well−formedness of Hub States, HΣ ]
46. ∀ h:H • let lis = obs mereo H(h) in
46. let hσ = attr HΣ(h) in
46a.. {li,li′|li,li′:LI•(li,li′)∈ hσ}⊆lis
46b.. ∧ hσ ∈ attr HΩ(h)
46. end end
type
47. ..., ...
value
47. attr ..., ...
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1.2.9.4. Attribute Categories

• One can suggest a hierarchy of part attribute categories:

⋄⋄ static or

⋄⋄ dynamic values — and within the dynamic value category:

◦◦ inert values or

◦◦ reactive values or

◦◦ active values — and within the dynamic active value category:

∗ autonomous values or

∗ biddable values or

∗ programmable values.

• We now review these attribute value types.
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Part attributes are either constant or varying, i.e., static or dynamic
attributes.

• By a static attribute, is static attribute,
we shall understand an attribute whose values

⋄⋄ are constants,

⋄⋄ i.e., cannot change.

• By a dynamic attribute, is dynamic attribute,
we shall understand an attribute whose values

⋄⋄ are variable,

⋄⋄ i.e., can change.
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Dynamic attributes are either inert, reactive or active attributes.

• By an inert attribute, is inert attribute,
we shall understand a dynamic attribute whose values

⋄⋄ only change as the result of external stimuli where

⋄⋄ these stimuli prescribe properties of these new values.

• By a reactive attribute, is reactive attribute,
we shall understand a dynamic attribute whose values,

⋄⋄ if they vary, change value in response to

⋄⋄ the change of other attribute values.

• By an active attribute, is active attribute,
we shall understand a dynamic attribute whose values

⋄⋄ change (also) of its own volition.
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Example 39 . Inert and Reactive Attributes:

• Buses (i.e., vehicles) have a timetable attribute which is dynamic,
i.e., can change, namely when the operator of the bus decides so,
thus the bus timetable attribute is inert.

• Pipeline valve units include the two attributes of valve opening (open,
close) and internal flow (measured, say gallons per second).

⋄⋄ The valve opening attribute is of the programmable attribute cat-
egory.

⋄⋄ The flow attribute is reactive (flow changes with valve opening/closing)
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Active attributes are either autonomous, biddable or programmable
attributes.

• By an autonomous attribute, is autonomous attribute,
we shall understand a dynamic active attribute

⋄⋄ whose values change value only “on their own volition”.14

• By a biddable attribute, is biddable attribute, (of a part)
we shall understand a dynamic active attribute whose values

⋄⋄ may be subject to a contract

⋄⋄ as to which values it is expected to exhibit.

• By a programmable attribute, is programmable attribute,
we shall understand a dynamic active attribute whose values

⋄⋄ can be accurately prescribed.

14The values of an autonomous attributes are a “law onto themselves and their surroundings”.
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Example 40 . Static, Programmable and Inert Link Attributes:

48 Some link attributes

a. length, b. name,

can be considered static,

49 whereas other link attributes

a. state, b. state space

can be considered programmable,

50 Finally link attributes

a. link state–of–repair, b. date last maintained,

can be considered inert.
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type
48a.. LEN
value
48a.. obs part LEN: L → LEN
type
48b.. Name
value
48b.. obs part Name: L → Name
type
49a.. LΣ′=(HI×HI)-set
49a.. LΣ={|lσ:LΣ • card lσ ≤ 2|}
value

49a.. obs part LΣ: L → LΣ
type
49b.. LΩ′=LΣ-set
49b.. LΩ={|lω:LΩ • card lω = 1|}
value
49b.. obs part LΩ: L → LΩ
type
50a.. LSoR
50b.. DLM
value
50a.. obs part LSoR: L → LSoR
50b.. obs part DLM: L → DLM
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Example 41 . Autonomous and Programmable Hub Attributes:
We continue Example??.

• Time progresses autonomously,

• Hub states are programmed (traffic signals):

⋄⋄ changing

◦◦ from red to green via yellow,

◦◦ in one pair of (co-linear) directions,

⋄⋄ while changing, in the same time interval,

◦◦ from green via yellow to red

◦◦ in the “perpendicular” directions
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• External Attributes: By an external attribute we shall under-
stand

⋄⋄ either a inert,

⋄⋄ or a reactive,

⋄⋄ or an autonomous,

⋄⋄ or a biddable

attribute

• Thus we can define the domain analysis prompt:

⋄⋄ is external attribute,

⋄⋄ as:

value
is external attribute: P → Bool
is external attribute(p) ≡

is dynamic attribute(p) ∧ ∼is programmable attribute(p)
pre: is endurant(p) ∧ is discrete(p)
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• Figure 2 captures the attribute value ontology.

dynamic

active

static

biddable
programmable

inert

endurant

autonomous

reactive

external

Figure 2: Attribute Value Ontology
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1.2.9.5. Access to Attribute Values

• In an action, event or a behaviour description

⋄⋄ static values of parts, p,

⋄⋄ (say of type A)

⋄⋄ can be “copied”, attr A(p),

⋄⋄ and still retain their (static) value.

• But, for action, event or behaviour descriptions,

⋄⋄ dynamic values of parts, p,

⋄⋄ cannot be “copied”,

⋄⋄ but attr A(p) must be “performed”

⋄⋄ every time they are needed.
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• That is:

⋄⋄ static values require at most one domain access,

⋄⋄ whereas dynamic values require repeated domain accesses.

• We shall return to the issue of attribute value access in Sect. 1.3.8.
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1.2.9.6. Shared Attributes

• Normally part attributes of different part sorts are distinctly named.

• If, however, observe attributes(pik:Pi) and observe attributes(pjℓ:P

⋄⋄ for any two distinct part sorts, Pi and Pj, of a domain,

⋄⋄ “discovers” identically named attributes, say A,

⋄⋄ then we say that parts pi:Pi and pj:Pj share attribute A.

⋄⋄ that is, that a:attr A(pi) (and a′:attr A(pj))
is a shared attribute

⋄⋄ (with a=a′ always (�) holding).
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Attribute Naming:

• Thus the domain describer has to exert great care when naming
attribute types.

⋄⋄ If Pi and Pj are two distinct types of a domain

⋄⋄ then if and only if an attribute of Pi is to be shared with an
attribute of Pj

⋄⋄ must that attribute be identically named in the description of Pi
and Pj.
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Example 42. Shared Attributes. Examples of shared attributes:

• Bus timetable attributes have the same value as the regional transport system
timetable attribute.

• Bus clock attributes have the same value as the regional transport system clock
attribute.

• Bus owner attributes have the same value as the regional transport system owner
attribute.

• Bank customer passbooks record bank transactions on, for example, demand/deposit
accounts share values with the bank general ledger passbook entries.

• A link incident upon or emanating from a hub shares the connection between that
link and the hub as an attribute.

• Two pipeline units15, pi, pj, that are connected, such that an outlet πj of pi “feeds
into” an inlet πi of pj, are said to share the connection (modeled by, e.g., {(πi, πj)}.

15See upcoming Example 33 on Slide 162
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Example 43 . Shared Timetables:

• The fleet and vehicles of Example 20 on Slide 123 and Example 21
on Slide 130 is that of a bus company.

51 From the fleet and from the vehicles we observe unique identifiers.

52 Every bus mereology records the same one unique fleet identifier.

53 The fleet mereology records the set of all unique bus identifiers.

54 A bus timetable is a share fleet and bus attribute.
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type
51. FI, VI, BT
value
51. uid F: F → FI
51. uid V: V → VI
52. obs mereo F: F → VI-set
53. obs mereo V: V → FI
54. attr BT: (F|V) → BT
axiom

� ∀ f:F ⇒
∀ v:V • v ∈ obs part Vs(obs part VC(f)) • attr BT(f) = attr BT(v)

[which is the same as]
� ∀ f:F ⇒
{attr BT(f)}={attr BT(v):v:V•v ∈ obs part Vs(obs part VC(f))}
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• Part attributes of one sort, Pi, may be simple type expressions such
as

⋄⋄ A-set,

⋄⋄ where A may be an attribute of some other part sort, Pj,

⋄⋄ in which case we say that part attributes

◦◦ A-set and

◦◦ A

are shared.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29 200 Domain Science & Engineering



201

1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.6. Shared Attributes

Example 44 . Shared Passbooks:

55 A banking system contains

• an administration and

• a set of customers.

56 The administration contains a general ledger.

57 An attribute of a general ledger is a set of passbooks.

58 An attribute of a customer is that of a passbook.

59 Passbooks are uniquely identified by unique customer identifiers.
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type
55. [ parts ] BS, AD, GL, CS, Cs = C-set
58. [ attributes ] PB
value
55. obs part AD: BS → AD
56. obs part GL: AD → GL
57. attr PBs: GL → PB-set
55. obs part CS: BS → CS
55. obs part Cs: BS → Cs
58. attr PB: C → PB
59. uid PB: PB → PBI
axiom

� ∀ bs:BS •

attr PBs(attr GL(obs part AD(bs)))
= {attr PB(c)|c:C•c ∈ obs part Cs(obs part CS(bs))}
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1.2.10. Components

• Components are discrete endurants which are not considered parts.

⋄⋄ is component(k) ≡ is endurant(k)∧∼is part(k)

Example 45 . Parts and Components:

• We observe components as associated with atomic parts:

⋄⋄ The contents, that is, the collection of zero, one or more boxes, of
a container is the components of the container part.

⋄⋄ Conveyor belts transport machine assembly units and are thus
considered the components of the conveyor belt.
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• We now complement the observe part sorts (of earlier).

• We assume, without loss of generality, that only atomic parts may
contain components.

• Let p:P be some atomic part.

Analysis Prompt 15 . has components:

• The domain analysis prompt:

⋄⋄ has components(p)

• yields true if atomic part p potentially contains components oth-
erwise false
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• Let us assume that parts p:P embodies components of sorts
{K1,K2,. . . ,Kn}.

• Since we cannot automatically guarantee that our domain descrip-
tions secure that

⋄⋄ each Ki ([ 1≤i≤n ])

⋄⋄ denotes disjoint sets of entities

we must prove it.

Domain Description Prompt 6 . observe component sorts :

• The domain description prompt:

⋄⋄ observe component sorts(e)

yields the component sorts and component sort observers domain
description text according to the following schema:
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6. observe component sorts schema

Narration:
[ s ] ... narrative text on component sorts ...
[ o ] ... narrative text on component sort observers ...
[ i ] ... narrative text on component sort recognisers ...
[ p ] ... narrative text on component sort proof obligations ...

Formalisation:
type
[ s ] K1, K2, ..., Kn
[ s ] KS = (K1|K2|...|Kn)-set
value
[ o ] components: P → KS
[ i ] is Ki: K → Bool [ 1≤i≤n ]

Proof Obligation:
[Disjointness of Component Sorts ]
[ p ] ∀ mi:(K1|K2|...|Kn) •

[ p ]
∧

{is Ki(mi) ≡
∨
∼{is Kj(mi)|j ∈ {1..m}\{i}}|i ∈ {1..m}}
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Example 46 . Container Components: We continue Example 22
on Slide 135.

60 When we apply obs component sorts C to any container c:C we
obtain

a. a type clause stating the sorts of the various components of a
container,

b. a union type clause over these component sorts, and

c. the component observer function signature.

type
60a. K1, K2, ..., Kn
60b. KS = (K1|K2|...|Kn)-set
value

60c. obs comp KS: C → KS
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• We have presented one way of tackling the issue of describing com-
ponents.

⋄⋄ There are other ways.

⋄⋄ We leave those ‘other ways’ to the reader.

• We are not going to suggest techniques and tools for analysing,
let alone describing qualities of components.

⋄⋄ We suggest that conventional
abstraction of modeling techniques
and tools be applied.
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1.2.11. Materials

• Continuous endurants (i.e., materials) are entities, m, which satisfy:

⋄⋄ is material(m) ≡ is endurant(m)∧is continuous(m)

Example 47 . Parts and Materials:

• We observe materials as associated with atomic parts:

⋄⋄ Thus liquid or gaseous materials are observed in pipeline units

• We shall in this seminar not cover
the case of parts being immersed in materials.
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• We assume, without loss of generality, that only atomic parts may
contain materials.

• Let p:P be some atomic part.

Analysis Prompt 16 . has materials:

• The domain analysis prompt:

⋄⋄ has materials(p)

• yields true if the atomic part p:P
potentially contains materials
otherwise false
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• Let us assume that parts p:P embodies materials of sorts
{M1,M2,. . . ,Mn}.

• Since we cannot automatically guarantee that our domain descrip-
tions secure that

⋄⋄ each Mi ([ 1≤i≤n ])

⋄⋄ denotes disjoint sets of entities

we must prove it.

Domain Description Prompt 7 . observe material sorts :

• The domain description prompt:

⋄⋄ observe material sorts(e)

yields the material sorts and material sort observers domain descrip-
tion text according to the following schema:
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7. observe material sorts schema

Narration:

[ s ] ... narrative text on material sorts ...

[ o ] ... narrative text on material sort observers ...

[ i ] ... narrative text on material sort recognisers ...

[ p ] ... narrative text on material sort proof obligations ...

Formalisation:

type

[ s ] Mi [ 1≤i≤n ]

[ s ] MS = M1 M2 ... Mn

value

[ o ] obs mat Mi: P → Mi [ 1≤i≤n ]

[ o ] materials: P → MS

[ i ] is Mi: M → Bool [ 1≤i≤n ]

proof obligation [Disjointness of Material Sorts ]

[ p ] ∀ mi:(M1|M2|...|Mn) •

[ p ]
∧

{is Mi(mi) ≡
∨
∼{is Mj(mi)|j ∈ {1..m}\{i}}|i ∈ {1..m}}

• The Mi are all distinct
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Example 48 .Pipeline Material: We continue Example 27 on Slide 140
and Example 33 on Slide 162.

61 When we apply obs material sorts U to any unit u:U we obtain

a. a type clause stating the material sort LoG for some further un-
defined liquid or gaseous material, and

b. a material observer function signature.

type
61a. LoG
value

61b. obs mat LoG: U → LoG
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1. Domain Analysis & Description 2. Endurant Entities 2.11. Materials 2.11.1.

1.2.11.1. Materials-related Part Attributes

• It seems that the “interplay” between parts and materials

⋄⋄ is an area where domain analysis

⋄⋄ in the sense of this seminar

⋄⋄ is relevant.
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Example 49 . Pipeline Material Flow: We continue Examples 27,
33 and 48.

• Let us postulate a[n attribute] sort Flow.

• We now wish to examine the flow of liquid (or gaseous) material in
pipeline units.

• We use two types

62 F for “productive” flow, and L for wasteful leak.

• Flow and leak is measured, for example, in terms of volume of ma-
terial per second.

• We then postulate the following unit attributes

⋄⋄ “measured” at the point of in- or out-flow

⋄⋄ or in the interior of a unit.
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63 current flow of material into a unit in-
put connector,

64 maximum flow of material into a
unit input connector while maintain-
ing laminar flow,

65 current flow of material out of a unit
output connector,

66 maximum flow of material out of a
unit output connector while maintain-
ing laminar flow,

67 current leak of material at a unit input

connector,

68 maximum guaranteed leak of material
at a unit input connector,

69 current leak of material at a unit input
connector,

70 maximum guaranteed leak of material
at a unit input connector,

71 current leak of material from “within”
a unit, and

72 maximum guaranteed leak of material
from “within” a unit.
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type

62. F, L

value

63. attr cur iF: U → UI → F

64. attr max iF: U → UI → F

65. attr cur oF: U → UI → F

66. attr max oF: U → UI → F

67. attr cur iL: U → UI → L

68. attr max iL: U → UI → L

69. attr cur oL: U → UI → L

70. attr max oL: U → UI → L

71. attr cur L: U → L

72. attr max L: U → L

• The maximum flow attributes are static attributes
and are typically provided by the manufacturer
as indicators of flows below which laminar flow can be expected.

• The current flow attributes are dynamic attributes
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1.2.11.2. Laws of Material Flows and Leaks

• It may be difficult or costly, or both,

⋄⋄ to ascertain flows and leaks in materials-based domains.

⋄⋄ But one can certainly speak of these concepts.

⋄⋄ This casts new light on domain modeling.

⋄⋄ That is in contrast to

◦◦ incorporating such notions of flows and leaks

◦◦ in requirements modeling

⋄⋄ where one has to show implement-ability.

• Modeling flows and leaks is important to the modeling of materials-
based domains.
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Example 50 . Pipelines: Intra Unit Flow and Leak Law:

73 For every unit of a pipeline system, except the well and the sink
units, the following law apply.

74 The flows into a unit equal

a. the leak at the inputs

b. plus the leak within the unit

c. plus the flows out of the unit

d. plus the leaks at the outputs.
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axiom [Well−formedness of Pipeline Systems, PLS (1) ]
73. ∀ pls:PLS,b:B\We\Si,u:U •

73. b ∈ obs part Bs(pls)∧u=obs part U(b)⇒
73. let (iuis,ouis) = obs mereo U(u) in
74. sum cur iF(iuis)(u) =
74a.. sum cur iL(iuis)(u)
74b.. ⊕ attr cur L(u)
74c.. ⊕ sum cur oF(ouis)(u)
74d.. ⊕ sum cur oL(ouis)(u)
73. end
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75 The sum cur iF (cf. Item 74) sums current input flows over all input connectors.

76 The sum cur iL (cf. Item 74a.) sums current input leaks over all input connectors.

77 The sum cur oF (cf. Item 74c.) sums current output flows over all output connec-
tors.

78 The sum cur oL (cf. Item 74d.) sums current output leaks over all output connec-
tors.

75. sum cur iF: UI-set → U → F
75. sum cur iF(iuis)(u) ≡ ⊕ {attr cur iF(ui)(u)|ui:UI•ui ∈ iuis}
76. sum cur iL: UI-set → U → L
76. sum cur iL(iuis)(u) ≡ ⊕ {attr cur iL(ui)(u)|ui:UI•ui ∈ iuis}
77. sum cur oF: UI-set → U → F
77. sum cur oF(ouis)(u) ≡ ⊕ {attr cur iF(ui)(u)|ui:UI•ui ∈ ouis}
78. sum cur oL: UI-set → U → L
78. sum cur oL(ouis)(u) ≡ ⊕ {attr cur iL(ui)(u)|ui:UI•ui ∈ ouis}

⊕: (F|L) × (F|L) → F
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Example 51 . Pipelines: Inter Unit Flow and Leak Law:

79 For every pair of connected units of a pipeline system the following law apply:

a. the flow out of a unit directed at another unit minus the leak at that output
connector

b. equals the flow into that other unit at the connector from the given unit plus
the leak at that connector.

axiom [Well−formedness of Pipeline Systems, PLS (2) ]
79. ∀ pls:PLS,b,b′:B,u,u′:U•

79. {b,b′}⊆obs part Bs(pls)∧b6=b′∧u′=obs part U(b′)
79. ∧ let (iuis,ouis)=obs mereo U(u),(iuis′,ouis′)=obs mereo U(u′),
79. ui=uid U(u),ui′=uid U(u′) in
79. ui ∈ iuis ∧ ui′ ∈ ouis′ ⇒
79a.. attr cur oF(u′)(ui′) − attr leak oF(u′)(ui′)
79b.. = attr cur iF(u)(ui) + attr leak iF(u)(ui)
79. end
79. comment: b′ precedes b
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• From the above two laws one can prove the theorem:

⋄⋄ what is pumped from the wells equals

⋄⋄ what is leaked from the systems plus what is output to the sinks.

• We need formalising the flow and leak summation functions.
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1.2.12. “No Junk, No Confusion”

• Domain descriptions are, as we have already shown, formulated,

⋄⋄ both informally ⋄⋄ and formally,

by means of abstract types,

⋄⋄ that is, by sorts

⋄⋄ for which no concrete models are usually given.

• Sorts are made to denote

⋄⋄ possibly empty, ⋄⋄ possibly infinite, ⋄⋄ rarely singleton,

⋄⋄ sets of entities on the basis of the qualities defined for these sorts,
whether external or internal.
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• By junk we shall understand

⋄⋄ that the domain description

⋄⋄ unintentionally denotes undesired entities.

• By confusion we shall understand

⋄⋄ that the domain description

⋄⋄ unintentionally have two or more identifications

⋄⋄ of the same entity or type.

• The question is

⋄⋄ can we formulate a [formal] domain description

⋄⋄ such that it does not denote junk or confusion ?

• The short answer to this is no !

A Prerequisite for Requirements Engineering 225 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



226

1. Domain Analysis & Description 2. Endurant Entities 2.12. “No Junk, No Confusion”

• So, since one naturally wishes “no junk, no confusion”
what does one do ?

• The answer to that is

⋄⋄ one proceeds with great care !

• To avoid junk we have stated a number of sort well-formedness ax-
ioms, for example:

⋄⋄ Slide 151 for Well-formedness of Links, L, and Hubs, H,

⋄⋄ Slide 158 for Well-formedness of Domain Mereologies,

⋄⋄ Slide 161 for Well-formedness of Road Nets, N,

⋄⋄ Slide 163 for Well-formedness of Pipeline Systems, PLS (0),

⋄⋄ Slide 182 for Well-formedness of Hub States, HΣ,

⋄⋄ Slide 220 for Well-formedness of Pipeline Systems, PLS (1),

⋄⋄ Slide 222 for Well-formedness of Pipeline Systems, PLS (2),

⋄⋄ Slide 229 for Well-formedness of Pipeline Route Descriptors and

⋄⋄ Slide 233 for Well-formedness of Pipeline Systems, PLS (3).
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• To avoid confusion we have stated a number of proof obligations:

⋄⋄ Slide 122 for Disjointness of Part Sorts,

⋄⋄ Slide 178 for Disjointness of Attribute Types and

⋄⋄ Slide 212 for Disjointness of Material Sorts.
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Example 52 . No Pipeline Junk:

• We continue Example 27 on Slide 140 and Example 33 on Slide 162.

80 We define a proper pipeline route to be a sequence of pipeline
units.

a. such that the ith and i+1st units in sequences longer than 1
are (forward) adjacent, in the sense defined below, and

b. such that the route is acyclic, in the sense also defined below.

To formalise the above we describe some auxiliary notions.
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1.2.12.0.1 Pipe Routes

81 A route descriptor is the sequence of unit identifiers of the units of
a route (of a pipeline system).

type
80. R′ = Uω

80. R = {| r:Route′

•wf Route(r) |}
81. RD = UIω

axiom [Well−formedness of Pipeline Route Descriptors, RD ]
81. ∀ rd:RD • ∃ r:R•rd=descriptor(r)
value

81. descriptor: R → RD
81. descriptor(r) ≡ 〈uid UI(r[ i ])|i:Nat•1≤i≤len r〉
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82 Two units are (forward) adjacent if the output unit identifiers of one
shares a unique unit identifier with the input identifiers of the other.

value
82. adjacent: U × U → Bool
82. adjacent(u,u′) ≡
82. let (,ouis)=obs mereo U(u),
82. (iuis,)=obs mereo U(u′) in
82. ouis ∩ iuis 6= {} end
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83 Given a pipeline system, pls, one can identify the (possibly infinite) set of (possibly
infinite) routes of that pipeline system.

a. The empty sequence, 〈〉, is a route of pls.

b. Let u be a unit of pls, then 〈u〉 is a route of pls.

c. Let u, u′ be adjacent units of pls then 〈u, u′〉 is a route of pls.

d. If r and r′ are routes of pls such that the last element of r is the same as the
first element of r′, then r̂tl r′ is a route of pls.

e. No sequence of units is a route unless it follows from a finite number of appli-
cations of the basis and induction clauses of Items 83a.–83d..

value
83. Routes: PLS → R-infset
83. Routes(pls) ≡
83a.. let rs = 〈〉
83b.. ∪ {〈u〉|u:U•u ∈ obs part Us(pls)}
83c.. ∪ {〈u,u′〉|u,u′:U•{u,u′}⊆obs part Us(pls) ∧ adjacent(u,u′)}
83d.. ∪ {r̂tl r′|r,r′:R•{r,r′}⊆rs∧r[ len r ]=hd r′}
83e.. in rs end
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1.2.12.0.2 Well-formed Routes

84 A route is acyclic if no two route positions reveal the same unique
unit identifier.

value
84. acyclic Route: R → Bool
84. acyclic Route(r) ≡ ∼∃ i,j:Nat•{i,j}⊆inds r ∧ i 6=j ∧ r[ i ]=r[ j ]
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1.2.12.0.3 Well-formed Pipeline Systems

85 A pipeline system is well-formed if

a. none of its routes are circular and

b. all of its routes are embedded in well-to-sink routes.

axiom [Well−formedness of Pipeline Systems, PLS (3) ]
85. ∀ pls:PLS •

85a.. non circular(pls)
85b.. ∧ are embedded in well to sink Routes(pls)
value

85. non circular PLS: PLS → Bool
85. non circular PLS(pls) ≡
85. ∀ r:R•r ∈ routes(p)∧acyclic Route(r)

A Prerequisite for Requirements Engineering 233 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



234

1. Domain Analysis & Description 2. Endurant Entities 2.12. “No Junk, No Confusion”

86 We define well-formedness in terms of well-to-sink routes, i.e., routes
which start with a well unit and end with a sink unit.

value
86. well to sink Routes: PLS → R-set
86. well to sink Routes(pls) ≡
86. let rs = Routes(pls) in
86. {r|r:R•r ∈ rs ∧ is We(r[ 1 ]) ∧ is Si(r[ len r ])} end
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87 A pipeline system is well-formed if all of its routes are embedded in
well-to-sink routes.

87. are embedded in well to sink Routes: PLS → Bool
87. are embedded in well to sink Routes(pls) ≡
87. let wsrs = well to sink Routes(pls) in
87. ∀ r:R • r ∈ Routes(pls) ⇒
87. ∃ r′:R,i,j:Nat •

87. r′ ∈ wsrs
87. ∧ {i,j}⊆inds r′∧i≤j
87. ∧ r = 〈r′[ k ]|k:Nat•i≤k≤j〉 end
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1.2.12.0.4 Embedded Routes

88 For every route we can define the set of all its embedded routes.

value
88. embedded Routes: R → R-set
88. embedded Routes(r) ≡
88. {〈r[ k ]|k:Nat•i≤k≤j〉 | i,j:Nat• i {i,j}⊆inds(r) ∧ i≤j}
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1.2.12.0.5 A Theorem

89 The following theorem is conjectured:

a. the set of all routes (of the pipeline system)

b. is the set of all well-to-sink routes (of a pipeline system) and

c. all their embedded routes

theorem:
89. ∀ pls:PLS •

89. let rs = Routes(pls),
89. wsrs = well to sink Routes(pls) in
89a.. rs =
89b.. wsrs ∪
89c.. ∪ {{r′|r′:R • r′ ∈ embedded Routes(r′′)} | r′′:R • r′′ ∈ wsrs}
88. end
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• The above example,

⋄⋄ besides illustrating one way of coping with “junk”,

⋄⋄ also illustrated the need for introducing a number of auxiliary
notions:

◦◦ types,

◦◦ functions,

◦◦ axioms and

◦◦ theorems.
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1.2.13. Discussion of Endurants

• In Sect. 4.2.2 a “depth-first” search for part sorts was hinted at.

• It essentially expressed

⋄⋄ that we discover domains epistemologically16

⋄⋄ but understand them ontologically.17

• The Danish philosopher Søren Kirkegaard (1813–1855) expressed it this way:

⋄⋄ Life is lived forwards,

⋄⋄ but is understood backwards.

• The presentation of the of the domain analysis prompts and the domain
description prompts results in domain descriptions which are ontological.

• The “depth-first” search recognizes the epistemological nature of bringing about
understanding.

16Epistemology: the theory of knowledge, especially with regard to its methods, validity, and scope. Epistemology is the investigation of what distinguishes
justified belief from opinion.

17Ontology: the branch of metaphysics dealing with the nature of being.
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• This “depth-first” search

⋄⋄ that ends with the analysis of atomic part sorts

⋄⋄ can be guided, i.e., hastened (shortened),

⋄⋄ by postulating composite sorts

⋄⋄ that “correspond” to vernacular nouns:

⋄⋄ everyday nouns that stand for classes of endurants.
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• We could have chosen our domain analysis prompts and domain
description prompts to reflect

⋄⋄ a “bottom-up” epistemology,

⋄⋄ one that reflected how we composed composite understandings

⋄⋄ from initially atomic parts.

⋄⋄ We leave such a collection of domain analysis prompts and
domain description prompts to the student.
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1.3. Perdurant Entities

• We shall give only a cursory overview of perdurants.

• That is, we shall not present

⋄⋄ a set of domain analysis prompts and

⋄⋄ a set of domain description prompts

leading to description language,
i.e., RSL texts describing perdurant entities.

• The reason for giving this albeit cursory overview of perdurants

⋄⋄ is that, through this cursory overview, we can justify our detailed
study of endurants,

◦◦ their part and subparts,

◦◦ their unique identifiers, mereology and attributes.
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• This justification is manifested

⋄⋄ (i) in expressing the types of signatures,

⋄⋄ (ii) in basing behaviours on parts,

⋄⋄ (iii) in basing the for need for
CSP-oriented inter-behaviour communications
on shared part attributes,

⋄⋄ (iv) in indexing behaviours as are parts, i.e., on unique identifiers,

and

⋄⋄ (v) in directing inter-behaviour communications across channel
arrays indexed as per the mereology of the part behaviours.
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• These are all notions related to endurants
and are now justified by their use in describing perdurants.

• Perdurants can perhaps best be explained in terms of

⋄⋄ a notion of state and

⋄⋄ a notion of time.

• We shall, in this seminar, not detail notions of time.
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1.3.1. States

Definition 11 . State: By a state we shall understand

• any collection of parts

• each of which has

• at least one dynamic attribute

• or has components or has material s
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Example 53 . States: Some examples of states are:

• A road hub can be a state,
cf. Hub State, HΣ, Example 38 on Slide 181.

• A road net can be a state – since its hubs can be.

• Container stowage areas, CSA, Example 22 on Slide 135, of container
vessels and container terminal ports can be states as containers can
be removed from and put on top of container stacks.

• Pipeline pipes can be states as they potentially carry material.

• Conveyor belts can be states as they potentially carry components
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1.3.2. Actions, Events and Behaviours

• To us perdurants are further analysed into

⋄⋄ actions,

⋄⋄ events, and

⋄⋄ behaviours.

• We shall define these terms below.

• Common to all of them is that they potentially change a state.

• Actions and events are here considered atomic perdurants.

• For behaviours we distinguish between

⋄⋄ discrete and

⋄⋄ continuous

behaviours.

A Prerequisite for Requirements Engineering 247 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



248

1. Domain Analysis & Description 3. Perdurant Entities 3.2. Actions, Events and Behaviours

On Action, Event and Behaviour Distinctions:

• The distinction into action, event and behaviour perdurants is prag-
matic.
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1.3.2.1. Time Considerations

• We shall, without loss of generality, assume

⋄⋄ that actions and events are atomic

⋄⋄ and that behaviours are composite.

• Atomic perdurants may “occur” during some time interval,

⋄⋄ but we omit consideration of and concern
for what actually goes on during such an interval.

• Composite perdurants can be analysed into

⋄⋄ “constituent” actions,

⋄⋄ events and

⋄⋄ “sub-behaviours”.

• We shall also omit consideration of temporal properties of behaviours.
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⋄⋄ Instead we shall refer to two seminal monographs:

◦◦ Specifying Systems [Leslie Lamport, 2002] and

◦◦ Duration Calculus: A Formal Approach to Real-Time Systems
[Zhou ChaoChen and Michael Reichhardt Hansen, 2004].

• For a seminal book on “time in computing” we refer to the eclectic
Modeling Time in Computing, Springer 2012.

• And for seminal book on time at the epistemology level we refer to
The Logic of Time, Kluwer 1991.
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1.3.2.2. Actors

Definition 12 . Actor: By an actor we shall understand

• something that is capable of initiating and/or carrying out

⋄⋄ actions,

⋄⋄ events or

⋄⋄ behaviours

• We shall, in principle, associate an actor with each part.

⋄⋄ These actors will be described as behaviours.

⋄⋄ These behaviours evolve around a state.

⋄⋄ The state is

◦◦ the set of qualities,
in particular the dynamic attributes,
of the associated parts

◦◦ and/or any possible components or materials of the parts.
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Example 54 . Actors: We refer to the road transport and the pipeline
systems examples of earlier.

• The fleet, each vehicle and the road management of the Transporta-
tion System of Examples 20 on Slide 123 and 43 on Slide 198 can
be considered actors;

• so can the net and its links and hubs.

• The pipeline monitor and each pipeline unit of the Pipeline System,
Example 27 on Slide 140 and Examples 27 on Slide 140 and 33 on
Slide 162 will be considered actors.

• The bank general ledger and each bank customer of the Shared
Passbooks example, Example 44 on Slide 201, will be considered
actors
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1.3.2.3. Parts, Attributes and Behaviours

• Example 54 on the preceding slide focused on what shall soon be-
come a major relation within domains:

⋄⋄ that of parts being also considered actors,

⋄⋄ or more specifically, being also considered to be behaviours.

Example 55 . Parts, Attributes and Behaviours:

• Consider the term ‘train’.

• It has several possible “meanings”.

⋄⋄ the train as a part, viz., as standing on a platform;

⋄⋄ the train as listed in a timetable (an attribute of a transport sys-
tem part),

⋄⋄ the train as a behaviour: speeding down the rail track
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1.3.3. Discrete Actions

Definition 13 . Discrete Action: By a discrete action [54] we
shall understand

• a foreseeable thing

• which deliberately

• potentially changes a well-formed state, in one step,

• usually into another, still well-formed state,

• and for which an actor can be made responsible

• An action is what happens when a function invocation changes, or
potentially changes a state.
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Example 56 . Road Net Actions:

• Examples of Road Net actions initiated by the net actor are:

⋄⋄ insertion of hubs,

⋄⋄ insertion of links,

⋄⋄ removal of hubs,

⋄⋄ removal of links,

⋄⋄ setting of hub states.

• Examples of Traffic System actions initiated by vehicle actors are:

⋄⋄ moving a vehicle along a link,

⋄⋄ stopping a vehicle,

⋄⋄ starting a vehicle,

⋄⋄ entering a hub and

⋄⋄ leaving a hub
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1.3.4. Discrete Events

Definition 14 . Event: By an event we shall understand

• some unforeseen thing,

• that is, some ‘not-planned-for’ “action”, one

• which surreptitiously, non-deterministically changes a well-formed
state

• into another, but usually not a well-formed state,

• and for which no particular domain actor can be made respon-
sible
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• Events can be characterised by

⋄⋄ a pair of (before and after) states,

⋄⋄ a predicate over these

⋄⋄ and, optionally, a time or time interval.

• The notion of event continues to puzzle philosophers
[36, 51, 49, 35] [41, 2, 47, 34] [50, 33].

• We note, in particular, [35, 2, 47].
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Example 57 . Road Net and Road Traffic Events:

• Some road net events are:

⋄⋄ “disappearance” of a hub or a link,

⋄⋄ failure of a hub state to change properly when so requested, and

⋄⋄ occurrence of a hub state leading traffic into “wrong-way” links.

• Some road traffic events are:

⋄⋄ the crashing of one or more vehicles (whatever ‘crashing’ means),

⋄⋄ a car moving in the wrong direction of a one-way link, and

⋄⋄ the clogging of a hub with too many vehicles
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1.3.5. Discrete Behaviours

Definition 15 . Discrete Behaviour: By a discrete behaviour
we shall understand

• a set of sequences of potentially interacting sets of discrete

⋄⋄ actions,

⋄⋄ events and

⋄⋄ behaviours
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Example 58 . Behaviours:

• Examples of behaviours:

⋄⋄ Road Nets: A sequence of hub and link insertions and removals,
link disappearances, etc.

⋄⋄ Road Traffic: A sequence of movements of vehicles along links,
entering, circling and leaving hubs, crashing of vehicles, etc.

⋄⋄ Pipelines: A sequence of pipeline pump and valve openings and
closings, and failures to do so (events), etc.

⋄⋄ Container Vessels and Ports: Concurrent sequences of movements
(by cranes) of containers from vessel to port (unloading), with
sequences of movements (by cranes) from port to vessel (loading),
with dropping of containers by cranes, etcetera
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1.3.5.1. Channels and Communication

• Behaviours

⋄⋄ sometimes synchronise

⋄⋄ and usually communicate.

• We use CSP to model behaviour communication.

⋄⋄ Communication is abstracted as

◦◦ the sending (ch !m) and

◦◦ receipt (ch ?)

◦◦ of messages, m:M,

◦◦ over channels, ch.

type M
channel ch M
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⋄⋄ Communication between (unique identifier) indexed behaviours
have their channels modeled as similarly indexed channels:

out: ch[ idx ]!m
in: ch[ idx ]?
channel {ch[ ide ]|ide:IDE}:M

where IDE typically is some type expression over unique identitifer
types.
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1.3.5.2. Relations Between Attribute Sharing and Channels

• We shall now interpret

⋄⋄ the syntactic notion of attribute sharing with

⋄⋄ the semantic notion of channels.

• This is in line with the above-hinted interpretation of

⋄⋄ parts with behaviours, and,

as we shall soon see

⋄⋄ part attributes,

⋄⋄ part components and

⋄⋄ part materials

with behaviour states.
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• Thus, for every pair of parts, pik:Pi and pjℓ:Pj, of distinct sorts, Pi
and Pj which share attribute values in A

⋄⋄ we are going to associate a channel.

◦◦ If there is only one pair of parts, pik:Pi and pjℓ:Pj, of these
sorts, then just a simple channel, say chPi,Pj .

channel chPi,Pj:A.

◦◦ If there is only one part, pi:Pi, but a definite set of parts pjk:Pj,
with shared attributes, then a vector of channels.

∗ Let {pj1, pj2, ..., pjn} be all the part of the domain of sort
Pj.

∗ Then uids : {πpj1, πpj2, ..., πpjn} is the set of their unique
identifiers.

∗ Now a schematic channel array declaration can be suggested:

channel {ch[ {πi,πj} ]|πi=uid Pi(pi)∧πj ∈ uids}:A.
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Example 59 . Bus System Channels:

• We extend Examples 20 on Slide 123 and 43 on Slide 198.

• We consider the fleet and the vehicles to be behaviours.

90 We assume some transportation system, δ. From that system we
observe

91 the fleet and

92 the vehicles.

93 The fleet to vehicle channel array is indexed by the 2-element sets of
the unique fleet identifier and the unique vehicle identifiers. We con-
sider bus timetables to be the only message communicated between
the fleet and the vehicle behaviours.
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value
90. δ:∆,
91. f:F = obs part F(δ),
92. vs:V-set = obs part Vs(obs part VC((obs part F(δ))))

channel
93. {fch[ {uid F(f),uid V(v)} ]|v:V•v ∈ vs}:BT

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29 266 Domain Science & Engineering



267

1. Domain Analysis & Description 3. Perdurant Entities 3.5. Discrete Behaviours 3.5.2. Relations Between Attribute Sharing and Channels

Example 60 . Bank System Channels:

• We extend Example 44 on Slide 201.

• We consider the general ledger and the customers to be behaviours.

94 We assume some bank system. From the bank system

95 we observe the general ledger.

96 and the set of customers.

97 We consider passbooks to be the only message communicated be-
tween the general ledger and the customer behaviours.

value
94. bs:BS
95. gl=obs part GL(obs part AD(bs)):GL
96. cs=obs part Cs(obs part CS(bs)):C-set
channel
97. {bsch[ {uid GL(gl),uid C(c)} ]|c:C•c ∈ cs}:PB
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1.3.6. Continuous Behaviours

• By a continuous behaviour we shall understand

⋄⋄ a continuous time

⋄⋄ sequence of state changes.

• We shall not go into what may cause these state changes.
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Example 61 . Flow in Pipelines:

• We refer to Examples 33, 48, 49, 50 and 51.

• Let us assume that oil is the (only) material of the pipeline units.

• Let us assume that there is a sufficient volume of oil in the pipeline
units leading up to a pump.

• Let us assume that the pipeline units leading from the pump (espe-
cially valves and pumps) are all open for oil flow.

• Whether or not that oil is flowing, if the pump is pumping (with a
sufficient head) then there will be oil flowing from the pump outlet
into adjacent pipeline units
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• To describe the flow of material (say in pipelines) requires knowledge
about a number of material attributes — not all of which have been
covered in the above-mentioned examples.

• To express flows one resorts to the mathematics of fluid-dynamics
using such second order differential equations as first derived by
Bernoulli (1700–1782) and Navier–Stokes (1785–1836 and 1819–1903).
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1.3.7. Attribute Value Access

• We can distinguish between three kinds of attributes:

⋄⋄ the constant attributes which are those whose values are static;

⋄⋄ the programmable attributes which are those dynamic values are
exclusively set by part processes; and

⋄⋄ the remaining dynamic attributes
are here seen as individual behaviours.

1.3.7.1. Access to Static Attribute Values

• The constant attributes can be “copied” attr A(p)
(and retain their values).

A Prerequisite for Requirements Engineering 271 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



272

1. Domain Analysis & Description 3. Perdurant Entities 3.7. Attribute Value Access 3.7.2. Access to Static Attribute Values

1.3.7.2. Access to External Attribute Values

• By the external behaviour attributes

⋄⋄ we shall thus understand the

◦◦ inert,

◦◦ reactive,

◦◦ autonomous and the

◦◦ biddable

attributes
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98 Let ξA be the set of names, ηA,
of all external behaviour attributes.

99 Let ΠξA be the set of indexes into the external attribute channel, say
attr A ch, one for each distinct attribute name, A, in ξA.

100 Each external behaviour attribute is seen as an individual behaviour,
each “accessible” by means of a channel, attr A ch.

101 External attribute values are then accessed by the input, from chan-
nel attr A ch[π]-accessible external attribute behaviours.

102 The type of attr A ch[π] is considered to be Unit
∼
→A.
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98. value
98. ξA: {ηA|A is any external attribute name}
99. ΠξA: Π-set
100. channel
100. {attr A ch[ π ]|π ∈ ΠξA}
101. value
101. attr A ch[ π ] ?
101. type

101. attr A ch[ π ]: Unit
∼
→A [ abbrv.:UA ]
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• We shall omit the η prefix in actual descriptions.

• The choice of representing external behaviour attributes as behaviours
is a technical one.

• See Items 187c. and 187a. Slide 426 for a use of the concept of external
behaviour attribute channels.
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1.3.7.3. Access to Programmable Attribute Values

• The programmable attributes are treated as function arguments.

• This is a technical choice. It is motivated as follows.

⋄⋄ We find that programmable attribute values
are set (i.e., updated) by part processes.

⋄⋄ That is, to each part, whether atomic or composite,
we associate a behaviour.

⋄⋄ That behaviour is (to be) described as we describe functions.

⋄⋄ These functions (normally) “go on forever”.

⋄⋄ Therefore these functions are described basically by a “tail” recursive definition:

value f: Arg → Arg; f(a) ≡ (... let a′ = F(...)(a) in f(a′) end)

⋄⋄ where F is some expression based on values defined within
the function definition body of f and on a’s “input” argument a, and

⋄⋄ where a can be seen as a programmable attribute.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29 276 Domain Science & Engineering



277

1. Domain Analysis & Description 3. Perdurant Entities 3.8. Attribute Value Access

1.3.8. Perdurant Signatures and Definitions

• We shall treat perdurants as functions.

• In our cursory overview of perdurants

⋄⋄ we shall focus on one perdurant quality:

⋄⋄ function signatures.
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Definition 16 . Function Signature: By a function signature
we shall understand

• a function name and

• a function type expression

Definition 17 . Function Type Expression: By a function type
expression we shall understand

• a pair of type expressions.

• separated by a function type constructor either → (total function)

or
∼
→ (partial function)

• The type expressions

⋄⋄ are usually part sort or type, material sort or attribute type names,

⋄⋄ but may, occasionally be expressions over respective type names
involving -set, ×, ∗, →m and | type constructors.
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1.3.9. Action Signatures and Definitions

• Actors usually provide their initiated actions with arguments, say of
type VAL.

⋄⋄ Hence the schematic function (action) signature and schematic
definition:

action: VAL → Σ
∼
→ Σ

action(v)(σ) as σ′

pre: P(v,σ)
post: Q(v,σ,σ′)

⋄⋄ expresses that a selection of the domain

⋄⋄ as provided by the Σ type expression

⋄⋄ is acted upon and possibly changed.
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• The partial function type operator
∼
→

⋄⋄ shall indicate that action(v)(σ)

⋄⋄ may not be defined for the argument, i.e., initial state σ

⋄⋄ and/or the argument v:VAL,

⋄⋄ hence the precondition P(v,σ).

• The post condition Q(v,σ, σ′) characterises the “after” state, σ′:Σ,
with respect to the “before” state, σ:Σ, and possible arguments
(v:VAL).
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Example 62 . Insert Hub Action Formalisation: We formalise as-
pects of the above-mentioned hub and link actions:

103 Insertion of a hub requires

104 that no hub exists in the net with the unique identifier of the inserted
hub,

105 and then results in an updated net with that hub.

value

103. insert H: H → N
∼
→ N

103. insert H(h)(n) as n′

104. pre: ∼∃ h′:H•h′ ∈ obs part Hs(obs part HS(n))•uid H(h)=uid H(h′)
105. post: obs part Hs(obs part HS(n′))=obs part Hs(obs part HS(n))∪{h}
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• Which could be the argument values, v:VAL, of actions ?

⋄⋄ Well, there can basically be only two kinds of argument values:

◦◦ parts, components and materials, respectively

◦◦ unique part identifiers, mereologies and attribute values.

⋄⋄ It basically has to be so

◦◦ since there are no other kinds of values in domains.

⋄⋄ There can be exceptions to the above

◦◦ (Booleans,

◦◦ natural numbers),

but they are rare !
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• Perdurant (action) analysis thus proceeds as follows:

⋄⋄ identifying relevant actions,

⋄⋄ assigning names to these,

⋄⋄ delineating the “smallest” relevant state18,

⋄⋄ ascribing signatures to action functions, and

⋄⋄ determining

◦◦ action pre-conditions and

◦◦ action post-conditions.

⋄⋄ Of these, ascribing signatures is, perhaps, the most crucial:

◦◦ In the process of determining the action signature

◦◦ one oftentimes discovers

◦◦ that part or material attributes have been left “undiscovered”.

18By “smallest” we mean: containing the fewest number of parts. Experience shows
that the domain analyser cum describer should strive for identifying the smallest state.
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• Example 63 shows examples of signatures
whose arguments are

⋄⋄ either parts,

⋄⋄ or parts and unique identifiers,

⋄⋄ or parts and unique identifiers and attributes.

Example 63 . Some Function Signatures:

• Inserting a link between two identified hubs in a net:

value insert L: L × (HI × HI) → N
∼
→ N

• Removing a hub and removing a link:

value remove H: HI → N
∼
→ N

remove L: LI → N
∼
→ N

• Changing a hub state.

value change HΣ: HI × HΣ → N
∼
→ N
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1.3.10. Event Signatures and Definitions

• Events are usually characterised by

⋄⋄ the absence of known actors and

⋄⋄ the absence of explicit “external” arguments.

• Hence the schematic function (event) signature:

value
event: Σ × Σ → Bool
event(σ,σ′) as true⌈⌉false

pre: P (σ)
post: Q(σ,σ′)
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• The event signature expresses

⋄⋄ that a selection of the domain

⋄⋄ as provided by the Σ type expression

⋄⋄ is “acted” upon, by unknown actors, and possibly changed.

• The partial function type operator
∼
→

⋄⋄ shall indicate that event(σ, σ′)

⋄⋄ may not be defined for some states σ.

• The resulting state may, or may not, satisfy axioms and well-formedness
conditions over Σ — as expressed by the post condition Q(σ, σ′).
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• Events may thus cause well-formedness of states to fail.

• Subsequent actions,

⋄⋄ once actors discover such “disturbing events”,

⋄⋄ are therefore expected to remedy that situation, that is,

⋄⋄ to restore well-formedness.

• We shall not illustrate this point.
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Example 64 . Link Disappearence Formalisation: We formalise
aspects of the above-mentioned link disappearance event:

106 The result net is not well-formed.

107 For a link to disappear there must be at least one link in the net;

108 and such a link may disappear such that

109 it together with the resulting net makes up for the “original” net.

value
106. link diss event: N × N′ × Bool
106. link diss event(n,n′) as tf
107. pre: obs part Ls(obs part LS(n)) 6={}
108. post: ∃ l:L•l ∈ obs part Ls(obs part LS(n)) ⇒
109. l 6∈ obs part Ls(obs part LS(n′))
109. ∧ n′ ∪ {l} = obs part Ls(obs part LS(n))
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1.3.11. Discrete Behaviour Signatures and Definitions

• We shall only cover behaviour signatures when expressed in RSL/CSP

[39].

• The behaviour functions are now called processes.

• That a behaviour function is a never-ending function, i.e., a process,
is “revealed” in the function signature by the “trailing” Unit:

behaviour: ... → ... Unit

• That a process takes no argument is ”revealed” by a “leading” Unit:

behaviour: Unit → ...

• That a process accepts channel, viz.: ch, inputs is “revealed” in the
function signature as follows:

behaviour: ... → in ch ...
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• That a process offers channel, viz.: ch, outputs is “revealed” in the
function signature as follows:

behaviour: ... → out ch ...

• That a process accepts other arguments is “revealed” in the function
signature as follows:

behaviour: ARG → ...

• where ARG can be any type expression:

T, T→T, T→T→T, etcetera
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• As shown in [21] we can, without loss of generality, associate with
each part a behaviour;

⋄⋄ parts which share attributes

⋄⋄ and are therefore referred to in some parts’ mereology,

⋄⋄ can communicate (their “sharing”) via channels.

• The process evolves around a state:

⋄⋄ its unique identity, π : Π,,

⋄⋄ its possibly changing mereology, mt:MT19,

⋄⋄ the possible components and materials of the part20, and

⋄⋄ the constant, the external and the programmable attributes of the
part.

19For MT see footnote 12 on Slide 158.
20— we shall neither treat components nor materials further in this document
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• A behaviour signature is therefore:

behaviour: π:Π × me:MT × sa:SA × ea:EA → pa:PA → out ochs in ichns Unit

where

⋄⋄ (i) π:Π is the unique identifier of part p, i.e., π=uid P(p),

⋄⋄ (ii) me:ME is the mereology of part p, me = obs mereo P(p),

⋄⋄ (iii) sa:SA lists the static attribute values of the part behaviour,

⋄⋄ (iv) ea:EA lists the external attribute channels of the part be-
haviour,

⋄⋄ (v) ps:PA lists the programmable attribute values of the part be-
haviour, and where

⋄⋄ (vi) ochs and ichns refer to the shared attributes of the behaviours.
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• We focus, for a little while, on the expression of

⋄⋄ sa:SA, ⋄⋄ ea:EA and ⋄⋄ pa:PA,

• that is, on the concrete types of SA, EA and PA.

⋄⋄ SA: SA simply lists the static value types: svT1, svT2, ..., svTs
where s is the number of static attributes of parts p:P.

⋄⋄ EA EA simply lists the channel indexes to the external attribute
values: ((eA1, πeA1

), (eA2, πeA2
), ..., (eAx, πeAx

))21

where x is the number, 0 or more, of external attributes of parts
p:P.

⋄⋄ PA PA simply lists appropriate programmable value expression
type:
(pvT1, pvT2, ..., pvTq)
where q is the number of programmable attributes of parts p:P

21See paragraph Access to External Attribute Values on Slide 274.
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• Let P be a composite sort defined in terms of sub-sorts PA, PB, . . . ,
PC.

⋄⋄ The process compiled from cp:P, is composed from

◦◦ a process, McPcore
, relying on and handling the unique iden-

tifier, mereology and attributes of process p as defined by P

◦◦ operating in parallel with processes pa, pb, . . . , pc where

∗ pa is “derived” from PA,

∗ pb is “derived” from PB,

∗ ..., and

∗ pc is “derived” from PC.

• The domain description “compilation” schematic below “formalises”
the above.
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Process Schema I: Abstract is composite(p)

value
compile process: P → RSL-Text
compile process(p) ≡

McP
core

(uid P(p),obs mereo P(p),SA(p),EA(p))(PA(p))

‖ compile process(obs part PA(p))
‖ compile process(obs part PB(p))
‖ ...

‖ compile process(obs part PC(p))

• The text macros: SA, EA and PA were informally explained above.

• Part sorts PA, PB, ..., PC are obtained from the observe part sorts prompt,
Slide 122.
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• Let P be a composite sort defined in terms of the concrete type
Q-set.

⋄⋄ The process compiled from p:P, is composed from

◦◦ a process, McPcore
, relying on and handling the unique iden-

tifier, mereology and attributes of process p as defined by P

◦◦ operating in parallel with processes q:obs part Qs(p).

• The domain description “compilation” schematic below “formalises”
the above.
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Process Schema II: Concrete is composite(p)

type
Qs = Q-set

value
qs:Q-set = obs part Qs(p)
compile process: P → RSL-Text
compile process(p) ≡

McP
core

(uid P(p),obs mereo P(p),SA(p),EA(p))(PA(p))

‖ ‖{compile process(q)|q:Q•q ∈ qs}

Process Schema III: is atomic(p)

value
compile process: P → RSL-Text
compile process(p) ≡

MaP
core

(uid P(p),obs mereo P(p),SA(p),EA(p))(PA(p))
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Example 65 . Bus Timetable Coordination:

• We refer to Examples 20 on Slide 123, 21 on Slide 130, 43 on Slide 198
and 59 on Slide 265.

110 δ is the transportation system; f is the fleet part of that system; vs
is the set of vehicles of the fleet; bt is the shared bus timetable of the
fleet and the vehicles.

111 The fleet process is compiled as per Process Schema II (Slide 297)
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type

∆, F, VC [Example 20 on Slide 123]

V, Vs=V-set [Example 21 on Slide 130]

FI, VI, BT [Example 43 on Slide 198]

channel

{fch...} [Example 59 on Slide 265]

value

110. δ:∆,

110. f:F = obs part F(δ),

110. vs:V-set = obs part Vs(obs part VC(f)),

110. bt:BT = attr BT(f)

axiom

110. ∀ v:V•v ∈ vs ⇒ bt = attr BT(v) [Example 43 on Slide 198]

value

111. fleet: fi:FI×BT → in,out {fch[ {fi,uid V(v)} ]|v:V•v ∈ vs} process

111. fleet(fi,bt) ≡

111. MF (fi,bt)

111. ‖ ‖ {vehicle(uid V(v),fi:FI,bt)|v:V•v ∈ vs}

111. vehicle: vi:VI×fi:FI×bt:BT → in,out fch[ {fi,vi} ] process

111. vehicle(vi,fi,bt) ≡ MV (vi,fi,bt)
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• Fleet and vehicle processes

⋄⋄ MF and

⋄⋄ MV

• are both “never-ending” processes:

value
MF : fi:FI×bt:BT → in,out {fch[ {fi,uid V(v)} ]|v:V•v ∈ vs} process
MF (fi,bt) ≡ let bt′ = F(fi,bt) in MF (fi,bt

′) end

MV : vi:VI×fi:FI×bt:BT → in,out fch[ {fi,vi} ] process
MV (vi,fi,bt) ≡ let bt′ = V(vi,bt) in MV (vi,fi,bt

′) end

• The “core” processes,

⋄⋄ F and

⋄⋄ V ,

are simple actions.
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• In this example we simplify them to change only bus timetables.

• The expression of actual synchronisation and communication be-
tween the fleet and the vehicle processes are contained in F and
V .

value
F : fi:FI×bt:BT → in,out {fch[ {fi,uid V(v)|v:V•v ∈ vs} ]} BT
F(fi,bt) ≡ ...

V : vi:VI×fi:FI×bt:BT → in,out fch[ {fi,vi} ] BT
V(vi,fi,bt) ≡ ...

• What the synchronisation and communication between the fleet and
the vehicle processes consists of we leave to the reader !
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Process Schema IV: Core Process (I)

• The core processes can be understood as never ending, “tail recursively defined”
processes:

McP
core

: π:Π×me:MT×sa:SA×ea:EA→pa:PA→in inchs out ochs Unit

McP
core

(π,me,sa,ea)(pa) ≡

let (me′,pa′) = F(π,me,sa,ea)(pa) in
McP

core
(π,me′,sa,ea)(pa′) end

F : π:Π×me:MT×sa:SA×ea:EA→PA→in inchs out ochs → MT×PA
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• F

⋄⋄ potentially communicates with all those part processes (of the
whole domain)

⋄⋄ with which it shares attributes, that is, has connectors.

⋄⋄ F is expected to contain input/output clauses referencing the
channels of the in ... out ... part of their signatures.

⋄⋄ These clauses enable the sharing of attributes.

⋄⋄ F also contains expressions, attr ch[(A,π)] ?, to external attributes.

• An example of the update of programmable attributes
is shown in the vehicle definitions in Sect. 6.2.3, Slides 344 and 346.
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• The F action non-deterministically internal choice chooses between

⋄⋄ either [1,2,3,4]

◦◦ [1] accepting input from

◦◦ [4] another part process,

◦◦ [2] then optionally offering a reply to that other process, and

◦◦ [3] finally delivering an updated state;

⋄⋄ or [5,6,7,8] offering

◦◦ [5] an output,

◦◦ [6] val,

◦◦ [8] to another part process,

◦◦ [7] and then delivering an updated state;

⋄⋄ or [9] doing own work resulting in an updated state.
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Process Schema V: Core Process (II)

value

F : π:Π → me:MT → sa:SA × ea:EA → pa:PA → in,out E(π,me) MT × PA

F(π,me,sa,ea)(pa) ≡

[ 1 ] ⌈⌉⌊⌋ { let val = ch[ π′ ] ? in

[ 2 ] ch[ π′ ] ! in reply(sa,ea,pa)(val) ;

[ 3 ] in update(me,sa,ea,pa)(π′,sa,ea,pa) end

[ 4 ] | π′ ∈ E(π,me)}

[ 5 ] ⌈⌉ ⌈⌉⌊⌋ { let (π′,val) = await reply(me,sa,ea,pa) in

[ 6 ] ch[ π′ ] ! out reply(val,sa,ea,pa) ;

[ 7 ] out update(me,sa,ea,pa) end

[ 8 ] | π′ ∈ E(π,me)}

[ 9 ] ⌈⌉ (me,own work(sa,ea,pa))

in reply: SA×EA×PA × VAL → VAL

in update: (MT×SA×EA×PA) → (MT×PA)

await reply: (MT×SA×EA×PA) → Π×VAL

out reply: (SA×EA×PA×VAL) → VAL

out update: (MT×SA×EA×PA) → (MT×PA)

own work: SA×EA×PA → (MT×PA)
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1.3.12. Concurrency: Communication and Synchronisation

• Process Schemas I, II and IV (Slides 295, 297 and 305), reveal

⋄⋄ that two or more parts, which temporally coexist (i.e., at the same
time),

⋄⋄ imply a notion of concurrency.

⋄⋄ Process Schema IV, through the RSL/CSP language expressions
ch ! v and ch ?,

⋄⋄ indicates the notions of communication and synchronisation.

⋄⋄ Other than this we shall not cover these crucial notion related to
parallelism.
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1. Domain Analysis & Description 3. Perdurant Entities 3.13. Concurrency: Communication and Synchronisation

1.3.13. Summary and Discussion of Perdurants

• The most significant contribution of this section has been to show
that

⋄⋄ for every domain description

⋄⋄ there exists a normal form behaviour —

⋄⋄ here expressed in terms of a CSP process expression.

A Prerequisite for Requirements Engineering 307 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



308

1. Domain Analysis & Description 3. Perdurant Entities 3.13. Summary and Discussion of Perdurants 3.13.1.

1.3.13.1. Summary

• We have proposed to analyse perdurant entities into actions, events
and behaviours — all based on notions of state and time.

• We have suggested modeling and abstracting these notions in terms
of functions with signatures and pre-/post-conditions.

• We have shown how to model behaviours in terms of CSP (commu-
nicating sequential processes).

• It is in modeling function signatures and behaviours that we justify
the endurant entity notions of parts, unique identifiers, mereology
and shared attributes.
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1. Domain Analysis & Description 3. Perdurant Entities 3.13. Summary and Discussion of Perdurants 3.13.2. Summary

1.3.13.2. Discussion

• The analysis of perdurants into actions, events and behaviours rep-
resents a choice.

• We suggest skeptical readers to come forward with other choices.
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6. A Domain Description
6.1. Endurants

6.1.1. Domain, Net, Fleet and Monitor

• The root domain, ∆D,

• the step-wise unfolding of whose description is to be exemplified,
is that of a composite traffic system

⋄⋄ with a road net,

⋄⋄ with a fleet of vehicles and

⋄⋄ of whose individual position on the road net we can speak, that is,
monitor.
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6. A Domain Description 1. Endurants 1.1. Domain, Net, Fleet and Monitor

112 We analyse the composite traffic system into

a. a composite road net,

b. a composite fleet (of vehicles), and

c. an atomic monitor.

113 The road net consists of two composite parts,

a. an aggregation of hubs and

b. an aggregation of links.
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6. A Domain Description 1. Endurants 1.1. Domain, Net, Fleet and Monitor

type
112. ∆∆

112a.. N∆

112b.. F∆
112c.. M∆

value
112a.. obs part N∆: ∆∆ → N∆

112b.. obs part F∆: ∆∆ → F∆
112c.. obs part M∆: ∆∆ → M∆

type
113a.. HA∆

113b.. LA∆

value
113a.. obs part HA∆: N∆ → HA∆

113b.. obs part LA∆: N∆ → LA∆
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6.1.2. Hubs and Links

114 Hub aggregates are sets of hubs.

115 Link aggregates are sets of links.

116 Fleets are set of vehicles.

117 We introduce some auxiliary functions.

a. links extracts the links of a network.

b. hubs extracts the hubs of a network.
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6. A Domain Description 1. Endurants 1.2. Hubs and Links

type
114. H∆, HS∆ = H∆-set
115. L∆, LS∆ = L∆-set
116. V∆, VS∆ = V∆-set
value
114. obs part HS∆: HA∆ → HS∆
115. obs part LS∆: LA∆ → LS∆
116. obs part VS∆: F∆ → VS∆
117a.. links∆: ∆∆ → L-set
117a.. links∆(δ∆) ≡ obs part LS(obs part LA(δ∆))
117b.. hubs∆: ∆∆ → H-set
117b.. hubs∆(δ∆) ≡ obs part HS(obs part HA(δ∆))
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6. A Domain Description 1. Endurants 1.3. Hubs and Links

6.1.3. Unique Identfiers
We cover the unique identifiers of all parts, whether needed or not.

118 Nets, hub and link aggregates, hubs and links, fleets, vehicles and the
monitor all

a. have unique identifiers

b. such that all such are distinct, and

c. with corresponding observers.

119 We introduce some auxiliary functions:

a. xtr lis extracts all link identifiers of a traffic system.

b. xtr his extracts all hub identifiers of a traffic system.

c. given an appropriate link identifier and a net get link ‘retrieves’ the
designated link.

d. given an appropriate hub identifier and a net get hub ‘retrieves’ the
designated hub.
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6. A Domain Description 1. Endurants 1.3. Unique Identfiers

type
118a.. NI, HAI, LAI, HI, LI, FI, VI, MI
value
118c.. uid NI: N∆ → NI
118c.. uid HAI: HA∆ → HAI
118c.. uid LAI: LA∆ → LAI
118c.. uid HI: H∆ → HI
118c.. uid LI: L∆ → LI
118c.. uid FI: F∆ → FI
118c.. uid VI: V∆ → VI
118c.. uid MI: M∆ → MI
axiom
118b.. NI

⋂
HAI=Ø, NI

⋂
LAI=Ø, NI

⋂
HI=Ø, etc.

where axiom 118b.. is expressed semi-formally, in mathematics.
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6. A Domain Description 1. Endurants 1.3. Unique Identfiers

value
119a.. xtr lis: ∆∆ → LI-set
119a.. xtr lis(δ∆) ≡
119a.. let ls = links(δ∆) in {uid LI(l)|l:L•l ∈ ls} end
119b.. xtr his: ∆∆ → HI-set
119b.. xtr his(δ∆) ≡
119b.. let hs = hubs(δ∆) in {uid HI(h)|h:H•k ∈ hs} end

119c.. get link: LI → ∆∆
∼
→ L

119c.. get link(li)(δ∆) ≡
119c.. let ls = links(δ∆) in
119c.. let l:L • l ∈ ls ∧ li=uid LI(l) in l end end
119c.. pre: li ∈ xtr lis(δ∆)

119d.. get hub: HI → ∆∆
∼
→ H

119d.. get hub(hi)(δ∆) ≡
119d.. let hs = hubs(δ∆) in
119d.. let h:H • h ∈ hs ∧ hi=uid HI(h) in h end end
119d.. pre: hi ∈ xtr his(δ∆)
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6.1.4. Mereology
We cover the mereologies of all part sorts introduced so far. We decide that nets, hub
aggregates, link aggregates and fleets have no mereologies of interest.

120 Hub mereologies reflect that they are connected to zero, one or more links.

121 Link mereologies reflect that they are connected to exactly two distinct hubs.

122 Vehicle mereologies reflect that they are connected to the monitor.

123 The monitor mereology reflects that it is connected to all vehicles.

124 For all hubs of any net it must be the case that their mereology designates links of
that net.

125 For all links of any net it must be the case that their mereologies designates hubs
of that net.

126 For all transport domains it must be the case that

a. the mereology of vehicles of that system designates the monitor of that system,
and that

b. the mereology of the monitor of that system designates vehicles of that system.
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6. A Domain Description 1. Endurants 1.4. Mereology

value
120. obs mereo H∆: H∆ → LI-set
121. obs mereo L: L → HI-set axiom ∀ l:L•cardobs mereo L(l)=2
122. obs mereo V: V → MI
123. obs mereo M: M → VI-set
axiom
124. ∀ δ:∆, hs:HS∆•hs=hubs(δ), ls:LS∆•ls=links(δ) •

124. ∀ h:H∆
•h ∈ hs•obs mereo H(h)⊆xtr his(δ) ∧

125. ∀ l:L∆•l ∈ ls•obs mereo L(l)⊆xtr lis(δ) ∧
126a.. let f:F∆•f=obs part F(δ) ⇒
126a.. let m:M∆

•m=obs part M(δ),
126a.. vs:VS•vs=obs part VS(f) in
126a.. ∀ v:V∆

•v ∈ vs⇒uid V(v) ∈ obs mereo M(m)
126b.. ∧ obs mereo M(m) = {uid V(v)|v:V•v ∈ vs}
126b.. end end
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6.1.5. Attributes, I
We may not have shown all of the attributes mentioned below — so

consider them informally introduced !

•Hubs:

⋄⋄ locations are considered static,

⋄⋄ wear and tear (condition of road surface) is considered inert,

⋄⋄ hub states and hub state spaces are considered programmable;

• Links:

⋄⋄ lengths and locations are considered static,

⋄⋄ wear and tear (condition of road surface) is considered inert,

⋄⋄ link states and link state spaces are considered programmable;
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6. A Domain Description 1. Endurants 1.5. Attributes, I

• Vehicles:

⋄⋄ manufacturer name, engine type (whether diesel, gasoline or elec-
tric) and engine power (kW/horse power) are considered static;

⋄⋄ velocity and acceleration may be considered reactive (i.e., a func-
tion of gas pedal position, etc.),

⋄⋄ global position (informed via a GNSS: Global Navigation Satellite

System) and local position (calculated from a global position) are
considered biddable
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6. A Domain Description 1. Endurants 1.6. Attributes, I

6.1.6. Attributes, II
We treat one attribute each for hubs, links, vehicles and the monitor. First we treat
hubs.

127 Hubs

a. have hub states which are sets of pairs of identifiers of links connected to the
hub22,

b. and have hub state spaces which are sets of hub states23.

128 For every net,

a. link identifiers of a hub state must designate links of that net.

b. Every hub state of a net must be in the hub state space of that hub.

129 Hubs have geodetic and cadestral location.

130 We introduce an auxiliary function: xtr lis extracts all link identifiers of a hub state.

22A hub state “signals” which input-to-output link connections are open for traffic.
23A hub state space indicates which hub states a hub may attain over time.
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6. A Domain Description 1. Endurants 1.6. Attributes, II

type

127a.. HΣ = (LI×LI)-set

127b.. HΩ = HΣ-set

value

127a.. attr HΣ: H → HΣ

127b.. attr HΩ: H → HΩ

axiom

128. ∀ δ:∆,

128. let hs = hubs(δ) in

128. ∀ h:H • h ∈ hs •

128a.. xtr lis(h)⊆xtr lis(δ)

128b.. ∧ attr Σ(h) ∈ attr Ω(h)

128. end

type

129. HGCL

value

129. attr HGCL: H → HGCL

130. xtr lis: H → LI-set

130. xtr lis(h) ≡

130. {li | li:LI,(li′,li′′):LI×LI •

130. (li′,li′′) ∈ attr HΣ(h) ∧ li ∈ {li′,li′′}}
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6. A Domain Description 1. Endurants 1.6. Attributes, II

Then links.

131 Links have lengths.

132 Links have geodetic and cadestral location.

133 Links have states and state spaces:

a. States modeled here as pairs, (hi′, hi′′), of identifiers the hubs with
which the links are connected and indicating directions (from hub
h′ to hub h′′.) A link state can thus have 0, 1, 2, 3 or 4 such pairs.

b. State spaces are the set of all the link states that a link may enjoy.
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6. A Domain Description 1. Endurants 1.6. Attributes, II

type

131. LEN

132. LGCL

133a.. LΣ = (HI×HI)-set

133b.. LΩ = LΣ-set

value

131. attr LEN: L → LEN

132. attr LGCL: L → LGCL

133a.. attr LΣ: L → LΣ

133b.. attr LΩ: L → LΩ

axiom

133. ∀ n:N •

133. let ls = xtr−links(n), hs = xtr hubs(n) in

133. ∀ l:L•l ∈ ls ⇒

133a.. let lσ = attr LΣ(l) in

133a.. 0≤card lσ≤4

133a.. ∧ ∀ (hi′,hi′′):(HI×HI)•(hi′,hi′′) ∈ lσ ⇒

133a.. {get H(hi′)(n),get H(hi′′)(n)}=obs mereo L(l)

133b.. ∧ attr LΣ(l) ∈ attr LΩ(l)

133. end end

A Prerequisite for Requirements Engineering 325 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



326
6. A Domain Description 1. Endurants 1.6. Attributes, II

Then vehicles.

134 Every vehicle of a traffic system has a position which is either ‘on a
link’ or ‘at a hub’.

a. An ‘on a link’ position has four elements: a unique link identifier
which must designate a link of that traffic system and a pair of
unique hub identifiers which must be those of the mereology of
that link.

b. The ‘on a link’ position real is the fraction, thus properly between
0 (zero) and 1 (one) of the length from the first identified hub
“down the link” to the second identifier hub.

c. An ‘at a hub’ position has three elements: a unique hub identifier
and a pair of unique link identifiers — which must be in the hub
state.
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6. A Domain Description 1. Endurants 1.6. Attributes, II

type
134. VPos = onL | atH
134a.. onL :: LI HI HI R
134b.. R = Real axiom ∀ r:R • 0≤r≤1
134c.. atH :: HI LI LI
value
134. attr VPos: V∆ → VPos
axiom
134a.. ∀ n∆:N∆, onL(li,fhi,thi,r):VPos •

134a.. ∃ l∆:L∆•l∆∈obs part LS(obs part N∆(n∆))
134a.. ⇒ li=uid L∆(l)∧{fhi,thi}=obs mereo L∆(l∆),
134c.. ∀ n∆:N∆, atH(hi,fli,tli):VPos •

134c.. ∃ h∆:H∆
•h∆∈obs part HS∆(obs part N(n∆))

134c.. ⇒ hi=uid H∆(h∆)∧(fli,tli) ∈ attr LΣ(h∆)
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135 We introduce an auxiliary function distribute.

a. distribute takes a net and a set of vehicles and

b. generates a map from vehicles to distinct vehicle positions on the
net.

c. We sketch a “formal” distribute function, but, for simplicity we
omit the technical details that secures distinctness — and leave
that to an axiom !

136 We define two auxiliary functions:

a. xtr links extracts all links of a net and

b. xtr hub extracts all hubs of a net.
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type
135b.. MAP = VI →m VPos
135b.. ∀ map:MAP • card dom map = card rng map
value
135. distribute: VS∆ → N∆ → MAP
135. distribute(vs∆)(n∆) ≡
135a.. let (hs,ls) = (xtr hubs(n∆),xtr links(n∆)) in
135a.. let vps = {onL(uid (l∆),fhi,thi,r)|l∆:L∆•l∆∈ls∧{fhi,thi}⊆obs mereo L(l)∧0≤r≤1
135a.. ∪ {atH(uid H(h∆),fli,tli)|h∆:H∆

•h∆∈hs∧{fli,tli}⊆obs mereo H∆(h∆)} in
135b.. [uid V∆(v) 7→vp|v∆:V∆,vp:VPos•v∆∈vs∧vp∈vps ]
135. end end
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136a.. xtr links∆: N∆ → L∆-set
136a.. xtr links∆(n∆)≡obs part LS(obs part LA(n∆))
136b.. xtr hubs∆: N∆ → H∆-set
136a.. xtr hubs∆(n∆)≡obs part HS∆(obs part HA∆(n∆))
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And finally monitors. We consider only one monitor attribute.

137 The monitor has a vehicle traffic attribute.

a. For every vehicle of the road transport system the vehicle traffic
attribute records a possibly empty list of time marked vehicle
positions.

b. These vehicle positions are alternate sequences of ‘on link’ and ‘at
hub’ positions

i such that any sub-sequence of ‘on link’ positions record the same
link identifier, the same pair of ‘’to’ and ‘from’ hub identifiers
and increasing fractions,

ii such that any sub-segment of ‘at hub’ positions are identical,

iii such that vehicle transition from a link to a hub is commensurate
with the link and hub mereologies, and

iv such that vehicle transition from a hub to a link is commensurate
with the hub and link mereologies.
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6. A Domain Description 1. Endurants 1.6. Attributes, II

type
137. Traffic = VI →m (T × VPos)∗

value
137. attr Traffic: M → Traffic
axiom
137b.. ∀ δ:∆ •

137b.. let m = obs part M∆(δ) in
137b.. let tf = attr Traffic(m) in
137b.. dom tf ⊆ xtr vis(δ) ∧
137b.. ∀ vi:VI • vi ∈ dom tf •

137b.. let tr = tf(vi) in
137b.. ∀ i,i+1:Nat • {i,i+1}⊆dom tr •

137b.. let (t,vp)=tr(i),(t′,vp′)=tr(i+1) in
137b.. t<t′

137(b.)i. ∧ case (vp,vp′) of
137(b.)i. (onL(li,fhi,thi,r),onL(li′,fhi′,thi′,r′))
137(b.)i. → li=li′∧fhi=fhi′∧thi=thi′∧r≤r′

137(b.)i. ∧ li ∈ xtr lis(δ)
137(b.)i. ∧ {fhi,thi} = obs mereo L(get link(li)(δ)),
137(b.)ii. (atH(hi,fli,tli),atH(hi′,fli′,tli′))
137(b.)ii. → hi=hi′∧fli=fli′∧tli=tli′

137(b.)ii. ∧ hi ∈ xtr his(δ)
137(b.)ii. ∧ (fli,tli) ∈ obs mereo H(get hub(hi)(δ)),
137(b.)iii. (onL(li,fhi,thi,1),atH(hi,fli,tli))
137(b.)iii. → li=fli∧thi=hi
137(b.)iii. ∧ {li,tli} ⊆ xtr lis(δ)
137(b.)iii. ∧ {fhi,thi}=obs mereo L(get link(li)(δ))
137(b.)iii. ∧ hi ∈ xtr his(δ)
137(b.)iii. ∧ (fli,tli) ∈ obs mereo H(get hub(hi)(δ)),
137(b.)iv. (atH(hi,fli,tli),onL(li′,fhi′,thi′,0))
137(b.)iv. → etcetera,
137b.. → false
137b.. end end end end end
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6.1.7. Routes

•We bring a model of routes.

to be written
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6. A Domain Description 2. Perdurants

6.2. Perdurants
6.2.1. Vehicle to Monitor Channel

138 Let δ be the traffic system domain.

139 Then focus on the set of vehicles

140 and the monitor —

141 and we obtain an appropriate channel array for communication be-
tween vehicles and the traffic observing monitor.

value
139. let vs:VS • vs = obs part VS(obs part F(δ)),
140. m:M • m = obs part M(δ) in
channel
141. {v m ch[uid VI(v),uid MI(m) ]|v:V•v ∈ vs} end
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6. A Domain Description 2. Perdurants 2.2. Vehicle to Monitor Channel

6.2.2. Link Disappearance Event
We formalise aspects of the above-mentioned link disappearance event:

142 The result net, n’:N’, is not well-formed.

143 For a link to disappear there must be at least one link in the net;

144 and such a link may disappear such that

145 it together with the resulting net makes up for the “original” net.

value
142. link diss event: N × N′ × Bool
142. link diss event(n,n′) as tf
143. pre: obs part Ls(obs part LS(n)) 6={}
144. post: ∃ l:L•l ∈ obs part Ls(obs part LS(n)) ⇒
145. l 6∈ obs part Ls(obs part LS(n′))
145. ∧ n′ ∪ {l} = obs part Ls(obs part LS(n))

A Prerequisite for Requirements Engineering 335 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



336

6. A Domain Description 2. Perdurants 2.3. Link Disappearance Event

6.2.3. Road Traffic
Global Values

• There is given some globally observable parts.

146 besides the domain, δ∆:∆∆,

147 a net, n:N,

148 a set of vehicles, vs:V-set,

149 a monitor, m:M, and

150 a clock, clock, behaviour.

151 From the net and vehicles we generate an initial distribution of posi-
tions of vehicles.

• The n:N, vs:V-set and m:M are observable from any road traffic sys-
tem domain δ.
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value
146. δ∆:∆∆
147. n:N = obs part N(δ∆),
147. ls:L-set=linksLs(δ),hs:H-set=hubs(δ∆),
147. lis:LI-set=xtr lis(δ),his:HI-set=xtr his(δ∆)
148. vs:V-set=obs part Vs(obs part VS(obs part F(δ)∆)),
148. vis:VI-set = {uid VI(v)|v:V•v ∈ vs},
149. m:obs part M(δ), mi=uid MI(m), ma:attributes(m)
150. clock: T → out {clk ch[ vi|vi:VI•vi ∈ vis ]} Unit
151. vm:MAP•vpos map = distribute(vs)(n);

A Prerequisite for Requirements Engineering 337 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



338

6. A Domain Description 2. Perdurants 2.3. Road Traffic

Channels

152 We additionally declare a set of vehicle to monitor channels indexed

a. by the unique identifiers of vehicles

b. and the (single) monitor identifier.24

and communicating vehicle positions.

channel
152. {v m ch[ vi,mi ]|vi:VI•vi ∈ vis}:VPos

24Technically speaking: we could omit the monitor identifier.
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Behaviour Signatures

153 The road traffic system behaviour, rts, takes no arguments; and “be-
haves”, that is, continues forever.

154 The vehicle behaviour

a. is indexed by the unique identifier, uid V(v):VI,

b. the vehicle mereology, in this case the single monitor identifier
mi:MI,

c. the vehicle attributes, obs attribs(v)

d. and — factoring out one of the vehicle attributes — the current
vehicle position.

e. The vehicle behaviour offers communication to the monitor be-
haviour; and behaves “forever”.
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155 The monitor behaviour takes

a. the monitor identifier,

b. the monitor mereology,

c. the monitor attributes,

d. and — factoring out one of the vehicle attributes — the discrete
road traffic, drtf:dRTF;

e. the behaviour otherwise behaves forever.

value
153. trs: Unit → Unit
154. veh∆: vi:VI × mi:MI → vp:VPos →
154. out vm ch[ vi,mi ] Unit
155. mon∆: m:M∆ × vis:VI-set → RTF →
155. in {v m ch[ vi,mi ]|vi:VI•vi ∈ vis},clk ch Unit
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The Road Traffic System Behaviour

156 Thus we shall consider our road traffic system, rts, as

a. the concurrent behaviour of a number of vehicles and,
to “observe”, or, as we shall call it, to monitor their movements,

b. the monitor behaviour.

value
156. trs() =
156a.. ‖ {veh∆(uid VI(v),mi)(vm(uid VI(v)))|v:V•v ∈ vs}
156b.. ‖ mon∆(mi,vis)([ vi 7→〈〉|vi:VI•vi ∈ vis ])
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• where, wrt, the monitor, we

⋄⋄ dispense with the mereology and the attribute state arguments

⋄⋄ and instead just have a monitor traffic argument which

◦◦ records the discrete road traffic, MAP,

◦◦ initially set to “empty” traces (〈〉, of so far “no road traffic”!).

• In order for the monitor behaviour to assess the vehicle positions

⋄⋄ these vehicles communicate their positions

⋄⋄ to the monitor

⋄⋄ via a vehicle to monitor channel.

• In order for the monitor to time-stamp these positions

⋄⋄ it must be able to “read” a clock.
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157 We describe here an abstraction of the vehicle behaviour at a Hub
(hi).

a. Either the vehicle remains at that hub informing the monitor of
its position,

b. or, internally non-deterministically,

i moves onto a link, tli, whose “next” hub, identified by thi, is
obtained from the mereology of the link identified by tli;

ii informs the monitor, on channel vm[vi,mi], that it is now at the
very beginning (0) of the link identified by tli,

iii whereupon the vehicle resumes the vehicle behaviour positioned
at the very beginning of that link,

c. or, again internally non-deterministically,

d. the vehicle “disappears — off the radar” !
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157. veh∆(vi,mi)(vp:atH(hi,fli,tli)) ≡
157a.. v m ch[ vi,mi ]!vp ; veh∆(vi,mi)(vp)
157b.. ⌈⌉
157(b.)i. let {hi′,thi}=obs mereo L(get link(tli)(n)) in
157(b.)i. assert: hi′=hi
157(b.)ii. v m ch[ vi,mi ]!onL(tli,hi,thi,0) ;
157(b.)iii. veh∆(vi,mi)(onL(tli,hi,thi,0)) end
157c.. ⌈⌉
157d.. stop
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158 We describe here an abstraction of the vehicle behaviour on a Link (ii).
Either

a. the vehicle remains at that link position informing the monitor of its position,

b. or, internally non-deterministically,

c. if the vehicle’s position on the link has not yet reached the hub,

i then the vehicle moves an arbitrary increment ℓǫ (less than or equal to the
distance to the hub) along the link informing the monitor of this, or

ii else, while obtaining a “next link” from the mereology of the hub (where
that next link could very well be the same as the link the vehicle is about to
leave),

A the vehicle informs the monitor that it is now at the hub identified by thi,

B whereupon the vehicle resumes the vehicle behaviour positioned at that
hub.

159 or, internally non-deterministically,

160 the vehicle “disappears — off the radar” !
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158. veh∆(vi,mi)(vp:onL(li,fhi,thi,r)) ≡
158a.. v m ch[ vi,mi ]!vp ; veh(∆vi,mi,va)(vp)
158b.. ⌈⌉
158c.. if r + ℓǫ≤1
158(c.)i. then v m ch[ vi,mi ]!onL(li,fhi,thi,r+ℓǫ) ;
158(c.)i. veh∆(vi,mi)(onL(li,fhi,thi,r+ℓǫ))
158(c.)ii. else let li′:LI•li′ ∈ obs mereo H(get hub(thi)(n)) in
158(c.)iiA. v m ch[ vi,mi ]!atH(li,thi,li′);
158(c.)iiB. veh∆(vi,mi)(atH(li,thi,li

′)) end end
159. ⌈⌉
160. stop

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29 346 Domain Science & Engineering



347

6. A Domain Description 2. Perdurants 2.3. Road Traffic

The Monitor Behaviour

161 The monitor behaviour evolves around

a. the monitor identifier,

b. the monitor mereology,

c. and the attributes, ma:ATTR

d. — where we have factored out as a separate arguments — a table
of traces of time-stamped vehicle positions,

e. while accepting messages

i about time

ii and about vehicle positions

f. and otherwise progressing “in[de]finitely”.
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162 Either the monitor “does own work”

163 or, internally non-deterministically accepts messages from vehicles.

a. A vehicle position message, vp, may arrive from the vehicle iden-
tified by vi.

b. That message is appended to that vehicle’s movement trace –
prefixed by time (obtained from the time channel),

c. whereupon the monitor resumes its behaviour —

d. where the communicating vehicles range over all identified vehi-
cles.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29 348 Domain Science & Engineering



349

6. A Domain Description 2. Perdurants 2.3. Road Traffic

161. mon∆(mi,vis)(trf) ≡
162. mon∆(mi,vis)(trf)
163. ⌈⌉
163a.. ⌈⌉⌊⌋{let tvp = (clk ch?,v m ch[ vi,mi ]?) in
163b.. let trf′ = trf † [ vi 7→ trf(vi)̂<tvp> ] in
163c.. mon∆(mi,vis)(trf

′)
163d.. end end | vi:VI • vi ∈ vis}
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• We are about to complete a long, i.e., a 16 slide example.

• We can now comment on the full example:

⋄⋄ The domain, δ : ∆ is a manifest part.

⋄⋄ The road net, n : N is also a manifest part.

⋄⋄ The fleet, f : F , of vehicles, vs : V S, likewise, is a manifest part.

⋄⋄ But the monitor, m : M , is a concept.
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◦◦ One does not have to think of it as a manifest “observer”.

◦◦ The vehicles are on — or off — the road (i.e., links and hubs).

◦◦ We know that from a few observations and generalise to all
vehicles.

◦◦ They either move or stand still. We also, similarly, know that.

◦◦ Vehicles move. Yes, we know that.

◦◦ Based on all these repeated observations and generalisations we
introduce the concept of vehicle traffic.

◦◦ Unless positioned high above a road net — and with good binoc-
ulars — a single person cannot really observe the traffic.

◦◦ There are simply too many links, hubs, vehicles, vehicle posi-
tions and times.

⋄⋄ Thus we conclude that, even in a richly manifest domain, we can
also “speak of”, that is, describe concepts over manifest phenom-
ena, including time !
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7. Requirements

• In Chapter 1. we introduced a method
for analysing and describing manifest domains.

• In the next lectures of this PhD course

⋄⋄ we show how to systematically,

⋄⋄ but of course, not automatically,

⋄⋄ “derive” requirements prescriptions from

⋄⋄ domain descriptions.

• There are, as we see it, three kinds of requirements:

⋄⋄ domain requirements,

⋄⋄ interface requirements and

⋄⋄ machine requirements.

• The machine is the hardware and software
to be developed from the requirements .
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7. Requirements

•Domain requirements are those requirements which can be ex-
pressed sôlely using technical terms of the domain .

• Interface requirements are those requirements which can be ex-
pressed only using technical terms of both the domain and the ma-
chine .

•Machine requirements are those requirements which can be ex-
pressed sôlely using technical terms of the machine .
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7. Requirements

• We show principles, techniques and tools for “deriving”

⋄⋄ domain requirements and

⋄⋄ interface requirements.

• The domain requirements development focus on

⋄⋄ projection,

⋄⋄ instantiation,

⋄⋄ determination,

⋄⋄ extension and

⋄⋄ fitting.
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• These domain-to-requirements operators can be described briefly:

⋄⋄ projection removes such descriptions which are to be omitted for
consideration in the requirements,

⋄⋄ instantiation mandates specific mereologies,

⋄⋄ determination specifies less non–determinism,

⋄⋄ extension extends the evolving requirements prescription with fur-
ther domain description aspects and

⋄⋄ fitting resolves “loose ends” as they may have emerged during the
domain-to-requirements operations.
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7.1. Introduction

Definition 18 . Requirements (I): By a requirements we un-
derstand (cf. IEEE Standard 610.12):

• “A condition or capability needed by a user to solve a problem
or achieve an objective”

7.1.1. General Considerations

• The objective of requirements engineering is to create a requirements
prescription:

⋄⋄ A requirements prescription specifies externally observable prop-
erties of endurants and perdurants: functions, events and be-
haviours of the machine such as the requirements stake-holders
wish them to be

⋄⋄ The machine is what is required: that is, the hardware and
software that is to be designed and which are to satisfy the re-
quirements
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• A requirements prescription thus (putatively) expresses what there
should be.

• A requirements prescription expresses nothing about the design of
the possibly desired (required) software.

• We shall show how a major part of a requirements prescription can
be “derived” from “its” prerequisite domain description.
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Rule 1 The “Golden Rule” of Requirements Engineering: Pre-
scribe only those requirements that can be objectively shown to hold
for the designed software

• “Objectively shown” means that the designed software can

⋄⋄ either be tested,

⋄⋄ or be model checked,

⋄⋄ or be proved (verified),

• to satisfy the requirements.
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Rule 2 An “Ideal Rule” of Requirements Engineering: When
prescribing (including formalising) requirements, also formulate tests
and properties for model checking and theorems whose actualisation
should show adherence to the requirements

• The rule is labelled “ideal” since such precautions will not be shown
in this seminar.

• The rule is clear.

• It is a question for proper management to see that it is adhered to.
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Rule 3 Requirements Adequacy: Make sure that requirements
cover what users expect

• That is,

⋄⋄ do not express a requirement for which you have no users,

⋄⋄ but make sure that all users’ requirements are represented or some-
how accommodated.

• In other words:

⋄⋄ the requirements gathering process needs to be like an extremely
“fine-meshed net”:

⋄⋄ One must make sure that all possible stake-holders have been
involved in the requirements acquisition process,

⋄⋄ and that possible conflicts and other inconsistencies have been
obviated.
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Rule 4 Requirements Implementability: Make sure that require-
ments are implementable

• That is, do not express a requirement for which you have no assur-
ance that it can be implemented.

• In other words,

⋄⋄ although the requirements phase is not a design phase,

⋄⋄ one must tacitly assume, perhaps even indicate, somehow, that
an implementation is possible.

• But the requirements in and by themselves, stay short of expressing
such designs.
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Rule 5 Requirements Verifiability and Validability: Make sure
that requirements are verifiable and can be validated

• That is, do not express a requirement for which you have no assur-
ance that it can be verified and validated.

• In other words,

⋄⋄ once a first-level software design has been proposed,

⋄⋄ one must show that it satisfies the requirements.

• Thus specific parts of even abstract software designs are usually pro-
vided with references to specific parts of the requirements that they
are (thus) claimed to implement.
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Definition 19 . Requirements (II): By requirements we shall
understand a document which prescribes desired properties of a ma-
chine:

• (i) what endurants the machine shall “maintain”, and

• what the machine shall (must; not should) offer of

⋄⋄ (ii) functions and of

⋄⋄ (iii) behaviours

• (iv) while also expressing which events the machine shall “han-
dle”
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• By a machine that “maintains” endurants we shall mean:

⋄⋄ a machine which, “between” users’ use of that machine,

⋄⋄ “keeps” the data that represents these entities.

• From earlier we repeat:

Definition 20 . Machine: By machine we shall understand a,
or the, combination of hardware and software that is the target for,
or result of the required computing systems development

• So this, then, is a main objective of requirements development:

• to start towards the design of the hardware + software for the com-
puting system.
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Definition 21 . Requirements (III): To specify the machine

• When we express requirements and wish to “convert” such require-
ments to a realisation, i.e., an implementation, then we find

⋄⋄ that some requirements (parts) imply certain properties to hold of
the hardware on which the software to be developed is to “run”,

⋄⋄ and, obviously, that remaining — probably the larger parts of the
— requirements imply certain properties to hold of that software.

• So we find

⋄⋄ that although we may believe that our job is software engineering,

• important parts of our job are to also “design the machine”!
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7.1.2. Four Stages of Requirements Development

• We shall unravel requirements in four stages —
the first three stages are sketchy (and thus informal) while
the last stage

⋄⋄ is systematic,

⋄⋄ mandates both strict narrative,

⋄⋄ and formal descriptions, and

⋄⋄ is “derivable” from the domain description.

• The four stages are:

⋄⋄ the problem/objective sketch,

⋄⋄ the narrative system requirements sketch,

⋄⋄ the narrative user requirements sketch, and

⋄⋄ the systematic narrative and formal functional requirements pre-
scription.
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7. Requirements 1. Introduction 1.2. Four Stages of Requirements Development 1.2.1.

7.1.2.1. Problem and/or Objective Sketch

Definition 22 . Problem/Objective Sketch: By a problem/objective
sketch we understand

• a narrative which emphasises

• what the problem or objectie is

• and thereby names its main concepts
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Example 66 . The Problem/Objective Requirements: A Sketch:

• The objective is to create a road-pricing product.

⋄⋄ By a road-pricing product

◦◦ we shall understand an information technology-based system

◦◦ containing computers and communications equipment and software

◦◦ that enables the recording of vehicle movements

◦◦ within a well-delineated road net

◦◦ and thus enables

∗ the owner of the road net

∗ to charge

∗ the owner of the vehciles

∗ fees for the usage of that road net
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7.1.2.2. Systems Requirements

Definition 23 . System Requirements: By a system require-
ments narrative we understand

• a narrative which emphasises

• the overall hardware and software

• system components
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Example 67 . The Road-pricing System Requirements: A Narrative:

• The requirements are based on the following a-priori given
constellation of system components:

⋄⋄ there is assumed a GNSS: a Global Navigation Satellite System;

⋄⋄ there are specially equipped vehicles;

⋄⋄ there is a well-delineated road net called a toll-road net with specially equipped
toll-gates with barriers which afford (only the specially equipped) vehicles to
enter into and exit from the toll-road net; and

⋄⋄ there is a [road-pricing] calculator.
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• These four system components are required
to behave and interact as follows:

⋄⋄ The GNSS is assumed to continuously offer vehicles timed informa-
tion about their global positions;

⋄⋄ vehicles shall contain a GNSS receiver which based on the global
position information shall regularly calculate their timed local po-
sition and offer this to the calculator — while otherwise cruising
the general road net as well as the toll-road net, the latter while
carefully moving through toll-gate barriers;

⋄⋄ toll-road gates shall register the identity of vehicles entering and
exiting the toll-road and offer this information to the calculator;
and

⋄⋄ the calculator shall accept all messages from vehicles and gates and
use this information to record the movements of vehicles and bill
these whenever they exit the toll-road.

A Prerequisite for Requirements Engineering 371 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



372

7. Requirements 1. Introduction 1.2. Four Stages of Requirements Development 1.2.2. Systems Requirements

• The requirements are therefore to include requirements to

⋄⋄ the GNSS radio telecommunications equipment,

⋄⋄ the vehicle GNSS receiver equipment,

⋄⋄ the vehicle software,

⋄⋄ the toll-gate in and out sensor equipment,

⋄⋄ the electro-mechanical toll-gate barrier equipment,

⋄⋄ the toll-gate barrier actuator equipment,

⋄⋄ the toll-gate software,

⋄⋄ the actuator software, and

⋄⋄ the communications
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• It is in this sense that the requirements are for
an information technology-based system

⋄⋄ of both software and

⋄⋄ hardware —

◦◦ not just hard computer and communications equipment,

◦◦ but also movement sensors

◦◦ and electro-mechanical “gear”
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7.1.2.3. User and External Equipment Requirements

Definition 24 . User and External Equipment Requirements:
By a user and external equipment requirements narrative we
understand

• a narrative which emphasises

⋄⋄ the human user and

⋄⋄ external equipment

interfaces

• to the system components
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Example 68 . The Road-pricing User and External Equipment Require-
ments: Narrative:
• The human users of the road-pricing system are

⋄⋄ vehicle drivers,

⋄⋄ toll-gate sensor, actuator and barrier service staff, and

⋄⋄ the road-pricing service calculator staff.

• The external equipment are

⋄⋄ the GNSS satellites

⋄⋄ and the telecommunications equipment

◦◦ which enables communication between

◦◦ the GNSS satellite sand vehicles ,

◦◦ vehicles and the road-pricing calculator,

◦◦ toll-gates and the road-pricing calculator and

◦◦ the road-pricing calculator and vehicles (for billing),

⋄⋄ We defer expression of

◦◦ human user and

◦◦ external equipment requirements

till our treatment of relevant functional requirements
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7.1.2.4. Functional Requirements

Definition 25 . Functional Requirements: By functional re-
quirements we understand precise prescriptions of

• the endurants

• and perdurants

of the system components
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• There are, as we see it, three kinds of requirements:

⋄⋄ domain requirements,

⋄⋄ interface requirements and

⋄⋄ machine requirements
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•Domain requirements are those requirements which can be ex-
pressed sôlely using technical terms of the domain .

• Interface requirements are those requirements which can be ex-
pressed only using technical terms of both the domain and the ma-
chine .

•Machine requirements are those requirements which can be ex-
pressed sôlely using technical terms of the machine .
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7.2. Domain Requirements

Definition 26 . Domain Requirements Prescription: A do-
main requirements prescription

• is that subset of the requirements prescription

• which can be expressed sôlely using terms from the domain de-
scription

• To determine a relevant subset all we need is collaboration with
requirements stake-holders.
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• Experimental evidence,

⋄⋄ in the form of example developments

◦◦ of requirements prescriptions

◦◦ from domain descriptions,

appears to show

⋄⋄ that one can formulate techniques for such developments

⋄⋄ around a few domain description to requirements prescription op-
erations.

⋄⋄ We suggest these:

◦◦ projection,

◦◦ instantiation,

◦◦ determination,

◦◦ extension,

◦◦ fitting

and, perhaps, other domain description to requirements prescrip-
tion operations.
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7.2.1. Domain Projection

Definition 27 . Domain Projection: By a domain projection
we mean

• a subset of the domain description,

• one which leaves out all those

⋄⋄ endurants:

◦◦ parts,

◦◦ materials and

◦◦ components,

as well as

⋄⋄ perdurants:

◦◦ functions,

◦◦ events and

◦◦ behaviours

that the stake-holders do not wish represented by the machine.

• The resulting document is a partial domain requirements prescrip-
tion
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• In determining an appropriate subset

⋄⋄ the requirements engineer must secure

⋄⋄ that the final prescription

⋄⋄ is complete and consistent — that is,

◦◦ that there are no “dangling references”,

◦◦ i.e., that all entities that are referred to

◦◦ are all properly defined.
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7.2.1.1. Domain Projection — Narrative

• We now start on a series of examples

• that illustrate domain requirements development.

Example 69 . Domain Requirements. Projection A Narrative Sketch:

• We require that the Road-pricing IT, computing & communications system shall
embody the following domain entities, in one form or another:

⋄⋄ the net,

◦◦ its links and hubs,

◦◦ and their properties
(unique identifiers, mereologies and attributes),

⋄⋄ the vehicles, as endurants,

◦◦ as endurants,

◦◦ and the general vehicle behaviour, i.e., the vehicle signature.
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• To formalise this we copy the domain description, ∆∆,

• From that domain description we remove all mention of

⋄⋄ the link insertion and removal functions,

⋄⋄ the link disappearance event,

⋄⋄ the vehicle behaviour, and

⋄⋄ the monitor

• to obtain the ∆P version of the domain requirements prescription.25

25Restrictions of the net to the toll road nets, hinted at earlier, will follow in the next
domain requirements steps.
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7.2.1.2. Domain Projection — Formalisation

• The requirements prescription hinges, crucially,

⋄⋄ not only on a systematic narrative of all the

◦◦ projected,

◦◦ instantiated,

◦◦ determinated,

◦◦ extended and

◦◦ fitted

specifications,

⋄⋄ but also on their formalisation.

• In the series of domain projection examples following below
we, regretfully, omit the narrative texts.

⋄⋄ In bringing the formal texts
we keep the item numbering from Sect. 2.,

⋄⋄ where you can find the associated narrative texts.
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Example 70 . Domain Requirements. Projection Root Sorts:

type
112. ∆P

112a.. NP

112b.. FP
value
112a.. obs part NP : ∆P→NP

112b.. obs part FP : ∆P→FP
type
113a.. HAP

113b.. LAP

value
113a.. obs part HA: NP → HA
113b.. obs part LA: NP → LA
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Example 71 . Domain Requirements. Projection Sub-domain Sorts and
Types:

type
114. HP , HSP = HP-set
115. LP , LSP = LP-set
116. VP , VSP = VP-set
value
114. obs part HSP : HAP → HSP
115. obs part LSP : LAP → LSP
116. obs part VSP : FP → VSP
117a.. links: ∆P → L-set
117a.. links(δP) ≡ obs part LSR(obs part LAR(δR))
117b.. hubs: ∆P → H-set
117b.. hubs(δP) ≡ obs part HSP(obs part HAP(δP))
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Example 72 . Domain Requirements. Projection Unique Identifications:

type
118a.. HI, LI, VI, MI
value
118c.. uid HI: HP → HI
118c.. uid LI: LP → LI
118c.. uid VI: VP → VI
118c.. uid MI: MP → MI
axiom
118b.. HI

⋂
LI=Ø, HI

⋂
VI=Ø, HI

⋂
MI=Ø,

118b.. LI
⋂
VI=Ø, LI

⋂
MI=Ø, VI

⋂
MI=Ø
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Example 73 . Domain Requirements. Projection Road Net Mereology:

value

120. obs mereo HP : HP → LI-set

121. obs mereo LP : LP → HI-set

121. axiom ∀ l:LP • cardobs mereo LP(l)=2

122. obs mereo VP : VP → MI

123. obs mereo MP : MP → VI-set

axiom

124. ∀ δP :∆P , hs:HS•hs=hubs(δ), ls:LS•ls=links(δP) ⇒

124. ∀ h:HP •h ∈ hs ⇒

124. obs mereo HP(h)⊆xtr his(δP) ∧

125. ∀ l:LP •l ∈ ls •

124. obs mereo LP(l)⊆xtr lis(δP) ∧

126a.. let f:FP •f=obs part FP(δP) ⇒

126a.. vs:VSP •vs=obs part VSP(f) in

126a.. ∀ v:VP •v ∈ vs ⇒

126a.. uid VP(v) ∈ obs mereo MP(m) ∧

126b.. obs mereo MP(m)

126b.. = {uid VP(v)|v:V•v ∈ vs}

126b.. end
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Example 74 . Domain Requirements. Projection Attributes of Hubs:

type
127a.. HΣP = (LI×LI)-sett
127b.. HΩP = HΣP-set
value
127a.. attr HΣP : HP → HΣP

127b.. attr HΩP : HP → HΩP

type
129. HGCL
value
129. attr HGCL: H → HGCL
axiom
128. ∀ δP :∆P ,
128. let hs = hubs(δP) in
128. ∀ h:HP • h ∈ hs •

128a.. xtr lis(h)⊆xtr lis(δP)
128b.. ∧ attr ΣP(h) ∈ attr ΩP(h)
128. end
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Example 75 . Domain Requirements. Projection Attributes of Links:

type
131. LEN
132. LGCL
133a.. LΣP = (HI×HI)-set
133b.. LΩP = LΣP-set
value
131. attr LEN: LP → LEN
132. attr LGCL: L P→ LGCL
133a.. attr LΣP : LP → LΣP

133b.. attr LΩP : LP → LΩP

axiom
133a..− 133b. on Slide 324.
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Example 76 . Domain Requirements. Projection Behaviour:
Global Values

value
146. δP :∆P ,
147. n:NP = obs part NP(δP),
147. ls:LP-set = links(δP),
147. hs:HP-set = hubs(δP),
147. lis:LI-set = xtr lis(δP),
147. his:HI-set = xtr his(δP)

Behaviour Signatures

value
153. trsP : Unit → Unit
154. vehP : VI×MI×ATTR → ... Unit

The System Behaviour

value
156a.. trsP()=‖{vehP(uid VI(v),obs mereo V(v),attr ATTRS(v)) | v:VP •v ∈ vs}
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7.2.1.3. A Projection Operator

• Domain projection thus take a domain description, D, and yields a
projected requirements prescription, ,RP .

• ⋄⋄ type projection: D → RP .

• Semantically

⋄⋄ D denotes a possibly infinite set of meanings, say D and

⋄⋄ RP denotes a possibly infinite set of meanings, say RP,

⋄⋄ such that some relation RP⊑D is satisfied.
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7.2.2. Domain Instantiation

Definition 28 . Instantiation: By domain instantiation we
mean

• a refinement of the partial domain requirements prescription,

• resulting from the projection step,

• in which the refinements aim at rendering the

⋄⋄ endurants:

◦◦ parts,

◦◦ materials and

◦◦ components,

as well as the

⋄⋄ perdurants:

◦◦ actions,

◦◦ events and

◦◦ behaviours

of the domain requirements prescription

•more concrete, more specific
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• Refinement of endurants can be expressed

⋄⋄ either in the form of concrete types,

⋄⋄ or of further “delineating” axioms over sorts,

⋄⋄ or of a combination of concretisation and axioms.

• We shall exemplify the third possibility.

• Examples 77–78 express requirements that the road net on which the
road-pricing system is to be based must satisfy.
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7.2.2.1. Domain Instantiation — Narrative

Example 77 . Domain Requirements. Instantiation Road Net, Narra-
tive:

• We now require that there is, as before, a road net, nI:NI,
which can be understood as consisting of two, “connected sub-nets”.

⋄⋄ A toll-road net, trnI :TRNI , cf. Fig. 3 on the facing slide,

⋄⋄ and an ordinary road net, n′∆.

⋄⋄ The two are connected as follows:

◦◦ The toll-road net, trnI , borders some toll-road plazas,
in Fig. 3 on the next slide shown by white filled circles (i.e., hubs).

◦◦ These toll-road plaza hubs are proper hubs of the ‘ordinary’ road net, n′∆.
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timtim−1tijti3ti1 ti2

trn

tp3 tpj

... ... ...... ......

tpm−1 tpmtp1 tp2

on

toll−road intersection hub link

exitentry

Figure 3: A simple, linear toll-road net
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164 The instantiated domain, δI :∆I has just the net, nI :NI being instan-
tiated.

165 The road net consists of two “sub-nets”

a. an “ordinary” road net, n′∆:N
′
∆ and

b. a toll-road net proper, trnI :TRNI —

timtim−1tijti3ti1 ti2

trn

tp3 tpj

... ... ...... ......

tpm−1 tpmtp1 tp2

on

toll−road intersection hub link

exitentry

Figure 4: The Instantiated Road Net
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c. “connected” by an interface hil:HIL:

i That interface consists of a number of toll-road plazas (i.e.,
hubs), modeled as a list of hub identifiers, hil:HI∗.

ii The toll-road plaza interface to the toll-road net, trn:TRNI
26,

has each plaza, hil[i], connected to a pair of toll-road links: an
entry and an exit link: (le:L, lx:L).

iii The toll-road plaza interface to the ‘ordinary’ net, n′∆:N
′
∆, has

each plaza, i.e., the hub designated by the hub identifier hil[i],
connected to one or more ordinary net links, {li1, li2, · · · , liℓ}.

timtim−1tijti3ti1 ti2

trn

tp3 tpj

... ... ...... ......

tpm−1 tpmtp1 tp2

on

toll−road intersection hub link

exitentry

Figure 5: The Instantiated Road Net

26We (sometimes) omit the subscript I when it should be clear from the context what we mean.
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165b. The toll-road net, trn:TRNI , consists of three collections (modeled
as lists) of links and hubs:

i a list of pairs of toll-road entry/exit links: 〈(le1, lx1), · · · , (leℓ, lxℓ)〉,

ii a list of toll-road intersection hubs: 〈hi1, hi2, · · · , hiℓ〉, and

iii a list of pairs of main toll-road (“up” and “down”) links: 〈(mli1u,-
mli1d), (mi2u,mi2d

), · · · , (miℓu
,miℓd

)〉.

d. The three lists have commensurate lengths.

timtim−1tijti3ti1 ti2

trn

tp3 tpj

... ... ...... ......

tpm−1 tpmtp1 tp2

on

toll−road intersection hub link

exitentry

Figure 6: The Instantiated Road Net

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29 400 Domain Science & Engineering



401

7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.2. Domain Instantiation — Narrative

7.2.2.2. Domain Instantiation — Formalisation

Example 78 . Domain Requirements. Instantiation Road Net, Formal
Types:

type

164 ∆I

165 NI = N′
∆ × HIL × TRN

165a. N′
∆

165b. TRNI = (L×L)∗ × H∗ × (L×L)∗

165c. HIL = HI∗

axiom

165d. ∀ nI :NI •

165d. let (n∆,hil,(exll,hl,lll)) = nI in

165d. len hil = len exll = len hl = len lll + 1

165d. end

[Lecturer explains N′
∆]

timtim−1tijti3ti1 ti2

trn

tp3 tpj

... ... ...... ......

tpm−1 tpmtp1 tp2

on

toll−road intersection hub link

exitentry

Figure 7: The Instantiated Road Net
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7.2.2.3. Domain Instantiation — Formalisation: Well-formedness

Example 79 . Domain Requirements. Instantiation Road Net, Well-
formedness:

• The partial concretisation of the net sorts, N, into NR1
requires some well-formedness

conditions to be satisfied.

166 The toll-road intersection hubs must all have distinct hub identifiers.

value
166. wf dist toll road isect hub ids: H∗→Bool
166. wf dist toll road isect hub ids(hl) ≡
166. len hl = card xtr his(hl)

167 The toll-road ‘up’ and ‘down’ links must all have distinct link identifiers.

value
167. wf dist toll road u d link ids: (L×L)∗→Bool
167. wf dist toll road u d link ids(lll) ≡
167. 2 × len lll = card xtr lis(lll)
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168 The toll-road entry/exit links must all have distinct link identifiers.

value
168. wf dist e x link ids: (L×L)∗→Bool
168. wf dist e x link ids(exll) ≡
168. 2 × len exll = card xtr lis(exll)

169 Proper net links must not designate toll-road intersection hubs.

value
169. wf isoltd toll road isect hubs: HI∗×H∗→NI→Bool
169. wf isoltd toll road isect hubs(hil,hl)(nI) ≡
169. let ls=xtr links(nI) in
169. let his = ∪ {obs mereo L(l)|l:L•l ∈ ls} in
169. his ∩ xtr his(hl) = {} end end
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170 The plaza hub identifiers must designate hubs of the ‘ordinary’ net.

value
170. wf p hubs pt of ord net: HI∗→N′

∆→Bool
170. wf p hubs pt of ord net(hil)(n’∆) ≡
170. elems hil ⊆ xtr his(n′∆)

171 The plaza hub mereologies must each,

a. besides identifying at least one hub of the ordinary net,

b. also identify the two entry/exit links with which they are supposed to be con-
nected.

value

171. wf p hub interf: N′
∆→Bool

171. wf p hub interf(no,hil,(exll, , )) ≡

171. ∀ i:Nat • i ∈ inds exll ⇒

171. let h = get H(hil(i))(n′∆) in

171. let lis = obs mereo H(h) in

171. let lis′ = lis \ xtr lis(n′) in

171. lis′ = xtr lis(exll(i)) end end end
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172 The mereology of each toll-road intersection hub must identify

a. the entry/exit links

b. and exactly the toll-road ‘up’ and ‘down’ links

c. with which they are supposed to be connected.

value

172. wf toll road isect hub iface: NI→Bool

172. wf toll road isect hub iface( , ,(exll,hl,lll)) ≡

172. ∀ i:Nat • i ∈ inds hl ⇒

172. obs mereo H(hl(i)) =

172a.. xtr lis(exll(i)) ∪

172. case i of

172b.. 1 → xtr lis(lll(1)),

172b.. len hl → xtr lis(lll(len hl−1))

172b.. → xtr lis(lll(i)) ∪ xtr lis(lll(i−1))

172. end
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173 The mereology of the entry/exit links must identify exactly the

a. interface hubs and the

b. toll-road intersection hubs

c. with which they are supposed to be connected.

value
173. wf exll: (L×L)∗×HI∗×H∗→Bool
173. wf exll(exll,hil,hl) ≡
173. ∀ i:Nat • i ∈ len exll
173. let (hi,(el,xl),h) = (hil(i),exll(i),hl(i)) in
173. obs mereo L(el) = obs mereo L(xl)
173. = {hi} ∪ {uid H(h)} end
173. pre: len eell = len hil = len hl
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7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.3. Domain Instantiation — Formalisation: Well-formedness

174 The mereology of the toll-road ‘up’ and ‘down’ links must

a. identify exactly the toll-road intersection hubs

b. with which they are supposed to be connected.

value
174. wf u d links: (L×L)∗×H∗→Bool
174. wf u d links(lll,hl) ≡
174. ∀ i:Nat • i ∈ inds lll ⇒
174. let (ul,dl) = lll(i) in
174. obs mereo L(ul) = obs mereo L(dl) =
174a.. uid H(hl(i)) ∪ uid H(hl(i+1)) end
174. pre: len lll = len hl+1
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7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.3. Domain Instantiation — Formalisation: Well-formedness

• We have used additional auxiliary functions:

value
xtr his: H∗→HI-set
xtr his(hl) ≡ {uid HI(h)|h:H•h ∈ elems hl}
xtr lis: (L×L)→LI-set
xtr lis(l′,l′′) ≡ {uid LI(l′)}∪{uid LI(l′′)}
xtr lis: (L×L)∗− LI-set
xtr lis(lll) ≡
∪{xtr lis(l′,l′′)|(l′,l′′):(L×L)•(l′,l′′)∈ elems lll}
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Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.3. Domain Instantiation — Formalisation: Well-formedness 2.2.3.1. Summary Well-formedness Predicate

7.2.2.3.1 Summary Well-formedness Predicate

175 The well-formedness of instantiated nets is now the conjunction of the individual
well-formedness predicates above.

value
175. wf instantiated net: NI → Bool
175. wf instantiated net(n′∆,hil,(exll,hl,lll))
166. wf dist toll road isect hub ids(hl)
167. ∧ wf dist toll road u d link ids(lll)
168. ∧ wf dist e e link ids(exll)
169. ∧ wf isolated toll road isect hubs(hil,hl)(n′)
170. ∧ wf p hubs pt of ord net(hil)(n′)
171. ∧ wf p hub interf(n′∆,hil,(exll, , ))
172. ∧ wf toll road isect hub iface( , ,(exll,hl,lll))
173. ∧ wf exll(exll,hil,hl)
174. ∧ wf u d links(lll,hl)
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7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.4. Domain Instantiation — Formalisation: Well-formedness

7.2.2.4. Domain Instantiation — Abstraction

Example 80 . Domain Requirements. Instantiation Road Net, Abstrac-
tion:

• Domain instantiation has refined

⋄⋄ an abstract definition of net sorts, n∆:N∆,

⋄⋄ into a partially concrete definition of nets, nI :NI.

• We need to show the refinement relation:

⋄⋄ abstraction(nI) = n∆.
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7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.4. Domain Instantiation — Abstraction

value
176 abstraction: NI → N∆

177 abstraction(n′∆,hil,(exll,hl,lll)) ≡
178 let n∆:N∆

•

178 let hs = obs part HS∆(obs part HA∆(n
′
∆)),

178 ls = obs part LS∆(obs part LA∆(n
′
∆)),

178 ths = elems hl,
178 eells = xtr links(eell), llls = xtr links(lll) in
179 hs∪ths=obs part HS∆(obs part HA∆(n∆))
180 ∧ ls∪eells∪llls=obs part LS∆(obs part LA∆(n∆))
181 n∆ end end
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7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.4. Domain Instantiation — Abstraction

176 The abstraction function takes a concrete net, nI :NI , and yields an abstract net,
n∆:N∆.

177 The abstraction function doubly decomposes its argument into constituent lists
and sub-lists.

178 There is postulated an abstract net, n∆:N∆, such that

179 the hubs of the concrete net and toll-road equals those of the abstract net, and

180 the links of the concrete net and toll-road equals those of the abstract net.

181 And that abstract net, n∆:N∆, is postulated to be an abstraction of the concrete
net.
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7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.5. Domain Instantiation — Abstraction

7.2.2.5. An Instantiation Operator

• Domain instantiation take a requirements prescription, RP , and
yields a more concrete requirements prescription RI .

⋄⋄ type instantiation: RP → RI

• Semantically

⋄⋄ RP denotes a possibly infinite set of meanings, say RP,

⋄⋄ RI denotes a possibly infinite set of meanings, say RI and

⋄⋄ such that some relation RI⊑RP is satisfied.

A Prerequisite for Requirements Engineering 413 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



414

7. Requirements 2. Domain Requirements 2.3. Domain Instantiation

7.2.3. Domain Determination

Definition 29 . Determination: By domain determination we
mean

• a refinement of the partial domain requirements prescription,

• resulting from the instantiation step,

• in which the refinements aim at rendering the

⋄⋄ endurants:

◦◦ parts,

◦◦ materials and

◦◦ components, as well as the

⋄⋄ perdurants:

◦◦ functions,

◦◦ events and

◦◦ behaviours

of the partial domain requirements prescription

• less non-determinate, more determinate.
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7. Requirements 2. Domain Requirements 2.3. Domain Determination

• Determinations usually render these concepts less general.

⋄⋄ That is, the value space

◦◦ of endurants that are made more determinate

◦◦ is “smaller”, contains fewer values,

◦◦ as compared to the endurants
before determination has been “applied”.

7.2.3.1. Domain Determination: Example

• We show an example of ‘domain determination’.

⋄⋄ It is expressed sôlely in terms of

⋄⋄ axioms over the concrete toll-road net type.
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7. Requirements 2. Domain Requirements 2.3. Domain Determination 2.3.1. Domain Determination: Example

Example 81 . Domain Requirements. Determination Toll-roads: 7.2.3.1.1

• We focus only on the toll-road net.

• We single out only two ’determinations’:

182 The entry/exit and toll-road links

a. are always all one way links,

b. as indicated by the arrows of Fig. 2,

c. such that each pair allows traffic in opposite directions.
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7. Requirements 2. Domain Requirements 2.3. Domain Determination 2.3.1. Domain Determination: Example 2.3.1.1. All Toll-road Links are One-way Links

value
182. opposite traffics: (L×L)∗ × (L×L)∗ → Bool
182. opposite traffics(exll,lll) ≡
182. ∀ (lt,lf):(L×L) • (lt,lf) ∈ elems exll̂lll ⇒
182a.. let (ltσ,lfσ) = (attr LΣ(lt),attr LΣ(lf)) in
182a.′. attr LΩ(lt)={ltσ}∧attr LΩ(ft)={ftσ}
182a.′′. ∧ card ltσ = 1 = card lfσ
182. ∧ let ({(hi,hi′)},{(hi′′,hi′′′)}) = (ltσ,lfσ) in
182c.. hi=hi′′′ ∧ hi′=hi′′

182. end end
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7. Requirements 2. Domain Requirements 2.3. Domain Determination 2.3.1. Domain Determination: Example 2.3.1.1. All Toll-road Links are One-way Links

7.2.3.1.2 All Toll-road Hubs are Free-flow

183 The hub state spaces are singleton sets of the toll-road hub states which always
allow exactly these (and only these) crossings:

a. from entry links back to the paired exit links,

b. from entry links to emanating toll-road links,

c. from incident toll-road links to exit links, and

d. from incident toll-road link to emanating toll-road links.

value

183. free flow toll road hubs: (L×L)∗×(L×L)∗→Bool

183. free flow toll road hubs(exl,ll) ≡

183. ∀ i:Nat•i ∈ inds hl ⇒

183. attr HΣ(hl(i)) =

183a.. hσ ex ls(exl(i))

183b.. ∪ hσ et ls(exl(i),(i,ll))

183c.. ∪ hσ tx ls(exl(i),(i,ll))

183d.. ∪ hσ tt ls(i,ll)
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7. Requirements 2. Domain Requirements 2.3. Domain Determination 2.3.1. Domain Determination: Example 2.3.1.2. All Toll-road Hubs are Free-flow

183a.: from entry links back to the paired exit links:

value
183a.. hσ ex ls: (L×L)→LΣ
183a.. hσ ex ls(e,x) ≡ {(uid LI(e),uid LI(x))}
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7. Requirements 2. Domain Requirements 2.3. Domain Determination 2.3.1. Domain Determination: Example 2.3.1.2. All Toll-road Hubs are Free-flow

183b.: from entry links to emanating toll-road links:

value
183b.. hσ et ls: (L×L)×(Nat×(em:L×in:L)∗)→LΣ
183b.. hσ et ls((e, ),(i,ll)) ≡
183b.. case i of
183b.. 2 → {(uid LI(e),uid LI(em(ll(1))))},
183b.. len ll+1 → {(uid LI(e),uid LI(em(ll(len ll))))},
183b.. → {(uid LI(e),uid LI(em(ll(i−1)))),
183b.. (uid LI(e),uid LI(em(ll(i))))}
183b.. end

• The em and in in the toll-road link list (em:L×in:L)∗

designate selectors for emanating, respectively incident links.
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7. Requirements 2. Domain Requirements 2.3. Domain Determination 2.3.1. Domain Determination: Example 2.3.1.2. All Toll-road Hubs are Free-flow

183c.: from incident toll-road links to exit links:

value
183c.. hσ tx ls: (L×L)×(Nat×(em:L×in:L)∗)→LΣ
183c.. hσ tx ls(( ,x),(i,ll)) ≡
183c.. case i of
183c.. 2 → {(uid LI(in(ll(1))),uid LI(x))},
183c.. len ll+1 → {(uid LI(in(ll(len ll))),uid LI(x))},
183c.. → {(uid LI(in(ll(i−1))),uid LI(x)),
183c.. (uid LI(in(ll(i))),uid LI(x))}
183c.. end
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7. Requirements 2. Domain Requirements 2.3. Domain Determination 2.3.1. Domain Determination: Example 2.3.1.2. All Toll-road Hubs are Free-flow

183d.: from incident toll-road link to emanating toll-road links:

value
183d.. hσ tt ls: Nat×(em:L×in:L)∗→LΣ
183d.. hσ tt ls(i,ll) ≡
183d.. case i of
183d.. 2 → {(uid LI(in(ll(1))),uid LI(em(ll(1))))},
183d.. len ll+1 → {(uid LI(in(ll(len ll))),uid LI(em(ll(len ll))))},
183d.. → {(uid LI(in(ll(i−1))),uid LI(em(ll(i−1)))),
183d.. (uid LI(in(ll(i))),uid LI(em(ll(i))))}
183d.. end

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29 422 Domain Science & Engineering



423

7. Requirements 2. Domain Requirements 2.3. Domain Determination 2.3.2. Domain Determination: Example

7.2.3.2. A Domain Determination Operator

• Domain determination take a requirements description, RI , and
yields a more deterministic requirements prescription, RD.

⋄⋄ type instantiation: RI → RD

• Semantically

⋄⋄ RI denotes a possibly infinite set of meanings, say RI,

⋄⋄ RD denotes a possibly infinite set of meanings, say RD and

⋄⋄ such that some relation RI⊑RD is satisfied.
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424 7. Requirements 2. Domain Requirements 2.4. Domain Determination

7.2.4. Domain Extension

Definition 30 . Extension: By domain extension we understand the

• introduction of endurants and perdurants that were not feasible in the original
domain,

• but for which, with computing and communication,

• and with new, emerging technologies,

• for example, sensors, actuators and satellites,

• there is the possibility of feasible implementations,

• hence requirement,

• that what is introduced becomes27 part of the unfolding requirements prescrip-

tion

27become or becomes ?
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1.

7.2.4.1. The Core Requirements Example: Domain Extension

Example 82 . Domain Requirements. Extension Vehicles: Parts, Prop-
erties and Channels:

184 There is a domain, δE :∆E , which contains

185 a fleet, fE :FE ,

186 of a set, vsE :VSE , of

187 extended vehicles, vE :VE — their extension amounting to

a. a dynamic, active and biddable attribute28, whose value, ti-gpos:TiGpos, at any
time, reflects that vehicle’s time-stamped global positions

b. The vehicle’s GNSS receiver calculates its local position, lpos:LPOS, based on
these signals.

c. Vehicles access these external attributes via the external attribute channel, attr TiGPos ch,
cf. Item 100 on Slide 273.

d. The vehicle can, on its own volition, offer the timed local position, ti-lpos:TiLPos
to the price calculator, cE :CE along a vehicles-to-calculator channel, v c ch.

28See Sect. Slide 187.
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

type

184. ∆E

185. FE
186. VSE = VE-set

187. VE

187a.. TiGPos = T × GPOS

187a.. TiLPos = T × LPOS

187b.. GPOS, LPOS

value

185. obs part FE : ∆E → FE
186. obs part VSE : FE → VSE
186. vs:obs part VSE(FE)

channel

187c.. {attr TiGPos ch[ vi ]|viLVI•vi ∈ xtr VIs(vs)}: TiGPos

187d.. {v c ch[ vi,ci ]

187d.. | vi:VI,ci:CI•vi∈vis∧ci=uid C(c)}:(VI×TiLPos)

value

187a.. attr TiGPos ch[ vi ]?

187b.. loc pos: GPOS → LPOS

• where vis:VI-set is the set unique vehicle identifiers of all vehicles of the requirements domain fleet,

f:FRE
.
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

We define two auxiliary functions,

188 xtr vs, which given a domain, or a fleet, extracts its set of vehicles,
and

189 xtr vis which given a set of vehicles generates their unique identifiers.

value
188. xtr vs: (∆E |FE |VSE) → VE-set
188. xtr vs(arg) ≡
188. is ∆E(arg) → obs part VSE(obs part FE(arg)),
188. is FE(arg) → obs part VSE(arg),
188. is VSE(arg) → arg
189. xtr vis: (∆E |FE |VSE) → VI-set
189. xtr vis(arg) ≡ {uid VI(v)|v ∈ xtr vs(arg)}
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 83 . Domain Requirements. Extension Toll-road Net: Parts,
Properties and Channels:

• We extend the domain with toll-gates for vehicles
entering and exiting the toll-road entry and exit links.

• Figure 8 illustrates the idea of gates.

exit sensorentry sensor

toll barrier

Vehicle

Vehicle Identification

linklink link link

Figure 8: A toll plaza gate
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

• Figure 8 on the facing slide is intended to illustrate a vehicle entering (or exiting)
a toll-road entry link.

⋄⋄ The toll-gate is equipped with three sensors:
an entry sensor, a vehicle identification sensor and an exit sensor.

⋄⋄ The entry sensor serves to prepare
the vehicle identification sensor.

⋄⋄ The exit sensor serves to prepare
the gate for closing when a vehicle has passed.

⋄⋄ The vehicle identification sensor identifies the vehicle and “delivers” a pair: the
current time and the vehicle identifier.

⋄⋄ Once the vehicle identification sensor has identified a vehicle the gate opens.
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

190 There is the domain, δ:∆E ,

191 which contains the extended net, n:NE , with the net extension amounting to the
toll-road net, TRNE ,

192 that is, the instantiated toll-road net, trn:TRNI , is extended, into trn:TRNE , with
entry, eg:EG, and exit, xg:XG, toll-gates.

From entry- and exit-gates we can observe

a. their unique identifier and their mereology: being paired with the entry-, respec-
tively exit link and the calculator (by their unique identifiers); further

b. a pair of gate enter and leave sensors modeled as external attribute channels,
(ges:ES,gls:XS), and

c. a time-stamped vehicle identity sensor modeled as external attribute channels.
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

type
190 ∆E

191 NE

192 TRNE = (EG×XG)∗ × TRNI

192a. GI
value
190 obs part NE : ∆E → NE

191 obs part TRNE : NE → TRNE

192a. uid G: (EG|XG) → GI
192a. obs mereo G: (EG|XG) → (LI×CI)
channel
192b. {attr enter ch[ gi ]|gi:GI•...} ′′enter′′

192b. {attr leave ch[ gi ]|gi:GI•...} ′′leave′′

192c. {attr passing ch[ gi ]|gi:GI•...} TIVI
type
192c. TIVI = T × VI
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

We define some auxiliary functions over toll-road nets, trn:TRNE :

193 xtr eGℓ extracts the ℓist of entry gates,

194 xtr xGℓ extracts the ℓist of exit gates,

195 xtr eGIds extracts the set of entry gate identifiers,

196 xtr xGIds extracts the set of exit gate identifiers,

197 xtr Gs extracts the set of all gates, and

198 xtr GIds extracts the set of all gate identifiers.
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

value
193 xtr eGℓ: TRNE → EG∗

193 xtr eGℓ(pgl, ) ≡
193 {eg|(eg,xg):(EG,XG)•(eg,xg)∈ elems pgl}
194 xtr xGℓ: TRNE → XG∗

194 xtr xGℓ(pgl, ) ≡
194 {xg|(eg,xg):(EG,XG)•(eg,xg)∈ elems pgl}
195 xtr eGIds: TRNE → GI-set
195 xtr eGIds(pgl, ) ≡
195 {uid GI(g)|g:EG•g ∈ xtr eGs(pgl, )}
196 xtr xGIds: TRNE → GI-set
196 xtr xGIds(pgl, ) ≡
196 {uid GI(g)|g:EG•g ∈ xtr xGs(pgl, )}
197 xtr Gs: TRNE → G-set
197 xtr Gs(pgl, ) ≡
197 xtr eGs(pgl, ) ∪ xtr xGs(pgl, )
198 xtr GIds: TRNE → GI-set
198 xtr GIds(pgl, ) ≡
198 xtr eGIds(pgl, ) ∪ xtr xGIds(pgl, )
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199 A well-formedness condition expresses

a. that there are as many entry end exit gate pairs as there are toll-
plazas,

b. that all gates are uniquely identified, and

c. that each entry [exit] gate is paired with an entry [exit] link and
has that link’s unique identifier as one element of its mereology,
the other elements being the calculator identifier and the vehicle
identifiers.

The well-formedness relies on awareness of

200 the unique identifier, ci:CI, of the road pricing calculator, c:C, and

201 the unique identifiers, vis:VI-set, of the fleet vehicles.
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

value
200 ci:CI
201 vis:VI-set
axiom
199 ∀ n:NR3

, trn:TRNR3
•

199 let (exgl,(exl,hl,lll)) = obs part TRNR3
(n) in

199a. len exgl = len exl = len hl = len lll + 1
199b. ∧ card xtr GIds(exgl) = 2 ∗ len exgl
199c. ∧ ∀ i:Nat•i ∈ inds exgl•

199c. let ((eg,xg),(el,xl)) = (exgl(i),exl(i)) in
199c. obs mereo G(eg) = (uid U(el),ci,vis)
199c. ∧ obs mereo G(xg) = (uid U(xl),ci,vis) end end
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 84 . Domain Requirements. Extension Parts, Properties and
Channels:
202 The road pricing calculator repeatedly receives

a. information, (vi,(τ ,pos)):VITIPOS,

b. sent by vehicles as to their identify and time-stamped position

c. over a channel, v c ch indexed by the c:CE and the vehicle identities.

203 The road pricing calculator has a number of attributes:

a. a traffic map, trm:TRM, which, for each vehicle inside the toll-road net, records a chronologically

ordered list of each vehicle’s timed position, (τ ,vp), and

b. a (total) road location function, vplf:VPLF.

i The vehicle position location function, vplf:VPLF, is subject to another function, locate VPos,

which, given a local position, lpos:LPos, yields the vehicle position designated by the GNSS-

provided position, or yields the response that the provided position is off the toll-road net.

ii This result is used by the road-pricing calculator to conditionally

A either update the traffic map, trm:TRM, recording also the relevant time,

B or reset that vehicle’s traffic recording while send a bill for the just completed journey.
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type
202a. VITIPos = VI × (T × LPos)
value
202a. ... v c ch[ ci,vi ] ? ...

202b. ... v c ch[ ci,vi ] ! (vi,(τ ,p)) ...
channel
202c. {v c ch[ ci,vi ]|vi:VI•vi ∈ vis}:VITIPos
type
203a. TRM = VI →m (T × VPos)∗

203b. VPLF = LPos → VPos | ′′off_TRN′′

value
203(b.)i locate LH: LPos×RLF → (VPos|′′off_TRN′′)
203(b.)iiA update TRM: VI×(T×VPos)→TRM→TRM
203(b.)iiB reset TRM: VI→TRM→TRM
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 85 . Domain Requirements. Extension Main Sorts:

204 The main sorts of the road-pricing domain, ∆E , are

a. the net, projected, instantiated (to include the specific toll-road net), made more
determinate and now extended, NE , with toll-gates;

b. the fleet, FE ,

c. of sets, VS, of extended vehicles, VE ;

d. the extended toll-road net, TRNE , extending the instantiated toll-road net,
TRNI , with toll-gates; and

e. the road pricing calculator, CE .
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

type
204. ∆E
204a.. NE
204b.. FE
204c.. VSE = VE-set
204d.. TRNE = (EG×XG)∗ × TRNI
204e.. CE
value
204a.. obs part NE : ∆ → NE
204b.. obs part FE : ∆ → FE
204c.. obs part VSE : ∆ → VSE
204d.. obs part TRNE : NE → TRNE
204e.. obs part CE : ∆ → CE
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 86 . Domain Requirements. Extension Global Values:

• We exemplify a road-pricing system behaviour, in Example 87 on Slide 442,

• based on the following global values.

205 There is a given domain, δE :∆E ;

206 there is the net, nE :NE , of that domain;

207 there is toll-road net, trnE :TRNE , of that net;

208 there is a set, egsE :EGE-set, of entry gates;

209 there is a set, xgsE :XGE-set, of exit gates;

210 there is a set, gisE :GIE-set, ofgate identifiers;

211 there is a set, vsE :VE-set, of vehicles;

212 there is a set, visE :VIE-set, of vehicle identifiers;

213 there is the road-pricing calculator, cE :CE and

214 there is its unique identifier, ciE :CI.
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

value
205. δE :∆E
206. nE :NE = obs part NE(δE)
207. trnE :TRNE = obs part TRNE(nE)
208. egsE :EG-set = xtr egs(trnE)
209. xgsE :XG-set = xtr xgs(trnE)
210. gisE :XG-set = xtr gis(trnE)
211. vsE :VE-set = obs part VS(obs part FE(δE))
212. visE :VI-set = {uid VI(vE)|vE :VE •vE ∈ vsE}
213. cE :CE = obs part CE(δE)
214. ciE :CIE = uid CI(cE)
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 87 . Domain Requirements. Extension System Behaviour:

• We shall model the behaviour of the road-pricing system as follows:

⋄⋄ we shall only model behaviours related to atomic parts;

⋄⋄ we shall not model behaviours of hubs and links;

⋄⋄ thus we shall model only

◦◦ the set of behaviours of vehicles, veh,

◦◦ the set of behaviours of toll-gates, gate, and

◦◦ the behaviour of the road-pricing calculator, calc.
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

215 The road-pricing system behaviour, sys, is expressed as

a. the parallel, ‖, (distributed) composition of the behaviours of all
vehicles, with the parallel composition of

b. the parallel (likewise distributed) composition of the behaviours of
all entry gates, with the parallel composition of

c. the parallel (likewise distributed) composition of the behaviours of
all exit gates, with the parallel composition of

d. the behaviour of the road-pricing calculator,
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

value
215. sys: Unit → Unit
215. sys() ≡
215a.. ‖ {veh(uid V(v),(ci,gis),UTiGPos)|v:V•v ∈ vsE}
215b.. ‖ ‖ {gate(′′Entry′′)(uid EG(eg),obs mereo G(eg),(Uenter,Upassing,Uleave))|eg:EG
215c.. ‖ ‖ {gate(′′Exit′′)(uid EG(xg),obs mereo G(xg),(Uenter,Upassing,Uleave))|xg:XG•xg
215d.. ‖ calc(ciE ,(visE ,gisE))(rlf)(trm)
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 88 . Domain Requirements. Extension Vehicle Behaviour:

216 Instead of moving around by explicitly expressed internal non-determinism29 vehicles
move around by unstated internal non-determinism and instead receive their current
position from the global positioning subsystem.

a. At each moment the vehicle receives its time-stamped local position, tilpos:TiLPos,

b. which it then proceeds to communicate, with its vehicle identification, (vi,tilpos),
to the road pricing subsystem —

c. whereupon it resumes its vehicle behaviour.

29We refer to Items 157b., 157c. on Slide 343 and 158b., 158(c.)ii, 159 on Slide 345

A Prerequisite for Requirements Engineering 445 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



446

7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

value
216. veh: vi:VI×(ci:CI×gis:GI-set)×UTiGPos →
216. out v c ch[ ci,vi ] Unit
216. veh(vi,(ci,gis),attr TiGPos ch[ vi ]) ≡
216a.. let (τ ,gpos) = attr TiGPos ch[ vi ]? in
216a.. let lpos = loc pos(gpos) in
216b.. v c ch[ ci,vi ] ! (vi,(τ ,lpos)) ;
216c.. veh(vi,(ci,gis),attr TiGPos ch[ vi ]) end end
216. pre vi ∈ visE ∧ ci = ciE ∧ gis = gisE
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 89 . Domain Requirements. Extension Gate Behaviour:

• The entry and the exit gates have “vehicle enter”, “vehicle leave” and “vehicle time
and identification” sensors.

⋄⋄ The following assumption can now be made:

◦◦ during the time interval between

◦◦ a gate’s vehicle “enter” sensor having first sensed a vehicle entering that gate

◦◦ and that gate’s “leave” sensor having last sensed that vehicle leaving that
gate

◦◦ that gate’s “vehicle time and identification” sensor registers the time when
the vehicle is entering the gate and that vehicle’s unique identification.
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

• We sketch the toll-gate behaviour:

217 We parameterise the toll-gate behaviour as either an entry or an exit gate.

218 Toll-gates

a. inform the calculator of place (i.e., link) and time of entering and exiting of
identified vehicles

b. over an appropriate array of channels.

219 Toll-gates operate autonomously and cyclically.

a. The attr Enter event “triggers” the behaviour specified in formula line Item
219b.–219d..

b. The time-of-entry and the identity of the entering (or exiting) vehicle is sensed
via external attribute channel inputs.

c. Then the road pricing calculator is informed of time-of-entry and of vehicle vi
entering (or exiting) link li.

d. And finally, after that vehicle has left the entry or exit gate that toll-gate’s
behaviour is resumed.
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

• The toll-gate behaviour, gate:

type
217 EE = ”Enter” | ”Exit”
218a. GCM = EE × (T × VI × LI)
channel
218b. {g c ch[ uid GI(g),ci ]|g:G,ci:CI•g ∈ gates(trn)} GCM
value
219 gate: ee:EE×gi:GI×(ci:CI×VI-set×LI)×(Uenter×Upassing×Uleave) → out g c ch[ gi,ci
219 gate(ee,gi,(ci,vis,li),ea:(attr enter ch[ gi ],attr passing ch[ gi ],attr leave ch[ gi ])) ≡
219a. attr enter ch[ gi ] ? ;
219b. let (τ ,vi) = attr passing ch[ gi ] ? in assert vi ∈ vis
219c. g c ch[ gi,ci ] ! (ee,(τ ,(vi,li)));
219d. attr leave ch[ gi ] ?
219d. gate(ee)(gi,(ci,vis,li),ea)
219 end
219 pre ci = ciE ∧ vis = visE ∧ li ∈ lisE
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 90 . Domain Requirements. Extension Calculator Behaviour:

220 The road-pricing calculator alternates between (offering to accept communication
with)

a. either any vehicle

b. or any toll-gate.

220. calc: ci:CI×(vis:VI-set×gis:GI-set)→RLF→TRM→
220a.. in {v c ch[ ci,vi ]|vi:VI•vi ∈ vis},
220b.. {g c ch[ ci,gi ]|gi:GI•gi ∈ gis} Unit
220. calc(ci,(vis,gis))(rlf)(trm) ≡
220a.. react to vehicles(ci,(vis,gis))(rlf)(trm)
220. ⌈⌉⌊⌋
220b.. react to gates(ci,(vis,gis))(rlf)(trm)
220. pre ci = ciE ∧ vis = visE ∧ gis = gisE
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221 If the communication is from a vehicle inside the toll-road net

a. then its toll-road net position, vp, is found from the road location function, rlf,

b. and the calculator resumes its work with the traffic map, trm, suitable updated,

c. otherwise the calculator resumes its work with no changes.

220a.. react to vehicles(ci,(vis,gis))(rlf)(trm) ≡
220a.. let (vi,(τ ,lpos)) =
220a.. ⌈⌉⌊⌋{v c ch[ ci,vi ]|vi:VI•vi∈ vis} in
221. if vi ∈ dom trm
221a.. then let vp = rlf(lpos) in
221b.. calc(ci,(vis,gis))(rlf)(trm†[ vi7→trm̂〈(τ ,vp)〉 ]) end
221c.. else calc(ci,(vis,gis))(rlf)(trm) end end
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222 If the communication is from a gate,

a. then that gate is either an entry gate or an exit gate;

b. if it is an entry gate

c. then the calculator resumes its work with the vehicle (that passed
the entry gate) now recorded, afresh, in the traffic map, trm.

d. Else it is an exit gate and

e. the calculator concludes that the vehicle has ended its to-be-paid
for journey inside the toll-road net, and hence to be billed;

f. then the calculator resumes its work with the vehicle (that passed
the exit gate) now removed from the traffic map, trm.
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

220b.. react to gates(ci,(vis,gis))(rlf)(trm) ≡
220b.. let (ee,(τ ,(vi,li))) =
220b.. ⌈⌉⌊⌋{g c ch[ ci,gi ]|gi:GI•gi∈ gis} in
222a.. case ee of
222b.. ′′Enter′′ →
222c.. calc(ci,(vis,gis))(rlf)(trm∪[ vi 7→〈(τ ,(li,0))〉 ]),
222d.. ′′Exit′′ →
222e.. billing(vi,trm(vi)̂〈(τ ,(li,1))〉);
222f.. calc(ci,(vis,gis))(rlf)(trm\{vi}) end end

• • •

• We have made relevant external attributes explicit parameters of
their (corresponding part) processes.

• We refer to Sect. 1.3.7.
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7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.2. The Core Requirements Example: Domain Extension

7.2.4.2. A Domain Extension Operator

• Domain extension takes a (more-or-less) deterministic requirements
description, RD, and yields an extended requirements prescription,
RE , which extends the domain description, D, and, “at the same
time”, “extends” the requirements prescription, RD,

⋄⋄ type extension: RD → RE

• Semantically

⋄⋄ RD denotes a possibly infinite set of meanings, say RD, and

⋄⋄ RE denotes a possibly infinite set of meanings, say RE,

⋄⋄ but now the relation RE⊑RD is not necessarily satisfied —

⋄⋄ but instead some conservative extension relation RE⊒DD is satis-
fied.
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7. Requirements 2. Domain Requirements 2.5. Domain Extension

7.2.5. Requirements Fitting

• Often a domain being described

• “fits” onto, is “adjacent” to, “interacts” in some areas with,

• another domain:

⋄⋄ transportation with logistics,

⋄⋄ health-care with insurance,

⋄⋄ banking with securities trading and/or insurance,

⋄⋄ and so on.
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7. Requirements 2. Domain Requirements 2.5. Requirements Fitting

• The issue of requirements fitting arises

⋄⋄ when two or more software development projects

⋄⋄ are based on what appears to be the same domain.

• The problem then is

⋄⋄ to harmonise the two or more software development projects

⋄⋄ by harmonising, if not too late, their requirements developments.
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7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.1.

7.2.5.1. Some Definitions

• We thus assume

⋄⋄ that there are n domain requirements developments, dr1, dr2, . . . ,
drn, being considered, and

⋄⋄ that these pertain to the same domain — and can hence be as-
sumed covered by a same domain description.
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7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.1. Some Definitions

Definition 31 . Requirements Fitting:

• By requirements fitting we mean

⋄⋄ a harmonisation of n > 1 domain requirements

⋄⋄ that have overlapping (shared) not always consistent parts and

⋄⋄ which results in

◦◦ n partial domain requirements’, pdr1
, pdr2

, . . . , pdrn, and

◦◦ m shared domain requirements, sdr1
, sdr2

, . . . , sdrm,

◦◦ that “fit into” two or more of the partial domain require-
ments

• The above definition pertains to the result of ‘fitting’.

• The next definition pertains to the act, or process, of ‘fitting’.
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7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.1. Some Definitions

Definition 32 . Requirements Harmonisation:

• By requirements harmonisation we mean

⋄⋄ a number of alternative
and/or co-ordinated prescription actions,

⋄⋄ one set for each of the domain requirements actions:

◦◦ Projection,

◦◦ Instantiation,

◦◦ Determination and

◦◦ Extension.
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7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.1. Some Definitions

• They are – we assume n separate software product requirements:

⋄⋄ Projection:

◦◦ If the n product requirements
do not have the same projections,

◦◦ then identify a common projection which they all share,

◦◦ and refer to it is the common projection.

◦◦ Then develop, for each of the n product requirements,

◦◦ if required,

◦◦ a specific projection of the common one.

◦◦ Let there be m such specific projections, m ≤ n.
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7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.1. Some Definitions

⋄⋄ Instantiation:

◦◦ First instantiate the common projection,
if any instantiation is needed.

◦◦ Then for each of the m specific projections

◦◦ instantiate these, if required.

⋄⋄ Determination:

◦◦ Likewise, if required, “perform” “determination”
of the possibly instantiated common projection,

◦◦ and, similarly, if required,

◦◦ “perform” “determination” of the up to m

possibly instantiated projections.
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7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.1. Some Definitions

⋄⋄ Extension:

◦◦ Finally “perform extension” likewise:

◦◦ First, if required, of the common projection (etc.),

◦◦ then, if required, on the up m specific projections (etc.).

⋄⋄ These harmonization developments may possibly interact
and may need to be iterated

• By a partial domain requirements we mean a domain require-
ments which is short of (that is, is missing) some prescription parts:
text and formula

• By a shared domain requirements we mean a domain require-
ments
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7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.1. Some Definitions

• By requirements fitting m shared domain requirements texts,
sdrs, into n partial domain requirements we mean that

⋄⋄ there is for each partial domain requirements, pdri,

⋄⋄ an identified subset of sdrs (could be all of sdrs), ssdrsi,

⋄⋄ such that textually conjoining ssdrsi to pdri,

⋄⋄ i.e., ssdrsi ⊕ pdri

⋄⋄ can be claimed to yield the “original” dri,

⋄⋄ that is, M(ssdrsi ⊕ pdri) ⊆ M(dri),

⋄⋄ where M is a suitable meaning function over prescriptions
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7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.2. Some Definitions

7.2.5.2. Requirements Fitting Procedure — A Sketch

• Requirements fitting consists primarily of a pragmatically determined sequence of
analytic and synthetic (‘fitting’) steps.

⋄⋄ It is first decided which n domain requirements documents to fit.

⋄⋄ Then a ‘manual’ analysis is made of the selected, n domain requirements.

⋄⋄ During this analysis tentative shared domain requirements are identified.

⋄⋄ It is then decided which m shared domain requirements to single out.

⋄⋄ This decision results in a tentative construction of n partial domain require-
ments.

⋄⋄ An analysis is made of the tentative partial and shared domain requirements.

⋄⋄ A decision is then made

◦◦ whether to accept the resulting documents

◦◦ or to iterate the steps above.
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7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.3. Requirements Fitting Procedure — A Sketch

7.2.5.3. Requirements Fitting – An Example

Example 91 . Domain Requirements. Fitting A Sketch:

• We postulate two domain requirements:

⋄⋄ We have outlined a domain requirements development for software support for
a road-pricing system.

⋄⋄ We have earlier hinted at domain operations related to insertion of new and
removal of existing links and hubs.

• We can therefore postulate that there are two domain requirements developments,
both based on the transport domain:

• one, drtoll
, for a road-pricing system, and,

• another, drmaint.
, for a toll-road link and hub building and maintenance system

monitoring and controlling link and hub quality and for development.
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7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.3. Requirements Fitting – An Example

• The fitting procedure now identifies the shared awareness by both
drtoll

and drmaint.
of nets (N), hubs (H) and links (L).

⋄⋄ We conclude from this that we can single out a common require-
ments for software that manages net, hubs and links.

⋄⋄ Such software requirements basically amounts to requirements for
a database system.

⋄⋄ A suitable such system, say a relational database management sys-
tem, DBrel, may already be available with the customer.
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7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.3. Requirements Fitting – An Example

⋄⋄ In any case, where there before were two requirements (drtoll
, drmaint.

) there

are now four:

◦◦ d′rtoll
, a modification of drtoll

which omits the description sections pertaining

to the net;

◦◦ d′rmaint.
, a modification of drmaint.

which likewise omits the description sec-

tions pertaining to the net;

◦◦ drnet, which contains what was basically omitted in d′rtoll
and d′rmaint.

; and

◦◦ dr
db:i/f

(db:i/f for database interface) which prescribes a mapping between

type names of drnet and relation and attribute names of DBrel

• Much more can and should be said, but this suffices as an example
in a software engineering methodology paper.
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7. Requirements 2. Domain Requirements 2.6. Requirements Fitting

7.2.6. Domain Requirements Consolidation

• After projection, instantiation, determination, extension and fitting,

⋄⋄ it is time to review, consolidate and possibly restructure (including re-specify)

⋄⋄ the domain requirements prescription

⋄⋄ before the next stage of requirements development.
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4697. Requirements 3. Interface Requirements

7.3. Interface Requirements

• By an interface requirements we mean

⋄⋄ a requirements prescription
which refines and extends the domain requirements

⋄⋄ by considering those requirements
of the domain requirements whose

◦◦ endurants (parts, materials) and

◦◦ perdurants (actions, events and behaviours)

⋄⋄ are “shared”

⋄⋄ between the domain and the machine
(being requirements prescribed)
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7. Requirements 3. Interface Requirements 3.1.

7.3.1. Shared Phenomena

• By sharing we mean

⋄⋄ that an endurant is represented both

◦◦ in the domain and

◦◦ “inside” the machine, and

◦◦ that its machine representation

◦◦ must at suitable times

◦◦ reflect its state in the domain;

and/or

⋄⋄ that an action

◦◦ requires a sequence of several “on-line” interactions

◦◦ between the machine (being requirements prescribed) and

◦◦ the domain, usually a person or another machine;

and/or
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7. Requirements 3. Interface Requirements 3.1. Shared Phenomena

⋄⋄ that an event

◦◦ arises either in the domain,
that is, in the environment of the machine,

◦◦ or in the machine,

◦◦ and need be communicated to the machine, respectively to the
environment;

and/or

⋄⋄ that a behaviour is manifested both

◦◦ by actions and events of the domain and

◦◦ by actions and events of the machine
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7. Requirements 3. Interface Requirements 3.1.

• So a systematic reading of the domain requirements shall

⋄⋄ result in an identification of all shared

◦◦ endurants,

∗ parts,

∗ materials and

∗ components;

and

◦◦ perdurants

∗ actions,

∗ events and

∗ behaviours.
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7. Requirements 3. Interface Requirements 3.1.

• Each such shared phenomenon shall then be individually dealt with:

⋄⋄ endurant sharing shall lead to interface requirements for data
initialisation and refreshment;

⋄⋄ action sharing shall lead to interface requirements for interactive
dialogues between the machine and its environment;

⋄⋄ event sharing shall lead to interface requirements for how such
event are communicated between the environment of the machine
and the machine; and

⋄⋄ behaviour sharing shall lead to interface requirements for action
and event dialogues between the machine and its environment.

• • •

• We shall now illustrate these domain interface requirements

• development steps with respect to our ongoing example.
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7. Requirements 3. Interface Requirements 3.2.

7.3.2. Shared Endurants

• We “split” our interface requirements development into two separate
steps:

⋄⋄ the development of drnet
◦◦ (the common domain requirements for the shared hubs and

links),

⋄⋄ and the co-development of drdb:i/f
◦◦ (the common domain requirements for the interface between
drnet and DBrel —

• under the assumption of an available relational database system
DBrel)
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants

Example 92 . Interface Requirements. Shared Endurants:

• The main shared endurants are

⋄⋄ the net (hubs, links) and

⋄⋄ the vehicles.

• As domain endurants hubs and links undergo changes,

⋄⋄ all the time,

⋄⋄ with respect to the values of several attributes:

◦◦ length, cadestral information, names,

◦◦ wear and tear (where-ever applicable),

◦◦ last/next scheduled maintenance (where-ever applicable),

◦◦ state and state space,

◦◦ and many others.
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants

• Similarly for vehicles:

⋄⋄ their position,

⋄⋄ velocity and acceleration, and

⋄⋄ many other attributes.

•When planning the common domain requirements for the net, i.e., the
hubs and links,

⋄⋄ we enlarge our scope of requirements concerns beyond the two so
far treated (drtoll

, drmaint.
)

⋄⋄ in order to make sure that the shared relational database of nets,
their hubs and links, may be useful beyond those requirements.
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants

• We then come up with something like

⋄⋄ hubs and links are to be represented as tuples of relations;

⋄⋄ each net will be represented by a pair of relations

◦◦ a hubs relation and a links relation;

◦◦ each hub and each link may or will be represented by several tuples;

⋄⋄ etcetera.

• In this database modeling effort it must be secured that “standard” operations on
nets, hubs and links can be supported by the chosen relational database system
DBrel
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1.

7.3.2.1. Data Initialisation

• As part of drnet one must prescribe data initialisation, that is pro-
vision for

⋄⋄ an interactive user interface dialogue with a set of proper display
screens,

◦◦ one for establishing net, hub or link attributes names and their
types, and, for example,

◦◦ two for the input of hub and link attribute values.

⋄⋄ Interaction prompts may be prescribed:

◦◦ next input,

◦◦ on-line vetting and

◦◦ display of evolving net, etc.

⋄⋄ These and many other aspects may therefore need prescriptions.

• Essentially these prescriptions concretise the insert and remove link
and hub actions.
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

Example 93 . Interface Requirements. Shared Endurant Initialisation:

• The domain is that of the road net, n:N, say of Chapter 6 —
see also Example 92 on Slide 475

• By ‘shared road net initialisation’
we mean the “ab initio” establishment, “from scratch”
of a data base recording the properties of all links, l:L, and hubs, h:H,

⋄⋄ their unique identifications, uid L(l) and uid H(h),

⋄⋄ their mereologies, obs mereo L(l) and obs mereo H(h) , and

⋄⋄ the initial values of all their attributes, attributes(l) and attributes(h).
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

223 There are rl and rh “recorders” recording link, respectively hub prop-
erties with each recorder having a unique identity,

224 Each recorder is charged with a set of links or a set of hubs according
to some partitioning of all such.

225 The recorders inform a central data base, net db, of their recordings:

a. (ri,nol,(uj,mj,attrsj)) where

b. ri is the identity of the recorder,

c. nol is either link or hub,

d. uj = uid L(l) or uid H(h) for some link or hub,

e. mj = obs mereo L(l) or obs mereo H(h) for that link or hub
and

f. attrsj = attributes(l) or attributes(h) for that link or hub.
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

type
223. RI
value
223. rl,rh:NAT axiom rl>0 ∧ rh>0
type
225a.. M = RI×′′link′′×LNK | RI×′′hub′′×HUB
225a.. LNK = LI × HI-set × LATTRS
225a.. HUB = HI × LI-set × HATTRS
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

value
224. partitioning: L-set → Nat → (L-set)∗

224. | H-set → Nat → (H-set)∗

224. partitioning(s)(r) as sl
224. post: len sl = r
224. ∧ ∪ elems sl = s
224. ∧ ∀ si,sj:(L-set|H-set) •

224. si 6={}
224. ∧ sj6={}
224. ∧ {si,sj}⊆elems ss ⇒ si ∩ sj = {}
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

226 The rl + rh recorder behaviours interact with the one net db be-
haviour

channel
226. r db: RI×(LNK|HUB)
value
226. LNK recorder: RI → L-set → out r db Unit
226. HUB−recorder: RI → H-set → out r db Unit
226. net db: Unit → in r db Unit
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

227 The data base behaviour, net db, offers to receive messages from the
link an hub recorders.

228 And the data base behaviour, net db, deposits these messages in
respective variables.

229 Initially there is a net, n : N ,

230 from which is observed its links and hubs.

231 These sets are partitioned into rl, respectively rh length lists of non-
empty links and hubs.

232 The ab-initio data initialisation behaviour, ab initio data, is then
the parallel composition of link recorder, hub recorder and data base
behaviours with link and hub recorder being allotted appropriate
link, respectively hub sets.

233 We construct, for technical reasons, as the listener will soon see,
disjoint lists of link, respectively hub recorder identities.
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

value
227. net db:
variable
228. lnk db: (RI×LNK)-set
228. hub db: (RI×HUB)-set
value
229. n:N
230. ls:L-set = obs Ls(obs LS(n))
230. hs:H-set = obs Hs(obs HS(n))
231. lsl:(L-set)∗ = partition(ls)(rl)
231. lhl:(H-set)∗ = partition(hs)(rh)
233. rill:RI∗ axiom len rill = rl = card elems rill
233. rihl:RI∗ axiom len rihl = rh = card elems rihl
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

232. ab initio data: Unit → Unit
232. ab initio data() ≡
232. ‖ {lnk rec(rill[ i ])(lsl[ i ])|i:Nat•1≤i≤rl}
232. ‖ {hub rec(rihl[ i ])(lhl[ i ])|i:Nat•1≤i≤rh}
232. ‖ net db()
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

234 The link and the hub recorders are near-identical behaviours.

a. They both revolve around an imperatively stated for all ... do
... end.
The selected link (or hub) is inspected and the “data” for the data
base is prepared from

b. the unique identifier,

c. the mereology, and

d. the attributes.

e. These “data” are sent, as a message, prefixed the senders identity,
to the data base behaviour.

f. We presently leave the . . . unexplained.
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

value
226. link rec: RI → L-set → Unit
234. link rec(ri,ls) ≡
234a.. for ∀ l:L•l ∈ ls do uid L(l)
234b.. let lnk = (uid L(l),
234c.. obs mereo L(l),
234d.. attributes(l)) in
234e.. rdb ! (ri,′′link′′,lnk);
234f.. ... end
234a.. end
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

226. hub rec: RI × H-set → Unit
234. hub rec(ri,hs) ≡
234a.. for ∀ h:H•h ∈ hs do uid H(h)
234b.. let hub = (uid L(h),
234c.. obs mereo H(h),
234d.. attributes(h)) in
234e.. rdb ! (ri,′′hub′′,hub);
234f.. ... end
234a.. end
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

235 The net db data base behaviour revolves around a seemingly “never-
ending” cyclic process.

236 Each cycle “starts” with acceptance of some,

237 either link or hub data.

238 If link data then it is deposited in the link data base,

239 if hub data then it is deposited in the hub data base.
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

value
235. net db() ≡
236. let (ri,loh,data) = r db ? in
237. case loh of
238. ′′link′′ → ... ; lnk db := lnk db ∪ (ri,data),
239. ′′hub′′ → ... ; hub db := hub db ∪ (ri,data)
237. end end ;
235′. ... ;
235. net db()
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

• The above model is an idealisation.

⋄⋄ It assumes that the link and hub data represent a well-formed net.

⋄⋄ Included in this well-formedness are the following issues:

◦◦ (a) that all link or hub identifiers are communicated exactly once,

◦◦ (b) that all mereologies refer to defined parts, and

◦◦ (c) that all attribute values lie within an appropriate value range.

⋄⋄ If we were to cope with possible recording errors then we could,
for example, extend the model as follows:

◦◦ (i) when a link or a hub recorder has completed its recording
then it increments an initially zero counter (say at Item 234f., Slide 488);

◦◦ (ii) before the net data base recycles it tests whether

all recording sessions has ended and then proceeds to check the data base

for well-formedness issues (a–b–c) (say at Item 235′, Slide 491)
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

• The above example illustrates the ‘interface’ phenomenon:

⋄⋄ In the formulas, for example, we show both

◦◦ manifest domain entities, viz., n, l, h etc., and

◦◦ abstract (required) software objects, viz., (ui,me, attrs).
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7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.2. Data Initialisation

7.3.2.2. Data Refreshment

• As part of drnet one must also prescribe data refreshment:

⋄⋄ an interactive user interface dialogue
with a set of proper display screens

◦◦ one for selecting the updating of net, of hub or of link attribute
names and their types and, for example,

◦◦ two for the respective update of hub and link attribute values.

⋄⋄ Interaction-prompts may be prescribed:

◦◦ next update,

◦◦ on-line vetting and

◦◦ display of revised net, etc.

⋄⋄ These and many other aspects may therefore need prescriptions.

• These prescriptions also concretise insert and remove link and hub
actions.
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7. Requirements 3. Interface Requirements 3.3. Shared Endurants

7.3.3. Shared Actions, Events and Behaviours

• We illustrate the ideas of

⋄⋄ shared actions, events and behaviours

⋄⋄ through the domain requirements extension

⋄⋄ of Sect. 7.2.4,

⋄⋄ more specifically Examples 87–89
Slides 442–449.
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7. Requirements 3. Interface Requirements 3.3. Shared Actions, Events and Behaviours

Example 94 . Interface Requirements. Shared Actions, Events and
Behaviours:

This Example has yet to be written

Examples 88–90, Slides 445–453,
illustrate shared interactive actions, events and behaviours.
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7. Requirements 4. Machine Requirements

7.4. Machine Requirements
7.4.1. Delineation of Machine Requirements

7.4.1.1. On Machine Requirements

Definition 33 . Machine Requirements: By machine require-
ments we shall understand

• such requirements

• which can be expressed “sôlely” using terms

• from, or of the machine

Definition 34 . The Machine: By the machine we shall under-
stand

• the hardware

• and software

• to be built from the requirements

A Prerequisite for Requirements Engineering 497 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



498

7. Requirements 4. Machine Requirements 4.1. Delineation of Machine Requirements 4.1.1. On Machine Requirements

• The expression

⋄⋄ which can be expressed

⋄⋄ “sôlely” using terms

⋄⋄ from, or of the machine

shall be understood with “a grain of salt”.

⋄⋄ Let us explain.

◦◦ The machine requirements statements

◦◦ may contain references to domain entities

◦◦ but these are meant to be generic references,

◦◦ that is, references to certain classes of entities in general.

We shall illustrate this “genericitiy” in some of the examples below.
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7. Requirements 4. Machine Requirements 4.1. Delineation of Machine Requirements 4.1.2. On Machine Requirements

7.4.1.2. Machine Requirements Facets

• We shall, in particular, consider the following five kinds of machine
requirements:

⋄⋄ performance requirements,

⋄⋄ dependability requirements,

⋄⋄ maintenance requirements,

⋄⋄ platform requirements and

⋄⋄ documentation requirements.
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7. Requirements 4. Machine Requirements 4.2. Delineation of Machine Requirements

7.4.2. Performance Requirements

Definition 35 . Performance Requirements: By performance
requirements we mean machine requirements that prescribe

• storage consumption,

• (execution, access, etc.) time consumption,

• as well as consumption of any other machine resource:

⋄⋄ number of CPU units (incl. their quantitative characteristics
such as cost, etc.),

⋄⋄ number of printers, displays, etc., terminals (incl. their quan-
titative characteristics),

⋄⋄ number of “other”, ancillary software packages (incl. their
quantitative characteristics),

⋄⋄ of data communication bandwidth,

⋄⋄ etcetera
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7. Requirements 4. Machine Requirements 4.2. Performance Requirements

Example 95 . Machine Requirements. Road-pricing System Performance:

• Possible road pricing system performance requirements
could evolve around:

⋄⋄ maximum number of cars entering and leaving the sum total of all gates within
a minimum period —
for example 10.000 maximum within any interval of 10 seconds minimum;

⋄⋄ maximum time between a car entering a gate and the raising of the gate barrier
—
for example 3 seconds;

⋄⋄ etcetera,

• We cannot be more specific:

⋄⋄ that would require more details about

⋄⋄ gate sensors and

⋄⋄ gate barriers.
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7. Requirements 4. Machine Requirements 4.3. Performance Requirements

7.4.3. Dependability Requirements

more to come

7.4.3.1. Failures, Errors and Faults

• To properly define the concept of dependability we need first intro-
duce and define the concepts of

⋄⋄ failure,

⋄⋄ error, and

⋄⋄ fault.
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

Definition 36 . Failure:

• A machine failure occurs

• when the delivered service

• deviates from fulfilling the machine function,

• the latter being what the machine is aimed at
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

Definition 37 . Error:

• An error

• is that part of a machine state

• which is liable to lead to subsequent failure.

• An error affecting the service

• is an indication that a failure occurs or has occurred
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

Definition 38 . Fault:

• The adjudged (i.e., the ‘so-judged’) or hypothesised cause of an
error

• is a fault

• The term hazard is here taken to mean the same as the term fault.

• One should read the phrase: “adjudged or hypothesised cause” care-
fully:

• In order to avoid an unending trace backward as to the cause,

• we stop at the cause which is intended to be prevented or toler-
ated.
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

Definition 39 . Machine Service: The service delivered by a
machine

• is its behaviour

• as it is perceptible by its user(s),

• where a user is a human, another machine or a(nother) system

• which interacts with it
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

Definition 40 . Dependability: Dependability is defined

• as the property of a machine

• such that reliance can justifiably be placed on the service it delivers

• We continue, less formally, by characterising the above defined concepts.

• “A given machine, operating in some particular environment (a wider system),
may fail in the sense that some other machine (or system) makes, or could in
principle have made, a judgement that the activity or inactivity of the given
machine constitutes a failure”.

• The concept of dependability can be simply defined as “the quality or the char-
acteristic of being dependable”, where the adjective ‘dependable’ is attributed to
a machine whose failures are judged sufficiently rare or insignificant.
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

• Impairments to dependability are the unavoidably expectable cir-
cumstances causing or resulting from “undependability”: faults, er-
rors and failures.

•Means for dependability are the techniques enabling one

⋄⋄ to provide the ability to deliver a service on which reliance can be
placed,

⋄⋄ and to reach confidence in this ability.

• Attributes of dependability enable

⋄⋄ the properties which are expected from the system to be expressed,

⋄⋄ and allow the machine quality resulting from the impairments and
the means opposing them to be assessed.
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

• Having already discussed the “threats” aspect,

• we shall therefore discuss the “means” aspect of the dependability tree.

• Attributes:

⋄⋄ Accessibility

⋄⋄ Availability

⋄⋄ Integrity

⋄⋄ Reliability

⋄⋄ Safety

⋄⋄ Security

• Means:

⋄⋄ Procurement

◦◦ Fault prevention

◦◦ Fault tolerance

⋄⋄ Validation

◦◦ Fault removal

◦◦ Fault forecasting

• Threats:

⋄⋄ Faults

⋄⋄ Errors

⋄⋄ Failures
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

• Despite all the principles, techniques and tools aimed at fault pre-
vention,

• faults are created.

• Hence the need for fault removal.

• Fault removal is itself imperfect.

• Hence the need for fault forecasting.

• Our increasing dependence on computing systems in the end brings
in the need for fault tolerance.
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

Definition 41 . Dependability Attribute: By a dependability
attribute we shall mean either one of the following:

• accessibility,

• availability,

• integrity,

• reliability,

• robustness,

• safety and

• security.
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

That is, a machine is dependable if it satisfies some degree of “mixture” of

being accessible, available, having integrity, and being reliable, safe and secure

• The crucial term above is “satisfies”.

• The issue is: To what “degree”?

• As we shall see — in a later later lecture — to cope properly

⋄⋄ with dependability requirements and

⋄⋄ their resolution

requires that we deploy

⋄⋄ mathematical formulation techniques,

⋄⋄ including analysis and simulation,

from statistics (stochastics, etc.).
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.2. Failures, Errors and Faults

7.4.3.2. Accessibility

• Usually a desired, i.e., the required, computing system, i.e., the ma-
chine, will be used by many users — over “near-identical” time in-
tervals.

• Their being granted access to computing time is usually specified,
at an abstract level, as being determined by some internal nondeter-
ministic choice, that is: essentially by “tossing a coin”!

• If such internal nondeterminism was carried over, into an implemen-
tation, some “coin tossers” might never get access to the machine.

A Prerequisite for Requirements Engineering 513 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



514

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.2. Accessibility

Definition 42 . Accessibility: A system being accessible — in
the context of a machine being dependable —

•means that some form of “fairness”

• is achieved in guaranteeing users “equal” access

• to machine resources, notably computing time (and what derives
from that)

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29 514 Domain Science & Engineering



515

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.2. Accessibility

Example 96 . Machine Requirements. Road-pricing System Accessibil-
ity:

• Fairness of the calculator behaviour, cf. formula Item 220 on Slide 450 (⌈⌉⌊⌋)

⋄⋄ shall mean that “earlier” (wrt. time-stamped) messages

⋄⋄ from either vehicles

⋄⋄ or from gates

⋄⋄ shall be accepted by the calculator

⋄⋄ before “later” such messages.

• This is guaranteed by the semantics of RSL.

⋄⋄ And, hence, shall be guaranteed

⋄⋄ by any implementation of the deterministic choice ⌈⌉⌊⌋
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.3. Accessibility

7.4.3.3. Availability

• Usually a desired, i.e., the required, computing system, i.e., the ma-
chine, will be used by many users — over “near-identical” time in-
tervals.

• Once a user has been granted access to machine resources, usually
computing time, that user’s computation may effectively make the
machine unavailable to other users —

• by “going on and on and on”!
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.3. Availability

Definition 43 . Availability: By availability — in the context of
a machine being dependable — we mean

• its readiness for usage.

• That is, that some form of “guaranteed percentage of computing
time” per time interval (or percentage of some other computing
resource consumption)

• is achieved — hence some form of “time slicing” is to be effected
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.3. Availability

Example 97 . Machine Requirements. Road-pricing System Availability:

• Formula Item 216b. (Slide 445) specify that

⋄⋄ vehicles “continuously” inform

⋄⋄ the calculator (cf. formula Items 220 on Slide 450)

⋄⋄ of their time-stamped local position.

• This may lead you to think that these messages

⋄⋄ may effectively “block out”

⋄⋄ “concurrent” messages from toll-road gates.

• In an implementation we may choose

⋄⋄ to discretize vehicle-to-calculator messages.

⋄⋄ That is, to “space them apart”,

⋄⋄ some time interval —

⋄⋄ so long as an “intentional semantics is maintained”
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.4. Availability

7.4.3.4. Integrity

Definition 44 . Integrity: A system has integrity — in the context of a
machine being dependable — if

• it is and remains unimpaired,

• i.e., has no faults, errors and failures,

• and remains so, without these,

• even in the situations where the environment of the machine has faults, errors

and failures

• Integrity seems to be a highest form of dependability,

• i.e., a machine having integrity is 100% dependable!

• The machine is sound and is incorruptible.
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.4. Integrity

Example 98 . Machine Requirements. Road-pricing System Integrity:

• We divide the integrity concerns for
the road-pricing computing and communications system
into two “spheres”:

⋄⋄ the integrity of the sensor and actuator equipment
attached to

◦◦ vehicles (i.e., their GNSS attributes), and to

◦◦ toll-road gates:

∗ in/out sensors, ∗ vehicle identifiers and ∗ gates;

and

⋄⋄ the software of the road-pricing computing and communications system,

◦◦ that is, the software which interfaces with

∗ vehicles, ∗ toll-gates and ∗ the calculator.
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.4. Integrity

• As for the integrity of the the sensor and actuator equipment
we do not require

⋄⋄ that the road-pricing computing and communications system

⋄⋄ is 100% dependable,

⋄⋄ It is satisfactory if it retains its

◦◦ accessibility,

◦◦ availability,

◦◦ reliability,

◦◦ safety and

◦◦ security

in the presence of maintenance.
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.4. Integrity

• As for the integrity of the software we require that it

⋄⋄ is proven correct
with respect to domain and requirements specifications
under the assumption that
sensor and actuator equipment functions
with 100%’s integrity;

⋄⋄ and where correctness proofs
may not be feasible or possible,
that the software is appropriately model-checked;

⋄⋄ and where “complete” model-checks
may not be feasible or possible,
that the software is formally tested
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.4. Integrity

Definition 45 . Reliability: A system being reliable — in the
context of a machine being dependable — means

• some measure of continuous correct service,

• that is, measure of time to failure
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.4. Integrity

Example 99 . Machine Requirements. Road-pricing System Reliability:

• Mean-time between failures, MTBF,

⋄⋄ (i) of any vehicle’s GNSS correct recording of local position must be at least
30.000 hours;

⋄⋄ (ii) of any toll-gate complex, that is,

◦◦ it’s ability to correctly identify a passing vehicle, or

◦◦ it’s ability to correctly close and open gates

must be at least 20.000 hours
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.5. Integrity

7.4.3.5. Safety

Definition 46 . Safety: By safety — in the context of a machine
being dependable — we mean

• some measure of continuous delivery of service of

⋄⋄ either correct service, or incorrect service after benign failure,

• that is: Measure of time to catastrophic failure
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.5. Safety

Example 100 . Machine Requirements. Road-pricing System Safety:

• Mean time to catastrophic failure, MTCF,

⋄⋄ (i) for a vehicle’s GNSS to function properly shall be 60.000 hours; and

⋄⋄ (ii) of any toll-gate complex, that is,

◦◦ it’s ability to correctly identify a passing vehicle, or

◦◦ it’s ability to correctly close and open gates

must be at least 40.000 hours
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.6. Safety

7.4.3.6. Security
We shall take a rather limited view of security. We are not including

any consideration of security against brute-force terrorist attacks. We
consider that an issue properly outside the realm of software engineer-
ing.

• Security, then, in our limited view, requires a notion of authorised
user,

• with authorised users being fine-grained authorised to access only a
well-defined subset of system resources (data, functions, etc.).

• An unauthorised user (for a resource) is anyone who is not autho-
rised access to that resource.
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.6. Security

Definition 47 . Security: A system being secure — in the context
of a machine being dependable —

•means that an unauthorised user, after believing that he or she
has had access to a requested system resource:

⋄⋄ cannot find out what the system resource is doing,

⋄⋄ cannot find out how the system resource is working

⋄⋄ and does not know that he/she does not know!

• That is, prevention of unauthorised access to computing and/or
handling of information (i.e., data)
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.6. Security

Example 101 . Machine Requirements. Road-pricing System Security:

• Vehicles are authorised

⋄⋄ to receive GNSS timed global positions,
but not to tamper with, e.g. misrepresent them,

are authorised

⋄⋄ to, and shall correctly compute
their local positions
based on the received global positions,

and are finally authorised

⋄⋄ to, and shall correctly
inform the calculator of their timed local positions
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.7. Security

7.4.3.7. Robustness

Definition 48 . Robustness: A system is robust — in the con-
text of dependability —

• if it retains its attributes

⋄⋄ after failure, and

⋄⋄ after maintenance

• Thus a robust system is “stable”

⋄⋄ across failures

⋄⋄ and “across” possibly intervening “repairs”

⋄⋄ and “across” other forms of maintenance.
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7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.7. Robustness

Example 102 . Machine Requirements. Road-pricing System Robust-
ness:

• The road-pricing computing and communications system shall retain its

⋄⋄ performance and

⋄⋄ dependability, that is,

◦◦ accessibility,

◦◦ availability,

◦◦ reliability, and

◦◦ safety

requirements

• in the presence of maintenance.
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7. Requirements 4. Machine Requirements 4.4. Dependability Requirements

7.4.4. Maintenance Requirements

to be typed

7.4.4.1. Delineation and Facets of Maintenance Requirements

Definition 49 . Maintenance Requirements: By maintenance
requirements we understand a combination of requirements with
respect to:

• adaptive maintenance,

• corrective maintenance,

• perfective maintenance,

• preventive maintenance and

• extensional maintenance
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7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.1. Delineation and Facets of Maintenance Requirements

• Maintenance of building, mechanical, electrotechnical and electronic
artifacts — i.e., of artifacts based on the natural sciences — is based
both on documents and on the presence of the physical artifacts.

• Maintenance of software is based just on software, that is, on all the
documents (including tests) entailed by software — see Definition 61
on Slide 553.
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7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.2. Delineation and Facets of Maintenance Requirements

7.4.4.2. Adaptive Maintenance

Definition 50 . Adaptive Maintenance: By adaptive mainte-
nance we understand such maintenance

• that changes a part of that software so as to also, or instead, fit
to

⋄⋄ some other software, or

⋄⋄ some other hardware equipment

(i.e., other software or hardware which provides new, respec-
tively replacement, functions)
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7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.2. Adaptive Maintenance

Example 103 . Machine Requirements. Road-pricing System Adaptive
Maintenance:

• Two forms of adaptive maintenance occur in connection with the
road-pricing computing and communication system:

⋄⋄ adaptive maintenance of vehicle and toll-gate sensors and actuators, and

⋄⋄ adaptive maintenance of the “interfacing” software, that is,

◦◦ the vehicle software as prescribed by Item 216 on Slide 445,

◦◦ the toll-gate software as prescribed by Item 219 on Slide 448, and

◦◦ the calculator software as prescribed by Item 220 on Slide 450.
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7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.2. Adaptive Maintenance

• Adaptive maintenance of vehicle and toll-gate
sensors and actuators occurs when

⋄⋄ existing sensors or actuators

⋄⋄ are replaced due to failure.

• Adaptive maintenance of interfacing software
is required when

⋄⋄ existing sensors or actuators have been replaced
and their characteristics are different from those of the replaced
equipment,

⋄⋄ hence requires modifications of interfacing software
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7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.3. Adaptive Maintenance

7.4.4.3. Corrective Maintenance

Definition 51 . Corrective Maintenance: By corrective main-
tenance we understand such maintenance which

• corrects a software error
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7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.3. Corrective Maintenance

Example 104 . Machine Requirements. Road-pricing System Corrective
Maintenance:

• Corrective maintenance of the road-pricing computing and communications system
is required in two “spheres”:

⋄⋄ when system, that is, toll-gate and vehicles sensors or actuators
fail, and

⋄⋄ when, despite all verification efforts, the interfacing, that is,

◦◦ the vehicle,

◦◦ the gate, or

◦◦ the calculator

software fails.
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7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.3. Corrective Maintenance

• In the former case (equipment failure)

⋄⋄ the failing sensor or actuator is replaced

⋄⋄ possibly implying adaptive maintenance.

• In the latter case (software failure)

⋄⋄ the failing software is analysed

⋄⋄ in order to locate the erroneous code,

⋄⋄ whereupon that code is replaced by such code

⋄⋄ that can lead to a verification of the full system
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7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.4. Corrective Maintenance

7.4.4.4. Perfective Maintenance

Definition 52 . Perfective Maintenance: By perfective maintenance we
understand such maintenance which

• helps improve (i.e., lower) the need for

• hardware storage, time and (hard) equipment
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7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.4. Perfective Maintenance

Example 105 . Machine Requirements. Road-pricing System Perfective
Maintenance:

• We focus on perfective maintenance of

⋄⋄ vehicle,

⋄⋄ toll-gate and

⋄⋄ calculator

software.
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7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.4. Perfective Maintenance

•We focus, in particular, on

⋄⋄ the reaction time in connection with response to external stimuli
for the gate software

◦◦ the timed local position, Item 216a. on Slide 445, of vehicles;

◦◦ the attr enter ch[gi] event from a toll-gate’s in coming sensor,
Item 219a. on Slide 448;

◦◦ the timed vehicle identity for a attr TIVI ch[gi] event form a toll-
gate sensor, Item 219b. on Slide 448; and

◦◦ the attr leave ch[gi] event from a toll-gate’s out going sensor,
Item 219d. on Slide 448;
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7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.4. Perfective Maintenance

⋄⋄ the reaction time, of the calculator, Item 220 on Slide 450, to
incoming, alternating, communications from

◦◦ either vehicles, Item 220a. on Slide 450,

◦◦ or gates, Item 220b. on Slide 450.

⋄⋄ and the calculation time of the calculator

◦◦ for billing, cf. Item 222e. on Slide 452.
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7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.5. Perfective Maintenance

7.4.4.5. Preventive Maintenance

Definition 53 . Preventive Maintenance: By preventive main-
tenance we understand such maintenance which

• helps detect, i.e., forestall, future occurrence

• of software or hardware failures

Example 106 . Machine Requirements. Road-pricing System Preven-
tive Maintenance:

to be written
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7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.6. Preventive Maintenance

7.4.4.6. Extensional Maintenance

Definition 54 . Extensional Maintenance: By extensional main-
tenance we understand such maintenance which adds new function-
alities to the software, i.e., which implements additional require-
ments

Example 107 . Machine Requirements. Road-pricing System Exten-
sional Maintenance:

to be written
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7. Requirements 4. Machine Requirements 4.5. Maintenance Requirements

7.4.5. Platform Requirements

to be written

7.4.5.1. Delineation and Facets of Platform Requirements

Definition 55 . Platform: By a [computing] platform is here
understood

• a combination of hardware and systems software

• so equipped as to be able to develop and execute software,

• in one form or another

• What the “in one form or another” is

• transpires from the next characterisation.
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7. Requirements 4. Machine Requirements 4.5. Platform Requirements 4.5.1. Delineation and Facets of Platform Requirements

Definition 56 . Platform Requirements: By platform require-
ments we mean a combination of the following:

• development platform requirements,

• execution platform requirements,

•maintenance platform requirements and

• demonstration platform requirements
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7. Requirements 4. Machine Requirements 4.5. Platform Requirements 4.5.2. Delineation and Facets of Platform Requirements

7.4.5.2. Development Platform

Definition 57 . Development Platform Requirements: By de-
velopment platform requirements we shall understand such ma-
chine requirements which

• detail the specific software and hardware

• for the platform on which the software

• is to be developed
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7. Requirements 4. Machine Requirements 4.5. Platform Requirements 4.5.3. Development Platform

7.4.5.3. Execution Platform

Definition 58 . Execution Platform Requirements: By exe-
cution platform requirements we shall understand such machine
requirements which

• detail the specific (other) software and hardware

• for the platform on which the software

• is to be executed
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7. Requirements 4. Machine Requirements 4.5. Platform Requirements 4.5.4. Execution Platform

7.4.5.4. Maintenance Platform

Definition 59 . Maintenance Platform Requirements: By
maintenance platform requirements we shall understand such ma-
chine requirements which

• detail the specific (other) software and hardware

• for the platform on which the software

• is to be maintained
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7. Requirements 4. Machine Requirements 4.5. Platform Requirements 4.5.5. Maintenance Platform

7.4.5.5. Demonstration Platform

Definition 60 . Demonstration Platform Requirements: By
demonstration platform requirements we shall understand such ma-
chine requirements which

• detail the specific (other) software and hardware

• for the platform on which the software

• is to be demonstrated to the customer — say for acceptance tests,
or for management demos, or for user training
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7. Requirements 4. Machine Requirements 4.5. Platform Requirements 4.5.5. Demonstration Platform

Example 108 . Machine Requirements. Road-pricing System Platform
Requirements:

• The platform requirements are the following:

⋄⋄ the development platform to be typed

⋄⋄ the execution platform to be typed

⋄⋄ the maintenance platform to be typed

and

⋄⋄ the demonstration platform to be typed .

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29 552 Domain Science & Engineering



553

7. Requirements 4. Machine Requirements 4.6. Platform Requirements

7.4.6. Documentation Requirements

Definition 61 . Software: By software we shall understand

• not only code that may be the basis for executions by a computer,

• but also its full development documentation:

⋄⋄ the stages and steps of application domain description,

⋄⋄ the stages and steps of requirements prescription, and

⋄⋄ the stages and steps of software design prior to code,

with all of the above including all validation and verification
(incl., test) documents.
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7. Requirements 4. Machine Requirements 4.6. Documentation Requirements

• In addition, as part of our wider concept of software, we also
include a comprehensive collection of supporting documents:

⋄⋄ training manuals,

⋄⋄ installation manuals,

⋄⋄ user manuals,

⋄⋄ maintenance manuals, and

⋄⋄ development and maintenance logbooks.
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7. Requirements 4. Machine Requirements 4.6. Documentation Requirements

Definition 62 . Documentation Requirements: By documen-
tation requirements

• we mean requirements

• of any of the software documents

• that together make up

⋄⋄ software and

⋄⋄ hardware30

Example 109 . Machine Requirements — Documentation:

to be written

30— we omit a definition of what we mean by hardware such as the one we gave for
software, cf. Definition 61 on Slide 553.

A Prerequisite for Requirements Engineering 555 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



556

7. Requirements 4. Machine Requirements 4.7. Documentation Requirements

7.4.7. Discussion

to be typed
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5578. Conclusion

8. Conclusion
8.1. Various Observations

8.1.1. Tony Hoare’s Summary on ‘Domain Modeling’

• In a 2006 e-mail, in response, undoubtedly to my steadfast, perhaps
conceived as stubborn insistence, on domain engineering,

• Tony Hoare summed up his reaction to domain engineering as fol-
lows, and I quote31:

31E-Mail to Dines Bjørner, July 19, 2006
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8. Conclusion 1. Various Observations 1.1. Tony Hoare’s Summary on ‘Domain Modeling’

“There are many unique contributions
that can be made by domain modeling.

1 The models describe all aspects of the real world
that are relevant for any good software design in the area.
They describe possible places to define the system boundary
for any particular project.

2 They make explicit the preconditions about the real world
that have to be made in any embedded software design,
especially one that is going to be formally proved.
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8. Conclusion 1. Various Observations 1.1. Tony Hoare’s Summary on ‘Domain Modeling’

3 They describe the whole range of possible designs for the software,
and the whole range of technologies available for its realisation.

4 They provide a framework for a full analysis of requirements,
which is wholly independent of the technology of implementation.

5 They enumerate and analyse the decisions
that must be taken earlier or later in any design project,
and identify those that are independent and those that conflict.
Late discovery of feature interactions can be avoided.”

• All of these issues are dealt with in [10, Part IV].
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8. Conclusion 1. Various Observations 1.2. Tony Hoare’s Summary on ‘Domain Modeling’

8.1.2. Beauty Is Our Business

• This paper started with a quote from Dostovevsky’s The Idiot.

It’s life that matters, nothing but life –
the process of discovering, the everlasting and perpetual process,

not the discovery itself, at all.32

• I find that quote appropriate in the following, albeit rather mundane,
sense:

⋄⋄ It is the process of analysing and describing a domain

⋄⋄ that exhilarates me:

⋄⋄ that causes me to feel very happy and excited.

• There is beauty [E.W. Dijkstra] not only in the result but also in the
process.

32Fyodor Dostoyevsky, The Idiot, 1868, Part 3, Sect. V
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9. Discussion of Research Topics

• There are a number of research topics:

⋄⋄ some relate to domain analysis & description, cf. Chapter 1,
and some of these are listed in Sect. 8.1,

⋄⋄ other relate to requirements engineering, cf. Chapter 7,
and some of these are listed in Sect. 8.2.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics

9.1. Domain Science & Engineering Topics

• The TripTych approach to software development,

⋄⋄ based on an initial, serious phase of domain engineering,

⋄⋄ a new phase of software engineering,

⋄⋄ for which we claim to now have laid
a solid foundation for domain engineering —

• opens up for a variety of issues that need further study.

• The entries in this section are not ordered
according to any specific principle.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.1.

9.1.1. Analysis & Description Calculi for Other Domains

• The analysis and description calculus of this paper appears suitable
for manifest domains.

• For other domains other calculi appears necessary.

⋄⋄ There is the introvert, composite domain of systems software:

◦◦ operating systems, compilers, database management systems,
Internet-related software, etcetera.

◦◦ The classical computer science and software engineering
disciplines related to these components of systems software
appears to have provided the necessary
analysis and description “calculi.”
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.1. Analysis & Description Calculi for Other Domains

⋄⋄ There is the domain of financial systems software

◦◦ accounting & bookkeeping,

◦◦ banking systems,

◦◦ insurance,

◦◦ financial instruments handling (stocks, etc.),

◦◦ etcetera.

.

• Etcetera.

• For each domain characterisable by a distinct set of analysis & de-
scription calculus prompts such calculi must be identified.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.1. Analysis & Description Calculi for Other Domains

• It seems straightforward:

⋄⋄ to base a method for analysing & describing a category of domains

⋄⋄ on the idea of prompts like those developed in this lecture.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.2. Analysis & Description Calculi for Other Domains

9.1.2. On Domain Description Languages

• We have in this seminar expressed the domain descriptions in the
RAISE [40] specification language RSL [39].

• With what is thought of as basically inessential, editorial changes,
one can reformulate these domain description texts in either of

⋄⋄ Alloy [45] or

⋄⋄ The B-Method [1] or

⋄⋄ VDM [30, 31, 37] or

⋄⋄ Z [55].
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.2. On Domain Description Languages

• One could also express domain descriptions algebraically, for example
in CafeOBJ.

⋄⋄ The analysis and the description prompts remain the same.

⋄⋄ The description prompts now lead to CafeOBJ texts.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.2. On Domain Description Languages

• We did not go into much detail with respect to perdurants, let alone
behaviours.

⋄⋄ For all the very many domain descriptions, covered elsewhere, RSL
(with its CSP sub-language) suffices.

⋄⋄ But there are cases where we have conjoined our RSL domain
descriptions with descriptions in

◦◦ Petri Nets [52] or

◦◦ MSC [44] or

◦◦ StateCharts [42].
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.2. On Domain Description Languages

• Since this seminar only focused on endurants there was no need, it
appears, to get involved in temporal issues.

• When that becomes necessary, in a study or description of perdu-
rants, then we either deploy

⋄⋄ DC: The Duration Calculus [56] or
⋄⋄ TLA+: Temporal Logic of Actions [48].
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.3. On Domain Description Languages

9.1.3. Ontology Relations

• A more exact understanding of the relations between

⋄⋄ the “classical” AI/information science/ontology view
of domains [4, 5, 46], and

⋄⋄ the algorithmic view of domains,
as presented in the current paper,

⋄⋄ seems required.

• The almost disparate jargon of the two “camps” seems,
however, to be a hindrance.

A Prerequisite for Requirements Engineering 571 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



572

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.4. Ontology Relations

9.1.4. Analysis of Perdurants

• A study of perdurants, as detailed as that of our study of endurants,
ought be carried out.

• One difficulty, as we see it, is the choice of formalisms:

⋄⋄ whereas the basic formalisms for the expression of endurants and
their qualities was type theory and simple functions and predi-
cates,

⋄⋄ there is no such simple set of formal constructs
that can “carry” the expression of behaviours.

◦◦ Besides the textual CSP, [43], there is graphic notations of

◦◦ Petri Nets, [52],

◦◦ Message Sequence Charts, [44],

◦◦ State-charts, [42], and others.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.5. Analysis of Perdurants

9.1.5. Commensurate Discrete and Continuous Models

• Section 5.3.7 Slides 268–270 hinted at

⋄⋄ co-extensive descriptions of discrete and continuous behaviours,

⋄⋄ the former in, for example, RSL,

⋄⋄ the latter in, typically, the calculus mathematics of partial differ-
ent equations (PDEs).

⋄⋄ The problem that arises in this situation is the following:

◦◦ there will be, say variable identifiers, e.g., x, y, . . . , z

◦◦ which in the RSL formalisation has one set of meanings, but

◦◦ which in the PDE “formalisation” has another set of meanings.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.5. Commensurate Discrete and Continuous Models

⋄⋄ Current formal specification languages33 do not cope with conti-
nuity.

• Some research is going on.

• But to substantially cover, for example, the proper description of
laminar and turbulent flows in networks (e.g., pipelines, Example 61
on Slide 269) requires more substantial results.

33Alloy [45],Event B [1],RSL [39], VDM-SL [30, 31, 37], Z [55], etc.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.6. Commensurate Discrete and Continuous Models

9.1.6. Interplay between Parts, Materials and Components

• Examples 49 on Slide 215, 50 on Slide 219, 51 on Slide 222 and 61
on Slide 269 revealed but a small fraction of the problems that may
arise in connection with modeling the interplay between parts and
materials.

• Subject to proper formal specification language and, for example PDE
specification, we may expect more interesting

⋄⋄ laws, as for example those of Examples 50 on Slide 219, 51 on
Slide 222,

⋄⋄ and even proof of these as if they were theorems.

• Formal specifications have focused on verifying properties of require-
ments and software designs.

• With co-extensive (i.e., commensurate) formal specifications of both
discrete and continuous behaviours we may expect formal specifica-
tions to also serve as bases for predictions.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.7. Interplay between Parts, Materials and Components

9.1.7. Dynamics

• There is a serious limitation in what can be modeled with the present
approach.

⋄⋄ Although we can model the dynamic introduction of new atomic
or removal of existing parts, when members of a composite set of
such parts,

⋄⋄ we cannot model the dynamic introduction or removal of the pro-
cesses corresponding to such parts.

⋄⋄ Also we have not shown how to model global time.

⋄⋄ And, although we can model spatial positions,

⋄⋄ we have not shown how to model spatial locations.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.7. Dynamics

• These deliberate omissions are due to the facts

⋄⋄ that the description language, RSL, cannot model continuity and

⋄⋄ that it cannot provide for arbitrary models of time.

• Here is an area worth studying.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.8. Dynamics

9.1.8. Precise Descriptions of Manifest Domains

• The focus on the principles, techniques and tools of domain analysis
& description has been such domains in which humans play an active
rôle.

⋄⋄ Formal descriptions of domains may serve to

◦◦ prove properties of domains,

◦◦ in other words, to understand better these domains, and to

◦◦ validate requirements derived from such domain descriptions,
and

◦◦ thereby to ensure that software derived from such requirements

∗ is not only correct,

∗ but also meet users expectations.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.8. Precise Descriptions of Manifest Domains

• Improved understanding of man-made domains —

⋄⋄ without necessarily leading to new software

— may serve to

⋄⋄ improve the “business processes” of these domains,

⋄⋄ make them more palatable for the human actors,

⋄⋄ make them more efficient wrt. resource-usage.

• Descriptions of domains are descriptions of the syntax and semantics
of the technical languages used in speaking about and in the domain.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.8. Precise Descriptions of Manifest Domains

• The domain analysis required for the design of programming lan-
guages is based on computability: mathematical logic and recursive
function theory.

• The domain analysis required for “real-world” domains is not based
on computability: that “world” is not computable.

• Requirements engineering based on domain descriptions is based on
deriving computable subsets of refined domain descriptions.

• The classical theory and practice of programming language semantics
and compiler development [6] and [9, Part VII (Chapters 16–19)] can
now be further developed into a theory and practice for deriving
general software from formal domain descriptions [12].

• Descriptions of domains are descriptions of the syntax and semantics
of the technical languages used in speaking about and in the domain.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.8. Precise Descriptions of Manifest Domains

• The domain analysis required for the design of programming lan-
guages is based on computability: mathematical logic and recursive
function theory.

• The domain analysis required for “real-world” domains is not based
on computability: that “world” is not computable.

• Requirements engineering based on domain descriptions is based on
deriving computable subsets of refined domain descriptions.

• The classical theory and practice of programming language semantics
and compiler development [6] and [9, Part VII (Chapters 16–19)] can
now be further developed into a theory and practice for deriving
general software from formal domain descriptions [12].
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.8. Precise Descriptions of Manifest Domains

• Physicists study ‘Mother Nature’, the world without us.

• Domain scientists study man-made part and material based universes
with which we interact — the world within and without us.

• Classical engineering builds on laws of physics to design and con-
struct

⋄⋄ buildings,

⋄⋄ chemical compounds,

⋄⋄ machines and

⋄⋄ E&E products.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.8. Precise Descriptions of Manifest Domains

• So far software engineers have not expressed software requirements
on any precise description of the basis domain.

• This seminar strongly suggests such a possibility.

• Regardless:

⋄⋄ it is interesting to also formally describe domains;

⋄⋄ and, as shown, it can be done.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.9. Precise Descriptions of Manifest Domains

9.1.9. Towards Mathematical Models of Domain Analysis & Description

• There are two aspects to a precise description of the domain anal-
ysis prompts and domain description prompts.

⋄⋄ There is that of describing

◦◦ the individual prompts

◦◦ as if they were “machine instructions”

◦◦ for an albeit strange machine;

⋄⋄ and there is that of describing

◦◦ the interplay between prompts:

∗ the sequencing of domain description prompts

∗ as determined by the outcome of the domain analysis prompts.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.9. Towards Mathematical Models of Domain Analysis & Description

• We have

⋄⋄ described and formalised the latter in [25, Processes];

⋄⋄ and we are in the midst of describing and formalising the former
in [19, Prompts].
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.10. Towards Mathematical Models of Domain Analysis & Description

9.1.10. Laws of Descriptions: A Calculus of Prompts

• Laws of descriptions deal with the order and results of
applying the domain analysis and description prompts.

• Some laws are covered in [17].

• It is expected that establishing formal models of the prompts,
for example as outlined in [19, 25],

will help identify such laws.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.10. Laws of Descriptions: A Calculus of Prompts

• The various description prompts apply to parts (etc.) of specified
sorts (etc.) and to a “hidden state”.

⋄⋄ The “hidden state” has two major elements:

◦◦ the domain and

◦◦ the evolving description texts.

⋄⋄ An “execution” of a prompt potentially
changes that “hidden state”.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.10. Laws of Descriptions: A Calculus of Prompts

• Let P, PA and PB be composite part sorts where PA and PB are
derived from P.

• Let ℜi, ℜj, etc., be suitable functions which rename sort, type and
attribute names.

• In a proper prompt calculus

⋄⋄ we would expect

⋄⋄ observe part sorts PA;observe part sorts PB,

⋄⋄ when “executed” by one and the same domain engineer,

⋄⋄ to yield the same “hidden state” as

⋄⋄ observe part sorts PB;ℜi;observe part sorts PA;ℜj.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.10. Laws of Descriptions: A Calculus of Prompts

• Also one would expect

⋄⋄ observe part sorts PA;ℜi;observe part sorts PA;ℜj.

⋄⋄ to yield the same state as just

⋄⋄ observe part sorts PA

⋄⋄ given suitable renaming functions.

• Well ? or does one really ?
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.10. Laws of Descriptions: A Calculus of Prompts

• There are some assumptions that are made here.

• One pair of assumptions is

⋄⋄ that the domain is fixed

⋄⋄ and to one observer.

⋄⋄ yields the same analysis and description results

⋄⋄ no matter in which order prompts are “executed”.

• Another assumption is that the domain engineer

⋄⋄ does not get wiser as analysis and description progresses.

• If, as one can very well expect, the domain engineer does get wiser,

⋄⋄ then former results may be discarded and

⋄⋄ either replaced by newer analysis and descriptions

⋄⋄ or prompts repeated.

• In such cases these laws do not hold.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.11. Laws of Descriptions: A Calculus of Prompts

9.1.11. Domains and Galois Connections

• Section 1.1.8 very briefly mentioned that formal concepts form Galois
Connections.

• In the seminal [38] a careful study is made of this fact and beautiful
examples show the implications for domains.

• It seems that our examples have all been too simple.

• They do not easily lead on to the “discovery” of “new” domain
concepts from appropriate concept lattices.

• We refer to [29, Section 9].

• Further study need be done.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.12. Domains and Galois Connections

9.1.12. Laws of Domain Description Prompts

• Typically observe part sorts applies to a composite part, p:P,
and yield descriptions of one or more part sorts: p1:P1,p2:P2,. . . ,pm:Pm.

• Let pi:Pi,pj:Pj,. . . ,pk:Pk (of these) be composite.

• Now observe part sorts(pi) and observe part sorts(pj), etc.,
can be applied and yield texts texti, respectively textj.

• A law of domain description prompts now expresses that the order
in which the two or more observers is applied is immaterial, that is,
they commute.

• In [17] we made an early exploration of such laws of domain descrip-
tion prompts.

• More work, hear also next, need be done.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.13. Laws of Domain Description Prompts

9.1.13. Domain Theories:

• An ultimate goal of domain science & engineering is to prove prop-
erties of domains.

⋄⋄ Well, maybe not properties of domains, but then at least proper-
ties of domain descriptions.

• If one can be convinced that a posited domain description indeed is
a faithful description of a domain,

⋄⋄ then proofs of properties of the domain description

⋄⋄ are proofs of properties of that domain.

• Ultimately domain science & engineering must embrace such studies
of laws of domains.

• Here is a fertile ground for zillions of Master and PhD theses !
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.13. Domain Theories:

Example 110 . A Law of Train Traffic at Stations:

• Let a transport net, n:N, be that of a railroad system.

⋄⋄ Hubs are train stations.

⋄⋄ Links are rail lines between stations.

⋄⋄ Let a train timetable record train arrivals and train departures
from stations.

⋄⋄ And let such a timetable be modulo some time interval, say typi-
cally 24 hours.
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.13. Domain Theories:

• Now let us (idealistically) assume

⋄⋄ that actual trains arrive at and depart from train stations accord-
ing the train timetable and

⋄⋄ that the train traffic includes all and only such trains as are listed
in the train timetable.

A Prerequisite for Requirements Engineering 595 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



596

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.13. Domain Theories:

• Now a law of train traffic expresses

⋄⋄ “Over the modulo time interval of a train timetable it is the
case that

◦◦ the number of trains arriving at a station

◦◦ minus the number of trains ending their journey at that
station

◦◦ plus the number of trains starting their journey at that
station

◦◦ equals number of trains departing from that station.”
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9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.14. Domain Theories:

9.1.14. External Attributes

• More study is needed in order to clarify

⋄⋄ the relations between the various external attributes

⋄⋄ and control theory.
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9. Discussion of Research Topics 2. Requirements Topics

9.2. Requirements Topics
9.2.1. Domain Requirements Methodology

• Further principles, techniques and tools

• for the projection, instantiation, determination, extension and fitting
operations.
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9. Discussion of Research Topics 2. Requirements Topics 2.2. Domain Requirements Methodology

9.2.2. Domain Requirements Operator Theory

• A model of the domain to domain-to-requirements operators:

• projection, instantiation, determination, extension and fitting. (Sect. 4).
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9. Discussion of Research Topics 2. Requirements Topics 2.3. Domain Requirements Operator Theory

9.2.3. Methodology for Interface Requirements

• Sect. 7.3 did not go into sufficient detail as to method principles,
techniques and tools.
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9. Discussion of Research Topics 3. Final Words

9.3. Final Words

Have a Happy & Fruitful R&D Career !
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End of MAP-i Lecture #12:
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10. Bibliography

10. Bibliography
10.1. Bibliographical Notes

• Web page www.imm.dtu.dk/˜dibj/domains/ lists the published
papers and reports mentioned in the next two subsections.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29 602 Domain Science & Engineering



603

10. Bibliography 1. Bibliographical Notes 1.1.

10.1.1. Published Papers

• I have thought about domain engineering for more than 20 years.

• But serious, focused writing only started to appear since [10, Part
IV] — with [8, 7] being exceptions:

⋄⋄ [11] suggests a number of domain science and engineering research
topics;

⋄⋄ [14] covers the concept of domain facets;

⋄⋄ [29] explores compositionality and Galois connections.

⋄⋄ [12, 28] show how to systematically, but, of course, not automat-
ically, “derive” requirements prescriptions from domain descrip-
tions;

⋄⋄ [16] takes the triptych software development as a basis for outlin-
ing principles for believable software management;

⋄⋄ [13, 21] presents a model for Stanis law Leśniewski’s [32] concept
of mereology;
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⋄⋄ [15, 17] present an extensive example and is otherwise a precursor
for the present paper;

⋄⋄ [18] presents, based on the TripTych view of software develop-
ment as ideally proceeding from domain description via require-
ments prescription to software design, concepts such as software
demos and simulators;

⋄⋄ [20] analyses the TripTych, especially its domain engineering ap-
proach, with respect to Maslow’s 34 and Peterson’s and Seligman’s
35 notions of humanity: how can computing relate to notions of
humanity;

⋄⋄ the first part of [22] is a precursor for the present paper with
its second part presenting a first formal model of the elicitation
process of analysis and description based on the prompts more
definitively presented in the current paper; and

⋄⋄ [23] focus on domain safety criticality.
34Theory of Human Motivation. Psychological Review 50(4) (1943):370-96; and Motivation and Personality, Third Edition, Harper and Row Publishers, 1954.
35Character strengths and virtues: A handbook and classification. Oxford University Press, 2004
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The present paper basically replaces the domain analysis and descrip-
tion section of all of the above reference — including [10, Part IV].
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10. Bibliography 1. Bibliographical Notes 1.2. Published Papers

10.1.2. Reports
We list a number of reports all of which document descriptions of

domains. These descriptions were carried out in order to research and
develop the domain analysis and description concepts now summarised
in the present paper. These reports ought now be revised, some slightly,
others less so, so as to follow all of the prescriptions of the current paper.
Except where a URL is given in full, please prefix the web reference with:
http://www2.compute.dtu.dk/~dibj/.

1 A Railway Systems Domain: http://euler.fd.cvut.cz/railwaydomain/
(2003)

2 Models of IT Security. Security Rules & Regulations: it-security.pdf
(2006)

3 A Container Line Industry Domain: container-paper.pdf (2007)

4 The “Market”: Consumers, Retailers, Wholesalers, Producers: themarket.pdf
(2007)
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5 What is Logistics ?: logistics.pdf (2009)

6 A Domain Model of Oil Pipelines: pipeline.pdf (2009)

7 Transport Systems: comet/comet1.pdf (2010)

8 The Tokyo Stock Exchange: todai/tse-1.pdf and todai/tse-2.pdf

(2010)

9 On Development of Web-based Software. A Divertimento: wfdftp.pdf
(2010)

10 Documents (incomplete draft): doc-p.pdf (2013)

A Prerequisite for Requirements Engineering 607 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



608

10. Bibliography 2. References

10.2. References

[1] J.-R. Abrial. The B Book: Assigning Programs to Meanings and
Modeling in Event-B: System and Software Engineering. Cam-
bridge University Press, Cambridge, England, 1996 and 2009.

[2] A. Badiou. Being and Event. Continuum, 2005. (Lêtre et
l’événements, Edition du Seuil, 1988).

[3] G. Birkhoff. Lattice Theory. American Mathematical Society,
Providence, R.I., 3 edition, 1967.

[4] T. Bittner, M. Donnelly, and B. Smith. Endurants and Perdurants
in Directly Depicting Ontologies. AI Communications, 17(4):247–
258, December 2004. IOS Press, in [53].

[5] T. Bittner, M. Donnelly, and B. Smith. Individuals, Universals,
Collections: On the Foundational Relations of Ontology. In A. Varzi
and L. Vieu, editors, Formal Ontology in Information Systems,

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29 608 Domain Science & Engineering



609

Proceedings of the Third International Conference, pages 37–48.
IOS Press, 2004.

[6] D. Bjørner. Programming Languages: Formal Development of In-
terpreters and Compilers. In International Computing Sympo-
sium 77 (eds. E. Morlet and D. Ribbens), pages 1–21. European
ACM, North-Holland Publ.Co., Amsterdam, 1977.

[7] D. Bjørner. Michael Jackson’s Problem Frames: Domains, Re-
quirements and Design. In L. ShaoYang and M. Hinchley, editors,
ICFEM’97: International Conference on Formal Engineering
Methods, Los Alamitos, November 12–14 1997. IEEE Computer
Society. Final Version.

[8] D. Bjørner. Domain Engineering: A ”Radical Innovation” for Sys-
tems and Software Engineering ? In Verification: Theory and
Practice, volume 2772 of Lecture Notes in Computer Science,
Heidelberg, October 7–11 2003. Springer–Verlag. The Zohar Manna

A Prerequisite for Requirements Engineering 609 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29



610

International Conference, Taormina, Sicily 29 June – 4 July 2003.
Final draft version.

[9] D. Bjørner. Software Engineering, Vol. 2: Specification of Sys-
tems and Languages. Texts in Theoretical Computer Science, the
EATCS Series. Springer, 2006. Chapters 12–14 are primarily au-
thored by Christian Krog Madsen.

[10] D. Bjørner. Software Engineering, Vol. 3: Domains, Require-
ments and Software Design. Texts in Theoretical Computer Sci-
ence, the EATCS Series. Springer, 2006.

[11] D. Bjørner. Domain Theory: Practice and Theories, Discussion of
Possible Research Topics. In ICTAC’2007, volume 4701 of Lecture
Notes in Computer Science (eds. J.C.P. Woodcock et al.), pages
1–17, Heidelberg, September 2007. Springer.

[12] D. Bjørner. From Domains to Requirements. In Montanari
Festschrift, volume 5065 of Lecture Notes in Computer Science

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:29 610 Domain Science & Engineering



611

(eds. Pierpaolo Degano, Rocco De Nicola and José Meseguer),
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