Dines Bjgrner’'s MAP-i Lecture # 0

Opening Lecture

Monday, 25 May 2015: 10:00-10:20

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O

Domain Science & Engineering
A Prerequisite for Requirements Engineering

MAP-i: A Universities of Minho, Aveiro and Porto PhD Course

Dines Bjgrner

Fredsvej 11, DK-2840 Holte, Denmark

May 23, 2015: 15:29

rerequisite for Requirements Engineering 1 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

Summary of PhD Course

e This document takes the view that software specifications and pro-
ograms are best understood as mathematical objects.
¢ This is in contrast to other views,
@ notably such which are dominant in the USA,
& that the development of software

& 15 best understood as sociological and psychological objects.

e In this PhD course we cover two aspects of software engineering:

» domain engineering (Lectures 1-6) and
» requirements engineering (Lectures 7-10).

e We also cover some aspects of

< domain science.

e The lectures are supported by extensive material:

» A comprehensive set of lecture notes:
www.imm.dtu.dk/"dibj/portugal/Braga-MAP-1i.pdf,
and

& each lectures by lecture slides:
www.imm.dtu.dk/"dibj/portugal/BLO.pdf--BL11.pdf.

e We will be together Monday, Tuesday and Thursday 10:00-17:30

o ‘Formal Lectures’ alternate
» with ‘Workshop Sessions’.

e In workshop sessions we shall try, You and I, to describe a domain.

» We will select this domain right after lunch today
» and start describing it.
& You are supposed to think about this domain

@ mornings, before wee meet
o and late atternoons, after we have “left”.

e Wednesday I will give a Faculty Seminar:

» A New Foundation for Computing Science
@ 14:00-14:45, Room DI-A2

Monday 25 May, 2015

e LO: Opening Lecture [Slides 1-§]
Monday, 25 May 2015: 10:00-10:20

e L1: An Overview of Domain Description [Slides 9-79]
Monday, 25 May 2015: 10:30-11:15

e L2: Parts [Slides 80-145]
Monday, 25 May 2015: 11:30-12:15

e 1. Workshop: An Example Domain
Monday, 25 May 2015: 12:30-13:00

e Lunch: 13:00-14:30

e L3: Unique ldentifiers, Mereologies and Attributes [Slides 146-202)]
Monday, 25 May 2015: 14:30-15:15

e 2. Workshop: An Example Domain
Monday, 25 May 2015: 15:30-16:15

e L4: Components, Materials — and Discussion of Endurants [Slides,203-241]
Monday, 25 May 2015: 16:45-17:30

A Prerequisite for Requirements Engineering 5 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

Tuesday 26 May, 2015

e L5: Perdurants [242-309]
Tuesday, 26 May 2015: 10:00-10:45

e 3. Workshop: An Example Domain
Tuesday, 26 May 2015: 11:00-11:45

e L6: A Summary Domain Description [310-351]
Tuesday, 26 May 2015: 12:00-13:00

e Lunch: 13:00-14:30

e 4. Workshop: An Example Domain
Tuesday, 26 May 2015: 14:30-15:15

e L7: Requirements — An Overview, and Projection [352-393]
Tuesday, 26 May 2015: 15:30-16:15

e L8: Domain Requirements: Instantiation and Determination [394-423]
Tuesday, 26 May 2015: 16:45-17:30

Wednesday 27 May:
e 14:00-14:45 Faculty Seminar: Room DI-A2

Title: A New Foundation for Computing Science Pa-
per, Slides

Abstract: We argue that computing systems requirements
must be based on precisely described domain models — and
we argue that domain science & engineering offers a new di-
mension in computing. We review our work in this area and
we outline a research and experimental engineering programme
for the triptych of domain enginering, requirements engineering
and software design.

A Prerequisite for Requirements Engineering 7 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

Thursday 28 May, 2015

e L9: Domain Requirements: Extension and Fitting [Slides 424—468]
Thursday, 28 May 2015: 10:00-11:15

e 5. Workshop: Example Domain
Thursday, 28 May 2015: 11:30-12:00

e L10: Interface Requirements [Slides 469-556]
Thursday, 28 May 2015: 12:15-13:00

e Lunch: 13:00-14:30

e 6. Workshop: Example Domain
Thursday, 28 May 2015: 14:30-15:15

e L11: Conclusion [Slides 557-561]
Thursday, 28 May 2015: 15:30-16:30

e L12: Discussion of Research Topics [Slides 562-601]
Thursday, 28 May 2015: 16:45-17:30

Dines Bjgrner’'s MAP-i Lecture # 0

End of MAP-i Lecture # 0:

Opening Lecture

Monday, 25 May 2015: 10:00-10:20

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O

Dines Bjgrner’'s MAP-i Lecture #1

An Overview Of Domain Description

Monday, 25 May 2015: 10:30-11:15

1. Domain Analysis & Description 9

1. Domain Analysis & Description
Abstract

e We show that manifest domains,

@ an understanding of which are

® a prerequisite for software requirements prescriptions,

can be precisely described:

& narrated and & formalised.

A Prerequisite for Requirements Engineering 9 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

10

1. Domain Analysis & Description

e We show that manifest domains can be understood as a collection of

¢ endurant, that is, basically spatial entities:

@ parts, o components and o materials,

and

® perdurant, that is, basically temporal entities:

@ actions, @ events o and behaviours.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 10 Domain Science & Engineering

11

1. Domain Analysis & Description

e We show that parts can be modeled in terms of

& external qualities whether:

@ atomic or
@ composite

parts,
e having internal qualities:

@ unique identifications,
& mereologies, which model relations between parts, and

& attributes.

A Prerequisite for Requirements Engineering 11 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

12

1. Domain Analysis & Description

e We show the manifest domain analysis endeavour can be supported
by a calculus of manifest domain analysis prompts:

e is_entity, ® 1s_composite,

e 1s endurant, e has components,

® 1s _perdurant _
P ’ e has materials,
® 1s part,
, e has concrete _type,
e 1s_component,

e is material, e attribute names,

e is_atomic, e 1s stationary, etcetera.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 12 Domain Science & Engineering

13

1. Domain Analysis & Description

e We show how the manifest domain description endeavour can be
supported by a calculus of manifest domain description prompts:

® observe part _sorts, ® observe mereology,
& _ _ :
observe part._type, ® observe_attributes,
® observe_components,
:] _]
& observe materials. observe_location and

® observe unique _identifier, ® observe position.

A Prerequisite for Requirements Engineering 13 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

14

1. Domain Analysis & Description

e We show how to model essential aspects of perdurants in terms of
their signatures based on the concepts of endurants.

e And we show how one can “compile”

@ descriptions of endurant parts into

& descriptions of perdurant behaviours.
e We do not show prompt calculi for perdurants.
e The above contributions express a method

¢ with principles, technique and tools

@ for constructing domain descriptions.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 14 Domain Science & Engineering

15

1. Domain Analysis & Description 1. Introduction

1.1. Introduction

e The broader subject of this seminar is that of software development.
e The narrower subject is that of manifest domain engineering.

e We see sottware development
in the context of the TripTych approach.

A Prerequisite for Requirements Engineerin 15 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

16

1. Domain Analysis & Description 1. Introduction

e The contribution of this seminar is twofold:

® the propagation of manifest domain engineering
o as a first phase of the development of
@ a large class of software —
and
@ a set of principles, techniques and tools
o for the engineering of the analysis & descriptions
o of manifest domains.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 16

17

1. Domain Analysis & Description 1. Introduction

e These principles, techniques and tools are embodied in a set of anal-
ysis and description prompts.
» We claim that this embodiment in the form of prompts is novel,

» that the (yet to be investigated) “calculus” is a first such “method
calculus”.

A Prerequisite for Requirements Engineerin 17 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

18

1. Domain Analysis & Description 1. Introduction 1.1.

1.1.1. The TripTych Approach to Software Engineering

e We suggest a TripTych view of software engineering:

& before software can be designed and coded
@ we must have a reasonable grasp of “its” requirements;
& before requirements can be prescribed

® we must have a reasonable grasp of “the underlying” domain.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 18 Domain Science & Engineerin:

19

1. Domain Analysis & Description 1. Introduction 1.1. The TripTych Approach to Software Engineering

e To us, therefore, software engineering contains the three sub-disciplines:

@ domain engineering,
® requirements engineering and

@ software design.

A Prerequisite for Requirements Engineering 19 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

20

1. Domain Analysis & Description 1. Introduction 1.1. The TripTych Approach to Software Engineering

e This seminar contributes, we claim, to a methodology
for domain analysis &* domain description.

e References [dines:ugo65:2008]

& show how to “refine” domain descriptions
into requirements prescriptions,

and reference |DomainsSimulatorsDemos2011]

» indicates more general relations between domain descriptions and
@ domain demos,
@ domain simulators and
@ more general domain specific software.

‘When, as here, we write A & B we mean A & B to be one subject.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 20 Domain Science & Engineering

21

1. Domain Analysis & Description 1. Introduction 1.1. The TripTych Approach to Software Engineering

e In branches of engineering based on natural sciences

» professional engineers are educated in these sciences.
& Telecommunications engineers know Maxwell’s Laws.

o Maybe they cannot themselves “discover” such laws,

@ but they can “refine” them into designs,

o for example, for mobile telephony radio transmission towers.
@ Aeronautical engineers know laws of fluid mechanics.

o Maybe they cannot themselves “discover” such laws,

@ but they can “refine” them into designs,

o for example, for the design of airplane wings.

@ And so forth for other engineering branches.

A Prerequisite for Requirements Engineering 21 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

22

1. Domain Analysis & Description 1. Introduction 1.1. The TripTych Approach to Software Engineering

e Our point is here the following:

® software engineers must domain specialise.

& This is already done, to a degree, for designers of

o compilers, o database systems,
@ operating systems, o Internet /Web systems,
etcetera.

@ But is it done for software engineering

o banking systems, o health care,
o traffic systems, @ insurance, etc.”?

& We do not think so, but we claim it should be done.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 22 Domain Science & Engineerin:

23

1. Domain Analysis & Description 1. Introduction 1.2. The TripTych Approach to Software Engineering

1.1.2. Method and Methodology
1.1.2.1. Method

e By a method we shall understand

@ a “somehow structured” set of principles

» for selecting and applying

@ a number of techniques and tools

» for analysing problems and synthesizing solutions

® for a given domain Il

2Definitions and examples are delimited by - TGSp eCtlvely - SymbOIS .

A Prerequisite for Requirements Engineering 23 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

24
1. Domain Analysis & Description 1. Introduction 1.2. Method and Methodology 1.2.1. Method

e The ‘somehow structuring’ amounts,

@ in this treatise on domain analysis & description,

& to the techniques and tools being related to a set of

@ domain analysis & description “prompts”,

& “Issued by the method”,

o prompting the domain engineer,

® hence carried out by the domain analyser & describer? —

@ conditional upon the result of other prompts.

3We shall thus use the term domain engineer to cover both the analyser & the describer.

© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 24 Domain Science & Engineerin:

25
1. Domain Analysis & Description 1. Introduction 1.2. Method and Methodology 1.2.2. Method

1.1.2.2. Discussion

e There may be other ‘definitions’ of the term ‘method’.
e The above is the one that will be adhered to in this seminar.
e T'he main idea 1s that

® there is a clear understanding ot what we mean by, as here,

@ a software development method,
@ in particular a domain analysis & description method.

A Prerequisite for Requirements Engineering 25 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

26
1. Domain Analysis & Description 1. Introduction 1.2. Method and Methodology 1.2.2. Discussion

e The main principles of the TripTych
domain analysis and description approach are those ot
& abstraction and both

o narrative and
o formal

@ modeling.
¢ This means that evolving domain descriptions

o necessarily limit themselves to a subset of the domain
o focusing on what is considered relevant, that is,
@ abstract “away’ some domain phenomena.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 26 Domain Science & Engineerin:

27
1. Domain Analysis & Description 1. Introduction 1.2. Method and Methodology 1.2.2. Discussion

e The main techniques of the TripTych
domain analysis and description approach are

@ besides those techniques which are in general associated with for-
mal descriptions,

» focus on the techniques that relate to the deployment of
of the individual prompts.

A Prerequisite for Requirements Engineering 27 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

28
1. Domain Analysis & Description 1. Introduction 1.2. Method and Methodology 1.2.2. Discussion

e And the main tools of the TripTych
domain analysis and description approach are

& the analysis and description prompts and the

» description language, here the Raise Specification Language RSL.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 28 Domain Science & Engineerin:

29
1. Domain Analysis & Description 1. Introduction 1.2. Method and Methodology 1.2.2. Discussion

e A main contribution of this seminar is therefore

» that of “painstakingly” elucidating the

@ principles, o techniques and @ tools

of the domain analysis & description method.

A Prerequisite for Requirements Engineering 29 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

30
1. Domain Analysis & Description 1. Introduction 1.2. Method and Methodology 1.2.3. Discussion

1.1.2.3. Methodology

e By methodology we shall understand
& the study and knowledge

» about one or more methods* 1M

4Please note our distinction between method and methodology. We often find the two, to us, separate terms used interchangeably.

© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 30

31

1. Domain Analysis & Description 1. Introduction 1.3. Method and Methodology

1.1.3. Computer and Computing Science

e By computer science we shall understand

» the study and knowledge of

o the conceptual phenomena
o that “exists” inside computers

@ and, in a wider context than just computers and computing,

o of the theories “behind” their
o formal description languages Ml

e Computer science is often also referred to as theoretical computer
science.

A Prerequisite for Requirements Engineering 31 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

32

1. Domain Analysis & Description 1. Introduction 1.3. Computer and Computing Science

e By computing science we shall understand

» the study and knowledge of

@ how to construct
o and describe

those phenomena [l

e Another term for computing science is programming methodology.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 32 Domain Science & Engineerin:

33

1. Domain Analysis & Description 1. Introduction 1.3. Computer and Computing Science

e This paper is a computing science paper.
@ It is concerned with the construction of domain descriptions.
» It puts forward a calculus for analysing and describing domains.
& It does not theorize about this calculus.

& There are no theorems about this calculus and hence no proofs.

» We leave that to another study and paper.

A Prerequisite for Requirements Engineering 33 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

34

1. Domain Analysis & Description 1. Introduction 1.4. Computer and Computing Science

1.1.4. What Is a Manifest Domain ?

e We offer a number of complementary delineations of
what we mean by a manifest domain.

e But first some examples, “by name” !

Example 1. Manifest Domain Names: Examples of suggestive
names of manifest domains are:

e air traffic, e hospitals,
e banks, e pipelines,
e container lines, e railways and

e documents, e road nets R

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 34 Domain Science & Engineering

35

1. Domain Analysis & Description 1. Introduction 1.4. What Is a Manifest Domain ?

e A manifest domain is a

& human- and
& artifact-assisted
@ arrangement of

o endurant, that is spatially “stable”, and
o perdurant, that is temporally “fleeting”

entities.

o Endurant entities are

o either parts @ Or components o or materials.

& Perdurant entities are

o elther actions ©® Or events o or behaviours N

A Prerequisite for Requirements Engineering 35 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

36

1. Domain Analysis & Description 1. Introduction 1.4. What Is a Manifest Domain ?

Example 2 . Manifest Domain Endurants: Examples of (names
of) endurants are

o Air traffic: aircraft, airport, air lane.

& Banks: client, passbook.

» Container lines: container, container vessel, terminal port.

» Documents: document, document collection.

» Hospitals: patient, medical staff, ward, bed, medical journal.

& Pipelines: well, pump, pipe, valve, sink, olil.

» Railways: simple rail unit, point, crossover, line, track, station.

» Road nets: link (street segment), hub (street intersection)

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 36 Domain Science & Engineering

37

1. Domain Analysis & Description 1. Introduction 1.4. What Is a Manifest Domain ?

Example 3 . Manifest Domain Perdurants: Examples of (names
of) perdurants are

o Air traffic: start (ascend) an aircraft, change aircraft course.

» Banks: open, deposit into, withdraw from, close (an account).

» Container lines: move container off or on board a vessel.

» Documents: open, edit, copy, shred.

» Hospitals: admit, diagnose, treat (patients).

& Pipelines: start pump, stop pump, open valve, close valve.

» Railways: switch rail point, start train.

» Road nets: set a hub signal, sense a vehicle IR

A Prerequisite for Requirements Engineerin 37 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

38

1. Domain Analysis & Description 1. Introduction 1.4. What Is a Manifest Domain ?

» A manifest domain is further seen as a mapping
o from entities
o to qualities,
that is, a mapping
o from manifest phenomena
@ to usually non-manifest qualities il

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 38

39
1. Domain Analysis & Description 1. Introduction 1.4. What Is a Manifest Domain ?

Example 4 . Endurant Entity Qualities: Examples of (names of) endurant quali-
ties:

e Pipeline:
& unique identity of a pipeline unit,
& mereology (connectedness) of a pipeline unit,
% length of a pipe,
& (pumping) height of a pump,
& open/close status of a valve.

e Road net:

& unique identity of a road unit (hub or link),
& road unit mereology:
@ identity of neighbouring hubs of a link,

@ identity of links emanating from a hub,

® and state of hub (traversal) signal N

© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

40
1. Domain Analysis & Description 1. Introduction 1.4. What Is a Manifest Domain ?

Example 5. Perdurant Entity Qualities: Examples of (names of)
perdurant qualities:

¢ Pipeline:

® the signature of an open (or close) valve action,
® the signature of a start (or stop) pump action,

® etc.
¢ Road net:

® the signature of an insert (or remove) link action,
® the signature of an insert (or remove) hub action,

@ the signature of a vehicle behaviour,

@ etc. 1N

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 40 Domain Science & Engineering

41

1. Domain Analysis & Description 1. Introduction 1.4. What Is a Manifest Domain ?

e Our definitions of what a manifest domain 1is

@ are, to our own taste, not fully adequate;

» they ought be so sharp that one can unequivocally distinguish
such domains that are not manifest domains from those which are

().

@ Examples of the former are:

o the Internet, @ operating systems,
o language compilers, o data bases,
etcetera.

e As we progress we shall sharpen our definition of ‘manitfest domain'’.

We shall in the rest of this seminar just write ‘domain’ instead of
‘manifest domain’.

A Prerequisite for Requirements Engineering 41 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

42

1. Domain Analysis & Description 1. Introduction 1.5. What Is a Manifest Domain ?

1.1.5. What Is a Domain Description ?

e By a domain description we understand

& a collection of pairs of

& narrative and
commensurate

& formal
texts, where each pair describes

@ either aspects of an endurant entity

@ or aspects of a perdurant entity Ml

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 42

43

1. Domain Analysis & Description 1. Introduction 1.5. What Is a Domain Description ?

e What does it mean that some text describes a domain entity 7
e For a text to be a description text it must be possible

@ to either, if it is a narrative,
o to reason, informally, that the designated entity
o 18 described to have some properties
o that the reader of the text can observe
o that the described entities also have;
@ or, if it is a formalisation
o to prove, mathematically,
o that the formal text
o denotes the postulated properties il

A Prerequisite for Requirements Engineering 43 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

44

1. Domain Analysis & Description 1. Introduction 1.5. What Is a Domain Description ?

Example 6 . Narrative Description of Bank System Endurants:

1 A banking system consists of a bank and collections of clients and of
passbooks.

2 A bank attribute is that of a general ledger.

3 A collection of clients is a set of uniquely identified clients.

4 A collection of passbooks is a set of uniquely identified passbooks.
5 A client “possess” zero, one or more passbook identifiers.

6 Two or more clients may share the same passbook.

7 The general ledger records, for each passbook identifier, amongst
others, the set of one or more client identifiers sharing that passbook,
ete.

Etcetera R

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 44 Domain Science & Engineering

1. Domain Analysis & Description 1. Introduction 1.5. What Is a Domain Description ?

45

Example 7 . Formal Description of Bank System Endurants:

type

1. B, CC, CPB

value

1. obs_part_CC: B — CC,

1. obs_part CPB: B — CPB
type

2. GL

value
2. attr_GL: B — GL

Etcetera R

A Prerequisite for Requirements Engineering 45

type

3. C Cl CC = C-set,

4. PB, PBI, CPB = PB-set
value

5. attr_ C: C — PBIl-set

type
7. GL =PBIl - SH x ...
7. SH = PBI-set

46

1. Domain Analysis & Description 1. Introduction 1.5. What Is a Domain Description ?

Example 8 . Narrative Description of Bank System Perdurants:

8 Clients and the bank possess cash (i.e., monies).
9 Clients can open a bank account and receive in return a passbook.

10 Clients may deposit monies into an account in response to which the
passbook and the general ledger are updated.

11 Clients may withdraw monies from an account: if the balance of
monies in the designated account is not less than the requested
amount the client is given the (natural number) designated monies
and the passbook and the general ledger are updated.

Etcetera R

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 46 Domain Science & Engineering

47

1. Domain Analysis & Description 1. Introduction 1.5. What Is a Domain Description ?

Example 9 . Formal Description of Bank System Perdurants:

type

8. M

value

8. attr M: (B|C) - M

9. open: B— B x PB

10. deposit: PB - M — B — B x PB

11. withdraw: PB — B — Nat — B x PB x M
Etcetera R

A Prerequisite for Requirements Engineerin 47 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

48

1. Domain Analysis & Description 1. Introduction 1.5. What Is a Domain Description ?

e By a domain description we shall thus understand a text

which describes

& the entities of the domain:

@ whether endurant or perdurant,
o and when endurant whether

x discrete or continuous,

x atomic or composite;
o or when perdurant whether

x actions,

x events or

+ behaviours.

@ as well as the qualities of these entities.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 48

49

1. Domain Analysis & Description 1. Introduction 1.5. What Is a Domain Description ?

e S0 the task of the domain analyser cum describer is clear:

@ There is a domain: right in front of our very eyes,

& and 1t 1s expected that that domain be described.

A Prerequisite for Requirements Engineering 49 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

20

1. Domain Analysis & Description 1. Introduction 1.6. What Is a Domain Description ?

1.1.6. Towards a Methodology of Domain Analysis & Description
1.1.6.0.1 Practicalities of Domain Analysis & Description

e How does one go about analysing & describing a domain 7
@ Well, for the first,

@ one has to designate one or more domain analysers cum

@ domain describers,

o 1.e., trained domain scientists cum domain engineers.

» How does one get hold of a domain engineer ”

o One takes a software engineer and educates and trains that per-
son 1n
+ domain science &
+ domain engineering.

o A derivative purpose of this seminar is to
unveil aspects of domain science & domain engineering.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 50 Domain Science & Engineering

o1

1. Domain Analysis & Description 1. Introduction 1.6. Towards a Methodology of Domain Analysis & Description

e The education and training consists in bringing forth

@ a number of scientific and engineering issues

@ of domain analysis and @ of domain description.

» Among the engineering issues are such as:

o what do I do when confronted
+ with the task of domain analysis 7 and
+ with the task of description 7 and
o when, where and how do I
x select and apply
+ which techniques and which tools”

A Prerequisite for Requirements Engineering 51 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

52
1. Domain Analysis & Description 1. Introduction 1.6. Towards a Methodology of Domain Analysis & Description

e [inally, there is the issue of

& how do I, as a domain describer, choose appropriate

o abstractions and @ models ?
1.1.6.0.2 The Four Domain Analysis & Description “Players”

e We can say that there are four ‘players’ at work here.

@ the domain,
@ the domain analyser & describer,
@ the domain analysis & description method, and

@ the evolving domain analysis & description.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 52 Domain Science & Engineerin:

23

1. Domain Analysis & Description 1. Introduction 1.6. Towards a Methodology of Domain Analysis & Description

e T'he domain is there.

@ The domain analyser & describer cannot change the domain.
& Analysing & describing the domain does not change it

» In a meta-physical sense it is inert.

& In the physical sense the domain will usually contain

o entities that are static (i.e., constant), and
o entities that are dynamic (i.e., variable).

*Observing domains, such as we are trying to encircle the concept of domain, is not
like observing the physical world at the level of subatomic particles. The experimental
physicists’ instruments of observation changes what is being observed.

A Prerequisite for Requirements Engineering 53 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

54
1. Domain Analysis & Description 1. Introduction 1.6. Towards a Methodology of Domain Analysis & Description

e The domain analyser & domain describer is a human,

o preferably a scientist /engineer?,

o well-educated and trained in domain science & engineering.
@ The domain analyser & describer

@ observes the domain,
o analyses it according to a method and
o thereby produces a domain description.

sAt the present time domain analysis appears to be partly an art, partly a scien-
tific endeavour. Until such a time when domain analysis & description principles,
techniques and tools have matured it will remain so.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 54 Domain Science & Engineering

25

1. Domain Analysis & Description 1. Introduction 1.6. Towards a Methodology of Domain Analysis & Description

e As a concept the method is here considered “fixed”.
» By ‘fixed’” we mean that its principles, techniques and tools do not
change during a domain analysis & description.
@ The domain analyser & describer

o may very well apply these principles, techniques and tools
o more-or-less haphazardly,

o flaunting the method,

o but the method remains invariant.

¢ The method, however, may vary

o from one domain analysis & description (project)
o to another domain analysis & description (project).

@ Domain analysers & describers do become
wiser from a project to the next.

A Prerequisite for Requirements Engineering 55 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

26

1. Domain Analysis & Description 1. Introduction 1.6. Towards a Methodology of Domain Analysis & Description

e Finally there is the evolving domain analysis & description.

®» That description is a text, usually both informal and formal.
» Applying a domain description prompt to the domain

o yields an additional domain description text
o which is added to the thus evolving domain description.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 56 Domain Science & Engineerin:

27

1. Domain Analysis & Description 1. Introduction 1.6. Towards a Methodology of Domain Analysis & Description

» One may speculate of the role of the “input” domain description.
@ Does it change?
@ Does it help determine the additional domain description text 7
o Ktcetera.

» Without loss of generality we can assume

o that the “input” domain description is changed and
o that it helps determine the added text.

A Prerequisite for Requirements Engineering 57 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

o8

1. Domain Analysis & Description 1. Introduction 1.6. Towards a Methodology of Domain Analysis & Description

e Of course, analysis & description is a trial-and-error, iterative pro-
Ccess.
@ During a sequence of analyses,
& that is, analysis prompts,
& the analyser “discovers”
& either more pleasing abstractions
& or that earlier analyses or descriptions
@ were wrong.

& 50 they are corrected.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 58 Domain Science & Engineering

29

1. Domain Analysis & Description 1. Introduction 1.6. Towards a Methodology of Domain Analysis & Description

1.1.6.0.3 An Interactive Domain Analysis & Description Dialogue

e We see domain analysis & description

@ as a process involving the above-mentioned four ‘players’,
® that is, as a dialogue

@ between the domain analyser & describer and the domain,
¢ where the dialogue is guided by the method

¢ and the result is the description.
e We see the method as a ‘player’ which issues prompts:

& alternating between:
o ‘analyse this” (analysis prompts) and

o “describe that” (synthesis or, rather, description prompts).

A Prerequisite for Requirements Engineering 59 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

60
1. Domain Analysis & Description 1. Introduction 1.6. Towards a Methodology of Domain Analysis & Description

1.1.6.0.4 Prompts
e In this paper we shall suggest

@ a number of domain analysis prompts and

@ a number of domain description prompts.
e The domain analysis prompts,

» (schematically: analyse named condition(e))
& directs the analyser to inquire
@ as to the truth of whatever the prompt “names”

@ at wherever part (component or material), e, in the domain
the prompt so designates.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 60 Domain Science & Engineerin:

61

1. Domain Analysis & Description 1. Introduction 1.6. Towards a Methodology of Domain Analysis & Description

e Based on the truth value of an analysed entity the domain analyser
may then be prompted to describe that part (or material).

e The domain description prompts,

® (schematically: describe type or quality(e))
o directs the (analyser cum) describer to formulate
@ both an informal and a formal description

® of the type or qualities of the entity
designated by the prompt.

e The prompts form languages, and there are thus two languages at
play here.

A Prerequisite for Requirements Engineerin 61 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2
q q g g

62

1. Domain Analysis & Description 1. Introduction 1.6. Towards a Methodology of Domain Analysis & Description

1.1.6.0.5 A Domain Analysis & Description Language

e The ‘Domain Analysis & Description Language’ thus consists of a
number of meta-functions, the prompts.
» The meta-functions have names (say is_endurant) and types,
@ but have no formal definition.
®» They are not computable.

@ They are “performed”
by the domain analysers & describers.

®» These meta-functions are systematically introduced
and informally explained in Sect. 2.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 62 Domain Science & Engineering

63

1. Domain Analysis & Description 1. Introduction 1.6. Towards a Methodology of Domain Analysis & Description

1.1.6.0.6 The Domain Description Language

e The ‘Domain Description Language’ is RSL [39], the RAISE Specification
Language [40].
e With suitable, simple adjustments it could also be either of

®» Alloy [45],
© Event B 1,
< VDM-SL [30, 31, 37] Or
& 2 [55].
e We have chosen RSL because of its simple provision for

@ defining sorts,
& expressing axioms, and

& postulating observers over sorts.

A Prerequisite for Requirements Engineerin 63 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

64

1. Domain Analysis & Description 1. Introduction 1.6. Towards a Methodology of Domain Analysis & Description

1.1.6.0.7 Domain Descriptions: Narration & Formalisation

e Descriptions

& must be readable and

® should be mathematically precise.’

e For that reason we decompose domain description fragments into
clearly identified “pairs” of

& narrative texts and

& formal texts.

‘One must insist on formalised domain descriptions in order to be able to verify that
domain descriptions satisty a number of properties not explicitly formulated as well
as in order to verify that requirements prescriptions satisty domain descriptions.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 64 Domain Science & Engineering

65

1. Domain Analysis & Description 1. Introduction 1.7. Towards a Methodology of Domain Analysis & Description

1.1.7. One Domain — Many Models ?

e Will two or more domain engineers cum scientists
arrive at “the same domain description” 7

e No, almost certainly not!
e What do we mean by “the same domain description” 7
® To each proper description we can associate

a mathematical meaning, its semantics.

@ Not only is it very unlikely that the syntactic form of the
domain descriptions are the same or even “marginally similar” .

o But it is also very unlikely that the two (or more) semantics are
the same;

& that is, that all properties that can be
proved for one domain model can be proved also for the other,
and vice versa.

A Prerequisite for Requirements Engineering 65 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

66

1. Domain Analysis & Description 1. Introduction 1.7. One Domain — Many Models ?

e Why will different domain models emerge 7

o Two different domain describers will, undoubtedly,
¢ when analysing and describing independently;,
& focus on different aspects of the domain.
@ One describer may focus attention on certain phenomena,
o different from those chosen by another describer.
@ One describer may choose some abstractions
@ where another may choose more concrete presentations.
o Htcetera.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 66 Domain Science & Engineerin:

67

1. Domain Analysis & Description 1. Introduction 1.7. One Domain — Many Models ?

e We can thus expect that a set of domain description developments
lead to a set of distinct models.

@ As these domain descriptions

o are communicated amongst domain engineers cum scientists
@ we can expect that iterated domain description developments
o within this group of developers

o will lead to fewer and more similar models.

& Just like physicists,
@ over the centuries of research,

o have arrived at a few models of nature,

o we can expect there to develop some consensus model of “stan-
dard” domains.

A Prerequisite for Requirements Engineering 67 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

68

1. Domain Analysis & Description 1. Introduction 1.7. One Domain — Many Models ?

e We expect, that sometime in future, software engineers,
® when commencing software development
for a “standard domain”, that is,
@ one for which there exists one or more “standard models”,
o will start with the development of a domain description
@ based on “one of the standard models” —
& just like control engineers of automatic control

@ ‘“repeat’” an essence of a domain model for a control problem.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 68 Domain Science & Engineerin:

69

1. Domain Analysis & Description 1. Introduction 1.8. One Domain — Many Models ?

1.1.8. Formal Concept Analysis

e Domain analysis involves that of concept analysis.

e As soon as we have identified an entity for analysis
we have identified a concept.

» The entity is a spatio-temporal, i.e., a physical thing.
& Once we speak of it, it becomes a concept.

e Instead of examining just one entity the domain analyser shall ex-
amine many entities.

e Instead of describing one entity the domain describer shall describe
a class of entities.

e Ganter & Wille’s [38] addresses this issue.

A Prerequisite for Requirements Engineerin 69 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

70

1. Domain Analysis & Description 1. Introduction 1.8. Formal Concept Analysis 1.8.1.

1.1.8.1. A Formalisation
Some Notation:

e By & we shall understand the type of entities;

e by [E we shall understand an entity of type &:;

e by O we shall understand the type of qualities;

e by Q we shall understand a quality of type O:;

e by £-set we shall understand the type of sets of entities;

e by [ES we shall understand a set of entities of type £-set;

e by O-set we shall understand the type of sets of qualities; and
e by QS we shall understand a a set of qualities of type OQ-set.

70 Domain Science & Engineering

71

1. Domain Analysis & Description 1. Introduction 1.8. Formal Concept Analysis 1.8.1. A Formalisation

Definition: 1 Formal Context:
e A formal context K := (ES, I, QS) consists of two sets;
o ES of entities and
» QS of qualities,
and a

» relation I between E and Q. O

e To express that K is in relation I to a Quality Q we write

o E-1-Q, which we read as
® “entity £ has quality Q7.

A Prerequisite for Requirements Engineering 71 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

72

1. Domain Analysis & Description 1. Introduction 1.8. Formal Concept Analysis 1.8.1. A Formalisation

e [ixample endurant entities are

% a specific vehicle,

% another specific vehicle,

> etcetera;

& a specific street segment (link),

¢ another street segment,

& etcetera;
® a specific road intersection (hub),
% another specific road intersection,
& etcetera,

& a monitor.

e [ixample endurant entity qualities are

& (a vehicle) has mobility,
& (a vehicle) has velocity (>0),
& (a vehicle) has acceleration,

& etcetera;

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

a link) has length (>0),

@ (
& (a link)has location,

& (a link)has traffic state,

® etcetera.

72 Domain Science & Engineerin

73

1. Domain Analysis & Description 1. Introduction 1.8. Formal Concept Analysis 1.8.1. A Formalisation

Definition: 2 Qualities Common to a Set of Entities:

e For any subset, sES C [ES, of entities we can define DQ for “de-
rive|d] set of qualities”.

DQ : E-set — (E-set x T x Q-set) — O-set
DO(sES)(ES,I,QS) = {Q | Q:Q,E:£ -EcsES AE-T-Q}
pre: sES C ES

The above expresses: “the set of qualities common to entities in
SES”. O

A Prerequisite for Requirements Engineering 73 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

74

1. Domain Analysis & Description 1. Introduction 1.8. Formal Concept Analysis 1.8.1. A Formalisation

Definition: 3 Entities Common to a Set of Qualities:

e For any subset, sQS C QS, of qualities we can define DE for “de-
rive|d] set of entities”.

DE: O-set — (E-set x T x Q-set) — E-set
DE(sQS)(ES,I,QS) = {E | E£, Q:Q-QesQAE-T-Q },
pre: sQS C QS

The above expresses: “the set of entities which have all qualities

in sQS”. N

75

1. Domain Analysis & Description 1. Introduction 1.8. Formal Concept Analysis 1.8.1. A Formalisation

Definition: 4 Formal Concept:

e A formal concept of a context K is a pair:

o (sQ, sE) where
o DO(sE)(E,I,Q) = sQ and
o DE(SQ)(E,1,Q) = sE;
o sQ 1s called the intent of K and sE is called the extent of K. m

A Prerequisite for Requirements Engineering 75 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

76

1. Domain Analysis & Description 1. Introduction 1.8. Formal Concept Analysis 1.8.2. A Formalisation

1.1.8.2. Types Are Formal Concepts

e Now comes the “crunch”:

@ In the TripTych domain analysis

& we strive to find formal concepts

& and, when we think we have found one,
® we assign a type (or a sort)

& and qualities to it!

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 76

7

1. Domain Analysis & Description 1. Introduction 1.8. Formal Concept Analysis 1.8.3. Types Are Formal Concepts

1.1.8.3. Practicalities
e There is a little problem.

& To search for all those entities of a domain
@ which each have the same sets of qualities
& 1s not feasible.

e S0 we do a combination of two things:

@ we identify a small set of entities
o all having the same qualities
o and tentatively associate them with a type, and
@ we identify certain nouns of our national language
o and if such a noun
+ does indeed designate a set of entities
+ all having the same set of qualities
o then we tentatively associate the noun with a type.

A Prerequisite for Requirements Engineering 77 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

78

1. Domain Analysis & Description 1. Introduction 1.8. Formal Concept Analysis 1.8.3. Practicalities

e Having thus, tentatively, identified a type

® we conjecture that type
& and search for counterexamples,

o that is, entities which
o refutes the conjecture.

e This “process” of conjectures and refutations is iterated

& until some satisfaction i1s arrived at

®» that the postulated type constitutes a reasonable conjecture.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 78 Domain Science

79

1. Domain Analysis & Description 1. Introduction 1.8. Formal Concept Analysis 1.8.4. Practicalities

1.1.8.4. Formal Concepts: A Wider Implication

e The formal concepts of a domain form Galois Connections [3§].
» We gladly admit that this fact is one of the reasons why we em-
phasise formal concept analysis.

& At the same time we must admit that this seminar does not do
justice to this fact.

@ We have experimented with the analysis & description of a number
of domains

o and have noticed such Galois connections

& but it is, for us, too early to report on this.

e Thus we invite the student to study this aspect of domain analysis.

A Prerequisite for Requirements Engineerin 79 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

Dines Bjgrner’'s MAP-i Lecture # 1

End of MAP-i Lecture # 1:
An Overview Of Domain Description

Monday, 25 May 2015: 10:30-11:15

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O

Dines Bjgrner’'s MAP-i Lecture # 2

Parts

Monday, 25 May 2015: 11:30-12:15

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O

80 1. Domain Analysis & Description 2. Endurant Entities

1.2. Endurant Entities

e In the rest of this seminar we shall consider entities in the context of their being
manifest (i.e., spatio-temporal).

1.2.1. General
Definition 1 . Entity:

e By an entity we shall understand a phenomenon, i.e., something

% that can be observed, i.e., be
@ seen or @ touched

by humans,
& or that can be conceived
® as an abstraction

@ of an entity.

© We further demand that an entity can be objectively described s

8Definitions and examples are delimited by - YGSp eCtl\/'ely -

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 80 Domain Science & Engineering

81
1. Domain Analysis & Description 2. Endurant Entities 2.1. General

Analysis Prompt 1. is entity:

e The domain analyser analyses “things” (0) into either entities
or non-entities.

e The method can thus be saitd to provide the domain analysis
prompt:

» 1s_entity — where is_entity (@) holds if 0 is an entity
m’

e is entityissaid to be a prerequisite prompt for all other prompts.

9Analysis prompt definitions and description prompt definitions and schemes are delimited by - feSp eCt lVely -

A Prerequisite for Requirements Engineering 81 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

82
1. Domain Analysis & Description 2. Endurant Entities 2.1. General

Whither Entities:
e The “demands” that entities
@ be observable and objectively describable
raises some philosophical questions.
e Are sentiments, like feelings, emotions or “hunches” observable 7
e This author thinks not.
e And, if so, can they be other than artistically described 7
e [t seems that
® psychologically and
& aesthetically
“phenomena’ appears to lie beyond objective description.

e We shall leave these speculations for later.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 82 Domain Science & Engineering

83

1. Domain Analysis & Description 2. Endurant Entities 2.2. General

1.2.2. Endurants and Perdurants

Definition 2. Endurant:
e By an endurant we shall understand an entity

& that can be observed or conceived and described
® as a “‘complete thing”

® at no matter which given snapshot of time.
Were we to “freeze” time

o we would still be able to observe the entire endurant R

e That is, endurants “reside” in space.

e Endurants are, in the words of Whitehead (1920), continuants.

A Prerequisite for Requirements Engineerin 83 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

84

1. Domain Analysis & Description 2. Endurant Entities 2.2. Endurants and Perdurants

Example 10 . Traffic System Endurants:
Examples of traflic system endurants are:

e traflic system,
e road nets,
o fleets of vehicles,

e sets of hubs,

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

e sets of links,
e hubs,

e links and

e vehicles R

84

85

1. Domain Analysis & Description 2. Endurant Entities 2.2. Endurants and Perdurants

Definition 3. Perdurant:
e By a perdurant we shall understand an entity

@ for which only a fragment exists
of we look at or touch them
at any given snapshot in time, that 1s,

» where we to freeze time we would only see or touch
a fragment of the perdurant 1l

e That is, perdurants “reside” in space and time.

e Perdurants are, in the words of Whitehead(1920), occurrents.

A Prerequisite for Requirements Engineerin 85 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

86

1. Domain Analysis & Description 2. Endurant Entities 2.2. Endurants and Perdurants

Example 11 . Traffic System Perdurants:
Examples of road net perdurants are:

e insertion and removal of hubs or links (actions),
e disappearance of links (events),
e vehicles entering or leaving the road net (actions),

e vehicles crashing (events) and

e road traffic (behaviour) il

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 86

87

1. Domain Analysis & Description 2. Endurant Entities 2.2. Endurants and Perdurants

Analysis Prompt 2. is_endurant:

e The domain analyser analyses an entity, ¢, into an endurant as
prompted by the domain analysis prompt:

» 1s_endurant — ¢ is an endurant if is_endurant (¢) holds.

e ts_entity is a prerequisite prompt for is_endurant Ml

Analysis Prompt 3. s perdurant:

e The domain analyser analyses an entity ¢ into perdurants as
prompted by the domain analysis prompt:

» 1s_perdurant — ¢ 1S a perdurant if is_perdurant (¢) holds.

e is_entity is a prerequisite prompt for is_perdurant M

A Prerequisite for Requirements Engineering 87 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

88

1. Domain Analysis & Description 2. Endurant Entities 2.2. Endurants and Perdurants

e [n the words of Whitehead(1920) — as communicated by Sowa(2000)

¢ an endurant has stable qualities that enable its various appear-
ances at different times to be recognised as the same individual;

@ a perdurant is in a state of flux that prevents it from being recog-
nised by a stable set of qualities.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 88 Domain Science & Engineering

89

1. Domain Analysis & Description 2. Endurant Entities 2.2. Endurants and Perdurants

Necessity and Possibility:
e It is indeed possible to make the endurant/perdurant distinction.
e But is it necessary ’
e We shall argue that it is ‘by necessity’ that we make this distinction.

@ Space and time are fundamental notions.
® They cannot be dispensed with.

@ 50, to describe manifest domains without resort to space and time
is not reasonable.

A Prerequisite for Requirements Engineering 89 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

90

1. Domain Analysis & Description 2. Endurant Entities 2.3. Endurants and Perdurants

1.2.3. Discrete and Continuous Endurants

Definition 4 . Discrete Endurant:

e By a discrete endurant we shall understand
an endurant which s

® separate,
& individual or

& distinct

in form or concept M

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 90

91

1. Domain Analysis & Description 2. Endurant Entities 2.3. Discrete and Continuous Endurants

Example 12 . Discrete Endurants:

e Fixamples of discrete endurants are

& a road net, & a hub,
& a link, & a vehicle,
A Prerequisite for Requirements Engineerin g 91

» a traflic signal,
@ etcetera R

© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

92

1. Domain Analysis & Description 2. Endurant Entities 2.3. Discrete and Continuous Endurants

Definition 5. Continuous Endurant:

e By a continuous endurant we shall understand
an endurant which s

& prolonged, without interruption,

® in an unbroken series or pattern M

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 92

93

1. Domain Analysis & Description 2. Endurant Entities 2.3. Discrete and Continuous Endurants

Example 13 . Continuous Endurants:

e Fixamples of continuous endurants are

& water, ® gas, ® graln,

& 01l, & sand, & etcetera

A Prerequisite for Requirements Engineering 93 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

94

1. Domain Analysis & Description 2. Endurant Entities 2.3. Discrete and Continuous Endurants

Analysis Prompt 4. is_discrete:

o The domain analyser analyse endurants e into discrete entities
as prompted by the domain analysis prompt:

® 15 discrete — e 1s discrete if is_discrete(e) holds Il

Analysis Prompt 5. is_continuous:

e The domain analyser analyse endurants e into continuous enti-
ties as prompted by the domain analysis prompt:

® 1s_continuous — e 1s continuous if 1s_continuous (e) holds

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 94 Domain Science & Engineering

95

1. Domain Analysis & Description 2. Endurant Entities 2.4. Discrete and Continuous Endurants

1.2.4. Parts, Components and Materials
1.2.4.1. General

Definition 6 . Part:

e By a part we shall understand

® a discrete endurant
& which the domain engineer chooses
®» to endow with internal qualities such as

o unique tdentification,
o mereology, and
@ one or more attributes M

We shall define the terms ‘unique identification’, ‘mereology’. and ‘at-
tributes’ shortly.

A Prerequisite for Requirements Engineering 95 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

96

1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.1. General

Example 14 . Parts: Example

e 10 on Slide 84 illustrated,
and examples

e 18 on Slide 109 and

e 19 on Slide 111 illustrate
parts Nl

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

96

97

1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.1. General

Definition 7. Component:
e By a component we shall understand

®» a discrete endurant
® which we, the domain analyser cum describer chooses

®» to not endow with internal qualities M

A Prerequisite for Requirements Engineering 97 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

98

1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.1. General

Example 15 . Components:
e ['xamples of components are:

@ chairs, tables, sofas and book cases in a living room,
& letters, newspapers, and small packages in a mail box,
¢ machine assembly units on a conveyor belt,

@ boxes in containers of a container vessel,

® etcetera

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 98 Domain Science

99

1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.1. General

" At the Discretion of the Domain Engineer”:
e We emphasise the following analysis and description aspects:

» (a) The domain is full of observable phenomena.

o It is the decision of the domain analyser cum describer
o whether to analyse and describe some such phenomena,
o that is, whether to include them in a domain model.

® (b) The borderline between an endurant
o being (considered) discrete or
@ being (considered) continuous
o is fuzzy.
o It is the decision of the domain analyser cum describer
o whether to model an endurant as discrete or continuous.

A Prerequisite for Requirements Engineering 99 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

100

1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.1. General

» (¢) The borderline between a discrete endurant
@ being (considered) a part or
@ being (considered) a component
o is fuzzy.
o It is the decision of the domain analyser cum describer
o whether to model a discrete endurant as a part or as a compo-
nent.
o (d) We shall later show how to “compile” parts into processes.
o A factor, therefore, in determining whether
o to model a discrete endurant as a part or as a component

o 18 whether we may consider a discrete endurant as also repre-
senting a process.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 100 Domain Science & Engineeri

101

1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.1. General

Definition 8 . Material:

e By a material we shall understand a continuous endurant Ml

Example 16 . Materials: Examples of material endurants are:
e air of an air conditioning system,
e grain of a silo,
e gravel of a barge,
e 0il (or gas) of a pipeline,
e sewage of a waste disposal system, and

e water of a hydro-electric power plant. [l

A Prerequisite for Requirements Engineering 101 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

102

1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.1. General

Example 17 . Parts Containing Materials:
e Pipeline units are here considered discrete, i.e., parts.

e Pipeline units serve to convey material [l

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 102 Domain Science

103

1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.2. General

1.2.4.2. Part, Component and Material Prompts
Analysis Prompt 6. ¢s_part:

e The domain analyser analyse endurants e into part entities as
prompted by the domain analysis prompt:

® 1s_part — e is a part if ts_part(e) holds M

e We remind the reader that the outcome of is_part(e)
e is very much dependent on the domain engineer’s intention

e with the domain description, ct. Slide 99.

A Prerequisite for Requirements Engineering 103 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

104

1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.2. Part, Component and Material Prompts

Analysis Prompt 7. ¢s_component:

e The domain analyser analyse endurants e into component enti-
ties as prompted by the domain analysis prompt:

® 1Ss_component — e 1s a component if is_component (¢) holds

e We remind the reader that the outcome of is_component (e)
e is very much dependent on the domain engineer’s intention

e with the domain description, cf. Slide 99.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 104 Domain Science & Engineering

105

1. Domain Analysis & Description 2. Endurant Entities 2.4. Parts, Components and Materials 2.4.2. Part, Component and Material Prompts

Analysis Prompt 8 . is_material:

e The domain analyser analyse endurants e into material entities
as prompted by the domain analysis prompt:

® 1s_material — e 1s a material if is_material (e) holds N

e We remind the reader that the outcome of is_material(e)
e is very much dependent on the domain engineer’s intention
e with the domain description, ct. Slide 99.

A Prerequisite for Requirements Engineering 105 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

106

1. Domain Analysis & Description 2. Endurant Entities 2.5. Parts, Components and Materials

1.2.5. Atomic and Composite Parts
e A distinguishing quality
@ of parts,

& 18 whether they are

@ atomic or
@ composite.

e Please note that we shall.

» in the following,
& examine the concept of parts

& 1n quite some detail.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 106

107

1. Domain Analysis & Description 2. Endurant Entities 2.5. Atomic and Composite Parts

e That is,

@ parts become the domain endurants of main interest,
» whereas components and materials become of secondary interest.

e This i1s a choice.

& The choice is based on pragmatics.
& It 1s still the domain analyser cum describers’ choice
o whether to consider a discrete endurant
@ a part
@ Or a component.
® If the domain engineer wishes to investigate
o the details of a discrete endurant
o then the domain engineer choose to model
o the discrete endurant as a part
@ otherwise as a component.

A Prerequisite for Requirements Engineering 107 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

108

1. Domain Analysis & Description 2. Endurant Entities 2.5. Atomic and Composite Parts

Definition 9. Atomic Part:
e Atomic parts are those which,

® 1N a grven context,

@ are deemed to not consist of
meaningful, separately observable proper sub-parts 1l

e A sub-part is a part Il

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 108 Domain Science & Engineering

109

1. Domain Analysis & Description 2. Endurant Entities 2.5. Atomic and Composite Parts

Example 18 . Atomic Parts: Examples of atomic parts of the above

mentioned domains are:
e aircraft
e demand/deposit accounts
e containers
e documents
e hubs, links and vehicles
e patients, medical stafl and beds
e pipes, valves and pumps

e rail units and locomotives

A Prerequisite for Requirements Engineering 109

(of air traffic
(of banks

(of container lines

)

)

(of document systems

(of road traffic

)
)
),
),
),
(of hospitals),

(of pipeline systems), and

(of railway systems) Hll

© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

110

1. Domain Analysis & Description 2. Endurant Entities 2.5. Atomic and Composite Parts

Definition 10 . Composite Part:
e Composite parts are those which,

® 1M a gren context,

@ are deemed to indeed consist of
meaningful, separately observable proper sub-parts Il

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 1 10 Domain Science & Engineering

111

1. Domain Analysis & Description 2. Endurant Entities 2.5. Atomic and Composite Parts

Example 19 . Composite Parts: Examples of atomic parts of the
above mentioned domains are:

e airports and air lanes (of air traffic),
e banks (of a financial service industry),
e container vessels (of container lines),
e dossiers of documents (of document systems),
e routes (of road nets),
e medical wards (of hospitals),
e pipelines (of pipeline systems), and

e trains, rail lines and train stations (of railway systems). N

A Prerequisite for Requirements Engineerin 111 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

112
1. Domain Analysis & Description 2. Endurant Entities 2.5. Atomic and Composite Parts

Analysis Prompt 9. ¢s_atomic:

e The domain analyser analyses a discrete endurant, i.e., a part
p into an atomic endurant:

® 1s_atomic(p): p is an atomic endurant if ts_atomic(p)
holds M

Analysis Prompt 10 . is_composite:

e The domain analyser analyses a discrete endurant, i.e., a part
p into a composite endurant:

® 1s_composite(p): p1s a composite endurant if is_composite(p)

holds N

e is discrete is a prerequisite prompt of both is_atomic and
is composite.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 112 Domain Science & Engineering

113
1. Domain Analysis & Description 2. Endurant Entities 2.5. Atomic and Composite Parts

Whither Atomic or Composite:

o [f we are analysing & describing vehicles
in the context of a road net, ct. the Traffic System Example Slide 84,
& then we have chosen to abstract vehicles
& as atomic;
e if on the other hand, we are analysing & describing vehicles
in the context of an automobile maintenance garage
@ then we might very well choose to abstract vehicles
® as composite —
® the sub-parts being the object of diagnosis

& by the auto mechanics.

A Prerequisite for Requirements Engineering 113 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

114

1. Domain Analysis & Description 2. Endurant Entities 2.6. Atomic and Composite Parts

1.2.6. On Observing Part Sorts
1.2.6.1. Types and Sorts

e We use the term ‘sort’

» when we wish to speak of an abstract type,
& that is, a type for which we do not wish to express a modellV.

& We shall use the term ‘type’ to cover both

o abstract types and @ concrete types.

10

@ for example, in terms of the concrete types:

x sets, *x lists,

x Cartesians, % maps,

or other.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 114 Domain Science & Engineerin:

115

1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.2. Types and Sorts

1.2.6.2. On Discovering Part Sorts

e Recall from the section on Types Are Formal Concepts (Slide 76) that
we “equate” a formal concept with a type (i.e., a sort).

@ Thus, to us, a part sort is a set of all those entities

¢ which all have exactly the same qualities.
e Our alm now

& 1s to present the basic principles that let

®» the domain analyser decide on part sorts.

A Prerequisite for Requirements Engineering 115 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

116
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.2. On Discovering Part Sorts

e We observe parts one-by-one.

o (o) Our analysis of parts concludes when we have

o ‘lifted” our examination of a particular part instance
o to the conclusion that it is of a given sort,
@ that is, reflects, or is, a formal concept.

e Thus there is, in this analysis, a “eureka’,

@ a step where we shift focus

& from the concrete to the abstract,

» from observing specific part instances
@ to postulating a sort:

o from one to the many:.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 116 Domain Science

117
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.2. On Discovering Part Sorts

Analysis Prompt 11 . observe parts:
e The domain analysis prompt:
® observe parts(p)

o directs the domain analyser to observe the sub-parts of p R

Let us say the sub-parts of p are: {p1,p9,. .. ,pm}

® () The analyser analyses, for each of these parts, p;,,

@ which formal concept, i.e., sort, it belongs to;
® let us say that it is of sort Py,
® thus the sub-parts of p are of sorts { P|,P,...,Pn}.

e Some P, may be atomic sorts, some may be composite sorts.

A Prerequisite for Requirements Engineerin 117 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

118
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.2. On Discovering Part Sorts

e The domain analyser continues to examine a finite number of other
composite parts: {p;, pe, .., Pn}-

& It is then “discovered”, that is, decided, that they all consists of
the same number of sub-parts

© {Di1Pigs- - - Pipy }
@ 1D, Pjos- - - P}
© {Dp,:Plys- Pl)

@ .

@ {p’nlapnga' e 7pnm}7
of the same, respective, part sorts.

o () It is therefore concluded, that is, decided,
that {p;,pj,pe--..pn} are all of the same part sort P
with observable part sub-sorts { P, Ps,...,Py}.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 118 Domain Science & Engineering

119
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.2. On Discovering Part Sorts

e Above we have type-font-highlighted three sentences: («, 3,7).

e When you analyse what they “prescribe” you will see that they entail
a “depth-first search” for part sorts.
@ The 3 sentence says it rather directly:

« "The analyser analyses, for each of these parts, p;., which formal
concept, i.e., part sort it belongs to.”

¢ To do this analysis in a proper way, the analyser must
(“recursively”) analyse the parts “down” to their atomicity,

& and from the atomic parts decide on their part sort,
o and work (“recurse”) their way “back”,
@ through possibly intermediate composite parts,

@ to the prs.

A Prerequisite for Requirements Engineering 119 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

120
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.3. On Discovering Part Sorts

1.2.6.3. Part Sort Observer Functions

e The above analysis amounts to the analyser

o first “applying” the domain analysis prompt

® is_composite(p) to a discrete endurant,

@ where we now assume that the obtained truth value is true.

& Let us assume that parts p: P consists of sub-parts of sorts
{P,P,....Pn}.

@ Since we cannot automatically guarantee that our domain descrip-
tions secure that

o P and each P; ([1<i<m])
o denotes disjoint sets of entities

we must prove 1t.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 120 Domain Science & Engineering

121
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.3. Part Sort Observer Functions

Domain Description Prompt 1. observe_part_sorts:

o [f is composite(p) holds, then the analyser “applies” the de-
scription language observer prompt

® observe part sorts(p)

resulting in the analyser writing down the part sorts and part

sort observers domain description text according to the following
schema:

A Prerequisite for Requirements Engineering 121 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

122

1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.3. Part Sort Observer Functions

1. observe_part_sorts schema

Narration:
's| ... narrative text on sorts ...
0] ... narrative text on sort observers ...
[i] ... narrative text on sort recognisers ...
'p] ... narrative text on proof obligations ...
Formalisation:
type
's|] P,
's| P;[1<i<m] comment: P; [1<i<m] abbreviates P, P, ..., P,,
value

o] obs part P;: P — P; [1<i<m]
li] is P;: P, = Bool [1<i<m]

proof obligation | Disjointness of part sorts |
Pl V(PP | Py) -

Pl AHisPi(p) =V ~ {is_Pj(p) | j € {L.m} \ {i}} [i€ {l.m}}

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 122 Domain Science & Engineering

123

1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.3. Part Sort Observer Functions

Example 20 . Composite and Atomic Part Sorts of Transporta-
tion:

e The following example illustrates the multiple use of the observe_part_sor
function:

® first to 0, a specific transport domain, Item 12,
@ then to an n : NV, the net of that domain, Item 13, and
@ then to an f : F', the fleet of that domain, Item 14.

12 A transportation domain is composed from a net, a fleet (of vehicles)
and a monitor.

13 A transportation net is composed from a collection of hubs and a
collection of links.

14 A fleet is a collection of vehicles.

e The monitor is considered an atomic part.

A Prerequisite for Requirements Engineering 123 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

124

1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.3. Part Sort Observer Functions

type

12. N, F, M

value

12. obs_part_ N:A—N, obs_part F:A—F, obs_part M\:A—M
type

13. HC, LC

value

13. obs_part HC:N—HC, obs_part LC:N—LC
type

14. VC

value

14. obs_part VC:F—VC

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 124 Domain Science & Engineering

125
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.3. Part Sort Observer Functions

e A proof obligation has to be discharged,

@ one that shows disjointedness of sorts N, F and M.
@ An informal sketch is:

o entities of sort N are composite and consists of two parts:
o aggregations of hubs, HS, and aggregations of links, LS.

o Entities of sort F consists of an aggregation, VS, of vehicles.
o So already that makes N and F disjoint.

o M is an atomic entity — where N and F are both composite.
o Hence the three sorts N, F and M are disjoint

A Prerequisite for Requirements Engineering 125 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

126
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.4. Part Sort Observer Functions

1.2.6.4. On Discovering Concrete Part Types
Analysis Prompt 12 . has concrete type:

e The domain analyser

» may decide that it 1s expedient, 1.e., pragmatically sound,

® to render a part sort, P, whether atomic or composite, as a
concrete type, T.

» That decision 1s prompted by the holding of the domain anal-
ysis prompt:
® has _concrete type(p).

» 1s_discrete 1s a prerequisite prompt of has_concrete type
[]

e The reader is reminded that

& the decision as to whether an abstract type is (also) to be described concretely

% 1s entirely at the discretion of the domain engineer.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 126 Domain Science & Engineering

127
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.4. On Discovering Concrete Part Types

Domain Description Prompt 2. observe part type:

e Then the domain analyser applies the domain description
prompt:

® obse'r*'ue_pa,fmi_753/}963(29)11

e to parts p:P which then yield the part type and part type observers
domain description text according to the following schema:

vhas _concrete type is a prerequisite prompt of observe part type.

127 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

A Prerequisite for Requirements Engineering

128

1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.4. On Discovering Concrete Part Types

2. observe_part_type schema

Narration:

't;] ... narrative text on sorts and types S; ...
'to]| ... narrative text on types T ...

0] ... narrative text on type observers ...
Formalisation:

type

[tl] 51, 52, cee, Sm, cee, Sn,
[tg] T = 5(51,52,...,Sn)
value

o] obspart T:P—>T

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 128

129

1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.4. On Discovering Concrete Part Types

e The type names,

@ |, of the concrete type,
@ as well as those of the auxiliary types, $1,59,....5m,
@ are chosen by the domain describer:

o they may have already been chosen
o for other sort—to—type descriptions,
o or they may be new.

A Prerequisite for Requirements Engineerin 129 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

130

1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.4. On Discovering Concrete Part Types

Example 21 . Concrete Part Types of Transportation:
We continue Example 20 on Slide 123:

15 A collection of hubs is a set of hubs and a collection of links is a
set of links.

16 Hubs and links are, until further analysis, part sorts.
17 A collection of vehicles is a set of vehicles.

18 Vehicles are, until further analysis, part sorts.

type

15. Hs = H-set, Ls = L-set
16. H, L

17. Vs = V-set

18. V

value

15. obs_part_Hs:HC—Hs, obs_part_Ls:LC—Ls
17. obs_part_Vs:VC—Vs Il

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 130

131
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.5. On Discovering Concrete Part Types

1.2.6.5. Forms of Part Types

e Usually it is wise to restrict the part type definitions, T; = &(Q,R,...,S), to simple
type expressions.

@ T=A-set or & 1T=ID A or
® T=A* or @T:At’Bt”Ct
where

% ID is a sort of unique identifiers,
& T=A|B¢|...|C; defines the disjoint types
@ A;==mkA(s:Ay),
@ B;==mkB,(s:By), ...,
@ C;==mkC,(s:Cy),
and where
» A, A, B, ..., C, are sorts.

& Instead of A;==mkA(a:A;), etc., we may write A;::A; etc.

A Prerequisite for Requirements Engineering 131 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

132
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.6. Forms of Part Types

1.2.6.6. Part Sort and Type Derivation Chains

e Let P be a composite sort.

e Let P, Po, ..., P,y be the part sorts “discovered” by means of
observe part sorts(p) where p:P.

e We say that Py, Py, ..., Py, are (immediately) derived from P.

o If Py is derived from P; and P; is derived from P;, then, by transi-
tivity, Py is derived from P;.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 132 Domain Science & Engineering

133
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.6. Part Sort and Type Derivation Chains 2.6.6.1. No Recursive Derivations

1.2.6.6.1 No Recursive Derivations

e We “mandate” that
@ 1f Py is derived from P,

& then there

@ can be no P derived from P;
@ such that P is Pj7
o that is, P; cannot be derived from P;.

e That is, we do not allow recursive domain sorts.
e [t is not a question, actually of allowing recursive domain sorts.

& It 1s, we claim to have observed,
® in very many domain modeling experiments,

& that there are no recursive domain sorts!

A Prerequisite for Requirements Engineerin 133 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

134

1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.7. Part Sort and Type Derivation Chains

1.2.6.7. Names of Part Sorts and Types
e The domain analysis and domain description text prompts

® observe part_sorts, ® observe_part_type
® observe material sorts and

— as well as the

® attribute names, % observe mereology and
® observe_material_sorts, & observe attributes

® observe unique identifier,

prompts introduced below — “yield” type names.

o That is, it is as if there is
@ a reservoir of an indefinite-size set of such names
o from which these names are “pulled”,
o and once obtained are never “pulled” again.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 134 Domain Science & Engineerin:

135
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.7. Names of Part Sorts and Types

e There may be domains for which two distinct part sorts may be
composed from identical part sorts.

e In this case the domain analyser indicates so by prescribing a part
sort already introduced.

Example 22 . Container Line Sorts:
e Our example is that of a container line

& with container vessels and

& container terminal ports.

A Prerequisite for Requirements Engineerin 135 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

136
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.7. Names of Part Sorts and Types

19 A container line contains a number of container vessels and a number of container
terminal ports, as well as other components.

20 A container vessel contains a container stowage area, etc.

21 A container terminal port contains a container stowage area, etc.

22 A container stowage ares contains a set of uniquely identified container bays.

23 A container bay contains a set of uniquely identified container rows.

24 A container row contains a set of uniquely identified container stacks.

25 A container stack contains a stack, i.e., a first-in, last-out sequence of containers.

26 Containers are further undefined.

e After a some slight editing we get:

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 136 Domain Science & Engineering

137
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.7. Names of Part Sorts and Types

type type
CL BAYS, Bl, BAY, Bays=Bl »BAY
VS, VI, V, Vs = VI =V, ROWS, RI, ROW, Rows=RI| ROW
PS, PI, P, Ps = Pl »P STKS, SlI, STK, Stks=S| 7#STK
value C
obs_part_VS: CL — VS value
obs_part_Vs: VS — Vs obs_part_BAYS: CSA — BAYS,
obs_part_PS: CL — PS obs_part_Bays: BAYS — Bays
obs_part_Ps: CTPS — CTPs obs_part_ROWS: BAY — ROWS,
type obs_part_Rows: ROWS — Rows
CSA obs_part_STKS: ROW — STKS,
value obs_part_Stks: STKS — Stks
obs_part_CSA: V — CSA obs_part_Stk: STK — C*

obs_part_CSA: P — CSA

e Note that observe part sorts(v:V) and observe part sorts(p:P)
both yield CSA Il

A Prerequisite for Requirements Engineering 137 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

138
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.8. Names of Part Sorts and Types

1.2.6.8. More On Part Sorts and Types

e The above “experimental example” motivates the below.

& We can always assume that composite parts p: P abstractly con-
sists of a definite number of sub-parts.

o Example 23. We comment on Example 20 on Slide 123: parts
of type A and N are composed from three, respectively two
abstract sub-parts of distinct types Il

@ Some of the parts, say p; _of {p;,.Diy,- - - Pi,, }, of p:P, may them-
selves be composite.

o Example 24. We comment on Example 20 on Slide 123: parts
of type N, F, HC, LC and VC are all composite Il

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 138 Domain Science & Engineering

139
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.8. More On Part Sorts and Types

®» There are, pragmatically speaking, two cases for such composi-
tionality:.
o Either the part, p;_, of type t;_, 1s 1s composed from a definite
number of abstract or concrete sub-parts of distinct types.

+ Example 25. We comment on Example 20 on Slide 123:
parts of type N are composed from three sub-parts Il
o Or it is composed from an indefinite number of sub-parts of the
same sort.

+ Example 26. We comment on Example 20 on Slide 123:
parts of type HC, LC and VC are composed from an indefinite
numbers of hubs, links and vehicles, respectively Il

A Prerequisite for Requirements Engineerin 139 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

140
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.8. More On Part Sorts and Types

Example 27 . Pipeline Parts:
27 A pipeline consists of an indefinite number of pipeline units.

28 A pipeline units is either a well, or a pipe, or a pump, or a valve, or
a fork, or a join, or a sink.

29 All these unit sorts are atomic and disjoint.

type

27. PL, U, We, Pi, Pu, Va, Fo, Jo, Si

27. Well, Pipe, Pump, Valv, Fork, Join, Sink

value

27. obs_part_Us: PL — U-set

type

28. U==We |Pi|Pu|Va|Fo|Jo]|Si

29. We::Well, Pi::Pipe, Pu::Pump, Va::Valv, Fo:Fork, Jo::Join, Si::Sink N

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 140 Domain Science & Engineering

141
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.8. More On Part Sorts and Types 2.6.8.1. Derivation Lattices

1.2.6.8.1 Derivation Lattices

e Derivation chains

% start with the domain name, say A, and

& (definitively) end with the name of an atomic sort.

e Sets of derivation chains form join lattices [3].

Example 28 . Derivation Chains:
e Figure 1 on the following slide illustrates

% two part sort and type derivation chains.

% based on Examples 20 on Slide 123 and 22 on Slide 135, respectively.

A Prerequisite for Requirements Engineering 141 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

142
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.8. More On Part Sorts and Types 2.6.8.1. Derivation Lattices

s N

\ T
HS LS VL

‘ ‘ Vs=VI->V Q?
Hs Ls Vs CSA

H L V BAYS
where:

Hs=H-set Bays=BI->BAY

Ls=L-set

Vs=V-set ROWS
Legend:

A Rows=RI->ROW

imeans: obs B:A-—>B

STKS
0 Stks=SI->STK
means: obs_B: A->B tks= ‘

BrI—C Stk:SI—>I*

rigure 11 T'Wo Domain Lattices: Examples 20 on Slide 123 and 22 on Slide 135

e The “—>" of Fig. 1 stands for » N

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 142 Domain Science & Engineering

143
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.9. More On Part Sorts and Types

1.2.6.9. External and Internal Qualities of Parts

e By an external part quality we shall understand the

% is_atomic, % is_discrete and
® 1s_composite, ® 1s_continuous
qualities.

e By an internal part quality we shall understand the part qualities to be outlined
in the next sections:

® unique ids, ® mereology and ® attributes.

e By part qualities we mean the sum total of

® external endurant and ® internal endurant

qualities.

A Prerequisite for Requirements Engineerin; 143 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

144
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.10. External and Internal Qualities of Parts

1.2.6.10. Three Categories of Internal Qualities

e We suggest that the internal qualities of parts be analysed into three
categories:
® (1) a category of unique part identifiers,
» (ii) a category of mereological quantities and

» (iii) a category of general attributes.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 144 Domain Science & Engineering

145
1. Domain Analysis & Description 2. Endurant Entities 2.6. On Observing Part Sorts 2.6.10. Three Categories of Internal Qualities

e Part mereologies are about sharing qualities between parts.
@ Some such sharing expresses spatio-topological properties of how
parts are organised.

o Other part sharing aspects express relations (like equality) of part
attributes.

& We base our modeling of mereologies on the notion of unique part
identifiers.

» Hence we cover internal qualities in the order (i-ii-iii).

A Prerequisite for Requirements Engineering 145 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

Dines Bjgrner’'s MAP-i Lecture # 2

End of MAP-i Lecture # 2:

Parts

Monday, 25 May 2015: 11:30-12:15

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O

Dines Bjgrner’'s MAP-i Lecture # 3

Unique ldentifiers, Mereologies and Attributes

Monday, 25 May 2015: 14:30-15:15

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O

146 1. Domain Analysis & Description 2. Endurant Entities 2.7. On Observing Part Sorts

1.2.7. Unique Part Identifiers

e Two parts are either identical or a distinct, i.e., unique.

& T'wo parts are identical

o if all their respective qualities
o have the same values.

That is, their location in space/time are one and the same.
& T'wo parts are distinct

o even if all the attribute qualities of the two parts,
o that we have chosen to consider have the same values,
o if, in that case, their space/time locations are distinct.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 146 Domain Science & Engineerin:

147
1. Domain Analysis & Description 2. Endurant Entities 2.7. Unique Part Identifiers

e We can assume, without any loss of generality;,

» (1) that all parts, p, of any domain P, have unique identifiers,

» (ii) that unique identifiers (of parts p:P) are abstract values
(of the unique identifier sort Pl of P),

® (iii) such that distinct part sorts, P; and P, have distinctly named
unique identifier sorts, say Pl; and Pl;,

® (iv) that all m;:Pl; and 7;:Pl; are distinct, and
» (v) that the observer function uid P applied to p yields the unique
identifier, say m:Pl, of p.

A Prerequisite for Requirements Engineerin; 147 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

148

1. Domain Analysis & Description 2. Endurant Entities 2.7. Unique Part Identifiers

Representation of Unique ldentifiers:
e Unique identifiers are abstractions.

& When we endow two parts (say of the same sort) with distinct unique identifiers
% then we are simply saying that these two parts are distinct.

® We are not assuming anything about how these identifiers otherwise come
about.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 148 Domain Science & Engineering

149
1. Domain Analysis & Description 2. Endurant Entities 2.7. Unique Part Identifiers

Domain Description Prompt 3. observe unique identifier:

e We can therefore apply the domain description prompt:

® observe unique identifier

e to parts p:P resulting in the analyser writing down the unique
identifier type and observer domain description text according to
the following schema:

A Prerequisite for Requirements Engineering 149 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

150

1. Domain Analysis & Description 2. Endurant Entities 2.7. Unique Part Identifiers

3. observe unique_identifier schema

Narration:
's| ... narrative text on unique identifier sort ...
‘u] ... narrative text on unique identifier observer ...
'a] ... axiom on uniqueness of unique identifiers ...
Formalisation:
type
's| Pl
value
‘u] uid P: P — PI
axiom

a] U

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 150 Domain Science & Engineerin:

1. Domain Analysis & Description 2. Endurant Entities 2.7. Unique Part Identifiers

151

Example 29 . Unique Transportation Net Part ldentifiers:

We continue Example 20 on Slide 123.
30 Links and hubs have unique identifiers

31 and unique identifier observers.

type

30. LI, HI

value

31. uid LI: L — LI

31. uid HI: H — HI

axiom | Well—formedness of Links, L, and Hubs, H|
30. VLI:L - I£I=-uid _LI(I)Auid _LI(I'),

30. V h,h:H - h#£h=-uid HI(h)#uid HI(h)

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ines Bjgrner 5, Fredsvej 4 e, Denmarl
AP isite for Requi Engi i 151 Di Bj 2015, Fred 11, DK-2; Holte, D k — May 23, 2015: 15:2

152
1. Domain Analysis & Description 2. Endurant Entities 2.8. Unique Part Identifiers

1.2.8. Mereology

e Mereology is the study and knowledge of parts and part relations.

o Mereology as a logical /philosophical discipline
can perhaps best be attributed to the Polish mathematician/logi-
clan
Stanistaw Lesniewski [32, 21].

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 152 Domain Science & Engineering

153

1. Domain Analysis & Description 2. Endurant Entities 2.8. Mereology 2.8.1.

1.2.8.1. Part Relations
e Which are the relations that can be relevant for part-hood ?

e We give some examples.

®» T'wo otherwise distinct parts may share attribute values.

Example 30 . Shared Attribute Mereology:
@ (i) two or more distinct public transport busses may run ac-
cording to the same, thus “shared”, bus time table;

o (ii) all vehicles in a traffic participate in that traffic, each with
their “share”, that is, position on links or at hubs — as observed

by the (thus postulated, and shared) traffic observer.
ctcetera

153 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

A Prerequisite for Requirements Engineering

154

1. Domain Analysis & Description 2. Endurant Entities 2.8. Mereology 2.8.1. Part Relations

» Two otherwise distinct parts may be said to, for example, be
topologically “adjacent” or one “embedded” within the other.

Example 31 . Topological Connectedness Mereology:

@ (1) two rail units may be connected (i.e., adjacent),
o (ii) a road link may be connected to two road hubs;
o (iii) a road hub may be connected to zero or more road links;

etcetera. N

e The above examples are in no way indicative of the “space” of part
relations that may be relevant for part-hood.

e The domain analyser is expected to do a bit of experimental research

in order to discover necessary, sufficient and pleasing “mereology-
hoods” !

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 154 Domain Science & Engineering

155

1. Domain Analysis & Description 2. Endurant Entities 2.8. Mereology 2.8.2. Part Relations

1.2.8.2. Part Mereology: Types and Functions
Analysis Prompt 13 . has mereology:

e To discover necessary, sufficient and pleasing “mereology-hoods”
the analyser can be said to endow a truth wvalue true to the
domain analysis prompt:

® has_mereoloqy

A Prerequisite for Requirements Engineering 155 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

156
1. Domain Analysis & Description 2. Endurant Entities 2.8. Mereology 2.8.2. Part Mereology: Types and Functions

e When the domain analyser decides that

@ some parts are related in a specifically enunciated mereology,
& the analyser has to decide on suitable

@ mereology types and
@ mereology (i.e., part relation) observers.

e We can define a mereology type as a type Expression over unique
[part| identifier types.

o We generalise to unique |part| identifiers over a definite collection
of part sorts, P1, P2, ..., Pn,

o where the parts pl:P1, p2:P2, ..., pn:Pn are not necessarily (im-
mediate) sub-parts of some part p:P.

type
Pl1, PI2, ..., Pln
MT = E(Pll, Pl2 ... Pln),

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 156 Domain Science & Engineering

157
1. Domain Analysis & Description 2. Endurant Entities 2.8. Mereology 2.8.2. Part Mereology: Types and Functions

Domain Description Prompt 4. observe mereology:
o [f has_mereology(p) holds for parts p of type P,
& then the analyser can apply the domain description prompt:
® observe mereology

@ to parts of that type

» and write down the mereology types and observers domain de-
scription text according to the following schema:

A Prerequisite for Requirements Engineering 157 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

158

1. Domain Analysis & Description 2. Endurant Entities 2.8. Mereology 2.8.2. Part Mereology: Types and Functions

4. observe mereology schema

Narration:

't| ... narrative text on mereology type ...
'm| ... narrative text on mereology observer ...
'a] ... narrative text on mereology type constraints ...

Formalisation:
type
[t] MT™2= g(PI1,PI2,...,PIm)
value

'm| obs mereo P: P — MT
axiom | Well—formedness of Domain Mereologies |

lal A(MT)

2MT will be used several times in Sect. .

© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

158

159

1. Domain Analysis & Description 2. Endurant Entities 2.8. Mereology 2.8.2. Part Mereology: Types and Functions

o Here E(PIL,PI2,...,PIm) is a type expression
over possibly all unique identifier types of the domain descrip-
tion,

o and A(MT) is a predicate
over possibly all unique identifier types of the domain descrip-
tion.

» To write down the concrete type definition for MT
requires a bit of analysis and thinking.

® has_mereology s a
prerequisite prompt for observe mereology m

A Prerequisite for Requirements Engineering 159 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

160
1. Domain Analysis & Description 2. Endurant Entities 2.8. Mereology 2.8.2. Part Mereology: Types and Functions

Example 32 . Road Net Part Mereologies: We continue Exam-
ple 20 on Slide 123 and Example 29 on Slide 151.

32 Links are connected to exactly two distinct hubs.
33 Hubs are connected to zero or more links.

34 For a given net the link and hub identifiers of the mereology of hubs
and links must be those of links and hubs, respectively, of the net.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 160 Domain Science & Engineering

161
1. Domain Analysis & Description 2. Endurant Entities 2.8. Mereology 2.8.2. Part Mereology: Types and Functions

type

32. LM = Hl-set, LM = {|his:HI-set - card(his)=2|}

33. HM = Ll-set

value

32. obs mereo L: L — LM

33. obs mereo H: H — HM

axiom | Well—formedness of Road Nets, N |

34. V n:N,|ILh:H | € obs part Ls(obs part LC(n))Ah € obs_part_Hs(ok
34. let his=mereology H(l), lis=mereology H(h) in

34. hisCU{uid H(h) | h € obs_part Hs(obs part HC(n))}

34, A lisCU{uid H(l) | | € obs_part Ls(obs part LC(n))} end Il

A Prerequisite for Requirements Engineering 161 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

162
1. Domain Analysis & Description 2. Endurant Entities 2.8. Mereology 2.8.2. Part Mereology: Types and Functions

Example 33 . Pipeline Parts Mereology:
e We continue Example 27 on Slide 140.
e Pipeline units serve to conduct fluid or gaseous material.

e The flow of these occur in only one direction: from so-called input to so-called
output.

35 Wells have exactly one connection to an output unit.

36 Pipes, pumps and valves have exactly one connection from an input unit and one
connection to an output unit.

37 Forks have exactly one connection from an input unit and exactly two connections
to distinct output units.

38 Joins have exactly one two connection from distinct input units and one connection
to an output unit.

39 Sinks have exactly one connection from an input unit.

40 Thus we model the mereology of a pipeline unit as a pair of disjoint sets of unique
pipeline unit identifiers.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 162 Domain Science & Engineering

1. Domain Analysis & Description 2. Endurant Entities 2.8. Mereology 2.8.2. Part Mereology: Types and Functions

163

type
40. UM’=(Ul-set xUl-set)
40. UM={|(iuis,ouis):Ul-set x Ul-set-iuis N ouis={}|}
value
40. obs_mereo_U: UM
axiom [Well—formedness of Pipeline Systems, PLS (0) |
V pl:PL,u:U - u € obs_part_Us(pl) =
let (iuis,ouis)=obs _mereo U(u) in
case (card iuis,card ouis) of

35. (0,1) — is_We(u),

36. (1,1) — is_Pi(u)Vis_Pu(u)Vis_Va(u),
37. (1,2) — is_Fo(u),

38. (2,1) — is_Jo(u),

39. (1,0) — is_Si(u)

end end N

A Prerequisite for Requirements Engineering 163

11, DK-2840 Holte, Denmark

164
1. Domain Analysis & Description 2. Endurant Entities 2.8. Mereology 2.8.3. Part Mereology: Types and Functions

1.2.8.3. Update of Mereologies

e We normally consider a part’s mereology to be constant.
e There may, however, be cases where the mereology of a part changes.

e In order to update mereology values the description language offers
the “built-in” operator:

Mereology Update Function

» upd_mereology: P - M — P

for all relevant M and P.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 164 Domain Science & Engineering

165

1. Domain Analysis & Description 2. Endurant Entities 2.8. Mereology 2.8.3. Update of Mereologies

e The meaning of upd_mereology is, informally:

type
P, M
value
upd_mereology: P - M — P
upd_mereology(p)(m) as p’
post: obs_mereo_H(p') = m

A Prerequisite for Requirements Engineering 165 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

166
1. Domain Analysis & Description 2. Endurant Entities 2.8. Mereology 2.8.3. Update of Mereologies

e The above is a simplification.

o It lacks explaining that all other aspects of the part p:P are left
unchanged.

@ It also omits mentioning some proof obligations.

o The updated mereology must, for example,

o only specify such unique identifiers of parts
o that are indeed existing parts.

» A proper formal explication requires
@ that we set up a formal model of the

» domain/method/analyser /description quadrangle.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 166

167
1. Domain Analysis & Description 2. Endurant Entities 2.8. Mereology 2.8.3. Update of Mereologies

Example 34 . Mereology Update:
e The example is that of updating the mereology of a hub.
e Cf. Example 32 on Slide 160.

41 Inserting a link, |:L, between two hubs, ha:H,hb:H require the update of the mere-
ologies of these two existing hubs.

42 The unique identifier of the inserted link, I:L; is li, li=uid_L(l) and h is either ha
or hb;

43 li is joined to the mereology of both ha or hb; and respective hubs are updated
accordingly.

value
41. update_hub_mereology: H — LI — H
42. update_hub_mereology(h)(li) =
43. let m = {li} U obs_mereo_H(h) in upd_mereology(h)(m) end Nl

A Prerequisite for Requirements Engineerin 167 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

168
1. Domain Analysis & Description 2. Endurant Entities 2.8. Mereology 2.8.4. Update of Mereologies

1.2.8.4. Formulation of Mereologies

e The observe mereology domain descriptor, Slide 158,

& may give the impression that the mereo type MT can be described
@ “at the point of issue” of the observe mereology prompt.

» Since the MT type expression may, in general, depend on any part
sort

@ the mereo type MT can, for some domains,
o “first” be described when all part sorts have been dealt with.
e In Domain Analysis: Endurants — An Analysis & Description Pro-

cess Model we we present a model of one form of evaluation of the
TripTych analysis and description prompts.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 168 Domain Science & Engineering

169
1. Domain Analysis & Description 2. Endurant Entities 2.9. Mereology

1.2.9. Part Attributes
1.2.9.1. Inseparability of Attributes from Endurants

e Parts are

® typically recognised because of their spatial form

¢ and are otherwise characterised by their intangible, but measur-
able attributes.

e We learned from our exposition of formal concept analysis that

® a formal concept, that is, a type, consists of all the entities

¢ which all have the same qualities.
e Thus removing a quality from an entity makes no sense:

® the entity of that type
@ either becomes an entity of another type

® Or ceases to exist (i.e., becomes a non-entity)!

A Prerequisite for Requirements Engineering 169 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

170
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.2. Inseparability of Attributes from Endurants

1.2.9.2. Attribute Quality and Attribute Value
e We distinguish between

@ an attribute, as a logical proposition and

& an attribute value as a value in some value space.

Example 35 . Attribute Propositions and Other Values:
e A particular street segment (i.e., a link), say ¢,

& satisfies the proposition (attribute) has_length, and
@ may then have value length 90 meter for that attribute.

e A particular road transport domain, o,

% has three immediate sub-parts: net, n, fleet, f, and monitor m;

% typically nets has_net_name and has_net_owner proposition attributes

% with, for example, US Interstate Highway Systemrespectively US Department

of Transportation as values for those attributes R

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 170 Domain Science & Engineering

171
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.3. Attribute Quality and Attribute Value

1.2.9.3. Endurant Attributes: Types and Functions

e Let us recall that attributes cover qualities other than unique iden-
tifiers and mereology.

e Let us then consider that parts have one or more attributes.

¢ These attributes are qualities

¢ which help characterise “what it means” to be a part.

A Prerequisite for Requirements Engineerin; 171 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

172

1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions

Example 36 . Atomic Part Attributes:

e Fixamples of attributes of atomic parts such as a human are:

® name,
®» gender,
& birth-date,

etc.

& birth-place, ®» weight,
& nationality, ® eye colour,
® height, & hair colour,

e Fixamples of attributes of transport net links are:

® length,

& location,

etc. R

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

» 1 or 2-way link,

& link condition,

172 Domain Science & Engineerin

173

1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions

Example 37 . Composite Part Attributes:

e Fixamples of attributes of composite parts such as a road net are:

® OWIETr, & free-way or toll road,
® public or private net, & a map of the net,
ete.

e Fixamples of attributes of a group of people could be: statistic dis-
tributions of

& gender, & education,
® age, ® nationality,
® Income, & religion,

cte. R

A Prerequisite for Requirements Engineerin 173 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

174

1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions

e We now assume that all parts have attributes.

e The question is now, in general, how many and, particularly, which.

Analysis Prompt 14 . attribute_names:
e The domain analysis prompt attribute_names

& when applied to a part p
o yields the set of names of its attribute types:

o attribute names(p): {nAi,nAs,....,nAn}.
o 1) is a type operator. Applied to a type A it yields is name'>

sNormally, in non-formula texts, type A is referred to by nA. In formulas A denote
a type, that is, a set of entities. Hence, when we wish to emphasize that we speak of
the name of that type we use nA. But often we omit the distinction

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 174 Domain Science & Engineering

175
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions

e We cannot automatically, that is, syntactically, guarantee that our
domain descriptions secure that

& the various attribute types
® for an emerging part sort

@ denote disjoint sets of values.

Therefore we must prove it.

A Prerequisite for Requirements Engineerin 175 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

176
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions 2.9.3.1. The Attribute Value Observer

1.2.9.3.1 The Attribute Value Observer

e The “built-in” description language operator

o attr_A
e applies to parts, p:P, where nA€attribute names(p).
e It yvields the value of attribute A of p.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 176 Domain Science & Engineering

177
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions 2.9.3.1. The Attribute Value Observer

Domain Description Prompt 5. observe_ attributes:

e The domain analyser experiments, thinks and reflects about part
attributes.

e That process is initated by the domain description prompt:
©® observe attributes.

o The result of that domain description prompt s that the
domain analyser cum describer writes down the attribute (sorts
or) types and observers domain description text according to the
following schema:

A Prerequisite for Requirements Engineering 177 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

178

1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions 2.9.3.1. The Attribute Value Observer

5. observe_attributes schema

Narration:

[t] ... narrative text on attribute sorts ...

[o] ... narrative text on attribute sort observers ...

[i] ... narrative text on attribute sort recognisers ...

[p| ... narrative text on attribute sort proof obligations ...
Formalisation:

type

[t] A; [1<i<n]

value

(o] attr A;:P—A,; [1<i<n]

proof obligation [Disjointness of Attribute Types |

[p] V3&A

[p] let P be any part sort in [the A domain description]

[p] let a:(A1|Ag]...]A,) in is_A;(a) # is_Aj(a) end end [i#j, 1<i,j<n]

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 178

179
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions 2.9.3.1. The Attribute Value Observer

o The type (or rather sort) definitions: Ay, Ao, ..., An inform us
that the domain analyser has decided to focus on the distinctly
named Ay, A9, ..., Ay, attributes.

e And the value clauses

o attr_A{:P—Aq,
o attr_Ar:P—A,,
..

*7

o attr_A,,:P— A,
are then “automatically” given:

o if a part (type P) has an attribute A;

o then there is postulated, “by definition” [eureka/
an attribute observer function attr_A;:P—A; etcetera m

A Prerequisite for Requirements Engineerin 179 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

180
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions 2.9.3.1. The Attribute Value Observer

e The fact that, for example, A{, A9, ..., A, are attributes of p:P,
means that the propositions

®» has_attribute_A;(p),
has_attribute_As(p),
..., and

has_attribute_Ay(p)

holds.
e Thus the observer functions attr_A{, attr_Ao, ..., attr_A,,

& can be applied to p in P
¢ and yield attribute values a1:Aq, a2:A9, ..., ap:A;, respectively.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 180 Domain Science & Engineering

181

1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions 2.9.3.1. The Attribute Value Observer

Example 38 . Road Hub Attributes: After some analysis a domain
analyser may arrive at some interesting hub attributes:

44 hub state: from which links (by reference) can one reach which links
(by reference),

45 hub state space: the set of all potential hub states that a hub may
attain,

46 such that

a. the links referred to in the state are links of the hub mereology

b. and the state is in the state space.

47 Etcetera — i.e., there are other attributes not mentioned here.

A Prerequisite for Requirements Engineerin 181 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

182
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions 2.9.3.1. The Attribute Value Observer

type

44 H> = (LIxLI)-set

45. H 2 = HY-set

value

44. attr_HX:H—HX

45. attr HQ:H—HQ

axiom | Well—formedness of Hub States, HY]
46. VYV h:H - let lis = obs _mereo_H(h) in

46. let ho = attr_H>(h) in
46a.. {1i,1v]1i,1i:L1-(1i,li" e ho}Clis
46b.. A ho € attr_HS(h)

46. end end

type

47 .

value

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 182 Domain Science & Engineering

183
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.4. Endurant Attributes: Types and Functions

1.2.9.4. Attribute Categories

e One can suggest a hierarchy of part attribute categories:

& static or
®» dynamic values — and within the dynamic value category:

o inert values or

o reactive values or

o active values — and within the dynamic active value category:
+ autonomous values or
« biddable values or
+ programmable values.

e \We now review these attribute value types.

A Prerequisite for Requirements Engineering 183 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

184
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.4. Attribute Categories

Part attributes are either constant or varying, i.e., static or dynamic
attributes.

e By a static attribute, is_static_attribute,
we shall understand an attribute whose values

® are constants,

& 1.e., cannot change.

e By a dynamic attribute, is_dynamic_attribute,
we shall understand an attribute whose values

& are variable,

® 1.e., can change.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 184 Domain Science & Engineering

185
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.4. Attribute Categories

Dynamic attributes are either inert, reactive or active attributes.

e By an inert attribute, is_inert_attribute,
we shall understand a dynamic attribute whose values

@ only change as the result of external stimuli where

@ these stimuli prescribe properties of these new values.
e By a reactive attribute, is_reactive_attribute,
we shall understand a dynamic attribute whose values,

» if they vary, change value in response to

® the change of other attribute values.

e By an active attribute, is_active_attribute,
we shall understand a dynamic attribute whose values

» change (also) of its own volition.

A Prerequisite for Requirements Engineering 185 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

186
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.4. Attribute Categories

Example 39 . Inert and Reactive Attributes:

e Buses (i.e., vehicles) have a timetable attribute which is dynamic,
i.e., can change, namely when the operator of the bus decides so,
thus the bus timetable attribute is inert.

e Pipeline valve units include the two attributes of valve opening (open,
close) and internal flow (measured, say gallons per second).

@ The valve opening attribute is of the programmable attribute cat-
egory.

o The flow attribute is reactive (flow changes with valve opening/closing)
|

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 186 Domain Science & Engineering

187

1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.4. Attribute Categories

Active attributes are either autonomous, biddable or programmable
attributes.

e By an autonomous attribute, is_autonomous_attribute,
we shall understand a dynamic active attribute

& whose values change value only “on their own volition” .14

e By a biddable attribute, is biddable attribute, (of a part)
we shall understand a dynamic active attribute whose values

® may be subject to a contract

& as to which values it is expected to exhibit.

e By a programmable attribute, is_programmable_attribute,
we shall understand a dynamic active attribute whose values

& can be accurately prescribed.

1uThe values of an autonomous attributes are a “law onto themselves and their surroundings”.

A Prerequisite for Requirements Engineering 187 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

188
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.4. Attribute Categories

Example 40 . Static, Programmable and Inert Link Attributes:

48 Some link attributes
a. length, b. name,

can be considered static,

49 whereas other link attributes
a. state, b. state space

can be considered programmable,

50 Finally link attributes
a. link state—of-repair, b. date last maintained,

can be considered inert.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 188 Domain Science & Engineering

189

1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.4. Attribute Categories

type
48a..
value

43a..
type
48b..

value
48b..

type
49a..
49a..

value

LEN

obs_part_LEN: L — LEN

Name

obs_part_Name: L — Name

LY'=(HIxHI)-set
LY={|lo:L% - card lo < 2|}

A Prerequisite for Requirements Engineering

189

490a..
type
49b..
49h..

value
49b..
type
50a..
50b..
value
50a..
50b..

obs_part_ L>:: L — LX

LOY=LY-set
LO={|lw:LS? - card lw = 1|}

obs_part_L{): L — LQ)

LSoR
DLM

obs_part_LSoR: L — LSoR
obs_part DLM: L — DLM IR

190

1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.4. Attribute Categories

Example 41 . Autonomous and Programmable Hub Attributes:
We continue Example 77.

e Time progresses autonomously,
e Hub states are programmed (traffic signals):
@ changing
@ from red to green via yellow,
@ in one pair of (co-linear) directions,
@ while changing, in the same time interval,

o from green via yellow to red
o in the “perpendicular” directions Ml

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 190 Domain Science & Engineering

191

1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.4. Attribute Categories

e External Attributes: By an external attribute we shall under-

stand
® Or an autonomous,

@ or a biddable

& either a inert,
& Or a reactive,

attribute M
e Thus we can define the domain analysis prompt:

® 1s_external attribute,

® aS.

value
is_external_attribute: P — Bool

is_external attribute(p) =
is_dynamic_attribute(p) A ~is_programmable attribute(p)

pre: is_endurant(p) A is_discrete(p)

© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

191

192
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.4. Attribute Categories

e ['igure 2 captures the attribute value ontology.

endurant

static dynamic

—_——— = — =

programmable

rigure 2: Attribute Value Ontology

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 192 Domain Science & Engineering

193
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.5. Attribute Categories

1.2.9.5. Access to Attribute Values

e In an action, event or a behaviour description

& static values of parts, p,
o (say of type A)
o can be “copied”, attr_A(p),

o and still retain their (static) value.
e But, for action, event or behaviour descriptions,

@ dynamic values of parts, p,
& cannot be “copied”,
o but attr A(p) must be “performed”

& every time they are needed.

A Prerequisite for Requirements Engineering 193 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

194
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.5. Access to Attribute Values

e That is:

& static values require at most one domain access,

®» whereas dynamic values require repeated domain accesses.

e We shall return to the issue of attribute value access in Sect. 1.3.8.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 194 Domain Science & Engineerin:

195

1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.6. Access to Attribute Values

1.2.9.6. Shared Attributes

e Normally part attributes of different part sorts are distinctly named.
e [f, however, observe attributes(p;:P;) and observe attributes(p;;:

@ for any two distinct part sorts, P; and P, of a domain,
® “discovers” identically named attributes, say A,
® then we say that parts p;:P; and p;:P; share attribute A.

o that is, that a:attr_A(p;) (and a’:attr_A(p;))
1s a shared attribute

o (with a=a’ always (OJ) holding).

A Prerequisite for Requirements Engineering 195 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

196
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.6. Shared Attributes

Attribute Naming:

e Thus the domain describer has to exert great care when naming
attribute types.
@ It P; and P; are two distinct types of a domain

@ then if and only if an attribute of P; is to be shared with an
attribute of P

o must that attribute be identically named in the description of P;

and Pj.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 196 Domain Science & Engineering

197
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.6. Shared Attributes

Example 42. Shared Attributes. Examples of shared attributes:

e Bus timetable attributes have the same value as the regional transport system
timetable attribute.

e Bus clock attributes have the same value as the regional transport system clock
attribute.

e Bus owner attributes have the same value as the regional transport system owner
attribute.

e Bank customer passbooks record bank transactions on, for example, demand /deposit
accounts share values with the bank general ledger passbook entries.

e A link incident upon or emanating from a hub shares the connection between that
link and the hub as an attribute.

e Two pipeline units'®, p;, p;, that are connected, such that an outlet 7; of p; “feeds
into” an inlet 7; of p;, are said to share the connection (modeled by, e.g., { (m;, 7;) }.
N

15See upcoming Example 33 on Slide 162

A Prerequisite for Requirements Engineering 197 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

198
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.6. Shared Attributes

Example 43 . Shared Timetables:

e The fleet and vehicles of Example 20 on Slide 123 and Example 21
on Slide 130 is that of a bus company.

51 From the fleet and from the vehicles we observe unique identifiers.
52 Every bus mereology records the same one unique fleet identifier.
53 The fleet mereology records the set of all unique bus identifiers.

54 A bus timetable is a share fleet and bus attribute.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 198 Domain Science & Engineering

199

1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.6. Shared Attributes

type
51. FI, VI, BT
value
51. uid F: F — FlI
51. wuid V:V — VI
52. obs mereo F: F — Vl-set
3. obs mereo V:V — Fl
54. attr BT: (F|V) — BT
axiom
OV tF =
V v:V - v € obs part Vs(obs part VC(f)) - attr BT(f) = attr BT(v)
[which is the same as]
1V fF =
{attr BT(f) }={attr BT(v):v:V.v € obs part Vs(obs part VC(f))} Il

A Prerequisite for Requirements Engineering 199 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

200
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.6. Shared Attributes

e Part attributes of one sort, P;, may be simple type expressions such
as
®» A-set,
® where A may be an attribute of some other part sort, P,
¢ 1n which case we say that part attributes

o A-set and
o A

are shared.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 200 Domain Science & Engineering

201

1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.6. Shared Attributes

Example 44 . Shared Passbooks:
55 A banking system contains

e an administration and

e a set of customers.
56 The administration contains a general ledger.
57 An attribute of a general ledger is a set of passbooks.
58 An attribute of a customer is that of a passbook.

59 Passbooks are uniquely identified by unique customer identifiers.

A Prerequisite for Requirements Engineering 201 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

202
1. Domain Analysis & Description 2. Endurant Entities 2.9. Part Attributes 2.9.6. Shared Attributes

type
55. | parts]| BS, AD, GL, CS, Cs = C-set
8. |attributes| PB
value
55. obs_part_AD: BS — AD
56. obs_part_GL: AD — GL
57. attr_PBs: GL — PB-set
55. obs_part_CS: BS — CS
55. obs_part_Cs: BS — Cs
58. attr PB: C — PB
59. uid_PB: PB — PBI
axiom
[1V bs:BS -
attr PBs(attr _GL(obs _part AD(bs)))
= {attr PB(c)|c:Cc € obs part Cs(obs part CS(bs))} Il

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 202 Domain Science & Engineering

Dines Bjgrner’'s MAP-i Lecture # 3

End of MAP-i Lecture # 3.
Unique ldentifiers, Mereologies and Attributes

Monday, 25 May 2015: 14:30-15:15

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O

Dines Bjgrner’s MAP-i Lecture # 4

Components, Materials — and Discussion of Endurants

Monday, 25 May 2015: 16:45-17:30

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O Domain Science & Engineering

1. Domain Analysis & Description 2. Endurant Entities 2.10. Part Attributes 203

1.2.10. Components

e Components are discrete endurants which are not considered parts.
®» is_component(k) = is endurant(k)A~is part(k)
Example 45 . Parts and Components:
e We observe components as associated with atomic parts:

®» The contents, that is, the collection of zero, one or more boxes, of
a container is the components of the container part.

» Conveyor belts transport machine assembly units and are thus
considered the components of the conveyor belt.

A Prerequisite for Requirements Engineering 203 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

204

1. Domain Analysis & Description 2. Endurant Entities 2.10. Components

e We now complement the observe part sorts (of earlier).

e We assume, without loss of generality, that only atomic parts may
contain components.

e Let p: P be some atomic part.
Analysis Prompt 15 . has_components:
e The domain analysis prompt:

® has_components(p)

e yields true if atomic part p potentially contains components oth-
erwise false HH

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 204 Domain Science & Engineering

205

1. Domain Analysis & Description 2. Endurant Entities 2.10. Components

e Let us assume that parts p: P embodies components of sorts

{K{,Ky,. .., Kp}.

e Since we cannot automatically guarantee that our domain descrip-
tions secure that

o each K; ([1<i<n])

» denotes disjoint sets of entities

we must prove 1t.

Domain Description Prompt 6. observe component sorts:
e The domain description prompt:
®» observe component sorts(e)

yields the component sorts and component sort observers domain
description text according to the following schema:

A Prerequisite for Requirements Engineering 205 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

206

1. Domain Analysis & Description 2. Endurant Entities 2.10. Components

6. observe component sorts schema

Narration:

's| ... narrative text on component sorts ...

0] ... narrative text on component sort observers ...

[i] ... narrative text on component sort recognisers ...

'p| ... narrative text on component sort proof obligations ...
Formalisation:

type

's] K1, K2, ..., Kn

's] KS = (K1|K2|...|Kn)-set
value

o] components: P — KS

[i] is K;: K— Bool [1<i<n]
Proof Obligation:

| Disjointness of Component Sorts]

Pl AdisKi(mi) = Veedis Ki(mi)|j € {1L.mp\{i}j]i € {1.m}}

Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29 206

207

1. Domain Analysis & Description 2. Endurant Entities 2.10. Components

Example 46 . Container Components: We continue Example 22
on Slide 135.

60 When we apply obs_component_sorts_C to any container c:C we
obtain

a. a type clause stating the sorts of the various components of a
contalner,
b. a union type clause over these component sorts, and
c. the component observer function signature.
type
60a. K1, K2, ..., Kn
60b. KS = (K1|K2|...|Kn)-set

value

60c. obs comp_KS: C — KS 1R

A Prerequisite for Requirements Engineering 207 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

208
1. Domain Analysis & Description 2. Endurant Entities 2.10. Components

e We have presented one way of tackling the issue of describing com-
ponents.
& There are other ways.
» We leave those ‘other ways’ to the reader.

e We are not going to suggest techniques and tools for analysing,
let alone describing qualities of components.

& We suggest that conventional
abstraction of modeling techniques
and tools be applied.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 208 Domain Science & Engineering

209

1. Domain Analysis & Description 2. Endurant Entities 2.11. Components

1.2.11. Maternials

e Continuous endurants (i.e., materials) are entities, m, which satisfy:

®» is material(m) = is endurant(m)Ais _continuous(m)

Example 47 . Parts and Materials:
e We observe materials as associated with atomic parts:

o Thus liquid or gaseous materials are observed in pipeline units
]

e We shall in this seminar not cover
the case of parts being immersed in materials.

A Prerequisite for Requirements Engineerin 209 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

210

1. Domain Analysis & Description 2. Endurant Entities 2.11. Materials

e We assume, without loss of generality, that only atomic parts may
contain materials.

e Let p: P be some atomic part.

Analysis Prompt 16 . has_materials:
e The domain analysis prompt:

® has_materials(p)

e yields true if the atomic part p:P
potentially contains materials
otherwise false N

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 210 Domain Science & Engineering

211

1. Domain Analysis & Description 2. Endurant Entities 2.11. Materials

e Let us assume that parts p: P embodies materials of sorts
{My,Mos,... My}

e Since we cannot automatically guarantee that our domain descrip-
tions secure that

o each M; ([1<i<n])

@ denotes disjoint sets of entities

we must prove it.

Domain Description Prompt 7. observe_material_sorts:
e The domain description prompt:
® observe material sorts(e)

yields the material sorts and material sort observers domain descrip-
tion text according to the following schema:

A Prerequisite for Requirements Engineering 211 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

212

1. Domain Analysis & Description 2. Endurant Entities 2.11. Materials

7. observe_material _sorts schema

Narration:

[s] ... narrative text on material sorts ...

[o] ... narrative text on material sort observers ...

[i] ... narrative text on material sort recognisers ...

[p] ... narrative text on material sort proof obligations ...
Formalisation:

type

[s] M; [1<i<n]

[s] MS=M1M2... Mn

value

[o] obs mat M;: P - M, [1<i<n|

[o] materials: P — MS

[i] is.M;: M — Bool [1<i<n|

proof obligation | Disjointness of Material Sorts]

[p] ¥V mi:(Mi|My|...]IM,,) -

bl A lis Mimi) = V~{is Mi(mo)li € {L.m P\ {i}}i € {L.m}}

e The M; are all distinct =

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 212

213

1. Domain Analysis & Description 2. Endurant Entities 2.11. Materials

Example 48 . Pipeline Material: We continue Example 27 on Slide 140
and Example 33 on Slide 162.

61 When we apply obs_material_sorts_U to any unit u:U we obtain
a. a type clause stating the material sort LoG for some further un-
defined liquid or gaseous material, and
b. a material observer function signature.

type
61a. LoG

value
61b. obs mat LoG: U — LoG IR

A Prerequisite for Requirements Engineerin; 213 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

214
1. Domain Analysis & Description 2. Endurant Entities 2.11. Materials 2.11.1.

1.2.11.1. Maternials-related Part Attributes

e It seems that the “interplay” between parts and materials

® 18 an area where domain analysis
& in the sense of this seminar

& 18 relevant.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 214

215

1. Domain Analysis & Description 2. Endurant Entities 2.11. Materials 2.11.1. Materials-related Part Attributes

Example 49 . Pipeline Material Flow: We continue Examples?27.
33 and 48.

e Let us postulate an attribute| sort Flow.

e We now wish to examine the flow of liquid (or gaseous) material in
pipeline units.

e We use two types
62 F for “productive” flow, and L for wastetul leak.

e Flow and leak is measured, for example, in terms of volume of ma-
terial per second.

e We then postulate the following unit attributes

@ “measured’ at the point of in- or out-flow

& Or 1n the iterior of a unit.

A Prerequisite for Requirements Engineerin 215 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

216

1. Domain Analysis & Description 2. Endurant Entities 2.11. Materials 2.11.1. Materials-related Part Attributes

63 current low of material into a unit in-
put connector,

64 maximum flow of material into a
unit input connector while maintain-
ing laminar flow,

65 current flow of material out of a unit
output connector,

66 maximum flow of material out of a
unit output connector while maintain-
ing laminar flow,

67 current leak of material at a unit input

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

connector,

68 maximum guaranteed leak of material
at a unit mput connector,

69 current leak of material at a unit input
connector,

70 maximum guaranteed leak of material
at a unit input connector,

71 current leak of material from “within”
a unit, and

72 maximum guaranteed leak of material
from “within” a unit.

216

217

1. Domain Analysis & Description 2. Endurant Entities 2.11. Materials 2.11.1. Materials-related Part Attributes

type

62. F, L

value

63. attr_cur.iF: U — Ul — F

64. attr_max_.iF: U — Ul — F
65. attr_curoF: U — Ul — F
66. attr_maxofF: U — Ul — F

67.
68.
69.
70.
71.
72.

attr_cur_il: U - Ul — L
attr_max.lL: U — Ul — L
attr_curolL: U — Ul — L
attr_maxolL: U — Ul — L
attr_cur_L: U — L
attr_max_L: U — L

e The maximum flow attributes are static attributes
and are typically provided by the manufacturer
as indicators of flows below which laminar flow can be expected.

e The current flow attributes are dynamic attributes R

A Prerequisite for Requirements Engineering

217

© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

218

1. Domain Analysis & Description 2. Endurant Entities 2.11. Materials 2.11.2. Materials-related Part Attributes

1.2.11.2. Laws of Material Flows and Leaks
e [t may be difficult or costly, or both,

& to ascertain flows and leaks in materials-based domains.
@ But one can certainly speak of these concepts.

& This casts new light on domain modeling.

¢ That is in contrast to

o incorporating such notions of flows and leaks
@ in requirements modeling

@ where one has to show implement-ability.

e Modeling flows and leaks is important to the modeling of materials-
based domains.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 218 Domain Science & Engineering

219

1. Domain Analysis & Description 2. Endurant Entities 2.11. Materials 2.11.2. Laws of Material Flows and Leaks

Example 50 . Pipelines: Intra Unit Flow and Leak Law:

73 For every unit of a pipeline system, except the well and the sink
units, the following law apply.

74 The flows into a unit equal

a. the leak at the inputs
b. plus the leak within the unit
c. plus the flows out of the unit

d. plus the leaks at the outputs.

A Prerequisite for Requirements Engineering 219 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

220

1. Domain Analysis & Description 2. Endurant Entities 2.11. Materials 2.11.2. Laws of Material Flows and Leaks

axiom | Well—formedness of Pipeline Systems, PLS (1)]
73. V pls:PLS,b:B\We\Si,u:U -

/3.
73.
4.

4a..
74b..
f4c..
74d..

/3.

b € obs_part Bs(pls)\u=obs part U(b)=
let (iuis,ouis) = obs mereo U(u) in
sum _cur_iF(iuis)(u) =
sum cur iL(iuis)(u)

@ attr cur L(u)

@ sum _cur_oF(ouis)(u)

@ sum _cur_ oL (ouis)(u)
end

220

Domain Science & Engineering

221
1. Domain Analysis & Description 2. Endurant Entities 2.11. Materials 2.11.2. Laws of Material Flows and Leaks

75 The sum _cur_iF (cf. Item 74) sums current input flows over all input connectors.
76 The sum _cur L (cf. Item 74a.) sums current input leaks over all input connectors.

77 The sum_cur_ oF (cf. Item 74c.) sums current output flows over all output connec-
tors.

78 The sum _cur oL (cf. Item 74d.) sums current output leaks over all output connec-
tors.

75. sum_cur.iF: Ul-set - U — F

75. sum_cur_iF(iuis)(u) = & {attr_cur_iF(ui)(u)|ui:Ul-ui € iuis}
76. sum_cur.iL: Ul-set - U — L

76. sum _cur_iL(iuis)(u) = ® {attr_cur_iL(ui)(u)|ui:Ul-ui € iuis}
77. sum_curoF: Ul-set - U — F

77. sum_cur oF(ouis)(u) = @ {attr_cur_iF(ui)(u)|ui:Ul-ui € ouis}
78. sum_curol: Ul-set - U — L

78. sum_cur ol (ouis)(u) = & {attr_cur_iL(ui)(u)|ui:Ul-ui € ouis}

@®: (FIL) x (F|L) — F il

A Prerequisite for Requirements Engineering 221 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

222

1. Domain Analysis & Description 2. Endurant Entities 2.11. Materials 2.11.2. Laws of Material Flows and Leaks

Example 51 . Pipelines: Inter Unit Flow and Leak Law:

79 For every pair of connected units of a pipeline system the following law apply:

a. the flow out of a unit directed at another unit minus the leak at that output
connector

b. equals the flow into that other unit at the connector from the given unit plus
the leak at that connector.

axiom | Well—formedness of Pipeline Systems, PLS (2)]

79.
79.
79.
79.
79.

79a..
79b..

79.
79.

V pls:PLS,b,b":B,u,u’:U-
{b,b’}Cobs_part_Bs(pls) Ab#b’Au'=0bs_part_U(b’)
A let (iuis,ouis)=obs_mereo_U(u),(iuis’,ouis’)=obs mereo_U(u'),
ui=uid_U(u),ui’=uid _U(u’) in
ui € iuis A ui’ € ouis’ =
attr_cur oF(u')(ui") — attr_leak oF(u’)(ui’)
= attr_cur_iF(u)(ui) + attr_leak iF(u)(ui)
end
comment: b’ precedes b I

n jgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29 222 Domain Science & Engineering

223
1. Domain Analysis & Description 2. Endurant Entities 2.11. Materials 2.11.2. Laws of Material Flows and Leaks

e From the above two laws one can prove the theorem:

®» what 1s pumped from the wells equals

@ what is leaked from the systems plus what is output to the sinks.

e We need formalising the flow and leak summation functions.

A Prerequisite for Requirements Engineering 223 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

224
1. Domain Analysis & Description 2. Endurant Entities 2.12. Materials

1.2.12. “No Junk, No Confusion”

e Domain descriptions are, as we have already shown, formulated.,
@ both informally @ and formally;,

by means of abstract types,

® that is, by sorts

@ for which no concrete models are usually given.
e Sorts are made to denote
& possibly empty;, & possibly infinite, & rarely singleton,

® sets of entities on the basis of the qualities defined for these sorts,
whether external or internal.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 224 Domain Science & Engineering

225

1. Domain Analysis & Description 2. Endurant Entities 2.12. “No Junk, No Confusion”

e By junk we shall understand

& that the domain description

» unintentionally denotes undesired entities.
e By confusion we shall understand

& that the domain description
@ unintentionally have two or more identifications

@ of the same entity or type.

e The question is

® can we formulate a [formal] domain description

@ such that it does not denote junk or confusion

e The short answer to this is no'!

A Prerequisite for Requirements Engineering 225 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

226

1. Domain Analysis & Description 2. Endurant Entities 2.12. “No Junk, No Confusion”

e S0, since one naturally wishes “no junk, no contusion”
what does one do”

e The answer to that is

® one proceeds with great care!

e To avoid junk we have stated a number of sort well-formedness ax-
loms, for example:
& Slide 151 for Well-formedness of Links, L, and Hubs, H,
& Slide 158 for Well-formedness of Domain Mereologies,
& Slide 161 for Well-formedness of Road Nets, N,
& Slide 163 for Well-formedness of Pipeline Systems, PLS (0),
& Slide 182 for Well-formedness of Hub States, HY,
& Slide 220 for Well-formedness of Pipeline Systems, PLS (1),
& Slide 222 for Well-formedness of Pipeline Systems, PLS (2),
& Slide 229 for Well-formedness of Pipeline Route Descriptors and
& Slide 233 for Well-formedness of Pipeline Systems, PLS (3).

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 226 Domain Science & Engineering

227
1. Domain Analysis & Description 2. Endurant Entities 2.12. “No Junk, No Confusion”

e 'To avoid confusion we have stated a number of proof obligations:

@ Slide 122 for Disjointness of Part Sorts,
@ Slide 178 for Disjointness of Attribute Types and
@ olide 212 for Disjointness of Material Sorts.

A Prerequisite for Requirements Engineering 227 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

228

1. Domain Analysis & Description 2. Endurant Entities 2.12. “No Junk, No Confusion”

Example 52 . No Pipeline Junk:
e We continue Example 27 on Slide 140 and Example 33 on Slide 162.
80 We define a proper pipeline route to be a sequence of pipeline
units.

a. such that the i™h and 4150 units in sequences longer than 1
are (forward) adjacent, in the sense defined below, and

b. such that the route is acyclic, in the sense also defined below.

To formalise the above we describe some auxiliary notions.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 228 Domain Science & Engineering

229
1. Domain Analysis & Description 2. Endurant Entities 2.12. “No Junk, No Confusion”

1.2.12.0.1 Pipe Routes

81 A route descriptor is the sequence of unit identifiers of the units of
a route (of a pipeline system).

type
80. R = U¥
80. R = {| r:Route'wf Route(r) |}
81. RD = UI¥
axiom | Well—formedness of Pipeline Route Descriptors, RD |
8l. V rd:RD - 3 r:Rrd=descriptor(r)
value
81. descriptor: R — RD
81. descriptor(r) = (uid Ul(r[i])|i:Nat-1<i<len r)

A Prerequisite for Requirements Engineering 229 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

230
1. Domain Analysis & Description 2. Endurant Entities 2.12. “No Junk, No Confusion”

82 Two units are (forward) adjacent if the output unit identifiers of one
shares a unique unit identifier with the input identifiers of the other.

value
82. adjacent: U x U — Bool
82. adjacent(u,u’) =
82. let (,ouis)=obs mereo U(u),
82. (iuis,)=obs _mereo U(u) in
82. ouis N iuis # {} end

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 230 Domain Science & Engineering

231
1. Domain Analysis & Description 2. Endurant Entities 2.12. “No Junk, No Confusion”

83 Given a pipeline system, pls, one can identify the (possibly infinite) set of (possibly
infinite) routes of that pipeline system.

/0 O

The empty sequence, (), is a route of pls.
Let u be a unit of pls, then (u) is a route of pls.
Let u, v’ be adjacent units of pls then (u,u’) is a route of pls.

If r and " are routes of pls such that the last element of r is the same as the
first element of 7/, then " tl7’ is a route of pis.

. No sequence of units is a route unless it follows from a finite number of appli-

cations of the basis and induction clauses of [tems 83a.—83d..

value
83. Routes: PLS — R-infset
83. Routes(pls) =
83a.. let rs = ()
83b.. U {(u)|u:U-u € obs_part_Us(pls)}
83c.. U {(u,u’)|u,u:U-{u,u'} Cobs_part_Us(pls) A adjacent(u,u’)}
83d.. U {r tl r|r,r:R{r,r}CrsAr|[len r|=hd r}

83e..

in rs end

A Prerequisite for Requirements Engineering 231 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

232
1. Domain Analysis & Description 2. Endurant Entities 2.12. “No Junk, No Confusion”

1.2.12.0.2 Well-formed Routes

84 A route is acyclic if no two route positions reveal the same unique
unit identifier.

value
84. acyclic_Route: R — Bool
84. acyclic Route(r) = ~3i,j:Nat{i,j} Cinds r A i#] A r|i|=r[]]

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 232 Domain Science & Engineering

233
1. Domain Analysis & Description 2. Endurant Entities 2.12. “No Junk, No Confusion”

1.2.12.0.3 Well-formed Pipeline Systems

85 A pipeline system is well-formed if

a. none of 1ts routes are circular and

b. all of its routes are embedded in well-to-sink routes.

axiom | Well—formedness of Pipeline Systems, PLS (3)]
85. V pls:PLS -

8ba.. non _circular(pls)
85b.. A are embedded in well to sink Routes(pls)
value

85. non circular PLS: PLS — Bool
85. non circular PLS(pls) =
85. V r:Rr € routes(p)Aacyclic Route(r)

A Prerequisite for Requirements Engineering 233 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

234
1. Domain Analysis & Description 2. Endurant Entities 2.12. “No Junk, No Confusion”

86 We define well-formedness in terms of well-to-sink routes, i.e., routes
which start with a well unit and end with a sink unit.

value
86. well to sink Routes: PLS — R-set
86. well to sink Routes(pls) =
86. let rs = Routes(pls) in
86. {r[rRr € rs Ais We(r|1]) Ais Si(r|len r])} end

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 234 Domain Science & Engineering

235
1. Domain Analysis & Description 2. Endurant Entities 2.12. “No Junk, No Confusion”

87 A pipeline system is well-formed if all of its routes are embedded in
well-to-sink routes.

87. are_embedded_in_well to_sink_Routes: PLS — Bool
87. are embedded in well to sink Routes(pls) =

87. let wsrs = well to sink Routes(pls) in
87. V r:R - r € Routes(pls) =

87. 3 r:R,i,j:Nat -

7. ' € wsrs

87. A {i,j} Cinds rAi<|

87. A r = (r|k]|k:Nat-i<k<j) end

A Prerequisite for Requirements Engineering 235 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

236
1. Domain Analysis & Description 2. Endurant Entities 2.12. “No Junk, No Confusion”

1.2.12.0.4 Embedded Routes

88 For every route we can define the set of all its embedded routes.

value
88. embedded Routes: R — R-set
88. embedded Routes(r) =
88. {{r| k||k:Nati<k<j)

i:Nat- i {ij}Cinds(r) A i<j}

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 236 Domain Science & Engineering

1. Domain Analysis & Description 2. Endurant Entities 2.12. “No Junk, No Confusion”

237

1.2.12.0.5 A Theorem

89 The following theorem is conjectured:

a. the set of all routes (of the pipeline system)
b. is the set of all well-to-sink routes (of a pipeline system) and

c. all their embedded routes

theorem:
89. V pls:PLS -
89. let rs = Routes(pls),
89. wsrs = well to sink Routes(pls) in
89a.. rs =
89b.. wsrs U
89c.. U {{r|r:R - r € embedded Routes(r')} | r:R-r &€ wsrs}

88. end N

A Prerequisite for Requirements Engineering 237 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

238
1. Domain Analysis & Description 2. Endurant Entities 2.12. “No Junk, No Confusion”

e The above example,

® besides illustrating one way of coping with “junk”,

» also illustrated the need for introducing a number of auxiliary
notions:

@ types, @ axioms and
o functions, @ theorems.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 238 Domain Science & Engineering

239

1. Domain Analysis & Description 2. Endurant Entities 2.13. “No Junk, No Confusion”

1.2.13. Discussion of Endurants

e In Sect.4.2.2 a “depth-first” search for part sorts was hinted at.
e [t essentially expressed

& that we discover domains epistemologically16

& but understand them ontologically.!”
e The Danish philosopher Sgren Kirkegaard (1813-1855) expressed it this way:

& Life is lived forwards,

& but Iis understood backwards.

e The presentation of the of the domain analysis prompts and the domain
description prompts results in domain descriptions which are ontological.

e The “depth-first” search recognizes the epistemological nature of bringing about
understanding.

16Epistemology: the theory of knowledge, especially with regard to its methods, validity, and scope. Epistemology is the investigation of what distinguishes
justified belief from opinion.
170Ontology: the branch of metaphysics dealing with the nature of being.

A Prerequisite for Requirements Engineerin; 239 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

240
1. Domain Analysis & Description 2. Endurant Entities 2.13. Discussion of Endurants

e This “depth-first” search

®» that ends with the analysis of atomic part sorts
» can be guided, i.e., hastened (shortened),

& by postulating composite sorts

& that “correspond” to vernacular nouns:

@ everyday nouns that stand for classes of endurants.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 240

241

1. Domain Analysis & Description 2. Endurant Entities 2.13. Discussion of Endurants

e We could have chosen our domain analysis prompts and domain
description prompts to reflect
® a “bottom-up” epistemology:,
@ one that reflected how we composed composite understandings
» from initially atomic parts.

» We leave such a collection of domain analysis prompts and
domain description prompts to the student.

A Prerequisite for Requirements Engineering 241 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

Dines Bjgrner’s MAP-i Lecture # 4

End of MAP-i Lecture # 4.
Components, Materials — and Discussion of Endurants

Monday, 25 May 2015: 16:45-17:30

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O Domain Science & Engineering

Dines Bjgrner’'s MAP-i Lecture # 5

Perdurants: Actions, Events and Behaviours

Tuesday, 26 May 2015: 10:00-10:45

242 1. Domain Analysis & Description 3. Perdurant Entities

1.3. Perdurant Entities

e We shall give only a cursory overview of perdurants.
e That is, we shall not present

® a set of domain analysis prompts and
@ a set of domain description prompts

leading to description language,
1.e., RSL texts describing perdurant entities.

e The reason for giving this albeit cursory overview of perdurants
@ 1s that, through this cursory overview, we can justify our detailed
study of endurants,

o their part and subparts,
o their unique identifiers, mereology and attributes.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 242 Domain Science & Engineering

243

1. Domain Analysis & Description 3. Perdurant Entities

e This justification is manifested

» (1) in expressing the types of signatures,
» (ii) in basing behaviours on parts,

 (iil) in basing the for need for
CSP-oriented inter-behaviour communications

on shared part attributes,
» (iv) in indexing behaviours as are parts, i.e., on unique identifiers,

and

» (v) in directing inter-behaviour communications across channel
arrays indexed as per the mereology of the part behaviours.

243 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

244

1. Domain Analysis & Description 3. Perdurant Entities

e These are all notions related to endurants

and are now justified by their use in describing perdurants.

e Perdurants can perhaps best be explained in terms of

& a notion of state and

& a notion of time.

e We shall, in this seminar, not detail notions of time.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 244

245

1. Domain Analysis & Description 3. Perdurant Entities 3.1.

1.3.1. States

Definition 11 . State: By a state we shall understand
e any collection of parts
e cach of which has
e at least one dynamic attribute

® or has_components or has_material s M

A Prerequisite for Requirements Engineering 245 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

246
1. Domain Analysis & Description 3. Perdurant Entities 3.1. States

Example 53 . States: Some examples of states are:

e A road hub can be a state,
ct. Hub State, HY, Example 38 on Slide 181.

e A road net can be a state — since its hubs can be.

e Container stowage areas, CSA, Example 22 on Slide 135, of container
vessels and container terminal ports can be states as containers can
be removed from and put on top of container stacks.

e Pipeline pipes can be states as they potentially carry material.

e Conveyor belts can be states as they potentially carry components
]

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 246 Domain Science & Engineering

247

1. Domain Analysis & Description 3. Perdurant Entities 3.2. States

1.3.2. Actions, Events and Behaviours

e To us perdurants are further analysed into

& actions,
& events, and

» behaviours.
e We shall define these terms below.
e Common to all of them is that they potentially change a state.
e Actions and events are here considered atomic perdurants.
e For behaviours we distinguish between

& discrete and

& continuous

behaviours.

A Prerequisite for Requirements Engineering 247 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

248

1. Domain Analysis & Description 3. Perdurant Entities 3.2. Actions, Events and Behaviours

On Action, Event and Behaviour Distinctions:

e The distinction into action, event and behaviour perdurants is prag-
madtic.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 248 Domain Science & Engineering

249

1. Domain Analysis & Description 3. Perdurant Entities 3.2. Actions, Events and Behaviours 3.2.1.

1.3.2.1. Time Considerations

e We shall, without loss of generality, assume

& that actions and events are atomic

@ and that behaviours are composite.
e Atomic perdurants may “occur” during some time interval,

& but we omit consideration of and concern
for what actually goes on during such an interval.

e Composite perdurants can be analysed into

& ‘constituent” actions,
& events and

& “sub-behaviours”.

e We shall also omit consideration of temporal properties of behaviours.

A Prerequisite for Requirements Engineering 249 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

250

1. Domain Analysis & Description 3. Perdurant Entities 3.2. Actions, Events and Behaviours 3.2.1. Time Considerations

» Instead we shall refer to two seminal monographs:
o Specifying Systems |Leslie Lamport, 2002] and
o Duration Calculus: A Formal Approach to Real-Time Systems
'Zhou ChaoChen and Michael Reichhardt Hansen, 2004].

e [or a seminal book on “time in computing” we refer to the eclectic
Modeling Time in Computing, Springer 2012.

e And for seminal book on time at the epistemology level we refer to
The Logic of Time, Kluwer 1991.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 250 Domain Science & Engineering

251

1. Domain Analysis & Description 3. Perdurant Entities 3.2. Actions, Events and Behaviours 3.2.2. Time Considerations

1.3.2.2. Actors
Definition 12 . Actor: By an actor we shall understand

e something that is capable of initiating and/or carrying out

& actions,
® events or
o behaviours 1B

e We shall, in principle, associate an actor with each part.

&» These actors will be described as behaviours.

& These behaviours evolve around a state.
& The state 1s

o the set of qualities,
in particular the dynamic attributes,
of the associated parts
o and/or any possible components or materials of the parts.

A Prerequisite for Requirements Engineerin 251 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

252
1. Domain Analysis & Description 3. Perdurant Entities 3.2. Actions, Events and Behaviours 3.2.2. Actors

Example 54 . Actors: We refer to the road transport and the pipeline
systems examples of earlier.

e The fleet, each vehicle and the road management of the Transporta-
tion System of Examples 20 on Slide 123 and 43 on Slide 198 can
be considered actors:;

e so can the net and its links and hubs.

e The pipeline monitor and each pipeline unit of the Pipeline System,
Example 27 on Slide 140 and Examples 27 on Slide 140 and 33 on

Slide 162 will be considered actors.

e The bank general ledger and each bank customer of the Shared
Passbooks example, Example 44 on Slide 201, will be considered
actors [l

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 252 Domain Science & Engineering

253

1. Domain Analysis & Description 3. Perdurant Entities 3.2. Actions, Events and Behaviours 3.2.3. Actors

1.3.2.3. Parts, Attributes and Behaviours

e Example 54 on the preceding slide focused on what shall soon be-
come a major relation within domains:

@ that of parts being also considered actors,

@ or more specifically, being also considered to be behaviours.

Example 55 . Parts, Attributes and Behaviours:
e Consider the term ‘train’.
e [t has several possible “meanings”.

@ the train as a part, viz., as standing on a platform;

» the train as listed in a timetable (an attribute of a transport sys-
tem part),

® the train as a behaviour: speeding down the rail track il

A Prerequisite for Requirements Engineerin 253 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

254

1. Domain Analysis & Description 3. Perdurant Entities 3.3. Actions, Events and Behaviours

1.3.3. Discrete Actions

Definition 13 . Discrete Action: By a discrete action [5// we
shall understand

e o foreseeable thing

e which deliberately

e potentially changes a well-formed state, in one step,
e usually into another, still well-formed state,

e and for which an actor can be made responsible M

e An action is what happens when a function invocation changes, or
potentially changes a state.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 254 Domain Science & Engineering

255

1. Domain Analysis & Description 3. Perdurant Entities 3.3. Discrete Actions

Example 56 . Road Net Actions:

e Fixamples of Road Net actions initiated by the net actor are:

@ insertion of hubs, @ removal of links,

» insertion of links, ® setting of hub states.
@ removal of hubs,

e Fixamples of Traffic System actions initiated by vehicle actors are:

® moving a vehicle along a link, < entering a hub and

& stopping a vehicle, » leaving a hub |l
& starting a vehicle,

A Prerequisite for Requirements Engineering 255 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

256

1. Domain Analysis & Description 3. Perdurant Entities 3.4. Discrete Actions

1.3.4. Discrete Events

Definition 14 . Event: By an event we shall understand
e some unforeseen thing,
e that is, some ‘not-planned-for’ “action”, one

e which surreptitiously, non-deterministically changes a well-formed
state

e into another, but usually not a well-formed state,

e and for which no particular domain actor can be made respon-

sible

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 256 Domain Science & Engineering

257

1. Domain Analysis & Description 3. Perdurant Entities 3.4. Discrete Events

e Fvents can be characterised by

» a pair of (before and after) states,
& a predicate over these

@ and, optionally, a time or time interval.

e The notion of event continues to puzzle philosophers
136, 51, 49, 35] |41, 2, 47, 34] |50, 33].

e We note, in particular, [35, 2, 47].

A Prerequisite for Requirements Engineering 257 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

258

1. Domain Analysis & Description 3. Perdurant Entities 3.4. Discrete Events

Example 57 . Road Net and Road Traffic Events:
e Some road net events are:

® “disappearance” of a hub or a link,
® failure of a hub state to change properly when so requested, and

@ occurrence of a hub state leading traffic into “wrong-way” links.
e Some road traflic events are:

» the crashing of one or more vehicles (whatever ‘crashing’ means),
@ a car moving in the wrong direction of a one-way link, and

® the clogging of a hub with too many vehicles M

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 258 Domain Science & Engineering

259

1. Domain Analysis & Description 3. Perdurant Entities 3.5. Discrete Events

1.3.5. Discrete Behaviours

Definition 15 . Discrete Behaviour: By a discrete behaviour
we shall understand

e o set of sequences of potentially interacting sets of discrete

& actions,
o events and

o behaviours B

A Prerequisite for Requirements Engineerin; 259 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

260

1. Domain Analysis & Description 3. Perdurant Entities 3.5. Discrete Behaviours

Example 58 . Behaviours:
e Fixamples of behaviours:

» Road Nets: A sequence of hub and link insertions and removals,
link disappearances, etc.

» Road Traffic: A sequence of movements of vehicles along links,
entering, circling and leaving hubs, crashing of vehicles, etc.

» Pipelines: A sequence of pipeline pump and valve openings and
closings, and failures to do so (events), etc.

& Container Vessels and Ports: Concurrent sequences of movements
(by cranes) of containers from vessel to port (unloading), with
sequences of movements (by cranes) from port to vessel (loading),
with dropping of containers by cranes, etcetera Hll

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 260 Domain Science & Engineering

261

1. Domain Analysis & Description 3. Perdurant Entities 3.5. Discrete Behaviours 3.5.1.

1.3.5.1. Channels and Communication
e Behaviours

& sometimes synchronise

¢ and usually communicate.
e We use CSP to model behaviour communication.

< Communication 1s abstracted as

o the sending (ch!'m) and
@ receipt (ch?)

@ of messages, m:M,

o over channels, ch.

type M
channel ch M

A Prerequisite for Requirements Engineering 261 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

262
1. Domain Analysis & Description 3. Perdurant Entities 3.5. Discrete Behaviours 3.5.1. Channels and Communication

o Communication between (unique identifier) indexed behaviours
have their channels modeled as similarly indexed channels:

out: chlidx |!Im
in: chlidx|?
channel {ch|ide]|ide:IDE}:M

where IDE typically is some type expression over unique identitifer
types.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 262 Domain Science & Engineering

263

1. Domain Analysis & Description 3. Perdurant Entities 3.5. Discrete Behaviours 3.5.2. Channels and Communication

1.3.5.2. Relations Between Attribute Sharing and Channels

e We shall now interpret

@ the syntactic notion of attribute sharing with

@ the semantic notion of channels.

e This is in line with the above-hinted interpretation of
® parts with behaviours, and.
as we shall soon see

& part attributes,
& part components and

& part materials

with behaviour states.

A Prerequisite for Requirements Engineerin; 263 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

264

1. Domain Analysis & Description 3. Perdurant Entities 3.5. Discrete Behaviours 3.5.2. Relations Between Attribute Sharing and Channels

e Thus, for every pair of parts, p,;.:P; and PPy, of distinct sorts, P;
and P; which share attribute values in A

® We are going to associate a channel.
o If there is only one pair of parts, p;z:P; and PPy, of these
sorts, then just a simple channel, say chp, P;-

channel Chp@.)ijA.

o If there is only one part, p;:P;, but a definite set of parts p;1:P,
with shared attributes, then a vector of channels.
« Let {p;1,p;2,...,Djny be all the part of the domain of sort
P;.
« Then wuids : {ijl,ﬂ'pﬂ, ...,ijn} is the set of their unique
identifiers.
+ Now a schematic channel array declaration can be suggested:

channel {ch|{7;7;} ||m;=uid_P;(p;)A7; € uids}:A.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 264 Domain Science & Engineering

265
1. Domain Analysis & Description 3. Perdurant Entities 3.5. Discrete Behaviours 3.5.2. Relations Between Attribute Sharing and Channels

Example 59 . Bus System Channels:
o We extend Examples 20 on Slide 123 and 43 on Slide 198.

e We consider the fleet and the vehicles to be behaviours.

90 We assume some transportation system. d. From that system we
observe

91 the fleet and
92 the vehicles.

93 The fleet to vehicle channel array is indexed by the 2-element sets of
the unique fleet identifier and the unique vehicle identifiers. We con-
sider bus timetables to be the only message communicated between
the fleet and the vehicle behaviours.

A Prerequisite for Requirements Engineerin 265 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

266

1. Domain Analysis & Description 3. Perdurant Entities 3.5. Discrete Behaviours 3.5.2. Relations Between Attribute Sharing and Channels

value

90. AN

1. f:F = obs_part_F(9),

92. vs:V-set = obs_part_Vs(obs part VC((obs_part F(d))))
channel

93. {fch| {uid_F(f),uid_V(v)} ||v:V-v € vs}:BT Il

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 266 Domain Science & Engineering

267
1. Domain Analysis & Description 3. Perdurant Entities 3.5. Discrete Behaviours 3.5.2. Relations Between Attribute Sharing and Channels

Example 60 . Bank System Channels:
e We extend Example 44 on Slide 201.

e We consider the general ledger and the customers to be behaviours.
94 We assume some bank system. From the bank system
95 we observe the general ledger.
96 and the set of customers.

97 We consider passbooks to be the only message communicated be-
tween the general ledger and the customer behaviours.

value

94. bs:BS

95. gl=obs part _GL(obs part AD(bs)):GL
96. cs=obs part_Cs(obs _part CS(bs)):C-set
channel

97. {bsch[{uid_GL(gl),uid_C(c)}]|c:Cc € cs}:PB I

A Prerequisite for Requirements Engineering 267 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

268

1. Domain Analysis & Description 3. Perdurant Entities 3.6. Discrete Behaviours

1.3.6. Continuous Behaviours

e By a continuous behaviour we shall understand

& a continuous time

@ sequence of state changes.

e We shall not go into what may cause these state changes.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 268 Domain Science & Engineerin:

269

1. Domain Analysis & Description 3. Perdurant Entities 3.6. Continuous Behaviours

Example 61 . Flow in Pipelines:
e We refer to Examples 33, 48, 49, 50 and 51.
e Let us assume that oil is the (only) material of the pipeline units.

e Let us assume that there is a suflicient volume of oil in the pipeline
units leading up to a pump.
e Let us assume that the pipeline units leading from the pump (espe-

cially valves and pumps) are all open for oil flow.

e Whether or not that oil is flowing, if the pump is pumping (with a
sufficient head) then there will be oil flowing from the pump outlet
into adjacent pipeline units Nl

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ines Bjgrner 5, Fredsvej 4 e, Denmarl
AP isite for Requi Engi i 269 Di Bj 2015, Fred 11, DK-2; Holte, D k — May 23, 2015: 15:2

270

1. Domain Analysis & Description 3. Perdurant Entities 3.6. Continuous Behaviours

e To describe the flow of material (say in pipelines) requires knowledge
about a number of material attributes — not all of which have been
covered in the above-mentioned examples.

e To express flows one resorts to the mathematics of fluid-dynamics

using such second order differential equations as first derived by
Bernoulli (1700-1782) and Navier—Stokes (1785-1836 and 1819-1903).

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 270 Domain Science & Engineering

271

1. Domain Analysis & Description 3. Perdurant Entities 3.7. Continuous Behaviours

1.3.7. Attribute Value Access

e We can distinguish between three kinds of attributes:

& the constant attributes which are those whose values are static;

@ the programmable attributes which are those dynamic values are
exclusively set by part processes; and

» the remaining dynamic attributes
are here seen as individual behaviours.

1.3.7.1. Access to Static Attribute Values

e The constant attributes can be “copied” attr_A(p)
(and retain their values).

A Prerequisite for Requirements Engineering 271 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

272
1. Domain Analysis & Description 3. Perdurant Entities 3.7. Attribute Value Access 3.7.2. Access to Static Attribute Values

1.3.7.2. Access to External Attribute Values

e By the external behaviour attributes

o we shall thus understand the
@ Inert,
@ reactive,
@ autonomous and the

o biddable
attributes N

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 272 Domain Science & Engineering

273

1. Domain Analysis & Description 3. Perdurant Entities 3.7. Attribute Value Access 3.7.2. Access to External Attribute Values

98 Let £A be the set of names, nA,
of all external behaviour attributes.

99 Let I1¢ 4 be the set of indexes into the external attribute channel, say
attr_A_ch, one for each distinct attribute name, A, in £A.

100 Each external behaviour attribute is seen as an individual behaviour,
each “accessible” by means of a channel, attr_A_ch.

101 External attribute values are then accessed by the input, from chan-
nel attr A _ch[r]-accessible external attribute behaviours.

102 The type of attr A ch[r] is considered to be Unit—A.

A Prerequisite for Requirements Engineerin; 273 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

274

1. Domain Analysis & Description 3. Perdurant Entities 3.7. Attribute Value Access 3.7.2. Access to External Attribute Values

98. wvalue

98. EA: {nAlA is any external attribute name}
99. [ley: H-set

100. channel

100. {attr A ch|7||m € Tl¢ 4}

101. wvalue

101. attr A ch|7| 7

101. type

101. attr A_ch[7]: Unit—A [abbrv..UA]

274

275
1. Domain Analysis & Description 3. Perdurant Entities 3.7. Attribute Value Access 3.7.2. Access to External Attribute Values

e We shall omit the n prefix in actual descriptions.

e The choice of representing external behaviour attributes as behaviours
is a technical one.

e See [tems 187c. and 187a. Slide 426 for a use of the concept of external
behaviour attribute channels.

A Prerequisite for Requirements Engineering 275 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

276

1. Domain Analysis & Description 3. Perdurant Entities 3.7. Attribute Value Access 3.7.3. Access to External Attribute Values

1.3.7.3. Access to Programmable Attribute Values

e The programmable attributes are treated as function arguments.
e This is a technical choice. It is motivated as follows.
¢ We find that programmable attribute values

are set (i.e., updated) by part processes.

¢ That is, to each part, whether atomic or composite,
we associate a behaviour.

& That behaviour is (to be) described as we describe functions.
& These functions (normally) ‘go on forever”.

% Therefore these functions are described basically by a “tail” recursive definition:
value f: Arg — Arg; f(a) = (... let a = F(...)(a) in f(a) end)

% where F is some expression based on values defined within
the function definition body of f and on a’s “input” argument a, and

% where a can be seen as a programmable attribute.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 276 Domain Science & Engineerin:

277
1. Domain Analysis & Description 3. Perdurant Entities 3.8. Attribute Value Access

1.3.8. Perdurant Signatures and Definitions

e We shall treat perdurants as functions.
e In our cursory overview of perdurants

% we shall focus on one perdurant quality:

% function signatures.

A Prerequisite for Requirements Engineering 277 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

278
1. Domain Analysis & Description 3. Perdurant Entities 3.8. Perdurant Signatures and Definitions

Definition 16 . Function Signature: By a function signature
we shall understand

e o function name and

e a function type expression Ml

Definition 17 . Function Type Expression: By a function type
expression we shall understand

® a pair of type expressions.

e separated by a function type constructor either — (total function)
or — (partial function) Wl

e The type expressions

@ are usually part sort or type, material sort or attribute type names,

& but may, occasionally be expressions over respective type names
involving -set, X, *, » and | type constructors.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 278 Domain Science & Engineering

279

1. Domain Analysis & Description 3. Perdurant Entities 3.9. Perdurant Signatures and Definitions

1.3.9. Action Signatures and Definitions

e Actors usually provide their initiated actions with arguments, say of

type VAL.

o Hence the schematic function (action) signature and schematic
definition:

action: VAL — ¥ 5 %
action(v)(o) as o’
pre: P(v,0)
post: Q(v,0,0”)
@ expresses that a selection of the domain
& as provided by the X type expression

& 1s acted upon and possibly changed.

A Prerequisite for Requirements Engineerin 279 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

280

1. Domain Analysis & Description 3. Perdurant Entities 3.9. Action Signatures and Definitions

e The partial function type operator =
» shall indicate that action(v)(o)

» may not be defined for the argument, i.e., initial state o
@ and /or the argument v:VAL,
» hence the precondition P(v,o).

e The post condition Q(v,o,c’) characterises the “after” state, o’:%,
with respect to the “before” state, o:XJ, and possible arguments

(v:VAL).

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 280 Domain Science & Engineering

281
1. Domain Analysis & Description 3. Perdurant Entities 3.9. Action Signatures and Definitions

Example 62 . Insert Hub Action Formalisation: We formalise as-
pects of the above-mentioned hub and link actions:

103 Insertion of a hub requires

104 that no hub exists in the net with the unique identifier of the inserted
hub

)

105 and then results in an updated net with that hub.

value

103. insert H: H — N = N

103. insert_ H(h)(n) as n’

104. pre: ~3 h:H-h' € obs_part _Hs(obs_part_HS(n))-uid _H(h)=uid H(h)

105. post: obs_part_Hs(obs_part_HS(n'))=obs_part_Hs(obs_part_HS(n))u{h} N

A Prerequisite for Requirements Engineering 281

282

1. Domain Analysis & Description 3. Perdurant Entities 3.9. Action Signatures and Definitions

e Which could be the argument values, v:VAL, of actions?

@ Well, there can basically be only two kinds of argument values:

o parts, components and materials, respectively
o unique part identifiers, mereologies and attribute values.

& It basically has to be so
o since there are no other kinds of values in domains.
¢ There can be exceptions to the above

o (Booleans,
@ natural numbers),

but they are rare!

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 282 Domain Science & Engineerin:

283

1. Domain Analysis & Description 3. Perdurant Entities 3.9. Action Signatures and Definitions

¢ Perdurant (action) analysis thus proceeds as follows:

» identifying relevant actions,
& assigning names to these,
& delineating the “smallest” relevant statel®
@ ascribing signatures to action functions, and
& determining
@ action pre-conditions and
o action post-conditions.
@ Of these, ascribing signatures is, perhaps, the most crucial:
o In the process of determining the action signature
@ one oftentimes discovers
o that part or material attributes have been left “undiscovered”.

=By “smallest” we mean: containing the fewest number of parts. Experience shows
that the domain analyser cum describer should strive for identifying the smallest state.

A Prerequisite for Requirements Engineering 283 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

284

1. Domain Analysis & Description 3. Perdurant Entities 3.9. Action Signatures and Definitions

e Fixample 63 shows examples of signatures
whose arguments are

& elther parts,

& or parts and unique identifiers,

@ or parts and unique identifiers and attributes.
Example 63 . Some Function Signatures:

e Inserting a link between two identified hubs in a net:
value insert L: L x (HI x HI) = N = N

e Removing a hub and removing a link:

value remove H: HI — N = N
remove L: LI — N = N

e Changing a hub state.
value change HY: Hl x HZ — N = N N

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 284

285
1. Domain Analysis & Description 3. Perdurant Entities 3.10. Action Signatures and Definitions

1.3.10. Event Signatures and Definitions

e Fivents are usually characterised by

& the absence of known actors and

® the absence of explicit “external’ arguments.

e Hence the schematic function (event) signature:

value
event: Y. X X — Bool
event(o,0’) as true[|false
pre: P(0)
post: Q(o,0')

A Prerequisite for Requirements Engineering 285 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

286
1. Domain Analysis & Description 3. Perdurant Entities 3.10. Event Signatures and Definitions

e The event signature expresses

@ that a selection of the domain
& as provided by the X type expression

® 18 “acted” upon, by unknown actors, and possibly changed.
e The partial function type operator =

 shall indicate that event(c, o’)

@ may not be defined for some states o.

e The resulting state may, or may not, satisty axioms and well-formedness
conditions over 3 — as expressed by the post condition Q(a, o).

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 286 Domain Science & Engineering

287

1. Domain Analysis & Description 3. Perdurant Entities 3.10. Event Signatures and Definitions

e Events may thus cause well-formedness of states to fail.
e Subsequent actions,

@ once actors discover such “disturbing events”,
@ are therefore expected to remedy that situation, that is,

& to restore well-formedness.

e We shall not illustrate this point.

A Prerequisite for Requirements Engineering 287 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

288

1. Domain Analysis & Description 3. Perdurant Entities 3.10. Event Signatures and Definitions

Example 64 . Link Disappearence Formalisation: We formalise
aspects of the above-mentioned link disappearance event:

106 The result net is not well-formed.

107 For a link to disappear there must be at least one link in the net;
108 and such a link may disappear such that

109 it together with the resulting net makes up for the “original” net.

value

106. link_diss_event: N x N x Bool

106. link diss_event(n,n’) as tf

107. pre: obs part Ls(obs part LS(n))#{}

108. post: 3 I:L| € obs part Ls(obs part LS(n)) =

109. | Z obs_part_Ls(obs_part LS(n’))

109. A n' U {l} = obs part Ls(obs part LS(n)) Il

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 288 Domain Science & Engineering

289
1. Domain Analysis & Description 3. Perdurant Entities 3.11. Event Signatures and Definitions

1.3.11. Discrete Behaviour Signatures and Definitions

e We shall only cover behaviour signatures when expressed in RSL/CSP
139].

e The behaviour functions are now called processes.

e That a behaviour tunction is a never-ending function, i.e., a process,
is “revealed” in the function signature by the “trailing” Unit:

behaviour: ... — ... Unit

e That a process takes no argument is "revealed” by a “leading” Unit:

behaviour: Unit — ...

e That a process accepts channel, viz.: ch, inputs is “revealed” in the
function signature as follows:

behaviour: ... — in ch ...

A Prerequisite for Requirements Engineerin 289 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

290
1. Domain Analysis & Description 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

e That a process offers channel, viz.: ch, outputs is “revealed” in the
function signature as follows:

behaviour: ... — out ch ...

e That a process accepts other arguments is “revealed” in the function
signature as follows:

behaviour: ARG — ...

e where ARG can be any type expression:

T, T—T, T—=T—T, etcetera

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 290 Domain Science & Engineering

291
1. Domain Analysis & Description 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

e As shown in [21] we can, without loss of generality, associate with
cach part a behaviour:
& parts which share attributes
@ and are therefore referred to in some parts’ mereology,

® can communicate (their “sharing”) via channels.
e The process evolves around a state:

& 1ts unique identity, m : II,,
& 1ts possibly changing mereology, mt:I\/IT19,
& the possible components and materials of the part?V, and

® the constant, the external and the programmable attributes of the
part.

vFor MT see footnote 12 on Slide 158.
»— we shall neither treat components nor materials further in this document

A Prerequisite for Requirements Engineering 291 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

292

1. Domain Analysis & Description 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

e A behaviour signature is therefore:

behaviour: m:II X me:MT X sa:SA x ea:EA — pa:PA — out ochs in ichns Unit

where
o (i) m:II is the unique identifier of part p, i.e., 7=uid_P(p),
» (ii) me:ME is the mereology of part p, me = obs_mereo P(p),

o (iil) sa:SA lists the static attribute values of the part behaviour,

o (iv) ea:EA lists the external attribute channels of the part be-
haviour,

o (v) ps:PA lists the programmable attribute values of the part be-
haviour, and where

» (vi) ochs and ichns refer to the shared attributes of the behaviours.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 292 Domain Science & Engineering

293

1. Domain Analysis & Description 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

e We focus, for a little while, on the expression of

@ sa:SA. @ ea:EA and @ pa:PA,

e that is, on the concrete types of SA, EA and PA.

» S 40 SA simply lists the static value types: svTy, sv1s, ..., svTy
where s is the number of static attributes of parts p:P.

@ & 4 EA simply lists the channel indexes to the external attribute

values: ((eA1,Te4,), (€A2, Tea,)s o) (eAx,ﬂeAI))zl
where x is the number, 0 or more, of external attributes of parts

p:P.
» P4 PA simply lists appropriate programmable value expression
type:

(pUTla vaQ? °°°7pUTq)
where ¢ is the number of programmable attributes of parts p:P

xSee paragraph Access to External Attribute Values on Slide 274,

A Prerequisite for Requirements Engineering 293 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

294

1. Domain Analysis & Description 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

e Let P be a composite sort defined in terms of sub-sorts PA, PB, ...,

PC.

& The process compiled from cp:P, is composed from

@ a process, M .p GORE:! relying on and handling the unique iden-
tifier, mereology and attributes of process p as defined by P

@ operating in parallel with processes pq, pp, - - . , Pe Where
x Dg 18 “derived” from PA,
x pp 18 “derived” from PB,
* ..., and
x pe 18 “derived” from PC.

e The domain description “compilation” schematic below “formalises”
the above.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 294 Domain Science & Engineering

295

1. Domain Analysis & Description 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

Process Schema I: Abstract is_composite(p)

value
compile_process: P — RSL-Text
compile_process(p) =
Mepoopp(uid-P(p),obs_mereo_P(p),.S4(p).E4(p))(Palp))
compile_process(obs_part _PA(p))
compile_process(obs_part _PB(p))

compile_process(obs_part_PC(p))

e The text macros: Sy, £4 and P4 were informally explained above.

e Part sorts PA, PB, ..., PC are obtained from the observe_part_sorts prompt,
Slide 122.

A Prerequisite for Requirements Engineerin 295 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

296
1. Domain Analysis & Description 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

e Let P be a composite sort defined in terms of the concrete type
Q-set.

& The process compiled from p:P, is composed from

@ a process, M .p CORE:! relying on and handling the unique iden-
tifier, mereology and attributes of process p as defined by P

o operating in parallel with processes ¢:obs_part Qs(p).

e The domain description “compilation” schematic below “formalises”
the above.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 296 Domain Science & Engineering

1. Domain Analysis & Description 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

297

Process Schema 1I: Concrete is_composite(p)

type
Qs = Q-set

value
gs:Q-set = obs_part _Qs(p)
compile_process: P — RSL-Text

compile_process(p) =

Mepiopp(Uid-P(p),obs_mereo_P(p),S.4(p).£4(p))(Pa(p))
| [[{compile_process(q)[q:Q-q € gs}

Process Schema III: is atomic(p)

value
compile_process: P — RSL-Text
compile_process(p) =

Mapgorg(Uid-P(p).obs mereo P(p).Sa(p).€a(p))(Pa(p))

A Prerequisite for Requirements Engineering 297 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark

298
1. Domain Analysis & Description 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

Example 65 . Bus Timetable Coordination:

e We refer to Examples 20 on Slide 123, 21 on Slide 130, 43 on Slide 198
and 59 on Slide 265.

110 ¢ is the transportation system; f is the fleet part of that system; vs
is the set of vehicles of the fleet; bt is the shared bus timetable of the
fleet and the vehicles.

111 The fleet process is compiled as per Process Schema II (Slide 297)

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 298 Domain Science & Engineering

299

1. Domain Analysis & Description 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

type
A, F, VC [Example 20 on Slide 123]
V, Vs=V-set [Example 21 on Slide 130]
FI, VI, BT [Example 43 on Slide 198]

channel
{fch...} [Example 59 on Slide 265]
value
110. 0:A,
110. f:F = obs_part_F(§),
110. vs:V-set = obs_part_Vs(obs_part_VC(f)),
110. bt:BT = attr_BT(f)
axiom
110. V v:Vev € vs = bt = attr BT (v) [Example 43 on Slide 198]
value
111. fleet: fi:FIXBT — in,out {fch| {fi,uid_V(v)}||v:V-v € vs} process
111. fleet(fi,bt) =
111. M p(fi,bt)
111. | || {vehicle(uid_V(v),fi:Fl,bt)|v:V-v € vs}
111. vehicle: vi:VIxfi:FIxbt:BT — in,out fch[{fi,vi} | process
111. vehicle(vi,fi,bt) = My (vi,fi,bt)

A Prerequisite for Requirements Engineering 299 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

300

1. Domain Analysis & Description 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

e F'leet and vehicle processes

» Mp and
» My
e are both “never-ending” processes:

value
M p: fi:FIxbt:BT — in,out {fch| {fi,uid V(v)}||v:V.v € vs} process
M p(fi,bt) = let bt = F(fi,bt) in M p(fi,bt) end

My vieVIxTfi:FIxbt:BT — in,out fch|{fi,vi} | process
My (vifi,bt) = let bt = V(vi,bt) in My (vi,fi,bt) end

e The “core” processes,

& JF and
&V,

are simple actions.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 300 Domain Science & Engineering

301

1. Domain Analysis & Description 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

e In this example we simplify them to change only bus timetables.

e The expression of actual synchronisation and communication be-
tween the fleet and the vehicle processes are contained in F and

V.

value
F: fi:FIxbt:BT — in,out {fch| {fi,uid V(v)|v:V.v € vs}|} BT
F(fi,bt) = ...

V: vi:VIxfi:FIxbt:BT — in,out fch| {fi,vi} | BT
V(vifi,bt) = ...

e What the synchronisation and communication between the fleet and
the vehicle processes consists of we leave to the reader! N

A Prerequisite for Requirements Engineerin; 301 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

302

1. Domain Analysis & Description 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

Process Schema IV: Core Process (I)

e The core processes can be understood as never ending, “tail recursively defined”
processes:

Mepoopg: TIIxme:MT xsa:SAXea:EA—pa:PA—in inchs out ochs Unit
MCPCORE(W,me,sa,ea)(pa) =

let (me,pa’) = F(m,me,sa,ea)(pa) in

Mepoopp(Tme saea)(pa) end

F: m:Ilxme:MT xsa:SAxea:EA—PA—in inchs out ochs — MT xPA

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 302

303

1. Domain Analysis & Description 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

o F
® potentially communicates with all those part processes (of the
whole domain)
& with which it shares attributes, that is, has connectors.

o F is expected to contain input/output clauses referencing the
channels of the in ... out ... part of their signatures.

» These clauses enable the sharing of attributes.

o J also contains expressions, attr ch[(A,7)] 7, to external attributes.

e An example of the update of programmable attributes
is shown in the vehicle definitions in Sect. 6.2.3, Slides 344 and 346.

A Prerequisite for Requirements Engineerin 303 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

304

1. Domain Analysis & Description 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

e The F action non-deterministically internal choice chooses between
o either [1,2,3 4]

o [4]
o [2]
® |3

accepting input from

another part process,

then optionally offering a reply to that other process, and
finally delivering an updated state;

o or [5,6,7,8] offering

@

@

D)
G
o [8]
7

@

an output,

val.

to another part process,

and then delivering an updated state;

o or |9] doing own work resulting in an updated state.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 304 Domain Science & Engineering

305

1. Domain Analysis & Description 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

value

F: mIl — meMT — sa:SA x ea:EA — pa:PA — in,out £(m,me) MT x PA

F(m,me,sa,ea)(pa) =
[[{ let val = ch[7’] ? in
ch[7'] | in_reply(sa,ea,pa)(val) ;
in_update(me,sa,ea,pa)(n’,sa,ea,pa) end
| 7' € E(m,me)}

UK let (n,val) = await _reply(me,sa,ea,pa) in
ch[7'] | out_reply(val,sa,ea,pa) ;
out_update(me,sa,ea,pa) end

| 7" € E(m,me)}
] (me,own_work(sa,ea,pa))

O© 00 N O O &~ W N -

in_reply: SAXEAxXPA x VAL — VAL
in_update: (MTXSAXEAXPA) — (MT xPA)
await_reply: (MTXxSAXEAxPA) — TIxVAL
out_reply: (SAXEAXPAxVAL) — VAL
out_update: (MTXxSAXEAXPA) — (MTxPA)
own_work: SAXEAXPA — (MT xPA)

Process Schema V: Core Process (II)

A Prerequisite for Requirements Engineering 305

ines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29

306

1. Domain Analysis & Description 3. Perdurant Entities 3.12. Discrete Behaviour Signatures and Definitions

1.3.12. Concurrency: Communication and Synchronisation

e Process Schemas [, IT and TV (Slides 295, 297 and 305), reveal
» that two or more parts, which temporally coexist (i.e., at the same
time),
@ imply a notion of concurrency.

@ Process Schema IV, through the RSL/CSP language expressions
chlv and ch?.

» indicates the notions of communication and synchronisation.

& Other than this we shall not cover these crucial notion related to
parallelism.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 306 Domain Science & Engineering

307

1. Domain Analysis & Description 3. Perdurant Entities 3.13. Concurrency: Communication and Synchronisation

1.3.13. Summary and Discussion of Perdurants

e The most significant contribution of this section has been to show
that
@ for every domain description
® there exists a normal form behaviour —

& here expressed in terms of a CSP process expression.

A Prerequisite for Requirements Engineering 307 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

308

1. Domain Analysis & Description 3. Perdurant Entities 3.13. Summary and Discussion of Perdurants 3.13.1.

1.3.13.1. Summary

e We have proposed to analyse perdurant entities into actions, events
and behaviours — all based on notions of state and time.

e We have suggested modeling and abstracting these notions in terms
of functions with signatures and pre-/post-conditions.

e We have shown how to model behaviours in terms of CSP (commu-
nicating sequential processes).

e [t is in modeling function signatures and behaviours that we justity
the endurant entity notions of parts, unique identifiers, mereology
and shared attributes.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 308 Domain Science & Engineering

309

1. Domain Analysis & Description 3. Perdurant Entities 3.13. Summary and Discussion of Perdurants 3.13.2. Summary

1.3.13.2. Discussion

e The analysis of perdurants into actions, events and behaviours rep-
resents a choice.

e We suggest skeptical readers to come forward with other choices.

A Prerequisite for Requirements Engineerin 309 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

Dines Bjgrner’'s MAP-i Lecture # 5

End of MAP-i Lecture #5:
Perdurants: Actions, Events and Behaviours

Tuesday, 26 May 2015: 10:00-10:45

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O

Dines Bjgrner’'s MAP-i Lecture # 6

A Domain Description

Tuesday, 26 May 2015: 12:00-13:00

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O

310 6. A Domain Description

6. A Domain Description
6.1. Endurants
6.1.1. Domain, Net, Fleet and Monitor

e The root domain, Ap,

e the step-wise unfolding of whose description is to be exemplified,
is that of a composite traffic system
» with a road net,
& with a fleet of vehicles and

& of whose individual position on the road net we can speak, that is,
monitor.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 310 Domain Science & Engineering

311

6. A Domain Description 1. Endurants 1.1. Domain, Net, Fleet and Monitor

112 We analyse the composite traffic system into

a. a composite road net,
b. a composite fleet (of vehicles), and

c. an atomic monitor.
113 The road net consists of two composite parts,

a. an aggregation of hubs and

b. an aggregation of links.

A Prerequisite for Requirements Engineering 311 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

312

6. A Domain Description 1. Endurants 1.1. Domain, Net, Fleet and Monitor

type
112.
112a..
112b..
112c..
value
112a..
112b..
112c..
type
113a..
113b..
value
113a..
113b..

A
Na
Fa
Ma

obs_part Nao: Ax — Na
obs_part Fo: Ax — Fa
obs_part_ Ma: Ax — Ma

HAA
LAA

obs_part_HAA: No — HAA
obs_part_LAA: No — LA

11, DK-2840 Holte, Denmark — May 23, 2015: 15:29 312

313
6. A Domain Description 1. Endurants 1.2. Domain, Net, Fleet and Monitor

6.1.2. Hubs and Links

114 Hub aggregates are sets of hubs.

115 Link aggregates are sets of links.

116 Fleets are set of vehicles.

117 We introduce some auxiliary functions.

a. links extracts the links of a network.

b. hubs extracts the hubs of a network.

A Prerequisite for Requirements Engineering 313 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

314

6. A Domain Description 1. Endurants 1.2. Hubs and Links

type

114. Ha, HSA = Ha-set

115. LA, LSA = La-set

116. Va, VSA = Va-set

value

114. obs_part_HSA: HAN — HSAH

115. obs_part LSa: LAy — LSH

116. obs_part_VSA: FA — VSp

117a.. linksp: Ap — L-set

117a.. linksp(0A) = obs_part_LS(obs part LA(JA))
117b.. hubsp: AA — H-set

117b.. hubsa(da) = obs_part _HS(obs part HA(dA))

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 314 Domain Science & Engineering

315
6. A Domain Description 1. Endurants 1.3. Hubs and Links

6.1.3. Unique ldentfiers
We cover the unique identifiers of all parts, whether needed or not.

118 Nets, hub and link aggregates, hubs and links, fleets, vehicles and the
monitor all

a. have unique identifiers
b. such that all such are distinct, and

c. with corresponding observers.
119 We introduce some auxiliary functions:

a. xtr_lis extracts all link identifiers of a traffic system.
b. xtr_his extracts all hub identifiers of a traffic system.

c. given an appropriate link identifier and a net get_link ‘retrieves’ the
designated link.

d. given an appropriate hub identifier and a net get_hub ‘retrieves’ the
designated hub.

A Prerequisite for Requirements Engineerin; 315 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:
q q g g

316

6. A Domain Description 1. Endurants 1.3. Unique ldentfiers

type

118a.. NI, HAI, LAI, HI, LI, FI, VI, Ml
value

118c.. wuid_NI: NA — NI
118c.. wuid_HAIl: HAA — HAI
118c.. wuid_LAl: LA — LAl
118c.. wuid_Hl: HA — HI
118c.. wuid_LI: Lo — LI
118c.. wuid_Fl: FA — FlI
118c.. wid_VI: VA — VI
118c.. uid_MI|: My — MI
axiom

118b.. NINHAI=0, NINLAI=0, NINHI=0), etc.

where axiom 118b.. is expressed semi-formally, in mathematics.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 316 Domain Science & Engineering

6. A Domain Description 1. Endurants 1.3. Unique Identfiers

317

value
119a..
119a..
119a..
119b..
119b..
119b..
119c..
119c..
119c..
119c..
119c..
119d..
119d..
119d..
119d..
119d..

xtr_lis: Ax — Ll-set
xtr_lis(dp) =
let Is = links(da) in {uid _LI()|:L:| € Is} end
xtr_his;: Ax — Hl-set
xtr_his(dpa) =
let hs = hubs(dA) in {uid HI(h)|h:Hk € hs} end
get_link: LI — Ap — L
get_link(li))(da) =
let Is = links(dA) in
let I:L -1 € Is A li=uid_LI(l) in | end end
pre: li € xtr_lis(da)
get_hub: HI — Apn = H
get_hub(hi)(da) =
let hs = hubs(da) in
let h:H - h € hs A hi=uid_HI(h) in h end end
pre: hi € xtr_his(d)

A Prerequisite for Req

uirements Engineering 317 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

318
6. A Domain Description 1. Endurants 1.4. Unique ldentfiers

6.1.4. Mereology
We cover the mereologies of all part sorts introduced so far. We decide that nets, hub
aggregates, link aggregates and fleets have no mereologies of interest.

120 Hub mereologies reflect that they are connected to zero, one or more links.
121 Link mereologies reflect that they are connected to exactly two distinct hubs.
122 Vehicle mereologies reflect that they are connected to the monitor.

123 The monitor mereology reflects that it is connected to all vehicles.

124 For all hubs of any net it must be the case that their mereology designates links of
that net.

125 For all links of any net it must be the case that their mereologies designates hubs
of that net.

126 For all transport domains it must be the case that

a. the mereology of vehicles of that system designates the monitor of that system,
and that

b. the mereology of the monitor of that system designates vehicles of that system.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 318 Domain Science & Engineering

319
6. A Domain Description 1. Endurants 1.4. Mereology

value

120. obs_mereo_Ha: Hyo — Ll-set

121. obs_mereo L: L — Hl-set axiom V |:L-card obs_mereo_L(1)=2
122. obs mereo V: V — Ml

123. obs_mereo M: M — Vl-set

axiom

124. VYV 5:A, hs:HSahs=hubs(6), Is:LSa-Is=links(d) -

124, V h:Ha-h € hs:obs_mereo H(h)Cxtr_his(§) A

125. V I:La+l € Is-obs _mereo L(1)Cxtr lis(d) A

126a.. let f:FA-f=obs part F(§) =

126a.. let m:Ma-m=obs_part_M(6),

126a.. vs:VS-vs=obs_part VS(f) in

126a.. V v:Vawv € vs=-uid V(v) € obs mereo_M(m)
126b.. A obs_mereo M(m) = {uid V(v)|v:V-v € vs}

126b.. end end

A Prerequisite for Requirements Engineering 319 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

320
6. A Domain Description 1. Endurants 1.5. Mereology

6.1.5. Attributes, |
We may not have shown all of the attributes mentioned below — so
consider them informally introduced !

e Hubs:

& locations are considered static,

o wear and tear (condition of road surface) is considered inert,

® hub states and hub state spaces are considered programmable;
e Links:

® lengths and locations are considered static,
o wear and tear (condition of road surface) is considered inert,

& link states and link state spaces are considered programmable;

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 320 Domain Science & Engineering

321

6. A Domain Description 1. Endurants 1.5. Attributes, |

e Vehicles:

@ manufacturer name, engine type (whether diesel, gasoline or elec-
tric) and engine power (kW /horse power) are considered static;

» velocity and acceleration may be considered reactive (i.e., a func-
tion of gas pedal position, etc.),

® global position (informed via a GNSS: Global Navigation Satellite
System) and local position (calculated from a global position) are

considered biddable

A Prerequisite for Requirements Engineerin 321 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

322

6. A Domain Description 1. Endurants 1.6. Attributes, |

6.1.6. Attributes, ||

We treat one attribute each for hubs, links, vehicles and the monitor. First we treat

hubs.
127 Hubs

a. have hub states which are sets of pairs of identifiers of links connected to the

hub??,

b. and have hub state spaces which are sets of hub states?.
128 For every net,

a. link identifiers of a hub state must designate links of that net.

b. Every hub state of a net must be in the hub state space of that hub.
129 Hubs have geodetic and cadestral location.

130 We introduce an auxiliary function: xtr_lis extracts all link identifiers of a hub state.

=/ hub state “signals” which input-to-output link connections are open for traffic.
=/ hub state space indicates which hub states a hub may attain over time.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 322 Domain Science & Engineering

323

6. A Domain Description 1. Endurants 1.6. Attributes, ||

type

127a.. HX = (LIxLl)-set
127b.. HQ = HX-set
value

127a.. attr_HX: H — HX
127b.. attr_HQ: H — HQ

axiom

128. V §:A,

128. let hs = hubs(d) in

128. VhiH-h¢€hs-

128a.. xtr_lis(h) Cxtr_lis(6)
128b.. A attr_X(h) € attr_Q(h)
128. end

type

129. HGCL

value

129. attr HGCL: H — HGCL
130. xtr.lis: H — Ll-set
130. xtr_lis(h) =

130.
130.

(i | fisL1 (17 1i"):LIx L -
(Ili") € attr_HS(h) A li € {Iili})

A Prerequisite for Requirements Engineering 323

© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

324
6. A Domain Description 1. Endurants 1.6. Attributes, Il

Then links.
131 Links have lengths.
132 Links have geodetic and cadestral location.

133 Links have states and state spaces:

a. States modeled here as pairs, (hi’, hi'), of identifiers the hubs with
which the links are connected and indicating directions (from hub
h' to hub h”.) A link state can thus have 0, 1, 2, 3 or 4 such pairs.

b. State spaces are the set of all the link states that a link may enjoy.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 324 Domain Science & Engineering

325
6. A Domain Description 1. Endurants 1.6. Attributes, Il

type
131. LEN
132. LGCL

133a.. LY = (HIxHI)-set
133b.. LQ = LX-set

value

131. attr LEN: L — LEN
132. attr LGCL: L — LGCL
133a.. attr LY: L — LY
133b.. attr LQ: L — LQ
axiom

133. V n:N -

133. let Is = xtr—links(n), hs = xtr_hubs(n) in
133. ViILlels=

133a.. let lo = attr_LY(]) in

133a.. 0<card lo <4

133a.. A Y (hi',hi"):(HIxHI):(hi',hi") € lo =

133a.. {get_H(hi')(n),get_H(hi")(n)}=obs_mereo_L(l)
133b.. A attr_LX(1) € attr_LO(])

133. end end

A Prerequisite for Requirements Engineering 325 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

326
6. A Domain Description 1. Endurants 1.6. Attributes, Il

Then vehicles.

134 Every vehicle of a traffic system has a position which is either ‘on a
link” or ‘at a hub’.

a. An ‘on a link’ position has four elements: a unique link identifier
which must designate a link of that traffic system and a pair of

unique hub identifiers which must be those of the mereology of
that link.

b. The ‘on a link’ position real is the fraction, thus properly between
0 (zero) and 1 (one) of the length from the first identified hub
“down the link” to the second identifier hub.

c. An ‘at a hub’ position has three elements: a unique hub identifier
and a pair of unique link identifiers — which must be in the hub
state.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 326 Domain Science & Engineering

6. A Domain Description 1. Endurants 1.6. Attributes, Il

327

type

134. VPos = onL | atH

134a.. onL : LIHIHIR

134b.. R = Real axiom V r:R - 0<r<1
134c.. atH :: HI LI LI

value

134. attr_VPos: VAo — VPos

axiom

134a.. VYV na:Na, onL(li,fhi,thi,r):VPos -

134a.. 3 1a:Lala€0bs_part_LS(obs_part Na(na))

134a.. = li=uid_LA()A{fhi,thi}=obs_mereo LA(lA),

134c.. ¥V na:Na, atH(hi fli,tli):VPos -
134c.. 1 ha:Ha-ha€obs _part HSA(obs part N(na))
134c.. = hi=uid_Ha(ha)A(flitli) € attr LX(ha)

A Prerequisite for Requirements Engineering 327 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

328
6. A Domain Description 1. Endurants 1.6. Attributes, Il

135 We introduce an auxiliary function distribute.

a. distribute takes a net and a set of vehicles and

b. generates a map from vehicles to distinct vehicle positions on the
net.

c. We sketch a “formal” distribute function, but, for simplicity we
omit the technical details that secures distinctness — and leave
that to an axiom!

136 We define two auxiliary functions:

a. xtr_links extracts all links of a net and

b. xtr_hub extracts all hubs of a net.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 328 Domain Science & Engineering

329

6. A Domain Description 1. Endurants 1.6. Attributes, Il

type

135b.. MAP = VI # VPos

135b.. V map:MAP - card dom map = card rng map
value

135. distribute: VSA — NA — MAP

135. distribute(vsa)(na) =

135a.. let (hs,Is) = (xtr_hubs(na),xtr_links(na)) in

135a.. let vps = {onL(uid_(Ia),fhithi,r)|Ia:La-la€lsA{fhi,thi} Cobs mereo L(I)A0<r<1
135a.. U {atH(uid _H(ha),fli,tli)|ha:HA-ha€hsA{fli,tli} Cobs_mereo Ha(ha)} in
135b.. [uid_V A (v)—vp|va:Va,vp:VPosva EvsAvpEvps |

135. end end

A Prerequisite for Requirements Engineering 329 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

330
6. A Domain Description 1. Endurants 1.6. Attributes, Il

136a.. xtr_linksp: NAo — La-set

136a.. xtr_linksa(na)=obs_part_LS(obs part LA(nx))
136b.. xtr_hubsan: NAo — Ha-set

136a.. xtr_hubsa(na)=obs _part HSA(obs part HAA(nA))

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 330

331
6. A Domain Description 1. Endurants 1.6. Attributes, Il

And finally monitors. We consider only one monitor attribute.
137 The monitor has a vehicle trathc attribute.

a. For every vehicle of the road transport system the vehicle traffic
attribute records a possibly empty list of time marked vehicle
positions.

b. These vehicle positions are alternate sequences of ‘on link’ and ‘at
hub’ positions

i such that any sub-sequence of ‘on link’ positions record the same
link identifier, the same pair of “'to’ and ‘from’ hub identifiers
and increasing fractions,

ii such that any sub-segment of ‘at hub’ positions are identical,

1ii such that vehicle transition from a link to a hub is commensurate
with the link and hub mereologies, and

iv such that vehicle transition from a hub to a link is commensurate
with the hub and link mereologies.

A Prerequisite for Requirements Engineering 331 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

332

6. A Domain Description 1. Endurants 1.6. Attributes, Il

type

137. Traffic = VI 7 (T x VPos)*

value

137. attr_Trafficc M — Traffic

axiom

137b.. V 0:A

137b.. let m = obs_part_Mx (9) in

137b.. let tf = attr_Traffic(m) in

137b.. dom tf C xtr_vis(d) A

137b.. vV vi:VI ¢ vi € dom tf ¢

137b.. let tr = tf(vi) in

137b.. Vii+1:Nat « {i,i+1}Cdom tr *

137b.. let (t,vp)=tr(i),(t ,vp')=tr(i+1) in

137b.. t<t’

137(b.)i. A case (vp,vp') of

137(b.)i. (onL(li,fhi thi,r),onL(Ii',fhi’ thi’,r'))

137(b.)i. — li=li'Afhi=fhi’ Athi=thi'Ar<r’

137(b.)i. A li € xtr_lis(0)

137(b.)i. A {fhi,thi} = obs_mereo_L(get_link(li)(0)),
137(b.)ii. (atH(hi fli,tli),atH(hi’ fli’,tli"))

137(b.)ii. — hi=hi' Afli=fli' Atli=tli’

137(b.)ii. A hi € xtr_his(d)

137(b.)ii. A (fli,tli) € obs_mereo_H(get_hub(hi)(9)),
137(b.)iii. (onL(li,fhi,thi,1),atH(hi,flitli))

137(b.)iii. — li=fliAthi=hi

137(b.)iii. A A{litli} C xtr_lis(9)

137(b.)iii. A {fhi,thi}=obs_mereo_L(get_link(li)(¢))
137(b.)iii. A hi € xtr_his(9)

137(b.)iii. A (fli,tli) € obs_mereo_H(get_hub(hi)(0)),
137(b.)iv. (atH(hi,fli,tli),onL(li",fhi’,thi’,0))

137(b.)iv. — etcetera,

137b.. _ — false

137b..

end end end end end

© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

332

Domain Science & Engineering

6. A Domain Description 1. Endurants 1.7. Attributes, Il 333

6.1.7. Routes

e We bring a model of routes.

TO BE WRITTEN

A Prerequisite for Requirements Engineering 333 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

334

6. A Domain Description 2. Perdurants

6.2. Perdurants
6.2.1. Vehicle to Monitor Channel

138 Let 0 be the traffic system domain.
139 Then focus on the set of vehicles

140 and the monitor —

141 and we obtain an appropriate channel array for communication be-
tween vehicles and the traffic observing monitor.

value

139. let vs:VS - vs = obs_part VS(obs part F(9)),
140. m:M - m = obs_part M(¢) in

channel

141. {v_.m ch|uid VI(v),uid MI(m)]|v:V.v € vs} end

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 334

Domain Science & Engineering

335
6. A Domain Description 2. Perdurants 2.2. Vehicle to Monitor Channel

6.2.2. Link Disappearance Event
We formalise aspects of the above-mentioned link disappearance event:

142 The result net, n":N’, is not well-formed.
143 For a link to disappear there must be at least one link in the net;
144 and such a link may disappear such that
145 it together with the resulting net makes up for the “original” net.

value

142. link diss event: N x N x Bool

142. link diss event(n,n’) as tf

143. pre: obs part Ls(obs part LS(n))#{}

144. post: 3 I:L| € obs part Ls(obs part LS(n)) =
145. | Z obs_part_Ls(obs_part LS(n’))

145. A n U {l} = obs part Ls(obs part LS(n))

A Prerequisite for Requirements Engineering 335 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

336

6. A Domain Description 2. Perdurants 2.3. Link Disappearance Event

6.2.3. Road Traffic

Global Values

e T here is given some globally observable parts.

146 besides the domain, dA:AN,
147 a net, n:N,

148 a set of vehicles, vs:V-set,
149 a monitor, m:M, and

150 a clock, clock, behaviour.

151 From the net and vehicles we generate an initial distribution of posi-
tions of vehicles.

e The n:N, vs:V-set and m:M are observable from any road traffic sys-
tem domain 0.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 336 Domain Science & Engineering

6. A Domain Description 2. Perdurants 2.3. Road Traffic

337

value

146. OA:AN

147. n:N = obs part N(Jp),

147. Is:L-set=linksLs(¢),hs:H-set=hubs(d A),

147. lis:Ll-set=xtr lis(9),his:HI-set=xtr his(d A)

148. vs:V-set=obs_part Vs(obs_part VS(obs part F(d)A)),
148. vis:Vl-set = {uid VI(v)|v:Vv € vs},

149. m:obs_part_ M(4), mi=uid_MI(m), ma:attributes(m)
150. clock: T — out {clk ch|vi|vi:VIvi € vis]} Unit

151. vm:MAP-vpos map = distribute(vs)(n);

A Prerequisite for Requirements Engineering 337 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

338
6. A Domain Description 2. Perdurants 2.3. Road Traffic

Channels
152 We additionally declare a set of vehicle to monitor channels indexed

a. by the unique identifiers of vehicles

b. and the (single) monitor identifier.?4

and communicating vehicle positions.

channel
152. {v_.m ch|vi,mi||vi:VIlvi € vis}:VPos

x'Technically speaking: we could omit the monitor identifier.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 338 Domain Science & Engineering

339
6. A Domain Description 2. Perdurants 2.3. Road Traffic

Behaviour Signatures

153 The road traffic system behaviour, rts, takes no arguments; and “be-
haves”, that is, continues forever.

154 The vehicle behaviour

a. is indexed by the unique identifier, uid_V(v):VI,

b. the vehicle mereology, in this case the single monitor identifier
mi:MI.

c. the vehicle attributes, obs__attribs(v)

d. and — factoring out one of the vehicle attributes — the current
vehicle position.

e. The vehicle behaviour offers communication to the monitor be-
haviour; and behaves “forever”.

A Prerequisite for Requirements Engineering 339 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

340

6. A Domain Description 2. Perdurants 2.3. Road Traffic

155 The monitor behaviour takes

a. the monitor identifier,
b. the monitor mereology,
c. the monitor attributes,

d. and — factoring out one of the vehicle attributes — the discrete
road traffic, drtf:dRTF;

e. the behaviour otherwise behaves forever.

value
153. trs: Unit — Unit
154. veha: vi:VlI x mi:MI — vp:VPos —

154. out vm ch|vimi| Unit
155. mona: m:Ma X vis:Vl-set - RTF —
155. in {v_.m ch|vi,mi||vi:VIvi € vis},clk ch Unit

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 340 Domain Science & Engineering

341
6. A Domain Description 2. Perdurants 2.3. Road Traffic

The Road Traffic System Behaviour

156 Thus we shall consider our road traffic system, rts, as

a. the concurrent behaviour of a number of vehicles and,
to “observe”, or, as we shall call it, to monitor their movements,
b. the monitor behaviour.

value

156. trs() =

156a.. || {veha(uid VI(v),mi)(vm(uid VI(v)))|v:Vv € vs}
156b.. || mon (mi,vis)(|vi— ()|vi:VIvi € vis])

A Prerequisite for Requirements Engineering 341

© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

342
6. A Domain Description 2. Perdurants 2.3. Road Traffic

e where, wrt, the monitor, we

& dispense with the mereology and the attribute state arguments

» and instead just have a monitor traffic argument which

o records the discrete road traffic, MAP,
o initially set to “empty” traces ((), of so far “no road traffic!).

e In order for the monitor behaviour to assess the vehicle positions

& these vehicles communicate their positions
& to the monitor

& via a vehicle to monitor channel.
e In order for the monitor to time-stamp these positions

& 1t must be able to “read” a clock.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 342 Domain Science & Engineerin:

343

6. A Domain Description 2. Perdurants 2.3. Road Traffic

157 We describe here an abstraction of the vehicle behaviour at a Hub
(hi).
a. Either the vehicle remains at that hub informing the monitor of
1ts position,
b. or, internally non-deterministically,
i moves onto a link, tli, whose “next” hub, identified by thi, is
obtained from the mereology of the link identified by tli;

ii informs the monitor, on channel vm|vi,mi], that it is now at the
very beginning (0) of the link identified by tli,

111 whereupon the vehicle resumes the vehicle behaviour positioned
at the very beginning of that link,

c. or, again internally non-deterministically,

d. the vehicle “disappears — off the radar” !

A Prerequisite for Requirements Engineering 343 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

344
6. A Domain Description 2. Perdurants 2.3. Road Traffic

157. veh (vi,mi)(vp:atH(hi,fli,tli)) =

157a.. v_m_ch|vi,mi]lvp ; veh (vi,mi)(vp)

157b.. I

157(b.)i. let {hi,thi}=obs mereo L(get link(tli)(n)) in
157(b.)i. assert: hi=hi

157(b.)ii. v_m_ch|vi,mi]lonL(tli,hi,thi,0) ;

157(b.)iii. veh A (vi,mi)(onL(tli,hi,thi,0)) end

157c..]

157d.. stop

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 344 Domain Science & Engineering

345
6. A Domain Description 2. Perdurants 2.3. Road Traffic

158 We describe here an abstraction of the vehicle behaviour on a Link (ii).
Fither

a. the vehicle remains at that link position informing the monitor of its position,
b. or, internally non-deterministically,
c. if the vehicle’s position on the link has not yet reached the hub,

i then the vehicle moves an arbitrary increment £, (less than or equal to the
distance to the hub) along the link informing the monitor of this, or

ii else, while obtaining a “next link” from the mereology of the hub (where
that next link could very well be the same as the link the vehicle is about to
leave),

A the vehicle informs the monitor that it is now at the hub identified by thi,

B whereupon the vehicle resumes the vehicle behaviour positioned at that
hub.

159 or, internally non-deterministically,

160 the vehicle “disappears — off the radar” !

A Prerequisite for Requirements Engineering 345 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

346
6. A Domain Description 2. Perdurants 2.3. Road Traffic

158. veha (vi,mi)(vp:onL(li,fhi,thi,r)) =

158a.. v_m_ch|vi,mi|lvp ; veh(avi,mi,va)(vp)

158b..]

158c.. if r + /<1

158(c.)i. then v_m_ch|vi,mi|lonL(li,fhi,thi,r+/¢) ;

158(c.)i. veh A (vi,mi)(onL(li,fhi,thi,r+/;))

158(c.)ii. else let li:LIli € obs mereo H(get hub(thi)(n)) in
158(c.)iiA. v_m_ch|vi,mi |latH(li,thi,IV);

158(c.)iiB. veh A (vi,mi)(atH(li,thi,li)) end end

159. I

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 346 Domain Science & Engineering

347
6. A Domain Description 2. Perdurants 2.3. Road Traffic

The Monitor Behaviour

161 The monitor behaviour evolves around

a. the monitor identifier,
b. the monitor mereology;,
c. and the attributes, ma:ATTR

d. — where we have factored out as a separate arguments — a table
of traces of time-stamped vehicle positions,

e. while accepting messages

1 about time
ii and about vehicle positions

f. and otherwise progressing “in|delfinitely”.

A Prerequisite for Requirements Engineering 347 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

348
6. A Domain Description 2. Perdurants 2.3. Road Traffic

162 Either the monitor “does own work”
163 or, internally non-deterministically accepts messages from vehicles.

a. A vehicle position message, vp, may arrive from the vehicle iden-
tified by vi.

b. That message is appended to that vehicle’s movement trace —
prefixed by time (obtained from the time channel),

c. whereupon the monitor resumes its behaviour —

d. where the communicating vehicles range over all identified vehi-
cles.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 348 Domain Science & Engineering

349

6. A Domain Description 2. Perdurants 2.3. Road Traffic

161. mona(mi,vis)(trf) =

162. mon A (mi,vis)(trf)

163.]

163a.. ||{let tvp = (clk ch?,v.m ch[vimi]?) in
163b.. let trf’ = trf 1 [vi — trf(vi) " <tvp>] in
163c.. mon A (mi,vis)(trf)

163d.. end end | vi:VI - vi € vis}

A Prerequisite for Requirements Engineering 349 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

350
6. A Domain Description 2. Perdurants 2.3. Road Traffic

e We are about to complete a long, i.e., a 16 slide example.
e We can now comment on the full example:

@ The domain, 0 : A is a manifest part.
@ The road net, n : N is also a manifest part.
o The fleet, f : F, of vehicles, vs : V'S, likewise, is a manifest part.

¢ But the monitor, m : M, is a concept.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 350 Domain Science & Engineering

351
6. A Domain Description 2. Perdurants 2.3. Road Traffic

o One does not have to think of it as a manifest “observer”.
o The vehicles are on — or off — the road (i.e., links and hubs).

o We know that from a few observations and generalise to all
vehicles.

o They either move or stand still. We also, similarly, know that.

o Vehicles move. Yes, we know that.

o Based on all these repeated observations and generalisations we
introduce the concept of vehicle traffic.

o Unless positioned high above a road net — and with good binoc-
ulars — a single person cannot really observe the traffic.

o There are simply too many links, hubs, vehicles, vehicle posi-
tions and times.

@ Thus we conclude that, even in a richly manifest domain, we can
also “speak of”, that is, describe concepts over manifest phenom-
ena, including time !

A Prerequisite for Requirements Engineering 351 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

Dines Bjgrner’'s MAP-i Lecture # 6

End of MAP-i Lecture # 6:

A Domain Description

Tuesday, 26 May 2015: 12:00-13:00

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O

Dines Bjgrner’s MAP-i Lecture # 7

Requirements — An Overview and Projection

Tuesday, 26 May 2015: 15:30-16:15

352 7. Requirements

7. Requirements

e In Chapter 1. we introduced a method
for analysing and describing manifest domains.

e In the next lectures of this PhD course

% we show how to systematically,
% but of course, not automatically,
& “derive” requirements prescriptions from

¢ domain descriptions.
e There are, as we see it, three kinds of requirements:

% domain requirements,
% interface requirements and
¢ machine requirements.

e The machine is the hardware and software
to be developed from the requirements |

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 352 Domain Science & Engineerin:

353

7. Requirements

e Domain requirements are those requirements which can be ex-
pressed solely using technical terms of the domain m

e Interface requirements are those requirements which can be ex-
pressed only using technical terms of both the domain and the ma-
chine m

e Machine requirements are those requirements which can be ex-
pressed solely using technical terms of the machine m

A Prerequisite for Requirements Engineerin; 353 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

354
7. Requirements

e We show principles, techniques and tools for “deriving”

¢ domain requirements and

& interface requirements.
e The domain requirements development focus on
& projection,
& Instantiation,
& determination,

& extension and

» fitting.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 354

355

7. Requirements

e These domain-to-requirements operators can be described briefly:
@ projection removes such descriptions which are to be omitted for
consideration in the requirements,
@ instantiation mandates specific mereologies,
@ determination specifies less non—determinism,

& extension extends the evolving requirements prescription with fur-
ther domain description aspects and

» fitting resolves “loose ends” as they may have emerged during the
domain-to-requirements operations.

A Prerequisite for Requirements Engineering 355 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

356

7. Requirements 1. Introduction

7.1. Introduction

Definition 18 . Requirements (l): By a requirements we un-
derstand (cf. IEEE Standard 610.12):

e “A condition or capability needed by a user to solve a problem
or achieve an objective” Il

7.1.1. General Considerations

e The objective of requirements engineering is to create a requirements
prescription:

» A requirements prescription specifies externally observable prop-
erties of endurants and perdurants: functions, events and be-

haviours of the machine such as the requirements stake-holders
wish them to be Il

» The machine is what is required: that is, the hardware and
software that is to be designed and which are to satisfy the re-
quirements [l

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 356 Domain Science & Engineering

357

7. Requirements 1. Introduction 1.1. General Considerations

e A requirements prescription thus (putatively) expresses what there
should be.

e A requirements prescription expresses nothing about the design of
the possibly desired (required) software.

e We shall show how a major part of a requirements prescription can
be “derived” from “its” prerequisite domain description.

A Prerequisite for Requirements Engineerin 357 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

358

7. Requirements 1. Introduction 1.1. General Considerations

Rule 1 The “Golden Rule” of Requirements Engineering: Pre-
scribe only those requirements that can be objectively shown to hold

for the designed software B
e “Objectively shown” means that the designed software can

& elther be tested,
& or be model checked,

® or be proved (verified),

e to satisfy the requirements.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 358 Domain Science & Engineering

359

7. Requirements 1. Introduction 1.1. General Considerations

Rule 2 An “ldeal Rule” of Requirements Engineering: When
prescribing (including formalising) requirements, also formulate tests
and properties for model checking and theorems whose actualisation
should show adherence to the requirements B

e The rule is labelled “ideal” since such precautions will not be shown
in this seminar.
e The rule is clear.

e It is a question for proper management to see that it is adhered to.

A Prerequisite for Requirements Engineerin; 359 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

360

7. Requirements 1. Introduction 1.1. General Considerations

Rule 3 Requirements Adequacy: Make sure that requirements
cover what users expect R

e That is,

@ do not express a requirement for which you have no users,
& but make sure that all users’ requirements are represented or some-
how accommodated.
e In other words:
& the requirements gathering process needs to be like an extremely
“fine-meshed net”:

& One must make sure that all possible stake-holders have been
involved in the requirements acquisition process,

» and that possible conflicts and other inconsistencies have been
obviated.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 360 Domain Science & Engineering

361

7. Requirements 1. Introduction 1.1. General Considerations

Rule 4 Requirements Implementability: Make sure that require-
ments are implementable M

e That is, do not express a requirement for which you have no assur-
ance that it can be implemented.
e In other words,

& although the requirements phase is not a design phase,
¢ one must tacitly assume, perhaps even indicate, somehow, that
an implementation is possible.

e But the requirements in and by themselves, stay short of expressing
such designs.

A Prerequisite for Requirements Engineerin 361 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

362

7. Requirements 1. Introduction 1.1. General Considerations

Rule 5 Requirements Verifiability and Validability: Make sure
that requirements are verifiable and can be validated M

e That is, do not express a requirement for which you have no assur-
ance that it can be verified and validated.
e In other words,

& once a first-level software design has been proposed,
& one must show that it satisfies the requirements.
e Thus specific parts of even abstract software designs are usually pro-

vided with references to specific parts of the requirements that they
are (thus) claimed to implement.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 362 Domain Science & Engineering

363

7. Requirements 1. Introduction 1.1. General Considerations

Definition 19. Requirements (Il): By requirements we shall
understand a document which prescribes desired properties of a ma-
chine:

e (i) what endurants the machine shall “maintain”, and
e what the machine shall (must; not should) offer of

o (1) functions and of

o (1) behaviours

e (iv) while also expressing which events the machine shall “han-
dle” R

A Prerequisite for Requirements Engineering 363 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

364

7. Requirements 1. Introduction 1.1. General Considerations

e By a machine that “maintains” endurants we shall mean:

@ a machine which, “between” users’ use of that machine,

®» “keeps’ the data that represents these entities.

e From earlier we repeat:

Definition 20. Machine: By machine we shall understand a,
or the, combination of hardware and software that is the target for,
or result of the required computing systems development B

e So this, then, is a main objective of requirements development:

e to start towards the design of the hardware + sottware for the com-
puting system.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 364 Domain Science & Engineering

365

7. Requirements 1. Introduction 1.1. General Considerations

Definition 21 . Requirements (Il1): To specify the machine 1l

e When we express requirements and wish to “convert” such require-
ments to a realisation, i.e., an implementation, then we find

» that some requirements (parts) imply certain properties to hold of
the hardware on which the sottware to be developed is to “run”,

@ and, obviously, that remaining — probably the larger parts of the
— requirements imply certain properties to hold of that software.

e So we find
» that although we may believe that our job is software engineering,

e important parts of our job are to also “design the machine”!

A Prerequisite for Requirements Engineering 365 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

366

7. Requirements 1. Introduction 1.2. General Considerations

7.1.2. Four Stages of Requirements Development

e We shall unravel requirements in four stages —
the first three stages are sketchy (and thus informal) while
the last stage
® 1S systemartic,
& mandates both strict narrative,
@ and formal descriptions, and
@ 18 “derivable” from the domain description.

e The four stages are:

» the problem /objective sketch,
& the narrative system requirements sketch,
& the narrative user requirements sketch, and

®» the systematic narrative and formal functional requirements pre-
scription.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 366 Domain Science & Engineering

367

7. Requirements 1. Introduction 1.2. Four Stages of Requirements Development 1.2.1.

7.1.2.1. Problem and/or Objective Sketch

Definition 22 . Problem/Objective Sketch: By a problem/objective
sketch we understand

e a narrative which emphasises
e what the problem or objectie s

e and thereby names its main concepts R

A Prerequisite for Requirements Engineering 367 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

368

7. Requirements 1. Introduction 1.2. Four Stages of Requirements Development 1.2.1. Problem and/or Objective Sketch

Example 66 . The Problem/Objective Requirements: A Sketch:
e The objective is to create a road-pricing product.

¢ By a road-pricing product

@ we shall understand an information technology-based system
@ containing computers and communications equipment and software
@ that enables the recording of vehicle movements
@ within a well-delineated road net
@ and thus enables
* the owner of the road net
* to charge
* the owner of the vehciles
x fees for the usage of that road net

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 368 Domain Science & Engineerin:

369

7. Requirements 1. Introduction 1.2. Four Stages of Requirements Development 1.2.2. Problem and/or Objective Sketch

7.1.2.2. Systems Requirements

Definition 23 . System Requirements: By a system require-
ments narrative we understand

e a narrative which emphasises
e the overall hardware and software

e system components R

A Prerequisite for Requirements Engineerin; 369 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

370

7. Requirements 1. Introduction 1.2. Four Stages of Requirements Development 1.2.2. Systems Requirements

Example 67 . The Road-pricing System Requirements: A Narrative:

e The requirements are based on the following a-priori given
constellation of system components:
% there is assumed a GNSS: a Global Navigation Satellite System;
% there are specially equipped vehicles;

¢ there is a well-delineated road net called a toll-road net with specially equipped
toll-gates with barriers which afford (only the specially equipped) vehicles to
enter into and exit from the toll-road net; and

& there is a [road-pricing] calculator.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 370 Domain Science & Engineering

371
7. Requirements 1. Introduction 1.2. Four Stages of Requirements Development 1.2.2. Systems Requirements

e These four system components are required
to behave and interact as follows:

®» T he GNSS is assumed to continuously offer vehicles timed informa-
tion about their global positions;

& vehicles shall contain a GNSS receiver which based on the global
position information shall regularly calculate their timed local po-
sition and offer this to the calculator — while otherwise cruising
the general road net as well as the toll-road net, the latter while
carefully moving through toll-gate barriers;

» toll-road gates shall register the identity of vehicles entering and
exiting the toll-road and offer this information to the calculator;
and

® the calculator shall accept all messages from vehicles and gates and
use this information to record the movements of vehicles and bill
these whenever they exit the toll-road.

A Prerequisite for Requirements Engineering 371 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

372

7. Requirements 1. Introduction 1.2. Four Stages of Requirements Development 1.2.2. Systems Requirements

e The requirements are therefore to include requirements to

& the GNSS radio telecommunications equipment,

& the vehicle GNSS receiver equipment,

® the vehicle software,

® the toll-gate in and out sensor equipment,

& the electro-mechanical toll-gate barrier equipment,
& the toll-gate barrier actuator equipment,

» the toll-gate software,

® the actuator software, and

& the communications

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 372 Domain Science & Engineerin:

373

7. Requirements 1. Introduction 1.2. Four Stages of Requirements Development 1.2.2. Systems Requirements

e |t is in this sense that the requirements are for
an information technology-based system
& of both software and
& hardware —

@ not just hard computer and communications equipment,
@ but also movement sensors
@ and electro-mechanical “gear”

A Prerequisite for Requirements Engineering 373 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

374

7. Requirements 1. Introduction 1.2. Four Stages of Requirements Development 1.2.3. Systems Requirements

7.1.2.3. User and External Equipment Requirements

Definition 24 . User and External Equipment Requirements:

By a user and external equipment requirements narrative we
understand

e a narrative which emphasises

o the human user and

& external equipment
interfaces

e to the system components M

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 374

375

7. Requirements 1. Introduction 1.2. Four Stages of Requirements Development 1.2.3. User and External Equipment Requirements

Example 68 . The Road-pricing User and External Equipment Require-

ments: Narrative:

e The human users of the road-pricing system are

® vehicle drivers,
& toll-gate sensor, actuator and barrier service staff, and

& the road-pricing service calculator staff.
e The external equipment are

& the GNSS satellites
& and the telecommunications equipment

@ which enables communication between

@ the GNSS satellite sand vehicles |,

@ vehicles and the road-pricing calculator,

@ toll-gates and the road-pricing calculator and

@ the road-pricing calculator and vehicles (for billing),
% We defer expression of

@ human user and

@ external equipment requirements

till our treatment of relevant functional requirements

A Prerequisite for Requirements Engineering 375

ines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29

376

7. Requirements 1. Introduction 1.2. Four Stages of Requirements Development 1.2.4. User and External Equipment Requirements

7.1.2.4. Functional Requirements

Definition 25. Functional Requirements: By functional re-
quirements we understand precise prescriptions of

e the endurants
e and perdurants

of the system components 1l

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 376

377

7. Requirements 1. Introduction 1.2. Four Stages of Requirements Development 1.2.4. Functional Requirements

e There are, as we see it, three kinds of requirements:

®» domain requirements,
® interface requirements and

¢ machine requirements

A Prerequisite for Requirements Engineering 377 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

378

7. Requirements 1. Introduction 1.2. Four Stages of Requirements Development 1.2.4. Functional Requirements

e Domain requirements are those requirements which can be ex-
pressed solely using technical terms of the domain =

e Interface requirements are those requirements which can be ex-
pressed only using technical terms of both the domain and the ma-
chine m

e Machine requirements are those requirements which can be ex-
pressed solely using technical terms of the machine m

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 378 Domain Science & Engineering

379

7. Requirements 2. Domain Requirements

7.2. Domain Requirements

Definition 26. Domain Requirements Prescription: A do-
main requirements prescription

e is that subset of the requirements prescription

e which can be expressed solely using terms from the domain de-
scription R

e 'To determine a relevant subset all we need is collaboration with
requirements stake-holders.

A Prerequisite for Requirements Engineerin; 379 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

380

7. Requirements 2. Domain Requirements

e [ixperimental evidence,

& in the form of example developments
@ of requirements prescriptions
o from domain descriptions,
appears to show
® that one can formulate techniques for such developments

& around a few domain description to requirements prescription op-
erations.

» We suggest these:

@ projection, o extension.
@ instantiation, o fitting
o determination,

and, perhaps, other domain description to requirements prescrip-
tion operations.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 380 Domain Science & Engineering

381

7. Requirements 2. Domain Requirements 2.1.

7.2.1. Domain Projection

Definition 27 . Domain Projection: By a domain projection
we mean

e o subset of the domain description,

e one which leaves out all those

& endurants: & perdurants:
@ parts, @ functions,
o materials and o events and
@ COMponents, o behaviours
as well as

that the stake-holders do not wish represented by the machine.

o The resulting document is a partial domain requirements prescrip-

tion 1B

A Prerequisite for Requirements Engineering 381 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

382

7. Requirements 2. Domain Requirements 2.1. Domain Projection

e In determining an appropriate subset

® the requirements engineer must secure
@ that the final prescription
& 1s complete and consistent — that is,

o that there are no “dangling references”

)

o 1.e., that all entities that are referred to
o are all properly defined.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 382

383

7. Requirements 2. Domain Requirements 2.1. Domain Projection 2.1.1.

7.2.1.1. Domain Projection — Narrative

e We now start on a series of examples
e that illustrate domain requirements development.

Example 69 . Domain Requirements. Projection A Narrative Sketch:

e We require that the Road-pricing IT, computing & communications system shall
embody the following domain entities, in one form or another:
& the net,

@ its links and hubs,

@ and their properties
(unique identifiers, mereologies and attributes),

& the vehicles, as endurants,

@ as endurants,
@ and the general vehicle behaviour, i.e., the vehicle signature.

A Prerequisite for Requirements Engineering 383 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

384
7. Requirements 2. Domain Requirements 2.1. Domain Projection 2.1.1. Domain Projection — Narrative

e To formalise this we copy the domain description, Ax,
e From that domain description we remove all mention of

& the link insertion and removal functions,
® the link disappearance event,
& the vehicle behaviour, and

< the monitor

e to obtain the Ap version of the domain requirements prescription. 2’

sRestrictions of the net to the toll road nets, hinted at earlier, will follow in the next
domain requirements steps.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 384 Domain Science & Engineering

7. Requirements 2. Domain Requirements 2.1. Domain Projection 2.1.2. Domain Projection — Narrative

385

7.2.1.2. Domain Projection — Formalisation

e The requirements prescription hinges, crucially,

@ not only on a systematic narrative of all the

@ projected, o determinated, o fitted
o Instantiated, o extended and
specifications,

& but also on their formalisation.

e In the series of domain projection examples following below
we, regretfully, omit the narrative texts.

@ In bringing the formal texts
we keep the item numbering from Sect. 2.,

@ where you can find the associated narrative texts.

A Prerequisite for Requirements Engineerin 385 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

386

7. Requirements 2. Domain Requirements 2.1. Domain Projection 2.1.2. Domain Projection — Formalisation

Example 70 . Domain Requirements. Projection Root Sorts:

type
112. Ap
112a.. Np
112b.. Fp
value

112a.. obs_part_Np: Ap—Np
112b.. obs_part_Fp: Ap—)Fp

type
113a.. HAp
113b.. LAp
value

113a.. obs_part_HA: Np — HA
113b.. obs_part_LA: Np — LA

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 386

387

7. Requirements 2. Domain Requirements 2.1. Domain Projection 2.1.2. Domain Projection — Formalisation

Example 71 . Domain Requirements. Projection Sub-domain Sorts and
Types:

type

114. Hp, HSP = Hp-Set

115. |_73, |_S73 — Lp-Set

116. Vp, VSp — Vp-Set

value

114. obs_part_ HSp: HAp — HSp

115. obs_part_LSp: LAp — LSp

116. obs_part_ VSp: Fp — VSp

117a.. links: Ap — L-set

117a.. links(6p) = obs_part LSk (obs part LAz (0r))
117b.. hubs: Ap — H-set

117b.. hubs(dp) = obs_part_HSp(obs_part HAp(6p))

A Prerequisite for Requirements Engineerin; 387 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

388

7. Requirements 2. Domain Requirements 2.1. Domain Projection 2.1.2. Domain Projection — Formalisation

Example 72 . Domain Requirements. Projection Unique ldentifications:

type

118a.. HI, LI, VI, Ml

value

118c.. wuid_HI: Hp — HI

118c.. wuid_LI: Lp — LI

118c.. wuid_VI: Vp — VI

118c.. uid_MI: Mp — Ml

axiom

118b.. HILI=0, HIOVI=0, HIMI=0),
118b.. LINVI=0, LINMI=0, VIMI=0

388

389

7. Requirements 2. Domain Requirements 2.1. Domain Projection 2.1.2. Domain Projection — Formalisation

Example 73 . Domain Requirements. Projection Road Net Mereology:

value

120. obs_mereo_Hp: Hp — Ll-set

121. obs_mereo_Lp: Lp — Hl-set

121. axiom V |:Lp - card obs_mereo_Lp(l)=2
122. obs_mereo_Vp: Vp — M

123. obs_mereo_Mp: Mp — Vl-set

axiom

124. Y §p:Ap, hs:HS-hs=hubs(§), Is:LS-Is=links(dp) =
124. vV h:Hph € hs =

124. obs_mereo_Hp(h)Cxtr_his(dp) A

125. V I:Lpel € Is -

124. obs_mereo_Lp(l)Cxtr_lis(dp) A

126a.. let f:Fp-f:obs_part_Fp(ép) =

126a.. vs:VSp-vs=obs_part_VSp(f) in
126a.. V v:Vpv € vs =

126a.. uid_Vp(v) € obs_mereo_Mp(m) A
126b.. obs_mereo_Mp(m)

126b.. = {uid_Vp(v)|v:Vev € vs}

126b.. end

A Prerequisite for Requirements Engineering 389 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

390

7. Requirements 2. Domain Requirements 2.1. Domain Projection 2.1.2. Domain Projection — Formalisation

Example 74 . Domain Requirements. Projection Attributes of Hubs:

type
127a..
127b..
value
127a..
127b..
type
129.
value
129.
axiom
128.
128.
128.
128a..
128b..
128.

HYp = (LIxLI)-sett
H(p = HXp-set

attr_HZp: Hp — HZP
attr_HQp: Hp — HQP

HGCL
attr HGCL: H — HGCL

i 573:A73,
let hs = hubs(dp) in
Vh:Hp-h € hs-
xtr_lis(h) Cxtr _lis(dp)
A attr >p(h) € attr Qp(h)
end

Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29 390

391
7. Requirements 2. Domain Requirements 2.1. Domain Projection 2.1.2. Domain Projection — Formalisation

Example 75 . Domain Requirements. Projection Attributes of Links:

type
131. LEN
132. LGCL

133a.. LYp = (HIxHI)-set
133b.. LQP = LZP-Set

value

131. attr_LEN: L, — LEN
132. attr_LGCL: L p— LGCL
133a.. attr_LEp: |_73 — LZP
133b.. attr_LQp: |_73 — LQP
axiom

133a..— 133b. on Slide 324.

A Prerequisite for Requirements Engineering 391 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

392

7. Requirements 2. Domain Requirements 2.1. Domain Projection 2.1.2. Domain Projection — Formalisation

Example 76 . Domain Requirements. Projection Behaviour:

Global Values

value
146.
147.
147.
147.
147.
147.

(SPZAP,

n:Np» = obs_part Np(dp),
ls:Lp-set = links(dp),
hSZHp-Set — hubs(57>),
lis:LI-set = xtr_lis(dp),
his:HI-set = xtr_his(dp)

Behaviour Signatures

value
153.
154.

trsp: Unit — Unit
vehp: VIXMIXATTR — ... Unit

The System Behaviour

value

156a.. trsp()=||{vehp(uid_VI(v),obs_ mereo V(v),attr ATTRS(v)) | v:Vp-v € vs}

392

393

7. Requirements 2. Domain Requirements 2.1. Domain Projection 2.1.3. Domain Projection — Formalisation

7.2.1.3. A Projection Operator

e Domain projection thus take a domain description, D, and yields a
projected requirements prescription, ,/Rp.

e o type projection: D — Rp.
e Semantically

@ D denotes a possibly infinite set of meanings, say ID and
@ Rp denotes a possibly infinite set of meanings, say Rp,
» such that some relation RpCID is satisfied.

A Prerequisite for Requirements Engineering 393 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

Dines Bjgrner’s MAP-i Lecture # 7

End of MAP-i Lecture # 7:
Requirements — An Overview and Projection

Tuesday, 26 May 2015: 15:30-16:15

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O

Dines Bjgrner’'s MAP-i Lecture # 8

Domain Requirements: Instantiation and Determination

Tuesday, 26 May 2015: 16:45-17:30

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O Domain Science & Engineering

394 7. Requirements 2. Domain Requirements 2.2. Domain Projection

7.2.2. Domain Instantiation

Definition 28 . Instantiation: By domain instantiation we
mean

e o refinement of the partial domain requirements prescription,
e resulting from the projection step,

e in which the refinements aim at rendering the

& endurants: & perdurants:
@ parts, @ actions,
o materials and o events and
@ COMmponents, o behaviours

as well as the

of the domain requirements prescription

e more concrete, more specific R

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 394

395

7. Requirements 2. Domain Requirements 2.2. Domain Instantiation

e Refinement of endurants can be expressed

@ either in the form of concrete types,
@ or of further “delineating” axioms over sorts,

& or of a combination of concretisation and axioms.
e We shall exemplity the third possibility.

e Eixamples 7778 express requirements that the road net on which the
road-pricing system is to be based must satisty:.

A Prerequisite for Requirements Engineerin 395 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

396

7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.1.

7.2.2.1. Domain Instantiation — Narrative

Example 77 . Domain Requirements. Instantiation Road Net, Narra-
tive:
e \We now require that there is, as before, a road net, nz:N7,
which can be understood as consisting of two, “connected sub-nets”.
% A toll-road net, trnz:TRNz, cf. Fig. 3 on the facing slide,
& and an ordinary road net, n'y.
@ The two are connected as follows:

@ The toll-road net, trnz, borders some toll-road plazas,
in Fig. 3 on the next slide shown by white filled circles (i.e., hubs).

@ These toll-road plaza hubs are proper hubs of the ‘ordinary’ road net, n's.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 396 Domain Science & Engineering

397

7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.1. Domain Instantiation — Narrative

@ toll-road intersection hub

rigwe 3: A simple, linear toll-road net

A Prerequisite for Requirements Engineering 397 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

398 7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.1. Domain Instantiation — Narrative

164 The instantiated domain, 07:A7 has just the net, n7:N7 being instan-
tiated.

165 The road net consists of two “sub-nets”

a. an “ordinary’ road net, ”/A:N/A and

b. a toll-road net proper, trn7: TRN7 —

@ toll-road intersection hub

riewre 4: The Instantiated Road Net

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 398 Domain Science & Engineering

399

7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.1. Domain Instantiation — Narrative

c. "connected” by an interface hil:HIL:

i That interface consists of a number of toll-road plazas (i.e.,
hubs), modeled as a list of hub identifiers, hil:HI*.

i The toll-road plaza interface to the toll-road net, trn:TRN72°
has each plaza, hil[i], connected to a pair of toll-road links: an
entry and an exit link: (lg:L,1;:L).

lii The toll-road plaza interface to the ‘ordinary’ net, n’A:N/ has
each plaza, i.e., the hub designated by the hub identifier hil[i],
connected to one or more ordinary net links, {l;;,l;,, -~ ,1;,}.

tpl ,QEP? ,,,,,,,,,, Q!PZ” ,,,,,,,,,,,,,,, 1,,;1,,,,,,,,,,,,,,,tpm,,l,Q,,,,,,,,,}Pm,Q

ﬁb@kﬂkﬂb@

@ toll-road intersection hub ~ ——hnk

riewre D: 1L'he Instantiated Road Net

26We (sometimes) omit the subscript 7 when it should be clear from the context what we mean.

A Prerequisite for Requirements Engineering 399 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

400
7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.1. Domain Instantiation — Narrative

165b. The toll-road net, trn: TRN7, consists of three collections (modeled
as lists) of links and hubs:
i a list of pairs of toll-road entry/exit links: ((le, lz,), -+, (leys 1zy)),
i a list of toll-road intersection hubs: (h; , hj,, -, h;,), and
iii a list of pairs of main toll-road (“up” and “down™) links: {(ml;

N
mlim)v <mi2u7 mi2d>a T <migu7 migd>>'

d. The three lists have commensurate lengths.

Htpl Htp2

L til ti2 ti3 tij
trn @ toll-road intersection hub —hnk

riewre 0: The Instantiated Road Net

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 400 Domain Science & Engineeri

401

7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.2. Domain Instantiation — Narrative

7.2.2.2. Domain Instantiation — Formalisation

Example 78 . Domain Requirements. Instantiation Road Net, Formal
Types:

type

164 Az axiom

165 Nz =N/, x HIL x TRN 165d. V nz:Nz -

165a. Ny 165d. let (na,hil,(exI,hLlll)) = nz in

165b. TRNz = (LxL)* x H* x (LxL)* 165d. len hil = len exll = len hl =len Ill + 1
165c. HIL = HI* 165d. end

[Lecturer explains N';]
"o

‘tpl Htp2

Lot ti2 ti3
trn @ toll-road intersection hub —hnk

riewre (' 1The Instantiated Road Net

A Prerequisite for Requirements Engineerin; 401 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

402

7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.3. Domain Instantiation — Formalisation

7.2.2.3. Domain Instantiation — Formalisation: Well-formedness

Example 79 . Domain Requirements. Instantiation Road Net, Well-
formedness:

e The partial concretisation of the net sorts, N, into Nz, requires some well-formedness
conditions to be satisfied.

166 The toll-road intersection hubs must all have distinct hub identifiers.

value

166. wf dist toll road isect_hub_ids: H*—Bool
166. wf dist toll road isect_hub ids(hl) =

166. len hl = card xtr_his(hl)

167 The toll-road ‘up’ and ‘down’ links must all have distinct link identifiers.

value

167. wf dist toll road u d link_ids: (LxL)*—Bool
167. wf dist toll road u_d link_ids(lll) =
167. 2 X len lll = card xtr_lis(lll)

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 402

403
7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.3. Domain Instantiation — Formalisation: Well-formedness

168 The toll-road entry/exit links must all have distinct link identifiers.

value

168. wf dist e x link_ids: (LxL)*—Bool
168. wf dist_e x link_ids(exIl) =

168. 2 X len exll = card xtr_lis(exll)

169 Proper net links must not designate toll-road intersection hubs.

value

169. wf_isoltd_toll_road_isect_hubs: HI* xH*—N;—Bool
169. wf isoltd toll road isect _hubs(hil,hl)(nz) =

169. let Is=xtr_links(nz) in

169. let his = U {obs_mereo L(l)|l:L:| € Is} in
169. his N xtr_his(hl) = {} end end

A Prerequisite for Requirements Engineering 403 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

404
7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.3. Domain Instantiation — Formalisation: Well-formedness

170 The plaza hub identifiers must designate hubs of the ‘ordinary’ net.

value

170. wf _p_hubs pt of ord net: HI*—N’,—Bool
170. wf_p_hubs_pt_of ord_net(hil)(n's) =

170. elems hil C xtr_his(n'y)

171 The plaza hub mereologies must each,

a. besides identifying at least one hub of the ordinary net,

b. also identify the two entry/exit links with which they are supposed to be con-
nected.

value

171. wf_p_hub_interf: N’y —+Bool

171. wf_p_hub_interf(n,,hil,(exll,_,)) =
171. Vi:Nat - i € inds exll =

171. let h = get H(hil(i))(n’y) in
171. let lis = obs_mereo_H(h) in
171. let lis' = lis \ xtr_lis(n") in

171. lis' = xtr_lis(ex|I(i)) end end end

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 404 Domain Science & Engineering

405
7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.3. Domain Instantiation — Formalisation: Well-formedness

172 The mereology of each toll-road intersection hub must identify

a. the entry/exit links
b. and exactly the toll-road ‘up’ and ‘down’ links

c. with which they are supposed to be connected.

value

172. wf_toll_road_isect_hub_iface: Nz—Bool

172. wf toll_road_isect_hub_iface(_,_,(exI,hllll)) =
172. Vi:Nat - i € inds hl =

172. obs_mereo _H(hl(i)) =

172a.. xtr_lis(exIl(i)) U

172. case i of

172b.. 1 — xtrlis(llI(1)),

172b.. len hl — xtr_lis(lll(len hl—1))
172b.. _ — xtr_lis(llI(i)) U xtr_lis(H(i—1))
172. end

A Prerequisite for Requirements Engineering 405 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

406

7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.3. Domain Instantiation — Formalisation: Well-formedness

173 The mereology of the entry/exit links must identify exactly the

a. interface hubs and the
b. toll-road intersection hubs

c. with which they are supposed to be connected.

value

173. wfexll: (LxL)*xHI*xH*—Bool
173. wf_exll(exll,hil,hl) =

173. V i:Nat - i € len exll

173. let (hi,(el,xl),h) = (hil(i),exIl(i),hl(i)) in
173. obs mereo L(el) = obs mereo L(xl)
173. = {hi} U {uid_H(h)} end

173. pre: len eell = len hil = len hl

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 406

407
7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.3. Domain Instantiation — Formalisation: Well-formedness

174 The mereology of the toll-road ‘up’ and ‘down’ links must

a. identify exactly the toll-road intersection hubs

b. with which they are supposed to be connected.

value

174. wf u d links: (LxL)*xH*—Bool
174. wf u_d links(lll,hl) =

174. Vi:Nat -i € inds lll =

174. let (ul,dl) =1l(i) in
174. obs mereo L(ul) = obs mereo L(dl) =
174a.. uid H(hI(i)) U uid_H(hl(i+1)) end

174. pre: len lll = len hl+1

A Prerequisite for Requirements Engineerin 407 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

408

7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.3. Domain Instantiation — Formalisation: Well-formedness

e We have used additional auxiliary functions:

value
xtr_his: H*—HI-set
xtr_his(hl) = {uid_HI(h)|h:H-h € elems hl}
xtr_lis: (LxL)—Ll-set
xtr_lis(I'I") = {uid _LI(I') }U{uid LI(I")}
xtr_lis: (LxL)*— Ll-set
xtr_lis(lll) =
U{xtr_lis(I',I)|(I,I"):(LxL)-(I'I")€ elems Ill}

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 408

409
quirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.3. Domain Instantiation — Formalisation: Well-formedness 2.2.3.1. Summary Well-formedness Pred

7.2.2.3.1 Summary Well-formedness Predicate

175 The well-formedness of instantiated nets is now the conjunction of the individual
well-formedness predicates above.

value

175. wf_instantiated_net: Ny — Bool

175. wf instantiated net(n’y,hil,(exIl,hl,lIl))

166. wf dist toll road isect_hub ids(hl)

167. A wf dist_toll road u_d link_ids(lIl)

168. A wf dist_e e link_ids(exll)

169. A wf_isolated toll road isect_hubs(hil,hl)(n’)
170. A wf_p_hubs pt_of ord net(hil)(n’)

171. A wf_p_hub_interf(n'y,hil,(exll,_,_))

172. A wf toll road isect_hub iface(_,_,(exIl,hl,IIl))
173. A wf_exll(exll, hil,hl)

174. A wf_u_d links(lll,hl)

A Prerequisite for Requirements Engineering 409 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

410

7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.4. Domain Instantiation — Formalisation: Well-formedness

7.2.2.4. Domain Instantiation — Abstraction

Example 80 . Domain Requirements. Instantiation Road Net, Abstrac-
tion:

e Domain instantiation has refined

& an abstract definition of net sorts, na:Na,

% into a partially concrete definition of nets, nz:N7.
e We need to show the refinement relation:

& abstraction(nz) = na.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 410 Domain Science & Engineering

7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.4. Domain Instantiation — Abstraction

411

value

176 abstraction: Ny — Na

177 abstraction(n'y,hil,(exIl,hl 1)) =
178 let nA:NA .

178 let hs = obs_part_ HS(obs_part HAA(n',)),

178 Is = obs_part_LSx(obs_part_LAA(ny)),

178 ths = elems hl,

178 eells = xtr_links(eell), llls = xtr_links(lll) in

179 hsUths=obs_part_HS (obs_part HAA(na))

180 A IsUeellsUllls=obs_part_LSx(obs_part LAA(na))

181 na end end

A Prerequisite for Requirements Engineering 411 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark

412
7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.4. Domain Instantiation — Abstraction

176 The abstraction function takes a concrete net, nz:Nz, and yields an abstract net,
n A:N A-

177 The abstraction function doubly decomposes its argument into constituent lists
and sub-lists.

178 There is postulated an abstract net, na:Na, such that
179 the hubs of the concrete net and toll-road equals those of the abstract net, and
180 the links of the concrete net and toll-road equals those of the abstract net.

181 And that abstract net, na:Na, is postulated to be an abstraction of the concrete
net.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 412 Domain Science & Engineering

413

7. Requirements 2. Domain Requirements 2.2. Domain Instantiation 2.2.5. Domain Instantiation — Abstraction

7.2.2.5. An Instantiation Operator

e Domain instantiation take a requirements prescription, Rp, and
yields a more concrete requirements prescription R7.

» type instantiation: Rp — R7
e Semantically

@ Rp denotes a possibly infinite set of meanings, say Rp,
» R denotes a possibly infinite set of meanings, say Ry and

@ such that some relation RjCRp is satisfied.

A Prerequisite for Requirements Engineerin 413 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

414

7. Requirements 2. Domain Requirements 2.3. Domain Instantiation

7.2.3. Domain Determination

Definition 29 . Determination: By domain determination we
mean

e o refinement of the partial domain requirements prescription,
e resulting from the instantiation step,

e in which the refinements aim at rendering the

& endurants: & perdurants:
@ parts, @ functions,
o materials and o events and

@ components, as well as the o behaviours

of the partial domain requirements prescription

e [ess non-determinate, more determinate. M

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 414 Domain Science & Engineerin:

7. Requirements 2. Domain Requirements 2.3. Domain Determination

415

e Determinations usually render these concepts less general.

» That 1s, the value space

o of endurants that are made more determinate
@ is “smaller”, contains fewer values,

o as compared to the endurants
before determination has been “applied”.

7.2.3.1. Domain Determination: Example

e We show an example of ‘domain determination’.

o It 1s expressed solely in terms of

& axioms over the concrete toll-road net type.

A Prerequisite for Requirements Engineering 415 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

416

7. Requirements 2. Domain Requirements 2.3. Domain Determination 2.3.1. Domain Determination: Example

Example 81 . Domain Requirements. Determination Toll-roads: 7.2..
e We focus only on the toll-road net.

e We single out only two 'determinations’:
182 The entry/exit and toll-road links

a. are always all one way links,
b. as indicated by the arrows of Fig. 2,

c. such that each pair allows traffic in opposite directions.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 416 Domain Science & Engineering

417
7. Requirements 2. Domain Requirements 2.3. Domain Determination 2.3.1. Domain Determination: Example 2.3.1.1. All Toll-road Links are One-way Links

value
182. opposite traffics: (LxL)* x (LxL)* — Bool

182. opposite_traffics(exll,lll) =
182. ¥ (ItIf):(LxL) - (It.If) € elems exlI Il =

182a.. let (Ito Ifo) = (attr LY (It),attr LY(If)) in
182a.’. attr _LO(It)={lto } Aattr LO(ft)={fto}
182a.”. A card ltc = 1 = card Ifo

182. A let ({(hi,hi)},{(hi",hi")}) = (Ito,Ifo) in
182c.. hi=hi" A hi=hi"

182. end end

A Prerequisite for Requirements Engineering 417 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

418
7. Requirements 2. Domain Requirements 2.3. Domain Determination 2.3.1. Domain Determination: Example 2.3.1.1. All Toll-road Links are One-way Links

7.2.3.1.2 All Toll-road Hubs are Free-flow

183 The hub state spaces are singleton sets of the toll-road hub states which always
allow exactly these (and only these) crossings:

a. from entry links back to the paired exit [inks,
b. from entry links to emanating toll-road links,
c. from incident toll-road links to exit links, and

d. from incident toll-road link to emanating toll-road links.

value

183. free flow toll_road_hubs: (LxL)*x(LxL)*—Bool
183. free_flow_toll_road_hubs(exl,Il) =

183. V i:Nat-i € inds hl =

183. attr_HX(hl(i)) =

183a.. ho_ex_Is(exI(i))
183b.. U ho _et_Is(exI(i),(i,I1)
183c.. U ho _txIs(exI(i),(i,I1)
183d.. U ho _ttIs(i,I)

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 418 Domain Science & Engineering

419
7. Requirements 2. Domain Requirements 2.3. Domain Determination 2.3.1. Domain Determination: Example 2.3.1.2. All Toll-road Hubs are Free-flow

183a.: from entry links back to the paired exit [inks:

value
183a.. ho exls: (LxL)—LY
183a.. ho exIs(e,x) = {(uid _Ll(e),uid LI(x))}

A Prerequisite for Requirements Engineering 419 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

420
7. Requirements 2. Domain Requirements 2.3. Domain Determination 2.3.1. Domain Determination: Example 2.3.1.2. All Toll-road Hubs are Free-flow

183b.: from entry links to emanating toll-road links:

value
183b.. ho et ls: (LxL)x(Natx(em:Lxin:L)*)—LX
183b.. ho et ls((e,_),(i,ll)) =

183b.. case i of

183b.. 2 — {(uid _LI(e),uid _LI(em(ll(1))))},
183b.. len ll4+-1 — {(uid _LI(e),uid Ll(em(ll(len 11))))},
183b.. - — {(uid_LI(e),uid _LI(em(ll(i—1)))),
183b.. (uid _LI(e),uid LI(em(llI(i))))}
183b.. end

e The em and in in the toll-road link list (em:Lxin:L)*
designate selectors for emanating, respectively incident links.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 420 Domain Science & Engineering

421

7. Requirements 2. Domain Requirements 2.3. Domain Determination 2.3.1. Domain Determination: Example 2.3.1.2. All Toll-road Hubs are Free-flow

183c.: from incident toll-road links to exit links:

value
183c.. ho txls: (LxL)x(Natx(em:Lxin:L)*)—L>
183c.. ho txIs((__x),(i,Il)) =

183c.. case i of

183c.. 2 — {(uid_LI(in(l1(1))),uid LI(x))},
183c.. len ll4+-1 — {(uid _LI(in(ll(len II))),uid LI(x))},
183c.. o — {(uid_LI(in(ll(i—1))),uid LI(x)),
183c.. (uid _LI(in(l1(i))),uid LI(x))}
183c.. end

A Prerequisite for Requirements Engineering 421 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

422
7. Requirements 2. Domain Requirements 2.3. Domain Determination 2.3.1. Domain Determination: Example 2.3.1.2. All Toll-road Hubs are Free-flow

183d.: from incident toll-road link to emanating toll-road [inks:

value
183d.. ho ttls: Natx(em:Lxin:L)*—L>
183d.. ho ttls(i,ll) =

183d.. case i of

183d.. 2 — {(uid_LI(in(l1(1))),uid_Ll(em(ll(1))))},

183d.. len ll4+-1 — {(uid_LI(in(ll(len I11))),uid _Ll(em(ll(len 11))))},
183d.. o — {(uid_LI(in(ll(i—1))),uid _Ll(em(ll(i—1)))),
183d.. (uid _LI(in(l1(i))),uid _Ll(em(ll(i))))}

183d.. end

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 422 Domain Science & Engineering

423
7. Requirements 2. Domain Requirements 2.3. Domain Determination 2.3.2. Domain Determination: Example

7.2.3.2. A Domain Determination Operator

e Domain determination take a requirements description, Rz, and
yields a more deterministic requirements prescription, Rp.

®» type instantiation: R7 — Rp
e Semantically

@ R7 denotes a possibly infinite set of meanings, say Ry,
» Rp denotes a possibly infinite set of meanings, say Rp and
@ such that some relation RfCRyy is satisfied.

A Prerequisite for Requirements Engineering 423 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

Dines Bjgrner’'s MAP-i Lecture # 8

End of MAP-i Lecture # 8:
Domain Requirements: Instantiation and Determination

Tuesday, 26 May 2015: 16:45-17:30

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O Domain Science & Engineering

Dines Bjgrner’'s MAP-i Lecture # 9

Domain Requirements: Extension and Fitting

Thursday, 28 May 2015: 10:00-11:15

424 7. Requirements 2. Domain Requirements 2.4. Domain Determination

7.2.4. Domain Extension

Definition 30 . Extension: By domain extension we understand the

e introduction of endurants and perdurants that were not feasible in the original
domain,

e but for which, with computing and communication,
e and with new, emerging technologies,

e for example, sensors, actuators and satellites,

e there is the possibility of feasible implementations,

® hence requirement,

e that what is introduced becomes®” part of the unfolding requirements prescrip-

tion 1R

2"hecome or becomes ?

© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 424 Domain Science & Engineering

425

7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1.

7.2.4.1. The Core Requirements Example: Domain Extension

Example 82 . Domain Requirements. Extension Vehicles: Parts, Prop-
erties and Channels:

184 There is a domain, 0g:Ag, which contains
185 a fleet, fe:Fg,
186 of a set, vsg:VSg, of
187 extended vehicles, vg:V¢ — their extension amounting to
a. a dynamic, active and biddable attribute?®, whose value, ti-gpos:TiGpos, at any

time, reflects that vehicle's time-stamped global positions

b. The vehicle’s GNSS receiver calculates its local position, Ipos:LPQOS, based on
these signals.

c. Vehicles access these external attributes via the external attribute channel, attr_ TiGPos_ch,

cf. Item 100 on Slide 273.

d. The vehicle can, on its own volition, offer the timed local position, ti-lpos: TiLPos
to the price calculator, cg:Cg along a vehicles-to-calculator channel, v_c_ch.

xSee Sect. Slide 187.

A Prerequisite for Requirements Engineering 425 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

426
7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

type

184. Ag¢

185. Fe

186. VSg = Vg-Set
187. V¢

187a.. TiGPos =T x GPOS

187a.. TiLPos =T x LPOS

187b.. GPOS, LPOS

value

185. obs_part_Fs: Ag — F¢

186. obs_part_VS¢: Fe — VS¢

186. vs:obs_part _VS¢(F¢)

channel

187c.. {attr_TiGPos_ch|vi]|viLVIvi € xtr Vls(vs)}: TiGPos
187d.. {v_c_ch|vici]

187d.. | vi:Vl,ci:ClvievisAci=uid _C(c) }:(VIx TiLPos)
value

187a.. attr_TiGPos_ch|vi|?

187b.. loc_pos: GPOS — LPOS

e where vis:VI-set is the set unique vehicle identifiers of all vehicles of the requirements domain fleet,

f: FRg-

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 426 Domain Science & Engineering

427
7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

We define two auxiliary functions,

188 xtr_vs, which given a domain, or a fleet, extracts its set of vehicles,
and

189 xtr_vis which given a set of vehicles generates their unique identifiers.

value

188. xtrvs: (AglFg|VSe) — Ve-set

188. xtr vs(arg) =

188. is Ag(arg) — obs part VSg(obs part Fg(arg)),
188. is Fe(arg) — obs_part VSg(arg),

188. is VSg(arg) — arg

189. xtrvis: (Ag|F¢|VSg) — Vl-set

189. xtr vis(arg) = {uid VI(v)|v € xtr vs(arg)}

A Prerequisite for Requirements Engineering 427 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

428
7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Domain Requirements. Extension Toll-road Net: Parts,

Example 83 .

Properties and Channels:

e We extend the domain with toll-gates for vehicles
entering and exiting the toll-road entry and exit links.

e Figure 8 illustrates the idea of gates.

entry sensor | _ o | exit sensor
Vehicle Identification |

B n
*77|IJr‘l/k//>‘: \w [:::Inl;::> (- riilflrj’ll; - f::]Ih‘k/E
5to|l barrier
rigwe S: A toll plaza gate
Domain Science & Eng

428

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

429
7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

e Figure 8 on the facing slide is intended to illustrate a vehicle entering (or exiting)
a toll-road entry link.

% The toll-gate is equipped with three sensors:
an entry sensor, a vehicle identification sensor and an exit sensor.

% The entry sensor serves to prepare
the vehicle identification sensor.

¢ The exit sensor serves to prepare
the gate for closing when a vehicle has passed.

% The vehicle identification sensor identifies the vehicle and “delivers” a pair: the
current time and the vehicle identifier.

% Once the vehicle identification sensor has identified a vehicle the gate opens.

A Prerequisite for Requirements Engineering 429 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

430

7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

190 There is the domain, 0:Ag¢,

191 which contains the extended net, n:Ng¢, with the net extension amounting to the
toll-road net, TRNg,

192 that is, the instantiated toll-road net, trn:TRN7, is extended, into trn: TRNg, with
entry, eg:EG, and exit, xg:XG, toll-gates.
From entry- and exit-gates we can observe
a. their unique identifier and their mereology: being paired with the entry-, respec-

tively exit link and the calculator (by their unique identifiers); further

b. a pair of gate enter and leave sensors modeled as external attribute channels,

(ges:ES,gls:XS), and

c. a time-stamped vehicle identity sensor modeled as external attribute channels.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 430 Domain Science & Engineerin:

7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

431

type
190 Ag
191 Ne

192 TRNg = (EGxXG)* x TRNz

192a. Gl

value

190 obs_part Ng: Ag — Ng¢

191 obs_part_TRNg: N¢ — TRNg
192a. uid G: (EG|XG) — Gl

192a. obs mereo G: (EG|XG) — (LIxCl)
channel

192b. {attr enter ch|gi]|gi:Gl-...} "enter”
192b. {attr_leave ch|gi||gi:Gl-...} "1eave’
192c. {attr_passing ch|gi||gi:Gl-...} TIVI
type

192c. TIVI=T x VI

A Prerequisite for Requirements Engineering 431

11, DK-2840 Holte, Denmark

432
7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

We define some auxiliary functions over toll-road nets, trn: TRNg¢:
193 xtr_eGl extracts the fist of entry gates,

194 xtr xG/¢ extracts the fist of exit gates,

195 xtr_eGlds extracts the set of entry gate identifiers,

196 xtr xGlds extracts the set of exit gate identifiers,

197 xtr_Gs extracts the set of all gates, and

198 xtr_Glds extracts the set of all gate identifiers.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 432 Domain Science & Engineering

433

7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

value

193 xtr_eG/: TRNg — EG*

193 xtreGl(pgl,_) =

193 {eg|(eg,xg):(EG,XG)-(eg,xg)€ elems pgl}
194 xtr xGl: TRNg — XG*

194 xtr xGl(pgl,_) =

194 {xg|(eg.xg):(EG,XG)-(eg,xg)€ elems pgl}
195 xtr_eGlds: TRNg — Gl-set

195 xtr_eGlds(pgl,_) =

195 {uid Gl(g)|g:EG-g € xtr eGs(pgl,_)}

196 xtr xGlds: TRNg — Gl-set

196 xtr xGlds(pgl,_) =

196 {uid _Gl(g)|g:EG-g € xtr xGs(pgl,_)}

197 xtr_Gs: TRNg — G-set

197 xtr_Gs(pgl,_) =

197 xtr_eGs(pgl,_) U xtr xGs(pgl,_)

198 xtr_Glds: TRNg — Gl-set

198 xtr_Glds(pgl,_) =

198 xtr_eGlds(pgl,_) U xtr xGlds(pgl,_)

A Prerequisite for Requirements Engineering 433 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

434
7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

199 A well-formedness condition expresses

a. that there are as many entry end exit gate pairs as there are toll-
plazas,

b. that all gates are uniquely identified, and

c. that each entry |exit| gate is paired with an entry |exit] link and
has that link’s unique identifier as one element of its mereology,
the other elements being the calculator identifier and the vehicle
identifiers.

The well-formedness relies on awareness of
200 the unique identifier, ci:Cl, of the road pricing calculator, c:C, and
201 the unique identifiers, vis:Vl-set, of the fleet vehicles.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 434 Domain Science & Engineering

435

7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

value
200 ci:Cl

201 vis:Vl-set

axiom

199 V n:Ng,, trn:TRNg, -

199 let (exgl,(exl,hllll)) = obs part TRNg,(n) in
199a. len exgl = len ex| = len hl =len lll + 1
199b. A card xtr Glds(exgl) = 2 * len exgl

199c. A V i:Nat.i € inds exgl

199c. let ((eg,xg).(el,xl)) = (exgl(i),exI(i)) in
199c. obs mereo _G(eg) = (uid _U(el),ci,vis)
199c. A obs_mereo G(xg) = (uid_U(xl),ci,vis) end end

A Prerequisite for Requirements Engineering 435 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

436
7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 84 . Domain Requirements. Extension Parts, Properties and
Channels:

202 The road pricing calculator repeatedly receives

a. information, (vi,(7,pos)):VITIPOS,
b. sent by vehicles as to their identify and time-stamped position

c. over a channel, v_c_ch indexed by the c:C¢ and the vehicle identities.
203 The road pricing calculator has a number of attributes:

a. a traffic map, trm:TRM, which, for each vehicle inside the toll-road net, records a chronologically
ordered list of each vehicle's timed position, (7,vp), and

b. a (total) road location function, vplf:VPLF.

i The vehicle position location function, vplf:VPLF, is subject to another function, locate_VPos,
which, given a local position, |pos:LPos, yields the vehicle position designated by the GNSS-
provided position, or yields the response that the provided position is off the toll-road net.

ii This result is used by the road-pricing calculator to conditionally
A either update the traffic map, trm: TRM, recording also the relevant time,

B or reset that vehicle’s traffic recording while send a bill for the just completed journey.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 436 Domain Science & Engineering

437
7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

type

202a. VITIPos = VI x (T x LPos)
value

202a. ...v.cchlcivi] 7 ...

202b. ...v_cch[civi] I (vi,(7,p)) ...
channel

202c. {v_c_ch|ci,vi||vi:VIvi € vis}:VITIPos
type

203a. TRM = VI # (T x VPos)*

203b. VPLF = LPos — VPos | "off _TRN'
value

203(b.)i locate LH: LPosxRLF — (VPos|'off_TRN")
203(b.)iiA update TRM: VIx(T xVPos)—»TRM—TRM
203(b.)iiB reset TRM: VI-=TRM—TRM

A Prerequisite for Requirements Engineering 437 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

438

7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 85 . Domain Requirements. Extension Main Sorts:

204 The main sorts of the road-pricing domain, Ag, are

a. the net, projected, instantiated (to include the specific toll-road net), made more
determinate and now extended, Ng, with toll-gates;

b. the fleet, Fg,
c. of sets, VS, of extended vehicles, V¢;

d. the extended toll-road net, TRNg, extending the instantiated toll-road net,
TRNz, with toll-gates; and

e. the road pricing calculator, Cg.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 438 Domain Science & Engineerin:

439
7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

type

204. Ag
204a.. Ng
204b.. Fg¢

204c.. VSg = Vg-set

204d.. TRNg = (EGxXG)* x TRN7
204e.. Cg¢

value

204a.. obs part N¢: A — Ng¢

204b.. obs part Fg: A — F¢

204c.. obs part VS¢c: A — VSg¢
204d.. obs part TRNg: Ne — TRNg
204e.. obs part Cc: A — C¢

A Prerequisite for Requirements Engineering 439 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

440

7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 86 . Domain Requirements. Extension Global Values:

e We exemplify a road-pricing system behaviour, in Example 87 on Slide 442,

e based on the following global values.

205 There is a given domain, dg:Ag;

206 there
207 there
208 there
209 there
210 there
211 there
212 there
213 there
214 there

is the net, ng:Ng, of that domain;

is toll-road net, trng: TRNg, of that net;

is a set, egse:EGge-set, of entry gates;

s a set, xgsg:XGg-set, of exit gates;

is a set, gisg:Gle-set, ofgate identifiers;

Is a set, vsg:Ve-set, of vehicles;

iIs a set, visg:Vig-set, of vehicle identifiers;
is the road-pricing calculator, c¢:C¢e and

is its unique identifier, cig:Cl.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 440

441
7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

value

205. o0g:Ag

206. ng:Ne = obs_part Ne(d¢)

207. trng:TRNg = obs_part_TRNg(ng)

208. egsg:EG-set = xtr egs(trng)

209. xgse:XG-set = xtr xgs(trng)

210. gisg:XG-set = xtr gis(trng)

211. vsg:Ve-set = obs _part VS(obs part Fg(d¢))
212, visg:Vl-set = {uid Vl(vg)|ve:Veve € vse}
213. cg:Ce = obs part Cg(d¢)

214. Cig:C|g — uid_C|(Cg)

A Prerequisite for Requirements Engineering 441 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

442
7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 87 . Domain Requirements. Extension System Behaviour:
e We shall model the behaviour of the road-pricing system as follows:

¢ we shall only model behaviours related to atomic parts;
% we shall not model behaviours of hubs and links;
¢ thus we shall model only

@ the set of behaviours of vehicles, veh,
@ the set of behaviours of toll-gates, gate, and
@ the behaviour of the road-pricing calculator, calc.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 442 Domain Science & Engineerin:

443
7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

215 The road-pricing system behaviour, sys, is expressed as

a. the parallel, ||, (distributed) composition of the behaviours of all
vehicles, with the parallel composition of

b. the parallel (likewise distributed) composition of the behaviours of
all entry gates, with the parallel composition of

c. the parallel (likewise distributed) composition of the behaviours of
all exit gates, with the parallel composition of

d. the behaviour of the road-pricing calculator,

A Prerequisite for Requirements Engineering 443 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

444

7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

value

215. sys: Unit — Unit

215, sys() =

215a.. | {veh(uid_V(v),(ci,gis),UTiGPos)|v:V-v € vsg}

215b.. || || {gate("Entry”)(uid_EG(eg),0bs_ mereo G(eg),(Uenter,Upassing,Uleave))|eg:EC
215c.. || || {gate("Exit")(uid_EG(xg),0bs_mereo G(xg),(Uenter,Upassing,Uleave))|xg:XG-
215d.. | calc(cig,(visg,gise))(rIf)(trm)

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 444 Domain Science & Engineering

445

7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 88 . Domain Requirements. Extension Vehicle Behaviour:

216 Instead of moving around by explicitly expressed internal non-determinism?” vehicles
move around by unstated internal non-determinism and instead receive their current
position from the global positioning subsystem.

a. At each moment the vehicle receives its time-stamped local position, tilpos: TiLPos,

b. which it then proceeds to communicate, with its vehicle identification, (vi,tilpos),
to the road pricing subsystem —

c. whereupon it resumes its vehicle behaviour.

»We refer to Items 157b., 157c. on Slide 343 and 158b., 158(c.)ii, 159 on Slide 345

A Prerequisite for Requirements Engineering 445 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

446

7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

value

216. veh: vi:VIx(ci:Clxgis:Gl-set) xUTiGPos —
216. out v_c ch|ci,vi| Unit

216. veh(vi,(ci,gis),attr TiGPos ch|vi]) =

216a.. let (7,gpos) = attr TiGPos ch|vi|? in
216a.. let Ipos = loc_pos(gpos) in

216b.. v.cch[civi] ! (vi,(7,lpos)) ;

216c.. veh(vi,(ci,gis),attr_TiGPos ch|vi|) end end
216. pre vi € visg A\ ci = cig N\ gis = gisg

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 446

447

7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 89 . Domain Requirements. Extension Gate Behaviour:

e The entry and the exit gates have “vehicle enter”, “vehicle leave” and “vehicle time
and identification” sensors.

& The following assumption can now be made:

@ during the time interval between

@ a gate's vehicle “enter” sensor having first sensed a vehicle entering that gate

@ and that gate's “leave” sensor having last sensed that vehicle leaving that
gate

@ that gate's “vehicle time and identification” sensor registers the time when
the vehicle is entering the gate and that vehicle's unique identification.

A Prerequisite for Requirements Engineering 447 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

448
7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

e \We sketch the toll-gate behaviour:

217 We parameterise the toll-gate behaviour as either an entry or an exit gate.
218 Toll-gates
a. inform the calculator of place (i.e., link) and time of entering and exiting of

identified vehicles

b. over an appropriate array of channels.
219 Toll-gates operate autonomously and cyclically.
a. The attr_Enter event “triggers” the behaviour specified in formula line ltem

219b.-219d..

b. The time-of-entry and the identity of the entering (or exiting) vehicle is sensed
via external attribute channel inputs.

c. Then the road pricing calculator is informed of time-of-entry and of vehicle vi
entering (or exiting) link li.

d. And finally, after that vehicle has left the entry or exit gate that toll-gate’s
behaviour is resumed.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 448 Domain Science & Engineering

449

7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

e The toll-gate behaviour, gate:

type

217 EE = "Enter” | "Exit”

218a. GCM = EE x (T x VI x LI)

channel

218b. {g c ch|uid Gl(g),ci]|g:G,ci:Cl-g € gates(trn)} GCM

value

219 gate: ee:EExgi:Glx(ci:CIxVI-set xLI) x (Uenter x Upassing x Uleave) — out g_c_ch|gi
219 gate(ee,gi,(ci,vis,li),ea:(attr_enter_ch| gi|,attr_passing_ch| gi|,attr_leave ch[gi])) =
219a. attr_enter ch|gi] 7 ;

219b. let (7,vi) = attr_passing ch[gi| 7 in assert vi € vis

219c. gcchlgici]|! (ee(7,(vili)));

219d. attr_leave ch|gi| ?

219d. gate(ee)(gi,(ci,vis,li),ea)

219 end

219 pre ci = cig A vis = visg A li € lisg

A Prerequisite for Requirements Engineering 449 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

450

7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 90 . Domain Requirements. Extension Calculator Behaviour:

220 The road-pricing calculator alternates between (offering to accept communication

with)
a. either any vehicle

b. or any toll-gate.

220. calc: ci:Clx(vis:VI-set x gis:Gl-set) —+RLF—TRM—

220a.. in {v_c_ch|civil|vi:VIvi € vis},
220b.. {g c ch[cigi]|gi:Gl-gi € gis} Unit
220. calc(ci,(vis,gis))(rlf)(trm) =

220a.. react_to_vehicles(ci,(vis,gis))(rlf)(trm)
220.]

220b.. react_to_gates(ci,(vis,gis))(rlf)(trm)

220. pre ci = cig A\ vis = visg A gis = gisg

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 450

451
7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

221 If the communication is from a vehicle inside the toll-road net

a. then its toll-road net position, vp, is found from the road location function, rlf,
b. and the calculator resumes its work with the traffic map, trm, suitable updated,

c. otherwise the calculator resumes its work with no changes.

220a.. react_to_vehicles(ci,(vis,gis))(rlf)(trm) =

220a.. let (vi,(7,Ipos)) =

220a.. |[{v_c_ch|[ci,vi]|vi:VIvi€ vis} in

221. if vi € dom trm

221a.. then let vp = rlf(lpos) in

221b.. calc(ci, (vis,gis)) (rlf) (trm | vi>trm™((7,vp)) |) end

221c.. else calc(ci,(vis,gis))(rlf)(trm) end end

A Prerequisite for Requirements Engineering 451 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

452
7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

222 If the communication is from a gate,

a. then that gate is either an entry gate or an exit gate;
b.if it is an entry gate

c. then the calculator resumes its work with the vehicle (that passed
the entry gate) now recorded, afresh, in the traffic map, trm.

d. Else it is an exit gate and

e. the calculator concludes that the vehicle has ended its to-be-paid
for journey inside the toll-road net, and hence to be billed;

f. then the calculator resumes its work with the vehicle (that passed
the exit gate) now removed from the traffic map, trm.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 452 Domain Science & Engineering

453

7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

220b.. react to gates(ci,(vis,gis))(rlf)(trm) =

220b.. let (ee,(7,(vili))) =

220b.. |[{g c ch|ci,gi]|gi:Gl-gic gis} in

222a.. case ee of

222b.. ‘Enter’ —

222c.. calc(ci, (vis,gis)) (rlf) (trmU[vir—((7,(1i,0)))]),
222d.. 'Exit" —

222e.. billing(vi,trm(vi)™((7,(1i,1))));

222f.. calc(ci, (vis,gis)) (rIf)(trm\{vi}) end end

e We have made relevant external attributes explicit parameters of
their (corresponding part) processes.

e We refer to Sect. 1.3.7.

A Prerequisite for Requirements Engineering 453 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

454

7. Requirements 2. Domain Requirements 2.4. Domain Extension 2.4.2. The Core Requirements Example: Domain Extension

7.2.4.2. A Domain Extension Operator

e Domain extension takes a (more-or-less) deterministic requirements
description, Rp, and yields an extended requirements prescription,
Re, which extends the domain description, D, and, “at the same
time”, “extends” the requirements prescription, Rp,

» type extension: Rp — Rg¢
e Semantically

» Rp denotes a possibly infinite set of meanings, say Ry, and
®» R¢ denotes a possibly infinite set of meanings, say Rg,
@ but now the relation R¢CERp is not necessarily satisfied —

@ but instead some conservative extension relation Ry JDp is satis-

fied.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 454 Domain Science & Engineering

455

7. Requirements 2. Domain Requirements 2.5. Domain Extension

7.2.5. Requirements Fitting

e Often a domain being described
e “fits” onto, is “adjacent” to, “interacts” in some areas with,
e another domain:

& transportation with logistics,
& health-care with insurance,
® banking with securities trading and/or insurance,

& and so on.

A Prerequisite for Requirements Engineering 455 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

456

7. Requirements 2. Domain Requirements 2.5. Requirements Fitting

e The issue of requirements fitting arises

® when two or more software development projects

& are based on what appears to be the same domain.
e The problem then is

@ to harmonise the two or more software development projects

@ by harmonising, if not too late, their requirements developments.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 456 Domain Science & Engineerin:

457

7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.1.

7.2.5.1. Some Definitions

e We thus assume
@ that there are n domain requirements developments, dy,, dr,, .. .,
dyr, ., being considered, and

® that these pertain to the same domain — and can hence be as-
sumed covered by a same domain description.

A Prerequisite for Requirements Engineerin 457 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

458

7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.1. Some Definitions

Definition 31 . Requirements Fitting:
e By requirements fitting we mean

@ a harmonisation of n > 1 domain requirements

® that have overlapping (shared) not always consistent parts and
& which results in

o n partial domain requirements’, Pdy,s Pdyys -+ -5 Pdy, and
n
® m shared domain requirements, Sdyys Sdyyr 1 Sy,

o that “fit into” two or more of the partial domain require-
ments Ml

e The above definition pertains to the result of ‘fitting’.

o The next definition pertains to the act, or process, of ‘fitting’.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 458 Domain Science & Engineerin:

459

7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.1. Some Definitions

Definition 32 . Requirements Harmonisation:
e By requirements harmonisation we mean

® a number of alternative
and/or co-ordinated prescription actions,
» one set for each of the domain requirements actions:
o Projection,
o Instantiation,
o Determination and
o Extension.

A Prerequisite for Requirements Engineering 459 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

460

7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.1. Some Definitions

e They are — we assume n separate software product requirements:

& Projection:
o If the n product requirements
do not have the same projections,
o then identify a common projection which they all share,
o and refer to it is the common projection.
o Then develop, for each of the n product requirements,
o 1f required,
@ a specific projection of the common one.
o Let there be m such specific projections, m < n.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 460 Domain Science & Engineerin:

461

7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.1. Some Definitions

& Instantiation:
o First instantiate the common projection,
if any instantiation 1s needed.
o Then for each of the m specific projections
o instantiate these, if required.

& Determination:

o Likewise, if required, “perform” “determination”
of the possibly instantiated common projection,

o and, similarly, if required,

Y

o “perform” “determination” of the up to m
posstbly instantiated projections.

A Prerequisite for Requirements Engineering 461 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

462

7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.1. Some Definitions

& Extension:

o Finally “perform extension” likewise:

o First, if required, of the common projection (etc.),

o then, if required, on the up m specific projections (etc.).
» These harmonization developments may possibly interact

and may need to be iterated M

e By a partial domain requirements we mean a domain require-
ments which is short of (that is, is missing) some prescription parts:
text and formula M

e By a shared domain requirements we mean a domain require-
ments [l

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 462 Domain Science & Engineering

463

7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.1. Some Definitions

e By requirements fitting m shared domain requirements texts,
sdrs, into n partial domain requirements we mean that
® there is for each partial domain requirements, pdr;,
» an identified subset of sdrs (could be all of sdrs), ssdrs;,
& such that textually conjoining ssdrs; to pdr;,
@ 1.e., ssdrs; @ pdr;
@ can be claimed to yield the “original” d;,
® that is, M(ssdrs; ® pdr;) € M(dy,),

» where M is a suitable meaning function over prescriptions il

A Prerequisite for Requirements Engineering 463 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

464

7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.2. Some Definitions

7.2.5.2. Requirements Fitting Procedure — A Sketch

e Requirements fitting consists primarily of a pragmatically determined sequence of
analytic and synthetic (‘fitting’) steps.
¢ It is first decided which n domain requirements documents to fit.
% Then a ‘manual” analysis is made of the selected, n domain requirements.
% During this analysis tentative shared domain requirements are identified.
% It is then decided which m shared domain requirements to single out.

¢ This decision results in a tentative construction of n partial domain require-
ments.

¢ An analysis is made of the tentative partial and shared domain requirements.
% A decision is then made

@ whether to accept the resulting documents
@ or to iterate the steps above.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 464 Domain Science & Engineering

465
7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.3. Requirements Fitting Procedure — A Sketch

7.2.5.3. Requirements Fitting — An Example

Example 91 . Domain Requirements. Fitting A Sketch:
e \We postulate two domain requirements:

¢ We have outlined a domain requirements development for software support for
a road-pricing system.

¢ We have earlier hinted at domain operations related to insertion of new and
removal of existing links and hubs.

e We can therefore postulate that there are two domain requirements developments,
both based on the transport domain:

e one, d, for a road-pricing system, and,

toll’
e another, drmaint , for a toll-road link and hub building and maintenance system

monitoring and controlling link and hub quality and for development.

A Prerequisite for Requirements Engineering 465 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

466
7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.3. Requirements Fitting — An Example

e The fitting procedure now identifies the shared awareness by both
dr, g and dr i of nets (N), hubs (H) and links (L).

» We conclude from this that we can single out a common require-
ments for software that manages net, hubs and links.

@ Such software requirements basically amounts to requirements for
a database system.

@ A suitable such system, say a relational database management sys-
tem, DB,.;, may already be available with the customer.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 466 Domain Science & Engineering

467

7. Requirements 2. Domain Requirements 2.5. Requirements Fitting 2.5.3. Requirements Fitting — An Example

& In any case, where there before were two requirements (d,, ,,d, . .) there
toll” "maint.

are now four:

o d,. , a modification of d,. ., which omits the description sections pertaining
"toll toll
to the net:
@ d. . ,amodification of d, . . which likewise omits the description sec-
“maint. maint.
tions pertaining to the net;
@ d,__., which contains what was basically omitted in d. andd, . ; and
net toll maint.
® drdb:i/f (db:i/f for database interface) which prescribes a mapping between

type names of drn and relation and attribute names of DB,,.; Il

et

e Much more can and should be said, but this suffices as an example
in a software engineering methodology paper.

A Prerequisite for Requirements Engineering 467 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

468

7. Requirements 2. Domain Requirements 2.6. Requirements Fitting

7.2.6. Domain Requirements Consolidation

e After projection, instantiation, determination, extension and fitting,

® it is time to review, consolidate and possibly restructure (including re-specify)
% the domain requirements prescription

% before the next stage of requirements development.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 468 Domain Science & Engineering

Dines Bjgrner’s MAP-i Lecture # 9

End of MAP-i Lecture #9:
Domain Requirements: Extension and Fitting

Thursday, 28 May 2015: 10:00-11:15

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O

Dines Bjgrner’'s MAP-i Lecture # 10

Interface Requirements

Thursday, 28 May 2015: 12:15-13:00

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O

7. Requirements 3. Interface Requirements 469

7.3. Interface Requirements

e By an interface requirements we mean
& a requirements prescription
which refines and extends the domain requirements

& by considering those requirements
of the domain requirements whose

o endurants (parts, materials) and
o perdurants (actions, events and behaviours)

o are ‘‘shared”

& between the domain and the machine
(being requirements prescribed) [l

A Prerequisite for Requirements Engineering 469 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

470

7. Requirements 3. Interface Requirements 3.1.

7.3.1. Shared Phenomena
e By sharing we mean

¢ that an endurant is represented both
@ In the domain and
o “inside” the machine, and
o that its machine representation
o must at suitable times
o reflect its state in the domain;
and /or
& that an action
@ requires a sequence of several “on-line” interactions
@ between the machine (being requirements prescribed) and
o the domain, usually a person or another machine;

and /or

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 470 Domain Science & Engineerin:

471

7. Requirements 3. Interface Requirements 3.1. Shared Phenomena

& that an event

@ arises either in the domain,
that is, in the environment of the machine,
@ or in the machine,
o and need be communicated to the machine, respectively to the
environment;
and /or
» that a behaviour is manifested both

@ by actions and events of the domain and
@ by actions and events of the machine il

A Prerequisite for Requirements Engineering 471 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

472

7. Requirements 3. Interface Requirements 3.1.

e S0 a systematic reading of the domain requirements shall

& result in an identification of all shared

o endurants,
* parts,
+ materials and
* components:
and
o perdurants
x actions,
x events and
+ behaviours.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 472

473

7. Requirements 3. Interface Requirements 3.1.

e [Flach such shared phenomenon shall then be individually dealt with:
» endurant sharing shall lead to interface requirements for data
initialisation and refreshment;

@ action sharing shall lead to interface requirements for interactive
dialogues between the machine and its environment;

» event sharing shall lead to interface requirements for how such
event are communicated between the environment of the machine
and the machine; and

» behaviour sharing shall lead to interface requirements for action
and event dialogues between the machine and its environment.

e We shall now illustrate these domain interface requirements

e development steps with respect to our ongoing example.

A Prerequisite for Requirements Engineering 473 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

474

7. Requirements 3. Interface Requirements 3.2.

7.3.2. Shared Endurants

e We “split” our interface requirements development into two separate
steps:

@ the development of d"”net

o (the common domain requirements for the shared hubs and

links),

& and the co-development of d

r .
db:i/f
o (the common domain requirements for the interface between

d"”net and DB, —

e under the assumption of an available relational database system
D Brel)

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 474 Domain Science & Engineering

475
7. Requirements 3. Interface Requirements 3.2. Shared Endurants

Example 92 . Interface Requirements. Shared Endurants:
e [he main shared endurants are

& the net (hubs, links) and

% the vehicles.
e As domain endurants hubs and links undergo changes,

& all the time,
% with respect to the values of several attributes:

@ length, cadestral information, names,

@ wear and tear (where-ever applicable),

@ last/next scheduled maintenance (where-ever applicable),
® state and state space,

@ and many others.

A Prerequisite for Requirements Engineering 475 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

476
7. Requirements 3. Interface Requirements 3.2. Shared Endurants

e Similarly for vehicles:

& their position,
& velocity and acceleration, and

® many other attributes.

e When planning the common domain requirements for the net, i.e., the

hubs and links,

@ we enlarge our scope of requirements concerns beyond the two so

far treated (drtoll’ drmaint.)

& in order to make sure that the shared relational database of nets,
their hubs and links, may be useful beyond those requirements.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 476 Domain Science & Engineering

477
7. Requirements 3. Interface Requirements 3.2. Shared Endurants

e We then come up with something like

¢ hubs and links are to be represented as tuples of relations;
% each net will be represented by a pair of relations

@ a hubs relation and a links relation;
@ each hub and each link may or will be represented by several tuples;

& etcetera.

e In this database modeling effort it must be secured that “standard” operations on
nets, hubs and links can be supported by the chosen relational database system

DBreI

A Prerequisite for Requirements Engineering 477 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

478
7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1.

7.3.2.1. Data Initialisation

e As part of d"”ne one must prescribe data initialisation, that is pro-

vision for

t

@ an interactive user interface dialogue with a set of proper display
screens,

@ one for establishing net, hub or link attributes names and their
types, and, for example,

o two for the input of hub and link attribute values.
& Interaction prompts may be prescribed:
@ next input,
@ on-line vetting and
o display of evolving net, etc.
@ These and many other aspects may therefore need prescriptions.

e [issentially these prescriptions concretise the insert and remove link
and hub actions.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 478 Domain Science & Engineering

479

7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

Example 93 . Interface Requirements. Shared Endurant Initialisation:

e The domain is that of the road net, n:N, say of Chapter6 —
see also Example 92 on Slide 475

e By ‘shared road net initialisation’
we mean the “ab initio” establishment, “from scratch”
of a data base recording the properties of all links, I:L, and hubs, h:H,
» their unique identifications, uid L(l) and uid H(h),
» their mereologies, obs mereo L(l) and obs mereo H(h) , and
» the initial values of all their attributes, attributes(l) and attributes(h).

A Prerequisite for Requirements Engineering 479 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

480

7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

223 There are r; and 1}, “recorders’ recording link, respectively hub prop-
erties with each recorder having a unique identity,

224 Each recorder is charged with a set of links or a set of hubs according
to some partitioning of all such.

225 The recorders inform a central data base, net_db, of their recordings:

. (ri,nol,(uj,mj,attrsj)) where

. ri is the identity of the recorder,

.u; = uid_L(I) or uid_H(h) for some link or hub,

.m; = obs_mereo_L(l) or obs_mereo_H(h) for that link or hub
and

f. attrs; = attributes(l) or attributes(h) for that link or hub.

a
b
c. nol is either 1ink or hub,
d
e

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 480 Domain Science & Engineering

481
7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

type
223. Rl

value

223. rl,rh:NAT axiom rl>0 A rh>0

type

225a.. M = RIx"1ink’xXLNK | RIx"hub’xHUB
225a.. LNK = LI x HIl-set x LATTRS

225a.. HUB = HI x Ll-set x HATTRS

A Prerequisite for Requirements Engineering 481 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

482
7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

value
224. partitioning: L-set — Nat — (L-set)*
224. | H-set — Nat — (H-set)*

224. partitioning(s)(r) as sl
224 post: len sl =

224 A U elems sl = s

224, AV si,sj:(L-set|H-set) -
224, si£{}

224. A sj#{}

224, A {si,sj}Celems ss = si N'sj = {}

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 482

Domain Science & Engineering

483
7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

226 The r; + 71y, recorder behaviours interact with the one net db be-
haviour

channel

226. r.db: RIx(LNK|HUB)

value

226. LNK recorder: Rl — L-set — out r.db Unit
226. HUB—recorder: Rl — H-set — out r.db Unit
226. net_.db: Unit — in r.db Unit

A Prerequisite for Requirements Engineering 483 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

484
7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

227 The data base behaviour, net_db, offers to receive messages from the
link an hub recorders.

228 And the data base behaviour, net_db, deposits these messages in
respective variables.

229 Initially there is a net, n : IV,
230 from which is observed its links and hubs.

231 These sets are partitioned into r;, respectively r;, length lists of non-
empty links and hubs.

232 The ab-initio data initialisation behaviour, ab_initio_data, is then
the parallel composition of link recorder, hub recorder and data base
behaviours with link and hub recorder being allotted appropriate
link, respectively hub sets.

233 We construct, for technical reasons, as the listener will soon see,
disjoint lists of link, respectively hub recorder identities.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 484 Domain Science & Engineering

485

7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation
value
227. net_db:
variable

228. Ink_db: (RIXLNK)-set

228. hub_db: (RIxHUB)-set

value

229. n:N

230. Is:L-set = obs Ls(obs LS(n))

230. hs:H-set = obs Hs(obs HS(n))

231. Isl:(L-set)* = partition(lIs)(rl)

231. |hl:(H-set)™ = partition(hs)(rh)

233. rill:RI" axiom len rill = rl = card elems rill
233. rihl:RI" axiom len rihl = rh = card elems rihl

A Prerequisite for Requirements Engineering 485 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

486

7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

232.
232.
232.
232.
232.

ab_initio_data: Unit — Unit
ab _initio data() =

net_db()

{Ink_rec(rill[i])(Isl[i])|i:Nat-1<i<rl}
{hub_rec(rihl[i])(Ihl[i])|i:Nat-1<i<rh}

486

Domain Science & Engineering

487
7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

234 The link and the hub recorders are near-identical behaviours.

a. They both revolve around an imperatively stated for all ... do

... end.
The selected link (or hub) is inspected and the “data” for the data
base is prepared from

. the unique identifier,
. the mereology, and
. the attributes.

. These “data” are sent, as a message, prefixed the senders identity;,
to the data base behaviour.

o &8 O

f. We presently leave the ... unexplained.

A Prerequisite for Requirements Engineering 487 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

488

7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

value

226. link rec: Rl — L-set — Unit

234. link rec(ri,ls) =

234a.. for V I:.L| € Is do uid L(I)
234b.. let Ink = (uid _L(l),

234c.. obs mereo L(l),
234d.. attributes(l)) in
234e.. rdb ! (ri,1ink’,Ink);

234f.. ... end

234a.. end

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 488 Domain Science & Engineering

489
7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

226. hub_rec: Rl x H-set — Unit
234. hub rec(ri,hs) =
234a.. for ¥V h:H-h € hs do uid H(h)

234b.. let hub = (uid_L(h),

234c.. obs mereo H(h),
234d.. attributes(h)) in
234e.. rdb ! (ri,hub’,hub);

234f.. ... end

234a.. end

A Prerequisite for Requirements Engineering 489 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

490
7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

235 The net_db data base behaviour revolves around a seemingly “never-
ending” cyclic process.

236 Each cycle “starts” with acceptance of some,

237 either link or hub data.

238 It link data then it is deposited in the link data base,
239 if hub data then it is deposited in the hub data base.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 490 Domain Science & Engineering

491

7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

value

235. net.db() =

236. let (ri,loh,data) =r.db ? in

237. case loh of

238. "link" — ... ; Ink_db := Ink_db U (ri,data),
239. hub” — ... ; hub.db := hub_db U (ri,data)
237. end end ;

235/, e

235. net db()

A Prerequisite for Requirements Engineering 491 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

492
7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

e The above model is an idealisation.

¢ It assumes that the link and hub data represent a well-formed net.
% Included in this well-formedness are the following issues:
@ (a) that all link or hub identifiers are communicated exactly once,

@ (b) that all mereologies refer to defined parts, and
@ (c) that all attribute values lie within an appropriate value range.

% If we were to cope with possible recording errors then we could,
for example, extend the model as follows:

@ (i) when a link or a hub recorder has completed its recording

then it increments an initially zero counter (say at Item 234f., Slide 488);
o (ii) before the net data base recycles it tests whether

all recording sessions has ended and then proceeds to check the data base

for well-formedness issues (a—b—c) (say at Item 235, Slide491) [l

492 Domain Science & Engineering

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

493

7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

e The above example illustrates the ‘interface’ phenomenon:

& In the formulas, for example, we show both

o manifest domain entities, viz., n,[, h etc., and
o abstract (required) software objects, viz., (ui, me, attrs).

A Prerequisite for Requirements Engineering 493 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

494

7. Requirements 3. Interface Requirements 3.2. Shared Endurants 3.2.2. Data Initialisation

7.3.2.2. Data Refreshment

e As part of drne one must also prescribe data refreshment:

t
@ an interactive user interface dialogue

with a set of proper display screens

o one for selecting the updating of net, of hub or of link attribute
names and their types and, for example,

o two for the respective update of hub and link attribute values.
® Interaction-prompts may be prescribed:

o next update,
@ on-line vetting and
o display of revised net, etc.

®» These and many other aspects may therefore need prescriptions.

e These prescriptions also concretise insert and remove link and hub
actions.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 494 Domain Science & Engineering

495

7. Requirements 3. Interface Requirements 3.3. Shared Endurants

7.3.3. Shared Actions, Events and Behaviours

e We illustrate the ideas of

& shared actions, events and behaviours
& through the domain requirements extension

@ of Sect. 7.2.4,

@ more specifically Examples 87-89
Slides 442-449.

A Prerequisite for Requirements Engineering 495 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

496

7. Requirements 3. Interface Requirements 3.3. Shared Actions, Events and Behaviours

Example 94 . Interface Requirements. Shared Actions, Events and

Behaviours:
This Example has yet to be written

Examples 88—90, Slides 445-453,
illustrate shared interactive actions, events and behaviours.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 496 Domain Science & Engineering

497

7. Requirements 4. Machine Requirements

7.4. Machine Requirements
7.4.1. Delineation of Machine Requirements
7.4.1.1. On Machine Requirements

Definition 33 . Machine Requirements: By machine require-
ments we shall understand

e such requirements
e which can be expressed “solely” using terms

e from, or of the machine

Definition 34 . The Machine: By the machine we shall under-
stand

e the hardware
e and software

e to be built from the requirements B

A Prerequisite for Requirements Engineerin; 497 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

498

7. Requirements 4. Machine Requirements 4.1. Delineation of Machine Requirements 4.1.1. On Machine Requirements

e The expression

& which can be expressed
» 'solely” using terms

& from, or of the machine
shall be understood with “a grain of salt”.

& Let us explain.
o The machine requirements statements
@ may contain references to domain entities
@ but these are meant to be generic references,
o that is, references to certain classes of entities in general.

We shall illustrate this “genericitiy” in some of the examples below.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 498 Domain Science & Engineering

499

7. Requirements 4. Machine Requirements 4.1. Delineation of Machine Requirements 4.1.2. On Machine Requirements

7.4.1.2. Machine Requirements Facets

e We shall, in particular, consider the following five kinds of machine

requirements:

@ performance requirements,
®» dependability requirements,
& malntenance requirements,

@ platform requirements and

& documentation requirements.

A Prerequisite for Requirements Engineering 499

© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

500

7. Requirements 4. Machine Requirements 4.2. Delineation of Machine Requirements

7.4.2. Performance Requirements

Definition 35. Performance Requirements: By performance
requirements we mean machine requirements that prescribe

® storage consumption,
e (execution, access, etc.) time consumption,
e as well as consumption of any other machine resource:
o number of CPU units (incl. their quantitative characteristics

such as cost, etc.),

o number of printers, displays, etc., terminals (incl. their quan-
titative characteristics),

o number of “other”, ancillary software packages (incl. their
quantitative characteristics),

®» of data communication bandwidth,
o etcetera

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 500 Domain Science & Engineering

501

7. Requirements 4. Machine Requirements 4.2. Performance Requirements

Example 95 . Machine Requirements. Road-pricing System Performance:

e Possible road pricing system performance requirements
could evolve around:

¢ maximum number of cars entering and leaving the sum total of all gates within
a minimum period —
for example 10.000 maximum within any interval of 10 seconds minimum;

% maximum time between a car entering a gate and the raising of the gate barrier

for example 3 seconds;

& etcetera,
e WWe cannot be more specific:

¢ that would require more details about
¢ gate sensors and

% gate barriers.

A Prerequisite for Requirements Engineering 501 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

502
7. Requirements 4. Machine Requirements 4.3. Performance Requirements

7.4.3. Dependability Requirements

MORE TO COME

7.4.3.1. Failures, Errors and Faults

e 'To properly define the concept ot dependability we need first intro-
duce and define the concepts of
® failure,
& error, and
» lault.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 502 Domain Science & Engineering

203

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

Definition 36 . Failure:

e A machine failure occurs

e when the delivered service

o deviates from fulfilling the machine function,

e the latter being what the machine 1s atmed ot M

A Prerequisite for Requirements Engineering 503 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

504

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

Definition 37 . Error:
o An error
e is that part of a machine state
e which 1s liable to lead to subsequent failure.
o An error affecting the service

e 15 an indication that a failure occurs or has occurred Ml

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 504 Domain Science

205

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

Definition 38 . Fault:

e The adjudged (i.e., the ‘so-judged’) or hypothesised cause of an
error

e 1s ¢ fault N

e The term hazard is here taken to mean the same as the term fault.

e One should read the phrase: “adjudged or hypothesised cause” care-
fully:

e In order to avoid an unending trace backward as to the cause,

e we stop at the cause which is intended to be prevented or toler-
ated.

A Prerequisite for Requirements Engineerin 505 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

206

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

Definition 39. Machine Service: The service delivered by a
machine

® ;s its behaviour
® as it is perceptible by its user(s),
e where a user is a human, another machine or a(nother) system

e which interacts with 1t M

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 506 Domain Science & Engineering

507

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

Definition 40 . Dependability: Dependability is defined

e as the property of a machine
e such that reliance can justifiably be placed on the service it delivers M

e We continue, less formally, by characterising the above defined concepts.

e “A given machine, operating in some particular environment (a wider system),
may fail in the sense that some other machine (or system) makes, or could in
principle have made, a judgement that the activity or inactivity of the given
machine constitutes a failure”.

e The concept of dependability can be simply defined as “the quality or the char-
acteristic of being dependable”, where the adjective ‘dependable’ is attributed to
a machine whose failures are judged sufhiciently rare or insignificant.

A Prerequisite for Requirements Engineering 507 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

208

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

e Impairments to dependability are the unavoidably expectable cir-
cumstances causing or resulting from “undependability”: faults, er-
rors and failures.

e Means for dependability are the techniques enabling one

& to provide the ability to deliver a service on which reliance can be
placed,

@ and to reach confidence in this ability.
e Attributes of dependability enable

» the properties which are expected from the system to be expressed,

» and allow the machine quality resulting from the impairments and
the means opposing them to be assessed.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 508 Domain Science & Engineering

509

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

e Having already discussed the “threats” aspect,

e we shall therefore discuss the “means” aspect of the dependability tree.

e Attributes: e Means: e Threats:
% Accessibility % Procurement % Faults
< Availability @ Fault prevention % Errors
& Integrity @ Fault tolerance & Failures
% Reliability % Validation
& Safety ® Fault removal

% Security @ Fault forecasting

A Prerequisite for Requirements Engineering 509 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

510

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

e Despite all the principles, techniques and tools aimed at fault pre-
vention,

e faults are created.

e Hence the need for fault removal.

e Fault removal is itselt impertect.

e Hence the need for fault forecasting.

e Our increasing dependence on computing systems in the end brings
in the need for fault tolerance.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 510 Domain Science & Engineering

511

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

Definition 41 . Dependability Attribute: By a dependability
attribute we shall mean either one of the following:

e accessibility,
e availability,
® integrity,

e reliability,

e robustness,
e safety and

® security.

A Prerequisite for Requirements Engineerin; 511 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

512

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

That 1s, a machine is dependable if it satisfies some degree of “maixture” of
being accessible, available, having integrity, and being reliable, safe and secure

e The crucial term above is “satisfies”.

e The issue is: To what “degree”?

e As we shall see — in a later later lecture — to cope properly

¢ with dependability requirements and

& their resolution
requires that we deploy

& mathematical formulation techniques,

» including analysis and simulation,

from statistics (stochastics, etc.).

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 512 Domain Science & Engineering

013

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.2. Failures, Errors and Faults

7.4.3.2. Accessibility

e Usually a desired, i.e., the required, computing system, i.e., the ma-
chine, will be used by many users — over “near-identical” time in-
tervals.

e Their being granted access to computing time is usually specified,
at an abstract level, as being determined by some internal nondeter-
ministic choice, that is: essentially by “tossing a coin”!

e If such internal nondeterminism was carried over, into an implemen-
tation, some “coin tossers” might never get access to the machine.

A Prerequisite for Requirements Engineering 513 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

514

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.2. Accessibility

Definition 42 . Accessibility: A system being accessible — in
the context of a machine being dependable —

e means that some form of “fairness”
® is achieved in guaranteeing users “equal” access

e to machine resources, notably computing time (and what derives
from that)

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 514 Domain Science & Engineering

515
7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.2. Accessibility

Example 96 . Machine Requirements. Road-pricing System Accessibil-
ity:
e Fairness of the calculator behaviour, cf.formula Item 220 on Slide 450 (|}
& shall mean that “earlier” (wrt. time-stamped) messages
% from either vehicles
% or from gates
% shall be accepted by the calculator

% before “later” such messages.
e This is guaranteed by the semantics of RSL.

¢ And, hence, shall be guaranteed

& by any implementation of the deterministic choice||]

A Prerequisite for Requirements Engineering 515 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

516

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.3. Accessibility

7.4.3.3. Availability

e Usually a desired, i.e., the required, computing system, i.e., the ma-
chine, will be used by many users — over “near-identical” time in-
tervals.

e Once a user has been granted access to machine resources, usually
computing time, that user’'s computation may effectively make the
machine unavailable to other users —

e by “coing on and on and on”!

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 516 Domain Science & Engineeri

017

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.3. Availability

Definition 43 . Availability: By availability — in the context of
a machine being dependable — we mean

e its readiness for usage.

e That 1s, that some form of “guaranteed percentage of computing
time” per time interval (or percentage of some other computing

resource consumption)
e is achieved — hence some form of “time slicing” 1is to be effected

517 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

018

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.3. Availability

Example 97 . Machine Requirements. Road-pricing System Availability:

e Formula Item 216b. (Slide 445) specify that

% vehicles “continuously” inform
& the calculator (cf. formula Items 220 on Slide 450)

¢ of their time-stamped local position.
e This may lead you to think that these messages

% may effectively “block out”

% “concurrent” messages from toll-road gates.
e In an implementation we may choose

% to discretize vehicle-to-calculator messages.
¢ That is, to “space them apart”,
& some time interval —

% so long as an “intentional semantics is maintained”

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 518 Domain Science & Engineering

519

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.4. Availability

7.4.3.4. Integrity

Definition 44 . Integrity: A system has integrity — in the context of a
machine being dependable — if

e it 15 and remains unimpaired,
e i.c., has no faults, errors and failures,

e and remains so, without these,

e cven in the situations where the environment of the machine has faults, errors

and failures M

e Integrity seems to be a highest form of dependability,
e i.c.. a machine having integrity is 100% dependable!

e The machine is sound and is incorruptible.

A Prerequisite for Requirements Engineering 519 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

520
7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.4. Integrity

Example 98 . Machine Requirements. Road-pricing System Integrity:

e We divide the integrity concerns for
the road-pricing computing and communications system
into two “spheres”:

% the integrity of the sensor and actuator equipment
attached to

@ vehicles (i.e., their GNSS attributes), and to
@ toll-road gates:

* in/out sensors, x vehicle identifiers and * gates;

and
% the software of the road-pricing computing and communications system,

@ that is, the software which interfaces with

x vehicles, x toll-gates and x the calculator.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 520 Domain Science & Engineerin:

521
7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.4. Integrity

e As for the integrity of the the sensor and actuator equipment
we do not require

® that the road-pricing computing and communications system
@ is 100% dependable,

® It is satisfactory if it retains its
@ accessibility,
@ availability,
o reliability,
@ safety and
@ security

in the presence of maintenance.

A Prerequisite for Requirements Engineering 521

© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

522
7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.4. Integrity

e As for the integrity of the software we require that it

® IS proven correct
with respect to domain and requirements specifications
under the assumption that
sensor and actuator equipment functions
with 100%'s integrity;
& and where correctness proofs
may not be feasible or possible,
that the software is appropriately model-checked;

¢ and where “complete’” model-checks
may not be feasible or possible,
that the software is formally tested

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 522 Domain Science & Engineerin:

923

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.4. Integrity

Definition 45 . Reliability: A system being reliable — in the
context of a machine being dependable — means

e some measure of continuous correct service,

e that 1s, measure of time to failure

A Prerequisite for Requirements Engineering 523 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

524

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.4. Integrity

Example 99 . Machine Requirements. Road-pricing System Reliability:

e Mean-time between failures, MTBF,

& (i) of any vehicle's GNSS correct recording of local position must be at least

30.000 hours:
& (ii) of any toll-gate complex, that is,
@ it's ability to correctly identify a passing vehicle, or
® it's ability to correctly close and open gates
must be at least 20.000 hours

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 524 Domain Science & Engineering

925

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.5. Integrity

7.4.3.5. Safety

Definition 46 . Safety: By safety — in the context of a machine
being dependable — we mean

e some measure of continuous delivery of service of
@ either correct service, or incorrect service after benign failure,

o that 1s: Measure of time to catastrophic failure B

A Prerequisite for Requirements Engineering 525 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

526
7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.5. Safety

Example 100 . Machine Requirements. Road-pricing System Safety:
e Mean time to catastrophic failure, MTCF,

& (i) for a vehicle’s GNSS to function properly shall be 60.000 hours; and
& (ii) of any toll-gate complex, that is,

@ it's ability to correctly identify a passing vehicle, or

@ it's ability to correctly close and open gates

must be at least 40.000 hours

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 526 Domain Science & Engineerin:

927

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.6. Safety

7.4.3.6. Security
We shall take a rather limited view of security. We are not including
any consideration of security against brute-force terrorist attacks. We
consider that an issue properly outside the realm of sottware engineer-

ng.

e Security, then, in our limited view, requires a notion of authorised
user,

e with authorised users being fine-grained authorised to access only a
well-defined subset of system resources (data, functions, etc.).

e An unauthorised user (for a resource) is anyone who is not autho-
rised access to that resource.

A Prerequisite for Requirements Engineerin 527 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

928

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.6. Security

Definition 47 . Security: A system being secure — in the context
of a machine being dependable —

e means that an unauthorised user, after believing that he or she
has had access to a requested system resource:
@ cannot find out what the system resource is doing,
@ cannot find out how the system resource is working

o and does not know that he/she does not know!

e That is, prevention of unauthorised access to computing and/or
handling of information (i.e., data) HE

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 528 Domain Science & Engineering

529
7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.6. Security

Example 101 . Machine Requirements. Road-pricing System Security:

e Vehicles are authorised

% to receive GNSS timed global positions,
but not to tamper with, e.g. misrepresent them,

are authorised

% to, and shall correctly compute
their local positions
based on the received global positions,

and are finally authorised

% to, and shall correctly
inform the calculator of their timed local positions

A Prerequisite for Requirements Engineerin; 529 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

530

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.7. Security

7.4.3.7. Robustness

Definition 48 . Robustness: A system is robust — in the con-
text of dependability —

o if it retains its attributes

@ after failure, and

@ after maintenance

e Thus a robust system is “stable”

@ across failures
» and “across’ possibly intervening “repairs’

o and “across’ other forms of maintenance.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 530 Domain Science & Engineering

931

7. Requirements 4. Machine Requirements 4.3. Dependability Requirements 4.3.7. Robustness

Example 102 . Machine Requirements. Road-pricing System Robust-

ness.

e The road-pricing computing and communications system shall retain its

% performance and
% dependability, that is,

@ accessibility,
@ availability,

@ reliability, and
@ safety

requirements

e in the presence of maintenance.

A Prerequisite for Requirements Engineering 531

© Dines

Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29

932

7. Requirements 4. Machine Requirements 4.4. Dependability Requirements

7.4.4. Maintenance Requirements

TO BE TYPED

7.4.4.1. Delineation and Facets of Maintenance Requirements

Definition 49 . Maintenance Requirements: By maintenance
requirements we understand a combination of requirements with
respect to:

e adaptive maintenance,

e corrective maintenance,

e perfective maintenance,

e preventive maintenance and

e extensional maintenance R

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 532 Domain Science & Engineering

933

7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.1. Delineation and Facets of Maintenance Requirements

e Maintenance of building, mechanical, electrotechnical and electronic
artifacts — i.e., of artifacts based on the natural sciences — is based
both on documents and on the presence of the physical artifacts.

e Maintenance of software is based just on software, that is, on all the
documents (including tests) entailed by software — see Definition 61

on Slide 55H3.

A Prerequisite for Requirements Engineerin 533 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

5934

7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.2. Delineation and Facets of Maintenance Requirements

7.4.4.2. Adaptive Maintenance

Definition 50 . Adaptive Maintenance: By adaptive mainte-
nance we understand such maintenance

e that changes a part of that software so as to also, or instead, fit
to

® some other software, or

& some other hardware equipment

(i.e., other software or hardware which provides new, respec-
tively replacement, functions) 1l

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 534 Domain Science & Engineering

935

7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.2. Adaptive Maintenance

Example 103 . Machine Requirements. Road-pricing System Adaptive
Maintenance:

e Two forms of adaptive maintenance occur in connection with the
road-pricing computing and communication system:
% adaptive maintenance of vehicle and toll-gate sensors and actuators, and
¢ adaptive maintenance of the “interfacing’ software, that is,

@ the vehicle software as prescribed by ltem 216 on Slide 445,
@ the toll-gate software as prescribed by Item 219 on Slide 448, and
@ the calculator software as prescribed by Item 220 on Slide 450.

A Prerequisite for Requirements Engineering 535 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

536

7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.2. Adaptive Maintenance

e Adaptive maintenance of vehicle and toll-gate
sensors and actuators occurs when
& existing sensors or actuators
& are replaced due to failure.

e Adaptive maintenance of interfacing software
s required when

& existing sensors or actuators have been replaced
and their characteristics are different from those of the replaced
equipment,

® hence requires modifications of interfacing software

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 536 Domain Science & Engineering

o937

7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.3. Adaptive Maintenance

7.4.4.3. Corrective Maintenance

Definition 51 . Corrective Maintenance: By corrective main-
tenance we understand such maintenance which

e corrects a software error R

A Prerequisite for Requirements Engineering 537 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

938

7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.3. Corrective Maintenance

Example 104 . Machine Requirements. Road-pricing System Corrective
Maintenance:

e Corrective maintenance of the road-pricing computing and communications system
is required in two “spheres’:

¢ when system, that is, toll-gate and vehicles sensors or actuators

fail, and
% when, despite all verification efforts, the interfacing, that is,

@ the vehicle,
® the gate, or
@ the calculator

software fails.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 538 Domain Science & Engineering

939

7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.3. Corrective Maintenance

e In the former case (equipment failure)
» the failing sensor or actuator is replaced
& possibly implying adaptive maintenance.
e In the latter case (software failure)
» the failing software is analysed
® in order to locate the erroneous code,

@ whereupon that code is replaced by such code

® that can lead to a verification of the full system

A Prerequisite for Requirements Engineering 539 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

540

7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.4. Corrective Maintenance

7.4.4.4. Perfective Maintenance

Definition 52 . Perfective Maintenance: By perfective maintenance we
understand such maintenance which

e helps improve (i.e., lower) the need for

o hardware storage, time and (hard) equipment M

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 540 Domain Science & Engineering

541
7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.4. Perfective Maintenance

Example 105 . Machine Requirements. Road-pricing System Perfective
Maintenance:

e \We focus on perfective maintenance of

& vehicle,
% toll-gate and

& calculator

software.

A Prerequisite for Requirements Engineering 541 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

542

7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.4. Perfective Maintenance

e We focus, in particular, on

& the reaction time in connection with response to external stimuli
for the gate software
o the timed local position, ltem 216a. on Slide 445, of vehicles;
o the attr_enter ch[gi] event from a toll-gate's in coming sensor,
ltem 219a. on Slide 448;
o the timed vehicle identity for a attr TIVI ch[gi] event form a toll-
gate sensor, ltem 219b. on Slide 448; and

o the attr _leave ch[gi] event from a toll-gate's out going sensor,
ltem 219d. on Slide 448;

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 542 Domain Science & Engineering

043

7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.4. Perfective Maintenance

& the reaction time, of the calculator, ltem 220 on Slide 450, to
incoming, alternating, communications from

o either vehicles, ltem 220a. on Slide 450,
@ or gates, ltem 220b. on Slide 450.

& and the calculation time of the calculator
o for billing, cf. ltem 222e. on Slide 452.

A Prerequisite for Requirements Engineering 543 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

544

7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.5. Perfective Maintenance

7.4.4.5. Preventive Maintenance

Definition 53 . Preventive Maintenance: By preventive main-
tenance we understand such maintenance which

e helps detect, 1.e., forestall, future occurrence

e of software or hardware failures Ml

Example 106 . Machine Requirements. Road-pricing System Preven-
tive Maintenance:

ITO BE WRITTEN]|

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 544

o945

7. Requirements 4. Machine Requirements 4.4. Maintenance Requirements 4.4.6. Preventive Maintenance

7.4.4.6. Extensional Maintenance

Definition 54 . Extensional Maintenance: By extensional main-
tenance we understand such maintenance which adds new function-

alities to the software, 1i.e., which 1mplements additional require-
ments

Example 107 . Machine Requirements. Road-pricing System Exten-
sional Maintenance:

ITO BE WRITTEN]|

A Prerequisite for Requirements Engineering 545 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

246

7. Requirements 4. Machine Requirements 4.5. Maintenance Requirements

7.4.5. Platform Requirements

TO BE WRITTEN

7.4.5.1. Delineation and Facets of Platform Requirements

Definition 55 . Platform: By a [computing] platform is here
understood

e o combination of hardware and systems software
e so equipped as to be able to develop and execute software,

e in one form or another M

e What the “in one form or another” is

e transpires from the next characterisation.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 546 Domain Science & Engineering

047

7. Requirements 4. Machine Requirements 4.5. Platform Requirements 4.5.1. Delineation and Facets of Platform Requirements

Definition 56 . Platform Requirements: By platform require-
ments we mean a combination of the following:

e development platform requirements,
e execution platform requirements,
e maintenance platform requirements and

e demonstration platform requirements Ml

A Prerequisite for Requirements Engineering 547 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

248

7. Requirements 4. Machine Requirements 4.5. Platform Requirements 4.5.2. Delineation and Facets of Platform Requirements

7.4.5.2. Development Platform

Definition 57 . Development Platform Requirements: By de-

velopment platform requirements we shall understand such ma-
chine requirements which

e detail the specific software and hardware
e for the platform on which the software
® is to be developed

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 548

549

7. Requirements 4. Machine Requirements 4.5. Platform Requirements 4.5.3. Development Platform

7.4.5.3. Execution Platform

Definition 58 . Execution Platform Requirements: By exe-
cution platform requirements we shall understand such machine
requirements which

e detail the specific (other) software and hardware
e for the platform on which the software

e 15 to be executed R

A Prerequisite for Requirements Engineering 549 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

950

7. Requirements 4. Machine Requirements 4.5. Platform Requirements 4.5.4. Execution Platform

7.4.5.4. Maintenance Platform

Definition 59. Maintenance Platform Requirements: By

maintenance platform requirements we shall understand such ma-
chine requirements which

e detail the specific (other) software and hardware
e for the platform on which the software

® 15 to be maintained N

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 550

951

7. Requirements 4. Machine Requirements 4.5. Platform Requirements 4.5.5. Maintenance Platform

7.4.5.5. Demonstration Platform

Definition 60. Demonstration Platform Requirements: By
demonstration platform requirements we shall understand such ma-
chine requirements which

e detail the specific (other) software and hardware
e for the platform on which the software

e is to be demonstrated to the customer — say for acceptance tests,
or for management demos, or for user training M

A Prerequisite for Requirements Engineering 551 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

952

7. Requirements 4. Machine Requirements 4.5. Platform Requirements 4.5.5. Demonstration Platform

Example 108 .

Requirements:

e The platform requirements are the following:

% the development platform |to be typed

% the execution platform |to be typed

% the maintenance platform |to be typed

and

¢ the demonstration platform

i Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29

to be typed|.

952

Machine Requirements. Road-pricing System Platform

953

7. Requirements 4. Machine Requirements 4.6. Platform Requirements

7.4.6. Documentation Requirements

Definition 61 . Software: By software we shall understand
e not only code that may be the basis for executions by a computer,
e hut also its full development documentation:

@ the stages and steps of application domain description,
@ the stages and steps of requirements prescription, and
@ the stages and steps of software design prior to code,

with all of the above including all validation and verification
(incl., test) documents.

A Prerequisite for Requirements Engineering 553 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

954

7. Requirements 4. Machine Requirements 4.6. Documentation Requirements

e In addition, as part of our wider concept of software, we also
include a comprehensive collection of supporting documents:
» training manuals,
¢ installation manuals,
& user manuals,
» maintenance manuals, and
» development and maintenance logbooks. Il

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 554 Domain Science & Engineering

955

7. Requirements 4. Machine Requirements 4.6. Documentation Requirements

Definition 62. Documentation Requirements: By documen-
tation requirements

® we mean requirements
e of any of the software documents
e that together make up

@ software and
® hardware’ 1l

Example 109 . Machine Requirements — Documentation:

ITO BE WRITTEN]|

«— we omit a definition of what we mean by hardware such as the one we gave for
software, cf. Definition 61 on Slide 553.

A Prerequisite for Requirements Engineering 555 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

956

7. Requirements 4. Machine Requirements 4.7. Documentation Requirements

7.4.7. Discussion

TO BE TYPED

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 556 Domain Science & Engineering

Dines Bjgrner’'s MAP-i Lecture # 10

End of MAP-i Lecture # 10:

Interface Requirements

Thursday, 28 May 2015: 12:15-13:00

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O

Dines Bjgrner’'s MAP-i Lecture # 11

Conclusion

Thursday, 28 May 2015: 15:30-16:30

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O

8. Conclusion 557

8. Conclusion
8.1. Various Observations
8.1.1. Tony Hoare’s Summary on ‘Domain Modeling’

e In a 2006 e-mail, in response, undoubtedly to my steadfast, perhaps
conceived as stubborn insistence, on domain engineering,

e Tony Hoare summed up his reaction to domain engineering as fol-
lows, and I quot631:

31E-Mail to Dines Bjgrner, July 19, 2006

A Prerequisite for Requirements Engineering 557 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

958

8. Conclusion 1. Various Observations 1.1. Tony Hoare’s Summary on ‘Domain Modeling’

“There are many unique contributions
that can be made by domain modeling.

1 The models describe all aspects of the real world
that are relevant for any good software design in the area.
They describe possible places to define the system boundary
for any particular project.

2 They make explicit the preconditions about the real world
that have to be made in any embedded software design,
especially one that is going to be formally proved.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 558 Domain Science & Engineerin:

959

8. Conclusion 1. Various Observations 1.1. Tony Hoare’s Summary on ‘Domain Modeling’

3 They describe the whole range of possible designs for the software,
and the whole range of technologies available for its realisation.

4 They provide a framework for a full analysis of requirements,
which is wholly independent of the technology of implementation.

5 They enumerate and analyse the decisions
that must be taken earlier or later in any design project,
and identify those that are independent and those that conflict.
Late discovery of feature interactions can be avoided.”

e All of these issues are dealt with in [10, Part TV].

A Prerequisite for Requirements Engineering 559 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

560

8. Conclusion 1. Various Observations 1.2. Tony Hoare’s Summary on ‘Domain Modeling’

8.1.2. Beauty Is Our Business
e This paper started with a quote from Dostovevsky’s The Idiot.

It's life that matters, nothing but life —
the process of discovering, the everlasting and perpetual process,
not the discovery itself, at all 32

e | find that quote appropriate in the following, albeit rather mundane,
sense:
@ It is the process of analysing and describing a domain
& that exhilarates me:
® that causes me to feel very happy and excited.

e There is beauty [E.W. Dijkstra] not only in the result but also in the
process.

»Fyodor Dostoyevsky, The Idiot, 1868, Part 3, Sect. V

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 560 Domain Science & Engineering

o961

8. Conclusion 2. Acknowledgements

8.2. Acknowledgements

e | thank Dr. Luis Soares Barbosa
for having organiused my lectures.
| truly much appreciate the huge amount of work he has done.

e Preparing for these lectures has taken quite some time.
But it has been fun to do that work —
including quite some additional research —
not (yet) enough | am {afraid|glad} to say!

e | thank Prof. José Nuno Oliveira for having supported my being here.
He has indeed established a truly remarkable department.
We can all be very proud of him.

e | thank my wife, Kari, of 50 years, for holding my arm
when crossing the streets of Braga this week !

A Prerequisite for Requirements Engineering 561 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

Dines Bjgrner’'s MAP-i Lecture # 11

End of MAP-i Lecture # 11:

Conclusion

Thursday, 28 May 2015: 15:30-16:30

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O

Dines Bjgrner’'s MAP-i Lecture # 12

Discussion of Research Topics

Thursday, 28 May 2015: 16:45-17:30

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O

562 0. Discussion of Research Topics

9. Discussion of Research Topics
e There are a number of research topics:

@ some relate to domain analysis & description, cf. Chapter 1,
and some of these are listed in Sect. 8.1,

@ other relate to requirements engineering, ct. Chapter 7,
and some of these are listed in Sect. 8.2.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 562 Domain Science

2963

9. Discussion of Research Topics 1. Domain Science & Engineering Topics

9.1. Domain Science & Engineering Topics
e The TripTych approach to software development,

@ based on an initial, serious phase of domain engineering,
@ a new phase of software engineering,
@ for which we claim to now have laid

a solid foundation for domain engineering —

e opens up for a variety of issues that need turther study.

e The entries in this section are not ordered
according to any specific principle.

A Prerequisite for Requirements Engineering 563 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

064

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.1.

9.1.1. Analysis & Description Calculi for Other Domains

e The analysis and description calculus of this paper appears suitable
for manifest domains.

e For other domains other calculi appears necessary.

@ There is the introvert, composite domain of systems sottware:

o operating systems, compilers, database management systems,
Internet-related software, etcetera.

o The classical computer science and software engineering
disciplines related to these components of systems sottware
appears to have provided the necessary
analysis and description “calculi.”

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 564 Domain Science & Engineering

265

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.1. Analysis & Description Calculi for Other Domains

@ There is the domain of financial systems software

o accounting & bookkeeping,

o banking systems,

@ Insurance,

o financial instruments handling (stocks, etc.),
o etcetera.

e Ltcetera.

e For each domain characterisable by a distinct set of analysis & de-
scription calculus prompts such calculi must be identified.

A Prerequisite for Requirements Engineerin 565 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

266

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.1. Analysis & Description Calculi for Other Domains

e [t seems straightforward:

» to base a method for analysing & describing a category of domains

@ on the idea of prompts like those developed in this lecture.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 566 Domain Science & Engineering

567

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.2. Analysis & Description Calculi for Other Domains

9.1.2. On Domain Description Languages

e We have in this seminar expressed the domain descriptions in the
RAISE [40] specification language RSL [39).

e With what is thought of as basically inessential, editorial changes,
one can reformulate these domain description texts in either of
® Alloy [45] or
« The B-Method [1] or
% VDM [30, 31, 37] or
& 2 [55].

A Prerequisite for Requirements Engineering 567 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

268

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.2. On Domain Description Languages

e One could also express domain descriptions algebraically, for example
in CafeOBJ.

® The analysis and the description prompts remain the same.

¢ The description prompts now lead to Cafe0OBJ texts.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 568 Domain Science & Engineering

2969

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.2. On Domain Description Languages

e We did not go into much detail with respect to perdurants, let alone
behaviours.

» For all the very many domain descriptions, covered elsewhere, RSL
(with its CSP sub-language) suffices.

& But there are cases where we have conjoined our RSL domain
descriptions with descriptions in
o Petri Nets [52] or
@ MSC |44] or
o StateCharts [42].

A Prerequisite for Requirements Engineerin 569 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

270

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.2. On Domain Description Languages

e Since this seminar only focused on endurants there was no need, it
appears, to get involved in temporal issues.

e When that becomes necessary, in a study or description of perdu-
rants, then we either deploy

«& DC: The Duration Calculus [56] or
® TLA+: Temporal Logic of Actions [43]

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 570 Domain Science & Engineering

o71

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.3. On Domain Description Languages

9.1.3. Ontology Relations

e A more exact understanding of the relations between

o the “classical” Al/information science/ontology view
of domains [4, 5, 46], and

@ the algorithmic view of domains,
as presented in the current paper.,

& seems required.

e The almost disparate jargon of the two “camps” seems,
however, to be a hindrance.

A Prerequisite for Requirements Engineering 571 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

272

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.4. Ontology Relations

9.1.4. Analysis of Perdurants

e A study of perdurants, as detailed as that of our study of endurants,
ought be carried out.

e One difficulty, as we see it, is the choice of formalisms:

®» whereas the basic formalisms for the expression of endurants and
their qualities was type theory and simple functions and predi-
cates,

@ there is no such simple set of formal constructs
that can “carry” the expression of behaviours.

o Besides the textual CSP, |43|, there is graphic notations of
o Petri Nets, [52],

o Message Sequence Charts, [44],

o State-charts, [42], and others.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 572 Domain Science & Engineering

273

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.5. Analysis of Perdurants

9.1.5. Commensurate Discrete and Continuous Models

e Scction H.3.7 Slides 268-270 hinted at

& co-extensive descriptions of discrete and continuous behaviours,
@ the former in, for example, RSL,

® the latter in, typically, the calculus mathematics of partial differ-
ent equations (PDEs).

@ The problem that arises in this situation is the following:

o there will be, say variable identifiers, e.g., x. vy, ..., 2
o which in the RSL formalisation has one set of meanings, but
o which in the PDE “formalisation” has another set of meanings.

A Prerequisite for Requirements Engineering 573 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

074

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.5. Commensurate Discrete and Continuous Models

& Current formal specification languages> do not cope with conti-
nuity.

e Some research is going on.

e But to substantially cover, for example, the proper description of
laminar and turbulent flows in networks (e.g., pipelines, Example 61
on Slide 269) requires more substantial results.

»Alloy [45] Event B [1].RSL [39], VDM-SL [30, 31, 37], Z [55], etc.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 574 Domain Science & Engineering

975

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.6. Commensurate Discrete and Continuous Models

9.1.6. Interplay between Parts, Materials and Components

e Examples 49 on Slide 215, 50 on Slide 219, 51 on Slide 222 and 61
on Slide 269 revealed but a small fraction of the problems that may
arise in connection with modeling the interplay between parts and
materials.

e Subject to proper formal specification language and, for example PDE
specification, we may expect more interesting

® laws, as for example those of Examples 50 on Slide 219, 51 on
Slide 222,

@ and even proof of these as if they were theorems.

e Formal specifications have focused on verifying properties of require-
ments and software designs.

e With co-extensive (i.e., commensurate) formal specifications of both
discrete and continuous behaviours we may expect formal specifica-
tions to also serve as bases for predictions.

A Prerequisite for Requirements Engineering 575 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

276

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.7. Interplay between Parts, Materials and Components

9.1.7. Dynamics

e There is a serious limitation in what can be modeled with the present
approach.

@ Although we can model the dynamic introduction of new atomic
or removal of existing parts, when members of a composite set of
such parts,

@ we cannot model the dynamic introduction or removal of the pro-
cesses corresponding to such parts.

@ Also we have not shown how to model global time.
» And, although we can model spatial positions,

& we have not shown how to model spatial locations.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 576 Domain Science & Engineering

o7

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.7. Dynamics

e These deliberate omissions are due to the facts

& that the description language, RSL. cannot model continuity and

@ that it cannot provide for arbitrary models of time.

e Here is an area worth studying.

A Prerequisite for Requirements Engineering 577 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

o978

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.8. Dynamics

9.1.8. Precise Descriptions of Manifest Domains

e The focus on the principles, techniques and tools of domain analysis
& description has been such domains in which humans play an active
role.

@ Formal descriptions of domains may serve to

@ prove properties of domains,
o in other words, to understand better these domains, and to

o validate requirements derived from such domain descriptions,
and

o thereby to ensure that software derived from such requirements
1S not only correct,
+ but also meet users expectations.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 578 Domain Science & Engineering

279

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.8. Precise Descriptions of Manifest Domains

e Improved understanding of man-made domains —
@ without necessarily leading to new software
— may serve to

@ improve the “business processes” of these domains,
@ make them more palatable for the human actors,
@ make them more efficient wrt. resource-usage.

e Descriptions of domains are descriptions of the syntax and semantics
of the technical languages used in speaking about and in the domain.

A Prerequisite for Requirements Engineering 579 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

580

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.8. Precise Descriptions of Manifest Domains

e The domain analysis required for the design of programming lan-
guages is based on computability: mathematical logic and recursive
function theory:.

e The domain analysis required for “real-world” domains is not based
on computability: that “world” is not computable.

e Requirements engineering based on domain descriptions is based on
deriving computable subsets of refined domain descriptions.

e The classical theory and practice of programming language semantics
and compiler development [6] and |9, Part VII (Chapters 16-19)| can
now be further developed into a theory and practice for deriving
general software from formal domain descriptions [12].

e Descriptions of domains are descriptions of the syntax and semantics
of the technical languages used in speaking about and in the domain.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 580 Domain Science & Engineering

o981

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.8. Precise Descriptions of Manifest Domains

e The domain analysis required for the design of programming lan-
guages is based on computability: mathematical logic and recursive
function theory:.

e The domain analysis required for “real-world” domains is not based
on computability: that “world” is not computable.

e Requirements engineering based on domain descriptions is based on
deriving computable subsets of refined domain descriptions.

e The classical theory and practice of programming language semantics
and compiler development [6] and |9, Part VII (Chapters 16-19)| can
now be further developed into a theory and practice for deriving
general software from formal domain descriptions [12].

A Prerequisite for Requirements Engineering 581 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

o982

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.8. Precise Descriptions of Manifest Domains

e Physicists study “Mother Nature’, the world without us.

e Domain scientists study man-made part and material based universes
with which we interact — the world within and without us.

e (Classical engineering builds on laws of physics to design and con-

struct

& buildings, % machines and

¢ chemical compounds, o E&E products.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 582 Domain Science & Engineering

o83

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.8. Precise Descriptions of Manifest Domains

e So far software engineers have not expressed software requirements
on any precise description of the basis domain.

e This seminar strongly suggests such a possibility:.
e Regardless:

® 1t 1s interesting to also formally describe domains:

& and, as shown, it can be done.

A Prerequisite for Requirements Engineering 583 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

o84

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.9. Precise Descriptions of Manifest Domains

9.1.9. Towards Mathematical Models of Domain Analysis & Description

e There are two aspects to a precise description of the domain anal-
ysis prompts and domain description prompts.

@ There is that of describing

o the individual prompts
o as if they were “machine instructions”
o for an albeit strange machine;

@ and there is that of describing

o the interplay between prompts:
+ the sequencing of domain description prompts
+ as determined by the outcome of the domain analysis prompts.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 584 Domain Science & Engineering

o985

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.9. Towards Mathematical Models of Domain Analysis & Description

e We have

o described and formalised the latter in [25, Processes|;

@ and we are in the midst of describing and formalising the former
in [19, Prompts].

A Prerequisite for Requirements Engineering 585 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

o986

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.10. Towards Mathematical Models of Domain Analysis & Description

9.1.10. Laws of Descriptions: A Calculus of Prompts

e Laws of descriptions deal with the order and results of
applying the domain analysis and description prompts.

e Some laws are covered in [17].

e [t is expected that establishing formal models of the prompts,
for example as outlined in [19, 25],
will help identify such laws.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 586 Domain Science & Engineering

o87

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.10. Laws of Descriptions: A Calculus of Prompts

e The various description prompts apply to parts (etc.) of specified
sorts (etc.) and to a “hidden state”.
¢ The “hidden state” has two major elements:

o the domain and
o the evolving description texts.

» An “execution” of a prompt potentially
changes that “hidden state”.

A Prerequisite for Requirements Engineerin 587 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

o988

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.10. Laws of Descriptions: A Calculus of Prompts

e Let P, PA and PB be composite part sorts where PA and PB are
derived from P.

o Let ;. N5, etc., be suitable functions which rename sort, type and
attribute names.

e In a proper prompt calculus

& we would expect

® observe part sorts PA;observe part sorts PB,

» when “executed” by one and the same domain engineer,
® to yield the same “hidden state” as

® observe_part_sorts_PB;%i;observe_part_sorts_PA;§Rj.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 588 Domain Science & Engineering

o989

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.10. Laws of Descriptions: A Calculus of Prompts

e Also one would expect

® observe part_sorts PA;Jt;;observe part sorts PA;R;.
& to vield the same state as just
® observe part sorts PA

@ given suitable renaming functions.

e Well 7 or does one really 7

A Prerequisite for Requirements Engineering 589 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

990

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.10. Laws of Descriptions: A Calculus of Prompts

e There are some assumptions that are made here.
e One pair of assumptions is

® that the domain is fixed
» and to one observer.
» yields the same analysis and description results

¢ no matter in which order prompts are “executed”.
e Another assumption is that the domain engineer
@ does not get wiser as analysis and description progresses.
e [f, as one can very well expect, the domain engineer does get wiser,

@ then former results may be discarded and
® either replaced by newer analysis and descriptions
& or prompts repeated.

e In such cases these laws do not hold.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 590 Domain Science & Engineerin:

991

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.11. Laws of Descriptions: A Calculus of Prompts

9.1.11. Domains and Galois Connections

e Section 1.1.8 very briefly mentioned that formal concepts form Galois
Connections.

e [n the seminal [38] a careful study is made of this fact and beautiful
examples show the implications for domains.

e [t seems that our examples have all been too simple.

e They do not easily lead on to the “discovery” of “new” domain
concepts from appropriate concept lattices.

e We refer to |29, Section 9].
e Further study need be done.

A Prerequisite for Requirements Engineerin 591 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

992

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.12. Domains and Galois Connections

9.1.12. Laws of Domain Description Prompts

e T'ypically observe part_sorts applies to a composite part, p:P,
and yield descriptions of one or more part sorts: p1:P1,p2:Po,....pm:Pm.

e Let p;:P;,p;:Pj,....px:Py (of these) be composite.

e Now observe _part_sorts(p;) and observe part_sorts(p;), etc.,
can be applied and yield texts text;, respectively text;.

e A law of domain description prompts now expresses that the order
in which the two or more observers is applied is immaterial, that is,
they commute.

e In [17] we made an early exploration of such laws of domain descrip-
tion prompts.

e More work, hear also next, need be done.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 592 Domain Science & Engineering

993

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.13. Laws of Domain Description Prompts

9.1.13. Domain Theories:

e An ultimate goal of domain science & engineering is to prove prop-
erties of domains.

@ Well, maybe not properties of domains, but then at least proper-
ties of domain descriptions.

e If one can be convinced that a posited domain description indeed is
a faithful description of a domain,

@ then proofs of properties of the domain description

@ are proofs of properties of that domain.

e Ultimately domain science & engineering must embrace such studies
of laws of domains.

e Here is a fertile ground for zillions of Master and PhD theses!

A Prerequisite for Requirements Engineerin 593 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

0994

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.13. Domain Theories:

Example 110 . A Law of Train Traffic at Stations:
e Let a transport net, n:N, be that of a railroad system.

& Hubs are train stations.
o Links are rail lines between stations.

¢ Let a train timetable record train arrivals and train departures
from stations.

» And let such a timetable be modulo some time interval, say typi-
cally 24 hours.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 594 Domain Science & Engineering

995

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.13. Domain Theories:

e Now let us (idealistically) assume
» that actual trains arrive at and depart from train stations accord-
ing the train timetable and

® that the train traflic includes all and only such trains as are listed
in the train timetable.

A Prerequisite for Requirements Engineerin 595 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

296

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.13. Domain Theories:

e Now a law of train traffic expresses

& “Over the modulo time interval of a train timetable it is the
case that

o the number of trains arriving at a station

o minus the number of trains ending their journey at that
station

o plus the number of trains starting their journey at that
station

o equals number of trains departing from that station.”

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 596

997

9. Discussion of Research Topics 1. Domain Science & Engineering Topics 1.14. Domain Theories:

9.1.14. External Attributes

e More study is needed in order to clarify

& the relations between the various external attributes

@ and control theory.

A Prerequisite for Requirements Engineering 597 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

998

9. Discussion of Research Topics 2. Requirements Topics

9.2. Requirements Topics
9.2.1. Domain Requirements Methodology

e Further principles, techniques and tools

e for the projection, instantiation, determination, extension and fitting
operations.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 598 Domain Science & Engineering

999

9. Discussion of Research Topics 2. Requirements Topics 2.2. Domain Requirements Methodology

9.2.2. Domain Requirements Operator Theory

e A model of the domain to domain-to-requirements operators:

e projection, instantiation, determination, extension and fitting. (Sect. 4).

A Prerequisite for Requirements Engineerin 599 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:29
q q g g

600

9. Discussion of Research Topics 2. Requirements Topics 2.3. Domain Requirements Operator Theory

9.2.3. Methodology for Interface Requirements

e Sect. 7.3 did not go into sufficient detail as to method principles,
techniques and tools.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 600 Domain Science & Engineering

601

9. Discussion of Research Topics 3. Final Words

9.3. Final Words

Have a Happy & Fruitful R&D Career!

A Prerequisite for Requirements Engineering 601 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

Dines Bjgrner’'s MAP-i Lecture # 12

End of MAP-i Lecture # 12
Discussion of Research Topics

Thursday, 28 May 2015: 16:45-17:30

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 O

602

10. Bibliography

10. Bibliography
10.1. Bibliographical Notes

e Web page www.imm.dtu.dk /" dibj/domains/ lists the published
papers and reports mentioned in the next two subsections.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 602 Domain Science & Engineering

603
10. Bibliography 1. Bibliographical Notes 1.1.

10.1.1. Published Papers
e | have thought about domain engineering for more than 20 years.

e But serious, focused writing only started to appear since [10, Part
[V] — with [8, 7] being exceptions:
o [11] suggests a number of domain science and engineering research
topics;
® [14] covers the concept of domain facets;
o [29] explores compositionality and Galois connections.

o [12, 28] show how to systematically, but, of course, not automat-
ically, “derive” requirements prescriptions from domain descrip-
tions;

» |16] takes the triptych software development as a basis for outlin-
ing principles for believable software management;

o [13, 21] presents a model for Stanistaw Le$niewski’s [32] concept
of mereology:

A Prerequisite for Requirements Engineering 603 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

604

o |15, 17] present an extensive example and is otherwise a precursor
for the present paper;

o [18] presents, based on the TripTych view of software develop-
ment as ideally proceeding from domain description via require-
ments prescription to software design, concepts such as software
demos and simulators;

o |20] analyses the TripTych, especially its domain engineering ap-
proach, with respect to Maslow’s 3% and Peterson’s and Seligman’s
39 notions of humanity: how can computing relate to notions of
humanity:;

o the first part of [22] is a precursor for the present paper with
its second part presenting a first formal model of the elicitation
process of analysis and description based on the prompts more
definitively presented in the current paper; and

o [23] focus on domain safety criticality.

34 Theory of Human Motivation. Psychological Review 50(4) (1943):370-96; and Motivation and Personality, Third Edition, Harper and Row Publishers, 1954.
35 Character strengths and virtues: A handbook and classification. Oxford University Press, 2004

© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 604 Domain Science & Engineering

605

The present paper basically replaces the domain analysis and descrip-
tion section of all of the above reference — including [10, Part IV].

A Prerequisite for Requirements Engineering 605 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

606
10. Bibliography 1. Bibliographical Notes 1.2. Published Papers

10.1.2. Reports

We list a number of reports all of which document descriptions of
domains. These descriptions were carried out in order to research and
develop the domain analysis and description concepts now summarised
in the present paper. These reports ought now be revised, some slightly,
others less so, so as to follow all of the prescriptions of the current paper.
Except where a URL is given in full, please prefix the web reference with:
http://www2.compute.dtu.dk/"dibj/.

1 A Railway Systems Domain: http://euler.fd.cvut.cz/railwaydomair
(2003)

2 Models of IT Security. Security Rules & Regulations: it-security.pdf
(2006)

3 A Container Line Industry Domain: container—paper.pdf (2007)

4 The “Market”: Consumers, Retailers, Wholesalers, Producers: themarket.p
(2007)

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 606 Domain Science & Engineering

5 What is Logistics 7: logistics.pdf (2009)
6 A Domain Model of Qil Pipelines: pipeline.pdf (2009)
7 Transport Systems: comet/cometl.pdf (2010)

8 The Tokyo Stock Exchange: todai/tse-1.pdf and todai/tse-2.pdf
(2010)

9 On Development of Web-based Software. A Divertimento: wfdftp.pdf
(2010)

10 Documents (incomplete draft): doc—p.pdf (2013)

A Prerequisite for Requirements Engineerin; 607 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2
q q g g

608
10. Bibliography 2. References

10.2. References

1] J.-R. Abrial. The B Book: Assigning Programs to Meanings and
Modeling in Event-B: System and Software Engineering. Cam-
bridge University Press, Cambridge, England, 1996 and 2009.

2] A. Badiou. Being and Fvent. Continuum, 2005. (Létre et
I'événements, Edition du Seuil, 1988).

3] G. Birkhoff. Lattice Theory. American Mathematical Society,
Providence, R.I., 3 edition, 1967.

4] T. Bittner, M. Donnelly, and B. Smith. Endurants and Perdurants
in Directly Depicting Ontologies. AT Communications, 17(4):247-
258, December 2004. 10S Press, in [53].

5] T. Bittner, M. Donnelly, and B. Smith. Individuals, Universals,
Collections: On the Foundational Relations of Ontology. In A. Varzi
and L. Vieu, editors, Formal Ontology in Information Systems,

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 608 Domain Science & Engineering

609

Proceedings of the Third International Conference, pages 37-48.
IOS Press, 2004.

6] D. Bjgrner. Programming Languages: Formal Development of In-

terpreters and Compilers. In International Computing Sympo-
sium 77 (eds. E. Morlet and D. Ribbens), pages 1-21. European
ACM, North-Holland Publ.Co., Amsterdam, 1977.

7] D. Bjgrner. Michael Jackson’s Problem Frames: Domains, Re-
quirements and Design. In L. ShaoYang and M. Hinchley, editors,
ICFEM’97: International Conference on Formal Engineering

Methods, Los Alamitos, November 12-14 1997. IEEE Computer
Society. Final Version.

8] D. Bjgrner. Domain Engineering: A ”Radical Innovation” for Sys-
tems and Software Engineering ? In Verification: Theory and

Practice, volume 2772 of Lecture Notes in Computer Science,
Heidelberg, October 7-11 2003. Springer—Verlag. The Zohar Manna

A Prerequisite for Requirements Engineerin; 609 Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2
q q g g

610

International Conference, Taormina, Sicily 29 June — 4 July 2003.
Final draft version.

9] D. Bjorner. Software Engineering, Vol. 2: Specification of Sys-
tems and Languages. Texts in Theoretical Computer Science, the
EATCS Series. Springer, 2006. Chapters 12-14 are primarily au-
thored by Christian Krog Madsen.

110] D. Bjorner. Software Engineering, Vol. 3: Domains, Require-
ments and Software Design. Texts in Theoretical Computer Sci-
ence, the EATCS Series. Springer, 2006.

[11] D. Bjorner. Domain Theory: Practice and Theories, Discussion of
Possible Research Topics. In ICTAC’2007, volume 4701 of Lecture
Notes in Computer Science (eds. J.C.P. Woodcock et al.), pages
1-17, Heidelberg, September 2007. Springer.

12] D. Bjgrner. From Domains to Requirements. In Montanari
Festschrift, volume 5065 of Lecture Notes in Computer Science

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 610 Domain Science & Engineering

611

(eds. Pierpaolo Degano, Rocco De Nicola and José Meseguer),
pages 1-30, Heidelberg, May 2008. Springer.

113] D. Bjgrner. On Mereologies in Computing Science. In Festschrift:
Reflections on the Work of C.A.R. Hoare, History of Computing
(eds. Cliff B. Jones, AW. Roscoe and Kenneth R. Wood), pages
47-70, London, UK, 2009. Springer.

[14] D. Bjgrner. Domain Engineering. In P. Boca and J. Bowen, editors,
Formal Methods: State of the Art and New Directions, Eds.

Paul Boca and Jonathan Bowen, pages 1-42, London, UK, 2010.
Springer.

[15] D BJ@I”DGI” DOmaID SClel’lCe & Eﬂgll’leeflﬂg — From Computer Science to The Sciences of

Informatics, Part | of II: The Engineering Part . KZb@TTL@tZkG, Z sttemny G,TLCLZZZ, (4) 100_1 167
May 2010.

116] D. Bjgrner. Believable Software Management. Encyclopedia of
Software Engineering, 1(1):1-32, 2011.

A Prerequisite for Requirements Engineering 611 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

612

[17] D BJ@I”DGI” Domalﬂ SClel’lCe & Eﬂgll’leeflﬂg — From Computer Science to The Sciences of

Informatics Part Il of II: The Science Part. KZb@TTL@tZkG, Z sttemny CL’I?/G,ZZZ, (2) 100_1207
May 2011.

18] D. Bjgrner. Domains: Their Simulation, Monitoring and Control —
A Divertimento of Ideas and Suggestions. In Rainbow of Computer
Science, Festschrift for Hermann Maurer on the Occasion of
His 70th Anniversary., Festschrift (eds. C. Calude, G. Rozenberg
and A. Saloma), pages 167-183. Springer, Heidelberg, Germany,
January 2011.

19] D. Bjorner. Domain Analysis: A Model of Prompts (paper3C,
slid6837). Research Report 2013-6, DTU Compute and Fredsvej
11, DK-2840 Holte, Denmark, Fall 2013.

20] D. Bjgrner. Domain Science and Engineering as a Foundation
for Computation for Humanity, chapter 7, pages 159-177. Com-

36http:/ /www.imm.dtu.dk/~dibj/da-mod-p.pdf
3Thttp://www.imm.dtu.dk/~dibj/da-mod-s.pdf

© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 612 Domain Science & Engineering

613

putational Analysis, Synthesis, and Design of Dynamic Systems.
CRC [Francis & Taylor|, 2013. (eds.: Justyna Zander and Pieter J.
Mosterman).

21] D. Bjgrner. A Role for Mereology in Domain Science and Fn-
gineering. Synthese Library (eds. Claudio Calosi and Pierluigi
Graziani). Springer, Amsterdam, The Netherlands, October 2014.

22] D. Bjorner. Domain Analysis: Endurants — An Analysis & Descrip-
tion Process Model. In S. Iida, J. Meseguer, and K. Ogata, editors,
Specification, Algebra, and Software: A Festschrift Symposium
in Honor of Kokicht Futatsugi. Springer, May 2014.

23] D. Bjgrner. Domain Engineering — A Basis for Safety Critical Soft-
ware. Invited Keynote, ASSC2014: Australian System Safety Con-
ference, Melbourne, 26-28 May, December 2014.

24] D. Bjorner. Manifest Domains: Analysis & Description. Research
Report, 2014. Part of a series of research reports: [26, 27|, Being

A Prerequisite for Requirements Engineering 613 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

614

submitted.

25] D. Bjgrner. Domain Analysis: Endurants — a Consolidated Model

of Prompts. Research Report, DTU Compute and Fredsvej 11,
DK-2840 Holte, Denmark, May 2015.

26] D. Bjgrner. Domain Analysis & Description: Models of Processes
and Prompts. Research Report, To be completed early 2014. Part
of a series of research reports: |24, 27|.

27] D. Bjgrner. From Domains to Requirements — A Different View of
Requirements Engineering. Research Report, To be completed mid
2015. Part of a series of research reports: |24, 26].

28] D. Bjgrner. The Role of Domain Engineering in Software Devel-
opment. Why Current Requirements Engineering Seems Flawed!
In Perspectives of Systems Informatics, volume 5947 ot Lecture
Notes in Computer Science, pages 2-34, Heidelberg, Wednesday,
January 27, 2010. Springer.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 614 Domain Science & Engineering

615

29| D. Bjorner and A. Eir. Compositionality: Ontology and Mereology
of Domains. Some Clarifying Observations in the Context of Soft-
ware Engineering in July 2008, eds. Martin Steffen, Dennis Dams
and Ulrich Hannemann. In Festschrift for Prof. Willem Paul de
Roever Concurrency, Compositionality, and Correctness, vol-
ume 5930 of Lecture Notes in Computer Science, pages 22-59.
Heidelberg, July 2010. Springer.

30] D. Bjgrner and C. B. Jones, editors. The Vienna Development
Method: The Meta-Language, volume 61 of LNCS. Springer,
1978.

31] D. Bjorner and C. B. Jones, editors. Formal Specification and
Software Development. Prentice-Hall, 1982.

32] R. Casati and A. Varzi. Parts and Places: the structures of
spatial representation. MI'T Press, 1999.

A Prerequisite for Requirements Engineering 615 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

616

133] R. Casati and A. Varzi. Events. In E. N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Spring 2010 edition, 2010.

34] R. Casati and A. C. Varzi, editors. Ewvents. Ashgate Publishing
Group — Dartmouth Publishing Co. Ltd., Wey Court East, Union
Road, Farnham, Surrey, GU9 7PT, United Kingdom, 23 March
1996.

. Davidson. Essays on Actions and Events. Oxford University
35| D. David E Acti d E Oxtord Universi
Press, 1980.

36] F'. Dretske. Can Events Move? Mind, 76(479-492), 1967. reprinted
in 34|, pp. 415-428.

37] J. Fitzgerald and P. G. Larsen. Modelling Systems — Practical
Tools and Techniques in Software Development. Cambridge Uni-
versity Press, The Edinburgh Building, Cambridge CB2 2RU, UK,
1998. ISBN 0-521-62348-0.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 616 Domain Science & Engineering

617

38] B. Ganter and R. Wille. Formal Concept Analysis — Math-
ematical Foundations. Springer-Verlag, January 1999. ISBN:
3540627715, 300 pages, Amazon price: US$ 44.95.

39] C. W. George, P. Haff, K. Havelund, A. E. Haxthausen, R. Milne,
C. B. Nielsen, S. Prehn, and K. R. Wagner. The RAISE Specifica-

tion Language. The BCS Practitioner Series. Prentice-Hall, Hemel
Hampstead, England, 1992.

40] C. W. George, A. E. Haxthausen, S. Hughes, R. Milne, S. Prehn,
and J. S. Pedersen. The RAISE Development Method. The
BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, Eng-

land, 1995.

41] P. Hacker. Events and Objects in Space and Time. Mind, 91:1-19,
1982. reprinted in [34], pp. 429-447.

42] D. Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231-274, 1987.

A Prerequisite for Requirements Engineering 617 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

618

43] C. A. R. Hoare. Communicating Sequential Processes. C.A.R.
Hoare Series in Computer Science. Prentice-Hall International,

1985. Published electronically: http://www.usingesp.com/csp-
book.pdf (2004).

44] ITU-T. CCITT Recommendation Z.120: Message Sequence Chart
(MSC), 1992, 1996, 1999.

45] D. Jackson. Software Abstractions: Logic, Language, and Anal-
ysis. The MIT Press, Cambridge, Mass., USA, April 2006. ISBN
0-262-10114-9.

46] I. Johansson. Qualities, Quantities, and the Endurant-Perdurant
Distinction in Top-Level Ontologies. In D. A. B. R. N. M. R.-B. T.
Althoft, K.-D., editor, Professional Knowledge Management WM
2005, volume 3782 of Lecture Notes in Artifictal Intelligence,
pages 543-550. Springer, 2005. 3rd Biennial Conference, Kaiser-
slautern, Germany, April 10-13, 2005, Revised Selected Papers.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 618 Domain Science & Engineering

619

47] J. Kim. Supervenience and Mind. Cambridge University Press,
1993.

48] L. Lamport. Specifying Systems. Addison—Wesley, Boston, Mass.,
USA, 2002.

49] D. Mellor. Things and Causes in Spacetime. British Journal for
the Philosophy of Science, 31:282-288, 1980.

50] C.-Y. T. Pi. Mereology in Fvent Semantics. Phd, McGill Univer-
sity, Montreal, Canada, August 1999.

51] A. Quinton. Objects and Events. Mind, 88:197-214, 1979.

52| W. Reisig. Petrinetze: Modellierungstechnik, Analysemethoden,
Fallstudien. Leitfaden der Informatik. Vieweg+Teubner, 1st edi-
tion, 15 June 2010. 248 pages; ISBN 978-3-8348-1290-2.

53] J. Renz and H. W. Guesgen, editors. Spatial and Temporal Rea-
soning, volume 14, vol. 4, Journal: Al Communications, Amster-
dam, The Netherlands, Special Issue. 105 Press, December 2004.

A Prerequisite for Requirements Engineering 619 © Dines Bjgrner 2015, Fredsvej 11, DK-2840 Holte, Denmark — May 23, 2015: 15:2

620

54] G. Wilson and S. Shpall. Action. In E. N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Summer 2012 edition, 2012.

55] J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof

and Refinement. Prentice Hall International Series in Computer
Science, 1996.

56] C. C. Zhou and M. R. Hansen. Duration Calculus: A Formal Ap-
proach to Real-time Systems. Monographs in Theoretical Com-
puter Science. An EATCS Series. Springer—Verlag, 2004.

(© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 620

Domain Science & Engineering

621

11. Table of Contents

11. Table of Contents

Contents
1. Domain Analysis & Description 9
1.1, Introduction L L e 15
1.1.1. The TripTych Approach to Software Engineering 18
1.1.2. Method and Methodology e 23
1.1.2.1. Method e 23
1.1.2.2. DisCUSSION L L 25
1.1.2.3. Methodology e 30
1.1.3. Computer and Computing Science 31
1.1.4. What Is a Manifest Domain? L e 34
1.1.5. What Is a Domain Description? L 42
1.1.6. Towards a Methodology of Domain Analysis & Description 50
1.1.7. One Domain — Many Models? 65
1.1.8. Formal Concept Analysis. 69
1.1.8.1. A Formalisation e 70
1.1.8.2. Types Are Formal Concepts e 76
1.1.8.3. Practicalities e 77
1.1.8.4. Formal Concepts: A Wider Implication e 79
1.2. Endurant Entities L 80
1.2.1. General 80
a: Analysis Prompt: is-entity e 81
1.2.2. Endurants and Perdurants L e 83
b: Analysis Prompt: is-endurant L 87
c: Analysis Prompt: is-perdurant L L e 87
1.2.3. Discrete and Continuous Endurants L 90
d: Analysis Prompt: is discrete L 94
e: Analysis Prompt: is continuous L 94
1.2.4. Parts, Components and Materials 95
1.2.4.1. General . . . L 95
1.2.4.2. Part, Component and Material Prompts e 103
f: Analysis Prompt: is part L e e 103
g: Analysis Prompt: is component 104
h: Analysis Prompt: is material L 105

A Prerequisite for Requirements Engineering 621 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

622

1.2.5. Atomic and Composite Parts 106
i: Analysis Prompt: is-atomic L 112

j: Analysis Prompt: is-composite L e 112

1.2.6. On Observing Part Sorts 114
1.2.6.1. Types and Sorts L 114
1.2.6.2. On Discovering Part Sorts. e 115

k: Analysis Prompt: observe-parts e 117
1.2.6.3. Part Sort Observer Functions e 120

1: Description Prompt: observe-part-sorts e 121
1.2.6.4. On Discovering Concrete Part Types 126

I: Analysis Prompt: has-concrete-type L 126

2: Description Prompt: observe-part-type L e 127
1.2.6.5. Forms of Part Types e 131
1.2.6.6. Part Sort and Type Derivation Chains e 132
1.2.6.7. Names of Part Sorts and Types 134
1.2.6.8. More On Part Sorts and Types 138
1.2.6.9. External and Internal Qualities of Parts 143
1.2.6.10. Three Categories of Internal Qualities e 144

1.2.7. Unique Part Identifiers 146
3: Description Prompt: observe-unique-identifier 149

1.2.8. Mereology 152
1.2.8.1. Part Relations e 153
1.2.8.2. Part Mereology: Types and Functions e 155

m: Analysis Prompt: has-mereology L 155

4: Description Prompt: observe-mereology L 157
1.2.8.3. Update of Mereologies L 164
1.2.8.4. Formulation of Mereologies e 168

1.2.9. Part Attributes L L 169
1.2.9.1. Inseparability of Attributes from Endurants L 169
1.2.9.2. Attribute Quality and Attribute Value L 170
1.2.9.3. Endurant Attributes: Types and Functions e 171

n: Analysis Prompt: attribute-names L 174

5: Description Prompt: observe-attributes 177
1.2.9.4. Attribute Categories L e 183
1.2.9.5. Access to Attribute Values L 193
1.2.9.6. Shared Attributes e 195
Example 42: Shared Attributes 197

1.2.10. Components L e 203
o: Analysis Prompt: has-components L 204

6: Description Prompt: observe-component-sorts 205

© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 622 Domain Science & Engineering

623

1.2.11. Materials 209
p: Analysis Prompt: has-materials e 210

7: Description Prompt: observe-material-sorts 211
1.2.11.1. Materials-related Part Attributes L 214
1.2.11.2. Laws of Material Flows and Leaks e 218

1.2.12. “No Junk, No Confusion” 224
1.2.13. Discussion of Endurants L 239
1.3. Perdurant Entities e 242
131, States 245
1.3.2. Actions, Events and Behaviours 247
1.3.2.1. Time Considerations L 249
1.3.2.2. ACtOrs L 251
1.3.2.3. Parts, Attributes and Behaviours 253

1.3.3. Discrete Actions L e 254
1.3.4. Discrete Events L e 256
1.3.5. Discrete Behaviours L e 259
1.3.5.1. Channels and Communication L 261
1.3.5.2. Relations Between Attribute Sharing and Channels 263

1.3.6. Continuous Behaviours L 268
1.3.7. Attribute Value Access 271
1.3.7.1. Access to Static Attribute Values 271
1.3.7.2. Access to External Attribute Values 272
1.3.7.3. Access to Programmable Attribute Values e 276

1.3.8. Perdurant Signatures and Definitions L 277
1.3.9. Action Signatures and Definitions L 279
1.3.10. Event Signatures and Definitions 285
1.3.11. Discrete Behaviour Signatures and Definitions L 289
Process Schema I: Abstract is_composite(p) e 295
Process Schema II: Concrete is_composite(p) e 297
Process Schema III: is_atomic(p) L 297
Process Schema IV: Core Process (I) 302
Process Schema V: Core Process (II) 305

1.3.12. Concurrency: Communication and Synchronisation 306
1.3.13. Summary and Discussion of Perdurants 307
1.3.13.1. Summary e 308
1.3.13.2. DiscusSion L e 309

6. A Domain Description 310
6.1. Endurants L e 310

A Prerequisite for Requirements Engineering 623 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

624

6.1.1. Domain, Net, Fleet and Monitor 310
6.1.2. Hubs and Links 313
6.1.3. Unique Identfiers e 315
6.1.4. Mereology 318
6.1.5. Attributes, | s, 320
6.1.6. Attributes, Il L 322
6.1.7. Routes 333

6.2. Perdurants L e 334
6.2.1. Vehicle to Monitor Channel 334
6.2.2. Link Disappearance Event 335
6.2.3. Road Traffic 336

7. Requirements 352
7.1, Introduction L 356
7.1.1. General Considerations e 356
7.1.2. Four Stages of Requirements Development e 366
7.1.2.1. Problem and/or Objective Sketch 367

7.1.2.2. Systems Requirements L L e 369

7.1.2.3. User and External Equipment Requirements e 374

7.1.2.4. Functional Requirements e 376

7.2. Domain Requirements L L e 379
7.2.1. Domain Projection L 381
7.2.1.1. Domain Projection — Narrative L e 383

7.2.1.2. Domain Projection — Formalisation 385

7.2.1.3. A Projection Operator e 393

7.2.2. Domain Instantiation L 394
7.2.2.1. Domain Instantiation — Narrative e 396

7.2.2.2. Domain Instantiation — Formalisation e 401

7.2.2.3. Domain Instantiation — Formalisation: Well-formedness 402

7.2.2.4. Domain Instantiation — Abstraction 410

7.2.2.5. An Instantiation Operator L e 413

7.2.3. Domain Determination L 414
7.2.3.1. Domain Determination: Example 415

7.2.3.2. A Domain Determination Operator e 423

7.2.4. Domain Extension L 424
7.2.4.1. The Core Requirements Example: Domain Extension e 425

7.2.42. A Domain Extension Operator L e 454

7.25. Requirements Fitting 455
7.25.1. Some Definitions L e 457

© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29 624 Domain Science & Engineering

625

7.2.5.2. Requirements Fitting Procedure — A Sketch e 464
7.2.5.3. Requirements Fitting — An Example 465

7.2.6. Domain Requirements Consolidation L 468
7.3. Interface Requirements L e 469
7.3.1. Shared Phenomena 470
7.3.2. Shared Endurants 474
7.3.2.1. Data Initialisation L e 478
7.3.2.2. Data Refreshment 494

7.3.3. Shared Actions, Events and Behaviours L 495
7.4. Machine Requirements L 497
7.4.1. Delineation of Machine Requirements L 497
7.4.1.1. On Machine Requirements e 497
7.4.1.2. Machine Requirements Facets e 499

7.4.2. Performance Requirements L 500
7.4.3. Dependability Requirements L 502
7.4.3.1. Failures, Errors and Faults 502
7.4.3.2. Accessibility L e 513
7.4.3.3. Availability e 516
TA34. Integrity e 519
TA43.5. Safety 525
TA4.3.6. Security 527
7.4.3.7. Robustness e 530

7.4.4. Maintenance Requirements 532
7.4.4.1. Delineation and Facets of Maintenance Requirements e 532
7.4.4.2. Adaptive Maintenance L e 534
7.4.4.3. Corrective Maintenance L 537
7.4.4.4. Perfective Maintenance L e 540
7.4.45. Preventive Maintenance L e 544
7.4.4.6. Extensional Maintenance L e 545

7.4.5. Platform Requirements 546
7.4.5.1. Delineation and Facets of Platform Requirements e 546
7.4.5.2. Development Platform L 548
7.45.3. Execution Platform e 549
7.4.5.4. Maintenance Platform 550
7.45.5. Demonstration Platform L L 551

7.4.6. Documentation Requirements L 553
TAT. DisCuSSiON L e 556
8. Conclusion 557

A Prerequisite for Requirements Engineering 625 © Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

626

8.1. Various Observations L 557
8.1.1. Tony Hoare’s Summary on ‘Domain Modeling’ e 557
8.1.2. Beauty Is Our Business 560

8.2. Acknowledgements L L 561

9. Discussion of Research Topics 562

9.1. Domain Science & Engineering Topics L 563
9.1.1. Analysis & Description Calculi for Other Domains 564
9.1.2. On Domain Description Languages L 567
9.1.3. Ontology Relations e 571
9.1.4. Analysis of Perdurants L 572
9.1.5. Commensurate Discrete and Continuous Models L 573
9.1.6. Interplay between Parts, Materials and Components L 575
0.1.7. DynamicCs 576
9.1.8. Precise Descriptions of Manifest Domains e 578
9.1.9. Towards Mathematical Models of Domain Analysis & Description 584
9.1.10. Laws of Descriptions: A Calculus of Prompts e 586
9.1.11. Domains and Galois Connections 591
9.1.12. Laws of Domain Description Prompts 592
9.1.13. Domain Theories: 593
9.1.14. External Attributes 597

0.2. Requirements TOPICS e 598
9.2.1. Domain Requirements Methodology L 598
9.2.2. Domain Requirements Operator Theory e 599
9.2.3. Methodology for Interface Requirements 600

9.3. Final Words L e 601

10. Bibliography 602

10.1. Bibliographical Notes 602
10.1.1. Published Papers e 603
10.1.2. RepOrts o 606

10.2. References L 608

11. Table of Contents 621

Last page

© Dines Bjgrner 2015, Fredsvej 11, DK—2840 Holte, Denmark — May 23, 2015: 15:29

626

Domain Science & Engineering

