
Domain Science & Engineering
1

A Prerequisite for Requirements Engineering

Dines Bjørner1

Fredsvej 11, DK-2840 Holte, Denmark
DTU, DK-2800 Kgs. Lyngby, Denmark

E–Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜dibj

May 23, 2015: 15:31
Lecture Notes for a MAP-i PhD Course, Portugal, 25–28 May 2015

A Compendium

1This document is being compiled in two “parallel”, commensurate versions: a “paper” and a “slide” version,

www.imm.dtu.dk/˜dibj/domains/daad-s.pdf. The slide version is that of Chap. 1, Appendix A and Chap. 4 of the

paper version. Margin numbers of the paper version refer to slide numbers.

2 Domain Science & Engineering

It’s life that matters, nothing but life –
the process of discovering, the everlasting and perpetual process,

not the discovery itself, at all.

Fyodor Dostoyevsky, The Idiot, 1868, Part 3, Sect. V

A Prologue

This document has been put together in April–May 2015 from a number of (one report and

otherwise from) published papers. Chapters 1, 6 and 7 are the basis for 11 lectures and 6

workshop (i.e., exercise) sessions, These are read May 25–26 and May 28, 2015 at the Uni-

versity of Minho. They constitute a MAP-i PhD course; MAP: Minho, Aveiro and Porto. The

lectures are supported by almost 500 slides. Their page numbers are referred to in the margins

of Chapters 1, 6 and 7.

Summary of PhD Course

This document takes the view that software specifications and programs are best understood as

mathematical objects. This is in contrast to other views, notably such which are dominant in

the USA, that the development of software is best understood as sociological and psychological

objects.2

In this PhD course we cover two aspects of software engineering: domain engineer-
ing (Lectures 1–6) and requirements engineering (Lectures 7–10). We also cover some

aspects of domain science.

The lectures are supported by extensive material: A comprehensive set of lecture notes:

www.imm.dtu.dk/˜dibj/portugal/Braga-MAP-i.pdf,

and each lectures by lecture slides:

www.imm.dtu.dk/˜dibj/portugal/BL0.pdf--BL11.pdf.3

We will be together Monday, Tuesday and Thursday 10:00–17:30 ‘Formal Lectures’ alter-

nate with ‘Workshop Sessions’. In workshop sessions we shall try, You and I, to describe

a domain. We will select this domain right after lunch today and start describing it. You are

supposed to think about this domain mornings, before wee meet and late afternoons, after we

have “left”. Wednesday I will give a Faculty Seminar: A New Foundation for Computing
Science 14:00–14:45, Room DI-A2

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 2 Lect.0: Domain Science & Engineering

A Prerequisite for Requirements Engineering 3

Monday 25 May, 2015

• L0: Opening Lecture
Monday, 25 May 2015: 10:00–10:20

• L1: An Overview of Domain Description [Sect. 1.1 Pages 15–73]
Monday, 25 May 2015: 10:30–11:15

• L2: Parts [Sects. 1.2.1–1.2.6 Pages 23–33]
Monday, 25 May 2015: 11:30–12:15

• 1. Workshop: An Example Domain
Monday, 25 May 2015: 12:30–13:00

• Lunch: 13:00–14:30

• L3: Unique Identifiers, Mereologies and Attributes [Sects. 1.2.7–1.2.9 Pages 33–43]
Monday, 25 May 2015: 14:30–15:15

• 2. Workshop: An Example Domain
Monday, 25 May 2015: 15:30–16:15

• L4: Components, Materials – and Discussion of Endurants [Sects. 1.2.10–1.2.13 Pages 44–52]
Monday, 25 May 2015: 16:45–17:30

4
Tuesday 26 May, 2015

• L5: Perdurants [Sect. 1.3 Pages 52–63]
Tuesday, 26 May 2015: 10:00–10:45

• 3. Workshop: An Example Domain
Tuesday, 26 May 2015: 11:00–11:45

• L6: A Summary Domain Description [Chapter 6, Pages 140–149]
Tuesday, 26 May 2015: 12:00–13:00

• Lunch: 13:00–14:30

• 4. Workshop: An Example Domain
Tuesday, 26 May 2015: 14:30–15:15

• L7: Requirements – An Overview, and Projection [Sects. 7 and 7.2–7.2.1 Pages 151–156]
Tuesday, 26 May 2015: 15:30–16:15

• L8: Domain Requirements: Instantiation and Determination [Sects. 7.2.2–7.2.3 Pages 156–161]
Tuesday, 26 May 2015: 16:45–17:30

5
Wednesday 27 May:

• 14:00–14:45 Faculty Seminar: Room DI-A2

Title: A New Foundation for Computing Science Paper, Slides
Abstract: We argue that computing systems requirements must be based on precisely described domain models
— and we argue that domain science & engineering offers a new dimension in computing. We review our
work in this area and we outline a research and experimental engineering programme for the triptych of domain
enginering, requirements engineering and software design.

6
Thursday 28 May, 2015

• L9: Domain Requirements: Extension and Fitting [Sects. 7.2.4–7.2.5 Pages 161–168]
Thursday, 28 May 2015: 10:00–11:15

• 5. Workshop: Example Domain
Thursday, 28 May 2015: 11:30–12:00

• L10: Interface Requirements [Sect. 7.3 Pages 168–172]
Thursday, 28 May 2015: 12:15–13:00

• Lunch: 13:00–14:30

• 6. Workshop: Example Domain
Thursday, 28 May 2015: 14:30–15:15

• L11: Conclusion [Sects. 1.4.1–1.4.2, 1.4.5–1.4.6, etc., Pages 63–64 and 72–73]
Thursday, 28 May 2015: 15:30–16:30

• L12: Discussion of Research Topics [Sects. 1.4.4 etc., Pages 70–72 etc.]
Thursday, 28 May 2015: 16:45–17:30

Lect.0: Domain Science & Engineering 3 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

4 Domain Science & Engineering

What is in this compendium ?

This compendium has been put together in preparation for the MAP-i May 24–27, 2015 PhD course at

Univ. of Minho, Braga. That course covers Chapters 1, 6 and 7. Several chapters are revisions of the papers

cited in the display line.

Chapter 1: Domain Analysis & Description : Pages 15–73 [42]

This chapter is the most important chapter of this compendium. It introduces the calculi of domain

analysis and description prompts.

Chapter 2: Domain Facets : Pages 74–89 [30]

This chapter “extends” the domain description methodology by principles, techniques and tools for

analysing and describing domain facets such as: support technologies, rules & regulations, script

languages, management & organisation, and human behaviour.

Chapter 3: Prompt Semantics : Pages 90–105 [40, 44]

The calculi of domain analysis and description prompts introduced in Chapter 1 are given an opera-

tional semantics. The chapter is incomplete.

Chapter 4: Domains: Their Simulation, Monitoring and Control : Pages 106–114 [34]

This chapter, in a sense, presupposes Chapter 7. The chapter shows how domain descriptions (as

well as requirements prescriptions) can be the basis for the design of simulation (demo), monitoring

and control software.

Chapter 5: A Rôle for Mereology in Domain Science and Engineering : Pages 115–139 [39]

The Polish mathematician/philosopher Stanisław Leśhniewski viewed mereology [113, 57] as con-

cerned with the understanding of parts and relations between parts (and a “whole”). In this chapter

we show a model for his mereology as well as a relation between any mereology and CSP [97].

Chapter 6: A Domain Description : Pages 140–149

The next chapter, Chapter 7, assumes an existing domain description — so here it is. It is of a road

net transportation system.

Chapter 7: Requirements : Pages 151–179 [26]

This chapter shows how one can systematically “derive” major aspects of requirements from domain

descriptions. With this methodology we can now claim domain descriptions serve a rôle in software

development.

Chapter 8: Closing : Pages 181–185

This chapter is primarily perfunctory.

Chapter 9: Bibliography : Pages 186–197

Appendices

Appendix A: RSL : Pages 199–215

The formal specification language used in this compendium for descriptions and prescriptions is RSL

[85], part of the RAISE method [86]. The notation and its informal meaning is summarised in this

appendix.

Appendix B: Indexes : Starting Page 216.

The indexes covers mainly Chapter 1.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 4 Lect.0: Domain Science & Engineering

Contents

I Domain Science & Engineering 14

1 Domain Analysis & Description 15
1.1 Introduction . 15

1.1.1 The TripTych Approach to Software Engineering . 15
1.1.2 Method and Methodology . 16

Method . 16

Discussion . 16
Methodology . 17

1.1.3 Computer and Computing Science . 17
1.1.4 What Is a Manifest Domain ? . 17
1.1.5 What Is a Domain Description ? . 18
1.1.6 Towards a Methodology of Domain Analysis & Description . 19

Practicalities of Domain Analysis & Description . 19
The Four Domain Analysis & Description “Players” . 20

An Interactive Domain Analysis & Description Dialogue 20
Prompts . 20
A Domain Analysis & Description Language . 20
The Domain Description Language . 21
Domain Descriptions: Narration & Formalisation . 21

1.1.7 One Domain – Many Models ? . 21
1.1.8 Formal Concept Analysis . 21

A Formalisation . 21

Types Are Formal Concepts . 22
Practicalities . 22
Formal Concepts: A Wider Implication . 23

1.2 Endurant Entities . 23
1.2.1 General . 23

a: Analysis Prompt: is-entity . 23
1.2.2 Endurants and Perdurants . 23

b: Analysis Prompt: is-endurant . 24

c: Analysis Prompt: is-perdurant . 24
1.2.3 Discrete and Continuous Endurants . 24

d: Analysis Prompt: is discrete . 24
e: Analysis Prompt: is continuous . 24

1.2.4 Parts, Components and Materials . 25
General . 25
Part, Component and Material Prompts . 25

f: Analysis Prompt: is part . 25

g: Analysis Prompt: is component . 25
h: Analysis Prompt: is material . 26

1.2.5 Atomic and Composite Parts . 26
i: Analysis Prompt: is-atomic . 26
j: Analysis Prompt: is-composite . 26

1.2.6 On Observing Part Sorts . 27
Types and Sorts . 27
On Discovering Part Sorts . 27

k: Analysis Prompt: observe-parts . 27
Part Sort Observer Functions . 27

1: Description Prompt: observe-part-sorts . 28
On Discovering Concrete Part Types . 29

5

6 Domain Science & Engineering

l: Analysis Prompt: has-concrete-type . 29
2: Description Prompt: observe-part-type . 29

Forms of Part Types . 30

Part Sort and Type Derivation Chains . 30
No Recursive Derivations . 30

Names of Part Sorts and Types . 30

More On Part Sorts and Types . 31
Derivation Lattices . 32

External and Internal Qualities of Parts . 32

Three Categories of Internal Qualities . 33
1.2.7 Unique Part Identifiers . 33

3: Description Prompt: observe-unique-identifier . 33

1.2.8 Mereology . 34
Part Relations . 34

Part Mereology: Types and Functions . 34

m: Analysis Prompt: has-mereology . 34
4: Description Prompt: observe-mereology . 35

Update of Mereologies . 36

Formulation of Mereologies . 37
1.2.9 Part Attributes . 37

Inseparability of Attributes from Endurants . 37

Attribute Quality and Attribute Value . 38
Endurant Attributes: Types and Functions . 38

n: Analysis Prompt: attribute-names . 38

The Attribute Value Observer . 38
5: Description Prompt: observe-attributes . 39

Attribute Categories . 40

Access to Attribute Values . 42
Shared Attributes . 42

1.2.10 Components . 44

o: Analysis Prompt: has-components . 44
6: Description Prompt: observe-component-sorts . 44

1.2.11 Materials . 45

p: Analysis Prompt: has-materials . 45
7: Description Prompt: observe-material-sorts . 45

Materials-related Part Attributes . 46

Laws of Material Flows and Leaks . 47

1.2.12 “No Junk, No Confusion” . 48
Pipe Routes . 49

Well-formed Routes . 50

Well-formed Pipeline Systems . 50
Embedded Routes . 51

A Theorem . 51

1.2.13 Discussion of Endurants . 52
1.3 Perdurant Entities . 52

1.3.1 States . 52

1.3.2 Actions, Events and Behaviours . 52
Time Considerations . 53

Actors . 53

Parts, Attributes and Behaviours . 53
1.3.3 Discrete Actions . 53

1.3.4 Discrete Events . 54

1.3.5 Discrete Behaviours . 54
Channels and Communication . 54

Relations Between Attribute Sharing and Channels . 54

1.3.6 Continuous Behaviours . 56
1.3.7 Attribute Value Access . 56

Access to Static Attribute Values . 56

Access to External Attribute Values . 56
Access to Programmable Attribute Values . 57

1.3.8 Perdurant Signatures and Definitions . 57

1.3.9 Action Signatures and Definitions . 57
1.3.10 Event Signatures and Definitions . 58

1.3.11 Discrete Behaviour Signatures and Definitions . 59

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 6 Lect.0: Domain Science & Engineering

A Prerequisite for Requirements Engineering 7

Process Schema I: Abstract is composite(p) . 60

Process Schema II: Concrete is composite(p) . 60
Process Schema III: is atomic(p) . 61

Process Schema IV: Core Process (I) . 62

Process Schema V: Core Process (II) . 62

1.3.12 Concurrency: Communication and Synchronisation . 63

1.3.13 Summary and Discussion of Perdurants . 63

Summary . 63

Discussion . 63

1.4 Closing . 63
1.4.1 Analysis & Description Calculi for Other Domains . 63

1.4.2 On Domain Description Languages . 64

1.4.3 Comparison to Other Work . 64

Background: The TripTych Domain Ontology . 64

General . 64

1: Ontology Science & Engineering: . 64

2: Knowledge Engineering: . 66

Specific . 66
3: Database Analysis: . 67

4: Domain Analysis: . 67

5: Domain Specific Languages: . 67

6: Feature-oriented Domain Analysis (FODA): . 67

7: Software Product Line Engineering: . 67

8: Problem Frames: . 68

9: Domain Specific Software Architectures (DSSA): . 68

10: Domain Driven Design (DDD): . 68
11: Unified Modeling Language (UML): . 69

12: Requirements Engineering: . 69

Summary of Comparisons . 69

1.4.4 Open Problems . 70

1: Ontology Relations: . 70

2: Analysis of Perdurants: . 70

3: Commensurate Discrete and Continuous Models: . 70

4: Interplay between Parts and Materials: . 70
5: Dynamics: . 70

6: Precise Descriptions of Manifest Domains: . 71

7: Towards Mathematical Models of Domain Analysis & Description: 71

8: Laws of Descriptions: A Calculus of Prompts: . 71

9: Domains and Galois Connections: . 72

10: Laws of Domain Description Prompts: . 72

11: Domain Theories:: . 72

1.4.5 Tony Hoare’s Summary on ‘Domain Modeling’ . 72
1.4.6 Beauty Is Our Business . 73

2 Domain Facets 74
2.1 Stake-holders . 74

2.2 Domain Facets . 74

2.2.1 Intrinsics . 75

Conceptual Versus Actual Intrinsics . 77

On Modelling Intrinsics . 77

2.2.2 Support Technologies . 77
On Modelling Support Technologies . 79

2.2.3 Management and Organisation . 79

Conceptual Analysis, First Part . 80

Methodological Consequences . 80

Conceptual Analysis, Second Part . 81

On Modelling Management and Organisation . 82

2.2.4 Rules and Regulations . 82

A Meta-characterisation of Rules and Regulations . 83
On Modelling Rules and Regulations . 84

2.2.5 Scripts and Licensing Languages . 84

Licensing Languages . 86

On Modelling Scripts . 86

2.2.6 Human Behaviour . 86

Lect.0: Domain Science & Engineering 7 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

8 Domain Science & Engineering

A Meta-characterisation of Human Behaviour . 87

On Modelling Human Behaviour . 88

2.2.7 Completion . 88

2.2.8 Integrating Formal Descriptions . 88

2.3 Closing Discussion . 89

3 Prompt Semantics 90
3.1 A Model of The Analysis & Description Process . 90

3.1.1 A Summary of Prompts . 90

3.1.2 Preliminaries . 91

3.1.3 Initialising the Domain Analysis & Description Process . 91

3.1.4 A Domain Analysis & Description State . 91

3.1.5 Analysis & Description of Endurants . 91

Analysis & Description of Part Sorts . 93

Analysis & Description of Part Materials . 94

Analysis & Description of Material Parts . 94

Analysis & Description of Composite Endurants . 94

Analysis & Description of Concrete Sort Types . 95

Analysis & Description of Abstract Sorts . 96

Analysis & Description of Unique Identifiers . 96

Analysis & Description of Mereologies . 97

Analysis & Description of Part Attributes . 97

3.1.6 Discussion of The Model . 97

Termination . 97

Axioms and Proof Obligations . 98

Order of Analysis & Description: A Meaning of ‘⊕’ . 98

3.2 A Model of The Analysis & Description Prompts . 98

3.2.1 On the Domain Analyser’s Image of Domains . 98

3.2.2 An Abstract Syntax of Domains . 98

Domain Nodes . 98

The Root Domain Node . 100

Domain Description Trees . 100

Syntax . 100

Generating Description Tree Paths . 100

Well-formedness of Domain Nodes . 101

Well-formed Composite and Material Nodes . 101

No Recursively Defined Sorts . 102

No Duplicate Definitions . 102

Defined Duplicate Sort Names . 102

3.2.3 Node Selection . 103

3.2.4 Index of Prompts . 103

Analysis Prompts . 104

Description Prompts . 104

3.2.5 A Formal Description of a Meaning of Prompts . 104

The Iterative Nature of The Description Process . 104

How Are We Modelling the Prompts . 104

The Model . 105

3.2.6 Discussion . 105

3.3 Discussion of the Models . 105

4 Domains: Their Simulation, Monitoring and Control 106
4.1 Introduction . 106

4.2 Domain Descriptions . 107

4.3 Interpretations . 107

4.3.1 What Is a Domain-based Demo? . 107

Examples . 107

Towards a Theory of Visualisation and Acoustic Manifestation 108

4.3.2 Simulations . 108

Explication of Figure 4.1 . 108

Script-based Simulation . 109

The Development Arrow . 110

4.3.3 Monitoring & Control . 110

Monitoring . 111

Control . 111

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 8 Lect.0: Domain Science & Engineering

A Prerequisite for Requirements Engineering 9

4.3.4 Machine Development . 111

Machines . 111
Requirements Development . 111

4.3.5 Verifiable Software Development . 112

An Example Set of Conjectures . 112

Chains of Verifiable Developments . 113

4.4 Conclusion . 113

4.4.1 Discussion . 114

What Have We Achieved . 114

What Have We Not Achieved — Some Conjectures . 114
What Should We Do Next . 114

5 A Rôle for Mereology in Domain Science and Engineering 115
5.1 Introduction . 115

5.1.1 Computing Science Mereology . 115

5.1.2 From Domains via Requirements to Software . 116

5.1.3 Domains: Science and Engineering . 117

5.1.4 Contributions of This Contribution . 117

5.1.5 Structure of This Contribution . 117
5.2 Our Concept of Mereology . 117

5.2.1 Informal Characterisation . 117

5.2.2 Six Examples . 118

Air Traffic . 118

Buildings . 119

Financial Service Industry . 120

Machine Assemblies . 120

Oil Industry . 121
“The” Overall Assembly . 121

A Concretised Composite parts . 122

Railway Nets . 122

Discussion . 122

5.3 An Abstract, Syntactic Model of Mereologies . 123

5.3.1 Parts and Subparts . 123

The Model . 123

5.3.2 ‘Within’ and ‘Adjacency’ Relations . 124
‘Within’ . 124

‘Transitive Within’ . 125

‘Adjacency’ . 125

Transitive ‘Adjacency’ . 125

5.3.3 Unique Identifications . 126

5.3.4 Attributes . 127

5.3.5 Connections . 127

Connector Wellformedness . 128
Connector and Attribute Sharing Axioms . 128

Sharing . 129

5.3.6 Uniqueness of Parts . 129

Uniqueness of Embedded and Adjacent Parts . 129

5.4 An Axiom System . 129

5.4.1 Parts and Attributes . 129

P The Part Sort . 129

A The Attribute Sort . 129
5.4.2 The Axioms . 130

P Part-hood . 130

PP Proper Part-hood . 130

O Overlap . 130

U Underlap . 130

OX Over-cross . 130

UX Under-cross . 130

PO Proper Overlap . 131
5.4.3 Satisfaction . 131

A Proof Sketch . 131

5.5 An Analysis of Properties of Parts . 131

5.5.1 Mereological Properties . 132

An Example . 132

Lect.0: Domain Science & Engineering 9 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

10 Domain Science & Engineering

Unique Identifier and Mereology Types . 132
5.5.2 Properties . 133
5.5.3 Attributes . 134
5.5.4 Discussion . 136

5.6 A Semantic CSP Model of Mereology . 136
5.6.1 A Semantic Model of a Class of Mereologies . 136

Parts ≃ Processes . 136
Connectors ≃ Channels . 136
Process Definitions . 137

5.6.2 Discussion . 138
General . 138
Partial Evaluation . 138

5.7 Concluding Remarks . 138
5.7.1 Relation to Other Work . 138
5.7.2 What Has Been Achieved ? . 139
5.7.3 Future Work . 139

6 A Domain Description 140
6.1 Endurants . 140

6.1.1 Domain, Net, Fleet and Monitor . 140
6.1.2 Hubs and Links . 141
6.1.3 Unique Identfiers . 141
6.1.4 Mereology . 142
6.1.5 Attributes, I . 143
6.1.6 Attributes, II . 143
6.1.7 Routes . 146

6.2 Perdurants . 146
6.2.1 Vehicle to Monitor Channel . 146
6.2.2 Link Disappearance Event . 146
6.2.3 Road Traffic . 147

II Requirements Engineering 150

7 Requirements 151
7.1 Introduction . 151

7.1.1 General Considerations . 151
7.1.2 Four Stages of Requirements Development . 153

Problem and/or Objective Sketch . 153
Systems Requirements . 153
User and External Equipment Requirements . 153
Functional Requirements . 154

7.2 Domain Requirements . 154
7.2.1 Domain Projection . 154

Domain Projection — Narrative . 154
Domain Projection — Formalisation . 155
A Projection Operator . 156

7.2.2 Domain Instantiation . 156
Domain Instantiation — Narrative . 157
Domain Instantiation — Formalisation . 157
Domain Instantiation — Formalisation: Well-formedness . 158

Summary Well-formedness Predicate . 159
Domain Instantiation — Abstraction . 159
An Instantiation Operator . 160

7.2.3 Domain Determination . 160
Domain Determination: Example . 160

All Toll-road Links are One-way Links . 160
All Toll-road Hubs are Free-flow . 160

A Domain Determination Operator . 161
7.2.4 Domain Extension . 161

The Core Requirements Example: Domain Extension . 161
A Domain Extension Operator . 167

7.2.5 Requirements Fitting . 167
Some Definitions . 167
Requirements Fitting Procedure — A Sketch . 168

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 10 Lect.0: Domain Science & Engineering

A Prerequisite for Requirements Engineering 11

Requirements Fitting – An Example . 168

7.2.6 Domain Requirements Consolidation . 168

7.3 Interface Requirements . 168

7.3.1 Shared Phenomena . 168

7.3.2 Shared Endurants . 169

Data Initialisation . 169

Data Refreshment . 172

7.3.3 Shared Actions, Events and Behaviours . 172

7.4 Machine Requirements . 172

7.4.1 Delineation of Machine Requirements . 172

On Machine Requirements . 172

Machine Requirements Facets . 172

7.4.2 Performance Requirements . 172

7.4.3 Dependability Requirements . 173

Failures, Errors and Faults . 173

Accessibility . 174

Availability . 174

Integrity . 175

Safety . 175

Security . 176

Robustness . 176

7.4.4 Maintenance Requirements . 176

Delineation and Facets of Maintenance Requirements . 176

Adaptive Maintenance . 176

Corrective Maintenance . 177

Perfective Maintenance . 177

Preventive Maintenance . 177

Extensional Maintenance . 177

7.4.5 Platform Requirements . 178

Delineation and Facets of Platform Requirements . 178

Development Platform . 178

Execution Platform . 178

Maintenance Platform . 178

Demonstration Platform . 178

7.4.6 Documentation Requirements . 179

7.4.7 Discussion . 179

III Conclusion 180

8 Discussion of Research Topics 181

8.1 Domain Science & Engineering Topics . 181

8.1.1 Analysis & Description Calculi for Other Domains . 181

8.1.2 On Domain Description Languages . 181

8.1.3 Ontology Relations . 182

8.1.4 Analysis of Perdurants . 182

8.1.5 Commensurate Discrete and Continuous Models . 182

8.1.6 Interplay between Parts, Materials and Components . 182

8.1.7 Dynamics . 182

8.1.8 Precise Descriptions of Manifest Domains . 183

8.1.9 Towards Mathematical Models of Domain Analysis & Description 183

8.1.10 Laws of Descriptions: A Calculus of Prompts . 183

8.1.11 Domains and Galois Connections . 184

8.1.12 Laws of Domain Description Prompts . 184

8.1.13 Domain Theories: . 184

8.1.14 External Attributes . 185

8.2 Requirements Topics . 185

8.2.1 Domain Requirements Methodology . 185

8.2.2 Domain Requirements Operator Theory . 185

8.2.3 Methodology for Interface Requirements . 185

Lect.0: Domain Science & Engineering 11 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

12 Domain Science & Engineering

9 Bibliography 186
9.1 Bibliographical Notes . 186

9.1.1 Published Papers . 186

9.1.2 Reports . 186

9.2 References . 187

IV Appendix 198

A RSL 199
A.1 RSL: The Raise Specification Language . 199

A.1.1 Type Expressions . 199

Atomic Types . 199

Composite Types . 199

Concrete Composite Types . 199

Sorts and Observer Functions . 201

A.1.2 Type Definitions . 201

Concrete Types . 201

Subtypes . 202

Sorts — Abstract Types . 202

A.1.3 The RSL Predicate Calculus . 202

Propositional Expressions . 202

Simple Predicate Expressions . 202

Quantified Expressions . 202

A.1.4 Concrete RSL Types: Values and Operations . 203

Arithmetic . 203

Set Expressions . 203

Set Enumerations . 203

Set Comprehension . 203

Cartesian Expressions . 203

Cartesian Enumerations . 203

List Expressions . 203

List Enumerations . 203

List Comprehension . 204

Map Expressions . 204

Map Enumerations . 204

Map Comprehension . 204

Set Operations . 204

Set Operator Signatures . 204

Set Examples . 205

Informal Explication . 205

Set Operator Definitions . 206

Cartesian Operations . 206

List Operations . 206

List Operator Signatures . 206

List Operation Examples . 206

Informal Explication . 207

List Operator Definitions . 207

Map Operations . 208

Map Operator Signatures and Map Operation Examples 208

Map Operation Explication . 208

Map Operation Redefinitions . 209

A.1.5 λ -Calculus + Functions . 209

The λ -Calculus Syntax . 209

Free and Bound Variables . 210

Substitution . 210

α-Renaming and β -Reduction . 210

Function Signatures . 211

Function Definitions . 211

A.1.6 Other Applicative Expressions . 211

Simple let Expressions . 211

Recursive let Expressions . 212

Predicative let Expressions . 212

Pattern and “Wild Card” let Expressions . 212

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 12 Lect.0: Domain Science & Engineering

A Prerequisite for Requirements Engineering 13

Conditionals . 212
Operator/Operand Expressions . 213

A.1.7 Imperative Constructs . 213
Statements and State Changes . 213
Variables and Assignment . 214
Statement Sequences and skip . 214
Imperative Conditionals . 214
Iterative Conditionals . 214
Iterative Sequencing . 214

A.1.8 Process Constructs . 214
Process Channels . 214
Process Composition . 214
Input/Output Events . 215
Process Definitions . 215

A.1.9 Simple RSL Specifications . 215

B Indexes 216
B.1 Index of Endurant Analysis Prompts . 216
B.2 Description Language Observers and “Built-in” Functions . 216
B.3 Domain Description Prompts and Their Schemas . 216
B.4 Attribute Analysis Prompts . 217
B.5 [Well–formedness] Axioms . 217
B.6 [Disjoint Sort] Proof Obligations . 217
B.7 Definitions . 217
B.8 Examples . 222
B.9 Concepts . 225
B.10 RSL Language Constructs . 233

Lect.0: Domain Science & Engineering 13 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

Part I

Domain Science & Engineering

This part reflects of a number domain issues: [1] how to analyse & describe manifest domains,

[2] domain facets, [3] an operational semantics of the domain prompts of Chapter 1, [4] the

simulation, monitoring and control of domains [5] a relation between Leśniewski’s Mereology

and our way of descrining, hence modelling manifest domains, and [6] an example domain

description.

14

Chapter 1

Domain Analysis & Description 9

Abstract
We show that manifest domains, an understanding of which are a prerequisite for software

requirements prescriptions, can be precisely described: narrated and formalised. We show 10

that manifest domains can be understood as a collection of endurant, that is, basically spatial

entities: parts, components and materials, and perdurant, that is, basically temporal enti-

ties: actions, events and behaviours. We show that parts can be modeled in terms of ex- 11

ternal qualities whether: atomic or composite parts, having internal qualities: unique iden-

tifications, mereologies, which model relations between parts, and attributes. We show the 12

manifest domain analysis endeavour can be supported by a calculus of manifest domain anal-

ysis prompts: is entity, is endurant, is perdurant, is part, is component,

is material, is atomic, is composite,has components,has materials, has concrete type,

attribute names, is stationary, etcetera.We show how the manifest domain de- 13

scription endeavour can be supported by a calculus of manifest domain description prompts:

observe part sorts, observe part type, observe components, observe -

materials,observe unique identifier,observe mereology, observe at-

tributes, observe location and observe position. We show how to model es- 14

sential aspects of perdurants in terms of their signatures based on the concepts of endurants.And

we show how one can “compile” descriptions of endurant parts into descriptions of perdurant

behaviours. We do not show prompt calculi for perdurants. The above contributions express a

method with principles, technique and tools for constructing domain descriptions.

1.1 Introduction 15

The broader subject of this chapter is that of software development. The narrower subject is that of man-

ifest domain engineering. We see software development in the context of the TripTych approach, see

next section, just below. The contribution of this chapter is twofold: the propagation of manifest domain 16

engineering as a first phase of the development of a large class of software — and a set of principles, tech-

niques and tools for the engineering of the analysis & descriptions of manifest domains. These principles, 17

techniques and tools are embodied in a set of analysis and description prompts. We claim that this embod-

iment in the form of prompts is novel, that the (yet to be investigated) “calculus” is a first such “method

calculus”.

1.1.1 The TripTych Approach to Software Engineering 18

We suggest a TripTych view of software engineering: before software can be designed and coded

we must have a reasonable grasp of “its” requirements; before requirements can be prescribed

15

16

we must have a reasonable grasp of “the underlying” domain. To us, therefore, software engineering19

contains the three sub-disciplines:

• domain engineering,

• requirements engineering and

• software design.
20

This paper contributes, we claim, to a methodology for domain analysis &1 domain description. Ref-

erences [26, 31] show how to “refine” domain descriptions into requirements prescriptions, and ref-

erence [34] indicates more general relations between domain descriptions and domain demos, domain
simulators and more general domain specific software.21

In branches of engineering based on natural sciences professional engineers are educated in these sci-

ences. Telecommunications engineers know Maxwell’s Laws. Maybe they cannot themselves “discover”

such laws, but they can “refine” them into designs, for example, for mobile telephony radio transmission

towers. Aeronautical engineers know laws of fluid mechanics. Maybe they cannot themselves “discover”

such laws, but they can “refine” them into designs, for example, for the design of airplane wings. And so

forth for other engineering branches.22

Our point is here the following: software engineers must domain specialise. This is already done, to a

degree, for designers of compilers, operating systems, database systems, Internet/Web systems, etcetera.

But is it done for software engineering banking systems, traffic systems, health care, insurance, etc. ? We

do not think so, but we claim it should be done.

1.1.2 Method and Methodology 23

Method

By a method we shall understand a “somehow structured” set of principles for selecting and

applying a number of techniques and tools for analysing problems and synthesizing so-

lutions for a given domain 2
24

The ‘somehow structuring’ amounts, in this treatise on domain analysis & description, to the techniques

and tools being related to a set of domain analysis & description “prompts”, “issued by the method”,

prompting the domain engineer, hence carried out by the domain analyser & describer3 — conditional

upon the result of other prompts.

Discussion 25

There may be other ‘definitions’ of the term ‘method’. The above is the one that will be adhered to in

this paper. The main idea is that there is a clear understanding of what we mean by, as here, a software

development method, in particular a domain analysis & description method.26

The main principles of the TripTych domain analysis and description approach are those of

abstraction and both narrative and formal modeling. This means that evolving domain descriptions neces-

sarily limit themselves to a subset of the domain focusing on what is considered relevant, that is, abstract

“away” some domain phenomena.27

The main techniques of the TripTych domain analysis and description approach are besides those

techniques which are in general associated with formal descriptions, focus on the techniques that relate to

the deployment of of the individual prompts.28

And the main tools of the TripTych domain analysis and description approach are the analysis and

description prompts and the description language, here the Raise Specification Language RSL [85].29

1When, as here, we write A & B we mean A & B to be one subject.
2Definitions and examples are delimited by respectively symbols.
3We shall thus use the term domain engineer to cover both the analyser & the describer.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 16 Lect.1: Domain Science & Engineering

17

A main contribution of this paper is therefore that of “painstakingly” elucidating the principles, tech-

niques and tools of the domain analysis & description method.

Methodology 30

By methodology we shall understand the study and knowledge about one or more methods4

1.1.3 Computer and Computing Science 31

By computer science we shall understand the study and knowledge of the conceptual phenomena that

“exists” inside computers and, in a wider context than just computers and computing, of the theories “be-

hind” their formal description languages Computer science is often also referred to as theoretical com-

puter science. 32

By computing science we shall understand the study and knowledge of how to construct and de-

scribe those phenomena Another term for computing science is programming methodology. 33

This paper is a computing science paper. It is concerned with the construction of domain descriptions.

It puts forward a calculus for analysing and describing domains. It does not theorize about this calculus.

There are no theorems about this calculus and hence no proofs. We leave that to another study and paper.

1.1.4 What Is a Manifest Domain ? 34

We offer a number of complementary delineations of what we mean by a manifest domain. But first some

examples, “by name” !

Example 1 . Manifest Domain Names: Examples of suggestive names of manifest domains are: air

traffic, banks, container lines, documents, hospitals, manufacturing, pipelines, railways and road

nets
35

A manifest domain is a human- and artifact-assisted arrangement of endurant, that is spatially “stable”,

and perdurant, that is temporally “fleeting” entities. Endurant entities are either parts or components or

materials. Perdurant entities are either actions or events or behaviours 36

Example 2 . Manifest Domain Endurants: Examples of (names of) endurants are Air traffic: air-

craft, airport, air lane. Banks: client, passbook. Container lines: container, container vessel,
container terminal port. Documents: document, document collection. Hospitals: patient, med-

ical staff, ward, bed, patient medical journal. Pipelines: well, pump, pipe, valve, sink, oil. Rail-
ways: simple rail unit, point, crossover, line, track, station. Road nets: link (street segment), hub

(street intersection)
37

Example 3 . Manifest Domain Perdurants: Examples of (names of) perdurants are Air traffic: start

(ascend) an aircraft, change aircraft course. Banks: open, deposit into, withdraw from, close (an

account). Container lines: move container off or on board a vessel. Documents: open, edit,
copy, shred. Hospitals: admit, diagnose, treat (patients). Pipelines: start pump, stop pump,

open valve, close valve. Railways: switch rail point, start train. Road nets: set a hub signal,

sense a vehicle
38

A manifest domain is further seen as a mapping from entities to qualities, that is, a mapping from

manifest phenomena to usually non-manifest qualities 39

Example 4 . Endurant Entity Qualities: Examples of (names of) endurant qualities: Pipeline:

unique identity of a pipeline unit, mereology (connectedness) of a pipeline unit, length of a pipe,
(pumping) height of a pump, open/close status of a valve. Road net: unique identity of a road

unit (hub or link), road unit mereology: identity of neighbouring hubs of a link, identity of links

emanating from a hub, and state of hub (traversal) signal

Lect.1: Domain Science & Engineering 17 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

18

40

Example 5 . Perdurant Entity Qualities: Examples of (names of) perdurant qualities: Pipeline:
the signature of an open (or close) valve action, the signature of a start (or stop) pump action,

etc. Road net: the signature of an insert (or remove) link action, the signature of an insert (or

remove) hub action, the signature of a vehicle behaviour, etc.
41

Our definitions of what a manifest domain is are, to our own taste, not fully adequate; they ought be so

sharp that one can unequivocally distinguish such domains that are not manifest domains from those which

are (!). Examples of the former are: the Internet, language compilers, operating systems, data bases,

etcetera. As we progress we shall sharpen our definition of ‘manifest domain’.

We shall in the rest of this chapter just write ‘domain’ instead of ‘manifest domain’.

1.1.5 What Is a Domain Description ? 42

By a domain description we understand a collection of pairs of narrative and commensurate formal

texts, where each pair describes either aspects of an endurant entity or aspects of a perdurant entity43

What does it mean that some text describes a domain entity ?

For a text to be a description text it must be possible from that text to either, if it is a narrative, to

reason, informally, that the designated entity is described to have some properties that the reader of the

text can observe that the described entities also have; or, if it is a formalisation to prove, mathematically,

that the formal text denotes the postulated properties44

Example 6 . Narrative Description of Bank System Endurants:

1 A banking system consists of a bank and collections of clients and of passbooks.

2 A bank attribute is that of a general ledger.

3 A collection of clients is a set of uniquely identified clients.

4 A collection of passbooks is a set of uniquely identified passbooks.

5 A client “possess” zero, one or more passbook identifiers.

6 Two or more clients may share the same passbook.

7 The general ledger records, for each passbook identifier, amongst others, the set of one or more client

identifiers sharing that passbook, etc.

Etcetera
45

Example 7 . Formal Description of Bank System Endurants:

type

1. B, CC, CPB
value

1. obs part CC: B → CC,
1. obs part CPB: B → CPB
type

2. GL
value

2. attr GL: B → GL

type

3. C, CI, CC = C-set,
4. PB, PBI, CPB = PB-set

value

5. attr C: C → PBI-set

type

7. GL = PBI →m SH × ...
7. SH = PBI-set

4Please note our distinction between method and methodology. We often find the two, to us, separate terms used interchangeably.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 18 Lect.1: Domain Science & Engineering

19

Etcetera
46

Example 8 . Narrative Description of Bank System Perdurants:

8 Clients and the bank possess cash (i.e., monies).

9 Clients can open a bank account and receive in return a passbook.

10 Clients may deposit monies into an account in response to which the passbook and the general ledger

are updated.

11 Clients may withdraw monies from an account: if the balance of monies in the designated account

is not less than the requested amount the client is given the (natural number) designated monies and

the passbook and the general ledger are updated.

Etcetera
47

Example 9 . Formal Description of Bank System Perdurants:

type

8. M
value

8. attr M: (B|C) → M
9. open: B → B × PB
10. deposit: PB → M → B → B × PB

11. withdraw: PB → B → Nat
∼
→ B × PB × M

Etcetera
48

By a domain description we shall thus understand a text which describes the entities of the domain:

whether endurant or perdurant, and when endurant whether discrete or continuous, atomic or compos-
ite; or when perdurant whether actions, events or behaviours. as well as the qualities of these entities.

49

So the task of the domain analyser cum describer is clear: There is a domain: right in front of our very

eyes, and it is expected that that domain be described.

Section 9.1.2 lists 10 draft reports (accessible on the Internet). They give examples of domain de-

scriptions. These descriptions were carried out in order to research and develop the domain analysis and

description concepts now summarised in the present chapter. These reports ought now be revised, some

slightly, others less so, so as to follow all of the prescriptions of the current chapter.

1.1.6 Towards a Methodology of Domain Analysis & Description 50

Practicalities of Domain Analysis & Description How does one go about analysing & describing a

domain ? Well, for the first, one has to designate one or more domain analysers cum domain describers,

i.e., trained domain scientists cum domain engineers. How does one get hold of a domain engineer ?

One takes a software engineer and educates and trains that person in domain science & domain
engineering. A derivative purpose of this paper is to unveil aspects of domain science & domain
engineering. The education and training consists in bringing forth a number of scientific and engineering 51

issues of domain analysis and of domain description. Among the engineering issues are such as: what
do I do when confronted with the task of domain analysis ? and with the task of description ? and when,
where and how do I select and apply which techniques and which tools ? Finally, there is the 52

issue of how do I, as a domain describer, choose appropriate abstractions and models ?

Lect.1: Domain Science & Engineering 19 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

20

The Four Domain Analysis & Description “Players” We can say that there are four ‘players’

at work here. the domain, the domain analyser & describer, the domain analysis & description
method, and the evolving domain analysis & description. (i) The domain is there. The domain analyser 53

& describer cannot change the domain. Analysing & describing the domain does not change it5. In a

meta-physical sense it is inert. In the physical sense the domain will usually contain entities that are

static (i.e., constant), and entities that are dynamic (i.e., variable). (ii) The domain analyser & domain54

describer is a human, preferably a scientist/engineer6, well-educated and trained in domain science &

engineering. The domain analyser & describer observes the domain, analyses it according to a method

and thereby produces a domain description. (iii) As a concept the method is here considered “fixed”.55

By ‘fixed’ we mean that its principles, techniques and tools do not change during a domain analysis &

description. The domain analyser & describer may very well apply these principles, techniques and tools

more-or-less haphazardly during domain analysis & description, flaunting the method, but the method

remains invariant. The method, however, may vary from one domain analysis & description (project) to

another domain analysis & description (project). Domain analysers & describers, may, for example, have

become wiser from a project to the next. (iv) Finally there is the evolving domain analysis & description.56

That description is a text, usually both informal and formal. Applying a domain description prompt to

the domain yields an additional domain description text which is added to the thus evolving domain
description. One may speculate of the rôle of the “input” domain description. Does it change ? Does it57

help determine the additional domain description text ? Etcetera. Without loss of generality we can assume

that the “input” domain description is changed7 and that it helps determine the added text.58

Of course, analysis & description is a trial-and-error, iterative process. During a sequence of analyses,

that is, analysis prompts, the analyser “discovers” either more pleasing abstractions or that earlier analyses

or descriptions were wrong. So they are corrected.59

An Interactive Domain Analysis & Description Dialogue We see domain analysis & descrip-

tion as a process involving the above-mentioned four ‘players’, that is, as a dialogue between the domain

analyser & describer and the domain, where the dialogue is guided by the method and the result is the

description. We see the method as a ‘player’ which issues prompts: alternating between: “analyse this”
(analysis prompts) and “describe that” (synthesis or, rather, description prompts).60

Prompts In this paper we shall suggest a number of domain analysis prompts and a number of do-
main description prompts. The domain analysis prompts, (schematically: analyse named con-

dition(e)) directs the analyser to inquire as to the truth of whatever the prompt “names” at wherever

part (component or material), e, in the domain the prompt so designates. Based on the truth value of an61

analysed entity the domain analyser may then be prompted to describe that part (or material). The do-
main description prompts, (schematically: describe type or quality(e)) directs the (analyser

cum) describer to formulate both an informal and a formal description of the type or qualities of the entity

designated by the prompt.

The prompts form languages, and there are thus two languages at play here.62

A Domain Analysis & Description Language The ‘Domain Analysis & Description Language’

thus consists of a number of meta-functions, the prompts. The meta-functions have names (say is endurant)

and types, but have no formal definition. They are not computable. They are “performed” by the domain

analysers & describers. These meta-functions are systematically introduced and informally explained in

Sect. 1.2.63

5Observing domains, such as we are trying to encircle the concept of domain, is not like observing the physical world at the level
of subatomic particles. The experimental physicists’ instruments of observation changes what is being observed.

6At the present time domain analysis appears to be partly an art, partly a scientific endeavour. Until such a time when domain
analysis & description principles, techniques and tools have matured it will remain so.

7for example being “stylistically” revised.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 20 Lect.1: Domain Science & Engineering

21

The Domain Description Language The ‘Domain Description Language’ is RSL [85], the RAISE

Specification Language [86]. With suitable, simple adjustments it could also be either of Alloy [100],

Event B [1], VDM-SL [48, 49, 77] or Z [157]. We have chosen RSL because of its simple provision for

defining sorts, expressing axioms, and postulating observers over sorts. 64

Domain Descriptions: Narration & Formalisation Descriptions must be readable and should
be mathematically precise.8 For that reason we decompose domain description fragments into clearly

identified9 “pairs” of narrative texts and formal texts.

1.1.7 One Domain – Many Models ? 65

Will two or more domain engineers cum scientists arrive at “the same domain description” ? No, almost

certainly not ! What do we mean by “the same domain description” ? To each proper description we can

associate a mathematical meaning, its semantics. Not only is it very unlikely that the syntactic form of the

domain descriptions are the same or even “marginally similar”. But it is also very unlikely that the two (or

more) semantics are the same; that is, that all properties that can be proved for one domain model can be

proved also for the other, and vice versa. Why will different domain models emerge ? Two different domain 66

describers will, undoubtedly, when analysing and describing independently, focus on different aspects of

the domain. One describer may focus attention on certain phenomena, different from those chosen by

another describer. One describer may choose some abstractions where another may choose more concrete

presentations. Etcetera. We can thus expect that a set of domain description developments lead to a 67

set of distinct models. As these domain descriptions are communicated amongst domain engineers cum

scientists we can expect that iterated domain description developments within this group of developers will

lead to fewer and more similar models. Just like physicists, over the centuries of research, have arrived

at a few models of nature, we can expect there to develop some consensus model of “standard” domains.

We expect, that sometime in future, software engineers, when commencing software development for a 68

“standard domain”, that is, one for which there exists one or more “standard models”, will start with the

development of a domain description based on “one of the standard models” — just like control engineers

of automatic control “repeat” an essence of a domain model for a control problem. We follow up on this

modeling issue in Sect. 1.4.4, Item 8, Page 71: “Laws of Descriptions: A Calculus of Prompts”.

1.1.8 Formal Concept Analysis 69

Domain analysis involves that of concept analysis. As soon as we have identified an entity for analysis we

have identified a concept. The entity is a spatio-temporal, i.e., a physical thing. Once we speak of it, it

becomes a concept. Instead of examining just one entity the domain analyser shall examine many entities.

Instead of describing one entity the domain describer shall describe a class of entities. Ganter & Wille’s

[83] addresses this issue.

A Formalisation 70

This section is a transcription of Ganter & Wille’s [83] Formal Concept Analysis, Mathematical Foun-

dations, the 1999 edition, Pages 17–18.

Some Notation: By E we shall understand the type of entities; by E we shall understand an entity of

type E ; by Q we shall understand the type of qualities; by Q we shall understand a quality of type Q; by

E -set we shall understand the type of sets of entities; by ES we shall understand a set of entities of type

E -set; by Q-set we shall understand the type of sets of qualities; and by QS we shall understand a a set of

qualities of type Q-set. 71

8One must insist on formalised domain descriptions in order to be able to verify that domain descriptions satisfy a number of
properties not explicitly formulated as well as in order to verify that requirements prescriptions satisfy domain descriptions.

9The “clear identification” is here achieved by narrative text item and corresponding formula line numbers.

Lect.1: Domain Science & Engineering 21 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

22

Definition: 1 Formal Context: A formal context K := (ES,I,QS) consists of two sets; ES of entities

and QS of qualities, and a relation I between E and Q.

To express that E is in relation I to a Quality Q we write E · I ·Q, which we read as “entity E has quality
Q”.72

Example endurant entities are a specific vehicle, another specific vehicle, etcetera; a specific
street segment (link), another street segment, etcetera; a specific road intersection (hub), another
specific road intersection, etcetera, a monitor. Example endurant entity qualities are (a vehicle) has
mobility, (a vehicle) has velocity (≥0), (a vehicle) has acceleration, etcetera; (a link) has length (>0),
(a link)has location, (a link)has traffic state, etcetera.73

Definition: 2 Qualities Common to a Set of Entities: For any subset, sES⊆ ES, of entities we can

define DQ for “derive[d] set of qualities”.

DQ : E -set → (E -set × I × Q-set) → Q-set

DQ(sES)(ES,I,QS) ≡ {Q | Q:Q,E:E • E∈sES ∧ E · I ·Q}
pre: sES ⊆ ES

The above expresses: “the set of qualities common to entities in sES”.
74

Definition: 3 Entities Common to a Set of Qualities: For any subset, sQS ⊆ QS, of qualities we

can define DE for “derive[d] set of entities”.

DE : Q-set → (E -set × I × Q-set) → E -set

DE (sQS)(ES,I,QS) ≡ {E | E:E , Q:Q • Q∈sQ ∧ E · I ·Q },
pre: sQS ⊆ QS

The above expresses: “the set of entities which have all qualities in sQS”.
75

Definition: 4 Formal Concept: A formal concept of a context K is a pair:

• (sQ,sE) where

⋄⋄ DQ(sE)(E,I,Q) = sQ and

⋄⋄ DE (sQ)(E,I,Q) = sE;

• sQ is called the intent of K and sE is called the extent of K.

Types Are Formal Concepts 76

Now comes the “crunch”: In the TripTych domain analysis we strive to find formal concepts and,

when we think we have found one, we assign a type (or a sort) and qualities to it !

Practicalities 77

There is a little problem. To search for all those entities of a domain which each have the same sets of

qualities is not feasible. So we do a combination of two things: (i) we identify a small set of entities all

having the same qualities and tentatively associate them with a type, and (ii) we identify certain nouns of

our national language and if such a noun does indeed designate a set of entities all having the same set

of qualities then we tentatively associate the noun with a type. Having thus, tentatively, identified a type78

we conjecture that type and search for counterexamples, that is, entities which refutes the conjecture. This

“process” of conjectures and refutations is iterated until some satisfaction is arrived at that the postulated

type constitutes a reasonable conjecture.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 22 Lect.1: Domain Science & Engineering

23

Formal Concepts: A Wider Implication 79

The formal concepts of a domain form Galois Connections [83]. We gladly admit that this fact is one of the

reasons why we emphasise formal concept analysis. At the same time we must admit that this paper does

not do justice to this fact. We have experimented with the analysis & description of a number of domains

and have noticed such Galois connections but it is, for us, too early to report on this. Thus we invite the

reader to study this aspect of domain analysis.

1.2 Endurant Entities 80

In the rest of this chapter we shall consider entities in the context of their being manifest (i.e., spatio-

temporal).

1.2.1 General

Definition 1 . Entity: By an entity we shall understand a phenomenon, i.e., something that can be

observed, i.e., be seen or touched by humans, or that can be conceived as an abstraction of an entity.

We further demand that an entity can be objectively described 10

81

Analysis Prompt 1 . is entity: The domain analyser analyses “things” (θ) into either entities or

non-entities. The method can thus be said to provide the domain analysis prompt:

• is entity — where is entity(θ) holds if θ is an entity 11

is entity is said to be a prerequisite prompt for all other prompts. 82

Whither Entities: The “demands” that entities be observable and objectively describable raises some

philosophical questions. Are sentiments, like feelings, emotions or “hunches” observable ? This author

thinks not. And, if so, can they be other than artistically described ? It seems that psychologically and

aesthetically “phenomena” appears to lie beyond objective description. We shall leave these speculations

for later.

1.2.2 Endurants and Perdurants 83

Definition 2 . Endurant: By an endurant we shall understand an entity that can be observed or

conceived and described as a “complete thing” at no matter which given snapshot of time. Were we to

“freeze” time we would still be able to observe the entire endurant

That is, endurants “reside” in space. Endurants are, in the words of Whitehead [154], continuants. 84

Example 10 . Traffic System Endurants: Examples of traffic system endurants are: traffic system,

road nets, fleets of vehicles, sets of hubs (i.e., street intersections), sets of links (i.e., street segments

[between hubs]), and individual hubs, links and vehicles
85

Definition 3 . Perdurant: By a perdurant we shall understand an entity for which only a fragment

exists if we look at or touch them at any given snapshot in time, that is, where we to freeze time we would

only see or touch a fragment of the perdurant

That is, perdurants “reside” in space and time. Perdurants are, in the words of Whitehead [154], occur-
rents. 86

10Definitions and examples are delimited by respectively
11Analysis prompt definitions and description prompt definitions and schemes are delimited by respectively .

Lect.2: Domain Science & Engineering 23 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

24

Example 11 . Traffic System Perdurants: Examples of road net perdurants are: insertion and

removal of hubs or links (actions), disappearance of links (events), vehicles entering or leaving the road net

(actions), vehicles crashing (events) and road traffic (behaviour)
87

Analysis Prompt 2 . is endurant: The domain analyser analyses an entity, φ , into an endurant

as prompted by the domain analysis prompt:

• is endurant — φ is an endurant if is endurant(φ) holds.

is entity is a prerequisite prompt for is endurant

Analysis Prompt 3 . is perdurant: The domain analyser analyses an entity φ into perdurants as

prompted by the domain analysis prompt:

• is perdurant — φ is a perdurant if is perdurant(φ) holds.

is entity is a prerequisite prompt for is perdurant

88

In the words of Whitehead [154] — as communicated by Sowa [145, Page 70] — an endurant has stable

qualities that enable its various appearances at different times to be recognised as the same individual; a

perdurant is in a state of flux that prevents it from being recognised by a stable set of qualities.89

Necessity and Possibility: It is indeed possible to make the endurant/perdurant distinction. But is

it necessary ? We shall argue that it is ‘by necessity’ that we make this distinction. Space and time are

fundamental notions. They cannot be dispensed with. So, to describe manifest domains without resort to

space and time is not reasonable.

1.2.3 Discrete and Continuous Endurants 90

Definition 4 . Discrete Endurant: By a discrete endurant we shall understand an endurant

which is separate, individual or distinct in form or concept

91

Example 12 . Discrete Endurants: Examples of discrete endurants are a road net, a link, a hub, a

vehicle, a traffic signal, etcetera
92

Definition 5 . Continuous Endurant: By a continuous endurant we shall understand an

endurant which is prolonged, without interruption, in an unbroken series or pattern

93

Example 13 . Continuous Endurants: Examples of continuous endurants are water, oil, gas, sand,

grain, etcetera
94

Analysis Prompt 4 . is discrete: The domain analyser analyse endurants e into discrete entities

as prompted by the domain analysis prompt:

• is discrete — e is discrete if is discrete(e) holds

Analysis Prompt 5 . is continuous: The domain analyser analyse endurants e into continuous

entities as prompted by the domain analysis prompt:

• is continuous — e is continuous if is continuous(e) holds

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 24 Lect.2: Domain Science & Engineering

25

1.2.4 Parts, Components and Materials 95

General

Definition 6 . Part: By a part we shall understand a discrete endurant which the domain engineer

chooses to endow with internal qualities such as unique identification, mereology, and one or more

attributes

We shall define the terms ‘unique identification’, ‘mereology’, and ‘attributes’ shortly.96

Example 14 . Parts: Example 10 on Page 23 illustrated, and examples 18 on the next page and 19 on the

following page illustrate parts
97

Definition 7 . Component: By a component we shall understand a discrete endurant which we,

the domain analyser cum describer chooses to not endow with internal qualities
98

Example 15 . Components: Examples of components are: chairs, tables, sofas and book cases in a

living room, letters, newspapers, and small packages in a mail box, machine assembly units on a conveyor

belt, boxes in containers of a container vessel, etcetera
99

”At the Discretion of the Domain Engineer”: We emphasise the following analysis and description

aspects: (a) The domain is full of observable phenomena. It is the decision of the domain analyser cum

describer whether to analyse and describe some such phenomena, that is, whether to include them in a

domain model. (b) The borderline between an endurant being (considered) discrete or being (considered)

continuous is fuzzy. It is the decision of the domain analyser cum describer whether to model an endurant

as discrete or continuous. (c) The borderline between a discrete endurant being (considered) a part or being 100

(considered) a component is fuzzy. It is the decision of the domain analyser cum describer whether to

model a discrete endurant as a part or as a component. (d) In Sect. 1.3.11 we shall show how to “compile”

parts into processes. A factor, therefore, in determining whether to model a discrete endurant as a part or

as a component is whether we may consider a discrete endurant as also representing a process. 101

Definition 8 . Material: By a material we shall understand a continuous endurant

Example 16 . Materials: Examples of material endurants are: air of an air conditioning system, grain

of a silo, gravel of a barge, oil (or gas) of a pipeline, sewage of a waste disposal system, and water of a

hydro-electric power plant.
102

Example 17 . Parts Containing Materials: Pipeline units are here considered discrete, i.e., parts.

Pipeline units serve to convey material

Part, Component and Material Prompts 103

Analysis Prompt 6 . is part: The domain analyser analyse endurants e into part entities as

prompted by the domain analysis prompt:

• is part — e is a part if is part(e) holds

We remind the reader that the outcome of is part(e) is very much dependent on the domain engineer’s

intention with the domain description, cf. Sect. 1.2.4. 104

Analysis Prompt 7 . is component: The domain analyser analyse endurants e into component

entities as prompted by the domain analysis prompt:

• is component — e is a component if is component(e) holds

Lect.2: Domain Science & Engineering 25 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

26

We remind the reader that the outcome of is component(e) is very much dependent on the domain

engineer’s intention with the domain description, cf. Sect. 1.2.4 on the preceding page. 105

Analysis Prompt 8 . is material: The domain analyser analyse endurants e into material entities

as prompted by the domain analysis prompt:

• is material — e is a material if is material(e) holds

We remind the reader that the outcome of is material(e) is very much dependent on the domain

engineer’s intention with the domain description, cf. Sect. 1.2.4 on the previous page.

• • •

Sections 1.2.5–1.2.9 (Pages 26–43) focus on the external and internal qualities of parts. In contrast, Sects.

1.2.10–1.2.11 (Pages 44–48) focus on components and materials.

1.2.5 Atomic and Composite Parts 106

A distinguishing quality of parts, is whether they are atomic or composite. Please note that we shall, in the

following, examine the concept of parts in quite some detail. That is, parts become the domain endurants107

of main interest, whereas components and materials become of secondary interest. This is a choice. The

choice is based on pragmatics. It is still the domain analyser cum describers’ choice whether to consider

a discrete endurant a part or a component. If the domain engineer wishes to investigate the details of a

discrete endurant then the domain engineer choose to model the discrete endurant as a part otherwise as a

component.108

Definition 9 . Atomic Part: Atomic parts are those which, in a given context, are deemed to not
consist of meaningful, separately observable proper sub-parts

A sub-part is a part109

Example 18 . Atomic Parts: Examples of atomic parts of the above mentioned domains are: aircraft (of

air traffic), demand/deposit accounts (of banks), containers (of container lines), documents (of document

systems), hubs, links and vehicles (of road traffic), patients, medical staff and beds (of hospitals), pipes,

valves and pumps (of pipeline systems), and rail units and locomotives (of railway systems)
110

Definition 10 . Composite Part: Composite parts are those which, in a given context, are deemed

to indeed consist of meaningful, separately observable proper sub-parts
111

Example 19 . Composite Parts: Examples of atomic parts of the above mentioned domains are: air-

ports and air lanes (of air traffic), banks (of a financial service industry), container vessels (of container

lines), dossiers of documents (of document systems), routes (of road nets), medical wards (of hospitals),

pipelines (of pipeline systems), and trains, rail lines and train stations (of railway systems).
112

Analysis Prompt 9 . is atomic: The domain analyser analyses a discrete endurant, i.e., a part p

into an atomic endurant:

• is atomic(p): p is an atomic endurant if is atomic(p) holds

Analysis Prompt 10 . is composite: The domain analyser analyses a discrete endurant, i.e., a

part p into a composite endurant:

• is composite(p): p is a composite endurant if is composite(p) holds

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 26 Lect.2: Domain Science & Engineering

27

is discrete is a prerequisite prompt of both is atomic and is composite.113

Whither Atomic or Composite: If we are analysing & describing vehicles in the context of a road net,

cf. Example 10 on Page 23, then we have chosen to abstract vehicles as atomic; if, on the other hand, we

are analysing & describing vehicles in the context of an automobile maintenance garage then we might

very well choose to abstract vehicles as composite — the sub-parts being the object of diagnosis by the

auto mechanics.

1.2.6 On Observing Part Sorts 114

Types and Sorts

We use the term ‘sort’ when we wish to speak of an abstract type [140], that is, a type for which we do not

wish to express a model12. We shall use the term ‘type’ to cover both abstract types and concrete types.

On Discovering Part Sorts 115

Recall from Sect. 1.1.8 on Page 22 that we “equate” a formal concept with a type (i.e., a sort). Thus, to us,

a part sort is a set of all those entities which all have exactly the same qualities. Our aim now is to present

the basic principles that let the domain analyser decide on part sorts. We observe parts one-by-one. 116

(α) Our analysis of parts concludes when we have “lifted” our examination of a particular part

instance to the conclusion that it is of a given sort, that is, reflects, or is, a formal concept.
Thus there is, in this analysis, a “eureka”, a step where we shift focus from the concrete to the abstract,

from observing specific part instances to postulating a sort: from one to the many. 117

Analysis Prompt 11 . observe parts: The domain analysis prompt:

• observe parts(p)

directs the domain analyser to observe the sub-parts of p

Let us say the sub-parts of p are: {p1,p2,. . . ,pm}
(β) The analyser analyses, for each of these parts, pik , which formal concept, i.e., sort, it

belongs to; let us say that it is of sort Pk; thus the sub-parts of p are of sorts {P1,P2,. . . ,Pm}. Some
Pk may be atomic sorts, some may be composite sorts. 118

The domain analyser continues to examine a finite number of other composite parts: {p j, pℓ, . . . , pn}.

It is then “discovered”, that is, decided, that they all consists of the same number of sub-parts {pi1 ,pi2 ,. . . ,-

pim}, {p j1 ,p j2 ,. . . ,p jm}, {pℓ1
,pℓ2

,. . . ,pℓm
}, ..., {pn1

,pn2
,. . . ,pnm}, of the same, respective, part sorts.

(γ) It is therefore concluded, that is, decided, that {pi, p j,pℓ,. . . ,pn} are all of the same part

sort P with observable part sub-sorts {P1,P2,. . . ,Pm}. 119

Above we have type-font-highlighted three sentences: (α,β ,γ). When you analyse what they “pre-

scribe” you will see that they entail a “depth-first search” for part sorts. The β sentence says it rather

directly: “The analyser analyses, for each of these parts, pk, which formal concept, i.e., part sort

it belongs to.” To do this analysis in a proper way, the analyser must (“recursively”) analyse the parts

“down” to their atomicity, and from the atomic parts decide on their part sort, and work (“recurse”) their

way “back”, through possibly intermediate composite parts, to the pks.

Part Sort Observer Functions 120

The above analysis amounts to the analyser first “applying” the domain analysis prompt is compo-

site(p) to a discrete endurant, where we now assume that the obtained truth value is true. Let us assume

that parts p:P consists of sub-parts of sorts {P1,P2,. . . ,Pm}. Since we cannot automatically guarantee that

our domain descriptions secure that P and each Pi ([1≤i≤m]) denotes disjoint sets of entities we must

prove it. 121

12for example, in terms of the concrete types: sets, Cartesians, lists, maps, or other.

Lect.2: Domain Science & Engineering 27 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

28

Domain Description Prompt 1 . observe part sorts: If is composite(p) holds, then the

analyser “applies” the description language observer prompt

• observe part sorts(p)

resulting in the analyser writing down the part sorts and part sort observers domain description text

according to the following schema:122

1. observe part sorts schema

Narration:

[s] ... narrative text on sorts ...
[o] ... narrative text on sort observers ...
[i] ... narrative text on sort recognisers ...
[p] ... narrative text on proof obligations ...

Formalisation:

type

[s] P,
[s] Pi [1≤i≤m] comment: Pi [1≤i≤m] abbreviates P1, P2, ..., Pm

value

[o] obs part Pi: P → Pi [1≤i≤m]
[i] is Pi: Pi → Bool [1≤i≤m]

proof obligation [Disjointness of part sorts]
[p] ∀ p:(P1|P2|...|Pm) •

[p]
∧

{is Pi(p) ≡
∨

∼ {is P j(p) | j ∈ {1..m} \ {i}} | i ∈ {1..m}}

is composite is a prerequisite prompt of observe part sorts

We do not here state guidelines for discharging these kinds of proof obligations. But we will very informally

sketch such discharges, see below.123

Example 20 . Composite and Atomic Part Sorts of Transportation: The following example il-

lustrates the multiple use of the observe part sorts function: first to δ , a specific transport domain,

Item 12, then to an n : N, the net of that domain, Item 13, and then to an f : F , the fleet of that domain,

Item 14.

12 A transportation domain is viewed as composed from a net (of hubs and links), a fleet (of vehicles)

and a monitor.

13 A transportation net is here seen as composed from a collection of hubs and a collection of links.

14 A fleet is here seen as a collection of vehicles.

The monitor is considered an atomic part.124

type

12. N, F, M
value

12. obs part N:∆→N, obs part F:∆→F, obs part M:∆→M
type

13. HC, LC
value

13. obs part HC:N→HC, obs part LC:N→LC

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 28 Lect.2: Domain Science & Engineering

29

type

14. VC
value

14. obs part VC:F→VC

125
A proof obligation has to be discharged, one that shows disjointedness of sorts N, F and M. An informal
sketch is: entities of sort N are composite and consists of two parts: aggregations of hubs, HS, and aggre-
gations of links, LS. Entities of sort F consists of an aggregation, VS, of vehicles. So already that makes
N and F disjoint. M is an atomic entity — where N and F are both composite. Hence the three sorts N, F
and M are disjoint

On Discovering Concrete Part Types 126

Analysis Prompt 12 . has concrete type: The domain analyser may decide that it is expedient,

i.e., pragmatically sound, to render a part sort, P, whether atomic or composite, as a concrete type, T. That

decision is prompted by the holding of the domain analysis prompt:

• has concrete type(p).

is discrete is a prerequisite prompt of has concrete type

The reader is reminded that the decision as to whether an abstract type is (also) to be described concretely

is entirely at the discretion of the domain engineer. 127

Domain Description Prompt 2 . observe part type: Then the domain analyser applies the

domain description prompt:

• observe part type(p)13

to parts p:P which then yield the part type and part type observers domain description text according

to the following schema: 128

2. observe part type schema

Narration:

[t1] ... narrative text on sorts and types Si ...
[t2] ... narrative text on types T ...
[o] ... narrative text on type observers ...

Formalisation:

type

[t1] S1, S2, ..., Sm, ..., Sn,
[t2] T = E (S1,S2,...,Sn)
value

[o] obs part T: P → T

where S1,S2,...,Sm,...,Sn may be any types, including part sorts, where 0≤m≤n≥1, where m is the number

of new (atomic or composite) sorts, and where n−m is the number of concrete types (like Bool, Int, Nat)

or sorts already analysed & described. and E (S1,S2,...,Sn) is a type expression
129

The type names, T, of the concrete type, as well as those of the auxiliary types, S1,S2,...,Sm, are chosen

by the domain describer: they may have already been chosen for other sort–to–type descriptions, or they

may be new. 130

13has concrete type is a prerequisite prompt of observe part type.

Lect.2: Domain Science & Engineering 29 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

30

Example 21 . Concrete Part Types of Transportation: We continue Example 20 on Page 28:

15 A collection of hubs is here seen as a set of hubs and a collection of links is here seen as a set of

links.

16 Hubs and links are, until further analysis, part sorts.

17 A collection of vehicles is here seen as a set of vehicles.

18 Vehicles are, until further analysis, part sorts.

type

15. Hs = H-set, Ls = L-set

16. H, L
17. Vs = V-set

18. V
value

15. obs part Hs:HC→Hs, obs part Ls:LC→Ls
17. obs part Vs:VC→Vs

Forms of Part Types 131

Usually it is wise to restrict the part type definitions, Ti = Ei(Q,R,...,S), to simple type expressions. T=A-

set or T=A∗ or T=ID→m A or T=At |Bt |...|Ct where ID is a sort of unique identifiers, T=At |Bt |...|Ct

defines the disjoint types At==mkAs(s:As), Bt==mkBs(s:Bs), ..., Ct==mkCs(s:Cs), and where A, As,
Bs, ..., Cs are sorts. Instead of At==mkA(a:As), etc., we may write At ::As etc.

Part Sort and Type Derivation Chains 132

Let P be a composite sort. Let P1, P2, . . . , Pm be the part sorts “discovered” by means of observe -

part sorts(p) where p:P. We say that P1, P2, . . . , Pm are (immediately) derived from P. If Pk is

derived from P j and P j is derived from Pi, then, by transitivity, Pk is derived from Pi.133

No Recursive Derivations We “mandate” that if Pk is derived from P j then there can be no P derived

from P j such that P is P j, that is, P j cannot be derived from P j.

That is, we do not allow recursive domain sorts.

It is not a question, actually of allowing recursive domain sorts. It is, we claim to have observed, in

very many domain modeling experiments, that there are no recursive domain sorts !

Names of Part Sorts and Types 134

The domain analysis and domain description text prompts observe part sorts, observe mate-

rial sorts and observe part type — as well as the attribute names, observe materi-

al sorts, observe unique identifier, observe mereology and observe attributes

prompts introduced below — “yield” type names. That is, it is as if there is a reservoir of an indefinite-size

set of such names from which these names are “pulled”, and once obtained are never “pulled” again. There135

may be domains for which two distinct part sorts may be composed from identical part sorts. In this case

the domain analyser indicates so by prescribing a part sort already introduced.

Example 22 . Container Line Sorts: Our example is that of a container line with container vessels and

container terminal ports.136

19 A container line contains a number of container vessels and a number of container terminal ports, as

well as other components.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 30 Lect.2: Domain Science & Engineering

31

20 A container vessel contains a container stowage area, etc.

21 A container terminal port contains a container stowage area, etc.

22 A container stowage ares contains a set of uniquely identified container bays.

23 A container bay contains a set of uniquely identified container rows.

24 A container row contains a set of uniquely identified container stacks.

25 A container stack contains a stack, i.e., a first-in, last-out sequence of containers.

26 Containers are further undefined.

After a some slight editing we get: 137

type

CL
VS, VI, V, Vs = VI→m V,
PS, PI, P, Ps = PI→m P

value

obs part VS: CL → VS
obs part Vs: VS → Vs
obs part PS: CL → PS
obs part Ps: CTPS → CTPs

type

CSA
value

obs part CSA: V → CSA
obs part CSA: P → CSA

type

BAYS, BI, BAY, Bays=BI→m BAY
ROWS, RI, ROW, Rows=RI→m ROW
STKS, SI, STK, Stks=SI→m STK
C

value

obs part BAYS: CSA → BAYS,
obs part Bays: BAYS → Bays
obs part ROWS: BAY → ROWS,
obs part Rows: ROWS → Rows
obs part STKS: ROW → STKS,
obs part Stks: STKS → Stks
obs part Stk: STK → C∗

Note that observe part sorts(v:V) and observe part sorts(p:P) both yield CSA

More On Part Sorts and Types 138

The above “experimental example” motivates the below. We can always assume that composite parts p:P

abstractly consists of a definite number of sub-parts.

Example 23. We comment on Example 20 on Page 28: parts of type ∆ and N are composed from three,

respectively two abstract sub-parts of distinct types

Some of the parts, say piz of {pi1 ,pi2 ,. . . ,pim}, of p:P, may themselves be composite.

Example 24. We comment on Example 20 on Page 28: parts of type N, F, HC, LC and VC are all

composite
139

There are, pragmatically speaking, two cases for such compositionality. Either the part, piz , of type tiz , is

is composed from a definite number of abstract or concrete sub-parts of distinct types.

Example 25. We comment on Example 20 on Page 28: parts of type N are composed from three sub-parts

Or it is composed from an indefinite number of sub-parts of the same sort.

Example 26. We comment on Example 20 on Page 28: parts of type HC, LC and VC are composed from

an indefinite numbers of hubs, links and vehicles, respectively
140

Example 27 . Pipeline Parts:

Lect.2: Domain Science & Engineering 31 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

32

27 A pipeline consists of an indefinite number of pipeline units.

28 A pipeline units is either a well, or a pipe, or a pump, or a valve, or a fork, or a join, or a sink.

29 All these unit sorts are atomic and disjoint.

type

27. PL, U, We, Pi, Pu, Va, Fo, Jo, Si
27. Well, Pipe, Pump, Valv, Fork, Join, Sink
value

27. obs part Us: PL → U-set

type

28. U == We | Pi | Pu | Va | Fo | Jo | Si
29. We::Well, Pi::Pipe, Pu::Pump, Va::Valv, Fo:Fork, Jo::Join, Si::Sink

The experimental research report [38] covers pipelines in some detail141

Derivation Lattices Derivation chains start with the domain name, say ∆, and (definitively) end with

the name of an atomic sort. Sets of derivation chains form join lattices [12].

Example 28 . Derivation Chains: Figure 1.1 illustrates two part sort and type derivation chains. based

on Examples 20 on Page 28 and 22 on Page 30, respectively. The “–>” of Fig. 1.1 stands for →m142

RTS

Hs=H−set

Legend:

F MN

HS LS VS

Hs Ls Vs

H L V

Ls=L−set
Vs=V−set

A

B

A

B=I−>C

means:

means: obs_B: A −> B

obs_B: A −> B

CL

VS PS

CSA

BAYS

Bays=BI−>BAY

Vs=VI−>V Ps=PI−>P

where:

ROWS

Rows=RI−>ROW

STKS

Stks=SI−>STK

Stk=SI−>C*

C

Figure 1.1: Two Domain Lattices: Examples 20 on Page 28 and 22 on Page 30

External and Internal Qualities of Parts 143

By an external part quality we shall understand the is atomic, is composite, is discrete

and is continuous qualities. By an internal part quality we shall understand the part qualities to be

outlined in the next sections: unique identification, mereology and attributes. By part
qualities we mean the sum total of external endurant and internal endurant qualities.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 32 Lect.2: Domain Science & Engineering

33

Three Categories of Internal Qualities 144

We suggest that the internal qualities of parts be analysed into three categories: (i) a category of unique

part identifiers, (ii) a category of mereological quantities and (iii) a category of general attributes. Part 145

mereologies are about sharing qualities between parts. Some such sharing expresses spatio-topological

properties of how parts are organised. Other part sharing aspects express relations (like equality) of part

attributes. We base our modeling of mereologies on the notion of unique part identifiers. Hence we cover

internal qualities in the order (i–ii–iii).

1.2.7 Unique Part Identifiers 146

Two parts are either identical or a distinct, i.e., unique. Two parts are identical if all their respective qualities

have the same values. That is, their location in space/time are one and the same. Two parts are distinct

even if all the attribute qualities of the two parts, that we have chosen to consider have the same values, if,

in that case, their space/time locations are distinct. 147

We can assume, without any loss of generality, (i) that all parts, p, of any domain P, have unique
identifiers, (ii) that unique identifiers (of parts p:P) are abstract values (of the unique identifier sort

PI of P), (iii) such that distinct part sorts, Pi and P j, have distinctly named unique identifier sorts, say PIi
and PI j, (iv) that all πi:PIi and π j:PI j are distinct, and (v) that the observer function uid P applied to p
yields the unique identifier, say π :PI, of p. 148

Representation of Unique Identifiers: Unique identifiers are abstractions. When we endow two parts

(say of the same sort) with distinct unique identifiers then we are simply saying that these two parts are

distinct. We are not assuming anything about how these identifiers otherwise come about. 149

Domain Description Prompt 3 . observe unique identifier: We can therefore apply the

domain description prompt:

• observe unique identifier

to parts p:P resulting in the analyser writing down the unique identifier type and observer domain

description text according to the following schema: 150

3. observe unique identifier schema

Narration:

[s] ... narrative text on unique identifier sort ...
[u] ... narrative text on unique identifier observer ...
[a] ... axiom on uniqueness of unique identifiers ...

Formalisation:

type

[s] PI
value

[u] uid P: P → PI
axiom

[a] U

U is a predicate over part sorts and unique part identifier sorts. The unique part identifier sort, PI, is

unique, as are all part sort names, P.
151

Example 29 . Unique Transportation Net Part Identifiers: We continue Example 20 on Page 28.

30 Links and hubs have unique identifiers

Lect.3: Domain Science & Engineering 33 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

34

31 and unique identifier observers.

type

30. LI, HI
value

31. uid LI: L → LI
31. uid HI: H → HI
axiom [Well−formedness of Links, L, and Hubs, H]
30. ∀ l,l

′
:L • l6=l

′
⇒uid LI(l) 6=uid LI(l

′
),

30. ∀ h,h
′
:H • h6=h

′
⇒uid HI(h) 6=uid HI(h

′
)

1.2.8 Mereology 152

Mereology is the study and knowledge of parts and part relations. Mereology as a logical/philosophi-

cal discipline can perhaps best be attributed to the Polish mathematician/logician Stanisław Leśniewski

[57, 39].

Part Relations 153

Which are the relations that can be relevant for part-hood ? We give some examples. Two otherwise distinct

parts may share attribute values. 14

Example 30 . Shared Attribute Mereology: (i) two or more distinct public transport busses may run

according to the same, thus “shared”, bus time table; (ii) all vehicles in a traffic participate in that traffic,

each with their “share”, that is, position on links or at hubs – as observed by the (thus postulated, and

shared) traffic observer. etcetera
154

Two otherwise distinct parts may be said to, for example, be topologically “adjacent” or one “embedded”

within the other.

Example 31 . Topological Connectedness Mereology:(i) two rail units may be connected (i.e.,

adjacent), (ii) a road link may be connected to two road hubs; (iii) a road hub may be connected to zero or

more road links; etcetera.

The above examples are in no way indicative of the “space” of part relations that may be relevant for part-

hood. The domain analyser is expected to do a bit of experimental research in order to discover necessary,

sufficient and pleasing “mereology-hoods”!

Part Mereology: Types and Functions 155

Analysis Prompt 13 . has mereology: To discover necessary, sufficient and pleasing “mereology-

hoods” the analyser can be said to endow a truth value true to the domain analysis prompt:

• has mereology

156

When the domain analyser decides that some parts are related in a specifically enunciated mereology, the

analyser has to decide on suitable mereology types and mereology (i.e., part relation) observers.

We can define a mereology type as a type E xpression over unique [part] identifier types. We gen-

eralise to unique [part] identifiers over a definite collection of part sorts, P1, P2, ..., Pn, where the parts

p1:P1, p2:P2, ..., pn:Pn are not necessarily (immediate) sub-parts of some part p:P.

type

PI1, PI2, ..., PIn
MT = E (PI1, PI2, ..., PIn),

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 34 Lect.3: Domain Science & Engineering

35

157

Domain Description Prompt 4 . observe mereology: If has mereology(p) holds for parts

p of type P, then the analyser can apply the domain description prompt:

• observe mereology

to parts of that type and write down the mereology types and observers domain description text ac-

cording to the following schema: 158

4. observe mereology schema

Narration:

[t] ... narrative text on mereology type ...
[m] ... narrative text on mereology observer ...
[a] ... narrative text on mereology type constraints ...

Formalisation:

type

[t] MT15= E (PI1,PI2,...,PIm)
value

[m] obs mereo P: P → MT
axiom [Well−formedness of Domain Mereologies]
[a] A (MT)

159

Here E (PI1,PI2,...,PIm) is a type expression over possibly all unique identifier types of the domain de-

scription, and A (MT) is a predicate over possibly all unique identifier types of the domain description. To

write down the concrete type definition for MT requires a bit of analysis and thinking. has mereology

is a prerequisite prompt for observe mereology

160

Example 32 . Road Net Part Mereologies: We continue Example 20 on Page 28 and Example 29 on

Page 33.

32 Links are connected to exactly two distinct hubs.

33 Hubs are connected to zero or more links.

34 For a given net the link and hub identifiers of the mereology of hubs and links must be those of links

and hubs, respectively, of the net.
161

type

32. LM
′
= HI-set, LM = {|his:HI-set • card(his)=2|}

33. HM = LI-set

value

32. obs mereo L: L → LM
33. obs mereo H: H → HM
axiom [Well−formedness of Road Nets, N]
34. ∀ n:N,l:L,h:H• l ∈ obs part Ls(obs part LC(n))∧h ∈ obs part Hs(obs part GC(n))
34. let his=mereology H(l), lis=mereology H(h) in

34. his⊆∪{uid H(h) | h ∈ obs part Hs(obs part HC(n))}
34. ∧ lis⊆∪{uid H(l) | l ∈ obs part Ls(obs part LC(n))} end

Lect.3: Domain Science & Engineering 35 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

36

162

Example 33 . Pipeline Parts Mereology: We continue Example 27 on Page 31. Pipeline units serve

to conduct fluid or gaseous material. The flow of these occur in only one direction: from so-called input to

so-called output.

35 Wells have exactly one connection to an output unit.

36 Pipes, pumps and valves have exactly one connection from an input unit and one connection to an

output unit.

37 Forks have exactly one connection from an input unit and exactly two connections to distinct output

units.

38 Joins have exactly one two connection from distinct input units and one connection to an output unit.

39 Sinks have exactly one connection from an input unit.

40 Thus we model the mereology of a pipeline unit as a pair of disjoint sets of unique pipeline unit

identifiers.
163

type

40. UM′=(UI-set×UI-set)
40. UM={|(iuis,ouis):UI-set×UI-set•iuis ∩ ouis={}|}
value

40. obs mereo U: UM
axiom [Well−formedness of Pipeline Systems, PLS (0)]

∀ pl:PL,u:U • u ∈ obs part Us(pl) ⇒
let (iuis,ouis)=obs mereo U(u) in

case (card iuis,card ouis) of

35. (0,1) → is We(u),
36. (1,1) → is Pi(u)∨is Pu(u)∨is Va(u),
37. (1,2) → is Fo(u),
38. (2,1) → is Jo(u),
39. (1,0) → is Si(u)

end end

Example 50 on Page 47 (axiom Page 47), Example 51 on Page 48 (axiom Page 48) and Example 52 on

Page 49 (axiom Page 50) illustrates the need to constrain the sets of endurant entities denoted by definitions

of part sort, unique identifier and mereology attribute definitions.

Update of Mereologies 164

We normally consider a part’s mereology to be constant. There may, however, be cases where the mereol-

ogy of a part changes. In order to update mereology values the description language offers the “built-in”

operator:

Mereology Update Function

• upd mereology: P → M → P

for all relevant M and P. The meaning of upd mereology is, informally:165

14For the concept of attribute value see Sect. 1.2.9 on Page 38.
15MT will be used several times in Sect. 1.3.11.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 36 Lect.3: Domain Science & Engineering

37

type

P, M
value

upd mereology: P → M → P
upd mereology(p)(m) as p′

post: obs mereo H(p′) = m

166
The above is a simplification. It lacks explaining that all other aspects of the part p:P are left unchanged.

It also omits mentioning some proof obligations. The updated mereology must, for example, only specify

such unique identifiers of parts that are indeed existing parts. A proper formal explication requires that we

set up a formal model of the domain/method/analyser/description quadrangle. 167

Example 34 . Mereology Update: The example is that of updating the mereology of a hub. Cf. Example 32

on Page 35.

41 Inserting a link, l:L, between two hubs, ha:H,hb:H require the update of the mereologies of these

two existing hubs.

42 The unique identifier of the inserted link, l:L, is li, li=uid L(l) and h is either ha or hb;

43 li is joined to the mereology of both ha or hb; and respective hubs are updated accordingly.

value

41. update hub mereology: H → LI → H
42. update hub mereology(h)(li) ≡
43. let m = {li} ∪ obs mereo H(h) in upd mereology(h)(m) end

Formulation of Mereologies 168

The observe mereology domain descriptor, Page 35, may give the impression that the mereo type

MT can be described “at the point of issue” of the observe mereology prompt. Since the MT type

expression may, in general, depend on any part sort the mereo type MT can, for some domains, “first” be

described when all part sorts have been dealt with. In [40] we we present a model of one form of evaluation

of the TripTych analysis and description prompts.

1.2.9 Part Attributes 169

To recall: there are three sets of internal endurant qualities: unique part identifiers, part mereology and

attributes. Unique part identifiers and part mereology are rather definite kinds of internal qualities.

Part attributes form more “free-wheeling” sets of internal qualities.

Inseparability of Attributes from Endurants

Parts are typically recognised because of their spatial form and are otherwise characterised by their intangi-

ble, but measurable attributes. That is, whereas endurants, whether discrete (as are parts and components)

or continuous (as are materials), are physical, tangible, in the sense of being spatial [or being abstractions,

i.e., concepts, of spatial endurants], attributes are intangible: cannot normally be touched16, or seen17, but

can be objectively measured18. Thus, in our quest for describing domains where humans play an active

16One can see the red colour of a wall, but one touches the wall.
17One cannot see electric current, and one may touch an electric wire, but only if it conducts reasonably high voltage can one feel

it.
18That is, we restrict our domain analysis with respect to attributes to such quantities which are observable, say by mechanical,

electrical or chemical instruments. Once objective measurements can be mad of human feelings, beauty, and other, we may wish to
include these “attributes” in our domain descriptions.

Lect.3: Domain Science & Engineering 37 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

38

rôle, we rule out subjective “attributes”: feelings, sentiments, moods. Thus we shall abstain, in our domain

science also from matters of aesthetics. We learned from Sect. 1.1.8 that a formal concept, that is, a type,

consists of all the entities which all have the same qualities. Thus removing a quality from an entity makes

no sense: the entity of that type either becomes an entity of another type or ceases to exist (i.e., becomes a

non-entity) !

Attribute Quality and Attribute Value 170

We distinguish between an attribute, as a logical proposition and an attribute value as a value in some not

necessarily Boolean value space.

Example 35 . Attribute Propositions and Other Values: A particular street segment (i.e., a link),

say ℓ, satisfies the proposition (attribute) has length, and may then have value length 90 meter for that

attribute. Another link satisfies the same proposition but has another value; and yet another link satisfies the

same proposition and may have the same value. That is: all links satisfies has length and has some value

for that attribute. A particular road transport domain, δ , has three immediate sub-parts: net, n, fleet, f , and

monitor m; typically nets has net name and has net owner proposition attributes with, for exam-

ple, US Interstate Highway System respectively US Department of Transportation

as values for those attributes There may be other components of the net value n

Endurant Attributes: Types and Functions 171

Let us recall that attributes cover qualities other than unique identifiers and mereology. Let us then consider

that parts have one or more attributes. These attributes are qualities which help characterise “what it means”

to be a part.172

Example 36 . Atomic Part Attributes: Examples of attributes of atomic parts such as a human are:

name, gender, birth-date, birth-place, nationality, height, weight, eye colour, hair colour, etc. Examples of

attributes of transport net links are: length, location, 1 or 2-way link, link condition, etc.
173

Example 37 . Composite Part Attributes: Examples of attributes of composite parts such as a road

net are: owner, public or private net, free-way or toll road, a map of the net, etc. Examples of attributes of

a group of people could be: statistic distributions of gender, age, income, education, nationality, religion,
etc.

174

We now assume that all parts have attributes. The question is now, in general, how many and, particularly,

which.

Analysis Prompt 14 . attribute names: The domain analysis prompt attribute names

when applied to a part p yields the set of names of its attribute types:

• attribute names(p): {ηA1,ηA2, ...,ηAn}.

η is a type operator. Applied to a type A it yields is name19

175

We cannot automatically, that is, syntactically, guarantee that our domain descriptions secure that the vari-

ous attribute types for an emerging part sort denote disjoint sets of values. Therefore we must prove it.176

The Attribute Value Observer The “built-in” description language operator

• attr A

applies to parts, p:P, where ηA∈attribute names(p). It yields the value of attribute A of p.177

19Normally, in non-formula texts, type A is referred to by ηA. In formulas A denote a type, that is, a set of entities. Hence, when
we wish to emphasize that we speak of the name of that type we use ηA. But often we omit the distinction

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 38 Lect.3: Domain Science & Engineering

39

Domain Description Prompt 5 . observe attributes: The domain analyser experiments,

thinks and reflects about part attributes. That process is initated by the domain description prompt:

• observe attributes.

The result of that domain description prompt is that the domain analyser cum describer writes down

the attribute (sorts or) types and observers domain description text according to the following schema:

178

5. observe attributes schema

Narration:

[t] ... narrative text on attribute sorts ...
[o] ... narrative text on attribute sort observers ...
[i] ... narrative text on attribute sort recognisers ...
[p] ... narrative text on attribute sort proof obligations ...

Formalisation:

type

[t] Ai [1≤i≤n]
value

[o] attr Ai:P→Ai [1≤i≤n]
[i] is Ai:Ai→Bool [1≤i≤n]
proof obligation [Disjointness of Attribute Types]
[p] ∀ δ :∆
[p] let P be any part sort in [the ∆ domain description]
[p] let a:(A1|A2|...|An) in is Ai(a) 6= is A j(a) end end [i6= j, 1≤i, j≤n]

179
The type (or rather sort) definitions: A1, A2, ..., An inform us that the domain analyser has decided to focus

on the distinctly named A1, A2, ..., An attributes.20 And the value clauses attr A1:P→A1, attr A2:P→A2,

..., attr An:P→An are then “automatically” given: if a part (type P) has an attribute Ai then there is

postulated, “by definition” [eureka] an attribute observer function attr Ai:P→Ai etcetera
180

The fact that, for example, A1, A2, ..., An are attributes of p:P, means that the propositions

• has attribute A1(p), has attribute A2(p), ..., and has attribute An(p)

holds. Thus the observer functions attr A1, attr A2, ..., attr An can be applied to p in P and yield attribute

values a1:A1, a2:A2, ..., an:An respectively. 181

Example 38 . Road Hub Attributes: After some analysis a domain analyser may arrive at some inter-

esting hub attributes:

44 hub state: from which links (by reference) can one reach which links (by reference),

45 hub state space: the set of all potential hub states that a hub may attain,

46 such that

a the links referred to in the state are links of the hub mereology

b and the state is in the state space.

47 Etcetera — i.e., there are other attributes not mentioned here.
182

20The attribute type names are not like type names of, for example, a programming language. Instead they are chosen by the
domain analyser to reflect on domain phenomena. Cf. Example 36 on the preceding page and Example 37.

Lect.3: Domain Science & Engineering 39 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

40

type

44. HΣ = (LI×LI)-set

45. HΩ = HΣ-set

value

44. attr HΣ:H→HΣ
45. attr HΩ:H→HΩ
axiom [Well−formedness of Hub States, HΣ]
46. ∀ h:H • let lis = obs mereo H(h) in

46. let hσ = attr HΣ(h) in

46a. {li,li
′
|li,li

′
:LI•(li,li

′
)∈ hσ}⊆lis

46b. ∧ hσ ∈ attr HΩ(h)
46. end end

type

47. ..., ...
value

47. attr ..., ...

Attribute Categories 183

One can suggest a hierarchy of part attribute categories: static or dynamic values — and within the dynamic

value category: inert values or reactive values or active values — and within the dynamic active value

category: autonomous values or biddable values or programmable values. We now review these attribute

value types. (The review is based on [101, M.A. Jackson].)184

Part attributes are either constant or varying, i.e., static or dynamic attributes. By a static at-
tribute, is static attribute, we shall understand an attribute whose values are constants, i.e.,

cannot change. By a dynamic attribute, is dynamic attribute, we shall understand an attribute

whose values are variable, i.e., can change.185

Dynamic attributes are either inert, reactive or active attributes. By an inert attribute, is in-

ert attribute, we shall understand a dynamic attribute whose values only change as the result of

external stimuli where these stimuli prescribe properties of these new values. By a reactive attribute,

is reactive attribute, we shall understand a dynamic attribute whose values, if they vary, change

value in response to the change of other attribute values. By an active attribute, is active attribute,

we shall understand a dynamic attribute whose values change (also) of its own volition.186

Example 39 . Inert and Reactive Attributes: Buses (i.e., vehicles) have a timetable attribute which

is dynamic, i.e., can change, namely when the operator of the bus decides so, thus the bus timetable attribute

is inert. Pipeline valve units include the two attributes of valve opening (open, close) and internal
flow (measured, say gallons per second). The valve opening attribute is of the programmable attribute

category. The flow attribute is reactive (flow changes with valve opening/closing)
187

Active attributes are either autonomous, biddable or programmable attributes. By an autonomous
attribute, is autonomous attribute, we shall understand a dynamic active attribute whose values

change value only “on their own volition”. The values of an autonomous attributes are a “law onto them-

selves and their surroundings”. By a biddable attribute, is biddable attribute, (of a part) we

shall understand a dynamic active attribute whose values may be subject to a contract as to which values

it is expected to exhibit. By a programmable attribute, is programmable attribute, we shall

understand a dynamic active attribute whose values can be accurately prescribed.188

Example 40 . Static, Programmable and Inert Link Attributes:

48 Some link attributes

a (link) length,

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 40 Lect.3: Domain Science & Engineering

41

b (link) name, e.g., Fifth Ave. between 50th and 51st Streets),

can be considered static,

49 whereas other link attributes

a (link) state (one-way: say from 51st to 50th),

b (link) state space (one single state, one-way: say from 51st to 50th)

can be considered programmable,

50 Finally link attributes

a link state–of–repair,

b date last maintained,

can be considered inert.
189

type

48a. LEN
value

48a. obs part LEN: L → LEN
type

48b. Name
value

48b. obs part Name: L → Name
type

49a. LΣ′=(HI×HI)-set

49a. LΣ={|lσ :LΣ • card lσ ≤ 2|}
value

49a. obs part LΣ: L → LΣ
type

49b. LΩ′=LΣ-set

49b. LΩ={|lω :LΩ • card lω = 1|}
value

49b. obs part LΩ: L → LΩ
type

50a. LSoR
50b. DLM
value

50a. obs part LSoR: L → LSoR
50b. obs part DLM: L → DLM

190

Example 41 . Autonomous and Programmable Hub Attributes: We continue Example ??. Time

progresses autonomously, Hub states are programmed (traffic signals): changing from red to green via

yellow, in one pair of (co-linear) directions, while changing, in the same time interval, from green via

yellow to red in the “perpendicular” directions
191

External Attributes: By an external attribute we shall understand

either a inert, or a reactive, or an autonomous, or a biddable

attribute Thus we can define the domain analysis prompt: is external attribute, as:

value

is external attribute: P → Bool

is external attribute(p) ≡
is dynamic attribute(p) ∧ ∼is programmable attribute(p)

pre: is endurant(p) ∧ is discrete(p)

192

Figure 1.2 on the following page captures the attribute value ontology.

Lect.3: Domain Science & Engineering 41 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

42

dynamic

active

static

biddable
programmable

inert

endurant

autonomous

reactive

external

Figure 1.2: Attribute Value Ontology

Access to Attribute Values 193

In an action, event or a behaviour description static values of parts, p, (say of type A) can be “copied”,

attr A(p), and still retain their (static) value. But, for action, event or behaviour descriptions, dynamic
values of parts, p, cannot be “copied”, but attr A(p) must be “performed” every time they are needed. That 194

is: static values require at most one domain access, whereas dynamic values require repeated domain

accesses.

We shall return to the issue of attribute value access in Sect. 1.3.7.

Shared Attributes 195

Normally part attributes of different part sorts are distinctly named. If, however, observe attri-

butes(pik:Pi) and observe attributes(p jℓ:P j), for any two distinct part sorts, Pi and P j, of a

domain, “discovers” identically named attributes, say A, then we say that parts pi:Pi and p j:P j share
attribute A. that is, that a:attr A(pi) (and a′:attr A(p j)) is a shared attribute (with a=a′ always (�)

holding).196

Attribute Naming: Thus the domain describer has to exert great care when naming attribute types. If

Pi and P j are two distinct types of a domain then if and only if an attribute of Pi is to be shared with an

attribute of P j must that attribute be identically named in the description of Pi and P j.197

Example 42. Shared Attributes. Examples of shared attributes: (i) Bus timetable attributes have the

same value as the regional transport system timetable attribute. (ii) Bus clock attributes have the same

value as the regional transport system clock attribute. (iii) Bus owner attributes have the same value as

the regional transport system owner attribute. (iv) Bank customer passbooks record bank transactions

on, for example, demand/deposit accounts share values with the bank general ledger passbook entries. (v)

A link incident upon or emanating from a hub shares the connection between that link and the hub as an

attribute. (vi) Two pipeline units21, pi, p j, that are connected, such that an outlet π j of pi “feeds into” an

inlet πi of p j, are said to share the connection (modeled by, e.g., {(πi,π j)}.
198

Example 43 . Shared Timetables: The fleet and vehicles of Example 20 on Page 28 and Example 21

on Page 30 is that of a bus company.

51 From the fleet and from the vehicles we observe unique identifiers.

52 Every bus mereology records the same one unique fleet identifier.

53 The fleet mereology records the set of all unique bus identifiers.

54 A bus timetable is a share fleet and bus attribute.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 42 Lect.3: Domain Science & Engineering

43

199

type

51. FI, VI, BT
value

51. uid F: F → FI
51. uid V: V → VI
52. obs mereo F: F → VI-set [cf. Sect. 1.2.8 on Page 34]
53. obs mereo V: V → FI
54. attr BT: (F|V) → BT
axiom

� ∀ f:F ⇒
∀ v:V • v ∈ obs part Vs(obs part VC(f)) • attr BT(f) = attr BT(v)

[which is the same as]
� ∀ f:F ⇒

{attr BT(f)}={attr BT(v):v:V•v ∈ obs part Vs(obs part VC(f))}

200
Part attributes of one sort, Pi, may be simple type expressions such as A-set, where A may be an attribute

of some other part sort, P j , in which case we say that part attributes A-set and A are shared. 201

Example 44 . Shared Passbooks:

55 A banking system contains

• an administration and

• a set of customers.

56 The administration contains a general ledger.

57 An attribute of a general ledger is a set of passbooks.

58 An attribute of a customer is that of a passbook.

59 Passbooks are uniquely identified by unique customer identifiers.
202

type

55. [parts] BS, AD, GL, CS, Cs = C-set

58. [attributes] PB
value

55. obs part AD: BS → AD
56. obs part GL: AD → GL
57. attr PBs: GL → PB-set

55. obs part CS: BS → CS
55. obs part Cs: BS → Cs
58. attr PB: C → PB
59. uid PB: PB → PBI
axiom

� ∀ bs:BS •

attr PBs(attr GL(obs part AD(bs)))
= {attr PB(c)|c:C•c ∈ obs part Cs(obs part CS(bs))}

21See upcoming Example 33 on Page 36

Lect.4: Domain Science & Engineering 43 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

44

1.2.10 Components 203

We refer to Sect. 1.2.4 on Page 25 for a first coverage of the concept of components: definition and

examples.

Components are discrete endurants which are not considered parts.

• is component(k) ≡ is endurant(k)∧∼is part(k)

Example 45 . Parts and Components: We observe components as associated with atomic parts: The

contents, that is, the collection of zero, one or more boxes, of a container is the components of the container

part. Conveyor belts transport machine assembly units and are thus considered the components of the

conveyor belt.
204

We now complement the observe part sorts (of Sect. 1.2.6). We assume, without loss of generality,

that only atomic parts may contain components. Let p:P be some atomic part.

Analysis Prompt 15 . has components: The domain analysis prompt:

• has components(p)

yields true if atomic part p potentially contains components otherwise false
205

Let us assume that parts p:P embodies components of sorts {K1,K2,. . . ,Kn}. Since we cannot automatically

guarantee that our domain descriptions secure that each Ki ([1≤i≤n]) denotes disjoint sets of entities we

must prove it.

Domain Description Prompt 6 . observe component sorts: The domain description
prompt:

• observe component sorts(e)

yields the component sorts and component sort observers domain description text according to the

following schema:206

6. observe component sorts schema

Narration:

[s] ... narrative text on component sorts ...
[o] ... narrative text on component sort observers ...
[i] ... narrative text on component sort recognisers ...
[p] ... narrative text on component sort proof obligations ...

Formalisation:

type

[s] K1, K2, ..., Kn
[s] KS = (K1|K2|...|Kn)-set

value

[o] components: P → KS
[i] is Ki: K → Bool [1≤i≤n]

Proof Obligation:

[Disjointness of Component Sorts]
[p] ∀ mi:(K1|K2|...|Kn) •

[p]
∧

{is Ki(mi) ≡
∨
∼{is K j(mi)|j ∈ {1..m}\{i}}|i ∈ {1..m}}

The Ki are all distinct

207

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 44 Lect.4: Domain Science & Engineering

45

Example 46 . Container Components: We continue Example 22 on Page 30.

60 When we apply obs component sorts C to any container c:C we obtain

a a type clause stating the sorts of the various components of a container,

b a union type clause over these component sorts, and

c the component observer function signature.

type

60a K1, K2, ..., Kn
60b KS = (K1|K2|...|Kn)-set

value

60c obs comp KS: C → KS

208
We have presented one way of tackling the issue of describing components. There are other ways. We leave

those ‘other ways’ to the reader. We are not going to suggest techniques and tools for analysing, let alone

describing qualities of components. We suggest that conventional abstraction of modeling techniques and

tools be applied.

1.2.11 Materials 209

We refer to Sect. 1.2.4 on Page 25 for a first coverage of the concept of materials.

Continuous endurants (i.e., materials) are entities, m, which satisfy:

• is material(m) ≡ is endurant(m)∧is continuous(m)

Example 47 . Parts and Materials: We observe materials as associated with atomic parts: Thus liquid

or gaseous materials are observed in pipeline units

We shall in this paper not cover the case of parts being immersed in materials22. 210

We assume, without loss of generality, that only atomic parts may contain materials. Let p:P be some

atomic part.

Analysis Prompt 16 . has materials: The domain analysis prompt:

• has materials(p)

yields true if the atomic part p:P potentially contains materials otherwise false
211

Let us assume that parts p:P embodies materials of sorts {M1,M2,. . . ,Mn}. Since we cannot automatically

guarantee that our domain descriptions secure that each Mi ([1≤i≤n]) denotes disjoint sets of entities we

must prove it.

Domain Description Prompt 7 . observe material sorts: The domain description
prompt:

• observe material sorts(e)

yields the material sorts and material sort observers domain description text according to the following

schema: 212

7. observe material sorts schema

Narration:

22Most such cases have the material play a minor, an abstract rôle with respect to the immersed parts. That is, we presently leave
it to hydro- and aerodynamics to domain analyse those cases.

Lect.4: Domain Science & Engineering 45 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

46

[s] ... narrative text on material sorts ...
[o] ... narrative text on material sort observers ...
[i] ... narrative text on material sort recognisers ...
[p] ... narrative text on material sort proof obligations ...

Formalisation:

type

[s] Mi [1≤i≤n]
[s] MS = M1 M2 ... Mn
value

[o] obs mat Mi: P → Mi [1≤i≤n]
[o] materials: P → MS
[i] is Mi: M → Bool [1≤i≤n]
proof obligation [Disjointness of Material Sorts]
[p] ∀ mi:(M1|M2|...|Mn) •

[p]
∧

{is Mi(mi) ≡
∨
∼{is M j(mi)|j ∈ {1..m}\{i}}|i ∈ {1..m}}

The Mi are all distinct

213

Example 48 . Pipeline Material: We continue Example 27 on Page 31 and Example 33 on Page 36.

61 When we apply obs material sorts U to any unit u:U we obtain

a a type clause stating the material sort LoG for some further undefined liquid or gaseous mate-

rial, and

b a material observer function signature.

type

61a LoG
value

61b obs mat LoG: U → LoG

Materials-related Part Attributes 214

It seems that the “interplay” between parts and materials is an area where domain analysis in the sense of

this paper is relevant.215

Example 49 . Pipeline Material Flow: We continue Examples 27, 33 and 48. Let us postulate a[n

attribute] sort Flow. We now wish to examine the flow of liquid (or gaseous) material in pipeline units. We

use two types

62 F for “productive” flow, and L for wasteful leak.

Flow and leak is measured, for example, in terms of volume of material per second. We then postulate the

following unit attributes “measured” at the point of in- or out-flow or in the interior of a unit.216

63 current flow of material into a unit input con-

nector,

64 maximum flow of material into a unit input

connector while maintaining laminar flow,

65 current flow of material out of a unit output

connector,

66 maximum flow of material out of a unit output

connector while maintaining laminar flow,

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 46 Lect.4: Domain Science & Engineering

47

67 current leak of material at a unit input connec-

tor,

68 maximum guaranteed leak of material at a

unit input connector,

69 current leak of material at a unit input connec-

tor,

70 maximum guaranteed leak of material at a

unit input connector,

71 current leak of material from “within” a unit,

and

72 maximum guaranteed leak of material from

“within” a unit.

217

type

62. F, L
value

63. attr cur iF: U → UI → F
64. attr max iF: U → UI → F
65. attr cur oF: U → UI → F
66. attr max oF: U → UI → F

67. attr cur iL: U → UI → L
68. attr max iL: U → UI → L
69. attr cur oL: U → UI → L
70. attr max oL: U → UI → L
71. attr cur L: U → L
72. attr max L: U → L

The maximum flow attributes are static attributes and are typically provided by the manufacturer as indica-

tors of flows below which laminar flow can be expected. The current flow attributes are dynamic attributes

Laws of Material Flows and Leaks 218

It may be difficult or costly, or both, to ascertain flows and leaks in materials-based domains. But one can

certainly speak of these concepts. This casts new light on domain modeling. That is in contrast to incor-

porating such notions of flows and leaks in requirements modeling where one has to show implement-

ability.

Modeling flows and leaks is important to the modeling of materials-based domains.

219

Example 50 . Pipelines: Intra Unit Flow and Leak Law:

73 For every unit of a pipeline system, except the well and the sink units, the following law apply.

74 The flows into a unit equal

a the leak at the inputs

b plus the leak within the unit

c plus the flows out of the unit

d plus the leaks at the outputs.

220

axiom [Well−formedness of Pipeline Systems, PLS (1)]
73. ∀ pls:PLS,b:B\We\Si,u:U •

73. b ∈ obs part Bs(pls)∧u=obs part U(b)⇒
73. let (iuis,ouis) = obs mereo U(u) in

74. sum cur iF(iuis)(u) =
74a. sum cur iL(iuis)(u)
74b. ⊕ attr cur L(u)
74c. ⊕ sum cur oF(ouis)(u)
74d. ⊕ sum cur oL(ouis)(u)
73. end

221

Lect.4: Domain Science & Engineering 47 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

48

75 The sum cur iF (cf. Item 74) sums current input flows over all input connectors.

76 The sum cur iL (cf. Item 74a) sums current input leaks over all input connectors.

77 The sum cur oF (cf. Item 74c) sums current output flows over all output connectors.

78 The sum cur oL (cf. Item 74d) sums current output leaks over all output connectors.

75. sum cur iF: UI-set → U → F
75. sum cur iF(iuis)(u) ≡ ⊕ {attr cur iF(ui)(u)|ui:UI•ui ∈ iuis}
76. sum cur iL: UI-set → U → L
76. sum cur iL(iuis)(u) ≡ ⊕ {attr cur iL(ui)(u)|ui:UI•ui ∈ iuis}
77. sum cur oF: UI-set → U → F
77. sum cur oF(ouis)(u) ≡ ⊕ {attr cur iF(ui)(u)|ui:UI•ui ∈ ouis}
78. sum cur oL: UI-set → U → L
78. sum cur oL(ouis)(u) ≡ ⊕ {attr cur iL(ui)(u)|ui:UI•ui ∈ ouis}

⊕: (F|L) × (F|L) → F

where ⊕ is both an infix and a distributed-fix function which adds flows and or leaks222

Example 51 . Pipelines: Inter Unit Flow and Leak Law:

79 For every pair of connected units of a pipeline system the following law apply:

a the flow out of a unit directed at another unit minus the leak at that output connector

b equals the flow into that other unit at the connector from the given unit plus the leak at that

connector.

axiom [Well−formedness of Pipeline Systems, PLS (2)]
79. ∀ pls:PLS,b,b′:B,u,u′:U•

79. {b,b′}⊆obs part Bs(pls)∧b6=b′∧u′=obs part U(b′)
79. ∧ let (iuis,ouis)=obs mereo U(u),(iuis′,ouis′)=obs mereo U(u′),
79. ui=uid U(u),ui′=uid U(u′) in

79. ui ∈ iuis ∧ ui′ ∈ ouis′ ⇒
79a. attr cur oF(u′)(ui′) − attr leak oF(u′)(ui′)
79b. = attr cur iF(u)(ui) + attr leak iF(u)(ui)
79. end

79. comment: b′ precedes b

223
From the above two laws one can prove the theorem: what is pumped from the wells equals what is leaked

from the systems plus what is output to the sinks. We need formalising the flow and leak summation

functions.

1.2.12 “No Junk, No Confusion” 224

Domain descriptions are, as we have already shown, formulated, both informally and formally, by means

of abstract types, that is, by sorts for which no concrete models are usually given. Sorts are made to denote

possibly empty, possibly infinite, rarely singleton, sets of entities on the basis of the qualities defined for

these sorts, whether external or internal. By junk we shall understand that the domain description un-225

intentionally denotes undesired entities. By confusion we shall understand that the domain description

unintentionally have two or more identifications of the same entity or type. The question is can we formu-

late a [formal] domain description such that it does not denote junk or confusion ? The short answer

to this is no ! So, since one naturally wishes “no junk, no confusion” what does one do ? The answer to226

that is one proceeds with great care ! To avoid junk we have stated a number of sort well-formedness
axioms, for example:

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 48 Lect.4: Domain Science & Engineering

49

• Page 34 for Well-formedness of Links, L, and Hubs, H,

• Page 35 for Well-formedness of Domain Mereologies,

• Page 35 for Well-formedness of Road Nets, N,

• Page 36 for Well-formedness of Pipeline Systems, PLS (0),

• Page 40 for Well-formedness of Hub States, HΣ,

• Page 47 for Well-formedness of Pipeline Systems, PLS (1),

• Page 48 for Well-formedness of Pipeline Systems, PLS (2),

• Page 49 for Well-formedness of Pipeline Route Descriptors and

• Page 50 for Well-formedness of Pipeline Systems, PLS (3).
227

To avoid confusion we have stated a number of proof obligations:

• Page 28 for Disjointness of Part Sorts,

• Page 39 for Disjointness of Attribute Types and

• Page 46 for Disjointness of Material Sorts.
228

Example 52 . No Pipeline Junk: We continue Example 27 on Page 31 and Example 33 on Page 36.

80 We define a proper pipeline route to be a sequence of pipeline units.

a such that the ith and i+1st units in sequences longer than 1 are (forward) adjacent, in the sense

defined below, and

b such that the route is acyclic, in the sense also defined below.

To formalise the above we describe some auxiliary notions. 229

Pipe Routes

81 A route descriptor is the sequence of unit identifiers of the units of a route (of a pipeline system).

type

80. R
′
= Uω

80. R = {| r:Route
′
•wf Route(r) |}

81. RD = UIω

axiom [Well−formedness of Pipeline Route Descriptors, RD]
81. ∀ rd:RD • ∃ r:R•rd=descriptor(r)

value

81. descriptor: R → RD
81. descriptor(r) ≡ 〈uid UI(r[i])|i:Nat•1≤i≤len r〉

230

82 Two units are (forward) adjacent if the output unit identifiers of one shares a unique unit identifier

with the input identifiers of the other.

Lect.4: Domain Science & Engineering 49 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

50

value

82. adjacent: U × U → Bool

82. adjacent(u,u
′
) ≡

82. let (,ouis)=obs mereo U(u),
82. (iuis,)=obs mereo U(u

′
) in

82. ouis ∩ iuis 6= {} end

231

83 Given a pipeline system, pls, one can identify the (possibly infinite) set of (possibly infinite) routes

of that pipeline system.

a The empty sequence, 〈〉, is a route of pls.

b Let u be a unit of pls, then 〈u〉 is a route of pls.

c Let u,u′ be adjacent units of pls then 〈u,u′〉 is a route of pls.

d If r and r′ are routes of pls such that the last element of r is the same as the first element of r′,

then r̂tl r′ is a route of pls.

e No sequence of units is a route unless it follows from a finite number of applications of the

basis and induction clauses of Items 83a–83d.

value

83. Routes: PLS → R-infset

83. Routes(pls) ≡
83a. let rs = 〈〉
83b. ∪ {〈u〉|u:U•u ∈ obs part Us(pls)}
83c. ∪ {〈u,u

′
〉|u,u

′
:U•{u,u

′
}⊆obs part Us(pls) ∧ adjacent(u,u

′
)}

83d. ∪ {r̂ tl r
′
|r,r

′
:R•{r,r

′
}⊆rs∧r[len r]=hd r

′
}

83e. in rs end

232

Well-formed Routes

84 A route is acyclic if no two route positions reveal the same unique unit identifier.

value

84. acyclic Route: R → Bool

84. acyclic Route(r) ≡ ∼∃ i,j:Nat•{i,j}⊆inds r ∧ i6=j ∧ r[i]=r[j]

233

Well-formed Pipeline Systems

85 A pipeline system is well-formed if

a none of its routes are circular and

b all of its routes are embedded in well-to-sink routes.

axiom [Well−formedness of Pipeline Systems, PLS (3)]
85. ∀ pls:PLS •

85a. non circular(pls)
85b. ∧ are embedded in well to sink Routes(pls)

value

85. non circular PLS: PLS → Bool

85. non circular PLS(pls) ≡
85. ∀ r:R•r ∈ routes(p)∧acyclic Route(r)

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 50 Lect.4: Domain Science & Engineering

51

234

86 We define well-formedness in terms of well-to-sink routes, i.e., routes which start with a well unit

and end with a sink unit.

value

86. well to sink Routes: PLS → R-set

86. well to sink Routes(pls) ≡
86. let rs = Routes(pls) in

86. {r|r:R•r ∈ rs ∧ is We(r[1]) ∧ is Si(r[len r])} end

235

87 A pipeline system is well-formed if all of its routes are embedded in well-to-sink routes.

87. are embedded in well to sink Routes: PLS → Bool

87. are embedded in well to sink Routes(pls) ≡
87. let wsrs = well to sink Routes(pls) in

87. ∀ r:R • r ∈ Routes(pls) ⇒
87. ∃ r

′
:R,i,j:Nat •

87. r
′
∈ wsrs

87. ∧ {i,j}⊆inds r
′
∧i≤j

87. ∧ r = 〈r
′
[k]|k:Nat•i≤k≤j〉 end

236

Embedded Routes

88 For every route we can define the set of all its embedded routes.

value

88. embedded Routes: R → R-set

88. embedded Routes(r) ≡
88. {〈r[k]|k:Nat•i≤k≤j〉 | i,j:Nat• i {i,j}⊆inds(r) ∧ i≤j}

237

A Theorem

89 The following theorem is conjectured:

a the set of all routes (of the pipeline system)

b is the set of all well-to-sink routes (of a pipeline system) and

c all their embedded routes

theorem:

89. ∀ pls:PLS •

89. let rs = Routes(pls),
89. wsrs = well to sink Routes(pls) in

89a. rs =
89b. wsrs ∪
89c. ∪ {{r

′
|r
′
:R • r

′
∈ embedded Routes(r

′′
)} | r

′′
:R • r

′′
∈ wsrs}

88. end

238
The above example, besides illustrating one way of coping with “junk”, also illustrated the need for intro-

ducing a number of auxiliary notions: types, functions, axioms and theorems.

Lect.4: Domain Science & Engineering 51 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

52

1.2.13 Discussion of Endurants 239

In Sect. 1.2.6 on Page 27 a “depth-first” search for part sorts was hinted at. It essentially expressed that we

discover domains epistemologically23 but understand them ontologically.24 The Danish philosopher Søren

Kirkegaard (1813–1855) expressed it this way: Life is lived forwards, but is understood backwards.
The presentation of the of the domain analysis prompts and the domain description prompts

results in domain descriptions which are ontological. The “depth-first” search recognizes the epistemolog-

ical nature of bringing about understanding. This “depth-first” search that ends with the analysis of atomic240

part sorts can be guided, i.e., hastened (shortened), by postulating composite sorts that “correspond” to

vernacular nouns: everyday nouns that stand for classes of endurants.241

We could have chosen our domain analysis prompts and domain description prompts to

reflect a “bottom-up” epistemology, one that reflected how we composed composite understandings from

initially atomic parts. We leave such a collection of domain analysis prompts and domain descrip-
tion prompts to the reader.

1.3 Perdurant Entities 242

We shall give only a cursory overview of perdurants. That is, we shall not present a set of domain
analysis prompts and a set of domain description prompts leading to description language, i.e.,

RSL texts describing perdurant entities.

The reason for giving this albeit cursory overview of perdurants is that, through this cursory overview,

we can justify our detailed study of endurants, their part and subparts, their unique identifiers, mereology

and attributes. This justification is manifested (i) in expressing the types of signatures, (ii) in basing243

behaviours on parts, (iii) in basing the for need for CSP-oriented inter-behaviour communications on

shared part attributes, (iv) in indexing behaviours as are parts, i.e., on unique identifiers, and (v) in directing

inter-behaviour communications across channel arrays indexed as per the mereology of the part behaviours.

These are all notions related to endurants and are now justified by their use in describing perdurants.244

Perdurants can perhaps best be explained in terms of a notion of state and a notion of time. We shall,

in this paper, not detail notions of time, but refer to [96, 74, 52, 150].

1.3.1 States 245

Definition 11 . State: By a state we shall understand any collection of parts each of which has at

least one dynamic attribute or has components or has materials
246

Example 53 . States: Some examples of states are: A road hub can be a state, cf. Hub State, HΣ,

Example 38 on Page 39. A road net can be a state – since its hubs can be. Container stowage areas, CSA,

Example 22 on Page 30, of container vessels and container terminal ports can be states as containers can

be removed from and put on top of container stacks. Pipeline pipes can be states as they potentially carry

material. Conveyor belts can be states as they potentially carry components

1.3.2 Actions, Events and Behaviours 247

To us perdurants are further analysed into actions, events, and behaviours. We shall define these terms

below. Common to all of them is that they potentially change a state. Actions and events are here considered

atomic perdurants. For behaviours we distinguish between discrete and continuous behaviours.248

On Action, Event and Behaviour Distinctions: The distinction into action, event and behaviour

perdurants is pragmatic.

23Epistemology: the theory of knowledge, especially with regard to its methods, validity, and scope. Epistemology is the
investigation of what distinguishes justified belief from opinion.

24Ontology: the branch of metaphysics dealing with the nature of being.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 52 Lect.5: Domain Science & Engineering

53

Time Considerations 249

We shall, without loss of generality, assume that actions and events are atomic and that behaviours are

composite. Atomic perdurants may “occur” during some time interval, but we omit consideration of and

concern for what actually goes on during such an interval. Composite perdurants can be analysed into

“constituent” actions, events and “sub-behaviours”. We shall also omit consideration of temporal properties

of behaviours. Instead we shall refer to two seminal monographs: Specifying Systems [110, Leslie 250

Lamport] and Duration Calculus: A Formal Approach to Real-Time Systems [160, Zhou ChaoChen

and Michael Reichhardt Hansen]. For a seminal book on “time in computing” we refer to the eclectic [79,

2012]. And for seminal book on time at the epistemology level we refer to [150, 1991].

Actors 251

Definition 12 . Actor: By an actor we shall understand something that is capable of initiating and/or

carrying out actions, events or behaviours

We shall, in principle, associate an actor with each part. These actors will be described as behaviours. These

behaviours evolve around a state. The state is the set of qualities, in particular the dynamic attributes, of

the associated parts and/or any possible components or materials of the parts. 252

Example 54 . Actors: We refer to the road transport and the pipeline systems examples of earlier. The

fleet, each vehicle and the road management of the Transportation System of Examples 20 on Page 28

and 43 on Page 42 can be considered actors; so can the net and its links and hubs. The pipeline monitor and

each pipeline unit of the Pipeline System, Example 27 on Page 31 and Examples 27 on Page 31 and 33

on Page 36 will be considered actors. The bank general ledger and each bank customer of the Shared
Passbooks example, Example 44 on Page 43, will be considered actors

Parts, Attributes and Behaviours 253

Example 54 focused on what shall soon become a major relation within domains: that of parts being also

considered actors, or more specifically, being also considered to be behaviours.

Example 55 . Parts, Attributes and Behaviours: Consider the term ‘train’25. It has several possible

“meanings”. (i) the train as a part, viz., as standing on a train station platform; (ii) the train as listed in

a timetable (an attribute of a transport system part), (iii) the train as a behaviour: speeding down the rail

track

1.3.3 Discrete Actions 254

Definition 13 . Discrete Action: By a discrete action [155] we shall understand a foreseeable

thing which deliberately potentially changes a well-formed state, in one step, usually into another, still

well-formed state, and for which an actor can be made responsible

An action is what happens when a function invocation changes, or potentially changes a state. 255

Example 56 . Road Net Actions: Examples of Road Net actions initiated by the net actor are: insertion

of hubs, insertion of links, removal of hubs, removal of links, setting of hub states. Examples of Traffic
System actions initiated by vehicle actors are: moving a vehicle along a link, stopping a vehicle, starting

a vehicle, moving a vehicle from a link to a hub and moving a vehicle from a hub to a link

25This example is due to Paul Lindgreen, a Danish computer scientist. It dates from the late 1970s.

Lect.5: Domain Science & Engineering 53 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

54

1.3.4 Discrete Events 256

Definition 14 . Event: By an event we shall understand some unforeseen thing, that is, some ‘not-

planned-for’ “action”, one which surreptitiously, non-deterministically changes a well-formed state into

another, but usually not a well-formed state, and for which no particular domain actor can be made re-

sponsible
257

Events can be characterised by a pair of (before and after) states, a predicate over these and, optionally, a

time or time interval. The notion of event continues to puzzle philosophers [70, 130, 117, 66, 91, 9, 107,

59, 123, 58]. We note, in particular, [66, 9, 107].258

Example 57 . Road Net and Road Traffic Events: Some road net events are: “disappearance” of a

hub or a link, failure of a hub state to change properly when so requested, and occurrence of a hub state

leading traffic into “wrong-way” links. Some road traffic events are: the crashing of one or more vehicles

(whatever ‘crashing’ means), a car moving in the wrong direction of a one-way link, and the clogging of a

hub with too many vehicles

1.3.5 Discrete Behaviours 259

Definition 15 . Discrete Behaviour: By a discrete behaviour we shall understand a set of se-

quences of potentially interacting sets of discrete actions, events and behaviours
260

Example 58 . Behaviours: Examples of behaviours: Road Nets: A sequence of hub and link insertions

and removals, link disappearances, etc. Road Traffic: A sequence of movements of vehicles along links,

entering, circling and leaving hubs, crashing of vehicles, etc. Pipelines: A sequence of pipeline pump and

valve openings and closings, and failures to do so (events), etc. Container Vessels and Ports: Concurrent

sequences of movements (by cranes) of containers from vessel to port (unloading), with sequences of

movements (by cranes) from port to vessel (loading), with dropping of containers by cranes, etcetera

Channels and Communication 261

Behaviours sometimes synchronise and usually communicate. Using the CSP [97] notation (adopted by

RSL) we introduce and model behaviour communication. Communication is abstracted as the sending

(ch ! m) and receipt (ch ?) of messages, m:M, over channels, ch.

type M
channel ch M

262
Communication between (unique identifier) indexed behaviours have their channels modeled as similarly

indexed channels:

out: ch[idx]!m
in: ch[idx]?
channel {ch[ide]|ide:IDE}:M

where IDE typically is some type expression over unique identitifer types.

Relations Between Attribute Sharing and Channels 263

We shall now interpret the syntactic notion of attribute sharing with the semantic notion of channels. This

is in line with the above-hinted interpretation of parts with behaviours, and, as we shall soon see part

attributes, part components and part materials with behaviour states.264

Thus, for every pair of parts, pik:Pi and p jℓ:P j, of distinct sorts, Pi and P j which share attribute values

in A we are going to associate a channel. If there is only one pair of parts, pik:Pi and p jℓ:P j , of these sorts,

then just a simple channel, say chPi,Pj
.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 54 Lect.5: Domain Science & Engineering

55

channel chPi,Pj
:A.

If there is only one part, pi:Pi, but a definite set of parts p jk:P j, with shared attributes, then a vector of

channels. Let {p j1, p j2, ..., p jn} be all the part of the domain of sort Pj. Then uids : {πp j1
,πp j2

, ...,πp jn
} is

the set of their unique identifiers. Now a schematic channel array declaration can be suggested:

channel {ch[{π i,π j}]|π i=uid Pi(pi)∧π j ∈ uids}:A.

The above can be extended from channel matrices to channel tensors, etc., hence the term channel ‘array’. 265

Example 59 . Bus System Channels: We extend Examples 20 on Page 28 and 43 on Page 42. We

consider the fleet and the vehicles to be behaviours.

90 We assume some transportation system, δ . From that system we observe

91 the fleet and

92 the vehicles.

93 The fleet to vehicle channel array is indexed by the 2-element sets of the unique fleet identifier and

the unique vehicle identifiers. We consider bus timetables to be the only message communicated

between the fleet and the vehicle behaviours.
266

value

90. δ :∆,
91. f:F = obs part F(δ),
92. vs:V-set = obs part Vs(obs part VC((obs part F(δ))))

channel

93. {fch[{uid F(f),uid V(v)}]|v:V•v ∈ vs}:BT

267

Example 60 . Bank System Channels: We extend Example 44 on Page 43. We consider the general
ledger and the customers to be behaviours.

94 We assume some bank system. From the bank system

95 we observe the general ledger.

96 and the set of customers.

97 We consider passbooks to be the only message communicated between the general ledger and the

customer behaviours.

value

94. bs:BS
95. gl=obs part GL(obs part AD(bs)):GL
96. cs=obs part Cs(obs part CS(bs)):C-set

channel

97. {bsch[{uid GL(gl),uid C(c)}]|c:C•c ∈ cs}:PB

Lect.5: Domain Science & Engineering 55 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

56

1.3.6 Continuous Behaviours 268

By a continuous behaviour we shall understand a continuous time sequence of state changes. We

shall not go into what may cause these state changes. 269

Example 61 . Flow in Pipelines: We refer to Examples 33, 48, 49, 50 and 51. Let us assume that oil is

the (only) material of the pipeline units. Let us assume that there is a sufficient volume of oil in the pipeline

units leading up to a pump. Let us assume that the pipeline units leading from the pump (especially valves

and pumps) are all open for oil flow. Whether or not that oil is flowing, if the pump is pumping (with a

sufficient head26) then there will be oil flowing from the pump outlet into adjacent pipeline units270

To describe the flow of material (say in pipelines) requires knowledge about a number of material attributes

— not all of which have been covered in the above-mentioned examples. To express flows one resorts to the

mathematics of fluid-dynamics using such second order differential equations as first derived by Bernoulli

(1700–1782) and Navier–Stokes (1785–1836 and 1819–1903).

1.3.7 Attribute Value Access 271

We refer to paragraph “Access to Attribute Values” in Section 1.2.9 Page 42. We can distinguish be-

tween three kinds of attributes: the constant attributes which are those whose values are static; the

programmable attributes which are those dynamic values are exclusively set by part processes; and the

remaining dynamic attributes are here seen as individual behaviours.

Access to Static Attribute Values

The constant attributes can be “copied” attr A(p) (and retain their values).

Access to External Attribute Values 272

By the external behaviour attributes we shall thus understand the inert, reactive, autonomous and

the biddable attributes273

98 Let ξ A be the set of names, ηA, of all external behaviour attributes.

99 Let Πξ A be the set of indexes into the external attribute channel, say attr A ch, one for each

distinct attribute name, A, in ξ A.

100 Each external behaviour attribute is seen as an individual behaviour, each “accessible” by means

of a channel, attr A ch.

101 External attribute values are then accessed by the input, from channel attr A ch[π]-accessible exter-

nal attribute behaviours.

102 The type of attr A ch[π] is considered to be Unit
∼
→A.

274

98. value

98. ξ A: {ηA|A is any external attribute name}
99. Πξ A: Π-set

100. channel

100. {attr A ch[π]|π ∈ Πξ A}
101. value

101. attr A ch[π] ?
101. type

101. attr A ch[π]: Unit
∼
→A [abbrv.:UA]

26The pump head is the linear vertical measurement of the maximum height a specific pump can deliver a liquid to the pump
outlet.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 56 Lect.5: Domain Science & Engineering

57

275We shall omit the η prefix in actual descriptions. The choice of representing external behaviour attributes

as behaviours is a technical one. See Items 345c and 345a Page 162 for a use of the concept of external
behaviour attribute channels.

Access to Programmable Attribute Values 276

The programmable attributes are treated as function arguments. This is a technical choice. It is

motivated as follows. We find that programmable attribute values are set (i.e., updated) by part processes.

That is, to each part, whether atomic or composite, we associate a behaviour. That behaviour is (to be)

described as we describe functions. These functions (normally) “go on forever”. Therefore these functions

are described basically by a “tail” recursive definition:

value f: Arg → Arg; f(a) ≡ (... let a
′
= F(...)(a) in f(a

′
) end)

where F is some expression based on values defined within the function definition body of f and on a’s

“input” argument a, and where a can be seen as a programmable attribute.

1.3.8 Perdurant Signatures and Definitions 277

We shall treat perdurants as functions. In our cursory overview of perdurants we shall focus on one perdu-

rant quality: function signatures. 278

Definition 16 . Function Signature: By a function signature we shall understand a function

name and a function type expression

Definition 17 . Function Type Expression: By a function type expression we shall understand

a pair of type expressions. separated by a function type constructor either → (total function) or
∼
→

(partial function)

The type expressions are usually part sort or type, material sort or attribute type names, but may, occa-

sionally be expressions over respective type names involving -set, ×, ∗, →m and | type constructors.

1.3.9 Action Signatures and Definitions 279

Actors usually provide their initiated actions with arguments, say of type VAL. Hence the schematic func-

tion (action) signature and schematic definition:

action: VAL → Σ
∼
→ Σ

action(v)(σ) as σ ′

pre: P(v,σ)
post: Q(v,σ ,σ ′)

expresses that a selection of the domain as provided by the Σ type expression is acted upon and possibly

changed. The partial function type operator
∼
→ shall indicate that action(v)(σ) may not be defined for 280

the argument, i.e., initial state σ and/or the argument v:VAL, hence the precondition P(v,σ). The post

condition Q(v,σ ,σ ′) characterises the “after” state, σ ′:Σ, with respect to the “before” state, σ :Σ, and

possible arguments (v:VAL). 281

Example 62 . Insert Hub Action Formalisation: We formalise aspects of the above-mentioned hub

and link actions:

103 Insertion of a hub requires

104 that no hub exists in the net with the unique identifier of the inserted hub,

Lect.5: Domain Science & Engineering 57 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

58

105 and then results in an updated net with that hub.

value

103. insert H: H → N
∼
→ N

103. insert H(h)(n) as n
′

104. pre: ∼∃ h
′
:H•h

′
∈ obs part Hs(obs part HS(n))•uid H(h)=uid H(h

′
)

105. post: obs part Hs(obs part HS(n
′
))=obs part Hs(obs part HS(n))∪{h}

282
Which could be the argument values, v:VAL, of actions ? Well, there can basically be only two kinds of

argument values: parts, components and materials, respectively unique part identifiers, mereologies and

attribute values. It basically has to be so since there are no other kinds of values in domains. There can be

exceptions to the above (Booleans, natural numbers), but they are rare !283

Perdurant (action) analysis thus proceeds as follows: identifying relevant actions, assigning

names to these, delineating the “smallest” relevant state27, ascribing signatures to action functions, and

determining action pre-conditions and action post-conditions. Of these, ascribing signatures is, perhaps,

the most crucial: In the process of determining the action signature one oftentimes discovers that part or

material attributes have been left “undiscovered”.284

Example 63 shows examples of signatures whose arguments are either parts, or parts and unique iden-

tifiers, or parts and unique identifiers and attributes.

Example 63 . Some Function Signatures: Inserting a link between two identified hubs in a net:

value insert L: L × (HI × HI) → N
∼
→ N

Removing a hub and removing a link:

value remove H: HI → N
∼
→ N

remove L: LI → N
∼
→ N

Changing a hub state.

value change HΣ: HI × HΣ → N
∼
→ N

1.3.10 Event Signatures and Definitions 285

Events are usually characterised by the absence of known actors and the absence of explicit “external”

arguments. Hence the schematic function (event) signature:

value

event: Σ × Σ → Bool

event(σ ,σ ′) as true⌈⌉false

pre: P(σ)
post: Q(σ ,σ ′)

286
The event signature expresses that a selection of the domain as provided by the Σ type expression is “acted”

upon, by unknown actors, and possibly changed. The partial function type operator
∼
→ shall indicate that

event(σ ,σ ′) may not be defined for some states σ . The resulting state may, or may not, satisfy axioms

and well-formedness conditions over Σ — as expressed by the post condition Q(σ ,σ ′). Events may thus287

cause well-formedness of states to fail. Subsequent actions, once actors discover such “disturbing events”,

are therefore expected to remedy that situation, that is, to restore well-formedness. We shall not illustrate

this point.288

27By “smallest” we mean: containing the fewest number of parts. Experience shows that the domain analyser cum describer
should strive for identifying the smallest state.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 58 Lect.5: Domain Science & Engineering

59

Example 64 . Link Disappearence Formalisation: We formalise aspects of the above-mentioned

link disappearance event:

106 The result net is not well-formed.

107 For a link to disappear there must be at least one link in the net;

108 and such a link may disappear such that

109 it together with the resulting net makes up for the “original” net.

value

106. link diss event: N × N
′
× Bool

106. link diss event(n,n
′
) as tf

107. pre: obs part Ls(obs part LS(n)) 6={}
108. post: ∃ l:L•l ∈ obs part Ls(obs part LS(n)) ⇒
109. l 6∈ obs part Ls(obs part LS(n

′
))

109. ∧ n
′
∪ {l} = obs part Ls(obs part LS(n))

1.3.11 Discrete Behaviour Signatures and Definitions 289

We shall only cover behaviour signatures when expressed in RSL/CSP [85]. The behaviour functions are

now called processes. That a behaviour function is a never-ending function, i.e., a process, is “revealed” in

the function signature by the “trailing” Unit:

behaviour: ... → ... Unit

That a process takes no argument is ”revealed” by a “leading” Unit:

behaviour: Unit → ...

That a process accepts channel, viz.: ch, inputs is “revealed” in the function signature as follows:

behaviour: ... → in ch ...

290

That a process offers channel, viz.: ch, outputs is “revealed” in the function signature as follows:

behaviour: ... → out ch ...

That a process accepts other arguments is “revealed” in the function signature as follows:

behaviour: ARG → ...

where ARG can be any type expression:

T, T→T, T→T→T, etcetera

291
As shown in [39] we can, without loss of generality, associate with each part a behaviour; parts which

share attributes and are therefore referred to in some parts’ mereology, can communicate (their “sharing”)

via channels. The process evolves around a state: its unique identity, π : Π,, its possibly changing mereol-

ogy, mt:MT28, the possible components and materials of the part29, and the constant, the external and the

programmable attributes of the part. A behaviour signature is therefore: 292

behaviour: π :Π × me:MT × sa:SA × ea:EA → pa:PA → out ochs in ichns Unit

Lect.5: Domain Science & Engineering 59 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

60

where (i) π :Π is the unique identifier of part p, i.e., π=uid P(p), (ii) me:ME is the mereology of part p,

me = obs mereo P(p), (iii) sa:SA lists the static attribute values of the part behaviour, (iv) ea:EA lists

the external attribute channels of the part behaviour, (v) ps:PA lists the programmable attribute values of

the part behaviour, and where (vi) ochs and ichns refer to the shared attributes of the behaviours. 293

We focus, for a little while, on the expression of sa:SA, ea:EA and pa:PA, that is, on the concrete

types of SA, EA and PA.

SA : SA simply lists the static value types: svT1,svT2, ...,svTs where s is the number of static attributes

of parts p:P.

EA EA simply lists the channel indexes to the external attribute values: ((eA1,πeA1
), (eA2,πeA2

), ...,

(eAx,πeAx))
30 where x is the number, 0 or more, of external attributes of parts p:P.

PA PA simply lists appropriate programmable value expression type: (pvT1, pvT2, ..., pvTq) where q

is the number of programmable attributes of parts p:P294

Let P be a composite sort defined in terms of sub-sorts PA, PB, . . . , PC. The process compiled from

cp:P, is composed from a process, McPCORE
, relying on and handling the unique identifier, mereology

and attributes of process p as defined by P operating in parallel with processes pa, pb, . . . , pc where pa is

“derived” from PA, pb is “derived” from PB, ..., and pc is “derived” from PC. The domain description

“compilation” schematic below “formalises” the above.295

Process Schema I: Abstract is composite(p)

value

compile process: P → RSL-Text

compile process(p) ≡
McPCORE

(uid P(p),obs mereo P(p),SA (p),EA (p))(PA (p))

‖ compile process(obs part PA(p))
‖ compile process(obs part PB(p))
‖ ...
‖ compile process(obs part PC(p))

The text macros: SA , EA and PA were informally explained above. Part sorts PA, PB, ..., PC are

obtained from the observe part sorts prompt, Page 28.

296

Let P be a composite sort defined in terms of the concrete type Q-set. The process compiled from p:P,

is composed from a process, McPCORE
, relying on and handling the unique identifier, mereology and

attributes of process p as defined by P operating in parallel with processes q:obs part Qs(p). The domain

description “compilation” schematic below “formalises” the above.297

Process Schema II: Concrete is composite(p)

type

Qs = Q-set

value

qs:Q-set = obs part Qs(p)
compile process: P → RSL-Text

compile process(p) ≡
McPCORE

(uid P(p),obs mereo P(p),SA (p),EA (p))(PA (p))

‖ ‖{compile process(q)|q:Q•q ∈ qs}

28For MT see footnote 15 on Page 36.
29— we shall neither treat components nor materials further in this document
30See paragraph Access to External Attribute Values on Page 56.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 60 Lect.5: Domain Science & Engineering

61

Process Schema III: is atomic(p)

value

compile process: P → RSL-Text

compile process(p) ≡
MaPCORE

(uid P(p),obs mereo P(p),SA (p),EA (p))(PA (p))

298

Example 65 . Bus Timetable Coordination: We refer to Examples 20 on Page 28, 21 on Page 30, 43

on Page 42 and 59 on Page 55.

110 δ is the transportation system; f is the fleet part of that system; vs is the set of vehicles of the fleet;

bt is the shared bus timetable of the fleet and the vehicles.

111 The fleet process is compiled as per Process Schema II (Page 60)
299

type

∆, F, VC [Example 20 on Page 28]
V, Vs=V-set [Example 21 on Page 30]
FI, VI, BT [Example 43 on Page 42]

channel

{fch...} [Example 59 on Page 55]
value

110. δ :∆,
110. f:F = obs part F(δ),
110. vs:V-set = obs part Vs(obs part VC(f)),
110. bt:BT = attr BT(f)

axiom

110. ∀ v:V•v ∈ vs ⇒ bt = attr BT(v) [Example 43 on Page 42]
value

111. fleet: fi:FI×BT → in,out {fch[{fi,uid V(v)}]|v:V•v ∈ vs} process

111. fleet(fi,bt) ≡
111. MF (fi,bt)
111. ‖ ‖ {vehicle(uid V(v),fi:FI,bt)|v:V•v ∈ vs}
111. vehicle: vi:VI×fi:FI×bt:BT → in,out fch[{fi,vi}] process

111. vehicle(vi,fi,bt) ≡ MV (vi,fi,bt)

300
Fleet and vehicle processes MF and MV are both “never-ending” processes:

value

MF : fi:FI×bt:BT → in,out {fch[{fi,uid V(v)}]|v:V•v ∈ vs} process

MF (fi,bt) ≡ let bt
′
= F (fi,bt) in MF (fi,bt

′
) end

MV : vi:VI×fi:FI×bt:BT → in,out fch[{fi,vi}] process

MV (vi,fi,bt) ≡ let bt
′
= V (vi,bt) in MV (vi,fi,bt

′
) end

The “core” processes, F and V , are simple actions. In this example we simplify them to change only bus 301

timetables. The expression of actual synchronisation and communication between the fleet and the vehicle
processes are contained in F and V .

Lect.5: Domain Science & Engineering 61 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

62

value

F : fi:FI×bt:BT → in,out {fch[{fi,uid V(v)|v:V•v ∈ vs}]} BT
F (fi,bt) ≡ ...

V : vi:VI×fi:FI×bt:BT → in,out fch[{fi,vi}] BT
V (vi,fi,bt) ≡ ...

What the synchronisation and communication between the fleet and the vehicle processes consists of we

leave to the reader !
302

Process Schema IV: Core Process (I)

The core processes can be understood as never ending, “tail recursively defined” processes:

McPCORE
: π :Π×me:MT×sa:SA×ea:EA→pa:PA→in inchs out ochs Unit

McPCORE
(π ,me,sa,ea)(pa) ≡

let (me
′
,pa

′
) = F (π ,me,sa,ea)(pa) in

McPCORE
(π ,me

′
,sa,ea)(pa

′
) end

F : π :Π×me:MT×sa:SA×ea:EA→PA→in inchs out ochs → MT×PA

303
F potentially communicates with all those part processes (of the whole domain) with which it shares

attributes, that is, has connectors. F is expected to contain input/output clauses referencing the channels

of the in ... out ... part of their signatures. These clauses enable the sharing of attributes. F also contains

expressions, attr ch[(A,π)] ?, to external attributes. An example of the update of programmable attributes

is shown in the vehicle definitions in Sect. 6.2.3, Pages 148 and 149.304

The F action non-deterministically internal choice chooses between

• either [1,2,3,4]

⋄⋄ [1] accepting input from

⋄⋄ [4] another part process,

⋄⋄ [2] then optionally offering a reply to that other process, and

⋄⋄ [3] finally delivering an updated state;

• or [5,6,7,8] offering

⋄⋄ [5] an output,

⋄⋄ [6] val,

⋄⋄ [8] to another part process,

⋄⋄ [7] and then delivering an updated state;

• or [9] doing own work resulting in an updated state.
305

Process Schema V: Core Process (II)

value

F : π :Π → me:MT → sa:SA × ea:EA → pa:PA → in,out E (π ,me) MT × PA
F (π ,me,sa,ea)(pa) ≡

[1] ⌈⌉⌊⌋ { let val = ch[π ′] ? in

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 62 Lect.5: Domain Science & Engineering

63

[2] ch[π ′] ! in reply(sa,ea,pa)(val) ;
[3] in update(me,sa,ea,pa)(π ′,sa,ea,pa) end

[4] | π ′ ∈ E (π ,me)}
[5] ⌈⌉ ⌈⌉⌊⌋ { let (π ′,val) = await reply(me,sa,ea,pa) in

[6] ch[π ′] ! out reply(val,sa,ea,pa) ;
[7] out update(me,sa,ea,pa) end

[8] | π ′ ∈ E (π ,me)}
[9] ⌈⌉ (me,own work(sa,ea,pa))

in reply: SA×EA×PA × VAL → VAL
in update: (MT×SA×EA×PA) → (MT×PA)
await reply: (MT×SA×EA×PA) → Π×VAL
out reply: (SA×EA×PA×VAL) → VAL
out update: (MT×SA×EA×PA) → (MT×PA)
own work: SA×EA×PA → (MT×PA)

We leave these auxiliary functions and VAL undefined.

1.3.12 Concurrency: Communication and Synchronisation 306

Process Schemas I, II and IV (Pages 60, 60 and 62), reveal that two or more parts, which temporally coexist

(i.e., at the same time), imply a notion of concurrency. Process Schema IV, through the RSL/CSP lan-

guage expressions ch ! v and ch ?, indicates the notions of communication and synchronisation. Other

than this we shall not cover these crucial notion related to parallelism.

1.3.13 Summary and Discussion of Perdurants 307

The most significant contribution of Sect. 1.3 has been to show that for every domain description there

exists a normal form behaviour — here expressed in terms of a CSP process expression.

Summary 308

We have proposed to analyse perdurant entities into actions, events and behaviours — all based on notions

of state and time. We have suggested modeling and abstracting these notions in terms of functions with

signatures and pre-/post-conditions. We have shown how to model behaviours in terms of CSP (commu-

nicating sequential processes). It is in modeling function signatures and behaviours that we justify the

endurant entity notions of parts, unique identifiers, mereology and shared attributes.

Discussion 309

The analysis of perdurants into actions, events and behaviours represents a choice. We suggest skeptical

readers to come forward with other choices.

1.4 Closing

1.4.1 Analysis & Description Calculi for Other Domains

The analysis and description calculus of this paper appears suitable for manifest domains. For other do-

mains other calculi appears necessary. There is the introvert, composite domain of systems software: oper-

ating systems, compilers, database management systems, Internet-related software, etcetera. The classical

Domain Science & Engineering 63 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

64

computer science and software engineering disciplines related to these components of systems software

appears to have provided the necessary analysis and description “calculi.” There is the domain of financial

systems software accounting & bookkeeping, banking systems, insurance, financial instruments handling

(stocks, etc.), etcetera. We refer to Sect. 9.1.2 on Page 186 [Item 8]. Etcetera. For each domain character-

isable by a distinct set of analysis & description calculus prompts such calculi must be identified.

It seems straightforward: to base a method for analysing & describing a category of domains on the

idea of prompts like those developed in this paper.

1.4.2 On Domain Description Languages

We have in this paper expressed the domain descriptions in the RAISE [86] specification language RSL

[85]. With what is thought of as basically inessential, editorial changes, one can reformulate these domain

description texts in either of Alloy [100] or The B-Method [1] or VDM [48, 49, 77] or Z [157]. One

could also express domain descriptions algebraically, for example in CafeOBJ [81, 68, 80, 56]. The

analysis and the description prompts remain the same. The description prompts now lead to CafeOBJ

texts.

We did not go into much detail with respect to perdurants, let alone behaviours. For all the very many

domain descriptions, covered elsewhere, RSL (with its CSP sub-language) suffices. But there are cases

where we have conjoined our RSL domain descriptions with descriptions in Petri Nets [132] or MSC

[99] (Message Sequence Charts) or StateCharts [92]. Since this paper only focused on endurants there

was no need, it appears, to get involved in temporal issues. When that becomes necessary, in a study

or description of perdurants, then we either deploy DC: The Duration Calculus [160] or TLA+:

Temporal Logic of Actions [110].

1.4.3 Comparison to Other Work

Background: The TripTych Domain Ontology

Sections 1.2–1.3 outlined the TripTych modeling approach to domain entities. We shall now compare

that approach to a number of techniques and tools (12 in all) that are somehow related — if only by the

term ‘domain’ ! Common to all the 12 “other” approaches is that none of them present a prompt calculus

that help the domain analyser elicit a, or the, domain description. But before these comparisons let us put

it in the context of the ontology thinking of philosophers. The seminal reference here is [145, John Sowa;

Chap. 2: Ontology]. The crucial concept here is that of ontological commitments. From Aristotle via

Kant, Hegel, Peirce, Husserl, Whitehead and Heidegger to Quine, there has been an abundance of proposals

for the structuring of the ontological commitments into categories. These proposals all have in common

that they are concerned with “all there exists in the world”. We are only interested in the manifest, that

is, physical world and in what can be described in that world. Figure 1.3 on the facing page shows the

tree-like structuring of what modern day AI researchers cum ontologists would call an upper ontology.

General

Two approaches to structuring domain understand will be reviewed.

1: Ontology Science & Engineering: Ontologies are “formal representations of a set of con-

cepts within a domain and the relationships between those concepts” — expressed usually in some

logic. Ontology engineering [10] construct ontologies. Ontology science appears to mainly study struc-

tures of ontologies, especially so-called upper ontology structures, and these studies “waver” between

philosophy and information science31. Internet published ontologies usually consists of thousands of

31We take the liberty of regarding information science as part of computer science, cf. Sect. 1.1.3 on Page 17.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 64 Domain Science & Engineering

65

A Triptych Manifest Domain Ontology

Describable Non−describable

Action Event Behaviour

is_perdurant

is_discrete is_continuous

is_part

is_entity

is_atomic is_composite

is_endurant

has_concrete_type

attribute_names

observe_parts
has_mereology

obs_part_type
obs_uid

obs_mereology
obs_attributes

obs_part_sorts

Analysis Prompts

Description Prompts

is_material

has_materials
obs_materials

obs_ is an abbreviation for observe_

Figure 1.3: The Upper Ontology of TripTych Manifest Domains

logical expressions. These are represented in some, for example, low-level mechanisable form so that

they can be interchanged between ontology research groups and processed by various tools. There does

not seem to be a concern for “deriving” such ontologies into requirements for software. Usually ontology

presentations either start with the presentation of, or makes reference to its reliance on, an upper ontol-
ogy. The term ‘ontology’ has been much used in connection with automating the design of various aspects

WWW applications [153]. Description Logic ([6]) has been proposed as a language for the Semantic Web

[7].

The interplay between endurants and perdurants is studied in [13, Endurants and perdurants in di-
rectly depicting ontologies]. That study investigates axiom systems for two ontologies. One for endurants

(SPAN), another for perdurants (SNAP). No examples of descriptions of specific domains are, however,

given, and thus no specific techniques nor tools are given, method components which could help the en-

gineer in constructing specific domain descriptions. This paper is therefore only relevant to the current

paper insofar as it justifies our emphasis on endurant versus perdurant entities. The [13, Endurants and

perdurants in directly depicting ontologies] paper is an information (i.e., domain) cum computer science

paper (cf. Sect. 1.1.3 on Page 17). For more on SPAN and SNAP see [14].

The interplay between endurant and perdurant entities and their qualities is studied in [105, Qualities,
Quantities, and the Endurant-Perdurant Distinction in Top-Level Ontologies]. In our study the term quality
is made specific and covers the ideas of external and internal qualities, cf. Sect. 1.2.6 on Page 32. External

qualities focus on whether endurant or perdurant, whether part, component or material, whether action,

event or behaviour, whether atomic or composite part, etcetera. Internal qualities focus on unique identi-

fiers (of parts), the mereology (of parts), and the attributes (of parts, components and materials), that is,

of endurants. In [105, Johansson] the relationship between universals (types), particulars (values of types)

and qualities is not “restricted” as in the TripTych domain analysis, but is axiomatically interwoven in

an almost “recursive” manner. Values [of types (‘quantities’ [of ‘qualities’])] are, for example, seen as sub-

ordinated types; this is an ontological distinction that we do not make. The concern of [105, Johansson] is

also the relations between qualities and both endurant and perdurant entities, where we have yet to focus

on “qualities”, other than signatures, of perdurants. [105, Johansson] investigates the quality/quantity issue

wrt. endurance/perdurance and poses the questions: [b] are non-persisting quality instances enduring, per-

during or neither ? and [c] are persisting quality instances enduring, perduring or neither ? and arrives, after

some analysis of the endurance/perdurance concepts, at the answers: [b′] non-persisting quality instances

are neither enduring nor perduring particulars (i.e., entities), and [c′] persisting quality instances are endur-

ing particulars. Answer [b′] justifies our separating enduring and perduring entities into two disjoint, but

jointly “exhaustive” ontologies. The more general study of [105, Johansson] is therefore really not relevant

to our prompt calculi, in which we do not speculate on more abstract, conceptual qualities, but settle on

external endurant qualities, on the unique identifier, mereology and attribute qualities of endurants, and

Domain Science & Engineering 65 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

66

the simple relations between endurants and perdurants outlined in Sect. 1.3, specifically in the relations

between signatures of actions, events and behaviours and the endurant sorts (Sects. 1.3.8–1.3.11), and

especially the relation between parts and behaviours as outlined in Sect. 1.3.11. That is, the TripTych

approach to ontology, i.e., its domain concept, is not only model-theoretic, but, we risk to say, radically

different.

The concerns of TripTych domain science & engineering is based on that of algorithmic engineering.

The domains to which we are applying our analysis & description tools and techniques are spatio-temporal,

that is, can be observed, physically; this is in contrast to such conceptual domains as various branches

of mathematics, physics, biology, etcetera. Domain science & engineering is not aimed at letting the

computer solve problems based on the knowledge it may have stored. Instead it builds models based on

knowledge of, but not “in” the domain. The TripTych form of domain science & engineering differs

from conventional ontological engineering in the following, essential ways: The TripTych domain

descriptions rely essentially on a “built-in” upper ontology: types, abstract as well as model-oriented

(i.e., concrete) and actions, events and behaviours. Domain science & engineering is not, to a first degree,

concerned with modalities, and hence do not focus on the modeling of knowledge and belief, necessity

and possibility, i.e., alethic modalities, epistemic modality (certainty), promise and obligation (deontic

modalities), etcetera.

The TripTych emphasis is on the method for constructing descriptions. It seems that publications

on ontological engineering, in contrast, emphasise the resulting ontologies. The papers on ontologies are

almost exclusively computer science (i.e., information science) than computing science papers.

The next section overlaps with the present section.

2: Knowledge Engineering: The concept of knowledge has occupied philosophers since Plato. No

common agreement on what ‘knowledge’ is has been reached. From [115, 5, 119, 147] we may learn that

knowledge is a familiarity with someone or something; it can include facts, information, descrip-

tions, or skills acquired through experience or education; it can refer to the theoretical or practical
understanding of a subject; knowledge is produced by socio-cognitive aggregates (mainly hu-

mans) and is structured according to our understanding of how human reasoning and logic works.
The seminal reference here is [72]. The aim of knowledge engineering was formulated, in 1983, by an

originator of the concept, Edward A. Feigenbaum [75]: knowledge engineering is an engineering dis-

cipline that involves integrating knowledge into computer systems in order to solve complex problems

normally requiring a high level of human expertise. Knowledge engineering focus on continually build-

ing up (acquire) large, shared data bases (i.e., knowledge bases), their continued maintenance, testing

the validity of the stored ‘knowledge’, continued experiments with respect to knowledge representation,

etcetera. Knowledge engineering can, perhaps, best be understood in contrast to algorithmic engi-
neering: In the latter we seek more-or-less conventional, usually imperative programming language
expressions of algorithms whose algorithmic structure embodies the knowledge required to solve
the problem being solved by the algorithm. The former seeks to solve problems based on an interpreter

inferring possible solutions from logical data. This logical data has three parts: a collection that “mim-
ics” the semantics of, say, the imperative programming language, a collection that formulates the
problem, and a collection that constitutes the knowledge particular to the problem. We refer to

[50].

Domain science & engineering is not aimed at letting the computer solve problems based on the knowl-

edge it may have stored. Instead it builds models based on knowledge of the domain.

Finally, the domains to which we are applying ‘our form of’ domain analysis are domains which focus

on spatio-temporal phenomena. That is, domains which have concrete renditions: air traffic, banks,

container lines, manufacturing, pipelines, railways, road transport, stock exchanges, etcetera. In contrast

one may claim that the domains described in classical ontologies and knowledge representations are mostly

conceptual: mathematics, physics, biology, etcetera.

Specific

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 66 Domain Science & Engineering

67

3: Database Analysis: There are different, however related “schools of database analysis”. DSD: the

Bachman (or data structure) diagram model [8]; RDM: the relational data model [62]; and ER: entity set

relationshp model [60] “schools”. DSD and ER aim at graphically specifying database structures. Codd’s

RDM simplifies the data models of DSD and ER while offering two kinds of languages with which to operate

on RDM databases: SQL and Relational Algebra. All three “schools” are focused more on data

modeling for databases than on domain modeling both endurant and perdurant entities.

4: Domain Analysis: Domain analysis, or product line analysis (see below), as it was then con-

ceived in the early 1980s by James Neighbors [121], is the analysis of related software systems in a domain

to find their common and variable parts. It is a model of wider business context for the system. This form

of domain analysis turns matters “upside-down”: it is the set of software “systems” (or packages) that is

subject to some form of inquiry, albeit having some domain in mind, in order to find common features of

the software that can be said to represent a named domain.

In this section we shall mainly be comparing the TripTych approach to domain analysis to that of

Reubén Prieto-Dı̃az’s approach [126, 127, 128]. Firstly, our understanding of domain analysis basically

coincides with Prieto-Dı̃az’s. Secondly, in, for example, [126], Prieto-Dı̃az’s domain analysis is focused

on the very important stages that precede the kind of domain modeling that we have described: major

concerns are selection of what appears to be similar, but specific entities, identification of common
features, abstraction of entities and classification. Selection and identification is assumed in our

approach, but we suggest to follow the ideas of Prieto-Dı̃az. Abstraction (from values to types and signa-

tures) and classification into parts, materials, actions, events and behaviours is what we have focused on.

All-in-all we find Prieto-Dı̃az’s work very relevant to our work: relating to it by providing guidance to pre-

modeling steps, thereby emphasising issues that are necessarily informal, yet difficult to get started on by

most software engineers. Where we might differ is on the following: although Prieto-Dı̃az does mention a

need for domain specific languages, he does not show examples of domain descriptions in such DSLs.

We, of course, basically use mathematics as the DSL. In our approach we do not consider requirements, let

alone software components, as do Prieto-Dı̃az, but we find that that is not an important issue.

5: Domain Specific Languages: Martin Fowler32 defines a Domain-specific language (DSL) as a

computer programming language of limited expressiveness focused on a particular domain [78].

Other references are [118, 146]. Common to [146, 118, 78] is that they define a domain in terms of classes

of software packages; that they never really “derive” the DSL from a description of the domain; and that

they certainly do not describe the domain in terms of that DSL, for example, by formalising the DSL.

6: Feature-oriented Domain Analysis (FODA): Feature oriented domain analysis (FODA) is a do-

main analysis method which introduced feature modeling to domain engineering. FODA was developed in

1990 following several U.S. Government research projects. Its concepts have been regarded as critically

advancing software engineering and software reuse. The US Government supported report [106] states:

“FODA is a necessary first step” for software reuse. To the extent that TripTych domain engineering
with its subsequent requirements engineering indeed encourages reuse at all levels: domain descrip-
tions and requirements prescription, we can only agree. Another source on FODA is [64]. Since FODA

“leans” quite heavily on ‘Software Product Line Engineering’ our remarks in that section, next, apply

equally well here.

7: Software Product Line Engineering: Software product line engineering, earlier known as do-

main engineering, is the entire process of reusing domain knowledge in the production of new software

systems. Key concerns of software product line engineering are reuse, the building of repositories of

reusable software components, and domain specific languages with which to more-or-less automat-

ically build software based on reusable software components. These are not the primary concerns of

TripTych domain science & engineering. But they do become concerns as we move from domain

32http://martinfowler.com/dsl.h

Domain Science & Engineering 67 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

68

descriptions to requirements prescriptions. But it strongly seems that software product line engi-
neering is not really focused on the concerns of domain description — such as is TripTych domain
engineering. It seems that software product line engineering is primarily based, as is, for example,

FODA: Feature-oriented Domain Analysis, on analysing features of software systems. Our

[34] puts the ideas of software product lines and model-oriented software development in the context

of the TripTych approach.

8: Problem Frames: The concept of problem frames is covered in [102]. Jackson’s prescription

for software development focus on the “triple development” of descriptions of the problem world, the

requirements and the machine (i.e., the hardware and software) to be built. Here domain analysis
means the same as for us: the problem world analysis. In the problem frame approach the software

developer plays three, that is, all the TripTych rôles: domain engineer, requirements engineer and

software engineer, “all at the same time”, iterating between these rôles repeatedly. So, perhaps belabour-

ing the point, domain engineering is done only to the extent needed by the prescription of requirements
and the design of software. These, really are minor points. But in “restricting” oneself to consider only

those aspects of the domain which are mandated by the requirements prescription and software design
one is considering a potentially smaller fragment [103] of the domain than is suggested by the TripTych

approach. At the same time one is, however, sure to consider aspects of the domain that might have

been overlooked when pursuing domain description development in the “more general” TripTych

approach.

9: Domain Specific Software Architectures (DSSA): It seems that the concept of DSSA was for-

mulated by a group of ARPA33 project “seekers” who also performed a year long study (from around

early-mid 1990s); key members of the DSSA project were Will Tracz, Bob Balzer, Rick Hayes-Roth and

Richard Platek [149]. The [149] definition of domain engineering is “the process of creating a DSSA:
domain analysis and domain modeling followed by creating a software architecture and populating it
with software components.” This definition is basically followed also by [120, 142, 116]. Defined and

pursued this way, DSSA appears, notably in these latter references, to start with the analysis of software

components, “per domain”, to identify commonalities within application software, and to then base the

idea of software architecture on these findings. Thus DSSA turns matter “upside-down” with respect

to TripTych requirements development by starting with software components, assuming that these

satisfy some requirements, and then suggesting domain specific software built using these components.

This is not what we are doing: we suggest, [26], that requirements can be “derived” systematically from,

and formally related back to domain descriptionss without, in principle, considering software compo-
nents, whether already existing, or being subsequently developed. Of course, given a domain description
it is obvious that one can develop, from it, any number of requirements prescriptions and that these may

strongly hint at shared, (to be) implemented software components; but it may also, as well, be the case

that two or more requirements prescriptions “derived” from the same domain description may share

no software components whatsoever ! It seems to this author that had the DSSA promoters based their

studies and practice on also using formal specifications, at all levels of their study and practice, then some

very interesting insights might have arisen.

10: Domain Driven Design (DDD): Domain-driven design (DDD)34“is an approach to developing
software for complex needs by deeply connecting the implementation to an evolving model of the core
business concepts; the premise of domain-driven design is the following: placing the project’s primary
focus on the core domain and domain logic; basing complex designs on a model; initiating a creative
collaboration between technical and domain experts to iteratively cut ever closer to the conceptual heart of
the problem.”35 We have studied some of the DDD literature, mostly only accessible on the Internet,

33ARPA: The US DoD Advanced Research Projects Agency
34Eric Evans: http://www.domaindrivendesign.org/
35http://en.wikipedia.org/wiki/Domain-driven design

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 68 Domain Science & Engineering

69

but see also [95], and find that it really does not contribute to new insight into domains such as wee see

them: it is just “plain, good old software engineering cooked up with a new jargon.

11: Unified Modeling Language (UML): Three books representative of UML are [53, 138, 104]. The

term domain analysis appears numerous times in these books, yet there is no clear, definitive understand-

ing of whether it, the domain, stands for entities in the domain such as we understand it, or whether it is

wrought up, as in several of the ‘approaches’ treated in this section, to wit, in items [3–5, 7–9] with either

software design (as it most often is), or requirements prescription. Certainly, in UML, in [53, 138, 104]

as well as in most published papers claiming “adherence” to UML, that domain analysis usuallyis mani-

fested in some UML text which “models” some requirements facet. Nothing is necessarily wrong with

that, but it is therefore not really the TripTych form of domain analysis with its concepts of abstract

representations of endurant and perdurants, with its distinctions between domain and requirements, and

with its possibility of “deriving” requirements prescriptions from domain descriptions. The UML no-

tion of class diagrams is worth relating to our structuring of the domain. Class diagrams appear to be

inspired by [8, Bachman, 1969] and [60, Chen, 1976]. It seems that (i) each part sort — as well as other

than part (or material) sorts — deserves a class diagram (box); and (ii) that (assignable) attributes — as

well as other non-part (or material) types — are written into the diagram box. Class diagram boxes are

line-connected with annotations where some annotations are as per the mereology of the part type and the

connected part types and others are not part related. The class diagrams are said to be object-oriented but

it is not clear how objects relate to parts as many are rather implementation-oriented quantities. All this

needs looking into a bit more, for those who care.

12: Requirements Engineering: There are in-numerous books and published papers on require-
ments engineering. A seminal one is [152]. I, myself, find [112] full of very useful, non-trivial insight.

[69] is seminal in that it brings a number or early contributions and views on requirements engineering.

Conventional text books, notably [122, 125, 144] all have their “mandatory”, yet conventional coverage

of requirements engineering. None of them “derive” requirements from domain descriptions, yes, OK,

from domains, but since their description is not mandated it is unclear what “the domain” is. Most of them

repeatedly refer to domain analysis but since a written record of that domain analysis is not mandated

it is unclear what “domain analysis” really amounts to. Axel van Laamsweerde’s book [152] is remark-

able. Although also it does not mandate descriptions of domains it is quite precise as to the relationships

between domains and requirements. Besides, it has a fine treatment of the distinction between goals and

requirements, also formally. Most of the advices given in [112] can beneficially be followed also in

TripTych requirements development. Neither [152] nor [112] preempts TripTych requirements
development.

Summary of Comparisons

We find that there are two kinds of relevant comparisons: the concept of ontology, its science more than

its engineering, and the Problem Frame work of Michael A. Jackson. The ontology work, as commented

upon in Item [1] (Pages 64–66), is partly relevant to our work: There are at least two issues: Different

classes of domains may need distinct upper ontologies. Section 1.4.1 suggests that there may be different

upper ontologies for non-manifest domains such as financial systems, etcetera. This seems to warrant at

least a comparative study. We have assumed, cf. Sect. 1.2.9, that attributes cannot be separated from parts.

[105, Johansson 2005] develops the notion that persisting quality instances are enduring particulars.
The issue need further clarification.

Of all the other “comparison” items ([2]–[12]) basically only Jackson’s problem frames (item [8])
really take the same view of domains and, in essence, basically maintain similar relations between re-
quirements prescription and domain description. So potential sources of, we should claim, mutual

inspiration ought be found in one-another’s work — with, for example, [88, 103], and the present docu-

ment, being a good starting point.

Domain Science & Engineering 69 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

70

But none of the referenced works make the distinction between discrete endurants (parts) and their

qualities, with their further distinctions between unique identifiers, mereology and attributes. And none

of them makes the distinction between parts and materials. Therefore our contribution can include the

mapping of parts into behaviours interacting as per the part mereologies as highlighted in the process
schemas of Sect. 1.3.11 Pages 60–63.

1.4.4 Open Problems

The TripTych approach to software development, based, as it is, on an initial, serious phase of domain

engineering — a new phase of software engineering for which we claim to now have laid a solid foundation

we claim, for domain engineering — opens up for a variety of issues that need further study. The entries in

this section are not ordered according to any specific principle.

1: Ontology Relations: As was evident in our coverage, Item [1] Pages 64–66, a more exact un-

derstanding of the relations between the “classical” AI/information science/ontology view of domains,

cf. [13, 14, 105], and the algorithmic view of domains, as presented in the current paper, seems required.

The almost disparate jargon of the two “camps” seems, however, to be a hindrance.

2: Analysis of Perdurants: A study of perdurants, Sect. 1.3, as detailed as that of our study of en-

durants, ought be carried out. One difficulty, as we see it, is the choice of formalisms: whereas the ba-

sic formalisms for the expression of endurants and their qualities was type theory and simple functions

and predicates, there is no such simple set of formal constructs that can “carry” the expression of be-

haviours.Besides the textual CSP, [97], there is graphic notations of Petri Nets, [132], Message Sequence

Charts, [99], State-charts, [92], and others.

3: Commensurate Discrete and Continuous Models: Section 1.3.6 on Page 56 hinted at co-

extensive descriptions of discrete and continuous behaviours, the former in, for example, RSL, the latter

in, typically, the calculus mathematics of partial different equations (PDEs). The problem that arises in

this situation is the following: there will be, say variable identifiers, e.g., x, y, . . . , z which in the RSL

formalisation has one set of meanings, but which in the PDE “formalisation” has another set of meanings.

Current formal specification languages36 do not cope with continuity. Some research is going on. But to

substantially cover, for example, the proper description of laminar and turbulent flows in networks (e.g.,

pipelines, Example 61 on Page 56) requires more substantial results.

4: Interplay between Parts and Materials: Examples 49 on Page 46, 50 on Page 47, 51 on Page 48

and 61 on Page 56 revealed but a small fraction of the problems that may arise in connection with mod-

eling the interplay between parts and materials. Subject to proper formal specification language and, for

example PDE specification we may expect more interesting laws, as for example those of Examples 50

on Page 47, 51 on Page 48, and even proof of these as if they were theorems. Formal specifications have

focused on verifying properties of requirements and software designs. With co-extensive (i.e., commensu-

rate) formal specifications of both discrete and continuous behaviours we may expect formal specifications

to also serve as bases for predictions.

5: Dynamics: There is a serious limitation in what can be modeled with the present approach. Although

we can model the dynamic introduction of new atomic or removal of existing parts, when members of

a composite set of such parts, we cannot model the dynamic introduction or removal of the processes

corresponding to such parts. Also we have not shown how to model global time. And, although we can

model spatial positions, we have not shown how to model spatial locations. These deliberate omissions are

due to the facts that the description language, RSL, cannot model continuity and that it cannot provide for

arbitrary models of time [150]. Here is an area worth studying.
36Alloy [100], Event B [1], RSL [85], VDM-SL [48, 49, 77], Z, etc.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 70 Domain Science & Engineering

71

6: Precise Descriptions of Manifest Domains: The focus on the principles, techniques and tools

of domain analysis & description has been such domains in which humans play an active rôle. Formal de-

scriptions of domains may serve to prove properties of domains, in other words, to understand better these

domains, and to validate requirements derived from such domain descriptions, and thereby to ensure that

software derived from such requirements is not only correct, but also meet users expectations. Improved

understanding of man-made domains — without necessarily leading to new software — may serve to im-

prove the “business processes” of these domains, make them more palatable for the human actors, make

them more efficient wrt. resource-usage. Descriptions of domains are descriptions of the syntax and seman-

tics of the technical languages used in speaking about and in the domain. The domain analysis required for

the design of programming languages is based on computability: mathematical logic and recursive func-

tion theory. The domain analysis required for “real-world” domains is not based on computability: that

“world” is not computable. Requirements engineering based on domain descriptions is based on deriving

computable subsets of refined domain descriptions. The classical theory and practice of programming lan-

guage semantics and compiler development [15] and [23, Part VII (Chapters 16–19)] can now be further

developed into a theory and practice for deriving general software from formal domain descriptions [26].

Descriptions of domains are descriptions of the syntax and semantics of the technical languages used

in speaking about and in the domain. The domain analysis required for the design of programming lan-

guages is based on computability: mathematical logic and recursive function theory. The domain analysis

required for “real-world” domains is not based on computability: that “world” is not computable. Require-

ments engineering based on domain descriptions is based on deriving computable subsets of refined domain

descriptions. The classical theory and practice of programming language semantics and compiler develop-

ment [15] and [23, Part VII (Chapters 16–19)] can now be further developed into a theory and practice for

deriving general software from formal domain descriptions [26].

Physicists study ‘Mother Nature’, the world without us. Domain scientists study man-made part and

material based universes with which we interact — the world within and without us. Classical engineering

builds on laws of physics to design and construct buildings, chemical compounds, machines and electrical

and electronic products. So far software engineers have not expressed software requirements on any

precise description of the basis domain. This paper strongly suggests such a possibility. Regardless: it is

interesting to also formally describe domains; and, as shown, it can be done.

7: Towards Mathematical Models of Domain Analysis & Description: There are two aspects

to a precise description of the domain analysis prompts and domain description prompts.

There is that of describing the individual prompts as if they were “machine instructions” for an albeit

strange machine; and there is that of describing the interplay between prompts: the sequencing of domain
description prompts as determined by the outcome of the domain analysis prompts. We have

described and formalised the latter in [43, Processes]; and we are in the midst of describing and formalising

the former in [35, Prompts].

8: Laws of Descriptions: A Calculus of Prompts: Laws of descriptions deal with the order and re-

sults of applying the domain analysis and description prompts. Some laws are covered in [33]. It is expected

that establishing formal models of the prompts, for example as outlined in [35, 43], will help identify such

laws. The various description prompts apply to parts (etc.) of specified sorts (etc.) and to a “hidden state”.

The “hidden state” has two major elements: the domain and the evolving description texts. An “execution”

of a prompt potentially changes that “hidden state”. Let P, PA and PB be composite part sorts where PA and

PB are derived from P. Let ℜi, ℜ j, etc., be suitable functions which rename sort, type and attribute names.

In a proper prompt calculus we would expect observe part sorts PA;observe part sorts PB,

when “executed” by one and the same domain engineer, to yield the same “hidden state” as observe-

part sorts PB;ℜi;observe part sorts PA;ℜ j. Also one would expectobserve part sorts-

PA;ℜi;observe part sorts PA;ℜ j. to yield the same state as just observe part sorts PA

given suitable renaming functions.

Domain Science & Engineering 71 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

72

Well ? or does one really ?

There are some assumptions that are made here. One pair of assumptions is that the domain is fixed

and to one observer. yields the same analysis and description results no matter in which order prompts are

“executed”. Another assumption is that the domain engineer does not get wiser as analysis and description

progresses. If, as one can very well expect, the domain engineer does get wiser, then former results may be

discarded and either replaced by newer analysis and descriptions or prompts repeated. In such cases these

laws do not hold.

9: Domains and Galois Connections: Section 1.1.8 on Page 23 very briefly mentioned that formal

concepts form Galois Connections. In the seminal [83] a careful study is made of this fact and beautiful

examples show the implications for domains. It seems that our examples have all been too simple. They

do not easily lead on to the “discovery” of “new” domain concepts from appropriate concept lattices. We

refer to [47, Section 9]. Further study need be done.

10: Laws of Domain Description Prompts: Typically observe part sorts applies to a com-

posite part, p:P, and yield descriptions of one or more part sorts: p1:P1, p2:P2, . . . , pm:Pm. Let pi:Pi,
p j:P j, . . . , pk:Pk (of these) be composite. Now observe part sorts(pi) and observe part -

sorts(p j), etc., can be applied and yield texts texti, respectively text j. A law of domain description

prompts now expresses that the order in which the two or more observers is applied is immaterial, that is,

they commute. In [33] we made an early exploration of such laws of domain description prompts. More

work, see also below, need be done.

11: Domain Theories:: An ultimate goal of domain science & engineering is to prove properties of

domains. Well, maybe not properties of domains, but then at least properties of domain descriptions. If

one can be convinced that a posited domain description indeed is a faithful description of a domain, then

proofs of properties of the domain description are proofs of properties of that domain. Ultimately domain

science & engineering must embrace such studies of laws of domains. Here is a fertile ground for zillions

of Master and PhD theses !

Example 66 . A Law of Train Traffic:Let a transport net, n:N, be that of a railroad system. Hubs are

train stations. Links are rail lines between stations. Let a train timetable record train arrivals and train

departures from stations. And let such a timetable be modulo some time interval, say typically 24 hours.

Now let us (idealistically) assume that actual trains arrive at and depart from train stations according the

train timetable and that the train traffic includes all and only such trains as are listed in the train timetable.

Now a law of train traffic expresses “Over the modulo time interval of a train timetable it is the case that
the number of trains arriving at a station minus the number of trains ending their journey at that station
plus the number of trains starting their journey at that station equals number of trains departing from that
station.”

1.4.5 Tony Hoare’s Summary on ‘Domain Modeling’

In a 2006 e-mail, in response, undoubtedly to my steadfast, perhaps conceived as stubborn insistence, on

domain engineering, Tony Hoare summed up his reaction to domain engineering as follows, and I quote37:

“There are many unique contributions that can be made by domain modeling.

1 The models describe all aspects of the real world that are relevant for any good software
design in the area. They describe possible places to define the system boundary for any
particular project.

2 They make explicit the preconditions about the real world that have to be made in any
embedded software design, especially one that is going to be formally proved.

37E-Mail to Dines Bjørner, July 19, 2006

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 72 Domain Science & Engineering

73

3 They describe the whole range of possible designs for the software, and the whole range of
technologies available for its realisation.

4 They provide a framework for a full analysis of requirements, which is wholly independent
of the technology of implementation.

5 They enumerate and analyse the decisions that must be taken earlier or later in any design
project, and identify those that are independent and those that conflict. Late discovery of
feature interactions can be avoided.”

All of these issues are dealt with in [24, Part IV].

Tony Hoare’s list pertains to a wider range that just the Manifest Domains treated in this chapter.

1.4.6 Beauty Is Our Business

This paper started with a quote from Dostovevsky’s The Idiot.

It’s life that matters, nothing but life –
the process of discovering, the everlasting and perpetual process,

not the discovery itself, at all.38

I find that quote appropriate in the following, albeit rather mundane, sense: It is the process of analysing

and describing a domain that exhilarates me: that causes me to feel very happy and excited. There is beauty

[76, E.W. Dijkstra Festschrift] not only in the result but also in the process.

38Fyodor Dostoyevsky, The Idiot, 1868, Part 3, Sect. V

Domain Science & Engineering 73 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

Chapter 2

Domain Facets

Chapter Status

This chapter is to be revised.

The domain analysis & description method outlined in Chapter 1 was idealised ! It did not take into

account the views that anyone particular stake-holder might have on that stake-holder’s understanding of

the domain. The techniques and tools of the domain analysis & description approach appear “technical” in

the sense that they could be applied without considering such state-holder views. This chapter attempts to

remedy that problem.

2.1 Stake-holders

The key concept above was that of stake-holder. Let us define and examine that concept.

Definition 18 . State-holder: By a domain stake-holder we shall understand a person, or a

group of persons, “united” somehow in their common interest in, or dependency on the domain;

or an institution, an enterprise, or a group of such, (again) characterised (and, again, loosely) by
their common interest in, or dependency on the domain

Example 67 . Some Stake-holders:For the domain of banking we can list at least the following dis-

tinct, i.e., different stake-holder groups: clients, i.e., customers how have demand/deposit accounts, etc.,

bank teller, “back office”bank clerks, bank managers (at various levels). bank owners, suppliers (of bank-

ing equipment), banking regulators1, politicians, etcetera. They are distinct in that no two of these groups

appears to have exactly and only the same concerns.

What separates one group of stake-holders from other groups are that they each put different emphasis on

the inclusion or understanding of a number for domain facets (to be defined immediately below). In this

chapter we shall now concern ourselves with the concept of facets.

2.2 Domain Facets

Definition 19 . Facet: By a domain facet we shall understand one amongst a finite set of
generic ways of analysing a domain: a view of the domain, such that the different facets cover

conceptually different views, and such that these views together cover the domain

1In the US: the Federal Deposit Insurance Corporation, the Federal Reserve Board, and the Office of the Comptroller of the
Currency; in Great Britain: Financial Services Authority.

74

75

The hedge here is “finite set of generic ways”. Thus there is an assumption, a conjecture to be possibly

refuted. Namely the postulate that there is a finite number of facets. We shall offer the following facets: in-

trinsics, support technology, management and organisation, rules and regulations (and scripts), and human

behaviour.

2.2.1 Intrinsics

Definition 20 . Intrinsics: By domain intrinsics we shall understand those phenomena and
concepts of a domain which are basic to any of the other facets (listed earlier and treated, in some

detail, below), with such domain intrinsics initially covering at least one specific, hence named,

stake-holder view

Example 68. Railway Net Intrinsics. We narrate and formalise three railway net intrinsics.

• From the view of potential train passengers a railway net consists of lines, stations and trains. A line

connects exactly two distinct stations.

• From the view of actual train passengers a railway net — in addition to the above — allows for

several lines between any pair of stations and, within stations, provides for one or more platform

tracks from which to embark or alight a train.

• From the view of train operating staff a railway net — in addition to the above — has lines and

stations consisting of suitably connected rail units. A rail unit is either a simple (i.e., linear, straight)

unit, or is a switch unit, or is a simple crossover unit, or is a switchable crossover unit, etc. Simple

units have two connectors. Switch units have three connectors. Simple and switchable crossover

units have four connectors. A path (through a unit) is a pair of connectors of that unit. A state of a

unit is the set of paths, in the direction of which a train may travel. A (current) state may be empty:

The unit is closed for traffic. A unit can be in either one of a number of states of its state space.

A summary formalisation of the three narrated railway net intrinsics could be:

• Potential train passengers:

type

N, L, S, Sn, Ln
value

obs Ls: N → L-set, obs Ss: N → S-set

obs Ln: L → Ln, obs Sn: S → Sn
obs Sns: L → Sn-set, obs Lns: S → Ln-set

axiom

...

N, L, S, Sn and Ln designate nets, lines, stations, station names and line names. One can observe

lines and stations from nets, line and station names from lines and stations, pair sets of station names

from lines, and lines names (of lines) into and out from a station from stations. Axioms ensure proper

graph properties of these concepts.

• Actual train passengers:

type

Tr, Trn
value

Domain Science & Engineering 75 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

76

obs Trs: S → Tr-set, obs Trn: Tr → Trn
axiom

...

The only additions are that of track and track name sorts, related observer functions and axioms.

• Train operating staff:

type

U, C
P
′
= U × (C×C)

P = {| p:P
′
• let (u,(c,c

′
))=p in (c,c

′
)∈ ∪ obs Ω(u) end |}

Σ = P-set

Ω = Σ-set

value

obs Us: (N|L|S) → U-set

obs Cs: U → C-set

obs Σ: U → Σ
obs Ω: U → Ω

axiom

...

Unit and connector sorts have been added as have concrete types for paths, unit states, unit state spaces and

related observer functions, including unit state and unit state space observers. The reader is invited to

compare the three narrative descriptions with the three formal descriptions, line by line

Different stake-holder perspectives, not only of intrinsics, as here, but of any facet, lead to a number of

different models. The name of a phenomenon of one perspective, that is, of one model, may coincide

with the name of a “similar” phenomenon of another perspective, that is, of another model, and so on. If

the intention is that the “same” names cover comparable phenomena, then the developer must state the

comparison relation.

Example 69. Comparable Intrinsics. We refer to Example 68. We claim that the concept of nets,

lines and stations in the three models of Example 68 must relate. The simplest possible relationships are to

let the third model be the common “unifier” and to mandate

• that the model of nets, lines and stations of the potential train passengers formalisation is that of nets,

lines and stations of the train operating staff model; and

• that the model of nets, lines, stations and tracks of the actual train passengers formalisation is that of

nets, lines, stations of the train operating staff model.

Thus the third model is seen as the definitive model for the stake-holder views

Example 70. Intrinsics of Switches. The intrinsic attribute of a rail switch is that it can take on a

number of states. A simple switch (
c|

Y
c/

c
) has three connectors: {c,c|,c/}. c is the connector of the common

rail from which one can either “go straight” c|, or “fork” c/ (Fig. 2.1). So we have that a possible state

space of such a switch could be ωgs :

{{},
{(c,c|)},{(c|,c)},{(c,c|),(c|,c)},
{(c,c/)},{(c/,c)},{(c,c/),(c/,c)},{(c/,c),(c|,c)},
{(c,c|),(c|,c),(c/,c)},{(c,c/),(c/,c),(c|,c)},{(c/,c),(c,c|)},{(c,c/),(c|,c)}}

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 76 Domain Science & Engineering

77

C C

CCC

C

C

C

C C C

Closed

C

C/

C|

C/ C/ C/

C/C/C/C/

C/ C/ C/ C/

C| C| C|

C|C|C|C|

C| C| C| C|

Figure 2.1: Possible states of a rail switch

The above models a general switch ideally. Any particular switch ωps may have ωps⊂ωgs . Nothing is said

about how a state is determined: who sets and resets it, whether determined solely by the physical position

of the switch gear, or also by visible or virtual (i.e., invisible, intangible) signals up or down the rail, away

from the switch

Conceptual Versus Actual Intrinsics

In order to bring an otherwise seemingly complicated domain across to the reader, one may decide to

present it piecemeal:2 First, one presents the very basics, the fewest number of inescapable entities, func-

tions and behaviours. Then, in a step of enrichment, one adds a few more (intrinsic) entities, functions and

behaviours. And so forth. In a final step one adds the last (intrinsic) entities, functions and behaviours. In

order to develop what initially may seem to be a complicated domain, one may decide to develop it piece-

meal: We basically do as for the presentation steps: Steps of enrichment — from a big lie, via increasingly

smaller lies, till one reaches a truth!

On Modelling Intrinsics

Domains can be characterised by intrinsically being endurant, or function, or event, or behaviour intensive.

Software support for activities in such domains then typically amount to database systems, computation-

bound systems, real-time embedded systems, respectively distributed process monitoring and control sys-

tems. Modelling the domain intrinsics in respective cases can often be done property-oriented specification

languages (like CafeOBJ [82] or CASL [63]), model-oriented specification languages (like Alloy [100], B

[1], VDM [48, 49, 77], RSL [85], or Z [157]), event-based languages (like Petri nets [132] or CSP [97]),

respectively process-based specfication languages (like MSCs [99], LSCs [65, 93, 108], statecharts [92],

or CSP [97]).

2.2.2 Support Technologies

Definition 21 . Support technology: By a domain support technology we shall understand

ways and means of implementing certain observed phenomena or certain conceived concepts

Example 71. Railway Support Technology. We give a rough sketch description of possible rail unit

switch technologies.

(i) In “ye olde” days, rail switches were “thrown” by manual labour, i.e., by railway staff assigned to

and positioned at switches.

(ii) With the advent of reasonably reliable mechanics, pulleys and levers3 (and steel wires), switches

were made to change state by means of “throwing” levers in a cabin tower located centrally at the station

(with the lever then connected through wires etc., to the actual switch).

2That seemingly complicated domain may seem very complicated, containing hundreds of entities. Instead of presenting all the
entities in one “fell swoop”, one presents them in stages.

Domain Science & Engineering 77 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

78

(iii) This partial mechanical technology then emerged into electro-mechanics, and cabin tower staff was

“reduced” to pushing buttons.

(iv) Today, groups of switches, either from a station arrival point to a station track, or from a station

track to a station departure point, are set and reset by means also of electronics, by what is known as

interlocking (for example, so that two different routes cannot be open in a station if they cross one another)

It must be stressed that Example 71 is just a rough sketch. In a proper narrative description the software

(cum domain) engineer must describe, in detail, the subsystem of electronics, electro-mechanics and the

human operator interface (buttons, lights, sounds, etc.).

An aspect of supporting technology includes recording the state-behaviour in response to external stim-

uli. We give an example.

Example 72. Probabilistic Rail Switch Unit State Transitions. Figure 2.2 indicates a way of

formalising this aspect of a supporting technology. Figure 2.2 intends to model the probabilistic (erroneous

and correct) behaviour of a switch when subjected to settings (to switched (s) state) and resettings (to direct

(d) state). A switch may go to the switched state from the direct state when subjected to a switch setting s
with probability psd

sed

sw/esd sw/ess

di/edd di/eds

di/1-pdd-edd

sw/psd

di/pds

sw/1-psd-esd

di/pdd

sw/pss

di/1-pds-eds

sw/1-pss-ess

Input stimuli:
sw: Switch to switched state

di: Revert to direct state

Probabilities:
pss: Switching to switched state from switched state

psd: Switching to switched state from direct state

pds: Reverting to direct state from switched state

pds: Reverting to direct state from direct state

esd: Switching to error state from direct state

edd: Reverting to error state from direct state

ess: Switching to error state from switched state

eds: Reverting to error state from switched state

 0 <= p.. <= 1

States:
s: Switched state

d: Direct (reverted) state

e: Error state

Figure 2.2: Probabilistic state switching

Another example shows another aspect of support technology: Namely that the technology must guarantee

certain of its own behaviours, so that software designed to interface with this technology, together with the

technology, meets dependability requirements.

Example 73. Railway Optical Gates. Train traffic (itf:iTF), intrinsically, is a total function over some

time interval, from time (t:T) to continuously positioned (p:P) trains (tn:TN).

Conventional optical gates sample, at regular intervals, the intrinsic train traffic. The result is a sampled

traffic (stf:sTF). Hence the collection of all optical gates, for any given railway, is a partial function from

intrinsic to sampled train traffics (stf).
We need to express quality criteria that any optical gate technology should satisfy — relative to a

necessary and sufficient description of a closeness predicate. The following axiom does that:

For all intrinsic traffics, itf, and for all optical gate technologies, og, the following must
hold: Let stf be the traffic sampled by the optical gates. For all time points, t, in

the sampled traffic, those time points must also be in the intrinsic traffic, and, for all

trains, tn, in the intrinsic traffic at that time, the train must be observed by the optical
gates, and the actual position of the train and the sampled position must somehow be

checkable to be close, or identical to one another.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 78 Domain Science & Engineering

79

Since units change state with time, n:N, the railway net, needs to be part of any model of traffic.

type

T, TN
P = U∗

NetTraffic == net:N trf:(TN →m P)
iTF = T → NetTraffic
sTF = T →m NetTraffic

oG = iTF
∼
→ sTF

value

[close] c: NetTraffic × TN × NetTraffic
∼
→ Bool

axiom

∀ itt:iTF, og:OG • let stt = og(itt) in

∀ t:T • t ∈ dom stt •

t ∈ D itt ∧ ∀ Tn:TN • tn ∈ dom trf(itt(t))
⇒ tn ∈ dom trf(stt(t)) ∧ c(itt(t),tn,stt(t)) end

D is not an RSL operator. It is a mathematical way of expressing the definition set of a general function.

Hence it is not a computable function. Check-ability is an issue of testing the optical gates when delivered

for conformance to the closeness predicate, i.e., to the axiom

On Modelling Support Technologies

Support technologies in their relation to the domain in which they reside typically reflect real-time embed-

dedness. As such the techniques and languages for modelling support technologies resemble those for mod-

elling event and process intensity, while temporal notions are brought into focus. Hence typical modelling

notations include event-based languages (like Petri nets [132] or CSP [97]), respectively process-

based specification languages (like MSCs [99], LSCs [65, 93, 108], Statecharts [92], or CSP [97]), as

well as temporal languages (like the Duration Calculus, DC [160] and Temporal Logic of

Actions, TLA+ [110]).

2.2.3 Management and Organisation

Example 74. Train Monitoring, I. In China, as an example, rescheduling of trains occurs at stations and

involves telephone negotiations with neighbouring stations (“up and down the lines”). Such rescheduling

negotiations, by phone, imply reasonably strict management and organisation (M&O). This kind of M&O

reflects the geographical layout of the rail net

Definition 22 . Domain Management: By domain management we shall understand such
people (such decisions) (i) who (which) determine, formulate and thus set standards (cf. rules and

regulations, Sect. 2.2.4) concerning strategic, tactical and operational decisions; (ii) who ensure
that these decisions are passed on to (lower) levels of management, and to floor staff; (iii) who

make sure that such orders, as they were, are indeed carried out; (iv) who handle undesirable

deviations in the carrying out of these orders cum decisions; and (v) who “backstop” complaints
from lower management levels and from floor staff

Definition 23 . Domain Organisation: By domain organisation we shall understand the struc-

turing of management and non-management staff levels; the allocation of strategic, tactical and

operational concerns to within management and non-management staff levels; and hence the
“lines of command”: who does what, and who reports to whom, administratively and functionally

Domain Science & Engineering 79 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

80

Example 75. Railway Management and Organisation: Train Monitoring, II. We single out a

rather special case of railway management and organisation. Certain (lowest-level operational and station-

located) supervisors are responsible for the day-to-day timely progress of trains within a station and along

its incoming and outgoing lines, and according to given timetables. These supervisors and their immediate

(middle-level) managers (see below for regional managers) set guidelines (for local station and incoming

and outgoing lines) for the monitoring of train traffic, and for controlling trains that are either ahead of or

behind their schedules. By an incoming and an outgoing line we mean part of a line between two stations,

the remaining part being handled by neighbouring station management. Once it has been decided, by such

a manager, that a train is not following its schedule, based on information monitored by non-management

staff, then that manager directs that staff: (i) to suggest a new schedule for the train in question, as well as

for possibly affected other trains, (ii) to negotiate the new schedule with appropriate neighbouring stations,

until a proper reschedule can be decided upon, by the managers at respective stations, (iii) and to enact that

new schedule.4 A (middle-level operations) manager for regional traffic, i.e., train traffic involving several

stations and lines, resolves possible disputes and conflicts

The above, albeit rough-sketch description, illustrated the following management and organisation issues:

There is a set of lowest-level (as here: train traffic scheduling and rescheduling) supervisors and their staff.

They are organised into one such group (as here: per station). There is a middle-level (as here: regional train

traffic scheduling and rescheduling) manager (possibly with some small staff), organised with one such per

suitable (as here: railway) region. The guidelines issued jointly by local and regional (...) supervisors and

managers imply an organisational structuring of lines of information provision and command.

Conceptual Analysis, First Part

People staff enterprises, the components of infrastructures with which we are concerned, i.e., for which we

develop software. The larger these enterprises — these infrastructure components — the more need there

is for management and organisation. The rôle of management is roughly, for our purposes, twofold: first,

to perform strategic, tactical and operational work, to set strategic, tactical and operational policies — and

to see to it that they are followed. The rôle of management is, second, to react to adverse conditions, that

is, to unforeseen situations, and to decide how they should be handled, i.e., conflict resolution.

Policy-setting should help non-management staff operate normal situations — those for which no man-

agement interference is thus needed. And management “backstops” problems: management takes these

problems off the shoulders of non-management staff.

To help management and staff know who’s in charge wrt. policy setting and problem handling, a clear

conception of the overall organisation is needed. Organisation defines lines of communication within

management and staff, and between these. Whenever management and staff has to turn to others for

assistance they usually, in a reasonably well-functioning enterprise, follow the command line: the paths of

organigrams — the usually hierarchical box and arrow/line diagrams.

Methodological Consequences

The management and organisation model of a domain is a partial specification; hence all the usual ab-

straction and modelling principles, techniques and tools apply. More specifically, management is a set of

predicates, observer and generator functions which either parameterise other, the operations functions, that

is, determine their behaviour, or yield results that become arguments to these other functions

Organisation is thus a set of constraints on communication behaviours. Hierarchical, rather than linear,

and matrix structured organisations can also be modelled as sets (of recursively invoked sets) of equations.

4That enactment may possibly imply the movement of several trains incident upon several stations: the one at which the manager
is located, as well as possibly at neighbouring stations.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 80 Domain Science & Engineering

81

Conceptual Analysis, Second Part

To relate classical organigrams to formal descriptions we first show such an organigram (Fig. 2.3), and then

we show schematic processes which — for a rather simple scenario — model managers and the managed!

.

Director

Board

Staff bStaff a Manager

Staff 1 Staff 2 Staff 3

Unit

A Matrix OrganisationA Hierarchical Organisation

Board

Director

Unit

Unit Unit

UnitUnit

Unit

Unit

Manager Manager Manager

Functional

Functional

Functional

Admin. Admin. Admin.

Manager

Manager

Manager

.....

.....

.....
.....

Figure 2.3: Organisational structures

Based on such a diagram, and modelling only one neighbouring group of a manager and the staff

working for that manager we get a system in which one manager, mgr, and many staff, stf, coexist or work

concurrently, i.e., in parallel. The mgr operates in a context and a state modelled by ψ . Each staff, stf(i)
operates in a context and a state modelled by sσ (i).

type

Msg, Ψ, Σ, Sx
SΣ = Sx →m Σ

channel

{ ms[i]:Msg | i:Sx }
value

sσ :SΣ, ψ :Ψ

sys: Unit → Unit

sys() ≡ ‖ { st(i)(sσ (i)) | i:Sx } ‖ mg(ψ)

In this system the manager, mgr, (1) either broadcasts messages, m, to all staff via message channel ms[i].
The manager’s concoction, m out(ψ), of the message, msg, has changed the manager state. Or (2) is

willing to receive messages, msg, from whichever staff i the manager sends a message. Receipt of the

message changes, m in(i,m)(ψ), the manager state. In both cases the manager resumes work as from the

new state. The manager chooses — in this model — which of thetwo things (1 or 2) to do by a so-called

non-deterministic internal choice (⌈⌉).

mg: Ψ → in,out {ms[i]|i:Sx} Unit

mg(ψ) ≡
(1) (let (ψ ′,m)=m out(ψ) in ‖{ms[i]!m|i:Sx};mg(ψ ′)end)

⌈⌉
(2) (let ψ ′=⌈⌉⌊⌋{let m=ms[i]? in m in(i,m)(ψ) end|i:Sx} in mg(ψ ′) end)

m out: Ψ → Ψ × MSG,
m in: Sx × MSG → Ψ → Ψ

Domain Science & Engineering 81 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

82

And in this system, staff i, stf(i), (1) either is willing to receive a message, msg, from the manager, and then

to change, st in(msg)(σ), state accordingly, or (2) to concoct, st out(σ), a message, msg (thus changing

state) for the manager, and send it ms[i]!msg. In both cases the staff resumes work as from the new state.

The staff member chooses — in this model — which of thetwo “things” (1 or 2) to do by a non-deterministic

internal choice (⌈⌉).

st: i:Sx → Σ → in,out ms[i] Unit

st(i)(σ) ≡
(1) (let m = ms[i]? in st(i)(stf in(m)(σ)) end)

⌈⌉
(2) (let (σ ′,m) = st out(σ) in ms[i]!m; st(i)(σ ′) end)

st in: MSG → Σ → Σ,
st out: Σ → Σ × MSG

Both manager and staff processes recurse (i.e., iterate) over possibly changing states. The management

process non-deterministically, external choice, “alternates” between “broadcast”-issuing orders to staff and

receiving individual messages from staff. Staff processes likewise non-deterministically, external choice,

alternate between receiving orders from management and issuing individual messages to management.

The conceptual example also illustrates modelling stake-holder behaviours as interacting (here CSP-

like [97]) processes.

On Modelling Management and Organisation

Management and organisation basically spans entity, function, event and behaviour intensities and thus

typically require the full spectrum of modelling techniques and notations — summarised in the two “On

Modelling ...” paragraphs at the end of the two previous sections.

2.2.4 Rules and Regulations

Definition 24 . Domain Rules: By a domain rule we shall understand some text (in the domain)

which prescribes how people or equipment are expected to behave when dispatching their duty,

respectively when performing their function

Definition 25 . Domain Regulation: By a domain regulation we shall understand some text

(in the domain) which prescribes what remedial actions are to be taken when it is decided that a
rule has not been followed according to its intention

Example 76. Trains at Stations.

• Rule: In China the arrival and departure of trains at, respectively from, railway stations is subject to

the following rule:

In any three-minute interval at most one train may either arrive to or depart from a railway
station.

• Regulation: If it is discovered that the above rule is not obeyed, then there is some regulation which

prescribes administrative or legal management and/or staff action, as well as some correction to the

railway traffic

Example 77. Trains Along Lines.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 82 Domain Science & Engineering

83

• Rule: In many countries railway lines (between stations) are segmented into blocks or sectors. The

purpose is to stipulate that if two or more trains are moving along the line, then:

There must be at least one free sector (i.e., without a train) between any two trains along
a line.

• Regulation: If it is discovered that the above rule is not obeyed, then there is some regulation which

prescribes administrative or legal management and/or staff action, as well as some correction to the

railway traffic

A Meta-characterisation of Rules and Regulations

At a meta-level, i.e., explaining the general framework for describing the syntax and semantics of the

human-oriented domain languages for expressing rules and regulations, we can say the following: There

are, abstractly speaking, usually three kinds of languages involved wrt. (i.e., when expressing) rules and

regulations (respectively when invoking actions that are subject to rules and regulations). Two languages,

Rules and Reg, exist for describing rules, respectively regulations; and one, Stimulus, exists for describ-

ing the form of the [always current] domain action stimuli.

A syntactic stimulus, sy sti, denotes a function, se sti:STI: Θ → Θ, from any configuration to a next

configuration, where configurations are those of the system being subjected to stimulations. A syntactic

rule, sy rul:Rule, stands for, i.e., has as its semantics, its meaning, rul:RUL, a predicate over current and

next configurations, (Θ × Θ) → Bool, where these next configurations have been brought about, i.e.,

caused, by the stimuli. These stimuli express: If the predicate holds then the stimulus will result in a valid

next configuration.

type

Stimulus, Rule, Θ
STI = Θ → Θ
RUL = (Θ × Θ) → Bool

value

meaning: Stimulus → STI
meaning: Rule → RUL

valid: Stimulus × Rule → Θ → Bool

valid(sy sti,sy rul)(θ) ≡ meaning(sy rul)(θ ,(meaning(sy sti))(θ))

valid: Stimulus × RUL → Θ → Bool

valid(sy sti,se rul)(θ) ≡ se rul(θ ,(meaning(sy sti))(θ))

A syntactic regulation, sy reg:Reg (related to a specific rule), stands for, i.e., has as its semantics, its

meaning, a semantic regulation, se reg:REG, which is a pair. This pair consists of a predicate, pre reg:-
Pre REG, where Pre REG = (Θ × Θ) → Bool, and a domain configuration-changing function, act reg:-
Act REG, where Act REG = Θ → Θ, that is, both involving current and next domain configurations. The

two kinds of functions express: If the predicate holds, then the action can be applied.

The predicate is almost the inverse of the rules functions. The action function serves to undo the

stimulus function.

type

Reg
Rul and Reg = Rule × Reg
REG = Pre REG × Act REG
Pre REG = Θ × Θ → Bool

Domain Science & Engineering 83 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

84

Act REG = Θ → Θ
value

interpret: Reg → REG

The idea is now the following: Any action of the system, i.e., the application of any stimulus, may be an

action in accordance with the rules, or it may not. Rules therefore express whether stimuli are valid or not

in the current configuration. And regulations therefore express whether they should be applied, and, if so,

with what effort.

More specifically, there is usually, in any current system configuration, given a set of pairs of rules

and regulations. Let (sy rul,sy reg) be any such pair. Let sy sti be any possible stimulus. And let θ
be the current configuration. Let the stimulus, sy sti, applied in that configuration result in a next con-

figuration, θ ′, where θ ′ = (meaning(sy sti))(θ). Let θ ′ violate the rule, ∼valid(sy sti,sy rul)(θ), then if

predicate part, pre reg, of the meaning of the regulation, sy reg, holds in that violating next configuration,

pre reg(θ ,(meaning(sy sti))(θ)), then the action part, act reg, of the meaning of the regulation, sy reg,
must be applied, act reg(θ), to remedy the situation.

axiom

∀ (sy rul,sy reg):Rul and Regs •

let se rul = meaning(sy rul),
(pre reg,act reg) = meaning(sy reg) in

∀ sy sti:Stimulus, θ :Θ •

∼valid(sy sti,se rul)(θ)
⇒ pre reg(θ ,(meaning(sy sti))(θ))

⇒ ∃ nθ :Θ • act reg(θ)=nθ ∧ se rul(θ ,nθ)
end

It may be that the regulation predicate fails to detect applicability of regulations actions. That is, the

interpretation of a rule differs, in that respect, from the interpretation of a regulation. Such is life in the

domain, i.e., in actual reality

On Modelling Rules and Regulations

Usually rules (as well as regulations) are expressed in terms of domain entities, including those grouped

into “the state”, functions, events, and behaviours. Thus the full spectrum of modelling techniques and

notations may be needed. Since rules usually express properties one often uses some combination of axioms

and well-formedness predicates. Properties sometimes include temporality and hence temporal notations

(like Duration Calculus [160] or Temporal Logic of Actions [110]) are used. And since regulations usually

express state (restoration) changes one often uses state changing notations (such as found in B [1], RSL

[85], VDM-SL [48, 49, 77], and Z [157]). In some cases it may be relevant to model using some constraint

satisfaction notation [2] or some Fuzzy Logic notations [151].

2.2.5 Scripts and Licensing Languages

Definition 26 . Domain Script: By a domain script we shall understand the structured, almost,

if not outright, formally expressed, wording of a rule or a regulation that has legally binding power,
that is, which may be contested in a court of law

Example 78. A Casually Described Bank Script. We deviate, momentarily, from our line of railway

examples, to exemplify one from banking. Our formulation amounts to just a (casual) rough sketch. It is

followed by a series of four large examples. Each of these elaborate on the theme of (bank) scripts.

The problem area is that of how repayments of mortgage loans are to be calculated. At any one time

a mortgage loan has a balance, a most recent previous date of repayment, an interest rate and a handling

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 84 Domain Science & Engineering

85

fee. When a repayment occurs, then the following calculations shall take place: (i) the interest on the

balance of the loan since the most recent repayment, (ii) the handling fee, normally considered fixed, (iii)

the effective repayment — being the difference between the repayment and the sum of the interest and

the handling fee — and the new balance, being the difference between the old balance and the effective

repayment. We assume repayments to occur from a designated account, say a demand/deposit account. We

assume that bank to have designated fee and interest income accounts. (i) The interest is subtracted from

the mortgage holder’s demand/deposit account and added to the bank’s interest (income) account. (ii) The

handling fee is subtracted from the mortgage holder’s demand/deposit account and added to the bank’s fee

(income) account. (iii) The effective repayment is subtracted from the mortgage holder’s demand/deposit

account and also from the mortgage balance. Finally, one must also describe deviations such as overdue

repayments, too large, or too small repayments, and so on

Example 79. A Formally Described Bank Script. First we must informally and formally define the

bank state:

There are clients (c:C), account numbers (a:A), mortgage numbers (m:M), account yields (ay:AY) and

mortgage interest rates (mi:MI). The bank registers, by client, all accounts (ρ :A Register) and all mortgages

(µ :M Register). To each account number there is a balance (α:Accounts). To each mortgage number there

is a loan (ℓ:Loans). To each loan is attached the last date that interest was paid on the loan.

type

C, A, M
AY

′
= Real, AY = {| ay:AY

′
• 0<ay≤10 |}

MI
′
= Real, MI = {| mi:MI

′
• 0<mi≤10 |}

Bank
′
= A Register × Accounts × M Register × Loans

Bank = {| β :Bank
′
• wf Bank(β)|}

A Register = C →m A-set

Accounts = A →m Balance
M Register = C →m M-set

Loans = M →m (Loan × Date)
Loan,Balance = P
P = Nat

Then we must define well-formedness of the bank state:

value

ay:AY, mi:MI

wf Bank: Bank → Bool

wf Bank(ρ ,α,µ ,ℓ) ≡ ∪ rng ρ = dom α ∧ ∪ rng µ = dom ℓ
axiom

ai<mi

Operations on banks are denoted by the commands of the bank script language. First the syntax:

type

Cmd = OpA | CloA | Dep | Wdr | OpM | CloM | Pay
OpA == mkOA(c:C)
CloA == mkCA(c:C,a:A)
Dep == mkD(c:C,a:A,p:P)
Wdr == mkW(c:C,a:A,p:P)
OpM == mkOM(c:C,p:P)
Pay == mkPM(c:C,a:A,m:M,p:P)

Domain Science & Engineering 85 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

86

CloM == mkCM(c:C,m:M,p:P)
Reply = A | M | P | OkNok
OkNok == ok | notok

And then the semantics:

int Cmd(mkPM(c,a,m,p,d
′
))(ρ ,α,µ ,ℓ) ≡

let (b,d) = ℓ(m) in

if α(a)≥p
then

let i = interest(mi,b,d
′
−d),

ℓ′ = ℓ † [m7→ℓ(m)−(p−i)]
α ′ = α † [a7→α(a)−p,ai 7→α(ai)+i] in

((ρ ,α ′,µ ,ℓ′),ok) end

else

((ρ ,α ′,µ ,ℓ),nok)
end end

pre c ∈ dom µ ∧ m ∈ µ(c)

And so forth for remaining commands

The idea about scripts is that they can somehow be objectively enforced: that they can be precisely under-

stood and consistently carried out by all stakeholders, eventually leading to computerisation. But they are,

at all times, part of the domain.

Licensing Languages

A special form of scripts are increasingly appearing in some domains, notably the domain of electronic, or

digital media, where these licenses express that the licensor permits the licensee to render (i.e., play) works

of proprietary nature CD ROM-like music, DVD-like movies, etc. while obligating the licensee to pay the

licensor on behalf of the owners of these, usually artistic works. We refer to [89, 129, 139, 51, 4, 61, 159]

for papers and reports on license languages.

On Modelling Scripts

Scripts (as are licenses) are like programs (respectively like prescriptions for program executions). Hence

the full variety of techniques and notations for modelling programming (or specification) languages apply

[67, 90, 134, 141, 148, 156]. Chapters 6–9 of Vol. 2 of [21, 23, 24] cover pragmatics, semantics and syntax

techniques for defining languages.

2.2.6 Human Behaviour

Definition 27 . Human Behaviour: By domain human behaviour we shall understand any of

a quality spectrum of carrying out assigned work: from (i) careful, diligent and accurate, via (ii)

sloppy dispatch, and (iii) delinquent work, to (iv) outright criminal pursuit

Example 80. Banking — or Programming — Staff Behaviour. Let us assume a bank clerk, “in ye

olde” days, when calculating, say mortgage repayments (cf. Example 78).

We would characterise such a clerk as being diligent, etc., if that person carefully follows the mortgage

calculation rules, and checks and double-checks that calculations “tally up”, or lets others do so. We would

characterise a clerk as being sloppy if that person occasionally forgets the checks alluded to above. We

would characterise a clerk as being delinquent if that person systematically forgets these checks. And we

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 86 Domain Science & Engineering

87

would call such a person a criminal if that person intentionally miscalculates in such a way that the bank

(and/or the mortgage client) is cheated out of funds which, instead, may be diverted to the cheater. Let us,

instead of a bank clerk, assume a software programmer charged with implementing an automatic routine

for effecting mortgage repayments (cf. Example 79). We would characterise the programmer as being

diligent if that person carefully follows the mortgage calculation rules, and throughout the development

verifies and tests that the calculations are correct with respect to the rules. We would characterise the

programmer as being sloppy if that person forgets certain checks and tests when otherwise correcting the

computing program under development. We would characterise the programmer as being delinquent if that

person systematically forgets these checks and tests. And we would characterise the programmer as being

a criminal if that person intentionally provides a program which miscalculates the mortgage interest, etc.,

in such a way that the bank (and/or the mortgage client) is cheated out of funds

Example 81. A Human Behaviour Mortgage Calculation. Example 79 gave a semantics to the

mortgage calculation request (i.e., command) as would a diligent bank clerk be expected to perform it. To

express, that is, to model, how sloppy, delinquent, or outright criminal persons (staff?) could behave we

must modify the int Cmd(mkPM(c,a,m,p,d
′
))(ρ ,α,µ ,ℓ) definition.

int Cmd(mkPM(c,a,m,p,d
′
))(ρ ,α,µ ,ℓ) ≡

let (b,d) = ℓ(m) in

if q(α(a),p) /∗ α(a)≤p∨α(a)=p∨α(a)≤p∨... ∗/
then

let i = f1(interest(mi,b,d
′
−d)),

ℓ′ = ℓ † [m7→f2(ℓ(m)−(p−i))]
α ′ = α † [a7→f3(α(a)−p),ai 7→f4(α(ai)+i),

a“staff” 7→f“staff”(α(ai)+i)] in

((ρ ,α ′,µ ,ℓ′),ok) end

else

((ρ ,α ′,µ ,ℓ),nok)
end end

pre c ∈ dom µ ∧ m ∈ µ(c)

The predicate q and the functions f1, f2, f3, f4 and f“staff” of Example 81 are deliberately left undefined.

q: P × P
∼
→ Bool

f1,f2,f3,f4,f“staff”: P
∼
→ P

They are being defined by the “staffer” when performing (incl., programming) the mortgage calculation

routine

The point of Example 81 is that one must first define the mortgage calculation script precisely as one would

like to see the diligent staff (programmer) to perform (incl., correctly program) it before one can “pinpoint”

all the places where lack of diligence may “set in”. The invocations of q, f1, f2, f3, f4 and f“staff” designate

those places.

The point of Example 81 is also that we must first domain-define, “to the best of our ability” all the

places where human behaviour may play other than a desirable rôle. If we cannot, then we cannot claim

that some requirements aim at countering undesirable human behaviour.

A Meta-characterisation of Human Behaviour

Commensurate with the above, humans interpret rules and regulations differently, and not always “consis-

tently” — in the sense of repeatedly applying the same interpretations.

Our final specification pattern is therefore:

Domain Science & Engineering 87 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

88

type

Action = Θ
∼
→ Θ-infset

value

hum int: Rule → Θ → RUL-infset

action: Stimulus → Θ → Θ

hum beha: Stimulus × Rules → Action → Θ
∼
→ Θ-infset

hum beha(sy sti,sy rul)(α)(θ) as θset
post

θset = α(θ) ∧ action(sy sti)(θ) ∈ θset
∧ ∀ θ ′:Θ•θ ′ ∈ θset ⇒

∃ se rul:RUL•se rul ∈ hum int(sy rul)(θ)⇒se rul(θ ,θ ′)

The above is, necessarily, sketchy: There is a possibly infinite variety of ways of interpreting some rules.

A human, in carrying out an action, interprets applicable rules and chooses one which that person believes

suits some (professional, sloppy, delinquent or criminal) intent. “Suits” means that it satisfies the intent,

i.e., yields true on the pre/post-configuration pair, when the action is performed — whether as intended by

the ones who issued the rules and regulations or not. We do not cover the case of whether an appropriate

regulation is applied or not

The above-stated axioms express how it is in the domain, not how we would like it to be. For that we

have to establish requirements.

On Modelling Human Behaviour

To model human behaviour is, “initially”, much like modelling management and organsiation. But only

‘initially’. The most significant human behaviour modelling aspects is then that of modelling non-determi-

nism and looseness, even ambiguity. So a specification language which allows specifying non-determinism

and looseness (like CafeOBJ [82] and RSL [85]) is to be preferred.

2.2.7 Completion

Domain acquisition resulted in typically up to thousands of units of domain descriptions. Domain analysis

subsequently also serves to classify which facet any one of these description units primarily characterise.

But some such “compartmentalisations” may be difficult, and may be deferred till the step of “completion”.

It may then be — “at the end of the day”, that is, after all of the above facets have been modelled — that

some description units are left as not having been described, not deliberately, but “circumstantially”. It then

behooves the domain engineer to fit these “dangling” description units into suitable parts of the domain

description. This “slotting in” may be simple, and all is fine. Or it may be difficult. Such difficulty may

be a sign that the chosen model, the chosen description, in its selection of endurants, functions, events and

behaviours to model — in choosing these over other possible selections of phenomena and concepts is not

appropriate. Another attempt must be made. Another selection, another abstraction of entities, functions,

etc., may need be chosen. Usually however, after having chosen the abstractions of the intrinsic phenomena

and concepts, one can start checking whether “dangling” description units can be fitted in “with ease”.

2.2.8 Integrating Formal Descriptions

We have seen that to model the full spectrum of domain facets one needs not one, but several specification

languages. No single specification language suffices. It seems highly unlikely and it appears not to be

desirable to obtain a single, “universal” specification language capable of “equally” elegantly, suitably

abstractly modelling all aspects of a domain. Hence one must conclude that the full modelling of domains

shall deploy several formal notations. The issues are then the following which combinations of notations to

select, and how to make sure that the combined specification denotes something meaningful. The ongoing

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 88 Domain Science & Engineering

89

series of “Integrating Formal Methods” conferences [3] is a good source for techniques, compositions and

meaning.

2.3 Closing Discussion

TO BE TYPED

Domain Science & Engineering 89 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

Chapter 3

Prompt Semantics

Chapter Status

This chapter is under revision and is to be completed.

3.1 A Model of The Analysis & Description Process

3.1.1 A Summary of Prompts

In Chap. 1 we outlined two classes of prompts: the domain [endurant] analysis prompts:1

a. is entity, 23

b. is endurant, 24

c. is perdurant, 24

d. is discrete, 24

e. is continuous, 24

f. is part, 25

g. is component, 25

h. is material, 26

i. is atomic, 26

j. is composite, 26

k. observe parts, 27

l. has concrete type, 29

m. has mereology, 34

n. attribute names, 38

o. has components, 44

p. has materials, 45

and the domain [endurant] description prompts:

a. obs part P, 28

b. is P, 28

c. obs part T, 29

d. uid P, 33

e. mereo P, 35

f. upd mereology, 36

g. attr A, 38

h. components, 44

i. obs part M, 46

j. materials, 46

These prompts are imposed upon the domain analyser cum describer. They are “figuratively” applied to

the domain. Their orderly, sequenced application follows the method hinted at in the previous section and

expressed in a pseudo-formal notation in this section. The notation looks formal but since we have not

formalised these prompts it is only pseudo-formal. In [35] we shall formalise these prompts.

1The prompts are sorted in order of appearence. The one or two digits following the prompt names refer to page numbers minus
the number of the first page of this paper + 1.

90

91

3.1.2 Preliminaries

Let P be a sort, that is, a collection of endurants. By ηP we shall understand a syntactic quantity: the

name of P. By ιp:P we shall understand the semantic quantity: an (arbitrarily selected) endurant in P.

And by η−1ηP we shall understand P. To guide the TripTych domain analysis & description process

we decompose it into steps. Each step “handles” a sort p:P or a material m:M. Steps handling discovery

of composite sorts generate a set of sort names ηP1, ηP2, . . . , ηPn and ηM1, ηM2, . . . , ηMn. These

are put in a reservoir for sorts to be inspected. The handled sort ηP or ηM is removed from that reser-

voir. Handling of material sorts concerns only their attributes. Each domain description prompt results in

domain specification text (here we show only the formal texts) being deposited in the domain description

reservoir, a global variable τ . The clause: domain description prompt(p) : τ := τ ⊕ [”text ; ”]
means that the formal text ”text ; ” is joined to the global variable τ where that ”text ; ” is prompted by

domain description prompt(p). The meaning of ⊕ will be discussed at the end of this section.

3.1.3 Initialising the Domain Analysis & Description Process

We remind the reader that we are dealing only with endurant domain entities. The domain analysis ap-

proach covered in Chap. 1 was based on decomposing an understanding of a domain from the “overall

domain” into its components, and these, if not atomic, into their subcomponents. So we need to initialise

the domain analysis & description by selecting (or choosing) the domain ∆.

Here is how we think of that “initialisation” process. The domain analyser & describer spends some

time focusing on the domain, maybe at the “white board”2, rambling, perhaps in an un-structured manner,

across its domain, ∆, and its subdomains. Informally jotting down more-or-less final sort names, building,

in the domain analysers’ & describers’ mind an image of that domain. After some time, doing this, the

domain analyser & describer is ready. An image of the domain is in the form of “a domain” endurant,

δ :∆. Those are the quantities, η∆ (name of ∆) [Item 112] and ιp:P (for (δ :∆)) [Item 119 on the following

page], referred to below.

Thus this initialisation process is truly a creative one.

3.1.4 A Domain Analysis & Description State

112 A global variable αps will accumulate all the sort names being discovered.

113 A global variable νps will hold names of sorts yet to be analysed and described.

114 A global variable τ will hold the (so far) generated (in this case only) formal domain description text.

variable

112. αps := [η∆] ηP-set or ηP∗

113. νps := [η∆] (ηP|ηM)-set or (ηP|ηM)∗

114. τ := [] Text-set or Text∗

We shall explain the use of [...]s and the operations of \ and ⊕ on the above variables in Sect. 3.1.6 on

Page 98.

3.1.5 Analysis & Description of Endurants

115 To analyse and describe endurants means to first

116 examine those endurant which have yet to be so analysed and described

2Here ‘white board’ is a conceptual notion. It could be physical, it could be yellow “post-it” stickers, or it could be an electronic
conference “gadget”.

Domain Science & Engineering 91 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

92

117 by selecting and removing from νps (Item 122.) an as yet unexamined sort (by name);

118 then analyse and describe an endurant entity (ιp:P) of that sort — this analysis, when applied to

composite parts, leads to the insertion of zero3 or more sort names4;

119 then to analyse and describe the mereology of each part sort,

120 and finally to analyse and describe the attributes of each sort.

value

115. analyse and describe endurants: Unit → Unit

115. analyse and describe endurants() ≡
116. while ∼is empty(νps) do

117. let ηS = select and remove ηS() in

118. analyse and describe endurant sort(ιs:S) end end ;
119. for all ηP • ηP ∈ αps do analyse and describe mereology(ιp:P) end

120. for all ηP • ηP ∈ αps do analyse and describe attributes(ιp:P) end

The ι of Items 118, 119 and 120 are crucial. The domain analyser is focused on sort S (and P) and is

“directed” (by those items) to choose (select) an endurant ιs (ιp) of that sort. The ability of the domain

analyser to find such an entity is a measure of that person’s professional creativity.

As was indicated in Chap. 1, the mereology of a part may involve unique identifiers of any part sort,

hence must be done after all such part sort unique identifiers have been identified. Similarly for attributes

which also may involve unique identifiers. Each iteration of analyse and describe endurant sort(ιp:P)
involves the selection of a sort (by name) (which is that of either a part sort or a material sort) with this sort

name then being removed.

121 The selection occurs from the global state (hence: ()) and changes that (hence Unit).

122 The affected global state component is that of the reservoir, νps.

value

121. select and remove ηS: Unit → ηP
121. select and remove ηS() ≡
122. let ηS • ηS ∈ νps in νps := νps \ {ηS} ; ηS end

The analysis and description of all sorts also performs an analysis and description of their possible unique

identifiers (if part sorts) and attributes. The analysis and description of sort mereologies potentially requires

the unique identifiers of any set of sorts. Therefore the analysis and description of sort mereologies follows

that of analysis and description of all sorts.

123 To analyse and describe an endurant

124 is to find out whether it is a part.

125 If so then it is to analyse and describe it as a part,

126 else it is to analyse and describe it as a material.

3If the sub-parts of p are all either atomic or already analysed, then no new sort names are added to the repository νps.
4These new sort names are then “picked-up” for sort analysis &c. in a next iteration of the while loop.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 92 Domain Science & Engineering

93

123. analyse and describe endurant sort: (P|M) → Unit

123. analyse and describe endurant sort(e:(P|M)) ≡
124. if is part(e)
124. assert: is part(e) ≡ is endurant(e)∧is discrete(e)
125. then analyse and describe part sort(e:P)
126. else analyse and describe material parts(e:M)
123. end

Analysis & Description of Part Sorts

127 The analysis and description of a part sort

128 is based on there being a set, ps, of parts5 to analyse —

129 of which an archetypal one, p′, is arbitrarily selected.

130 analyse and describe part p′

127. analyse and describe part sort: P → Unit

127. analyse and describe part sort(p:P) ≡
128. let ps = observe parts(p) in

129. let p
′
:P • p

′
∈ ps in

130. analyse and describe part(p
′
)

127. end end

131 The analysis (&c.) of a part

132 first analyses and describes its unique identifiers.

133 If atomic

134 and

135 if the part embodies materials,

136 we analyse and describe these.

137 If not atomic then the part is composite

138 and is analysed and described as such.

131. analyse and describe part: P → Unit

131. analyse and describe part(p) ≡
132. analyse and describe unique identifier(p) ;
133. if is atomic(p)
134. then

135. if has materials(p)
136. then analyse and describe part materials(p) end

137. else assert: is composite(p)
138. analyse and describe composite endurant(p) end

131. pre: is discrete(p)

We do not associate materials with composite parts.

5We can assume that there is at least one element of that set. For the case that the sort being analysed is a domain ∆, say “The
Transport Domain”, p′ is some representative “transport domain” δ . Similarly for any other sort for which ps is now one of the sorts
of δ .

Domain Science & Engineering 93 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

94

Analysis & Description of Part Materials

139 The analysis and description of the material part sorts, one or more, of atomic parts p of sort P
containing such materials,

140 simply observes the material sorts of p,

141 that is, generates the one or more continuous endurants

142 and the corresponding observer function text.

143 The reservoir of sorts to be inspected is augmented by the material sorts — except if already previ-

ously entered (the \ αps clause).

139. analyse and describe part materials: P → Unit

139. analyse and describe part materials(p) ≡
140. observe material sorts(p) :
141. τ := τ ⊕ [”type M1,M2,...,Mm;
142. value obs part M1:P→M1,obs part M2:P→M2,...,obs part Mm:P→Mm;”]
143. νps := νps ⊕ ([M1,M2,...,Mm] \ αps)
139. pre: has materials(p)

Analysis & Description of Material Parts

144 To analyse and describe materials, m, i.e., continuous endurants,

145 is only necessary if m has parts.

146 Then we observe the sorts of these parts.

147 The identified part sort names update both name reservoirs.

144. analyse and describe material parts: M → Unit

144. analyse and describe material parts(m:M) ≡
145. if has parts(m)
146. then observe part sorts(m):
146. τ := τ ⊕ [” type P1,P2,...,PN ;
146. value obs part Pi: M→Pi i:{1..N};”]
147. ‖ νps := νps ⊕ ([ηP1,ηP2,...,ηPN]\ αps)
147. ‖ αps := αps ⊕ [ηP1,ηP2,...,ηPN]
144. end

144. assert: is continuous(m)

Analysis & Description of Composite Endurants

148 To analyse and describe a composite endurant of sort P

149 is to analyse and describe the unique identifier of that composite endurant,

150 then to analyse and describe the sort. If the sort has a concrete type

151 then we analyse and describe that concrete sort type

152 else we analyse and describe the abstract sort.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 94 Domain Science & Engineering

95

148. analyse and describe composite endurant: P → Unit

148. analyse and describe composite endurant(p) ≡
149. analyse and describe unique identifier(p) ;
150. if has concrete type(p)
151. then analyse and describe concrete sort(p)
152. else analyse and describe abstract sort(p)
150. end

Analysis & Description of Concrete Sort Types

153 The concrete sort type being analysed and described

154 is either

155 expressible by some compound type expression

154. or is

156 expressible by some alternative type expression.

153. analyse and describe concrete sort: P → Unit

153. analyse and describe concrete sort(p:P) ≡
155. analyse and describe concrete compound type(p)
154. ⌈⌉
156. analyse and describe concrete alternative type(p)
153. pre: has concrete type(p)

157 The concrete compound sort type

158 is expressible by some simple type expression, T=E (Q,R,...,S) over either concrete types or existing

or new sorts Q, R, ..., S.

159 The emerging sort types are identified

160 and assigned to both νps

161 and αps.

155. analyse and describe concrete compound type: P → Unit

155. analyse and describe concrete compound type(p:P) ≡
157. observe part type(p):
157. τ := τ ⊕ [”type Q,R,..,S, T = E (Q,R,...,S);
157. value obs part T: P → T ;”] ;
158. let {Pa,Pb,...,Pc} = sorts of({Q,R,...,S})
159. assert: {Pa,Pb,...,Pc} ⊆ {Q,R,...,S} in

160. νps := νps ⊕ [ηPa, ηPb, ..., ηPc] ‖
161. αps := αps ⊕ ([ηPa, ηPb, ..., ηPc] \ αps) end

155. pre: has concrete type(p)

162 The concrete alternative sort type expression

Domain Science & Engineering 95 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

96

163 is expressible by an alternative type expression T=P1|P2|...|PN where each of the alternative types

is made disjoint wrt. existing types by means of the description language Pi::mkPi(su:Pi) construc-

tion.

164 The emerging sort types are identified and assigned

165 to both νps

166 and αps.

156. analyse and describe concrete alternative type: P → Unit

156. analyse and describe concrete alternative type(p:P) ≡
162. observe part type(p):
163. τ := τ ⊕ [”type T=P1 | P2 | ... | PN, Pi::mkPi(s u:Pi) (1≤i≤N);
163. value obs part T: P→T ;”] ;
164. let {Pa,Pb,...,Pc} = sorts of({Pi|1≤i≤n})
164. assert: {Pa,Pb,...,Pc} ⊆ {Pi|1≤i≤n} in

165. νps := νps ⊕ ([ηPa, ηPb, ..., ηPc] \ αps) ‖
166. αps := αps ⊕ [ηPa, ηPb, ..., ηPc] end

153. pre: has concrete type(p)

Analysis & Description of Abstract Sorts

167 To analyse and describe an abstract sort

168 amounts to observe part sorts and to

169 update the sort name repositories.

167. analyse and describe abstract sort: P → Unit

167. analyse and describe abstract sort(p:P) ≡
168. observe part sorts(p):
168. τ := τ ⊕ [”type P1, P2, ..., Pn;
168. value obs part Pi:P→Pi (0≤i≤n);”]
169. ‖ νps := νps ⊕ ([ηP1, ηP2, ..., ηPn] \ αps)
169. ‖ αps := αps ⊕ [ηP1, ηP2, ..., ηPn]

Analysis & Description of Unique Identifiers

170 To analyse and describe the unique identifier of parts of sort P is

171 to observe the unique identifier of parts of sort P

172 where we assume that all parts have unique identifiers.

170. analyse and describe unique identifier: P → Unit

170. analyse and describe unique identifier(p) ≡
171. observe unique identifier(p):
171. τ := τ ⊕ [”type PI; value uid P:P→PI;”]
172. assert: has unique identifier(p)

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 96 Domain Science & Engineering

97

Analysis & Description of Mereologies

173 To analyse and describe a part mereology

174 if it has one

175 amounts to observe that mereology

176 and otherwise do nothing.

177 The analysed quantity must be a part.

173. analyse and describe mereology: P → Unit

173. analyse and describe mereology(p) ≡
174. if has mereology(p)
175. then observe mereology(p) :
175. τ := τ ⊕ ”type MT = E (PIa,PIb,...,PIc) ;
175. value obs mereo P: P→MT ;”
176. else skip end

173. pre: is part(p)

Analysis & Description of Part Attributes

178 To analyse and describe the attributes of parts of sort P is

179 to observe the attributes of parts of sort P

180 where we assume that all parts have attributes.

178. analyse and describe part attributes: P → Unit

178. analyse and describe part attributes(p) ≡
179. observe attributes(p):
179. τ := τ ⊕ [”type A1, ..., Am ;
179. value attr A1:P→A1,,...,attr Am:P→Am;”]
180. assert: has attributes(p)

3.1.6 Discussion of The Model

The above model lacks a formal understanding of the individual prompts as listed in Sect. 3.1.1. Such an

understanding is attempted in [35].

Termination

The sort name reservoir νps is “reduced” by one name in each iteration of the while loop of the anal-
yse and describe endurants, cf. Item 117 on Page 92, and is augmented, in each iteration of that loop,

by sort names – if not already dispensed of iterations of in earlier itetrations, cf. formula Items 143 on

Page 94, 147 on Page 94, 160 on Page 95, 165 on the facing page and 160 on Page 95. We take it as a

dogma that domains contain a finite number of differently typed parts and matyerials. This introduction

and removal of sort names and the finiteness of sort names is then the basis for a proper proof of terminaton

of the the analysis & description process.

Domain Science & Engineering 97 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

98

Axioms and Proof Obligations

We have omitted from the above treatment of axioms concerning well-formedness of parts, materials and

attributes and proof obligations concerning disjointness of observed part and material sorts and attribute

types. A more proper treatment would entail adding a line of proof obligation text right after Item lines 176

on the preceding page and 179 on the previous page, and of axiom text right after Item lines 142, 146, 157,

159, 171, 179, No axiom is needed in connection with Item line 163 on Page 96.

[36] covers axioms and proof obligations in some detail.

Order of Analysis & Description: A Meaning of ‘⊕’

The variables αps, νps and τ are defined to hold either sets or lists. The operator ⊕ can be thought of

as either set union (∪ and [,]≡{,}) — in which case the domain description text in τ is a set of domain

description texts or as list concatenation (̂ and [,]≡〈,〉) of domain description texts. The operator ℓ1 ⊕ ℓ2

now has at least two interpretations: either ℓ1̂ℓ2 or ℓ2̂ℓ1. In the case of lists the ⊕ (i.e., ̂) does not (suffix

or prefix) append ℓ2 elements already in ℓ1. The select and remove ηP function on Page 92 applies to

the set interpretation. A list interpretation is:

value

117. select and remove ηP: Unit → ηP
117. select and remove ηP() ≡
117. let ηP = hd νps in νps := tl νps; ηP end

In the first case (ℓ1̂ℓ2) the analysis and description process proceeds from the root, breadth first, In the

second case (ℓ2̂ℓ1) the analysis and description process proceeds from the root, depth first.

3.2 A Model of The Analysis & Description Prompts

TO BE WRITTEN

3.2.1 On the Domain Analyser’s Image of Domains

TO BE WRITTEN

3.2.2 An Abstract Syntax of Domains

Domain Nodes

The core quantity of the domain analyser’s image of domains is here called a node. Nodes designate

entities. Some designated nodes are so-called duplicate nodes. A duplicate node designates a sort name

that is defined elsewhere in the domain description tree. See Sect. 3.2.2 on Page 100. Five kinds of nodes

are said to define sorts. Atomic nodes, Item 185 Page 99, define some qualities, Q (cf. Item 192 Page 99),

and may refer to material nodes (either directly or by reference (#Mn)). Material nodes, Item 186 Page 99,

define material qualities, MAT, Item 192 on the facing page, and may refer to part nodes (either directly or

by reference (#Pn)). Composite nodes, Item 188 Page 99, define define some qualities and a set of entity

nodes (either directly or by reference (#Sn)). Type nodes, Item 190 Page 99, define define some qualities,

a concrete type, and a set of part nodes (either directly or by reference (#Pn)) — where their part names

occur in the type expression. Alternative nodes, Item 191 Page 99, define define some qualities and a set of

[alternative] part nodes (either directly or by reference (#Pn)) A more tersely expressed narrative and the

a;ready reference formalisation follows.

181 A node is either an endurant or a perdurant node.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 98 Domain Science & Engineering

99

182 An endurant node is either a discrete (i.e., a part) or a continuous (i.e., a material) node.

183 We shall not consider perdurant nodes in this paper.

184 A part node is either an atomic node or a composite node or a duplicate node (represented as [#Sn]).

185 An atomic node contains some quality description and a usually empty set of uniquely material-

named material nodes, some may be duplicate such nodes.

186 A material node contains some material attributes and a possibly empty set of uniquely part-named

part nodes.

187 A composite type node is either a compound node or is a [concrete] type node.

188 A composite node contains a set of uniquely sort-named nodes and some quality description.

189 A “k”oncrete type node is either a simple compound type node or is an alternative sorts node.

190 A type node is some type expression over sorts and concrete type names and a possibly empty set of

uniquely part-named endurants and some quality description.

191 An alternative node is a set of two or more uniquely named endurant nodes.

192 A quality description consists of a unique identifier, a possibly “empty” mereology, and some at-

tributes.

type

181. N == mkEnN(EnN) | mkPeN(PeN)6

182. EnN == mkPaN(PaN) | mkMaN(MaN)
183. PeN
184. PaN == mkAtN(AtN) | mkCoN(CoN)
185. AtN = Q × ((Mn→m MaN)7×[#Mn]-set)
186. MaN = MAT × ((Pn→m PaN)×[#Pn]-set)
187. CoN == mkCmN(CmN)| mkKTN(KTN)
188. CmN = Q × ((Sn→m EnN)8×[#Sn]-set)
189. KTN == mkTyN(st:TyN) | mkAlT(AlT)
190. TyN = Q × TE × ((Pn→m PaN)9×[#Pn]-set)
191. AlT = Q × ((Pn→m PaN)10×[#Pn]-set)
192. Q = UI × ME × PAT

Sn=Pn|Mn11, Pn, Mn, Tn, TE, UI, MAT, PAT

Part and material names, Pn, Mn, type expressions, TE, and unique identifiers, UI, are further undefined

quantities. We shall define mereology and material and part attributes, MAT and PAT, below.

6The type equation A=mkB(...)|mkC(...)|...|mkD(...) defines A to consist of the disjoint types designated by mkB(...),
mkC(...), ... and mkD(...). In mkE(s:E) s denotes a selector function. mkB, etc., are called constructor functions. s(mkX(x))≡.
isX(mkX(x))≡true. isX, etc., are discriminator predicates.

7Empty map when part “carries” no materials. Usually a singleton map if it does carry materials.
8 The sort names are those sort names of the type expression which are being defined here (i.e., “appear” for the first time).
9See footnote 8.

10At least two map elements
11The part name and the material name types are disjoint, that is M (Pn)∩M (Mn)

Domain Science & Engineering 99 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

100

The Root Domain Node

193 The root domain node is a singleton map from a sort name to an endurant node.

type

193. RDN = Sn→m EnN axiom ∀ rdn:RDN • card dom rdn = 1
value

193. rdn:RDN = [sn7→mkEnN(en)]
193. sn:Sn, en:EnN

Domain Description Trees

Due to the recursive definition of sort nodes the abstract syntax can be visualised as defining description
trees Endurant nodes of a part node and part nodes of a material node can be said to designate subtrees.

We can therefore define a notion of description tree paths.

Syntax

194 A description [tree] path is a sequence of one or more sort names.

type

194. DP = (Sn|[#Sn])∗

axiom

194. ∀ dtp:DTP •

194. dtp6=〈〉
194. ∧ ∃ sn:Sn•[#sn]∈ elems dtp ⇒
194. [#sn] 6∈ elems fst12dtp

Generating Description Tree Paths

195

196

197

198

199

200

201

202

203

12fst list is the list of all but the last element of list.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 100 Domain Science & Engineering

101

value

195. G: EnN → DP-infset

195. G(en) ≡
196. case en of

198. mkPaN(mkAtN(,m)) → G(m),
199. mkPaN(mkMaN(,m)) → G(m),
200. mkPaN(mkCoN(mkCmN(,m))) → G(m),
201. mkPaN(mkCoN(mkKTN(mkTyN(, ,m)))) → G(m),
202. mkPaN(mkCoN(mkKTN(mkAlT(,m)))) → G(m),
203. mkMaN(,m) → G(m)
195. end ∪ {〈〉}

The Generate path function is overload-defined, four variants

the above and the three below:

204 for the root node,

205 for the six node-defining nodes, and

206 their duplicate components.

204. G: RDN → DP-infset

204. G([n7→en]) ≡ {〈n〉̂ dp|dp:DP•n
′
∈ dom rdn∧dp ∈ G(en)}

205. G: Nodes × Duplicates → DP-infset

205. G(ns,ds) ≡
205. {〈n〉̂ dp|n:Sn,dp:DP•n ∈ dom ns∧dp ∈ G(ns(n))∪ G(ds)}

206. G: Duplicates → DP-set

206. G(ds) ≡ {〈[#sn]〉|[#sn] ∈ ds}

Well-formedness of Domain Nodes

Well-formed Composite and Material Nodes

207 Composite nodes must contain at least one sort node;

208 material nodes may contain no part nodes.

value

207. wf comp nds: CmN → Bool

207. wf comp nds(,(sm,ss)) ≡ dom sm ∩ Sns(ss) 6= {}

207. Sns: [#Sn]-set −< Sn-set

207. Sns(msn) ≡ {sn|sn:Sn•[#sn]∈ msn}

208. wf mat nds: MaN ×[#Pn]-set →Bool

208. wf mat nds(,) ≡ true

Domain Science & Engineering 101 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

102

No Recursively Defined Sorts Sorts, whether parts sorts or material sorts, cannot be recursively

defined.

209 A sort is recursively defined if its name occur more than once on any path,

210 by properties of lists and sets this is tantamount to saying that the length of a violating path is higher

than the cardinality of the set of all names in the path.

209. no recursively defined sorts: DPN → Bool

209. no recursively defined sorts(dpn) ≡
209. let paths = G(dpn) in

209. ∼∃ path:DP • path ∈ paths
210. ⇒ len path > card elems path end

No Duplicate Definitions Once a part node has been defined it cannot be redefined. The purpose of

the ”#” “blocks” in the part node maps is to mark where a sort name would otherwise be redefined.

211 We check for duplicate definitions across domain description nodes.

212 Let dps be the set of all root-to-leaf paths of a domain tree.

213 There does not exist two paths dp′,dp′′ in dps

214 with distinct prefixes

215 such that there exists a common sort name, sn, which when appended to dp′,dp′′ is a path in the

domain.

216 A path dp′ is a prefix of a peth dp if the exists a path dp′′ when when appended to dp′ becomes dp.

211. no duplicate definitions: DPN → Bool

211. no duplicate definitions(dpn) ≡
212. let dps = G(dpn) in

213. ∼ ∃ dp
′
,dp

′′
:DP • {dp

′
,dp

′′
}⊆dps ⇒

214. let pdps
′
=prefixes(dp

′
),pdps

′′
=prefixes(dp

′′
) in

214. ∃ pdp
′
,pdp

′′
:DP•pdp

′
∈ pdps

′
∧pdp

′′
∈ pdps

′′
⇒ pdp

′
6=pdp

′′

215. ⇒ ∃ sn:SN•pdp
′
〈̂sn〉∈ pdps

′
∧pdp

′′
〈̂sn〉∈ pdps

′′

211. end end

216. prefixes: DP → DP-set

216. prefixes(dp) ≡ {dp
′
|dp

′
,dp

′′
:DP•dp

′̂dp
′′
= dp}

Defined Duplicate Sort Names

217 defined sorts is defined over root domain nodes.

218 If, for some sort name, sn:Sn, and some domain tree path, dtp, of a domain rdn:RDN, the last

elements of dtp is [#sn] then sn must be defined elsewhere in the domain tree of rdn:RDN.

219 In this case there must exist a unique another path, dtp′,

220 such that sn is properly defined withing dtp′.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 102 Domain Science & Engineering

103

value

217. defined sorts: RDN → Bool

217. defined sorts([sn7→en]) ≡
217. let dtps = paths(en) in

218. if ∃ dtp:DTP,sn:Sn•dtp̂〈[#sn]〉∈ dtps
219. then ∃!13dtp

′
:DTP•dtp

′
isin dtps

220. sn ∈ elems fst dtp
′
else skip end end

3.2.3 Node Selection

221

222

223

224

225

221. select node: DP × DPN
∼
→ EnN

221. select node(dp)([sn7→en]) ≡
222. case dp of

222. 〈[#sn]〉 → select node([#sn])(en),
222. 〈sn〉 → en,
222. 〈sn

′
〉̂ dp

′
→

196. case en of

198. mkPaN(mkAtN(,[sn
′
7→en

′
]∪m)) → select node(dp

′
)([sn

′
7→en

′
]),

199. mkPaN(mkMaN([sn
′
7→en

′
]∪m,)) → select node(dp

′
)([sn

′
7→en

′
]),

200. mkPaN(mkCoN(mkSCN([sn
′
7→en

′
]∪m,))) → select node(dp

′
)([sn

′
7→en

′
]),

201. mkPaN(mkCoN(mkKTN(mkCmpT(,[sn
′
7→en

′
]∪m,))))

198. → select node(dp
′
)([sn

′
7→en

′
]),

202. mkPaN(mkCoN(mkKTN(mkAlT([sn
′
7→en

′
]∪m,))))

198. → select node(dp
′
)([sn

′
7→en

′
]),

203. mkMaN([sn
′
7→en

′
]∪m,) → select node(dp

′
)([sn

′
7→en

′
]),

194. → chaos

196. end

196. → chaos end

222. select node: {|[#sn]|} → DPN → EnN
222. select node([#sn])([sn7→en]) ≡
222. let dp:DP • dp ∈ paths([sn7→en])
222. ∧ ∃ i:Nat•i ∈ inds dp\{len dp}∧dp(i)=sn in

222. select node(dp)([sn7→en]) end

3.2.4 Index of Prompts

In Chap. 1 we motivated and briefly explained a number of domain analysis and domain description

prompts.

13∃!... reads: there exists a unique ...

Domain Science & Engineering 103 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

104

Analysis Prompts

a. is entity, 23

b. is endurant, 24

c. is perdurant, 24

d. is discrete, 24

e. is continuous, 24

f. is part, 25

g. is component, 25

h. is material, 26

i. is atomic, 26

j. is composite, 26

k. observe parts, 27

l. has concrete type, 29

m. has mereology, 34

n. attribute names, 38

o. has components, 44

p. has materials, 45

MORE TO COME

Description Prompts

a. obs part P, 28

b. is P, 28

c. obs part T, 29

d. uid P, 33

e. mereo P, 35

f. upd mereology, 36

g. attr A, 38

h. components, 44

i. obs part M, 46

j. materials, 46

MORE TO COME

•••

We shall now present a formal description of a meaning for these prompts.

3.2.5 A Formal Description of a Meaning of Prompts

MORE TO COME

The Iterative Nature of The Description Process

Assume that the domain analysers cum describers are analysing & describing a particular endurant; that is, as we shall

understand it, are examining a given endurant node in the domain description tree !

To make this claim: the domain analysers cum describers are examining a given endurant node in the

domain description tree amounts to saying that the domain analysers cum describers have in their mind a

reasonably “stable” “picture” of a domain in terms of a domain description tree.

We need explain this assumption. In this assumption there is “buried” an understanding that the domain analysers

cum describers during the — what we can call “the final” — domain analysis & description process, that leads to

a “deliverable” domain description, are not investigating the domain to be described for the first time. That is, we

certainly assume that any “final” domain analysis & description process has been preceded by a number of iterations

of “trial” domain analysis & description processes.

Hopefully this iteration of experimental domain analysis & description processes converges. Each iteration leads

to some domain description, that is, some domain description tree. A first iteration is thus based on a rather incomplete

domain description tree which, however, “quickly” emerges into a less incomplete one in that first iteration. When

the domain analysers cum describers decide that a “final” iteration seems possible then a “final” description emerges

If acceptable, OK, otherwise yet an “final” iteration must be performed. Common to all iterations is that the domain

analysers cum describers have in mind some more-or-less “complete” domain description tree and apply the prompts

introduces in Chap. 1.

How Are We Modelling the Prompts

TO BE WRITTEN

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 104 Domain Science & Engineering

105

The Model

TO BE WRITTEN

3.2.6 Discussion

TO BE WRITTEN

3.3 Discussion of the Models

Domain Science & Engineering 105 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

Chapter 4

Domains: Their Simulation,

Monitoring and Control

Abstract

This divertimento – on the occasion of the 70th anniversary of Prof., Dr Hermann Maurer –
sketches some observations over the concepts of domain, requirements and modelling – where
abstract interpretations of these models cover both a priori, a posteriori and real-time aspects
of the domain as well as 1–1, microscopic and macroscopic simulations, real-time monitoring
and real-time monitoring & control of that domain. The reference frame for these concepts
are domain models: carefully narrated and formally described domains. I survey more-or-less
standard ideas of verifiable development and conjecture product families of demos, simulators,
monitors and monitors & controllers – but now these “standard ideas” are recast in the context
of core requirements prescriptions being “derived” from domain descriptions.

4.1 Introduction

A background setting for this paper is the concern for professionally developing the right software, i.e.,

software which satisfies users expectations, and software that is right: i.e., software which is correct with

respect to user requirements and thus has no “bugs”, no “blue screens”.

The present paper must be seen on the background of the main line of experimental research around

the topics of domain engineering, requirements engineering and their relation. For details I refer to [24,

Chaps. 9–16: Domain Engineering, Chaps. 17-24: Requirements Engineering].

The aims of this paper is to present (1) some ideas about software that (1a) “demo”, (1b) simulate, (1c)

monitor and (1d) monitor & control domains; (2) some ideas about “time scaling”: demo and simulation

time versus domain time; and (3) how these kinds of software relate.

The paper is exploratory. There will be no theorems and therefore there will be no proofs. We are

presenting what might eventually emerge into (α) a theory of domains, i.e., a domain science [25, 47,

27, 33], and (β) a software development theory of domain engineering versus requirements engineering

[32, 26, 28, 31].

The paper is not a “standard” research paper: it does not compare its claimed achievements with corre-

sponding or related achievements of other researchers – simply because we do not claim “achievements”

which have been fully, or at least reasonably well theorised – etcetera. But I would suggest that you might

find some of the ideas of the paper (in Sect. 4.3) worthwhile publishing. Hence the “divertimento” suffix

to the paper title.

The structure of the paper is as follows.

106

107

In Sect. 4.3 we then outline a series of interpretations of domain descriptions. These arise, when de-

veloped in an orderly, professional manner, from requirements prescriptions which are themselves orderly

developed from the domain description1. The essence of Sect. 4.3 is (i) the (albeit informal) presentation

of such tightly related notions as demos (Sect. 4.3.1), simulators (Sect. 4.3.2), monitors (Sect. 4.3.3) and

monitors & controllers (Sect. 4.3.3) (these notions can be formalised), and (ii) the conjectures on a product

family of domain-based software developments (Sect. 4.3.5). A notion of script-based simulation extends

demos and is the basis for monitor and controller developments and uses. The script used in our example

here is related to time, but one can define non-temporal scripts – so the “carrying idea” of Sect. 4.3 ex-

tends to a widest variety of software. We claim that Sect. 4.3 thus brings these new ideas: a tightly related

software engineering concept of demo-simulator-monitor-controller machines, and an extended notion of

reference models for requirements and specifications [88].

4.2 Domain Descriptions

By a domain description we shall mean a combined narrative, that is, precise, but informal, and a formal

description of the application domain as it is: no reference to any possible requirements let alone soft-

ware that is desired for that domain. (Thus a requirements prescription is a likewise combined narrative,

that is, precise, but informal, and a formal prescription of what we expect from a machine (hardware +

software) that is to support simple entities, actions, events and behaviours of a possibly business process

re-engineering application domain. Requirements expresses a domain as we would like ti to be.)

We bring in Chapter 6 an example domain description.

We further refer to the literature for examples: [109, railways (2000)], [19, the ’market’ (2000)],

[28, public government, IT security, hospitals (2006) chapters 8–10], [26, transport nets (2008)] and [31,

pipelines (2010)]. On the net you may find technical reports covering “larger” domain descriptions.

Recent papers on the concept of domain descriptions are [31, 33, 29, 47, 26, 25, 30].

To emphasize: domain descriptions describe domains as they are with no reference to (requirements

to) possibly desired software. Domain descriptions do not necessarily describe computable objects. They

relate to the described domain in a way similar to the way in which mathematical descriptions of physical

phenomena stand to “the physical world”.

4.3 Interpretations

4.3.1 What Is a Domain-based Demo?

A domain-based demo is a software system which “present” (1) simple entities, (2) actions, (3) events and

(4) behaviours of a domain. The “presentation” abstracts these phenomena and their related concepts in

various computer generated forms: visual, acoustic, etc.

Examples

A domain description might, as that of Appendix 6, be of transport nets (of hubs [street intersections,

train stations, harbours, airports] and links [road segments, rail tracks, shipping lanes, air-lanes]), their

development, traffic [of vehicles, trains, ships and aircraft], etc. We shall assume such a transport domain

description below.

(1) Simple entities are, for example, presented as follows: (a) transport nets by two dimensional (2D)

road, railway or airline maps, (b) hubs and links by highlighting parts of 2D maps and by related photos –

and their unique identifiers by labelling hubs and links, (c) routes by highlighting sequences of paths (hubs

and links) on a 2D map, (d) buses by photographs and by dots at hubs or on links of a 2D map, and (e) bus

timetables by, well, indeed, by showing a 2D bus timetable.

1We do not show such orderly “derivations” but outline their basics in Sect. 4.3.4.

Domain Science & Engineering 107 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

108

(2) Actions are, for example, presented as follows: (f) The insertion or removal of a hub or a link by

showing “instantaneous” triplets of “before”, “during” and “after” animation sequences. (g) The start or

end of a bus ride by showing flashing animations of the appearance, respectively the flashing disappearance

of a bus (dot) at the origin, respectively the destination bus stops.

(3) Events are, for example, presented as follows: (h) A mudslide [or fire in a road tunnel, or collapse

of a bridge] along a (road) link by showing an animation of part of a (road) map with an instantaneous

sequence of (α) the present link , (β) a gap somewhere on the link, (γ) and the appearance of two (“sym-

bolic”) hubs “on either side of the gap”. (i) The congestion of road traffic “grinding to a halt” at, for

example, a hub, by showing an animation of part of a (road) map with an instantaneous sequence of the

massive accumulation of vehicle dots moving (instantaneously) from two or more links into a hub.

(4) Behaviours are, for example, presented as follows: (k) A bus tour: from its start, on time, or

“thereabouts”, from its bus stop of origin, via (all) intermediate stops, with or without delays or advances

in times of arrivals and departures, to the bus stop of destination (ℓ) The composite behaviour of “all bus

tours”, meeting or missing connection times, with sporadic delays, with cancellation of some bus tours,

etc. – by showing the sequence of states of all the buses on the net.

We say that behaviours (3(j)–4(ℓ)) are script-based in that they (try to) satisfy a bus timetable (1(e)).

Towards a Theory of Visualisation and Acoustic Manifestation

The above examples shall serve to highlight the general problem of visualisation and acoustic manifes-

tation. Just as we need sciences of visualising scientific data and of diagrammatic logics, so we need

more serious studies of visualisation and acoustic manifestation — so amply, but, this author thinks,

inconsistently demonstrated by current uses of interactive computing media.

4.3.2 Simulations

“Simulation is the imitation of some real thing, state of affairs, or process; the act of simulating something
generally entails representing certain key characteristics or behaviours of a selected physical or abstract
system” [Wikipedia] for the purposes of testing some hypotheses usually stated in terms of the model

being simulated and pairs of statistical data and expected outcomes.

Explication of Figure 4.1

Figure 4.1 on the facing page attempts to indicate four things: (i) Left top: the rounded edge rectangle

labelled “The Domain” alludes to some specific domain (“out there”). (ii) Left middle: the small rounded

rectangle labelled “A Domain Description” alludes to some document which narrates and formalises a

description of “the domain”. (iii) Left bottom: the medium sized rectangle labelled “A Domain Demo
based on the Domain Description” (for short “Demo”) alludes to a software system that, in some sense

(to be made clear later) “simulates” “The Domain.” (iv) Right: the large rectangle (a) shows a horisontal

time axis which basically “divides” that large rectangle into two parts: (b) Above the time axis the “fat”

rounded edge rectangle alludes to the time-wise behaviour, a domain trace, of “The Domain” (i.e., the

actual, or real, domain). (c) Below the time axis there are eight “thin” rectangles. These are labels S1,
S2, S3, S4, S5, S6, S7 and S8. (d) Each of these denote a “run”, i.e., a time-stamped “execution”, a

program trace, of the “Demo”. Their “relationship” to the time axis is this: their execution takes place in

the real time as related to that of “The Domain” behaviour.

A trace (whether a domain or a program execution trace) is a time-stamped sequence of states: domain

states, respectively demo, simulator, monitor and monitor & control states.

From Fig. 4.1 on the next page and the above explication we can conclude that “executions” S4 and S5
each share exactly one time point, t, at which “The Domain” and “The Simulation” “share” time, that is,

the time-stamped execution S4 and S5 reflect a “Simulation” state which at time t should reflect (some

abstraction of) “The Domain” state.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 108 Domain Science & Engineering

109

t eb

β ε

based on the
Domain Description

Description
A Domain

The Domain

A Behaviour, a Trace of the Domain

Simulation Traces

Time

S5

S4

S2S1
εβ

S7

S3 S6

S8

Legend: A development; S1, S2, S3, S4, S5, S6, S7, S8: "runs" of the Domain Simulation

Domain Demo/Simulator

Figure 4.1: Simulations

Only if the domain behaviour (i.e., trace) fully “surrounds” that of the simulation trace, or, vice-versa

(cf. Fig. 4.1[S4,S5]), is there a “shared” time. Only if the ‘begin’ and ‘end’ times of the domain behaviour

are identical to the ‘start’ and ‘finish’ times of the simulation trace, is there an infinity of shared 1–1 times.

In Fig 4.2 on the following page we show “the same” “Domain Behaviour” (three times) and a

(1) simulation, a (2) monitoring and a (3) monitoring & control, all of whose ‘begin/start’ (b/β) and

‘end/finish’ (e/ε) times coincide. In such cases the “Demo/Simulation” takes place in real-time through-

out the ‘begin· · · · · ·end’ interval.

Let β and ε be the ‘start’ and ‘finish’ times of either S4 or S5. Then the relationship between t,β ,ε ,

b and e is t−b
e-t = t−β

ε−t
— which leads to a second degree polynomial in t which can then be solved in the

usual, high school manner.

Script-based Simulation

A script-based simulation is the behaviour, i.e., an execution, of, basically, a demo which, step-by-step,

follows a script: that is a prescription for highlighting simple entities, actions, events and behaviours.

Script-based simulations where the script embodies a notion of time, like a bus timetable, and unlike

a route, can be thought of as the execution of a demos where “chunks” of demo operations take place in

accordance with “chunks”2 of script prescriptions. The latter (i.e., the script prescriptions) can be said to

represent simulated (i.e., domain) time in contrast to “actual computer” time. The actual times in which the

script-based simulation takes place relate to domain times as shown in Simulations S1 to S8 in Fig. 4.1

and in Fig. 4.2 on the following page(1–3). Traces Fig. 4.2(1–3) and S8 Fig. 4.1 are said to be real-time:
there is a one-to-one mapping between computer time and domain time. S1 and S4 Fig. 4.1 are said to be

microscopic: disjoint computer time intervals map into distinct domain times. S2, S3, S5, S6 and S7 are

said to be macroscopic: disjoint domain time intervals map into distinct computer times.

In order to concretise the above “vague” statements let us take the example of simulating bus traffic

as based on a bus timetable script. A simulation scenario could be as follows. Initially, not relating to

any domain time, the simulation “demos” a net, available buses and a bus timetable. The person(s) who

are requesting the simulation are asked to decide on the ratio of the domain time interval to simulation

time interval. If the ratio is 1 a real-time simulation has been requested. If the ratio is less than 1 a

microscopic simulation has been requested. If the ratio is larger than 1 a microscopic simulation has been

requested. A chosen ratio of, say 48 to 1 means that a 24 hour bus traffic is to be simulated in 30 minutes

of elapsed simulation time. Then the person(s) who are requesting the simulation are asked to decide on

the starting domain time, say 6:00am, and the domain time interval of simulation, say 4 hours – in which

case the simulation of bus traffic from 6am till 10am is to be shown in 5 minutes (300 seconds) of elapsed

2We deliberately leave the notion of chunk vague so as to allow as wide an spectrum of simulations.

Domain Science & Engineering 109 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

110

simulation time. The person(s) who are requesting the simulation are then asked to decide on the “sampling
times” or “time intervals” : If ‘sampling times’ 6:00 am, 6:30 am, 7:00 am, 8:00 am, 9:00 am, 9:30 am and

10:00 am are chosen, then the simulation is stopped at corresponding simulation times: 0 sec., 37.5 sec.,

75 sec., 150 sec., 225 sec., 262.5 sec. and 300 sec. The simulation then shows the state of selected entities

and actions at these domain times. If ‘sampling time interval’ is chosen and is set to every 5 min., then the

simulation shows the state of selected entities and actions at corresponding domain times. The simulation is

resumed when the person(s) who are requesting the simulation so indicates, say by a “resume” icon click.

The time interval between adjacent simulation stops and resumptions contribute with 0 time to elapsed

simulation time – which in this case was set to 5 minutes. Finally the requestor provides some statistical

data such as numbers of potential and actual bus passengers, etc.

Then two clocks are started: a domain time clock and a simulation time clock. The simulation proceeds

as driven by, in this case, the bus time table. To include “unforeseen” events, such as the wreckage of a bus

(which is then unable to complete a bus tour), we allow any number of such events to be randomly sched-

uled. Actually scheduled events “interrupts” the “programmed” simulation and leads to thus unscheduled

stops (and resumptions) where the unscheduled stop now focuses on showing the event.

The Development Arrow

The arrow, , between a pair of boxes (of Fig. 4.1 on the previous page) denote a step of development: (i)

from the domain box to the domain description box it denotes the development of a domain description

based on studies and analyses of the domain; (ii) from the domain description box to the domain demo

box it denotes the development of a software system — where that development assumes an intermediate

requirements box which has not been show; (iii) from the domain demo box to either of a simulation

traces it denotes the development of a simulator as the related demo software system, again depending on

whichever special requirements have been put to the simulator.

4.3.3 Monitoring & Control

Figure 4.2 shows three different kinds of uses of software systems (where (2) [Monitoring] and (3) [Mo-
nitoring & Control] represent further) developments from the demo or simulation software system men-

tioned in Sect. 4.3.1 and Sect. 4.3.2 on the previous page.

q

p p

q

mi mj mi mj mk

r r

cx cy

mk

p

q
r

Real−time

Simulation

(1)

p

q

r

p
r
q

Real−time
Monitoring

(2) Real−time
Monitoring & Control

(3)

Legend: mi,mj,...,mk: monitorings; cx,...,cy: controls

Figure 4.2: Simulation, Monitoring and Monitoring & Control

We have added some (three) horisontal and labelled (p, q and r) lines to Fig. 4.2(1,2,3) (with respect to the

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 110 Domain Science & Engineering

111

traces of Fig. 4.1 on Page 109). They each denote a trace of a simple entity, an action or an event, that is,

they are traces of values of these phenomena or concepts. A (named) action value could, for example,

be the pair of the before and after states of the action and some description of the function (“insertion of

a link”, “start of a bus tour”) involved in the action. A (named) event value could, for example, be a pair

of the before and after states of the entities causing, respectively being effected by the event and some

description of the predicate (“mudslide”, “break-down of a bus”) involved in the event. A cross section,

such as designated by the vertical lines (one for the domain trace, one for the “corresponding” program

trace) of Fig. 4.2 on the facing page(1) denotes a state: a domain, respectively a program state.

Figure 4.2(1) attempts to show a real-time demo or simulation for the chosen domain. Figure 4.2(2) pur-

ports to show the deployment of real-time software for monitoring (chosen aspects of) the chosen domain.

Figure 4.2(3) purports to show the deployment of real-time software for monitoring as well as controlling

(chosen aspects of) the chosen domain.

Monitoring

By domain monitoring we mean “to be aware of the state of a domain”, its simple entities, actions, events

and behaviour. Domain monitoring is thus a process, typically within a distributed system for collecting

and storing state data. In this process “observation” points — i.e., simple entities, actions and where

events may occur — are identified in the domain, cf. points p, q and r of Fig. 4.2. Sensors are inserted at

these points. The “downward” pointing vertical arrows of Figs. 4.2(2–3), from “the domain behaviour” to

the “monitoring” and the “monitoring & control” traces express communication of what has been sensed

(measured, photographed, etc.) [as directed by and] as input data (etc.) to these monitors. The monitor

(being “executed”) may store these “sensings” for future analysis.

Control

By domain control we mean “the ability to change the value” of simple entities and the course of actions

and hence behaviours, including prevention of events of the domain. Domain control is thus based on

domain monitoring. Actuators are inserted in the domain “at or near” monitoring points or at points related

to these, viz. points p and r of Fig. 4.2 on the preceding page(3). The “upward” pointing vertical arrows of

Fig. 4.2 on the facing page(3), from the “monitoring & control” traces to the “domain behaviour” express

communication, to the domain, of what has been computed by the controller as a proper control reaction in

response to the monitoring.

4.3.4 Machine Development

Machines

By a machine we shall understand a combination of hardware and software. For demos and simulators
the machine is “mostly” software with the hardware typically being graphic display units with tactile in-

struments. For monitors the “main” machine, besides the hardware and software of demos and simulators,

additionally includes sensors distributed throughout the domain and the technological machine means of

communicating monitored signals from the sensors to the “main” machine and the processing of these sig-

nals by the main machine. For monitors & controllers the machine, besides the monitor machine, further

includes actuators placed in the domain and the machine means of computing and communicating control

signals to the actuators.

Requirements Development

Essential parts of Requirements to a Machine can be systematically “derived” from a Domain description.

These essential parts are the domain requirements and the interface requirements. Domain requirements are

those requirements which can be expressed, say in narrative form, by mentioning technical terms only of

Domain Science & Engineering 111 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

112

the domain. These technical terms cover only phenomena and concepts (simple entities, actions, events and

behaviours) of the domain. Some domain requirements are projected, instantiated, made more deterministic
and extended 3.

(a) By domain projection we mean a sub-setting of the domain description: parts are left out which

the requirements stake-holders, collaborating with the requirements engineer, decide is of no relevance to

the requirements. For our example it could be that our domain description had contained models of road

net attributes such as “the wear & tear” of road surfaces, the length of links, states of hubs and links (that

is, [dis]allowable directions of traffic through hubs and along links), etc. Projection might then omit these

attributes.

(b) By domain instantiation we mean a specialisation of entities (simple, actions, events and be-

haviours), refining them from abstract simple entities to more concrete such, etc. For our example it could

be that we only model freeways or only model road-pricing nets – or any one or more other aspects.

(c) By domain determination we mean that of making the domain description cum domain requirements

prescription less non-deterministic, i.e., more deterministic (or even the other way around !). For our

example it could be that we had domain-described states of street intersections as not controlled by traffic

signals – where the determination is now that of introducing an abstract notion of traffic signals which

allow only certain states (of red, yellow and green).

(d) By domain extension we basically mean that of extending the domain with phenomena and concepts

that were not feasible without information technology. For our examples we could extend the domain with

bus mounted GPS gadgets that record and communicate (to, say a central bus traffic computer) the more-

or-less exact positions of buses – thereby enabling the observation of bus traffic.

Interface requirements are those requirements which can be expressed, say in narrative form, by men-

tioning technical terms both of the domain and of the machine. These technical terms thus cover shared

phenomena and concepts, that is, phenomena and concepts of the domain which are, in some sense, also

(to be) represented by the machine. Interface requirements represent (i) the initialisation and “on-the-fly”

update of simple machine entities on the basis of shared domain entities; (ii) the interaction between the

machine and the domain while the machine is carrying out a (previous domain) action; (iii) machine re-

sponses, if any, to domain events — or domain responses, if any, to machine events cum “outputs”; and

(iv) machine monitoring and machine control of domain phenomena. Each of these four (i–iv) interface

requirement facets themselves involve projection, instantiation, determination, extension and fitting.

Machine requirements are those requirements which can be expressed, say in narrative form, by men-

tioning technical terms only of the machine. (An example is: visual display units.)

4.3.5 Verifiable Software Development

An Example Set of Conjectures

(A) From a domain, D , one can develop a domain description D. D cannot be verified. It can at most be

validated. Individual properties, PD, of the domain description D and hence, purportedly, of the domain,

D , can be expressed and possibly proved

D |= PD

and these may be validated to be properties of D by observations in (or of) that domain.

(B) From a domain description, D, one can develop requirements, RDE , for, and from RDE one can

develop a domain demo machine specification MDE such that

D,MDE |= RDE.

The formulaD,M |= R can be read as follows: in order to prove that theMachine satisfies theRequirements,

assumptions about the Domain must often be made explicit in steps of the proof.

3We omit consideration of fitting.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 112 Domain Science & Engineering

113

(C) From a domain description, D, and a domain demo machine specification, SDE , one can develop

requirements, RSI , for, and from such a RSI one can develop a domain simulator machine specification MSI

such that

(D;MDE),MSI |= RSI.

We have “lumped” (D;MDE) as the two constitute the extended domain for which we, in this case of

development, suggest the next stage requirements and machine development to take place.

(D) From a domain description, D, and a domain simulator machine specification, MSI , one can develop

requirements, RMO , for, and from such a RMO one can develop a domain monitor machine specification

MMO such that

(D;MSI),MMO |= RMO.

(E) From a domain description, D, and a domain monitor machine specification, MMO , one can develop

requirements, RMC , for, and from such a RMC one can develop a domain monitor & controller machine

specification MMC such that

(D;MMO),MMC |= RMC .

Chains of Verifiable Developments

The above illustrated just one chain of development. There are others. All are shown in Fig. 4.3. The above

development is shown as the longest horisontal chain (third row).

R′′′′′
MC R′′′′′

MC

R′′′
MO M′′′

MO R′′′′
MC M′′′′

MC

D RDE MDE R′
SI M′

SI R′′
MO M′′

MO R′′′
MC M′′′

MC
✲ ✲

✲
✲

✲
✲

✲
✲

✲ RSI MSI R′
MO M′

MO R′′
MC M′′

MC
✲

✲
✲

✲
✲

✲

✲ RMO MMO R′
MC

RMC

M′
MC

MMC

R′′′′′′
MC M′′′′′′

MC✲

✲

✲
✲

✲

✲

✲
✲

✲

✲

✲

✲

q

✲ ✲ ✲

q

q

q

✲

✲

✲

✲

✲

✲

✲

✲

✲

✲

q

q

q

q

q

Legend: D domain, R requirements, M machine

DE:DEMO, SI: SIMULATOR, MO: MONITOR, MC: MONITOR & CONTROLLER

Figure 4.3: Chains of Verifiable Developments

Figure 4.3 can also be interpreted as prescribing a widest possible range of machine cum software products

[54, 124] for a given domain. One domain may give rise to many different kinds of DEmo machines,

SImulators, MOnitors and Monitor & Controllers (the unprimed versions of the MT machines (where T

ranges over DE, SI, MO, MC)). For each of these there are similarly, “exponentially” many variants of

successor machines (the primed versions of the MT machines).

What does it mean that a machine is a primed version? Well, here it means, for example, that M′
SI

embodies facets of the demo machine MDE , and that M′′′
MC embodies facets of the demo machine MDE ,

of the simulator M′
SI , and the monitor M′′

MO . Whether such requirements are desirable is left to product

customers and their software providers [54, 124] to decide.

4.4 Conclusion

Our divertimento is almost over. It is time to conclude.

Domain Science & Engineering 113 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

114

4.4.1 Discussion

The D,M |= R (‘correctness’ of) development relation appears to have been first indicated in the Compu-

tational Logic Inc. Stack [11, 87] and the EU ESPRIT ProCoS [16, 17] projects; [88] presents this same

idea with a purpose much like ours, but with more technical details and full discussion.

The term ‘domain engineering’ appears to have at least two meanings: the one used here [25, 30]

and one [94, 73, 55] emerging out of the Software Engineering Institute at CMU where it is also called

product line engineering4. Our meaning, is, in a sense, more narrow, but then it seems to also be more

highly specialised (with detailed description and formalisation principles and techniques). Fig. 4.3 on

the previous page illustrates, in capsule form, what we think is the CMU/SEI meaning. The relationship

between, say Fig. 4.3 and model-based software development seems obvious but need be explored.

What Have We Achieved

We have characterised a spectrum of strongly domain-related as well as strongly inter-related (cf. Fig. 4.3)

software product families: demos, simulators, monitors and monitor & controllers. We have indicated

varieties of these: simulators based on demos, monitors based on simulators, monitor & controllers based

on monitors, in fact any of the latter ones in the software product family list as based on any of the earlier

ones. We have sketched temporal relations between simulation traces and domain behaviours: a priori,
a posteriori, macroscopic and microscopic, and we have identified the real-time cases which lead on to

monitors and monitor & controllers.

What Have We Not Achieved — Some Conjectures

We have not characterised the software product family relations other than by the D, M |= R and (D;

MXYZ),M |= R clauses. That is, we should like to prove conjectured type theoretic inclusion relations like:

℘([[MXmod ext.
]])⊒℘([[M

′...′

Xmod ext.
]]), ℘([[M

′...′

Xmod ext.
]])⊒℘([[M

′′....′

Xmod ext.
]])

where X and Y range appropriately, where [[M]] expresses the meaning of M , where ℘([[M]]) denote the

space of all machine meanings and where ℘([[Mxmod ext.
]]) is intended to denote that space modulo (“free

of”) the y facet (here ext., for extension).

That is, it is conjectured that the set of more specialised, i.e., n primed, machines of kind x is type

theoretically “contained” in the set of m primed (unprimed) x machines (0 ≤ m < n).

There are undoubtedly many such interesting relations between the DEMO, SIMULATOR, MONITOR

and MONITOR & CONTROLLER machines, unprimed and primed.

What Should We Do Next

This paper has the subtitle: A Divertimento of Ideas and Suggestions. It is not a proper theoretical paper.

It tries to throw some light on families and varieties of software, i.e., their relations, and. It focuses,

in particular, on so-called DEMO, SIMULATOR, MONITOR and MONITOR & CONTROLLER software and

their relation to the “originating” domain, i.e., that in which such software is to serve, and hence that

which is being extended by such software, cf. the compounded ‘domain’ (D;Mi) of in (D;Mi),M j |= D.

These notions should be studied formally. All of these notions: requirements projection, instantiation,

determination and extension can be formalised; and the specification language, in the form used here

(without CSP processes, [97]) has a formal semantics and a proof system — so the various notions of

development, (D;Mi),M j |= R and ℘(M) can be formalised.

4http://en.wikipedia.org/wiki/Domain engineering.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 114 Domain Science & Engineering

Chapter 5

A Rôle for Mereology in Domain

Science and Engineering

Chapter Status

This chapter must be revised.

It contains a technical error.

The model of parts and subparts, Sec. 5.3.1, is too simple.

Abstract

We give an abstract model of parts and part-hood relations of software application domains such as

the financial service industry, railway systems, road transport systems, health care, oil pipelines,
secure [IT] systems, etcetera. We relate this model to axiom systems for mereology [57], showing satisfi-

ability, and show that for every mereology there corresponds a class of Communicating Sequential

Processes [97], that is: a λ –expression.

5.1 Introduction

The term ‘mereology’ is accredited to the Polish mathematician, philosopher and logician Stanisław Leś-

niewski (1886–1939) who “was a nominalist: he rejected axiomatic set theory and devised three formal

systems,Protothetic, Ontology, and Mereology as a concrete alternative to set theory”. In this contribution

I shall be concerned with only certain aspects of mereology, namely those that appears most immediately

relevant to domain science (a relatively new part of current computer science). Our knowledge of ‘mereol-

ogy’ has been through studying, amongst others, [57, 113].

5.1.1 Computing Science Mereology

“Mereology (from the Greek µερoς ‘part’) is the theory of parthood relations: of the relations of part

to whole and the relations of part to part within a whole”1. In this contribution we restrict ‘parts’ to

be those that, firstly, are spatially distinguishable, then, secondly, while “being based” on such spatially

distinguishable parts, are conceptually related. The relation: “being based”, shall be made clear in this

contribution.

1Achille Varzi: Mereology, http://plato.stanford.edu/entries/mereology/ 2009 and [57]

115

116

Accordingly two parts, px and py, (of a same “whole”) are are either “adjacent”, or are “embedded

within” one another as loosely indicated in Fig. 5.1.

Embedded WithinAdjacent

p

p

p

p

x

y

z z

p
x

yp

Figure 5.1: ‘Adjacent’ and “Embedded Within’ parts

‘Adjacent’ parts are direct parts of a same third part, pz, i.e., px and py are “embedded within” pz; or one

(px) or the other (py) or both (px and py) are parts of a same third part, p′z “embedded within” pz; etcetera;

as loosely indicated in Fig. 5.2. or one is “embedded within” the other — etc. as loosely indicated in

Fig. 5.2.

Embedded WithinAdjacent

p

p p

x

z z
p

y

z
p’

p y

p
x

zp"

Embedded WithinAdjacent

p

p p

x

z z
p

y

p yz
p’

p
x

p"z

Figure 5.2: ‘Adjacent’ and “Embedded Within’ parts

Parts, whether adjacent or embedded within one another, can share properties. For adjacent parts this

sharing seems, in the literature, to be diagrammatically expressed by letting the part rectangles “intersect”.

Usually properties are not spatial hence ‘intersection’ seems confusing. We refer to Fig. 5.3.

[L]

p p
z z

p
x

yp

p
x

p
y

Embedded SharingAdjacent and Sharing [R] Embedded WithinAdjacent

p

p

p

p

x

y

z z

p
x

yp

Figure 5.3: Two models, [L,R], of parts sharing properties

Instead of depicting parts sharing properties as in Fig. 5.3[L]eft where dashed rounded edge rectangles

stands for ‘sharing’, we shall (eventually) show parts sharing properties as in Fig. 5.3[R]ight where •—•
connections connect those parts.

5.1.2 From Domains via Requirements to Software

One reason for our interest in mereology is that we find that concept relevant to the modelling of do-

mains. A derived reason is that we find the modelling of domains relevant to the development of software.

Conventionally a first phase of software development is that of requirements engineering. To us domain en-

gineering is (also) a prerequisite for requirements engineering [26, 46]. Thus to properly design Software

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 116 Domain Science & Engineering

117

we need to understand its or their Requirements; and to properly prescribe Requirements one must

understand its Domain. To argue correctness of Software with respect to Requirements one must usu-

ally make assumptions about the Domain: D,S |= R. Thus description of Domains become an

indispensable part of Software development.

5.1.3 Domains: Science and Engineering

Domain science is the study and knowledge of domains. Domain engineering is the practice of

“walking the bridge” from domain science to domain descriptions: to create domain descriptions
on the background of scientific knowledge of domains, the specific domain “at hand”, or domains in

general; and to study domain descriptions with a view to broaden and deepen scientific results about

domain descriptions. This contribution is based on the engineering and study of many descriptions, of air
traffic, banking, commerce (the consumer/retailer/wholesaler/producer supply chain), container
lines, health care, logistics, pipelines, railway systems, secure [IT] systems, stock exchanges,
etcetera.

5.1.4 Contributions of This Contribution

A general contribution is that of providing elements of a domain science. Three specific contributions are

those of (i) giving a model that satisfies published formal, axiomatic characterisations of mereology; (ii)

showing that to every (such modelled) mereology there corresponds a CSP [97] program and to conjecture

the reverse; and, related to (ii), (iii) suggesting complementing syntactic and semantic theories of

mereology.

5.1.5 Structure of This Contribution

We briefly overview the structure of this contribution. First, on Sect. 5.2, we loosely characterise how
we look at mereologies: “what they are to us !” . Then, in Sect. 5.3, we give an abstract,
model-oriented specification of a class of mereologies in the form of composite parts and com-

posite and atomic subparts and their possible connections. The abstract model as well as the axiom system

(Sect. 5.4) focuses on the syntax of mereologies. Following that, in Sect. 5.4 we indicate how
the model of Sect. 5.3 satisfies the axiom system of that section. In preparation for Sect. 5.6,

Sect. 5.5 presents characterisations of attributes of parts, whether atomic or composite.
Finally Sect. 5.6 presents a semantic model of mereologies, one of a wide variety of such possible

models. This one emphasize the possibility of considering parts and subparts as processes and hence a

mereology as a system of processes. Section 5.7 concludes with some remarks on what we have achieved.

5.2 Our Concept of Mereology

5.2.1 Informal Characterisation

Mereology, to us, is the study and knowledge about how physical and conceptual parts relate and what

it means for a part to be related to another part: being disjoint, being adjacent, being neighbours, being
contained properly within, being properly overlapped with, etcetera. By physical parts we mean such spa-

tial individuals which can be pointed to. Examples: a road net (consisting of street segments and street
intersections); a street segment (between two intersections); a street intersection; a road (of sequentially
neigbouring street segments of the same name) a vehicle; and a platoon (of sequentially neigbouring vehi-
cles).

By a conceptual part we mean an abstraction with no physical extent, which is either present or not.

Examples: a bus timetable (not as a piece or booklet of paper, or as an electronic device, but) as an image
in the minds of potential bus passengers; and routes of a pipeline, that is, neighbouring sequences of pipes,

Domain Science & Engineering 117 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

118

valves, pumps, forks and joins, for example referred to in discourse: the gas flows through “such-and-
such” a route”. The tricky thing here is that a route may be thought of as being both a concept or being

a physical part — in which case one ought give them different names: a planned route and an actual road,

for example.

The mereological notion of subpart, that is: contained within can be illustrated by examples: the
intersections and street segments are subparts of the road net; vehicles are subparts of a platoon; and pipes,
valves, pumps, forks and joins are subparts of pipelines. The mereological notion of adjacency can be

illustrated by examples. We consider the various controls of an air traffic system, cf. Fig. 5.4, as well as its
aircrafts as adjacent within the air traffic system; the pipes, valves, forks, joins and pumps of a pipeline, cf.
Fig. 5.9 on Page 121, as adjacent within the pipeline system; two or more banks of a banking system, cf.
Fig. 5.6 on Page 120, as being adjacent. The mereo-topological notion of neighbouring can be illustrated

by examples: Some adjacent pipes of a pipeline are neighbouring (connected) to other pipes or valves or
pumps or forks or joins, etcetera; two immediately adjacent vehicles of a platoon are neighbouring. The

mereological notion of proper overlap can be illustrated by examples some of which are of a general

kind: two routes of a pipelines may overlap; and two conceptual bus timetables may overlap with some,
but not all bus line entries being the same; and some of really reflect adjacency: two adjacent pipe overlap
in their connection, a wall between two rooms overlap each of these rooms — that is, the rooms overlap
each other “in the wall”.

5.2.2 Six Examples

We shall, in Sect. 5.3, present a model that is claimed to abstract essential mereological properties of air

traffic, buildings and their installations, machine assemblies, financial service industry, the oil industry and

oil pipelines, and railway nets.

Air Traffic

Ground
Control
Tower

Aircraft

Control
Tower

Continental

Control ControlControl

Control Control
Continental

TowerTower

Ground
Control

1..k..t 1..m..r

1..n..c 1..n..c

1..j..a

1..i..g 1..m..r 1..k..t 1..i..g

This right 1/2 is a "mirror image" of left 1/2 of figure

ac/ca[k,n]:AC|CA

cc[n,n’]:CC

rc/cr[m,n]:RC|CR
ac/ca[k,n]:AC|CA

rc/cr[m,n]:RC|CR

ga/ag[i,j]:GA|AG ga/ag[i,j]:GA|AG

at/ta[k,j]:AT|TA at/ta[k,j]:AT|TA

gc/cg[i,n]:GC|CG

ar/ra[m,j]:AR|RA ar/ra[m,j]:AR|RA

gc/cg[i,n]:GC|CG

Terminal TerminalAreaArea

Centre Centre

CentreCentre

Figure 5.4: A schematic air traffic system

Figure 5.4 shows nine adjacent (9) boxes and eighteen adjacent (18) lines. Boxes and lines are parts. The

line parts “neighbours” the box parts they “connect”. Individually boxes and lines represent adjacent parts

of the composite air traffic “whole”. The rounded corner boxes denote buildings. The sharp corner box

denote an aircraft. Lines denote radio telecommunication. The “overlap” between neigbouring line and

box parts are indicated by “connectors”. Connectors are shown as small filled, narrow, either horisontal

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 118 Domain Science & Engineering

119

or vertical “filled” rectangle2 at both ends of the double-headed-arrows lines, overlapping both the line

arrows and the boxes. The index ranges shown attached to, i.e., labelling each unit, shall indicate that there

are a multiple of the “single” (thus representative) box or line unit shown. These index annotations are

what makes the diagram of Fig. 5.4 on the preceding page schematic. Notice that the ‘box’ parts are fixed

installations and that the double-headed arrows designate the ether where radio waves may propagate. We

could, for example, assume that each such line is characterised by a combination of location and (possibly

encrypted) radio communication frequency. That would allow us to consider all lines for not overlapping.

And if they were overlapping, then that must have been a decision of the air traffic system.

Buildings

A

H

K

C

(1 Unit)
Installation

Room
(1 Unit)

Sub−room of Room
Sharing walls
(1 Unit)

Adjacent Rooms
Sharing (one) wall
(2 Units)

κ

ε

ω

L

J

I

D

F

G

B

E

M

P

QRS

T

O

N

Installation Connection

κ
κ

κκ

κ
κ

κ

κ

ω

ω

ω

ω

ωω

κ

ω

Door Connection

κιo

κιo

ωιo

Figure 5.5: A building plan with installation

Figure 5.5 shows a building plan — as a composite part. The building consists of two buildings, A and

H. The buildings A and H are neighbours, i.e., shares a common wall. Building A has rooms B, C, D and

E, Building H has roomsI, J and K; Rooms L and M are within K. Rooms F and G are within C.

The thick lines labelled N, O, P, Q, R, S, and T models either electric cabling, water supply, air

conditioning, or some such “flow” of gases or liquids.

Connection κιo provides means of a connection between an environment, shown by dashed lines, and

B or J, i.e. “models”, for example, a door. Connections κ provides “access” between neighbouring rooms.

Note that ‘neighbouring’ is a transitive relation. Connection ωιo allows electricity (or water, or oil) to be

conducted between an environment and a room. Connection ω allows electricity (or water, or oil) to be

conducted through a wall. Etcetera.

Thus “the whole” consists of A and B. Immediate subparts of A are B, C, D and E. Immediate subparts

of C are G and F. Etcetera.

Domain Science & Engineering 119 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

120

C[c]

C[2]

C[1] T[1]

T[2]

T[1]

cb/bc[1..c,1..b]:CB|BC

ct/tc[1..c,1..t]:CT|TC

cp/pc[1..c,1..p]:CP|PC

bt/tb[1..b,1..t]:BT|TB

pt/tp[1..p,1..t]:PT|TP

p
b

/b
p

[1
..

p
,1

..
b

]:
P

B
|B

P

T
h

e
 F

in
a

n
c

e
 I

n
d

u
s

tr
y

 "
W

a
tc

h
d

o
g

"

wb/bw[1..b]:WB|BW

ws:WS

sw:SW

SE

Exchange

Stock

..
.

is/si[1..i]:IS|SI

B[1] B[2] B[b]...

P[1] P[2] P[p]...

..
. Brokers

Traders

Banks

Portfolio Managers

Clients

wt/tw[1..t]:WT|TW

I[1] I[2] I[i]...

wp/pw[1..p]:WP|PW

Distribute

Distribute

D
is

tr
ib

u
te

Distribute

D
is

tr
ib

u
te

D
is

tr
ib

u
te

Figure 5.6: A financial service industry

Financial Service Industry

Figure 5.6 is rather rough-sketchy! It shows seven (7) larger boxes [6 of which are shown by dashed lines],

six [6] thin lined “distribution” boxes, and twelve (12) double-arrowed lines. Boxes and lines are parts.

(We do not described what is meant by “distribution”.) Where double-arrowed lines touch upon (dashed)

boxes we have connections. Six (6) of the boxes, the dashed line boxes, are composite parts, five (5) of

them consisting of a variable number of atomic parts; five (5) are here shown as having three atomic parts

each with bullets “between” them to designate “variability”. Clients, not shown, access the outermost (and

hence the “innermost” boxes, but the latter is not shown) through connections, shown by bullets, •.

Machine Assemblies

Connection

Part

Adjacent Parts

Power Supply

Unit

Valve 1 Valve 2Reservoir

Pump

Lever

Coil/Magnet

Bellows

Air Supply

Unit

Unit

Unit Unit Unit
Unit

Air Load

Composite

Parts

2 Units

Connection

Unit: Atomic Part
Composite Part

Figure 5.7: An air pump, i.e., a physical mechanical system

2There are 38 such rectangles in Fig. 5.4 on Page 118.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 120 Domain Science & Engineering

121

Figure 5.7 on the facing page shows a machine assembly. Square boxes show composite and atomic parts.

Black circles or ovals show connections. The full, i.e., the level 0, composite part consists of four immediate

parts and three internal and three external connections. The Pump is an assembly of six (6) immediate

parts, five (5) internal connections and three (3) external connectors. Etcetera. Some connections afford

“transmission” of electrical power. Other connections convey torque. Two connections convey input air,

respectively output air.

Oil Industry

Oil

Field

Pipeline

System

Refinery Port

Port Ocean

Port

Port

Port

Distrib.

Distrib.

Distrib.

Refinery

Distrib.

Connection (internal)

Connection (external)
Composite Part The "Whole"

Figure 5.8: A Schematic of an Oil Industry

“The” Overall Assembly Figure 5.8 shows a composite part consisting of fourteen (14) composite

parts, left-to-right: one oil field, a crude oil pipeline system, two refineries and one, say, gasoline distri-

bution network, two seaports, an ocean (with oil and ethanol tankers and their sea lanes), three (more)

seaports, and three, say gasoline and ethanol distribution networks.

Between all of the neighbouring composite parts there are connections, and from some of these com-

posite parts there are connections (to an external environment). The crude oil pipeline system composite

part will be concretised next.

fpb

fpa fpc

fpd

p1

p2

p3

p4
p5

p7

p6

p10

p11

p12

p8

p9

p13

p14

p15

inj

inl

onr

ons

ini

ink

onp

onq

may connect to oil field

may be left dangling

may connect to refinery

may be left "dangling"

Connector

Node unit

Connection (between pipe units and node units)

Pipe unit

v: valve f: forkfp: pump j: join jf: join & fork

jb

jc

jafa

fb

fc

Figure 5.9: A pipeline system

Domain Science & Engineering 121 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

122

A Concretised Composite parts Figure 5.9 on the preceding page shows a pipeline system. It

consists of 32 atomic parts: fifteen (15) pipe units (shown as directed arrows and labelled p1–p15), four

(4) input node units (shown as small circles, ◦, and labelled ini–inℓ), four (4) flow pump units (shown as

small circles, ◦, and labelled fpa–fpd), five (5) valve units (shown as small circles, ◦, and labelled vx–vw),

three (3) join units (shown as small circles, ◦, and labelled jb–jc), two (2) fork units (shown as small circles,

◦, and labelled fb–fc), one (1) combined join & fork unit (shown as small circles, ◦, and labelled jafa), and

four (4) output node units (shown as small circles, ◦, and labelled onp–ons).

In this example the routes through the pipeline system start with node units and end with node units,

alternates between node units and pipe units, and are connected as shown by fully filled-out dark coloured

disc connections. Input and output nodes have input, respectively output connections, one each, and shown

as lighter coloured connections.

Railway Nets

Turnout / PointTrack / Line / Segment

/ Linear Unit / Switch Unit

/ Rigid Crossing
Switchable Crossover
Unit / Double Slip

Connectors − in−between are Units

Simple Crossover Unit

Figure 5.10: Four example rail units

Figure 5.10 diagrams four rail units, each with two, three or four connectors shown as narrow, somewhat

“longish” rectangles. Multiple instances of these rail units can be assembled (i.e., composed) by their

connectors as shown on Fig. 5.11 on the facing page into proper rail nets.

Figure 5.11 on the next page diagrams an example of a proper rail net. It is assembled from the kind of

units shown in Fig. 5.10. In Fig. 5.11 consider just the four dashed boxes: The dashed boxes are assembly

units. Two designate stations, two designate lines (tracks) between stations. We refer to to the caption four

line text of Fig. 5.10 for more “statistics”. We could have chosen to show, instead, for each of the four

“dangling’ connectors, a composition of a connection, a special “end block” rail unit and a connector.

Discussion

We have brought these examples only to indicate the issues of a “whole” and atomic and composite parts,

adjacency, within, neighbour and overlap relations, and the ideas of attributes and connections. We shall

make the notion of ‘connection’ more precise in the next section. [158] gives URLs to a number of domain

models illustrating a great variety of mereologies.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 122 Domain Science & Engineering

123

Connector Connection

Linear Unit

SwitchTrack

Siding

Station

Switchable Crossover

Line

Station

Crossover

Figure 5.11: A “model” railway net. An Assembly of four Assemblies:

two stations and two lines; Lines here consist of linear rail units;

stations of all the kinds of units shown in Fig. 5.10 on the facing page.

There are 66 connections and four “dangling” connectors

5.3 An Abstract, Syntactic Model of Mereologies

We distinguish between atomic and composite parts. Atomic parts do not contain separately distin-

guishable parts. Composite parts contain at least one separately distinguishable part. It is the domain

analyser who decides what constitutes “the whole”, that is, how parts relate to one another, what consti-

tutes parts, and whether a part is atomic or composite. We refer to the proper parts of a composite part as

subparts.

5.3.1 Parts and Subparts

Figure 5.12 on the next page illustrates composite and atomic parts. The slanted sans serif uppercase

identifiers of Fig. 5.12 A1, A2, A3, A4, A5, A6 and C1, C2, C3 are meta-linguistic, that is. they stand

for the parts they “decorate”; they are not identifiers of “our system”.

The Model

The formal models of this contribution are expressed in the RAISE Specification Language, RSL [86, 85,

22].

226 The “whole” contains a set of parts.

227 A part is either an atomic part or a composite part.

228 One can observe whether a part is atomic or composite.

229 Atomic parts cannot be confused with composite parts.

230 From a composite part one can observe one or more parts.

type

226. W = P-set

227. P = A | C

Domain Science & Engineering 123 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

124

Composite parts

Atomic parts

A3A2

A6
A5 A4

A1

C3

C1

C2

Figure 5.12: Atomic and composite parts

value

228. is A: P → Bool, is C: P → Bool

axiom

229. ∀ a:A,c:C•a6=c, i.e., A∩C={‖} ∧ is A(a)≡∼is C(a)∧is C(c)≡∼is A(c)
value

230. obs Ps: C → P-set axiom ∀ c:C • obs Ps(c) 6={}

Fig. 5.12 and the expressions below illustrate the observer function obs Ps:

• obs Ps(C1) = {A2, A3, C3},

• obs Ps(C2) = {A4, A5},

• obs Ps(C3) = {A6}.

Please note that this example is meta-linguistic. We can define an auxiliary function.

231 From a composite part, c, we can extract all atomic and composite parts

a observable from c or

b extractable from parts observed from c.

value

231. xtr Ps: C → P-set

231. xtr Ps(c) ≡
231a. let ps = obs Ps(c) in

231b. ps ∪ ∪ {obs Ps(c
′
)|c

′
:C • c

′
∈ ps} end

5.3.2 ‘Within’ and ‘Adjacency’ Relations

‘Within’

232 One part, p, is said to be immediately within, imm within(p,p′), another part,

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 124 Domain Science & Engineering

125

a if p′ is a composite part

b and p is observable in p′.

value

232. imm within: P × P
∼
→ Bool

232. imm within(p,p
′
) ≡

232a. is C(p
′
)

232b. ∧ p ∈ obs Ps(p
′
)

‘Transitive Within’

We can generalise the ‘immediate within’ property.

233 A part, p, is transitively within a part p′, within(p,p′),

a either if p, is immediately within p′

b or if there exists a (proper) composite part p′′ of p′ such that within(p′′,p).

value

233. within: P × P
∼
→ Bool

233. within(p,p
′
) ≡

233a. imm within(p,p
′
)

233b. ∨ ∃ p
′′
:C • p

′′
∈ obs Ps(p

′
) ∧ within(p,p

′′
)

‘Adjacency’

234 Two parts, p,p′, are said to be immediately adjacent, imm adjacent(p,p′)(c), to one another, in a

composite part c, such that p and p′ are distinct and observable in c.

value

234. imm adjacent: P × P → C
∼
→ Bool,

234. imm adjacent(p,p
′
)(c) ≡ p6=p

′
∧ {p,p

′
}⊆obs Ps(c)

Transitive ‘Adjacency’

We can generalise the immediate ‘adjacent’ property.

235 Two parts, p,p′, of a composite part, c, are adjacent(p, p′) in c

a either if imm adjacent(p,p′)(c),

b or if there are two p′′ and p′′′ of c such that

i p′′ and p′′′ are immediately adjacent parts of c and

ii p is equal to p′′ or p′′ is properly within p and p′ is equal to p′′′ or p′′′ is properly within p′

value

235. adjacent: P × P → C
∼
→ Bool

235. adjacent(p,p
′
)(c) ≡

235a. imm adjacent(p,p
′
)(c) ∨

235b. ∃ p
′′
,p

′′′
:P •

235(b)i. imm adjacent(p
′′
,p

′′′
)(c) ∧

235(b)ii. ((p=p
′′
)∨within(p,p

′′
)(c)) ∧ ((p

′
=p

′′′
)∨within(p

′
,p

′′′
)(c))

Domain Science & Engineering 125 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

126

5.3.3 Unique Identifications

Each physical part can be uniquely distinguished for example by an abstraction of its properties at a time

of origin. In consequence we also endow conceptual parts with unique identifications.

236 In order to refer to specific parts we endow all parts, whether atomic or composite, with unique

identifications.

237 We postulate functions which observe these unique identifications, whether as parts in general or as

atomic or composite parts in particular.

238 such that any to parts which are distinct have unique identifications.

type

236. Π
value

237. uid Π: P → Π
axiom

238. ∀ p,p
′
:P • p6=p

′
⇒ uid Π(p) 6=uid Π(p

′
)

Figure 5.13 illustrates the unique identifications of composite and atomic parts.

ci1

ai5 ai4

ai1

ci3

ai2

ci2

ai3

ai6

Figure 5.13: ai j: atomic part identifiers, cik: composite part identifiers

We exemplify the observer function obs Π in the expressions below and on Fig. 5.13:

• obs Π(C1) = ci1, obs Π(C2) = ci2, etcetera; and

• obs Π(A1) = ai1, obs Π(A2) = ai2, etcetera.

Please note that also this example is meta-linguistic.

239 We can define an auxiliary function which extracts all part identifiers of a composite part and parts

within it.

value

239. xtr Πs: C → Π-set

239. xtr Πs(c) ≡ {uid Π(c)} ∪ ∪ {uid Π(p)|p:P•p ∈ xtr Πs(c)}

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 126 Domain Science & Engineering

127

5.3.4 Attributes

In Sect. 5.5 we shall explain the concept of properties of parts, or, as we shall refer to them, attributes For

now we just postulate that

240 parts have sets of attributes, atr:ATR, (whatever they are!),

241 that we can observe attributes from parts, and hence

242 that two distinct parts may share attributes

243 for which we postulate a membership function ∈.

type

240. ATR
value

241. atr ATRs: P → ATR-set

242. share: P×P → Bool

242. share(p,p
′
) ≡ p6=p

′
∧∃ atr:ATR•atr∈atr ATRs(p)∧atr∈atr ATRs(p

′
)

243. ∈: ATR × ATR-set → Bool

5.3.5 Connections

In order to illustrate other than the within and adjacency part relations we introduce the notions of connec-

tors and, hence, connections. Figure 5.14 illustrates connections between parts. A connector is, visually, a

•—• line that connects two distinct part boxes.

ai6
ai5 ai4

ai1
ai3ai2

ci1

ci3

ci2

Figure 5.14: Connectors

244 We may refer to the connectors by the two element sets of the unique identifiers of the parts they

connect.

For example:

• {ci1,ci3},

• {ai2,ai3},

• {ai6,ci1},

• {ai3,ci1},

• {ai6,ai5} and

• {ai1,ci1}.

245 From a part one can observe the unique identities of the other parts to which it is connected.

Domain Science & Engineering 127 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

128

type

244. K = {| k:Π-set • card k = 2 |}
value

245. mereo Ks: P → K-set

246 The set of all possible connectors of a part can be calculated.

value

246. xtr Ks: P → K-set

246. xtr Ks(p) ≡ {{uid Π(p),π}|π :Π•π ∈ mereo Πs(p)}

Connector Wellformedness

247 For a composite part, s:C,

248 all the observable connectors, ks,

249 must have their two-sets of part identifiers identify parts of the system.

value

247. wf Ks: C → Bool

247. wf Ks(c) ≡
248. let ks = xtr Ks(c), πs = mereo Πs(c) in

249. ∀ {π ′,π ′′}:Π-set • {π ′,π ′′}⊆ks ⇒
249. ∃ p

′
,p

′′
:P • {π ′,π ′′}={uid Π(p

′
),uid Π(p

′′
)} end

Connector and Attribute Sharing Axioms

250 We postulate the following axiom:

a If two parts share attributes, then there is a connector between them; and

b if there is a connector between two parts, then they share attributes.

251 The function xtr Ks (Item 246) can be extended to apply to Wholes.

axiom

250. ∀ w:W•

250. let ps = xtr Ps(w), ks = xtr Ks(w) in

250a. ∀ p,p
′
:P • p6=p

′
∧ {p,p

′
}⊆ps ∧ share(p,p

′
) ⇒

250a. {uid Π(p),uid Π(p
′
)} ∈ ks ∧

250b. ∀ {uid,uid
′
} ∈ ks ⇒

250b. ∃ p,p
′
:P • {p,p

′
}⊆ps ∧ {uid,uid

′
}={uid Π(p),uid Π(p

′
)}

250b. ⇒ share(p,p
′
) end

value

251. xtr Ks: W → K-set

251. xtr Ks(w) ≡ ∪{xtr Ks(p)|p:P•p ∈ obs Ps(p)}

In other words: modelling sharing by means of intersection of attributes or by means of connectors is

“equivalent”.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 128 Domain Science & Engineering

129

Sharing

252 When two distinct parts share attributes,

253 then they are said to be sharing:

252. sharing: P × P → Bool

253. sharing(p,p
′
) ≡ p6=p

′
∧share(p,p

′
)

5.3.6 Uniqueness of Parts

There is one property of the model of wholes: W, Item 226 on Page 123, and hence the model of com-

posite and atomic parts and their unique identifiers “spun off” from W (Item 227 [Page 123] to Item 250b

[Page 128]). and that is that any two parts as revealed in different, say adjacent parts are indeed unique,

where we — simplifying — define uniqueness sôlely by the uniqueness of their identifiers.

Uniqueness of Embedded and Adjacent Parts

254 By the definition of the obs Ps function, as applied obs Ps(c) to composite parts, c:C, the atomic

and composite subparts of c are all distinct and have distinct identifiers (uiids: unique immediate
identifiers).

value

254. uiids: C → Bool

254. uiids(c) ≡ ∀ p,p
′
:P•p6=p

′
∧{p,p

′
}⊆obs Ps(c)⇒card{uidΠ(p),uidΠ(p

′
),uidΠ(c)}=3

255 We must now specify that that uniqueness is “propagated” to parts that are proper parts of parts of a

composite part (uids: unique identifiers).

255. uids: C → Bool

255. uids(c) ≡
255. ∀ c

′
:C•c

′
∈ obs Ps(c) ⇒ uiids(c

′
)

255. ∧ let ps
′
=xtr Ps(c

′
),ps

′′
=xtr Ps(c

′′
) in

255. ∀ c
′′
:C•c

′′
∈ ps

′
⇒uids(c

′′
)

255. ∧ ∀ p
′
,p

′′
:P•p

′
∈ ps

′
∧p

′′
∈ ps

′′
⇒uid Π(p

′
) 6=uid Π(p

′′
) end

5.4 An Axiom System

Classical axiom systems for mereology focus on just one sort of “things”, namely Parts. Leśniewski had

in mind, when setting up his mereology to have it supplant set theory. So parts could be composite and

consisting of other, the sub-parts — some of which would be atomic; just as sets could consist of elements

which were sets — some of which would be empty.

5.4.1 Parts and Attributes

In our axiom system for mereology we shall avail ourselves of two sorts: Parts, and A ttributes.3

3Identifiers P and A stand for model-oriented types (parts and atomic parts), whereas identifiers P and A stand for property-
oriented types (parts and attributes).

Domain Science & Engineering 129 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

130

• type P,A

A ttributes are associated with Parts. We do not say very much about attributes: We think of attributes of

parts to form possibly empty sets. So we postulate a primitive predicate, ∈, relating Parts and A ttributes.

• ∈: A ×P → Bool.

5.4.2 The Axioms

The axiom system to be developed in this section is a variant of that in [57]. We introduce the following

relations between parts:

part of: P : P ×P → Bool Page 130

proper part of: PP : P ×P → Bool Page 130

overlap: O : P ×P → Bool Page 130

underlap: U : P ×P → Bool Page 130

over crossing: OX : P ×P → Bool Page 130

under crossing: UX : P ×P → Bool Page 130

proper overlap: PO : P ×P → Bool Page 131

proper underlap: PU : P ×P → Bool Page 131

Let P denote part-hood; px is part of py, is then expressed as P(px, py).
4 (5.1) Part px is part of itself

(reflexivity). (5.2) If a part px is part py and, vice versa, part py is part of px, then px = py (antisymmetry).

(5.3) If a part px is part of py and part py is part of pz, then px is part of pz (transitivity).

∀px : P •P(px, px) (5.1)

∀px, py : P • (P(px, py)∧P(py, px))⇒px = py (5.2)

∀px, py, pz : P • (P(px, py)∧P(py, pz))⇒P(pz, pz) (5.3)

Let PP denote proper part-hood. px is a proper part of py is then expressed as PP(px, py). PP can be

defined in terms of P. PP(px, py) holds if px is part of py, but py is not part of px.

PP(px, py)
△
= P(px, py)∧¬P(py, px) (5.4)

Overlap, O, expresses a relation between parts. Two parts are said to overlap if they have “something” in

common. In classical mereology that ‘something’ is parts. To us parts are spatial entities and these cannot

“overlap”. Instead they can ‘share’ attributes.

O(px, py)
△
= ∃a : A • a ∈ px ∧a ∈ py (5.5)

Underlap, U, expresses a relation between parts. Two parts are said to underlap if there exists a part pz

of which px is a part and of which py is a part.

U(px, py)
△
= ∃pz : P •P(px, pz)∧P(py, pz) (5.6)

Think of the underlap pz as an “umbrella” which both px and py are “under”.

Over-cross, OX, px and py are said to over-cross if px and py overlap and px is not part of py.

OX(px, py)
△
=O(px, py)∧¬P(px, py) (5.7)

Under-cross, UX, px and py are said to under cross if px and py underlap and py is not part of px.

UX(px, py)
△
= U(px, pz)∧¬P(py, px) (5.8)

4Our notation now is not RSL but a conventional first-order predicate logic notation.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 130 Domain Science & Engineering

131

Proper Overlap, PO, expresses a relation between parts. px and py are said to properly overlap if px

and py over-cross and if py and px over-cross.

PO(px, py)
△
= OX(px, py)∧OX(py, px) (5.9)

Proper Underlap, PU, px and py are said to properly underlap if px and py under-cross and px and py

under-cross.

PU(px, py)
△
= UX(px, py)∧UX(py, px) (5.10)

5.4.3 Satisfaction

We shall sketch a proof that the model of the previous section, Sect. 5.3, satisfies is a model for the axioms
of this section. To that end we first define the notions of interpretation, satisfiability, validity and model.

Interpretation: By an interpretation of a predicate we mean an assignment of a truth value to the

predicate where the assignment may entail an assignment of values, in general, to the terms of the predicate.

Satisfiability: By the satisfiability of a predicate we mean that the predicate is true for some interpre-

tation.

Valid: By the validity of a predicate we mean that the predicate is true for all interpretations.

Model: By a model of a predicate we mean an interpretation for which the predicate holds.

A Proof Sketch

We assign

256 P as the meaning of P

257 ATR as the meaning of A ,

258 imm within as the meaning of P,

259 within as the meaning of PP,

260 ∈(of type:ATR×ATR−set→Bool) as the meaning of ∈(of type:A ×P→Bool) and

261 sharing as the meaning of O.

With the above assignments is is now easy to prove that the other axiom-operatorsU, PO, PU, OX and UX

can be modelled by means of imm within, within, ∈(of type:ATR×ATR−set→Bool) and sharing.

5.5 An Analysis of Properties of Parts

So far we have not said much about “the nature” of parts other than composite parts having one or more

subparts and parts having attributes. In preparation also for the next section, Sect. 5.6 we now take a

closer look at the concept of ‘attributes’. We consider three kinds of attributes: their unique identifications

[uid Π] — which we have already considered; their connections, i.e., their mereology [mereo P] — which

we also considered; and their “other” attributes which we shall refer to as properties. [prop P]

Domain Science & Engineering 131 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

132

5.5.1 Mereological Properties

An Example

Road nets, n:N, consists of a set of street intersections (hubs), h:H, uniquely identified by hi’s (in HI),
and a set of street segments (links), l:L, uniquely identified by li’s (in LI). such that from a street segment

one can observe a two element set of street intersection identifiers, and from a street intersection one can

observe a set of street segment identifiers. Constraints between values of link and hub identifiers must be

satisfied. The two element set of street intersection identifiers express that the street segment is connected to

exactly two existing and distinct street intersections, and the zero, one or more element set of street segment

identifiers express that the street intersection is connected to zero, one or more existing and distinct street

segments. An axiom expresses these constraints. We call the hub identifiers of hubs and links, the link

identifiers of links and hubs, and their fulfilment of the axiom the connection mereology.

type

N, H, L, HI, LI
value

obs Hs: N→H-set, obs Ls: N→L-set

uid HI: H→HI, uid LI: L→LI
mereo HIs: L→HI-set axiom ∀ l:L•card mereo HIs(l)=2
mereo LIs: H→LI-set

axiom

∀ n:N•

let hs=obs Hs(n),ls=obs Ls(n) in

∀ h:H•h ∈ hs⇒∀ li:LI•li ∈ mereo LIs(h)⇒∃ l:L•uid LI(l)=li
∧ ∀ l:L•l ∈ ls⇒∃ h,h

′
:H•{h,h

′
}⊆hs∧mereo HIs(l)={uid HI(h),uid HI(h

′
)}

end •

Unique Identifier and Mereology Types

In general we allow for any embedded (within) part to be connected to any other embedded part of a

composite part or across adjacent composite parts. Thus we must, in general, allow for a family of part

types P1, P2, . . . , Pn, for a corresponding family of part identifier types Π1, Π2, . . . , Πn, and for

corresponding observer unique identification and mereology functions:

type

P = P1 | P2 | ... | Pn
Π = Π1 | Π2 | ... | Πn

value

uid Πj: Pj → Πj for 1≤j≤n
mereo Πs: P → Π-set

Example: Our example relates to the abstract model of Sect. 5.3.

262 With each part we associate a unique identifier, π .

263 And with each part we associate a set, {π1,π2, . . . ,πn},n ≤ 0 of zero, one ore more other unique

identifiers, different from π .

264 Thus with each part we can associate a set of zero, one or more connections, viz.: {π ,π j} for

0 ≤ j ≤ n.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 132 Domain Science & Engineering

133

type

262. Π
value

262. uid Π: P → Π
263. mereo Πs: P → Π-set

axiom

263. ∀ p:P•uid Π(p) 6∈mereo Πs(p)
value

264. xtr Ks: P → K-set

264. xtr Ks(p) ≡
264. let (π ,πs)=(uid Π,mereo Πs)(p) in

264. {{π ′,π ′′}|π ′,π ′′:Π•π ′=π∧π ′′∈ πs} end
•

5.5.2 Properties

By the properties of a part we mean such properties additional to those of unique identification and mereol-

ogy. Perhaps this is a cryptic characterisation. Parts, whether atomic or composite, are there for a purpose.

The unique identifications and mereologies of parts are there to refer to and structure (i.e., relate) the parts.

So they are there to facilitate the purpose. The properties of parts help towards giving these parts “their final

meaning”. (We shall support his claim (“their final meaning”) in Sect. 5.6.) Let us illustrate the concept of

properties.

Examples: (i) Typical properties of street segments are: length, cartographic location, surface mate-

rial, surface condition, traffic state — whether open in one, the other, both or closed in all directions. (ii)

Typical properties of street intersections are: design5 location, surface material, surface condition, traffic

state — open or closed between any two pairs of in/out street segments. (iii) Typical properties of road

nets are: name, owner, public/private, free/tool road, area, etcetera. •

265 Parts are characterised (also) by a set of one or more distinctly named and not necessarily distinctly

typed property values.

a Property names are further undefined tokens (i.e., simple quantities).

b Property types are either sorts or are concrete types such as integers, reals, truth values, enu-

merated simple tokens, or are structured (sets, Cartesians, lists, maps) or are functional types.

c From a part

i one can observe its sets of property names

ii and its set (i.e., enumerable map) of distinctly named and typed property values.

d Given an property name of a part one can observe the value of that part for that property name.

e For practical reasons we suggest property named property value observer function — where

we further take the liberty of using the property type name in lieu of the property name.

type

265. Props = PropNam →m PropVAL
265a. PropNam
265b. PropVAL
value

265(c)i. obs Props: P → Props
265(c)ii. xtr PropNams: P → PropNam-set

5for example, a simple ‘carrefour’, or a (circular) roundabout, or a free-way interchange a cloverleaf or a stack or a clover-stack
or a turbine or a roundabout or a trumpet or a directional or a full Y or a hybrid interchange.

Domain Science & Engineering 133 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

134

265(c)ii. xtr PropNams(p) ≡ dom obs Props(p)

265d. xtr PropVAL: P → PropNam
∼
→ PropVAL

265d. xtr PropVAL(p)(pn) ≡ (obs Props(p))(pn)
265d. pre: pn ∈ xtr PropNams(p)

Here we leave PropNames and PropVALues undefined.

Example:

type

NAME, OWNER, LEN, DESIGN, PP == public | private, ...
LΣ, HΣ, LΩ, HΩ

value

obs Props: N → {| [
′′
name

′′
7→nm,

′′
owner

′′
7→ow,

′′
public/private

′′
7→pp,...]

| nm:NAME, ow:OWNER, ..., pp:PP |}
obs Props: L → {| [

′′
length

′′
7→len,...,

′′
state

′′
7→lσ ,

′′
state space

′′
7→lω:LΩ]

| len:LEN,...,lσ :LΣ,lω:LΩ |}
obs Props: H → {| [

′′
design

′′
7→des, ...,

′′
state

′′
7→hσ ,

′′
state space

′′
7→hω]

| des:DESIGN,...,hσ :HΣ,hω:HΩ |}
prop NAME: N → NAME
prop OWNER: N → OWNER
prop LEN: L → LEN
prop LΣ: L → LΣ, obs LΩ: L → LΩ
prop DESIGN: H → DESIGN
prop HΣ: H → HΣ, obs HΩ: H → HΩ
...

We trust that the reader can decipher this example. •

5.5.3 Attributes

There are (thus) three kinds of part attributes:

• unique identifier “observers” (uid),

• mereology “observers (mereo), and

• property “observers” (prop ..., obs Props)

We refer to Sect. 5.3.4, and to Items 240–241.

type

240.′ ATR = Π × Π-set × Props
value

241.′ atr ATR: P → ATR
axiom

∀ p:P • let (π,πs,props) = atr ATR(p) in π 6∈ πs end

In preparation for redefining the share function of Item 242 on Page 127 we must first introduce a modification to

property values.

266 A property value, pv:PropVal, is either a simple property value (as was hitherto assumed), or is a unique part

identifier.

type

265. Props = PropNam →m PropVAL or Π
266. PropVAL or Π :: mk Simp:PropVAL | mk Π:Π

267 The idea a property name pn, of a part p′, designating a Π-valued property value π is

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 134 Domain Science & Engineering

135

a that π refers to a part p′

b one of whose property names must be pn

c and whose corresponding property value must be a proper, i.e., simple property value, v,

d which is then the property value in p′ for pn.

value

267. get VAL: P × PropName → W → PropVAL
267. get VAL(p,pn)(w) ≡
269. let pv = (obs Props(p))(pn) in

267. case pv of

267. mk Simp(v) → v,
267a. mk Π(π) →
267a. let p

′
:P•p

′
∈ xtr Ps(w)∧uid Π(p

′
)=π in

267c. (obs Props(p
′
))(pn) end

267. end end

267c. pre: pn ∈ obs PropNams(p)
267b. ∧ pn ∈ obs PropNams(p

′
)

267c. ∧ is PropVAL((obs Props(p
′
))(pn))

The three bottom lines above, Items 267b–267c, imply the general constraint now formulated.

268 We now express a constraint on our modelling of attributes.

a Let the attributes of a part p be (π,πs,props).

b If a property name pn in props has (associates to) a Π value, say π ′

c then π ′ must be in πs.

d and there must exist another part, p′, distinct from p, with unique identifier π ′, such that

e it has some property named pn with a simple property value.

value

268. wf ATR: ATR → W → Bool

268a. wf ATR(π,πs,props)(w) ≡
268a. π 6∈ πs ∧
268b. ∀ π ′:Π • π ′ ∈ rng props ⇒
268c. let pn:PropNam•props(pn)=π ′ in

268c. pi′∈ πs
268d. ∧ ∃ p′:P•p′∈ xtr Ps(w)∧uid Π(p′)=π ′ ⇒
268e. pn ∈ obs PropNams(obs Props(p′))
268e. ∧ ∃ mk SimpVAL(v):VAL•(obs Props(p′))(pn)=mk SimpVAL(v) end

269 Two distinct parts share attributes

a if the unique part identifier of one of the parts is in the mereology of the other part, or

b if a property value of one of the parts refers to a property of the other part.

value

269. share: P × P → Bool

269. share(p,p′) ≡
269. p 6= p′ ∧
269. let (π,πs,props) = atr ATR(p),(π ′,πs′,props′) = atr ATR(p′),
269. pns = xtr PropNams(p), pns′ = xtr PropNams(p′) in

269a. π ∈ πs′ ∨ π ′ ∈ πs ∨
269b. ∃ pn:PropNam•pn ∈ pns ∩ pns′ ⇒
269b. let vop = props(pn), vop′ = props′(pn) in

Domain Science & Engineering 135 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

136

269b. case (vop,vop′) of

269b. (mk Π(π ′′),mk Simp(v)) → π ′′=π ′,
269b. (mk Simp(v),mk Π(π ′′)) → π=π ′′,
269b. → false

269. end end end

Comment: v is a shared attribute.

5.5.4 Discussion

We have now witnessed four kinds of observer function:

• he above three kinds of mereology and property ‘observers’ and the

• part (and subpart) obs ervers.

These observer functions are postulated. They cannot be defined. They “just exist” by the force of our ability to observe

and decide upon their values when applied by us, the domain observers.

Parts are either composite or atomic. Analytic functions are postulated. They help us decide whether a part is

composite or atomic, and, from composite parts their immediate subparts.

Both atomic and composite parts have all three kinds of attributes: unique identification, mereology (connec-

tions), and properties. Analytic functions help us observe, from a part, its unique identification, its mereology, and its

properties.

Some attribute values may be static, that is, constant, others may be inert dynamic, that is, can be changed. It is

exactly the inert dynamic attributes which are the basis for the next sections semantic model of parts as processes.

In the above model (of this and Sect. 5.3) we have not modelled distinctions between static and dynamic properties.

You may think, instead of such a model, that an always temporal operator, �, being applied to appropriate predicates.

5.6 A Semantic CSP Model of Mereology

The model of Sect. 5.3 can be said to be an abstract model-oriented definition of the syntax of mereology. Similarly

the axiom system of Sect. 5.4 can be said to be an abstract property-oriented definition of the syntax of mereology.

With the analysis of attributes of parts, Sect. 5.5, we have begun a semantic analysis of mereology. We now bring that

semantic analysis a step further.

5.6.1 A Semantic Model of a Class of Mereologies

We show that to every mereology there corresponds a program of cooperating sequential processes CSP. We assume

that the reader has practical knowledge of Hoare’s CSP [97].

Parts ≃ Processes

The model of mereology presented in Sect. 5.3 (Pages 123–129) focused on (i) parts and (ii) connectors. To parts

we associate CSP processes. Part processes are indexed by the unique part identifiers. The connectors form the

mereological attributes of the model.

Connectors ≃ Channels

The CSP channels are indexed by the two-set (hence distinct) part identifier connectors. From a whole we can extract

(xtr Ks, Item 251 on Page 128) all connectors. They become indexes into an array of channels. Each of the connector

channel index identifiers indexes exactly two part processes. Let w:W be the whole under analysis.

value

w:W
ps:P-set = ∪{xtr Ps(c)|c:C•c ∈ w} ∪ {a|a:A•a ∈ w}
ks:K-set = xtr Ks(w)

type

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 136 Domain Science & Engineering

137

K = Π-set axiom ∀ k:K•card k=2
ChMap = Π →m K-set

value

cm:ChMap = [uid Π(p) 7→xtr Ks(p)|p:P•p ∈ ps]
channel

ch[k|k:K•k ∈ ks] MSG

We leave channel messages. m:MSG, undefined.

Process Definitions

value

system: W → process

system(w) ≡
‖{comp process(uid Π(c))(c)|c:C•c ∈ w} ‖ ‖{atom process(uid Π(a),a)|a:A•a ∈ w}

comp process: π:Π → c:C→ in,out {ch(k)|k:K•k ∈ cm(π)} process

comp process(π)(c) ≡ [assert: π = uid Π(c)]
MC (π)(c)(atr ATR(c)) ‖
‖ {comp process(uid Π(c

′
))(c

′
)|c

′
:C•c

′
∈ obs Ps(c)} ‖

‖ {atom process(uid Π(a))(a)|a:A•a ∈ obs Ps(c)}

MC : π:Π → C → ATR → in,out {ch(k)|k:K•k ∈ cm(pi)} process

MC (π)(c)(c attrs) ≡ MC (c)(CF (c)(c attrs)) assert: atr ATR(c) ≡ c attrs

CF : c:C → ATR → in,out {ch[em(i)]|i:KI•i ∈ cm(uid Π(c))} ATR

ATR and atr ATR are defined in Items 240.′ and 241.′ (Page 134).

atom process: a:A → in,out {ch[cm(k)]|:K•k ∈ cm(uid Π(a))} process

atom process(a) ≡ MA (a)(atr ATR(a))

MA : a:A → ATR → in,out {ch[cm(k)]|k:K•k ∈ cm(uid Π(a))} process

MA (a)(a attrs) ≡ MA (a)(AF (a)(a attrs)) assert: atr ATR(a) ≡ a attrs

AF : a:A → ATR → in,out {ch[em(k)]|k:K • k ∈ cm(uid Π(a))} ATR

The meaning processes MC and MA are generic. Their sôle purpose is to provide a never ending recursion. “In-

between” they “make use” of Composite, respectively Atomic specific Functions here symbolised by CF , respectively

AF .

Both CF and AF are expected to contain input/output clauses referencing the channels of their signatures; these

clauses enable the sharing of attributes. We illustrate this “sharing” by the schematised function F standing for either

CF or AF .

value

F : p:(C|A) → ATR → in,out {ch[em(k)]|k:K • k ∈ cm(uid Π(p))} ATR
F (p)(π,πs,props) ≡

⌈⌉⌊⌋ {let av = ch[em({π,j})] ? in

... ; [optional] ch[em({π,j})] ! in reply(props)(av);
(π,πs,in update ATR(props)(j,av)) end | {π,j}:K•{π,j} ∈ πs}

⌈⌉ ⌈⌉⌊⌋ { ... ; ch[em({π,j})] ! out reply(props);
(π,πs,out update ATR(props)(j)) | {π,j}:K•{π,j} ∈ πs}

⌈⌉ (π,πs,own work(props))
assert: π = uid Π(p)

Domain Science & Engineering 137 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

138

in reply: Props → Π × VAL → VAL
in update ATR: Props → Π × VAL → Props
out reply: Props → VAL
out update ATR: Props →Π → Props
own work: Props → Props

We leave VAL undefined.

5.6.2 Discussion

General

A little more meaning has been added to the notions of parts and connections. The within and adjacent to relations

between parts (composite and atomic) reflect a phenomenological world of geometry, and the connected relation

between parts reflect both physical and conceptual world understandings: physical world in that, for example, radio

waves cross geometric “boundaries”, and conceptual world in that ontological classifications typically reflect lattice

orderings where overlaps likewise cross geometric “boundaries”.

Partial Evaluation

The composite processes function “first” “functions” as a compiler. The ‘compiler’ translates an assembly structure

into three process expressions: the MC (c)(c attrs) invocation, the parallel composition of composite processes, c′, one

for each composite sub-part of c, and the parallel composition of atomic processes, a, one for each atomic sub-part of

c — with these three process expressions “being put in parallel”. The recursion in composite processes ends when

a sub-. . . -composites consist of no sub-sub-. . . -composites. Then the compiling task ends and the many generated

MC (c)(c attrs) and MA (a)(a attrs) process expressions are invoked.

5.7 Concluding Remarks

5.7.1 Relation to Other Work

The present contribution has been conceived in the following context.

My first awareness of the concept of ‘mereology’ was from listening to many presentations by Douglas T. Ross

(1929–2007) at IFIP working group WG3.2 meetings over the years 1980–1999. In [137] Douglas T. Ross and John E.

Ward reports on the 1958–1967 MIT project for computer-aided design (CAD) for numerically controlled production.6

Pages 13–17 of [137] reflects on issues bordering to and behind the concerns of mereology. Ross’ thinking is clearly

seen in the following text: “. . . our consideration of fundamentals begins not with design or problem-solving

or programming or even mathematics, but with philosophy (in the old-fashioned meaning of the word) –

we begin by establishing a “world-view”. We have repeatedly emphasized that there is no way to bound

or delimit the potential areas of application of our system, and that we must be prepared to cope with

any conceivable problem. Whether the system will assist in any way in the solution of a given problem

is quite another matter, . . . , but in order to have a firm and uniform foundation, we must have a uniform

philosophical basis upon which to approach any given problem. This “world-view” must provide a working

framework and methodology in terms of which any aspect of our awareness of the world may be viewed.

It must be capable of expressing the utmost in reality, giving expression to unending layers of ever-finer

and more concrete detail, but at the same time abstract chimerical visions bordering on unreality must

fall within the same scheme. “Above all, the world-view itself must be concrete and workable, for it will

form the basis for all involvement of the computer in the problem-solving process, as well as establishing

a viewpoint for approaching the unknown human component of the problem-solving team.” Yes, indeed,

the philosophical disciplines of ontology, epistemology and mereology, amongst others, ought be standard curricula

items in the computer science and software engineering studies, or better: domain engineers cum software system

designers ought be imbued by the wisdom of those disciplines as was Doug. “. . . in the summer of 1960 we coined

the word plex to serve as a generic term for these philosophical ruminations. ”Plex” derives from the word

plexus, “An interwoven combination of parts in a structure”, (Webster). . . . The purpose of a ‘modeling

6Doug is said to have coined the term and the abbreviation CAD [135].

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 138 Domain Science & Engineering

139

plex’ is to represent completely and in its entirety a “thing”, whether it is concrete or abstract, physical

or conceptual. A ‘modeling plex’ is a trinity with three primary aspects, all of which must be present. If

any one is missing a complete representation or modeling is impossible. The three aspects of plex are

data, structure, and algorithm. . . . ” which “. . . is concerned with the behavioral characteristics of the

plex model– the interpretive rules for making meaningful the data and structural aspects of the plex, for

assembling specific instances of the plex, and for interrelating the plex with other plexes and operators on

plexes. Specification of the algorithmic aspect removes the ambiguity of meaning and interpretation of the

data structure and provides a complete representation of the thing being modeled.” In the terminology of the

current paper a plex is a part (whether composite or atomic), the data are the properties (of that part), the structure is

the mereology (of that part) and the algorithm is the process (for that part). Thus Ross was, perhaps, a first instigator

(around 1960) of object-orientedness. A first, “top of the iceberg” account of the mereology-ideas that Doug had

then can be found in the much later (1976) three page note [136]. Doug not only ‘invented’ CAD but was also the

father of AED (Algol Extended for Design), the Automatically Programmed Tool (APT) language, SADT (Structured

Analysis and Design Technique) and helped develop SADT into the IDEF0 method for the Air Force’s Integrated

Computer-Aided Manufacturing (ICAM) program’s IDEF suite of analysis and design methods. Douglas T. Ross went

on for many years thereafter, to deepen and expand his ideas of relations between mereology and the programming

language concept of type at the IFIP WG2.3 working group meetings. He did so in the, to some, enigmatic, but always

fascinating style you find on Page 63 of [136].

In [114] Henry S. Leonard and Henry Nelson Goodman: A Calculus of Individuals and Its Uses present the

American Pragmatist version of Leśniewski’s mereology. It is based on a single primitive: discreet, ⌉⌊. The idea the

calculus of individuals is, as in Leśniewski’s mereology, to avoid having to deal with the empty sets while relying on

explicit reference to classes (or parts).

[57] R. Casati and A. Varzi: Parts and Places: the structures of spatial representation has been the major source

for this paper’s understanding of mereology. Although our motivation was not the spatial or topological mereology,

[143], and although the present paper does not utilize any of these concepts’ axiomatision in [57, 143] it is best to say

that it has benefitted much from these publications.

Domain descriptions, besides mereological notions, also depend, in their successful form. on FCA: Formal Con-

cept Analysis. Here a main inspiration has been drawn , since the mid 1990s from B. Ganter and R. Wille’s Formal

Concept Analysis — Mathematical Foundations [84]. The approach takes as input a matrix specifying a set of

objects and the properties thereof, called attributes, and finds both all the “natural” clusters of attributes and

all the “natural” clusters of objects in the input data, where a “natural” object cluster is the set of all objects

that share a common subset of attributes, and a “natural” property cluster is the set of all attributes shared

by one of the natural object clusters. Natural property clusters correspond one-for-one with natural object

clusters, and a concept is a pair containing both a natural property cluster and its corresponding natural

object cluster. The family of these concepts obeys the mathematical axioms defining a lattice, a Galois con-

nection). Thus the choice of adjacent and embedded (‘within’) parts and their connections is determined after serious

formal concept analysis. In [47] we present a ‘concept analysis’ approach to domain description, where the present

paper presents the mereological approach.

The present paper is based on [29] of which it is an extensive revision and extension.

5.7.2 What Has Been Achieved ?

We have given a model-oriented specification of mereology. We have indicated that the model satisfies a widely known

axiom system for mereology. We have suggested that (perhaps most) work on mereology amounts to syntactic studies.

So we have suggested one of a large number of possible, schematic semantics of mereology. And we have shown that

to every mereology there corresponds a set of communicating sequential process (CSP).

5.7.3 Future Work

We need to characterise, in a proper way, the class of CSP programs for which there corresponds a mereology. Are

you game ?

One could also wish for an extensive editing and publication of Doug Ross’ surviving notes.

Domain Science & Engineering 139 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

Chapter 6

A Domain Description 310

Chapter Status

The domain description will be augmented.

A model or routes will be added.

6.1 Endurants

6.1.1 Domain, Net, Fleet and Monitor

The root domain, ∆D , whose description is to be exemplified, is that of a composite traffic system (270a.)
with a road net, (270b.) with a fleet of vehicles and (270c.) of whose individual position on the road net we
can speak, that is, monitor.311

270 We analyse the traffic system into

a a composite road net,

b a composite fleet (of vehicles), and

c an atomic monitor.

271 The road net consists of two composite parts,

a an aggregation of hubs and

b an aggregation of links.
312

type

270. ∆∆

270a. N∆

270b. F∆

270c. M∆

value

270a. obs part N∆: ∆∆ → N∆

270b. obs part F∆: ∆∆ → F∆

270c. obs part M∆: ∆∆ → M∆

type

271a. HA∆

271b. LA∆

value

140

141

271a. obs part HA∆: N∆ → HA∆

271b. obs part LA∆: N∆ → LA∆

6.1.2 Hubs and Links 313

272 Hub aggregates are sets of hubs.

273 Link aggregates are sets of links.

274 Fleets are set of vehicles.

275 We introduce some auxiliary functions.

a links extracts the links of a network.

b hubs extracts the hubs of a network.
314

type

272. H∆, HS∆ = H∆-set

273. L∆, LS∆ = L∆-set

274. V∆, VS∆ = V∆-set

value

272. obs part HS∆: HA∆ → HS∆

273. obs part LS∆: LA∆ → LS∆

274. obs part VS∆: F∆ → VS∆

275a. links∆: ∆∆ → L-set

275a. links∆(δ ∆) ≡ obs part LS(obs part LA(δ ∆))
275b. hubs∆: ∆∆ → H-set

275b. hubs∆(δ ∆) ≡ obs part HS(obs part HA(δ ∆))

6.1.3 Unique Identfiers 315

We cover the unique identifiers of all parts, whether needed or not.

276 Nets, hub and link aggregates, hubs and links, fleets, vehicles and the monitor all

a have unique identifiers

b such that all such are distinct, and

c with corresponding observers.

277 We introduce some auxiliary functions:

a xtr lis extracts all link identifiers of a traffic system.

b xtr his extracts all hub identifiers of a traffic system.

c given an appropriate link identifier and a net get link ‘retrieves’ the designated link.

d given an appropriate hub identifier and a net get hub ‘retrieves’ the designated hub.
316

type

276a. NI, HAI, LAI, HI, LI, FI, VI, MI
value

276c. uid NI: N∆ → NI
276c. uid HAI: HA∆ → HAI
276c. uid LAI: LA∆ → LAI
276c. uid HI: H∆ → HI
276c. uid LI: L∆ → LI
276c. uid FI: F∆ → FI

Lect.6: Domain Science & Engineering 141 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

142

276c. uid VI: V∆ → VI
276c. uid MI: M∆ → MI
axiom

276b. NI
⋂

HAI=Ø, NI
⋂

LAI=Ø, NI
⋂

HI=Ø, etc.

where axiom 276b. is expressed semi-formally, in mathematics.317

value

277a. xtr lis: ∆∆ → LI-set

277a. xtr lis(δ ∆) ≡
277a. let ls = links(δ ∆) in {uid LI(l)|l:L•l ∈ ls} end

277b. xtr his: ∆∆ → HI-set

277b. xtr his(δ ∆) ≡
277b. let hs = hubs(δ ∆) in {uid HI(h)|h:H•k ∈ hs} end

277c. get link: LI → ∆∆
∼
→ L

277c. get link(li)(δ ∆) ≡
277c. let ls = links(δ ∆) in

277c. let l:L • l ∈ ls ∧ li=uid LI(l) in l end end

277c. pre: li ∈ xtr lis(δ ∆)

277d. get hub: HI → ∆∆
∼
→ H

277d. get hub(hi)(δ ∆) ≡
277d. let hs = hubs(δ ∆) in

277d. let h:H • h ∈ hs ∧ hi=uid HI(h) in h end end

277d. pre: hi ∈ xtr his(δ ∆)

6.1.4 Mereology 318

We cover the mereologies of all part sorts introduced so far. We decide that nets, hub aggregates, link
aggregates and fleets have no mereologies of interest.

278 Hub mereologies reflect that they are connected to zero, one or more links.

279 Link mereologies reflect that they are connected to exactly two distinct hubs.

280 Vehicle mereologies reflect that they are connected to the monitor.

281 The monitor mereology reflects that it is connected to all vehicles.

282 For all hubs of any net it must be the case that their mereology designates links of that net.

283 For all links of any net it must be the case that their mereologies designates hubs of that net.

284 For all transport domains it must be the case that

a the mereology of vehicles of that system designates the monitor of that system, and that

b the mereology of the monitor of that system designates vehicles of that system.
319

value

278. obs mereo H∆: H∆ → LI-set

279. obs mereo L: L → HI-set axiom ∀ l:L•card obs mereo L(l)=2
280. obs mereo V: V → MI
281. obs mereo M: M → VI-set

axiom

282. ∀ δ :∆, hs:HS∆
•hs=hubs(δ), ls:LS∆

•ls=links(δ) •

282. ∀ h:H∆
•h ∈ hs•obs mereo H(h)⊆xtr his(δ) ∧

283. ∀ l:L∆
•l ∈ ls•obs mereo L(l)⊆xtr lis(δ) ∧

284a. let f:F∆
•f=obs part F(δ) ⇒

284a. let m:M∆
•m=obs part M(δ),

284a. vs:VS•vs=obs part VS(f) in

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 142 Lect.6: Domain Science & Engineering

143

284a. ∀ v:V∆
•v ∈ vs⇒uid V(v) ∈ obs mereo M(m)

284b. ∧ obs mereo M(m) = {uid V(v)|v:V•v ∈ vs}
284b. end end

6.1.5 Attributes, I 320

We may not have shown all of the attributes mentioned below — so consider them informally introduced !

• Hubs: locations1 are considered static, wear and tear (condition of road surface) is considered inert,
hub states and hub state spaces are considered programmable;

• Links: lengths and locations are considered static, wear and tear (condition of road surface) is con-
sidered inert, link states and link state spaces are considered programmable; 321

• Vehicles: manufacturer name, engine type (whether diesel, gasoline or electric) and engine power

(kW/horse power) are considered static; velocity and acceleration may be considered reactive (i.e.,
a function of gas pedal position, etc.), global position (informed via a GNSS: Global Navigation

Satellite System) and local position (calculated from a global position) are considered biddable

6.1.6 Attributes, II 322

We treat one attribute each for hubs, links, vehicles and the monitor. First we treat hubs.

285 Hubs

a have hub states which are sets of pairs of identifiers of links connected to the hub2,

b and have hub state spaces which are sets of hub states3.

286 For every net,

a link identifiers of a hub state must designate links of that net.

b Every hub state of a net must be in the hub state space of that hub.

287 Hubs have geodetic and cadestral location.

288 We introduce an auxiliary function: xtr lis extracts all link identifiers of a hub state.
323

type

285a. HΣ = (LI×LI)-set

285b. HΩ = HΣ-set

value

285a. attr HΣ: H → HΣ
285b. attr HΩ: H → HΩ
axiom

286. ∀ δ :∆,
286. let hs = hubs(δ) in

286. ∀ h:H • h ∈ hs •

286a. xtr lis(h)⊆xtr lis(δ)
286b. ∧ attr Σ(h) ∈ attr Ω(h)
286. end

type

287. HGCL
value

287. attr HGCL: H → HGCL
288. xtr lis: H → LI-set

1By location we mean a cadestral/geodetic position.
2A hub state “signals” which input-to-output link connections are open for traffic.
3A hub state space indicates which hub states a hub may attain over time.

Lect.6: Domain Science & Engineering 143 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

144

288. xtr lis(h) ≡
288. {li | li:LI,(li

′
,li
′′
):LI×LI •

288. (li
′
,li
′′
) ∈ attr HΣ(h) ∧ li ∈ {li

′
,li
′′
}}

324
Then links.

289 Links have lengths.

290 Links have geodetic and cadestral location.

291 Links have states and state spaces:

a States modeled here as pairs, (hi′,hi′′), of identifiers the hubs with which the links are connected and

indicating directions (from hub h′ to hub h′′.) A link state can thus have 0, 1, 2, 3 or 4 such pairs.

b State spaces are the set of all the link states that a link may enjoy.
325

type

289. LEN
290. LGCL
291a. LΣ = (HI×HI)-set

291b. LΩ = LΣ-set

value

289. attr LEN: L → LEN
290. attr LGCL: L → LGCL
291a. attr LΣ: L → LΣ
291b. attr LΩ: L → LΩ
axiom

291. ∀ n:N •

291. let ls = xtr−links(n), hs = xtr hubs(n) in

291. ∀ l:L•l ∈ ls ⇒
291a. let lσ = attr LΣ(l) in

291a. 0≤card lσ≤4
291a. ∧ ∀ (hi

′
,hi

′′
):(HI×HI)•(hi

′
,hi

′′
) ∈ lσ ⇒

291a. {get H(hi
′
)(n),get H(hi

′′
)(n)}=obs mereo L(l)

291b. ∧ attr LΣ(l) ∈ attr LΩ(l)
291. end end

326
Then vehicles.

292 Every vehicle of a traffic system has a position which is either ‘on a link’ or ‘at a hub’.

a An ‘on a link’ position has four elements: a unique link identifier which must designate a link of that

traffic system and a pair of unique hub identifiers which must be those of the mereology of that link.

b The ‘on a link’ position real is the fraction, thus properly between 0 (zero) and 1 (one) of the length from

the first identified hub “down the link” to the second identifier hub.

c An ‘at a hub’ position has three elements: a unique hub identifier and a pair of unique link identifiers —

which must be in the hub state.
327

type

292. VPos = onL | atH
292a. onL :: LI HI HI R
292b. R = Real axiom ∀ r:R • 0≤r≤1
292c. atH :: HI LI LI
value

292. attr VPos: V∆ → VPos
axiom

292a. ∀ n∆:N∆, onL(li,fhi,thi,r):VPos •

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 144 Lect.6: Domain Science & Engineering

145

292a. ∃ l∆:L∆
•l∆∈obs part LS(obs part N∆(n∆))

292a. ⇒ li=uid L∆(l)∧{fhi,thi}=obs mereo L∆(l∆),
292c. ∀ n∆:N∆, atH(hi,fli,tli):VPos •

292c. ∃ h∆:H∆
•h∆∈obs part HS∆(obs part N(n∆))

292c. ⇒ hi=uid H∆(h∆)∧(fli,tli) ∈ attr LΣ(h∆)

328

293 We introduce an auxiliary function distribute.

a distribute takes a net and a set of vehicles and

b generates a map from vehicles to distinct vehicle positions on the net.

c We sketch a “formal” distribute function, but, for simplicity we omit the technical details that secures

distinctness — and leave that to an axiom !

294 We define two auxiliary functions:

a xtr links extracts all links of a net and

b xtr hub extracts all hubs of a net.
329

type

293b. MAP = VI →m VPos
293b. ∀ map:MAP • card dom map = card rng map
value

293. distribute: VS∆ → N∆ → MAP
293. distribute(vs∆)(n∆) ≡
293a. let (hs,ls) = (xtr hubs(n∆),xtr links(n∆)) in

293a. let vps = {onL(uid (l∆),fhi,thi,r)|l∆:L∆
•l∆∈ls∧{fhi,thi}⊆obs mereo L(l)∧0≤r≤1}

293a. ∪ {atH(uid H(h∆),fli,tli)|h∆:H∆
•h∆∈hs∧{fli,tli}⊆obs mereo H∆(h∆)} in

293b. [uid V∆(v) 7→vp|v∆:V∆,vp:VPos•v∆∈vs∧vp∈vps]
293. end end

330

294a. xtr links∆: N∆ → L∆-set

294a. xtr links∆(n∆)≡obs part LS(obs part LA(n∆))
294b. xtr hubs∆: N∆ → H∆-set

294a. xtr hubs∆(n∆)≡obs part HS∆(obs part HA∆(n∆))

331
And finally monitors. We consider only one monitor attribute.

295 The monitor has a vehicle traffic attribute.

a For every vehicle of the road transport system the vehicle traffic attribute records a possibly empty list of

time marked vehicle positions.

b These vehicle positions are alternate sequences of ‘on link’ and ‘at hub’ positions

i such that any sub-sequence of ‘on link’ positions record the same link identifier, the same pair of

‘’to’ and ‘from’ hub identifiers and increasing fractions,

ii such that any sub-segment of ‘at hub’ positions are identical,

iii such that vehicle transition from a link to a hub is commensurate with the link and hub mereologies,

and

iv such that vehicle transition from a hub to a link is commensurate with the hub and link mereologies.
332

type

295. Traffic = VI →m (T × VPos)∗

value

295. attr Traffic: M → Traffic
axiom

Lect.6: Domain Science & Engineering 145 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

146

295b. ∀ δ :∆ •

295b. let m = obs part M∆(δ) in

295b. let tf = attr Traffic(m) in

295b. dom tf ⊆ xtr vis(δ) ∧
295b. ∀ vi:VI • vi ∈ dom tf •

295b. let tr = tf(vi) in

295b. ∀ i,i+1:Nat • {i,i+1}⊆dom tr •

295b. let (t,vp)=tr(i),(t
′
,vp

′
)=tr(i+1) in

295b. t<t
′

295(b)i. ∧ case (vp,vp
′
) of

295(b)i. (onL(li,fhi,thi,r),onL(li
′
,fhi

′
,thi

′
,r
′
))

295(b)i. → li=li
′
∧fhi=fhi

′
∧thi=thi

′
∧r≤r

′

295(b)i. ∧ li ∈ xtr lis(δ)
295(b)i. ∧ {fhi,thi} = obs mereo L(get link(li)(δ)),
295(b)ii. (atH(hi,fli,tli),atH(hi

′
,fli

′
,tli

′
))

295(b)ii. → hi=hi
′
∧fli=fli

′
∧tli=tli

′

295(b)ii. ∧ hi ∈ xtr his(δ)
295(b)ii. ∧ (fli,tli) ∈ obs mereo H(get hub(hi)(δ)),
295(b)iii. (onL(li,fhi,thi,1),atH(hi,fli,tli))
295(b)iii. → li=fli∧thi=hi
295(b)iii. ∧ {li,tli} ⊆ xtr lis(δ)
295(b)iii. ∧ {fhi,thi}=obs mereo L(get link(li)(δ))
295(b)iii. ∧ hi ∈ xtr his(δ)
295(b)iii. ∧ (fli,tli) ∈ obs mereo H(get hub(hi)(δ)),
295(b)iv. (atH(hi,fli,tli),onL(li

′
,fhi

′
,thi

′
,0))

295(b)iv. → etcetera,
295b. → false

295b. end end end end end

6.1.7 Routes 333

We bring a model of routes.

TO BE WRITTEN

6.2 Perdurants 334

6.2.1 Vehicle to Monitor Channel

296 Let δ be the traffic system domain.

297 Then focus on the set of vehicles

298 and the monitor —

299 and we obtain an appropriate channel array for communication between vehicles and the traffic observing monitor.

value

297. let vs:VS • vs = obs part VS(obs part F(δ)),
298. m:M • m = obs part M(δ) in

channel

299. {v m ch[uid VI(v),uid MI(m)]|v:V•v ∈ vs} end

6.2.2 Link Disappearance Event 335

We formalise aspects of the above-mentioned link disappearance event:

300 The result net, n’:N’, is not well-formed.

301 For a link to disappear there must be at least one link in the net;

302 and such a link may disappear such that

303 it together with the resulting net makes up for the “original” net.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 146 Lect.6: Domain Science & Engineering

147

value

300. link diss event: N × N
′
× Bool

300. link diss event(n,n
′
) as tf

301. pre: obs part Ls(obs part LS(n))6={}
302. post: ∃ l:L•l ∈ obs part Ls(obs part LS(n)) ⇒
303. l 6∈ obs part Ls(obs part LS(n

′
))

303. ∧ n
′
∪ {l} = obs part Ls(obs part LS(n))

6.2.3 Road Traffic 336

Global Values There is given some globally observable parts.

304 besides the domain, δ∆:∆∆,

305 a net, n:N,

306 a set of vehicles, vs:V-set,

307 a monitor, m:M, and

308 a clock, clock, behaviour.

309 From the net and vehicles we generate an initial distribution of positions of vehicles.

The n:N, vs:V-set and m:M are observable from any road traffic system domain δ . 337

value

304. δ ∆:∆∆

305. n:N = obs part N(δ ∆),
305. ls:L-set=linksLs(δ),hs:H-set=hubs(δ ∆),
305. lis:LI-set=xtr lis(δ),his:HI-set=xtr his(δ ∆)
306. vs:V-set=obs part Vs(obs part VS(obs part F(δ)∆)),
306. vis:VI-set = {uid VI(v)|v:V•v ∈ vs},
307. m:obs part M(δ), mi=uid MI(m), ma:attributes(m)
308. clock: T → out {clk ch[vi|vi:VI•vi ∈ vis]} Unit

309. vm:MAP•vpos map = distribute(vs)(n);

338
Channels

310 We additionally declare a set of vehicle to monitor channels indexed

a by the unique identifiers of vehicles

b and the (single) monitor identifier.4

and communicating vehicle positions.

channel

310. {v m ch[vi,mi]|vi:VI•vi ∈ vis}:VPos

339
Behaviour Signatures

311 The road traffic system behaviour, rts, takes no arguments (hence the first Unit)5; and “behaves”, that is, continues forever
(hence the last Unit).

312 The vehicle behaviour

a is indexed by the unique identifier, uid V(v):VI,

b the vehicle mereology, in this case the single monitor identifier mi:MI,

c the vehicle attributes, obs attribs(v)

d and — factoring out one of the vehicle attributes — the current vehicle position.

e The vehicle behaviour offers communication to the monitor behaviour (on channel vm ch[vi]); and behaves “forever”.
340

313 The monitor behaviour takes

a the monitor identifier,

4Technically speaking: we could omit the monitor identifier.
5The Unit designator is an RSL technicality.

Lect.6: Domain Science & Engineering 147 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

148

b the monitor mereology,

c the monitor attributes,

d and — factoring out one of the vehicle attributes — the discrete road traffic, drtf:dRTF, being repeatedly “updated” as
the result of input communications from (all) vehicles;

e the behaviour otherwise behaves forever.

value

311. trs: Unit → Unit

312. veh∆: vi:VI × mi:MI → vp:VPos →
312. out vm ch[vi,mi] Unit

313. mon∆: m:M∆ × vis:VI-set → RTF →
313. in {v m ch[vi,mi]|vi:VI•vi ∈ vis},clk ch Unit

341
The Road Traffic System Behaviour

314 Thus we shall consider our road traffic system, rts, as

a the concurrent behaviour of a number of vehicles and, to “observe”, or, as we shall call it, to monitor their movements,

b the monitor behaviour.

value

314. trs() =
314a. ‖ {veh∆(uid VI(v),mi)(vm(uid VI(v)))|v:V•v ∈ vs}
314b. ‖ mon∆(mi,vis)([vi 7→〈〉|vi:VI•vi ∈ vis])

342
where, wrt, the monitor, we dispense with the mereology and the attribute state arguments and instead just have a monitor traffic
argument which records the discrete road traffic, MAP, initially set to “empty” traces (〈〉, of so far “no road traffic”!).

In order for the monitor behaviour to assess the vehicle positions these vehicles communicate their positions to the monitor via a
vehicle to monitor channel. In order for the monitor to time-stamp these positions it must be able to “read” a clock.343

315 We describe here an abstraction of the vehicle behaviour at a Hub (hi).

a Either the vehicle remains at that hub informing the monitor of its position,

b or, internally non-deterministically,

i moves onto a link, tli, whose “next” hub, identified by thi, is obtained from the mereology of the link identified
by tli;

ii informs the monitor, on channel vm[vi,mi], that it is now at the very beginning (0) of the link identified by tli,

iii whereupon the vehicle resumes the vehicle behaviour positioned at the very beginning of that link,

c or, again internally non-deterministically,

d the vehicle “disappears — off the radar” !
344

315. veh∆(vi,mi)(vp:atH(hi,fli,tli)) ≡
315a. v m ch[vi,mi]!vp ; veh∆(vi,mi)(vp)
315b. ⌈⌉
315(b)i. let {hi

′
,thi}=obs mereo L(get link(tli)(n)) in

315(b)i. assert: hi
′
=hi

315(b)ii. v m ch[vi,mi]!onL(tli,hi,thi,0) ;
315(b)iii. veh∆(vi,mi)(onL(tli,hi,thi,0)) end

315c. ⌈⌉
315d. stop

345

316 We describe here an abstraction of the vehicle behaviour on a Link (ii). Either

a the vehicle remains at that link position informing the monitor of its position,

b or, internally non-deterministically,

c if the vehicle’s position on the link has not yet reached the hub,

i then the vehicle moves an arbitrary increment ℓε (less than or equal to the distance to the hub) along the link
informing the monitor of this, or

ii else, while obtaining a “next link” from the mereology of the hub (where that next link could very well be the
same as the link the vehicle is about to leave),

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 148 Lect.6: Domain Science & Engineering

149

A the vehicle informs the monitor that it is now at the hub identified by thi,

B whereupon the vehicle resumes the vehicle behaviour positioned at that hub.

317 or, internally non-deterministically,

318 the vehicle “disappears — off the radar” !
346

316. veh∆(vi,mi)(vp:onL(li,fhi,thi,r)) ≡
316a. v m ch[vi,mi]!vp ; veh(∆vi,mi,va)(vp)
316b. ⌈⌉
316c. if r + ℓε≤1
316(c)i. then v m ch[vi,mi]!onL(li,fhi,thi,r+ℓε) ;
316(c)i. veh∆(vi,mi)(onL(li,fhi,thi,r+ℓε))
316(c)ii. else let li

′
:LI•li

′
∈ obs mereo H(get hub(thi)(n)) in

316(c)iiA. v m ch[vi,mi]!atH(li,thi,li
′
);

316(c)iiB. veh∆(vi,mi)(atH(li,thi,li
′
)) end end

317. ⌈⌉
318. stop

347
The Monitor Behaviour

319 The monitor behaviour evolves around

a the monitor identifier,

b the monitor mereology,

c and the attributes, ma:ATTR

d — where we have factored out as a separate arguments — a table of traces of time-stamped vehicle positions,

e while accepting messages

i about time

ii and about vehicle positions

f and otherwise progressing “in[de]finitely”.
348

320 Either the monitor “does own work”

321 or, internally non-deterministically accepts messages from vehicles.

a A vehicle position message, vp, may arrive from the vehicle identified by vi.

b That message is appended to that vehicle’s movement trace – prefixed by time (obtained from the time channel),

c whereupon the monitor resumes its behaviour —

d where the communicating vehicles range over all identified vehicles.
349

319. mon∆(mi,vis)(trf) ≡
320. mon∆(mi,vis)(trf)
321. ⌈⌉
321a. ⌈⌉⌊⌋{let tvp = (clk ch?,v m ch[vi,mi]?) in

321b. let trf′ = trf † [vi 7→ trf(vi)̂ <tvp>] in

321c. mon∆(mi,vis)(trf′)
321d. end end | vi:VI • vi ∈ vis}

350
We are about to complete a long, i.e., a four page example. We can now comment on the full example: The domain, δ : ∆ is a manifest
part. The road net, n : N is also a manifest part. The fleet, f : F , of vehicles, vs : VS, likewise, is a manifest part. But the monitor,
m : M, is a concept. One does not have to think of it as a manifest “observer”. The vehicles are on — or off — the road (i.e., links 351

and hubs). We know that from a few observations and generalise to all vehicles. They either move or stand still. We also, similarly,
know that. Vehicles move. Yes, we know that. Based on all these repeated observations and generalisations we introduce the concept
of vehicle traffic. Unless positioned high above a road net — and with good binoculars — a single person cannot really observe the
traffic. There are simply too many links, hubs, vehicles, vehicle positions and times. Thus we conclude that, even in a richly manifest
domain, we can also “speak of”, that is, describe concepts over manifest phenomena, including time !

Lect.6: Domain Science & Engineering 149 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

Part II

Requirements Engineering

150

Chapter 7

Requirements 352

Chapter Status

Sections 7.3 and 7.4 need be revised.

Chapter lacks a concluding section.

Abstract

In Chapter 1 we introduced a method for analysing and describing manifest domains. In this chapter we show how
to systematically, but of course, not automatically, “derive” requirements prescriptions from domain descriptions.
There are, as we see it, three kinds of requirements: (i) domain requirements, (ii) interface requirements and
(iii) machine requirements. The machine is the hardware and software to be developed from the requirements
. (i) Domain requirements are those requirements which can be expressed sôlely using technical terms of the 353

domain . (ii) Interface requirements are those requirements which can be expressed only using technical terms
of both the domain and the machine . (iii) Machine requirements are those requirements which can be expressed
sôlely using technical terms of the machine . We show principles, techniques and tools for “deriving” domain 354

requirements and interface requirements. The domain requirements development focus on projection, instantiation,
determination, extension and fitting. These domain-to-requirements operators can be described briefly: projection 355

removes such descriptions which are to be omitted for consideration in the requirements, instantiation mandates
specific mereologies, determination specifies less non–determinism, extension extends the evolving requirements
prescription with further domain description aspects and fitting resolves “loose ends” as they may have emerged
during the domain-to-requirements operations.

7.1 Introduction 356

Definition 28 . Requirements (I): By a requirements we understand (cf. IEEE Standard 610.12 [98]): “A condition or
capability needed by a user to solve a problem or achieve an objective”

7.1.1 General Considerations

The objective of requirements engineering is to create a requirements prescription: A requirements prescription specifies

externally observable properties of endurants and perdurants: functions, events and behaviours of the machine such as the require-

ments stake-holders wish them to be The machine is what is required: that is, the hardware and software
that is to be designed and which are to satisfy the requirements A requirements prescription thus (pu- 357

tatively) expresses what there should be. A requirements prescription expresses nothing about the design

of the possibly desired (required) software. We shall show how a major part of a requirements prescription

can be “derived” from “its” prerequisite domain description. 358

151

152

Rule 1 The “Golden Rule” of Requirements Engineering: Prescribe only those requirements that

can be objectively shown to hold for the designed software

“Objectively shown” means that the designed software can either be tested, or be model checked, or be

proved (verified), to satisfy the requirements.359

Rule 2 An “Ideal Rule” of Requirements Engineering: When prescribing (including formalising)

requirements, also formulate tests and properties for model checking and theorems whose actualisation

should show adherence to the requirements

The rule is labelled “ideal” since such precautions will not be shown in this paper. The rule is clear. It is a

question for proper management to see that it is adhered to.360

Rule 3 Requirements Adequacy: Make sure that requirements cover what users expect

That is, do not express a requirement for which you have no users, but make sure that all users’ requirements

are represented or somehow accommodated. In other words: the requirements gathering process needs to

be like an extremely “fine-meshed net”: One must make sure that all possible stake-holders have been

involved in the requirements acquisition process, and that possible conflicts and other inconsistencies have

been obviated.361

Rule 4 Requirements Implementability: Make sure that requirements are implementable

That is, do not express a requirement for which you have no assurance that it can be implemented. In

other words, although the requirements phase is not a design phase, one must tacitly assume, perhaps even

indicate, somehow, that an implementation is possible. But the requirements in and by themselves, stay

short of expressing such designs.362

Rule 5 Requirements Verifiability and Validability: Make sure that requirements are verifiable and

can be validated

That is, do not express a requirement for which you have no assurance that it can be verified and validated.

In other words, once a first-level software design has been proposed, one must show that it satisfies the

requirements. Thus specific parts of even abstract software designs are usually provided with references to

specific parts of the requirements that they are (thus) claimed to implement.363

Definition 29 . Requirements (II): By requirements we shall understand a document which pre-

scribes desired properties of a machine: (i) what endurants the machine shall “maintain”, and what the

machine shall (must; not should) offer of (ii) functions and of (iii) behaviours (iv) while also expressing

which events the machine shall “handle”
364

By a machine that “maintains” endurants we shall mean: a machine which, “between” users’ use of that

machine, “keeps” the data that represents these entities. From earlier we repeat:

Definition 30 . Machine: By machine we shall understand a, or the, combination of hardware and

software that is the target for, or result of the required computing systems development

So this, then, is a main objective of requirements development: to start towards the design of the hardware

+ software for the computing system.365

Definition 31 . Requirements (III): To specify the machine

When we express requirements and wish to “convert” such requirements to a realisation, i.e., an imple-

mentation, then we find that some requirements (parts) imply certain properties to hold of the hardware on

which the software to be developed is to “run”, and, obviously, that remaining — probably the larger parts

of the — requirements imply certain properties to hold of that software. So we find that although we may

believe that our job is software engineering, important parts of our job are to also “design the machine”!

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 152 Lect.8: Domain Science & Engineering

153

7.1.2 Four Stages of Requirements Development 366

We shall unravel requirements in four stages — the first three stages are sketchy (and thus informal) while

the last stage is systematic, mandates both strict narrative, and formal descriptions, and is “derivable” from

the domain description. The four stages are: (i) the problem/objective sketch, (ii) the narrative system
requirements sketch, (iii) the narrative user requirements sketch, and (iv) the systematic narrative and

formal functional requirements prescription.

Problem and/or Objective Sketch 367

Definition 32 . Problem/Objective Sketch: By a problem/objective sketch we understand a

narrative which emphasises what the problem or objectie is and thereby names its main concepts

368

Example 82 . The Problem/Objective Requirements: A Sketch: The objective is to create a road-

pricing product. By a road-pricing product we shall understand an information technology-based system containing

computers and communications equipment and software that enables the recording of vehicle movements within a well-

delineated road net and thus enables the owner of the road net to charge the owner of the vehciles fees for the usage of

that road net

Systems Requirements 369

Definition 33 . System Requirements: By a system requirements narrative we understand a

narrative which emphasises the overall hardware and software system components

370

Example 83 . The Road-pricing System Requirements: A Narrative: The requirements are based

on the following a-priori given constellation of system components: (i) there is assumed a GNSS: a Global Navigation

Satellite System; (ii) there are specially equipped vehicles; (iii) there is a well-delineated road net called a toll-road

net with specially equipped toll-gates with barriers which afford (only the specially equipped) vehicles to enter into and

exit from the toll-road net; and (iv) there is a [road-pricing] calculator. These four system components are required to 371

behave and interact as follows: (a) The GNSS is assumed to continuously offer vehicles timed information about their

global positions; (b) vehicles shall contain a GNSS receiver which based on the global position information shall reg-

ularly calculate their timed local position and offer this to the calculator — while otherwise cruising the general road net

as well as the toll-road net, the latter while carefully moving through toll-gate barriers; (c) toll-road gates shall register the

identity of vehicles entering and exiting the toll-road and offer this information to the calculator; and (d) the calculator shall

accept all messages from vehicles and gates and use this information to record the movements of vehicles and bill these

whenever they exit the toll-road. The requirements are therefore to include requirements to [1] the GNSS radio telecom- 372

munications equipment, [2] the vehicle GNSS receiver equipment, [3] the vehicle software, [4] the toll-gate in and out

sensor equipment, [5] the electro-mechanical toll-gate barrier equipment, [6] the toll-gate barrier actuator equipment, [7]

the toll-gate software, [8] the actuator software, and [9] the communications It is in this sense that the requirements are for 373

an information technology-based system of both software and hardware — not just hard computer and communications

equipment, but also movement sensors and electro-mechanical “gear”

User and External Equipment Requirements 374

Definition 34 . User and External Equipment Requirements: By a user and external equip-
ment requirements narrative we understand a narrative which emphasises the human user and exter-

nal equipment interfaces to the system components

375

Example 84 . The Road-pricing User and External Equipment Requirements: Narrative:

The human users of the road-pricing system are vehicle drivers, toll-gate sensor, actuator and barrier service staff,

Lect.8: Domain Science & Engineering 153 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

154

and the road-pricing service calculator staff. The external equipment are the GNSS satellites and the telecommunica-

tions equipment (i) which enables communication between (ii) the GNSS satellite sand vehicles , (iii) vehicles and the

road-pricing calculator, (iv) toll-gates and the road-pricing calculator and (v) the road-pricing calculator and vehicles (for

billing), We defer expression of human user and external equipment requirements till our treatment of relevant functional

requirements

Functional Requirements 376

Definition 35 . Functional Requirements: By functional requirements we understand precise

prescriptions of the endurants and perdurants of the system components
377

There are, as we see it, three kinds of requirements: (i) domain requirements, (ii) interface require-
ments and (iii) machine requirements (i) Domain requirements are those requirements which can378

be expressed sôlely using technical terms of the domain . (ii) Interface requirements are those re-

quirements which can be expressed only using technical terms of both the domain and the machine . (iii)

Machine requirements are those requirements which can be expressed sôlely using technical terms of

the machine .

7.2 Domain Requirements 379

Definition 36 . Domain Requirements Prescription: A domain requirements prescription

is that subset of the requirements prescription which can be expressed sôlely using terms from the domain

description

To determine a relevant subset all we need is collaboration with requirements stake-holders. Experimental380

evidence, in the form of example developments of requirements prescriptions from domain descriptions,

appears to show that one can formulate techniques for such developments around a few domain description

to requirements prescription operations. We suggest these: projection, instantiation, determination,

extension, fitting and, perhaps, other domain description to requirements prescription operations.

7.2.1 Domain Projection 381

Definition 37 . Domain Projection: By a domain projection we mean a subset of the domain

description, one which leaves out all those endurants: parts, materials and components, as well as per-

durants: functions, events and behaviours that the stake-holders do not wish represented by the machine.

The resulting document is a partial domain requirements prescription
382

In determining an appropriate subset the requirements engineer must secure that the final prescription is

complete and consistent — that is, that there are no “dangling references”, i.e., that all entities that are

referred to are all properly defined.

Domain Projection — Narrative 383

We now start on a series of examples that illustrate domain requirements development.

Example 85 . Domain Requirements. Projection A Narrative Sketch: We require that the Road-

pricing IT, computing & communications system shall embody the following domain entities, in one form or another: the

net, its links and hubs, and their properties (unique identifiers, mereologies and attributes), the vehicles, as endurants, as

endurants, and the general vehicle behaviour, i.e., the vehicle signature. To formalise this we copy the domain description,384

∆∆, From that domain description we remove all mention of the link insertion and removal functions, the link disappearance

event, the vehicle behaviour, and the monitor to obtain the ∆P version of the domain requirements prescription.1

1Restrictions of the net to the toll road nets, hinted at earlier, will follow in the next domain requirements steps.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 154 Lect.8: Domain Science & Engineering

155

Domain Projection — Formalisation 385

The requirements prescription hinges, crucially, not only on a systematic narrative of all the projected,

instantiated, determinated, extended and fitted specifications, but also on their formalisation. In the series

of domain projection examples following below we, regretfully, omit the narrative texts. In bringing the

formal texts we keep the item numbering from Sect. 1.2, where you can find the associated narrative texts. 386

Example 86 . Domain Requirements. Projection Root Sorts:

type

270. ∆P

270a. NP

270b. FP

value

270a. obs part NP : ∆P→NP

270b. obs part FP : ∆P→FP

type

271a. HAP

271b. LAP

value

271a. obs part HA: NP → HA
271b. obs part LA: NP → LA

387

Example 87 . Domain Requirements. Projection Sub-domain Sorts and Types:

type

272. HP , HSP = HP -set

273. LP , LSP = LP -set

274. VP , VSP = VP -set

value

272. obs part HSP : HAP → HSP

273. obs part LSP : LAP → LSP

274. obs part VSP : FP → VSP

275a. links: ∆P → L-set

275a. links(δP) ≡ obs part LSR (obs part LAR (δR))
275b. hubs: ∆P → H-set

275b. hubs(δP) ≡ obs part HSP (obs part HAP (δP))

388

Example 88 . Domain Requirements. Projection Unique Identifications:

type

276a. HI, LI, VI, MI
value

276c. uid HI: HP → HI
276c. uid LI: LP → LI

276c. uid VI: VP → VI
276c. uid MI: MP → MI
axiom

276b. HI
⋂

LI=Ø, HI
⋂

VI=Ø, HI
⋂

MI=Ø,
276b. LI

⋂
VI=Ø, LI

⋂
MI=Ø, VI

⋂
MI=Ø

389

Example 89 . Domain Requirements. Projection Road Net Mereology:

value

278. obs mereo HP : HP → LI-set

279. obs mereo LP : LP → HI-set

279. axiom ∀ l:LP
• card obs mereo LP (l)=2

280. obs mereo VP : VP → MI
281. obs mereo MP : MP → VI-set

axiom

282. ∀ δP :∆P , hs:HS•hs=hubs(δ), ls:LS•ls=links(δP) ⇒
282. ∀ h:HP

•h ∈ hs ⇒
282. obs mereo HP (h)⊆xtr his(δP) ∧

283. ∀ l:LP
•l ∈ ls •

282. obs mereo LP (l)⊆xtr lis(δP) ∧
284a. let f:FP

•f=obs part FP (δP) ⇒
284a. vs:VSP

•vs=obs part VSP (f) in

284a. ∀ v:VP
•v ∈ vs ⇒

284a. uid VP (v) ∈ obs mereo MP (m) ∧
284b. obs mereo MP (m)
284b. = {uid VP (v)|v:V•v ∈ vs}
284b. end

390

Example 90 . Domain Requirements. Projection Attributes of Hubs:

Lect.8: Domain Science & Engineering 155 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

156

type

285a. HΣP = (LI×LI)-sett
285b. HΩP = HΣP -set

value

285a. attr HΣP : HP → HΣP

285b. attr HΩP : HP → HΩP

type

287. HGCL
value

287. attr HGCL: H → HGCL
axiom

286. ∀ δP :∆P ,
286. let hs = hubs(δP) in

286. ∀ h:HP
• h ∈ hs •

286a. xtr lis(h)⊆xtr lis(δP)
286b. ∧ attr ΣP (h) ∈ attr ΩP (h)
286. end

391

Example 91 . Domain Requirements. Projection Attributes of Links:

type

289. LEN
290. LGCL
291a. LΣP = (HI×HI)-set

291b. LΩP = LΣP -set

value

289. attr LEN: LP → LEN
290. attr LGCL: L P→ LGCL
291a. attr LΣP : LP → LΣP

291b. attr LΩP : LP → LΩP

axiom

291a.− 291b on Page 144.

392

Example 92 . Domain Requirements. Projection Behaviour:

Global Values

value

304. δP :∆P ,
305. n:NP = obs part NP (δP),
305. ls:LP -set = links(δP),
305. hs:HP -set = hubs(δP),
305. lis:LI-set = xtr lis(δP),

305. his:HI-set = xtr his(δP)

Behaviour Signatures

value

311. trsP : Unit → Unit

312. vehP : VI×MI×ATTR → ... Unit

The System Behaviour

value

314a. trsP ()=‖{vehP (uid VI(v),obs mereo V(v),attr ATTRS(v)) | v:VP
•v ∈ vs}

We observe that the vehicle behaviour is left unspecified.

A Projection Operator 393

Domain projection thus take a domain description, D , and yields a projected requirements prescription,

,RP .

• type projection: D → RP .

Semantically D denotes a possibly infinite set of meanings, say D and RP denotes a possibly infinite set

of meanings, say RP, such that some relation RP⊑D is satisfied.

7.2.2 Domain Instantiation 394

Definition 38 . Instantiation: By domain instantiation we mean a refinement of the partial domain

requirements prescription, resulting from the projection step, in which the refinements aim at rendering the

endurants: parts, materials and components, as well as the perdurants: actions, events and behaviours of

the domain requirements prescription more concrete, more specific Instantiations usually render these

concepts less general.
395

Refinement of endurants can be expressed (i) either in the form of concrete types, (ii) or of further “delin-

eating” axioms over sorts, (iii) or of a combination of concretisation and axioms. We shall exemplify the

third possibility. Examples 93–94 express requirements that the road net on which the road-pricing system

is to be based must satisfy.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 156 Lect.8: Domain Science & Engineering

157

Domain Instantiation — Narrative 396

Example 93 . Domain Requirements. Instantiation Road Net, Narrative: We now require that
there is, as before, a road net, nI :NI , which can be understood as consisting of two, “connected sub-nets”. A toll-road
net, trnI :TRNI , cf. Fig. 7.1, and an ordinary road net, n′

∆. The two are connected as follows: The toll-road net, trnI ,
borders some toll-road plazas, in Fig. 7.1 shown by white filled circles (i.e., hubs). These toll-road plaza hubs are proper
hubs of the ‘ordinary’ road net, n′

∆. 397

timtim−1tijti3ti1 ti2

trn

tp3 tpj

...

tpm−1 tpmtp1 tp2

on

toll−road intersection hub link

exitentry

Figure 7.1: A simple, linear toll-road net trn. t p j: toll plaza j, ti j: toll road intersection j.
Upper dashed sub-figure hint at an ordinary road net no.
Lower dotted sub-figure hint at a toll-road net trn.
Dash-dotted (- - - · · ·) images above t p js hint at links to remaining “parts” of no.

398

322 The instantiated domain, δI :∆I has just the net,
nI :NI being instantiated.

323 The road net consists of two “sub-nets”

a an “ordinary” road net, n′
∆:N′

∆ and

b a toll-road net proper, trnI :TRNI —

c “connected” by an interface hil:HIL:

i That interface consists of a number of
toll-road plazas (i.e., hubs), modeled as
a list of hub identifiers, hil:HI∗.

ii The toll-road plaza interface to the
toll-road net, trn:TRNI

2, has each
plaza, hil[i], connected to a pair of toll-
road links: an entry and an exit link:
(le:L, lx :L).

iii The toll-road plaza interface to the ‘or-
dinary’ net, n′

∆:N′
∆, has each plaza, i.e.,

the hub designated by the hub identifier
hil[i], connected to one or more ordinary
net links, {li1 , li2 , · · · , liℓ}.

323b The toll-road net, trn:TRNI , consists of three
collections (modeled as lists) of links and
hubs:

i a list of pairs of toll-road entry/exit links:
〈(le1

, lx1
), · · · ,(leℓ , lxℓ)〉,

ii a list of toll-road intersection hubs:
〈hi1 ,hi2 , · · · ,hiℓ 〉, and

iii a list of pairs of main toll-road (“up” and
“down”) links: 〈(mli1u

,mli1d
),(mi2u

,mi2d
),-

· · · ,(miℓu ,miℓd)〉.

d The three lists have commensurate lengths.

ℓ is the number of toll plazas, hence also the number of toll-road intersection hubs and therefore a number one larger

than the number of pairs of main toll-road (“up” and “down”) links

Domain Instantiation — Formalisation 401

Example 94 . Domain Requirements. Instantiation Road Net, Formal Types:

2We (sometimes) omit the subscript I when it should be clear from the context what we mean.

Lect.8: Domain Science & Engineering 157 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

158

type

322 ∆I

323 NI = N′
∆ × HIL × TRN

323a N′
∆

323b TRNI = (L×L)∗ × H∗ × (L×L)∗

323c HIL = HI∗

axiom

323d ∀ nI :NI
•

323d let (n∆,hil,(exll,hl,lll)) = nI in

323d len hil = len exll = len hl = len lll + 1
323d end

We have named the “ordinary” net sort N′
∆. It is “almost” like N∆ — except that the interface hubs are also connected to

the toll-road net entry and exit links.

Domain Instantiation — Formalisation: Well-formedness 402

Example 95 . Domain Requirements. Instantiation Road Net, Well-formedness: The partial
concretisation of the net sorts, N, into NR1

requires, in addition to the length relations of the three lists of interface hubs,
entry and exit links and , some well-formedness conditions to be satisfied.

324 The toll-road intersection hubs must all have distinct
hub identifiers.

value

324. wf dist toll road isect hub ids: H∗→Bool

324. wf dist toll road isect hub ids(hl) ≡
324. len hl = card xtr his(hl)

325 The toll-road ‘up’ and ‘down’ links must all have dis-
tinct link identifiers.

value

325. wf dist toll road u d link ids: (L×L)∗→Bool

325. wf dist toll road u d link ids(lll) ≡
325. 2 × len lll = card xtr lis(lll)

403

326 The toll-road entry/exit links must all have distinct
link identifiers.

value

326. wf dist e x link ids: (L×L)∗→Bool

326. wf dist e x link ids(exll) ≡
326. 2 × len exll = card xtr lis(exll)

327 Proper net links must not designate toll-road inter-
section hubs.

value

327. wf isoltd toll road isect hubs: HI∗×H∗→NI →Bool

327. wf isoltd toll road isect hubs(hil,hl)(nI) ≡
327. let ls=xtr links(nI) in

327. let his = ∪ {obs mereo L(l)|l:L•l ∈ ls} in

327. his ∩ xtr his(hl) = {} end end

404

328 The plaza hub identifiers must designate hubs of the
‘ordinary’ net.

value

328. wf p hubs pt of ord net: HI∗→N′
∆→Bool

328. wf p hubs pt of ord net(hil)(n’∆) ≡
328. elems hil ⊆ xtr his(n′

∆)

329 The plaza hub mereologies must each,

a besides identifying at least one hub of the or-
dinary net,

b also identify the two entry/exit links with which
they are supposed to be connected.

value

329. wf p hub interf: N′
∆→Bool

329. wf p hub interf(no,hil,(exll, ,)) ≡
329. ∀ i:Nat • i ∈ inds exll ⇒
329. let h = get H(hil(i))(n′

∆) in

329. let lis = obs mereo H(h) in

329. let lis
′
= lis \ xtr lis(n

′
) in

329. lis
′
= xtr lis(exll(i)) end end end

405

330 The mereology of each toll-road intersection hub
must identify

a the entry/exit links

b and exactly the toll-road ‘up’ and ‘down’ links

c with which they are supposed to be con-
nected.

value

330. wf toll road isect hub iface: NI →Bool

330. wf toll road isect hub iface(, ,(exll,hl,lll)) ≡
330. ∀ i:Nat • i ∈ inds hl ⇒
330. obs mereo H(hl(i)) =
330a. xtr lis(exll(i)) ∪

330. case i of

330b. 1 → xtr lis(lll(1)),
330b. len hl → xtr lis(lll(len hl−1))
330b. → xtr lis(lll(i)) ∪ xtr lis(lll(i−1))
330. end

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 158 Lect.8: Domain Science & Engineering

159

406

331 The mereology of the entry/exit links must identify
exactly the

a interface hubs and the

b toll-road intersection hubs

c with which they are supposed to be con-
nected.

value

331. wf exll: (L×L)∗×HI∗×H∗→Bool

331. wf exll(exll,hil,hl) ≡
331. ∀ i:Nat • i ∈ len exll
331. let (hi,(el,xl),h) = (hil(i),exll(i),hl(i)) in

331. obs mereo L(el) = obs mereo L(xl)
331. = {hi} ∪ {uid H(h)} end

331. pre: len eell = len hil = len hl

407

332 The mereology of the toll-road ‘up’ and ‘down’ links
must

a identify exactly the toll-road intersection hubs

b with which they are supposed to be con-
nected.

value

332. wf u d links: (L×L)∗×H∗→Bool

332. wf u d links(lll,hl) ≡
332. ∀ i:Nat • i ∈ inds lll ⇒
332. let (ul,dl) = lll(i) in

332. obs mereo L(ul) = obs mereo L(dl) =
332a. uid H(hl(i)) ∪ uid H(hl(i+1)) end

332. pre: len lll = len hl+1

408

We have used additional auxiliary functions:

value

xtr his: H∗→HI-set

xtr his(hl) ≡ {uid HI(h)|h:H•h ∈ elems hl}

xtr lis: (L×L)→LI-set

xtr lis(l
′
,l
′′
) ≡ {uid LI(l

′
)}∪{uid LI(l

′′
)}

xtr lis: (L×L)∗− LI-set

xtr lis(lll) ≡
∪{xtr lis(l

′
,l
′′
)|(l

′
,l
′′
):(L×L)•(l

′
,l
′′
)∈ elems lll}

409

Summary Well-formedness Predicate
333 The well-formedness of instantiated nets is now the

conjunction of the individual well-formedness predi-
cates above.

value

333. wf instantiated net: NI → Bool

333. wf instantiated net(n′
∆,hil,(exll,hl,lll))

324. wf dist toll road isect hub ids(hl)

325. ∧ wf dist toll road u d link ids(lll)
326. ∧ wf dist e e link ids(exll)
327. ∧ wf isolated toll road isect hubs(hil,hl)(n

′
)

328. ∧ wf p hubs pt of ord net(hil)(n
′
)

329. ∧ wf p hub interf(n′
∆,hil,(exll, ,))

330. ∧ wf toll road isect hub iface(, ,(exll,hl,lll))
331. ∧ wf exll(exll,hil,hl)
332. ∧ wf u d links(lll,hl)

Domain Instantiation — Abstraction 410

Example 96 . Domain Requirements. Instantiation Road Net, Abstraction: Domain instantiation
has refined an abstract definition of net sorts, n∆:N∆, into a partially concrete definition of nets, nI :NI . We need to show
the refinement relation:

• abstraction(nI) = n∆.
411

value

334 abstraction: NI → N∆

335 abstraction(n′
∆,hil,(exll,hl,lll)) ≡

336 let n∆:N∆
•

336 let hs = obs part HS∆(obs part HA∆(n′
∆)),

336 ls = obs part LS∆(obs part LA∆(n′
∆)),

336 ths = elems hl,
336 eells = xtr links(eell), llls = xtr links(lll) in

337 hs∪ths=obs part HS∆(obs part HA∆(n∆))
338 ∧ ls∪eells∪llls=obs part LS∆(obs part LA∆(n∆))
339 n∆ end end

334 The abstraction function takes a concrete net, nI :NI ,
and yields an abstract net, n∆:N∆.

335 The abstraction function doubly decomposes its argument
into constituent lists and sub-lists.

336 There is postulated an abstract net, n∆:N∆, such that

337 the hubs of the concrete net and toll-road equals those of
the abstract net, and

338 the links of the concrete net and toll-road equals those of
the abstract net.

339 And that abstract net, n∆:N∆, is postulated to be an ab-
straction of the concrete net.

Lect.8: Domain Science & Engineering 159 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

160

An Instantiation Operator 413

Domain instantiation take a requirements prescription, RP , and yields a more concrete requirements
prescription RI .

• type instantiation: RP → RI

Semantically RP denotes a possibly infinite set of meanings, say RP, RI denotes a possibly infinite set

of meanings, say RI and such that some relation RI⊑RP is satisfied.

7.2.3 Domain Determination 414

Definition 39 . Determination: By domain determination we mean a refinement of the partial

domain requirements prescription, resulting from the instantiation step, in which the refinements aim at

rendering the endurants: parts, materials and components, as well as the perdurants: functions, events

and behaviours of the partial domain requirements prescription less non-determinate, more determinate.

415

Determinations usually render these concepts less general. That is, the value space of endurants that are

made more determinate is “smaller”, contains fewer values, as compared to the endurants before determi-

nation has been “applied”.

Domain Determination: Example

We show an example of ‘domain determination’. It is expressed sôlely in terms of axioms over the concrete

toll-road net type.416

Example 97 . Domain Requirements. Determination Toll-roads:

All Toll-road Links are One-way Links We fo-
cus only on the toll-road net. We single out only two ’deter-
minations’:

340 The entry/exit and toll-road links

a are always all one way links,

b as indicated by the arrows of Fig. 7.1 on
Page 157,

c such that each pair allows traffic in opposite
directions.

value

340. opposite traffics: (L×L)∗ × (L×L)∗ → Bool

340. opposite traffics(exll,lll) ≡
340. ∀ (lt,lf):(L×L) • (lt,lf) ∈ elems exll̂ lll ⇒
340a. let (ltσ ,lfσ) = (attr LΣ(lt),attr LΣ(lf)) in

340a′. attr LΩ(lt)={ltσ}∧attr LΩ(ft)={ftσ}
340a′′. ∧ card ltσ = 1 = card lfσ
340. ∧ let ({(hi,hi

′
)},{(hi

′′
,hi

′′′
)}) = (ltσ ,lfσ) in

340c. hi=hi
′′′
∧ hi

′
=hi

′′

340. end end

Predicates 340a′ . and 340a′′ . express the same property.

418

All Toll-road Hubs are Free-flow

341 The hub state spaces are singleton sets of the toll-
road hub states which always allow exactly these
(and only these) crossings:

a from entry links back to the paired exit links,

b from entry links to emanating toll-road links,

c from incident toll-road links to exit links, and

d from incident toll-road link to emanating toll-
road links.

value

341. free flow toll road hubs: (L×L)∗×(L×L)∗→Bool

341. free flow toll road hubs(exl,ll) ≡
341. ∀ i:Nat•i ∈ inds hl ⇒

341. attr HΣ(hl(i)) =
341a. hσ ex ls(exl(i))
341b. ∪ hσ et ls(exl(i),(i,ll))
341c. ∪ hσ tx ls(exl(i),(i,ll))
341d. ∪ hσ tt ls(i,ll)

value

341a. hσ ex ls: (L×L)→LΣ
341a. hσ ex ls(e,x) ≡ {(uid LI(e),uid LI(x))}

value

341b. hσ et ls: (L×L)×(Nat×(em:L×in:L)∗)→LΣ

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 160 Lect.8: Domain Science & Engineering

161

341b. hσ et ls((e,),(i,ll)) ≡
341b. case i of

341b. 2 → {(uid LI(e),uid LI(em(ll(1))))},
341b. len ll+1 → {(uid LI(e),uid LI(em(ll(len ll))))},
341b. → {(uid LI(e),uid LI(em(ll(i−1)))),
341b. (uid LI(e),uid LI(em(ll(i))))}
341b. end

The em and in in the toll-road link list (em:L×in:L)∗ designate
selectors for emanating, respectively incident links.

value

341c. hσ tx ls: (L×L)×(Nat×(em:L×in:L)∗)→LΣ
341c. hσ tx ls((,x),(i,ll)) ≡
341c. case i of

341c. 2 → {(uid LI(in(ll(1))),uid LI(x))},

341c. len ll+1 → {(uid LI(in(ll(len ll))),uid LI(x))},
341c. → {(uid LI(in(ll(i−1))),uid LI(x)),
341c. (uid LI(in(ll(i))),uid LI(x))}
341c. end

value

341d. hσ tt ls: Nat×(em:L×in:L)∗→LΣ
341d. hσ tt ls(i,ll) ≡
341d. case i of

341d. 2 → {(uid LI(in(ll(1))),uid LI(em(ll(1))))},
341d. len ll+1 → {(uid LI(in(ll(len ll))),uid LI(em(ll(len ll))))},
341d. → {(uid LI(in(ll(i−1))),uid LI(em(ll(i−1)))),
341d. (uid LI(in(ll(i))),uid LI(em(ll(i))))}
341d. end

A Domain Determination Operator 423

Domain determination take a requirements description, RI , and yields a more deterministic require-
ments prescription, RD .

• type instantiation: RI → RD

Semantically RI denotes a possibly infinite set of meanings, say RI, RD denotes a possibly infinite set of

meanings, say RD and such that some relation RI⊑RD is satisfied.

7.2.4 Domain Extension 424

Definition 40 . Extension: By domain extension we understand the introduction of endurants and

perdurants that were not feasible in the original domain, but for which, with computing and communication,

and with new, emerging technologies, for example, sensors, actuators and satellites, there is the possibility

of feasible implementations, hence requirement, that what is introduced becomes3 part of the unfolding

requirements prescription

The Core Requirements Example: Domain Extension 425

Example 98 . Domain Requirements. Extension Vehicles: Parts, Properties and Channels:

342 There is a domain, δE :∆E , which contains

343 a fleet, fE :FE ,

344 of a set, vsE :VSE , of

345 extended vehicles, vE :VE — their extension amount-
ing to

a a dynamic, active and biddable attribute4,
whose value, ti-gpos:TiGpos, at any time, re-
flects that vehicle’s time-stamped global posi-
tions5

b The vehicle’s GNSS receiver calculates its lo-
cal position, lpos:LPOS, based on these sig-
nals.

c Vehicles access these external attributes via
the external attribute channel, attr TiGPos ch,
cf. Item 100 on Page 56 Sect. 1.3.7 (“Access
to External Attribute Values”).

d The vehicle can, on its own volition, offer
the timed local position, ti-lpos:TiLPos to the
price calculator, cE :CE along a vehicles-to-
calculator channel, v c ch.

3become or becomes ?
4See Sect. 1.2.9 Page 40.
5We refer to literature, [71], on GNSS, global navigation satellite systems. The local vehicle position, lpos:LPos, is deter-

mined from three to four time-stamped signals received from a like number of GNSS satellites.

Lect.9: Domain Science & Engineering 161 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

162

426

type

342. ∆E

343. FE

344. VSE = VE -set

345. VE

345a. TiGPos = T × GPOS
345a. TiLPos = T × LPOS
345b. GPOS, LPOS
value

343. obs part FE : ∆E → FE

344. obs part VSE : FE → VSE

344. vs:obs part VSE (FE)
channel

345c. {attr TiGPos ch[vi]|viLVI•vi ∈ xtr VIs(vs)}: TiGPos
345d. {v c ch[vi,ci]
345d. | vi:VI,ci:CI•vi∈vis∧ci=uid C(c)}:(VI×TiLPos)
value

345a. attr TiGPos ch[vi]?
345b. loc pos: GPOS → LPOS

where vis:VI-set is the set unique vehicle identifiers of all vehicles of the requirements domain fleet, f:FRE
. We define two427

auxiliary functions,

346 xtr vs, which given a domain, or a fleet, extracts its
set of vehicles, and

347 xtr vis which given a set of vehicles generates their
unique identifiers.

value

346. xtr vs: (∆E |FE |VSE) → VE -set

346. xtr vs(arg) ≡
346. is ∆E (arg) → obs part VSE (obs part FE (arg)),
346. is FE (arg) → obs part VSE (arg),
346. is VSE (arg) → arg
347. xtr vis: (∆E |FE |VSE) → VI-set

347. xtr vis(arg) ≡ {uid VI(v)|v ∈ xtr vs(arg)}

428

Example 99 . Domain Requirements. Extension Toll-road Net: Parts, Properties and Chan-
nels: We extend the domain with toll-gates for vehicles entering and exiting the toll-road entry and exit links. Figure 7.2
illustrates the idea of gates.

exit sensor
entry sensor

toll barrier

Vehicle

Vehicle Identification

linklink link link

Figure 7.2: A toll plaza gate

429
Figure 7.2 is intended to illustrate a vehicle entering (or exiting) a toll-road entry link. The toll-gate is equipped with three
sensors: an entry sensor, a vehicle identification sensor and an exit sensor. The entry sensor serves to prepare the
vehicle identification sensor. The exit sensor serves to prepare the gate for closing when a vehicle has passed. The
vehicle identification sensor identifies the vehicle and “delivers” a pair: the current time and the vehicle identifier. Once
the vehicle identification sensor has identified a vehicle the gate opens.430

348 There is the domain, δ :∆E ,

349 which contains the extended net, n:NE , with the net
extension amounting to the toll-road net, TRNE ,

350 that is, the instantiated toll-road net, trn:TRNI , is
extended, into trn:TRNE , with entry, eg:EG, and exit,
xg:XG, toll-gates.

From entry- and exit-gates we can observe

a their unique identifier and their mereology:

being paired with the entry-, respectively exit
link and the calculator (by their unique identi-
fiers); further

b a pair of gate enter and leave sensors
modeled as external attribute channels,
(ges:ES,gls:XS), and

c a time-stamped vehicle identity sensor mod-
eled as external attribute channels.

431

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 162 Lect.9: Domain Science & Engineering

163

type

348 ∆E

349 NE

350 TRNE = (EG×XG)∗ × TRNI

350a GI
value

348 obs part NE : ∆E → NE

349 obs part TRNE : NE → TRNE

350a uid G: (EG|XG) → GI
350a obs mereo G: (EG|XG) → (LI×CI)
channel

350b {attr enter ch[gi]|gi:GI•...}
′′
enter

′′

350b {attr leave ch[gi]|gi:GI•...}
′′
leave

′′

350c {attr passing ch[gi]|gi:GI•...} TIVI
type

350c TIVI = T × VI

432

We define some auxiliary functions over toll-road nets,
trn:TRNE :

351 xtr eGℓ extracts the ℓist of entry gates,

352 xtr xGℓ extracts the ℓist of exit gates,

353 xtr eGIds extracts the set of entry gate identifiers,

354 xtr xGIds extracts the set of exit gate identifiers,

355 xtr Gs extracts the set of all gates, and

356 xtr GIds extracts the set of all gate identifiers.

433

value

351 xtr eGℓ: TRNE → EG∗

351 xtr eGℓ(pgl,) ≡
351 {eg|(eg,xg):(EG,XG)•(eg,xg)∈ elems pgl}
352 xtr xGℓ: TRNE → XG∗

352 xtr xGℓ(pgl,) ≡
352 {xg|(eg,xg):(EG,XG)•(eg,xg)∈ elems pgl}
353 xtr eGIds: TRNE → GI-set

353 xtr eGIds(pgl,) ≡
353 {uid GI(g)|g:EG•g ∈ xtr eGs(pgl,)}

354 xtr xGIds: TRNE → GI-set

354 xtr xGIds(pgl,) ≡
354 {uid GI(g)|g:EG•g ∈ xtr xGs(pgl,)}
355 xtr Gs: TRNE → G-set

355 xtr Gs(pgl,) ≡
355 xtr eGs(pgl,) ∪ xtr xGs(pgl,)
356 xtr GIds: TRNE → GI-set

356 xtr GIds(pgl,) ≡
356 xtr eGIds(pgl,) ∪ xtr xGIds(pgl,)

434

357 A well-formedness condition expresses

a that there are as many entry end exit gate
pairs as there are toll-plazas,

b that all gates are uniquely identified, and

c that each entry [exit] gate is paired with an en-
try [exit] link and has that link’s unique identi-
fier as one element of its mereology, the other

elements being the calculator identifier and
the vehicle identifiers.

The well-formedness relies on awareness of

358 the unique identifier, ci:CI, of the road pricing calcu-
lator, c:C, and

359 the unique identifiers, vis:VI-set, of the fleet vehicles.

435

value

358 ci:CI
359 vis:VI-set

axiom

357 ∀ n:NR3
, trn:TRNR3

•

357 let (exgl,(exl,hl,lll)) = obs part TRNR3
(n) in

357a len exgl = len exl = len hl = len lll + 1
357b ∧ card xtr GIds(exgl) = 2 ∗ len exgl
357c ∧ ∀ i:Nat•i ∈ inds exgl•

357c let ((eg,xg),(el,xl)) = (exgl(i),exl(i)) in

357c obs mereo G(eg) = (uid U(el),ci,vis)
357c ∧ obs mereo G(xg) = (uid U(xl),ci,vis) end end

436

Example 100 . Domain Requirements. Extension Parts, Properties and Channels:

360 The road pricing calculator repeatedly receives

a information, (vi,(τ ,pos)):VITIPOS,

b sent by vehicles as to their identify and time-
stamped position

c over a channel, v c ch indexed by the c:CE

and the vehicle identities.

361 The road pricing calculator has a number of at-
tributes:

a a traffic map, trm:TRM, which, for each vehi-
cle inside the toll-road net, records a chrono-
logically ordered list of each vehicle’s timed
position, (τ ,vp), and

b a (total) road location function, vplf:VPLF.

i The vehicle position location f unction,
vplf:VPLF, is subject to another function,
locate VPos, which, given a local posi-
tion, lpos:LPos, yields the vehicle po-
sition designated by the GNSS-provided
position, or yields the response that the

Lect.9: Domain Science & Engineering 163 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

164

provided position is off the toll-road net6.

ii This result is used by the road-pricing
calculator to conditionally

A either update the traffic map,
trm:TRM, recording also the rele-

vant time,

B or reset that vehicle’s traffic record-
ing while send a bill for the just com-
pleted journey.

437

type

360a VITIPos = VI × (T × LPos)
value

360a ... v c ch[ci,vi] ? ...
360b ... v c ch[ci,vi] ! (vi,(τ ,p)) ...
channel

360c {v c ch[ci,vi]|vi:VI•vi ∈ vis}:VITIPos

type

361a TRM = VI →m (T × VPos)∗

361b VPLF = LPos → VPos |
′′
off_TRN

′′

value

361(b)i locate LH: LPos×RLF → (VPos|
′′
off_TRN

′′
)

361(b)iiA update TRM: VI×(T×VPos)→TRM→TRM
361(b)iiB reset TRM: VI→TRM→TRM

438

Example 101 . Domain Requirements. Extension Main Sorts:

362 The main sorts of the road-pricing domain, ∆E , are

a the net, projected, instantiated (to include the
specific toll-road net), made more determi-
nate and now extended, NE , with toll-gates;

b the fleet, FE ,

c of sets, VS, of extended vehicles, VE ;

d the extended toll-road net, TRNE , extending
the instantiated toll-road net, TRNI , with toll-
gates; and

e the road pricing calculator, CE .

439

type

362. ∆E

362a. NE

362b. FE

362c. VSE = VE -set

362d. TRNE = (EG×XG)∗ × TRNI

362e. CE

value

362a. obs part NE : ∆ → NE

362b. obs part FE : ∆ → FE

362c. obs part VSE : ∆ → VSE

362d. obs part TRNE : NE → TRNE

362e. obs part CE : ∆ → CE

440

Example 102 . Domain Requirements. Extension Global Values: We exemplify a road-pricing
system behaviour, in Example 103, based on the following global values.

363 There is a given domain, δE :∆E ;

364 there is the net, nE :NE , of that domain;

365 there is toll-road net, trnE :TRNE , of that net;

366 there is a set, egsE :EGE -set, of entry gates;

367 there is a set, xgsE :XGE -set, of exit gates;

368 there is a set, gisE :GIE -set, ofgate identifiers;

369 there is a set, vsE :VE -set, of vehicles;

370 there is a set, visE :VIE -set, of vehicle identifiers;

371 there is the road-pricing calculator, cE :CE and

372 there is its unique identifier, ciE :CI.

441

value

363. δE :∆E

364. nE :NE = obs part NE (δE)
365. trnE :TRNE = obs part TRNE (nE)
366. egsE :EG-set = xtr egs(trnE)
367. xgsE :XG-set = xtr xgs(trnE)

368. gisE :XG-set = xtr gis(trnE)
369. vsE :VE -set = obs part VS(obs part FE (δE))
370. visE :VI-set = {uid VI(vE)|vE :VE

•vE ∈ vsE }
371. cE :CE = obs part CE (δE)
372. ciE :CIE = uid CI(cE)

442

Example 103 . Domain Requirements. Extension System Behaviour: We shall model the be-
haviour of the road-pricing system as follows: we shall only model behaviours related to atomic parts; we shall not model
behaviours of hubs and links; thus we shall model only the set of behaviours of vehicles, veh, the set of behaviours of
toll-gates, gate, and the behaviour of the road-pricing calculator, calc.443

6The vplf:VPLF function is constructed from awareness of the topology extended net, nE :NE , including the mereology and the
geodetic and cadestral attributes of links and hubs.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 164 Lect.9: Domain Science & Engineering

165

373 The road-pricing system behaviour, sys, is ex-
pressed as

a the parallel, ‖, (distributed) composition of the
behaviours of all vehicles, with the parallel
composition of

b the parallel (likewise distributed) composition

of the behaviours of all entry gates, with the
parallel composition of

c the parallel (likewise distributed) composition
of the behaviours of all exit gates, with the par-
allel composition of

d the behaviour of the road-pricing calculator,

444

value

373. sys: Unit → Unit

373. sys() ≡
373a. ‖ {veh(uid V(v),(ci,gis),UTiGPos)|v:V•v ∈ vsE }
373b. ‖ ‖ {gate(

′′
Entry

′′
)(uid EG(eg),obs mereo G(eg),(Uenter,Upassing,Uleave))|eg:EG•eg ∈ egsE }

373c. ‖ ‖ {gate(
′′
Exit

′′
)(uid EG(xg),obs mereo G(xg),(Uenter,Upassing,Uleave))|xg:XG•xg ∈ xgsE }

373d. ‖ calc(ciE ,(visE ,gisE))(rlf)(trm)

445

Example 104 . Domain Requirements. Extension Vehicle Behaviour: We refer to the vehicle
behaviour, in the domain, described in Chapter 6’s The Road Traffic System Behaviour Pages 148–149.

374 Instead of moving around by explicitly expressed in-
ternal non-determinism7 vehicles move around by
unstated internal non-determinism and instead re-
ceive their current position from the global position-
ing subsystem.

a At each moment the vehicle receives its time-

stamped local position, tilpos:TiLPos,

b which it then proceeds to communicate, with
its vehicle identification, (vi,tilpos), to the road
pricing subsystem —

c whereupon it resumes its vehicle behaviour.

446

value

374. veh: vi:VI×(ci:CI×gis:GI-set)×UTiGPos →
374. out v c ch[ci,vi] Unit

374. veh(vi,(ci,gis),attr TiGPos ch[vi]) ≡
374a. let (τ ,gpos) = attr TiGPos ch[vi]? in

374a. let lpos = loc pos(gpos) in

374b. v c ch[ci,vi] ! (vi,(τ ,lpos)) ;
374c. veh(vi,(ci,gis),attr TiGPos ch[vi]) end end

374. pre vi ∈ visE ∧ ci = ciE ∧ gis = gisE

447

Example 105 . Domain Requirements. Extension Gate Behaviour: The entry and the exit gates
have “vehicle enter”, “vehicle leave” and “vehicle time and identification” sensors. The following assumption can now be
made: during the time interval between a gate’s vehicle “enter” sensor having first sensed a vehicle entering that gate
and that gate’s “leave” sensor having last sensed that vehicle leaving that gate that gate’s “vehicle time and identification”
sensor registers the time when the vehicle is entering the gate and that vehicle’s unique identification. We sketch the 448

toll-gate behaviour:

375 We parameterise the toll-gate behaviour as either
an entry or an exit gate.

376 Toll-gates

a inform the calculator of place (i.e., link) and
time of entering and exiting of identified vehi-
cles

b over an appropriate array of channels.

377 Toll-gates operate autonomously and cyclically.

a The attr Enter event “triggers” the behaviour
specified in formula line Item 377b–377d.

b The time-of-entry and the identity of the enter-
ing (or exiting) vehicle is sensed via external
attribute channel inputs.

c Then the road pricing calculator is informed
of time-of-entry and of vehicle vi entering (or
exiting) link li.

d And finally, after that vehicle has left the en-
try or exit gate that toll-gate’s behaviour is re-
sumed.

7We refer to Items 315b, 315c on Page 148 and 316b, 316(c)ii, 317 on Page 149

Lect.9: Domain Science & Engineering 165 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

166

449
The toll-gate behaviour, gate:

type

375 EE = ”Enter” | ”Exit”
376a GCM = EE × (T × VI × LI)
channel

376b {g c ch[uid GI(g),ci]|g:G,ci:CI•g ∈ gates(trn)} GCM
value

377 gate: ee:EE×gi:GI×(ci:CI×VI-set×LI)×(Uenter×Upassing×Uleave) → out g c ch[gi,ci] Unit

377 gate(ee,gi,(ci,vis,li),ea:(attr enter ch[gi],attr passing ch[gi],attr leave ch[gi])) ≡
377a attr enter ch[gi] ? ;
377b let (τ ,vi) = attr passing ch[gi] ? in assert vi ∈ vis
377c g c ch[gi,ci] ! (ee,(τ ,(vi,li)));
377d attr leave ch[gi] ?
377d gate(ee)(gi,(ci,vis,li),ea)
377 end

377 pre ci = ciE ∧ vis = visE ∧ li ∈ lisE

450

Example 106 . Domain Requirements. Extension Calculator Behaviour:

378 The road-pricing calculator alternates between (of-
fering to accept communication with)

a either any vehicle

b or any toll-gate.

378. calc: ci:CI×(vis:VI-set×gis:GI-set)→RLF→TRM→
378a. in {v c ch[ci,vi]|vi:VI•vi ∈ vis},
378b. {g c ch[ci,gi]|gi:GI•gi ∈ gis} Unit

378. calc(ci,(vis,gis))(rlf)(trm) ≡

378a. react to vehicles(ci,(vis,gis))(rlf)(trm)
378. ⌈⌉⌊⌋
378b. react to gates(ci,(vis,gis))(rlf)(trm)
378. pre ci = ciE ∧ vis = visE ∧ gis = gisE

451

379 If the communication is from a vehicle inside the toll-
road net

a then its toll-road net position, vp, is found from
the road location function, rlf,

b and the calculator resumes its work with the
traffic map, trm, suitable updated,

c otherwise the calculator resumes its work with
no changes.

378a. react to vehicles(ci,(vis,gis))(rlf)(trm) ≡
378a. let (vi,(τ ,lpos)) =
378a. ⌈⌉⌊⌋{v c ch[ci,vi]|vi:VI•vi∈ vis} in

379. if vi ∈ dom trm
379a. then let vp = rlf(lpos) in

379b. calc(ci,(vis,gis))(rlf)(trm†[vi 7→trm̂〈(τ ,vp)〉]) end

379c. else calc(ci,(vis,gis))(rlf)(trm) end end

452

380 If the communication is from a gate,

a then that gate is either an entry gate or an exit
gate;

b if it is an entry gate

c then the calculator resumes its work with
the vehicle (that passed the entry gate) now
recorded, afresh, in the traffic map, trm.

d Else it is an exit gate and

e the calculator concludes that the vehicle has
ended its to-be-paid for journey inside the toll-
road net, and hence to be billed;

f then the calculator resumes its work with the
vehicle (that passed the exit gate) now re-
moved from the traffic map, trm.

378b. react to gates(ci,(vis,gis))(rlf)(trm) ≡
378b. let (ee,(τ ,(vi,li))) =
378b. ⌈⌉⌊⌋{g c ch[ci,gi]|gi:GI•gi∈ gis} in

380a. case ee of

380b.
′′
Enter

′′
→

380c. calc(ci,(vis,gis))(rlf)(trm∪[vi 7→〈(τ ,(li,0))〉]),
380d.

′′
Exit

′′
→

380e. billing(vi,trm(vi)̂ 〈(τ ,(li,1))〉);
380f. calc(ci,(vis,gis))(rlf)(trm\{vi}) end end

• • •

We have made relevant external attributes explicit parameters of their (corresponding part) processes. We

refer to Sect. 1.3.7.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 166 Lect.9: Domain Science & Engineering

167

A Domain Extension Operator 454

Domain extension takes a (more-or-less) deterministic requirements description, RD , and yields an ex-
tended requirements prescription, RE , which extends the domain description, D , and, “at the same

time”, “extends” the requirements prescription, RD ,

• type extension: RD → RE

Semantically RD denotes a possibly infinite set of meanings, say RD, and RE denotes a possibly infinite

set of meanings, say RE, but now the relation RE⊑RD is not necessarily satisfied — but instead some

conservative extension relation RE⊒DD is satisfied.

7.2.5 Requirements Fitting 455

Often a domain being described “fits” onto, is “adjacent” to, “interacts” in some areas with, another domain:

transportation with logistics, health-care with insurance, banking with securities trading and/or

insurance, and so on. The issue of requirements fitting arises when two or more software development 456

projects are based on what appears to be the same domain. The problem then is to harmonise the two or

more software development projects by harmonising, if not too late, their requirements developments.

Some Definitions 457

We thus assume that there are n domain requirements developments, dr1
, dr2

, . . . , drn , being considered, and

that these pertain to the same domain — and can hence be assumed covered by a same domain description.

458

Definition 41 . Requirements Fitting: By requirements fitting we mean a harmonisation of

n > 1 domain requirements that have overlapping (shared) not always consistent parts and which results

in n partial domain requirements’, pdr1
, pdr2

, . . . , pdrn
, and m shared domain requirements, sdr1

, sdr2
,

. . . , sdrm
, that “fit into” two or more of the partial domain requirements The above definition pertains to

the result of ‘fitting’. The next definition pertains to the act, or process, of ‘fitting’.
459

Definition 42 . Requirements Harmonisation: By requirements harmonisation we mean a

number of alternative and/or co-ordinated prescription actions, one set for each of the domain requirements

actions: Projection, Instantiation, Determination and Extension. They are – we assume n separate 460

software product requirements: Projection: If the n product requirements do not have the same projections,

then identify a common projection which they all share, and refer to it is the common projection. Then

develop, for each of the n product requirements, if required, a specific projection of the common one.

Let there be m such specific projections, m ≤ n. Instantiation: First instantiate the common projection, 461

if any instantiation is needed. Then for each of the m specific projections instantiate these, if required.

Determination: Likewise, if required, “perform” “determination” of the possibly instantiated common

projection, and, similarly, if required, “perform” “determination” of the up to m possibly instantiated

projections. Extension: Finally “perform extension” likewise: First, if required, of the common projection 462

(etc.), then, if required, on the up m specific projections (etc.). These harmonization developments may

possibly interact and may need to be iterated

By a partial domain requirements we mean a domain requirements which is short of (that is, is missing)

some prescription parts: text and formula By a shared domain requirements we mean a domain

requirements By requirements fitting m shared domain requirements texts, sdrs, into n partial domain 463

requirements we mean that there is for each partial domain requirements, pdri, an identified subset of sdrs

(could be all of sdrs), ssdrsi, such that textually conjoining ssdrsi to pdri, i.e., ssdrsi⊕ pdri can be claimed

to yield the “original” dri
, that is, M (ssdrsi ⊕ pdri) ⊆ M (dri

), where M is a suitable meaning function

over prescriptions

Lect.9: Domain Science & Engineering 167 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

168

Requirements Fitting Procedure — A Sketch 464

Requirements fitting consists primarily of a pragmatically determined sequence of analytic and synthetic

(‘fitting’) steps. It is first decided which n domain requirements documents to fit. Then a ‘manual’ analysis

is made of the selected, n domain requirements. During this analysis tentative shared domain requirements

are identified. It is then decided which m shared domain requirements to single out. This decision results

in a tentative construction of n partial domain requirements. An analysis is made of the tentative partial

and shared domain requirements. A decision is then made whether to accept the resulting documents or to

iterate the steps above.

Requirements Fitting – An Example 465

Example 107 . Domain Requirements. Fitting A Sketch: We postulate two domain requirements: We
have outlined a domain requirements development for software support for a road-pricing system. We have earlier hinted
at domain operations related to insertion of new and removal of existing links and hubs. We can therefore postulate that
there are two domain requirements developments, both based on the transport domain:

• one, drtoll
, for a road-pricing system, and,

• another, drmaint.
, for a toll-road link and hub building and maintenance system

monitoring and controlling link and hub quality and for development.
466

The fitting procedure now identifies the shared awareness by both drtoll
and drmaint.

of nets (N), hubs (H) and links (L).

We conclude from this that we can single out a common requirements for software that manages net, hubs and links.
Such software requirements basically amounts to requirements for a database system. A suitable such system, say a
relational database management system, DBrel , may already be available with the customer.467

In any case, where there before were two requirements (drtoll
,drmaint.

) there are now four: (i) d′
rtoll

, a modification

of drtoll
which omits the description sections pertaining to the net; (ii) d′

rmaint.
, a modification of drmaint.

which likewise

omits the description sections pertaining to the net; (iii) drnet
, which contains what was basically omitted in d′

rtoll
and

d′
rmaint.

; and (iv) drdb:i/f
(db:i/f for database interface) which prescribes a mapping between type names of drnet

and

relation and attribute names of DBrel

Much more can and should be said, but this suffices as an example in a software engineering methodology

paper.

7.2.6 Domain Requirements Consolidation 468

After projection, instantiation, determination, extension and fitting, it is time to review, consolidate and

possibly restructure (including re-specify) the domain requirements prescription before the next stage of

requirements development.

7.3 Interface Requirements 469

By an interface requirements we mean a requirements prescription which refines and extends the

domain requirements by considering those requirements of the domain requirements whose endurants

(parts, materials) and perdurants (actions, events and behaviours) are “shared” between the domain and

the machine (being requirements prescribed)

7.3.1 Shared Phenomena 470

By sharing we mean (a) that an endurant is represented both in the domain and “inside” the machine,

and that its machine representation must at suitable times reflect its state in the domain; and/or (b) that

an action requires a sequence of several “on-line” interactions between the machine (being requirements

prescribed) and the domain, usually a person or another machine; and/or (c) that an event arises either in471

the domain, that is, in the environment of the machine, or in the machine, and need be communicated to the

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 168 Lect.10: Domain Science & Engineering

169

machine, respectively to the environment; and/or (d) that a behaviour is manifested both by actions and

events of the domain and by actions and events of the machine So a systematic reading of the domain 472

requirements shall result in an identification of all shared endurants, parts, materials and components;

and perdurants actions, events and behaviours. Each such shared phenomenon shall then be individually 473

dealt with: endurant sharing shall lead to interface requirements for data initialisation and refreshment;

action sharing shall lead to interface requirements for interactive dialogues between the machine and its

environment; event sharing shall lead to interface requirements for how such event are communicated

between the environment of the machine and the machine; and behaviour sharing shall lead to interface

requirements for action and event dialogues between the machine and its environment.

• • •

We shall now illustrate these domain interface requirements development steps with respect to our ongoing

example.

7.3.2 Shared Endurants 474

We “split” our interface requirements development into two separate steps: the development of drnet
(the

common domain requirements for the shared hubs and links), and the co-development of drdb:i/f
(the

common domain requirements for the interface between drnet
and DBrel — under the assumption of an

available relational database system DBrel) 475

Example 108 . Interface Requirements. Shared Endurants: The main shared endurants are the
net (hubs, links) and the vehicles. As domain endurants hubs and links undergo changes, all the time, with respect to
the values of several attributes: length, cadestral information, names, wear and tear (where-ever applicable), last/next
scheduled maintenance (where-ever applicable), state and state space, and many others. Similarly for vehicles: their 476

position, velocity and acceleration, and many other attributes. When planning the common domain requirements for
the net, i.e., the hubs and links, we enlarge our scope of requirements concerns beyond the two so far treated (drtoll

,

drmaint.
) in order to make sure that the shared relational database of nets, their hubs and links, may be useful beyond

those requirements. We then come up with something like hubs and links are to be represented as tuples of relations; 477

each net will be represented by a pair of relations a hubs relation and a links relation; each hub and each link may or will
be represented by several tuples; etcetera. In this database modeling effort it must be secured that “standard” operations
on nets, hubs and links can be supported by the chosen relational database system DBrel

Data Initialisation 478

As part of drnet one must prescribe data initialisation, that is provision for an interactive user interface

dialogue with a set of proper display screens, one for establishing net, hub or link attributes names and

their types, and, for example, two for the input of hub and link attribute values. Interaction prompts may

be prescribed: next input, on-line vetting and display of evolving net, etc. These and many other aspects

may therefore need prescriptions. Essentially these prescriptions concretise the insert and remove link and

hub actions. 479

Example 109 . Interface Requirements. Shared Endurant Initialisation: The domain is that
of the road net, n:N, say of Chapter 6 — see also Example 108 By ‘shared road net initialisation’ we mean the “ab
initio” establishment, “from scratch” of a data base recording the properties of all links, l:L, and hubs, h:H, their unique
identifications, uid L(l) and uid H(h), their mereologies, obs mereo L(l) and obs mereo H(h) , and the initial values of
all their attributes, attributes(l) and attributes(h). 480

381 There are rl and rh “recorders” recording link, respectively hub properties with each recorder having a unique
identity,

382 Each recorder is charged with a set of links or a set of hubs according to some partitioning of all such.

383 The recorders inform a central data base, net db, of their recordings:

a (ri,nol,(u j ,m j ,attrs j)) where

b ri is the identity of the recorder,

Lect.10: Domain Science & Engineering 169 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

170

c nol is either link or hub,

d u j = uid L(l) or uid H(h) for some link or hub,

e m j = obs mereo L(l) or obs mereo H(h) for that link or hub and

f attrs j = attributes(l) or attributes(h) for that link or hub.
481

type

381. RI
value

381. rl,rh:NAT axiom rl>0 ∧ rh>0
type

383a. M = RI×
′′
link

′′
×LNK | RI×

′′
hub

′′
×HUB

383a. LNK = LI × HI-set × LATTRS
383a. HUB = HI × LI-set × HATTRS

482

value

382. partitioning: L-set → Nat → (L-set)∗

382. | H-set → Nat → (H-set)∗

382. partitioning(s)(r) as sl
382. post: len sl = r
382. ∧ ∪ elems sl = s
382. ∧ ∀ si,sj:(L-set|H-set) •

382. si 6={}
382. ∧ sj 6={}
382. ∧ {si,sj}⊆elems ss ⇒ si ∩ sj = {}

483

384 The rl + rh recorder behaviours interact with the one net db behaviour

channel

384. r db: RI×(LNK|HUB)
value

384. LNK recorder: RI → L-set → out r db Unit

384. HUB−recorder: RI → H-set → out r db Unit

384. net db: Unit → in r db Unit

484

385 The data base behaviour, net db, offers to receive messages from the link an hub recorders.

386 And the data base behaviour, net db, deposits these messages in respective variables.

387 Initially there is a net, n : N,

388 from which is observed its links and hubs.

389 These sets are partitioned into rl , respectively rh length lists of non-empty links and hubs.

390 The ab-initio data initialisation behaviour, ab initio data, is then the parallel composition of link recorder, hub recorder and
data base behaviours with link and hub recorder being allotted appropriate link, respectively hub sets.

391 We construct, for technical reasons, as the reader will soon see, disjoint lists of link, respectively hub recorder identities.
485

value

385. net db:
variable

386. lnk db: (RI×LNK)-set

386. hub db: (RI×HUB)-set

value

387. n:N
388. ls:L-set = obs Ls(obs LS(n))
388. hs:H-set = obs Hs(obs HS(n))
389. lsl:(L-set)∗ = partition(ls)(rl)
389. lhl:(H-set)∗ = partition(hs)(rh)
391. rill:RI∗ axiom len rill = rl = card elems rill
391. rihl:RI∗ axiom len rihl = rh = card elems rihl

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 170 Lect.10: Domain Science & Engineering

171

486

390. ab initio data: Unit → Unit

390. ab initio data() ≡
390. ‖ {lnk rec(rill[i])(lsl[i])|i:Nat•1≤i≤rl}
390. ‖ {hub rec(rihl[i])(lhl[i])|i:Nat•1≤i≤rh}
390. ‖ net db()

487

392 The link and the hub recorders are near-identical behaviours.

a They both revolve around an imperatively stated for all ... do ... end. The selected link (or hub) is inspected and the
“data” for the data base is prepared from

b the unique identifier,

c the mereology, and

d the attributes.

e These “data” are sent, as a message, prefixed the senders identity, to the data base behaviour.

f We presently leave the . . . unexplained.
488

value

384. link rec: RI → L-set → Unit

392. link rec(ri,ls) ≡
392a. for ∀ l:L•l ∈ ls do uid L(l)
392b. let lnk = (uid L(l),
392c. obs mereo L(l),
392d. attributes(l)) in

392e. rdb ! (ri,
′′
link

′′
,lnk);

392f. ... end

392a. end

384. hub rec: RI × H-set → Unit

392. hub rec(ri,hs) ≡
392a. for ∀ h:H•h ∈ hs do uid H(h)
392b. let hub = (uid L(h),
392c. obs mereo H(h),
392d. attributes(h)) in

392e. rdb ! (ri,
′′
hub

′′
,hub);

392f. ... end

392a. end

490

393 The net db data base behaviour revolves around a seemingly “never-ending” cyclic process.

394 Each cycle “starts” with acceptance of some,

395 either link or hub data.

396 If link data then it is deposited in the link data base,

397 if hub data then it is deposited in the hub data base.
491

value

393. net db() ≡
394. let (ri,loh,data) = r db ? in

395. case loh of

396.
′′
link

′′
→ ... ; lnk db := lnk db ∪ (ri,data),

397.
′′
hub

′′
→ ... ; hub db := hub db ∪ (ri,data)

395. end end ;
393′. ... ;
393. net db()

492

The above model is an idealisation. It assumes that the link and hub data represent a well-formed net. Included in this well-formedness

are the following issues: (a) that all link or hub identifiers are communicated exactly once, (b) that all mereologies refer to defined

parts, and (c) that all attribute values lie within an appropriate value range. If we were to cope with possible recording errors then

we could, for example, extend the model as follows: (i) when a link or a hub recorder has completed its recording then it increments

an initially zero counter (say at Item 392f, Page 171); (ii) before the net data base recycles it tests whether all recording sessions has

ended and then proceeds to check the data base for well-formedness issues (a–b–c) (say at Item 393′ , Page 171)

493

The above example illustrates the ‘interface’ phenomenon: In the formulas, for example, we show both

manifest domain entities, viz., n, l,h etc., and abstract (required) software objects, viz., (ui,me,attrs).

Lect.10: Domain Science & Engineering 171 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

172

Data Refreshment 494

As part of drnet
one must also prescribe data refreshment: an interactive user interface dialogue with a set

of proper display screens one for selecting the updating of net, of hub or of link attribute names and their

types and, for example, two for the respective update of hub and link attribute values. Interaction-prompts

may be prescribed: next update, on-line vetting and display of revised net, etc. These and many other

aspects may therefore need prescriptions. These prescriptions also concretise insert and remove link and

hub actions.

7.3.3 Shared Actions, Events and Behaviours 495

We illustrate the ideas of shared actions, events and behaviours through the domain requirements extension

of Sect. 7.2.4, more specifically Examples 103–105 Pages 164–166.496

Example 110 . Interface Requirements. Shared Actions, Events and Behaviours:

This Example has yet to be written

Examples 104–106, Pages 165–166,

illustrate shared interactive actions, events and behaviours.

7.4 Machine Requirements 497

7.4.1 Delineation of Machine Requirements

On Machine Requirements

Definition 43 . Machine Requirements: By machine requirements we shall understand such

requirements which can be expressed “sôlely” using terms from, or of the machine

Definition 44 . The Machine: By the machine we shall understand the hardware and software to be

built from the requirements
498

The expression which can be expressed “sôlely” using terms from, or of the machine shall be un-

derstood with “a grain of salt”. Let us explain. The machine requirements statements may contain

references to domain entities but these are meant to be generic references, that is, references to certain

classes of entities in general. We shall illustrate this “genericitiy” in some of the examples below.

Machine Requirements Facets 499

We shall, in particular, consider the following five kinds of machine requirements: performance require-
ments, dependability requirements, maintenance requirements, platform requirements and documentation
requirements.

7.4.2 Performance Requirements 500

Definition 45 . Performance Requirements: By performance requirements we mean machine re-

quirements that prescribe storage consumption, (execution, access, etc.) time consumption, as well as

consumption of any other machine resource: number of CPU units (incl. their quantitative characteristics

such as cost, etc.), number of printers, displays, etc., terminals (incl. their quantitative characteristics),

number of “other”, ancillary software packages (incl. their quantitative characteristics), of data commu-

nication bandwidth, etcetera

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 172 Lect.10: Domain Science & Engineering

173

501

Example 111 . Machine Requirements. Road-pricing System Performance: Possible road

pricing system performance requirements could evolve around: maximum number of cars entering and leaving the sum

total of all gates within a minimum period — for example 10.000 maximum within any interval of 10 seconds minimum;

maximum time between a car entering a gate and the raising of the gate barrier — for example 3 seconds; etcetera, We

cannot be more specific: that would require more details about gate sensors and gate barriers.

7.4.3 Dependability Requirements 502

MORE TO COME

Failures, Errors and Faults

To properly define the concept of dependability we need first introduce and define the concepts of failure,
error, and fault. 503

Definition 46 . Failure: A machine failure occurs when the delivered service deviates from fulfilling

the machine function, the latter being what the machine is aimed at [131]
504

Definition 47 . Error: An error is that part of a machine state which is liable to lead to subsequent
failure. An error affecting the service is an indication that a failure occurs or has occurred [131]

505

Definition 48 . Fault: The adjudged (i.e., the ‘so-judged’) or hypothesised cause of an error is a fault
[131]

The term hazard is here taken to mean the same as the term fault. One should read the phrase: “adjudged

or hypothesised cause” carefully: In order to avoid an unending trace backward as to the cause,8 we stop

at the cause which is intended to be prevented or tolerated. 506

Definition 49 . Machine Service: The service delivered by a machine is its behaviour as it is

perceptible by its user(s), where a user is a human, another machine or a(nother) system which interacts
with it [131]

507

Definition 50 . Dependability: Dependability is defined as the property of a machine such that

reliance can justifiably be placed on the service it delivers [131]

We continue, less formally, by characterising the above defined concepts [131]. “A given machine, oper-

ating in some particular environment (a wider system), may fail in the sense that some other machine (or

system) makes, or could in principle have made, a judgement that the activity or inactivity of the given

machine constitutes a failure”. The concept of dependability can be simply defined as “the quality or the

characteristic of being dependable”, where the adjective ‘dependable’ is attributed to a machine whose

failures are judged sufficiently rare or insignificant. Impairments to dependability are the unavoidably ex- 508

pectable circumstances causing or resulting from “undependability”: faults, errors and failures. Means for

dependability are the techniques enabling one to provide the ability to deliver a service on which reliance

can be placed, and to reach confidence in this ability. Attributes of dependability enable the properties

which are expected from the system to be expressed, and allow the machine quality resulting from the

impairments and the means opposing them to be assessed. Having already discussed the “threats” aspect, 509

we shall therefore discuss the “means” aspect of the dependability tree.

8An example: “The reason the computer went down was the current supply did not deliver sufficient voltage, and the reason for
the drop in voltage was that a transformer station was overheated, and the reason for the overheating was a short circuit in a plant
nearby, and the reason for the short circuit in the plant was that . . . , etc.”

Lect.10: Domain Science & Engineering 173 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

174

• Attributes:

⋄⋄ Accessibility

⋄⋄ Availability

⋄⋄ Integrity

⋄⋄ Reliability

⋄⋄ Safety

⋄⋄ Security

• Means:

⋄⋄ Procurement

◦◦ Fault prevention

◦◦ Fault tolerance

⋄⋄ Validation

◦◦ Fault removal

◦◦ Fault forecasting

• Threats:

⋄⋄ Faults

⋄⋄ Errors

⋄⋄ Failures

510

Despite all the principles, techniques and tools aimed at fault prevention, faults are created. Hence the need

for fault removal. Fault removal is itself imperfect. Hence the need for fault forecasting. Our increasing

dependence on computing systems in the end brings in the need for fault tolerance. We refer to special

texts [111] on the above four topics.511

Definition 51 . Dependability Attribute: By a dependability attribute we shall mean either one of the

following: accessibility, availability, integrity, reliability, robustness, safety and security. That is, a machine512

is dependable if it satisfies some degree of “mixture” of being accessible, available, having integrity, and

being reliable, safe and secure

The crucial term above is “satisfies”. The issue is: To what “degree”? As we shall see — in a later

section — to cope properly with dependability requirements and their resolution requires that we deploy

mathematical formulation techniques, including analysis and simulation, from statistics (stochastics, etc.).

In the next seven subsections we shall characterise the dependability attributes further. In doing so we have

found it useful to consult [111].

Accessibility 513

Usually a desired, i.e., the required, computing system, i.e., the machine, will be used by many users —

over “near-identical” time intervals. Their being granted access to computing time is usually specified,

at an abstract level, as being determined by some internal nondeterministic choice, that is: essentially by

“tossing a coin”! If such internal nondeterminism was carried over, into an implementation, some “coin
tossers” might never get access to the machine.514

Definition 52 . Accessibility: A system being accessible — in the context of a machine being depend-

able — means that some form of “fairness” is achieved in guaranteeing users “equal” access to machine

resources, notably computing time (and what derives from that)
515

Example 112 . Machine Requirements. Road-pricing System Accessibility: Fairness of the

calculator behaviour, cf. formula Item 378 on Page 166 (⌈⌉⌊⌋) shall mean that “earlier” (wrt. time-stamped) messages from

either vehicles or from gates shall be accepted by the calculator before “later” such messages. This is guaranteed by the

semantics of RSL. And, hence, shall be guaranteed by any implementation of the deterministic choice ⌈⌉⌊⌋

Availability 516

Usually a desired, i.e., the required, computing system, i.e., the machine, will be used by many users —

over “near-identical” time intervals. Once a user has been granted access to machine resources, usually

computing time, that user’s computation may effectively make the machine unavailable to other users —

by “going on and on and on”!517

Definition 53 . Availability: By availability — in the context of a machine being dependable — we

mean its readiness for usage. That is, that some form of “guaranteed percentage of computing time” per

time interval (or percentage of some other computing resource consumption) is achieved — hence some

form of “time slicing” is to be effected

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 174 Lect.10: Domain Science & Engineering

175

518

Example 113 . Machine Requirements. Road-pricing System Availability: Formula Item 374b

(Page 165) specify that vehicles “continuously” inform the calculator (cf. formula Items 378 on Page 166) of their time-

stamped local position. This may lead you to think that these messages may effectively “block out” “concurrent” messages

from toll-road gates. In an implementation we may choose to discretize vehicle-to-calculator messages. That is, to “space

them apart”, some time interval — so long as an “intentional semantics is maintained”

Integrity 519

Definition 54 . Integrity: A system has integrity — in the context of a machine being dependable — if

it is and remains unimpaired, i.e., has no faults, errors and failures, and remains so, without these, even in

the situations where the environment of the machine has faults, errors and failures

Integrity seems to be a highest form of dependability, i.e., a machine having integrity is 100% dependable!

The machine is sound and is incorruptible. 520

Example 114 . Machine Requirements. Road-pricing System Integrity: We divide the integrity

concerns for the road-pricing computing and communications system into two “spheres” (I–II): (I) the integrity of the sen-

sor and actuator equipment attached to (I.1) vehicles (i.e., their GNSS attributes), and to (I.2) toll-road gates: (I.2.1) in/out

sensors, (I.2.2) vehicle identifiers and (I.2.3) gates; and (II) the software of the road-pricing computing and communica-

tions system, that is, the software which interfaces with vehicles, toll-gates and the calculator. As for the integrity of 521

the the sensor and actuator equipment we do not require that the road-pricing computing and communications system

is 100% dependable, It is satisfactory if it retains its (i) accessibility, (ii) availability, (iii) reliability, (iv) safety and (v) se-

curity in the presence of maintenance. As for the integrity of the software we require that it (a) is proven correct with 522

respect to domain and requirements specifications under the assumption that sensor and actuator equipment functions

with 100%’s integrity; (b) and where correctness proofs may not be feasible or possible, that the software is appropriately

model-checked; (c) and where “complete” model-checks may not be feasible or possible, that the software is formally

tested
523

Definition 55 . Reliability: A system being reliable — in the context of a machine being dependable —

means some measure of continuous correct service, that is, measure of time to failure

524

Example 115 . Machine Requirements. Road-pricing System Reliability: Mean-time between

failures, MTBF, (i) of any vehicle’s GNSS correct recording of local position must be at least 30.000 hours; (ii) of any toll-

gate complex, that is, it’s ability to correctly identify a passing vehicle, or it’s ability to correctly close and open gates must

be at least 20.000 hours

Safety 525

Definition 56 . Safety: By safety — in the context of a machine being dependable — we mean some

measure of continuous delivery of service of either correct service, or incorrect service after benign failure,

that is: Measure of time to catastrophic failure
526

Example 116 . Machine Requirements. Road-pricing System Safety: Mean time to catastrophic

failure, MTCF, (i) for a vehicle’s GNSS to function properly shall be 60.000 hours; and (ii) of any toll-gate complex, that is,

it’s ability to correctly identify a passing vehicle, or it’s ability to correctly close and open gates must be at least 40.000

hours

Lect.10: Domain Science & Engineering 175 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

176

Security 527

We shall take a rather limited view of security. We are not including any consideration of security against

brute-force terrorist attacks. We consider that an issue properly outside the realm of software engineering.

Security, then, in our limited view, requires a notion of authorised user, with authorised users being fine-

grained authorised to access only a well-defined subset of system resources (data, functions, etc.). An

unauthorised user (for a resource) is anyone who is not authorised access to that resource.528

Definition 57 . Security: A system being secure — in the context of a machine being dependable

— means that an unauthorised user, after believing that he or she has had access to a requested system

resource: (i) cannot find out what the system resource is doing, (ii) cannot find out how the system resource

is working and (iii) does not know that he/she does not know! That is, prevention of unauthorised access

to computing and/or handling of information (i.e., data)
529

Example 117 . Machine Requirements. Road-pricing System Security: Vehicles are authorised

(i) to receive GNSS timed global positions, but not to tamper with, e.g. misrepresent them, are authorised (ii) to, and shall

correctly compute their local positions based on the received global positions, and are finally authorised (iii) to, and shall

correctly inform the calculator of their timed local positions

Robustness 530

Definition 58 . Robustness: A system is robust — in the context of dependability — if it retains its

attributes after failure, and after maintenance

Thus a robust system is “stable” across failures and “across” possibly intervening “repairs” and “across”

other forms of maintenance.531

Example 118 . Machine Requirements. Road-pricing System Robustness: The road-pricing

computing and communications system shall retain its (i) performance and (ii) dependability, that is, (ii.1) accessibility,

(ii,2) availability, (ii,3) reliability, and (ii,4) safety requirements in the presence of maintenance.

7.4.4 Maintenance Requirements 532

TO BE TYPED

Delineation and Facets of Maintenance Requirements

Definition 59 . Maintenance Requirements: By maintenance requirements we understand a combi-

nation of requirements with respect to: (i) adaptive maintenance, (iii) corrective maintenance, (ii) perfective
maintenance, (iv) preventive maintenance and (v) extensional maintenance

533

Maintenance of building, mechanical, electrotechnical and electronic artifacts — i.e., of artifacts based on

the natural sciences — is based both on documents and on the presence of the physical artifacts. Main-

tenance of software is based just on software, that is, on all the documents (including tests) entailed by

software — see Definition 71 on Page 179.

Adaptive Maintenance 534

Definition 60 . Adaptive Maintenance: By adaptive maintenance we understand such maintenance

that changes a part of that software so as to also, or instead, fit to some other software, or some other hard-

ware equipment (i.e., other software or hardware which provides new, respectively replacement, functions)

535

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 176 Lect.10: Domain Science & Engineering

177

Example 119 . Machine Requirements. Road-pricing System Adaptive Maintenance: Two

forms of adaptive maintenance occur in connection with the road-pricing computing and communication system: (i)

adaptive maintenance of vehicle and toll-gate sensors and actuators, and (ii) adaptive maintenance of the “interfacing”

software, that is, the vehicle software as prescribed by Item 374 on Page 165, the toll-gate software as prescribed by

Item 377 on Page 165, and the calculator software as prescribed by Item 378 on Page 166. Adaptive maintenance 536

of vehicle and toll-gate sensors and actuators occurs when existing sensors or actuators are replaced due to failure.

Adaptive maintenance of interfacing software is required when existing sensors or actuators have been replaced and their

characteristics are different from those of the replaced equipment, hence requires modifications of interfacing software

Corrective Maintenance 537

Definition 61 . Corrective Maintenance: By corrective maintenance we understand such mainte-

nance which corrects a software error
538

Example 120 . Machine Requirements. Road-pricing System Corrective Maintenance:

Corrective maintenance of the road-pricing computing and communications system is required in two “spheres”: (i) when

system, that is, toll-gate and vehicles sensors or actuators fail, and (i) when, despite all verification efforts, the interfacing,

that is, the vehicle, the gate, or the calculator software fails. In the former case, (i), the failing sensor or actuator is 539

replaced possibly implying adaptive maintenance. In the latter case, (ii), the failing software is analysed in order to locate

the erroneous code, whereupon that code is replaced by such code that can lead to a verification of the full system

Perfective Maintenance 540

Definition 62 . Perfective Maintenance: By perfective maintenance we understand such mainte-

nance which helps improve (i.e., lower) the need for hardware storage, time and (hard) equipment
541

Example 121 . Machine Requirements. Road-pricing System Perfective Maintenance: We

focus on perfective maintenance of vehicle, toll-gate and calculator software. We focus, in particular, on (i) the reaction 542

time in connection with response to external stimuli for the gate software (i.1) the timed local position, Item 374a on

Page 165, of vehicles; (i.2) the attr enter ch[gi] event from a toll-gate’s in coming sensor, Item 377a on Page 165;

(i.3) the timed vehicle identity for a attr TIVI ch[gi] event form a toll-gate sensor, Item 377b on Page 165; and (i.4) the

attr leave ch[gi] event from a toll-gate’s out going sensor, Item 377d on Page 165; (ii) the reaction time, of the calculator, 543

Item 378 on Page 166, to incoming, alternating, communications from either vehicles, Item 378a on Page 166, or gates,

Item 378b on Page 166. and (iii) the calculation time of the calculator for billing, cf. Item 380e on Page 166.

Preventive Maintenance 544

Definition 63 . Preventive Maintenance: By preventive maintenance we understand such mainte-

nance which helps detect, i.e., forestall, future occurrence of software or hardware failures

Example 122 . Machine Requirements. Road-pricing System Preventive Maintenance:

TO BE WRITTEN

Extensional Maintenance 545

Definition 64 . Extensional Maintenance: By extensional maintenance we understand such main-

tenance which adds new functionalities to the software, i.e., which implements additional requirements

Example 123 . Machine Requirements. Road-pricing System Extensional Maintenance:

TO BE WRITTEN

Lect.10: Domain Science & Engineering 177 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

178

7.4.5 Platform Requirements 546

TO BE WRITTEN

Delineation and Facets of Platform Requirements

Definition 65 . Platform: By a [computing] platform is here understood a combination of hardware

and systems software so equipped as to be able to develop and execute software, in one form or another

What the “in one form or another” is transpires from the next characterisation.547

Definition 66 . Platform Requirements: By platform requirements we mean a combination of the

following: (i) development platform requirements, (ii) execution platform requirements, (iii) maintenance
platform requirements and (iv) demonstration platform requirements

Development Platform 548

Definition 67 . Development Platform Requirements: By development platform requirements
we shall understand such machine requirements which detail the specific software and hardware for the

platform on which the software is to be developed

Execution Platform 549

Definition 68 . Execution Platform Requirements: By execution platform requirements we shall

understand such machine requirements which detail the specific (other) software and hardware for the

platform on which the software is to be executed

Maintenance Platform 550

Definition 69 . Maintenance Platform Requirements: By maintenance platform requirements we

shall understand such machine requirements which detail the specific (other) software and hardware for

the platform on which the software is to be maintained

Demonstration Platform 551

Definition 70 . Demonstration Platform Requirements: By demonstration platform requirements
we shall understand such machine requirements which detail the specific (other) software and hardware

for the platform on which the software is to be demonstrated to the customer — say for acceptance tests,

or for management demos, or for user training

• • •
552

Example 124 . Machine Requirements. Road-pricing System Platform Requirements: The
platform requirements are the following:

the development platform to be typed

the execution platform to be typed

the maintenance platform to be typed

and the demonstration platform to be typed .

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 178 Lect.10: Domain Science & Engineering

179

7.4.6 Documentation Requirements 553

Definition 71 . Software: By software we shall understand (i) not only code that may be the ba-

sis for executions by a computer, (ii) but also its full development documentation: (ii.1) the stages

and steps of application domain description, (ii.2) the stages and steps of requirements prescrip-
tion, and (ii.3) the stages and steps of software design prior to code, with all of the above including

all validation and verification (incl., test) documents. (iii) In addition, as part of our wider concept of 554

software, we also include a comprehensive collection of supporting documents: (iii.1) training manu-

als, (iii.2) installation manuals, (iii.3) user manuals, (iii.4) maintenance manuals, and (iii.5–6)

development and maintenance logbooks.

555

Definition 72 . Documentation Requirements: By documentation requirements we mean require-

ments of any of the software documents that together make up software and hardware9

Example 125 . Machine Requirements — Documentation:

TO BE WRITTEN

7.4.7 Discussion 556

TO BE TYPED

9— we omit a definition of what we mean by hardware such as the one we gave for software, cf. Definition 71.

Domain Science & Engineering 179 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

Part III

Conclusion

180

Chapter 8

Discussion of Research Topics 562

Chapter Status

This chapter is incomplete.

There are a number of research topics: some relate to domain analysis & description, cf. Chapter 1 and

some of these are listed in Sect. 8.1, other relate to requirements engineering, cf. Chapter 7 and some of

these are listed in Sect. 8.2.

8.1 Domain Science & Engineering Topics 563

The TripTych approach to software development, based on an initial, serious phase of domain engi-

neering, a new phase of software engineering, for which we claim to now have laid a solid foundation for

domain engineering — opens up for a variety of issues that need further study. The entries in this section

are not ordered according to any specific principle.

8.1.1 Analysis & Description Calculi for Other Domains 564

The analysis and description calculus of this paper appears suitable for manifest domains. For other do-

mains other calculi appears necessary. There is the introvert, composite domain of systems software: oper-

ating systems, compilers, database management systems, Internet-related software, etcetera. The classical

computer science and software engineering disciplines related to these components of systems software

appears to have provided the necessary analysis and description “calculi.” There is the domain of financial 565

systems software accounting & bookkeeping, banking systems, insurance, financial instruments handling

(stocks, etc.), etcetera. We refer to Sect. 9.1.2 on Page 186 [Item 8]. Etcetera. For each domain char-

acterisable by a distinct set of analysis & description calculus prompts such calculi must be identified.

566

It seems straightforward: to base a method for analysing & describing a category of domains on the

idea of prompts like those developed in this paper.

8.1.2 On Domain Description Languages 567

We have in this paper expressed the domain descriptions in the RAISE [86] specification language RSL

[85]. With what is thought of as basically inessential, editorial changes, one can reformulate these domain

description texts in either of Alloy [100] or The B-Method [1] or VDM [48, 49, 77] or Z [157]. One 568

181

182

could also express domain descriptions algebraically, for example in CafeOBJ [81, 68, 80, 56]. The

analysis and the description prompts remain the same. The description prompts now lead to CafeOBJ

texts.569

We did not go into much detail with respect to perdurants, let alone behaviours. For all the very many

domain descriptions, covered elsewhere, RSL (with its CSP sub-language) suffices. But there are cases

where we have conjoined our RSL domain descriptions with descriptions in Petri Nets [132] or MSC

[99] (Message Sequence Charts) or StateCharts [92]. Since this paper only focused on endurants there570

was no need, it appears, to get involved in temporal issues. When that becomes necessary, in a study

or description of perdurants, then we either deploy DC: The Duration Calculus [160] or TLA+:

Temporal Logic of Actions [110].

8.1.3 Ontology Relations 571

A more exact understanding of the relations between the “classical” AI/information science/ontology view

of domains [13, 14, 105], and the algorithmic view of domains, as presented in the current paper, seems

required. The almost disparate jargon of the two “camps” seems, however, to be a hindrance.

8.1.4 Analysis of Perdurants 572

A study of perdurants, Sect. 1.3, as detailed as that of our study of endurants, ought be carried out. One

difficulty, as we see it, is the choice of formalisms: whereas the basic formalisms for the expression of

endurants and their qualities was type theory and simple functions and predicates, there is no such simple

set of formal constructs that can “carry” the expression of behaviours.Besides the textual CSP, [97], there

is graphic notations of Petri Nets, [132], Message Sequence Charts, [99], State-charts, [92], and others.

8.1.5 Commensurate Discrete and Continuous Models 573

Section 1.3.6 on Page 56 hinted at co-extensive descriptions of discrete and continuous behaviours, the

former in, for example, RSL, the latter in, typically, the calculus mathematics of partial different equations

(PDEs). The problem that arises in this situation is the following: there will be, say variable identifiers, e.g.,

x, y, . . . , z which in the RSL formalisation has one set of meanings, but which in the PDE “formalisation”

has another set of meanings. Current formal specification languages1 do not cope with continuity. Some574

research is going on. But to substantially cover, for example, the proper description of laminar and turbulent

flows in networks (e.g., pipelines, Example 61 on Page 56) requires more substantial results.

8.1.6 Interplay between Parts, Materials and Components 575

Examples 49 on Page 46, 50 on Page 47, 51 on Page 48 and 61 on Page 56 revealed but a small fraction

of the problems that may arise in connection with modeling the interplay between parts and materials.

Subject to proper formal specification language and, for example PDE specification, we may expect more

interesting laws, as for example those of Examples 50 on Page 47, 51 on Page 48, and even proof of

these as if they were theorems. Formal specifications have focused on verifying properties of requirements

and software designs. With co-extensive (i.e., commensurate) formal specifications of both discrete and

continuous behaviours we may expect formal specifications to also serve as bases for predictions.

8.1.7 Dynamics 576

There is a serious limitation in what can be modeled with the present approach. Although we can model

the dynamic introduction of new atomic or removal of existing parts, when members of a composite set of

such parts, we cannot model the dynamic introduction or removal of the processes corresponding to such

1Alloy [100],Event B [1],RSL [85], VDM-SL [48, 49, 77], Z [157], etc.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 182 Lect.12: Domain Science & Engineering

183

parts. Also we have not shown how to model global time. And, although we can model spatial positions,

we have not shown how to model spatial locations. These deliberate omissions are due to the facts that the 577

description language, RSL, cannot model continuity and that it cannot provide for arbitrary models of time

[150]. Here is an area worth studying.

8.1.8 Precise Descriptions of Manifest Domains 578

The focus on the principles, techniques and tools of domain analysis & description has been such domains

in which humans play an active rôle. Formal descriptions of domains may serve to prove properties of

domains, in other words, to understand better these domains, and to validate requirements derived from

such domain descriptions, and thereby to ensure that software derived from such requirements is not only

correct, but also meet users expectations. Improved understanding of man-made domains — without nec- 579

essarily leading to new software — may serve to improve the “business processes” of these domains, make

them more palatable for the human actors, make them more efficient wrt. resource-usage. Descriptions of

domains are descriptions of the syntax and semantics of the technical languages used in speaking about

and in the domain. The domain analysis required for the design of programming languages is based on 580

computability: mathematical logic and recursive function theory. The domain analysis required for “real-

world” domains is not based on computability: that “world” is not computable. Requirements engineering

based on domain descriptions is based on deriving computable subsets of refined domain descriptions. The

classical theory and practice of programming language semantics and compiler development [15] and [23,

Part VII (Chapters 16–19)] can now be further developed into a theory and practice for deriving general

software from formal domain descriptions [26].

Descriptions of domains are descriptions of the syntax and semantics of the technical languages used

in speaking about and in the domain. The domain analysis required for the design of programming lan- 581

guages is based on computability: mathematical logic and recursive function theory. The domain analysis

required for “real-world” domains is not based on computability: that “world” is not computable. Require-

ments engineering based on domain descriptions is based on deriving computable subsets of refined domain

descriptions. The classical theory and practice of programming language semantics and compiler develop-

ment [15] and [23, Part VII (Chapters 16–19)] can now be further developed into a theory and practice for

deriving general software from formal domain descriptions [26]. 582

Physicists study ‘Mother Nature’, the world without us. Domain scientists study man-made part and

material based universes with which we interact — the world within and without us. Classical engineering

builds on laws of physics to design and construct buildings, chemical compounds, machines and electrical

and electronic products. So far software engineers have not expressed software requirements on any 583

precise description of the basis domain. This paper strongly suggests such a possibility. Regardless: it is

interesting to also formally describe domains; and, as shown, it can be done.

8.1.9 Towards Mathematical Models of Domain Analysis & Description 584

There are two aspects to a precise description of the domain analysis prompts and domain descrip-

tion prompts. There is that of describing the individual prompts as if they were “machine instructions”

for an albeit strange machine; and there is that of describing the interplay between prompts: the sequencing

of domain description prompts as determined by the outcome of the domain analysis prompts.

We have described and formalised the latter in [43, Processes]; and we are in the midst of describing and 585

formalising the former in [35, Prompts].

8.1.10 Laws of Descriptions: A Calculus of Prompts 586

Laws of descriptions deal with the order and results of applying the domain analysis and description

prompts. Some laws are covered in [33]. It is expected that establishing formal models of the prompts,

for example as outlined in [35, 43], will help identify such laws. The various description prompts apply 587

Lect.12: Domain Science & Engineering 183 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

184

to parts (etc.) of specified sorts (etc.) and to a “hidden state”. The “hidden state” has two major ele-

ments: the domain and the evolving description texts. An “execution” of a prompt potentially changes

that “hidden state”. Let P, PA and PB be composite part sorts where PA and PB are derived from P.588

Let ℜi, ℜ j, etc., be suitable functions which rename sort, type and attribute names. In a proper prompt

calculus we would expect observe part sorts PA;observe part sorts PB, when “executed”

by one and the same domain engineer, to yield the same “hidden state” as observe part sorts-

PB;ℜi;observe part sorts PA;ℜ j. Also one would expect observe part sorts PA;ℜi;ob-589

serve part sorts PA;ℜ j. to yield the same state as just observe part sorts PA given suitable

renaming functions.

Well ? or does one really ?590

There are some assumptions that are made here. One pair of assumptions is that the domain is fixed

and to one observer. yields the same analysis and description results no matter in which order prompts are

“executed”. Another assumption is that the domain engineer does not get wiser as analysis and description

progresses. If, as one can very well expect, the domain engineer does get wiser, then former results may be

discarded and either replaced by newer analysis and descriptions or prompts repeated. In such cases these

laws do not hold.

8.1.11 Domains and Galois Connections 591

Section 1.1.8 on Page 23 very briefly mentioned that formal concepts form Galois Connections. In the

seminal [83] a careful study is made of this fact and beautiful examples show the implications for domains.

It seems that our examples have all been too simple. They do not easily lead on to the “discovery” of

“new” domain concepts from appropriate concept lattices. We refer to [47, Section 9]. Further study need

be done.

8.1.12 Laws of Domain Description Prompts 592

Typically observe part sorts applies to a composite part, p:P, and yield descriptions of one or more

part sorts: p1:P1,p2:P2,. . . ,pm:Pm. Let pi:Pi,p j:P j,. . . ,pk:Pk (of these) be composite. Now observe part sorts(pi)
and observe part sorts(p j), etc., can be applied and yield texts texti, respectively text j. A law of

domain description prompts now expresses that the order in which the two or more observers is applied is

immaterial, that is, they commute. In [33] we made an early exploration of such laws of domain description

prompts. More work, see also below, need be done.

8.1.13 Domain Theories: 593

An ultimate goal of domain science & engineering is to prove properties of domains. Well, maybe not

properties of domains, but then at least properties of domain descriptions. If one can be convinced that a

posited domain description indeed is a faithful description of a domain, then proofs of properties of the

domain description are proofs of properties of that domain. Ultimately domain science & engineering must

embrace such studies of laws of domains. Here is a fertile ground for zillions of Master and PhD theses !594

Example 126 . A Law of Train Traffic at Stations:Let a transport net, n:N, be that of a railroad

system. Hubs are train stations. Links are rail lines between stations. Let a train timetable record train

arrivals and train departures from stations. And let such a timetable be modulo some time interval, say

typically 24 hours. Now let us (idealistically) assume that actual trains arrive at and depart from train595

stations according the train timetable and that the train traffic includes all and only such trains as are

listed in the train timetable. Now a law of train traffic expresses “Over the modulo time interval of a train596

timetable it is the case that the number of trains arriving at a station minus the number of trains ending their
journey at that station plus the number of trains starting their journey at that station equals number of trains
departing from that station.”

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 184 Lect.12: Domain Science & Engineering

185

8.1.14 External Attributes 597

More study is needed in order to clarify the relations between the various external attributes and control

theory.

8.2 Requirements Topics 598

8.2.1 Domain Requirements Methodology

Further principles, techniques and tools for the projection, instantiation, determination, extension and fit-

ting operations.

8.2.2 Domain Requirements Operator Theory 599

A model of the domain to domain-to-requirements operators: projection, instantiation, determination, ex-

tension and fitting. (Sect. 7.2).

8.2.3 Methodology for Interface Requirements 600

Sect. 7.3 did not go into sufficient detail as to method principles, techniques and tools.

Lect.12: Domain Science & Engineering 185 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

Chapter 9

Bibliography 601

9.1 Bibliographical Notes

Web page www.imm.dtu.dk/˜dibj/domains/ lists the published papers and reports mentioned in the

next two subsections.

9.1.1 Published Papers

I have thought about domain engineering for more than 20 years. But serious, focused writing only started

to appear since [24, Part IV] — with [20, 18] being exceptions: [25] suggests a number of domain science

and engineering research topics; [30] covers the concept of domain facets summarised in Chap. 2; [47]

explores compositionality and Galois connections. [26, 46] show how to systematically, but, of course,

not automatically, “derive” requirements prescriptions from domain descriptions; [32] takes the triptych

software development as a basis for outlining principles for believable software management; [29, 39]

presents a model for Stanisław Leśniewski’s [57] concept of mereology; [31, 33] present an extensive

example and is otherwise a precursor for the present paper; [34] presents, based on the TripTych view

of software development as ideally proceeding from domain description via requirements prescription to

software design, concepts such as software demos and simulators; [37] analyses the TripTych, especially

its domain engineering approach, with respect to Maslow’s 1 and Peterson’s and Seligman’s 2 notions of

humanity: how can computing relate to notions of humanity; the first part of [40] is a precursor for the

present paper with its second part presenting a first formal model of the elicitation process of analysis

and description based on the prompts more definitively presented in the current paper; and [41] focus on

domain safety criticality.

The present paper basically replaces the domain analysis and description section of all of the above

reference — including [24, Part IV].

9.1.2 Reports 602

We list a number of reports all of which document descriptions of domains. These descriptions were carried

out in order to research and develop the domain analysis and description concepts now summarised in the

present paper. These reports ought now be revised, some slightly, others less so, so as to follow all of the

prescriptions of the current paper. Except where a URL is given in full, please prefix the web reference

with: http://www2.compute.dtu.dk/˜dibj/.

1Theory of Human Motivation. Psychological Review 50(4) (1943):370-96; and Motivation and Personality, Third Edition,
Harper and Row Publishers, 1954.

2Character strengths and virtues: A handbook and classification. Oxford University Press, 2004

186

187

1 A Railway Systems Domain: http://euler.fd.cvut.cz/railwaydomain/ (2003)

2 Models of IT Security. Security Rules & Regulations: it-security.pdf (2006)

3 A Container Line Industry Domain: container-paper.pdf (2007)

4 The “Market”: Consumers, Retailers, Wholesalers, Producers: themarket.pdf (2007)

5 What is Logistics ?: logistics.pdf (2009)

6 A Domain Model of Oil Pipelines: pipeline.pdf (2009)

7 Transport Systems: comet/comet1.pdf (2010)

8 The Tokyo Stock Exchange: todai/tse-1.pdf and todai/tse-2.pdf (2010)

9 On Development of Web-based Software. A Divertimento: wfdftp.pdf (2010)

10 Documents (incomplete draft): doc-p.pdf (2013)

9.2 References 603

[1] J.-R. Abrial. The B Book: Assigning Programs to Meanings and Modeling in Event-B:
System and Software Engineering. Cambridge University Press, Cambridge, England,
1996 and 2009.

[2] K. R. Apt. Principles of Constraint Programming. Cambridge University Press, August
2003. ISBN 0521825830.

[3] K. Araki et al., editors. IFM 1999–2013: Integrated Formal Methods, LNCS Vols. 1945,
2335, 2999, 3771, 4591, 5423, 6496, 7321 and 7940. Springer, 1999–2013.

[4] Y. Arimoto and D. Bjørner. Hospital Healthcare: A Domain Analysis and a License Lan-
guage. Technical note, JAIST, School of Information Science, 1-1, Asahidai, Tatsunokuchi,
Nomi, Ishikawa, Japan 923-1292, Summer 2006.

[5] R. Audi. The Cambridge Dictionary of Philosophy. Cambridge University Press, The Pitt
Building, Trumpington Street, Cambridge CB2 1RP, England, 1995.

[6] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The Description

Logic Handbook: Theory, Implementation and Applications. . Cambrige University Press,
January 2003. 570 pages, 14 tables, 53 figures; ISBN: 0521781760.

[7] F. Baader, I. Horrocks, and U. Sattler. Description Logics as Ontology Languages for the
Semantic Web. In D. Hutter and W. Stephan, editors, Mechanizing Mathematical Reason-
ing, pages 228–248. Springer, Heidelberg, 2005.

[8] C. Bachman. Data structure diagrams. Data Base, Journal of ACM SIGBDP, 1(2), 1969.

[9] A. Badiou. Being and Event. Continuum, 2005. (Lêtre et l’événements, Edition du Seuil,
1988).

[10] V. Benjamins and D. Fensel. The Ontological Engineering Initiative (KA)2. In-
ternet publication + Formal Ontology in Information Systems, University of Ams-
terdam, SWI, Roetersstraat 15, 1018 WB Amsterdam, The Netherlands and Uni-
versity of Karlsruhe, AIFB, 76128 Karlsruhe, Germany, 1998. http://www.aifb.uni-
karlsruhe.de/WBS/broker/KA2.htm.

Lect.12: Domain Science & Engineering 187 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

188

[11] W. Bevier, W. H. Jr., J. S. Moore, and W. Young. An approach to system verification.
Journal of Automated Reasoning, 5(4):411–428, December 1989. Special Issue on System
Verification.

[12] G. Birkhoff. Lattice Theory. American Mathematical Society, Providence, R.I., 3 edition,
1967.

[13] T. Bittner, M. Donnelly, and B. Smith. Endurants and Perdurants in Directly Depicting On-
tologies. AI Communications, 17(4):247–258, December 2004. IOS Press, in [133].

[14] T. Bittner, M. Donnelly, and B. Smith. Individuals, Universals, Collections: On the Founda-
tional Relations of Ontology. In A. Varzi and L. Vieu, editors, Formal Ontology in Informa-

tion Systems, Proceedings of the Third International Conference, pages 37–48. IOS Press,
2004.

[15] D. Bjørner. Programming Languages: Formal Development of Interpreters and Compilers.
In International Computing Symposium 77 (eds. E. Morlet and D. Ribbens), pages 1–21.
European ACM, North-Holland Publ.Co., Amsterdam, 1977.

[16] D. Bjørner. A ProCoS Project Description. Published in two slightly different versions: (1)
EATCS Bulletin, October 1989, (2) (Ed. Ivan Plander:) Proceedings: Intl. Conf. on AI & Robotics,
Strebske Pleso, Slovakia, Nov. 5-9, 1989, North-Holland, Publ., Dept. of Computer Science,
Technical University of Denmark, October 1989.

[17] D. Bjørner. Trustworthy Computing Systems: The ProCoS Experience. In 14’th ICSE: Intl.

Conf. on Software Eng., Melbourne, Australia, pages 15–34. ACM Press, May 11–15 1992.

[18] D. Bjørner. Michael Jackson’s Problem Frames: Domains, Requirements and Design. In
L. ShaoYang and M. Hinchley, editors, ICFEM’97: International Conference on Formal
Engineering Methods, Los Alamitos, November 12–14 1997. IEEE Computer Society. Final
Version.

[19] D. Bjørner. Domain Models of ”The Market” — in Preparation for E–Transaction Systems.
In Practical Foundations of Business and System Specifications (Eds.: Haim Kilov and Ken
Baclawski), The Netherlands, December 2002. Kluwer Academic Press. Final draft version.

[20] D. Bjørner. Domain Engineering: A ”Radical Innovation” for Systems and Software Engi-
neering ? In Verification: Theory and Practice, volume 2772 of Lecture Notes in Computer

Science, Heidelberg, October 7–11 2003. Springer–Verlag. The Zohar Manna International
Conference, Taormina, Sicily 29 June – 4 July 2003. Final draft version.

[21] D. Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling. Texts in Theoretical
Computer Science, the EATCS Series. Springer, 2006. .

[22] D. Bjørner. Software Engineering, Vol. 1: Abstraction and Modelling; Vol. 2: Specification

of Systems and Languages; ol. 3: Domains, Requirements and Software Design. Texts in
Theoretical Computer Science, the EATCS Series. Springer, 2006.

[23] D. Bjørner. Software Engineering, Vol. 2: Specification of Systems and Languages. Texts
in Theoretical Computer Science, the EATCS Series. Springer, 2006. Chapters 12–14 are
primarily authored by Christian Krog Madsen.

[24] D. Bjørner. Software Engineering, Vol. 3: Domains, Requirements and Software Design.
Texts in Theoretical Computer Science, the EATCS Series. Springer, 2006.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 188 Lect.12: Domain Science & Engineering

189

[25] D. Bjørner. Domain Theory: Practice and Theories, Discussion of Possible Research Top-
ics. In ICTAC’2007, volume 4701 of Lecture Notes in Computer Science (eds. J.C.P. Wood-

cock et al.), pages 1–17, Heidelberg, September 2007. Springer.

[26] D. Bjørner. From Domains to Requirements. In Montanari Festschrift, volume 5065 of
Lecture Notes in Computer Science (eds. Pierpaolo Degano, Rocco De Nicola and José
Meseguer), pages 1–30, Heidelberg, May 2008. Springer.

[27] D. Bjørner. An Emerging Domain Science – A Rôle for Stanisław Leśniewski’s Mereol-
ogy and Bertrand Russell’s Philosophy of Logical Atomism. Higher-order and Symbolic

Computation, 2009.

[28] D. Bjørner. Domain Engineering: Technology Management, Research and Engineering.
Research Monograph (# 4); JAIST Press, 1-1, Asahidai, Nomi, Ishikawa 923-1292 Japan,
This Research Monograph contains the following main chapters:

1 On Domains and On Domain Engineering – Prerequisites for Trustworthy Software –
A Necessity for Believable Management, pages 3–38.

2 Possible Collaborative Domain Projects – A Management Brief, pages 39–56.

3 The Rôle of Domain Engineering in Software Development, pages 57–72.

4 Verified Software for Ubiquitous Computing – A VSTTE Ubiquitous Computing Project
Proposal, pages 73–106.

5 The Triptych Process Model – Process Assessment and Improvement, pages 107–
138.

6 Domains and Problem Frames – The Triptych Dogma and M.A.Jackson’s PF

Paradigm, pages 139–175.

7 Documents – A Rough Sketch Domain Analysis, pages 179–200.

8 Public Government – A Rough Sketch Domain Analysis, pages 201–222.

9 Towards a Model of IT Security — – The ISO Information Security Code of Practice –

An Incomplete Rough Sketch Analysis, pages 223–282.

10 Towards a Family of Script Languages – – Licenses and Contracts – An Incomplete

Sketch, pages 283–328.

2009.

[29] D. Bjørner. On Mereologies in Computing Science. In Festschrift: Reflections on the Work

of C.A.R. Hoare, History of Computing (eds. Cliff B. Jones, A.W. Roscoe and Kenneth R.
Wood), pages 47–70, London, UK, 2009. Springer.

[30] D. Bjørner. Domain Engineering. In P. Boca and J. Bowen, editors, Formal Methods: State
of the Art and New Directions, Eds. Paul Boca and Jonathan Bowen, pages 1–42, London,
UK, 2010. Springer.

[31] D. Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of

Informatics, Part I of II: The Engineering Part . Kibernetika i sistemny analiz, (4):100–116, May
2010.

[32] D. Bjørner. Believable Software Management. Encyclopedia of Software Engineering,
1(1):1–32, 2011.

[33] D. Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of

Informatics Part II of II: The Science Part . Kibernetika i sistemny analiz, (2):100–120, May
2011.

Lect.12: Domain Science & Engineering 189 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

190

[34] D. Bjørner. Domains: Their Simulation, Monitoring and Control – A Divertimento of Ideas
and Suggestions. In Rainbow of Computer Science, Festschrift for Hermann Maurer on

the Occasion of His 70th Anniversary., Festschrift (eds. C. Calude, G. Rozenberg and
A. Saloma), pages 167–183. Springer, Heidelberg, Germany, January 2011.

[35] D. Bjørner. Domain Analysis: A Model of Prompts (paper3, slides4). Research Report
2013-6, DTU Compute and Fredsvej 11, DK-2840 Holte, Denmark, Fall 2013.

[36] D. Bjørner. Domain Analysis (paper5 slides6). Research Report 2013-1, DTU Compute
and Fredsvej 11, DK-2840 Holte, Denmark, April 2013.

[37] D. Bjørner. Domain Science and Engineering as a Foundation for Computation for Human-
ity, chapter 7, pages 159–177. Computational Analysis, Synthesis, and Design of Dynamic
Systems. CRC [Francis & Taylor], 2013. (eds.: Justyna Zander and Pieter J. Mosterman).

[38] D. Bjørner. Pipelines – a Domain Description7. Experimental Research Report 2013-2,
DTU Compute and Fredsvej 11, DK-2840 Holte, Denmark, Spring 2013.

[39] D. Bjørner. A Rôle for Mereology in Domain Science and Engineering. Synthese Library
(eds. Claudio Calosi and Pierluigi Graziani). Springer, Amsterdam, The Netherlands, Oc-
tober 2014.

[40] D. Bjørner. Domain Analysis: Endurants – An Analysis & Description Process Model.
In S. Iida, J. Meseguer, and K. Ogata, editors, Specification, Algebra, and Software: A

Festschrift Symposium in Honor of Kokichi Futatsugi. Springer, May 2014.

[41] D. Bjørner. Domain Engineering – A Basis for Safety Critical Software. Invited Keynote,
ASSC2014: Australian System Safety Conference, Melbourne, 26–28 May, December
2014.

[42] D. Bjørner. Manifest Domains: Analysis & Description. Research Report, 2014. Part of a
series of research reports: [44, 45], Being submitted.

[43] D. Bjørner. Domain Analysis: Endurants – a Consolidated Model of Prompts. Research
Report, DTU Compute and Fredsvej 11, DK-2840 Holte, Denmark, May 2015.

[44] D. Bjørner. Domain Analysis & Description: Models of Processes and Prompts. Research
Report, To be completed early 2014. Part of a series of research reports: [42, 45].

[45] D. Bjørner. From Domains to Requirements – A Different View of Requirements Engineer-
ing. Research Report, To be completed mid 2015. Part of a series of research reports:
[42, 44].

[46] D. Bjørner. The Role of Domain Engineering in Software Development. Why Current Re-
quirements Engineering Seems Flawed! In Perspectives of Systems Informatics, volume
5947 of Lecture Notes in Computer Science, pages 2–34, Heidelberg, Wednesday, January
27, 2010. Springer.

[47] D. Bjørner and A. Eir. Compositionality: Ontology and Mereology of Domains. Some Clar-
ifying Observations in the Context of Software Engineering in July 2008, eds. Martin Steffen,

3http://www.imm.dtu.dk/˜dibj/da-mod-p.pdf
4http://www.imm.dtu.dk/˜dibj/da-mod-s.pdf
5http://www.imm.dtu.dk/˜dibj/da-p.pdf
6http://www.imm.dtu.dk/˜dibj/da-s.pdf
7http://www.imm.dtu.dk/˜dibj/pipe-p.pdf

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 190 Lect.12: Domain Science & Engineering

191

Dennis Dams and Ulrich Hannemann. In Festschrift for Prof. Willem Paul de Roever Con-
currency, Compositionality, and Correctness, volume 5930 of Lecture Notes in Computer

Science, pages 22–59, Heidelberg, July 2010. Springer.

[48] D. Bjørner and C. B. Jones, editors. The Vienna Development Method: The Meta-

Language, volume 61 of LNCS. Springer, 1978.

[49] D. Bjørner and C. B. Jones, editors. Formal Specification and Software Development.
Prentice-Hall, 1982.

[50] D. Bjørner and J. F. Nilsson. Algorithmic & Knowledge Based Methods — Do they “Unify” ?
In International Conference on Fifth Generation Computer Systems: FGCS’92, pages 191–
198. ICOT, June 1–5 1992.

[51] D. Bjørner, A. Yasuhito, C. Xiaoyi, and X. Jianwen. A Family of License Languages. Tech-
nical report, JAIST, Graduate School of Information Science, 1-1, Asahidai, Tatsunokuchi,
Nomi, Ishikawa, Japan 923-1292, August 2006.

[52] W. D. Blizard. A Formal Theory of Objects, Space and Time. The Journal of Symbolic

Logic, 55(1):74–89, March 1990.

[53] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.
Addison-Wesley, 1998.

[54] J. Bosch. Design and Use of Software Architectures: Adopting and Evolving a Product-line

Approach. ACM Press/Addison-Wesley, New York, NY, 2000.

[55] F. Buschmann, K. Henney, and D. Schmidt. Pattern-Oriented Software Architecture: On

Patterns and Pattern Languages. John Wiley & Sons Ltd., England, 2007.

[56] CafeOBJ. http://cafeobj.org/, 2014.

[57] R. Casati and A. Varzi. Parts and Places: the structures of spatial representation. MIT
Press, 1999.

[58] R. Casati and A. Varzi. Events. In E. N. Zalta, editor, The Stanford Encyclopedia of Philos-

ophy. Spring 2010 edition, 2010.

[59] R. Casati and A. C. Varzi, editors. Events. Ashgate Publishing Group – Dartmouth Publish-
ing Co. Ltd., Wey Court East, Union Road, Farnham, Surrey, GU9 7PT, United Kingdom,
23 March 1996.

[60] P. P. Chen. The Entity-Relationship Model - Toward a Unified View of Data. ACM Trans.

Database Syst, 1(1):9–36, 1976.

[61] X. Chen and D. Bjørner. Public Government: A Domain Analysis and a License Language.
Technical note, JAIST, School of Information Science, 1-1, Asahidai, Tatsunokuchi, Nomi,
Ishikawa, Japan 923-1292, Summer 2006.

[62] E. F. Codd. A relational model of data for large shared data banks. Communications of the

ACM, 13(6):377–387, June 1970.

[63] CoFI (The Common Framework Initiative). CASL Reference Manual, volume 2960 of Lec-

ture Notes in Computer Science (IFIP Series). Springer–Verlag, 2004.

[64] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools, and Appli-

cations. Addison Wesley, 2000.

Lect.12: Domain Science & Engineering 191 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

192

[65] W. Damm and D. Harel. LSCs: Breathing life into Message Sequence Charts. Formal
Methods in System Design, 19:45–80, 2001. Early version appeared as Weizmann Insti-
tute Tech. Report CS98-09, April 1998. An abridged version appeared in Proc. 3rd IFIP

Int. Conf. on Formal Methods for Open Object-based Distributed Systems (FMOODS’99),
Kluwer, 1999, pp. 293–312.

[66] D. Davidson. Essays on Actions and Events. Oxford University Press, 1980.

[67] J. de Bakker. Control Flow Semantics. The MIT Press, Cambridge, Mass., USA, 1995.

[68] R. Diaconescu and K. Futatsugi. CafeOBJ Report: The Language, Proof Techniques, and

Methodologies for Object-Oriented Algebraic Specification. AMAST Series in Computing,
6. World Scientific, Singapore, 1998.

[69] M. Dorfman and R. H. Thayer, editors. Software Requirements Engineering. IEEE Com-
puter Society Press, 1997.

[70] F. Dretske. Can Events Move? Mind, 76(479-492), 1967. reprinted in [59], pp. 415-428.

[71] ESA. Global Navigation Satellite Systems. Web, European Space Agency. There are
several global navigation satellite systems (http://en.wikipedia.org/wiki/Satellite navigation)
either in operation or being developed: (1.) the US developed and operated GPS (NAVSTAR)
system, http://en.wikipedia.org/wiki/Global Positioning System; (2.) the EU developed and
(to be) operated Galileo system, http://en.wikipedia.org/wiki/Galileo positioning system;
(3.) the Russian developed and (to be) operated GLONASS, http://en.wikipedia.org/wiki/-
GLONASS; and (4.) the Chinese Compass Navigation System, http://en.wikipedia.-
org/wiki/Compass navigation system.

[72] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. The MIT
Press, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, 1996.
2nd printing.

[73] R. Falbo, G. Guizzardi, and K. Duarte. An Ontological Approach to Domain Engineering. In
Software Engineering and Knowledge Engineering, Proceedings of the 14th international
conference SEKE’02, pages 351–358, Ischia, Italy, July 15-19 2002. ACM.

[74] D. J. Farmer. Being in time: The nature of time in light of McTaggart’s paradox. University
Press of America, Lanham, Maryland, 1990. 223 pages.

[75] E. A. Feigenbaum and P. McCorduck. The fifth generation. Addison-Wesley, Reading, MA,
USA, 1st ed. edition, 1983.

[76] W. Feijen, A. van Gasteren, D. Gries, and J. Misra, editors. Beauty is Our Business, Texts
and Monographs in Computer Science, New York, NY, USA, 1990. Springer. A Birthday
Salute to Edsger W. Dijkstra.

[77] J. Fitzgerald and P. G. Larsen. Modelling Systems – Practical Tools and Techniques in
Software Development. Cambridge University Press, The Edinburgh Building, Cambridge
CB2 2RU, UK, 1998. ISBN 0-521-62348-0.

[78] M. Fowler. Domain Specific Languages. Signature Series. Addison Wesley, October 20120.

[79] C. A. Furia, D. Mandrioli, A. Morzenti, and M. Rossi. Modeling Time in Computing. Mono-
graphs in Theoretical Computer Science. Springer, 2012.

[80] K. Futatsugi, D. Găină, and K. Ogata. Principles of proof scores in CafeOBJ. Theor.

Comput. Sci., 464:90–112, 2012.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 192 Lect.12: Domain Science & Engineering

193

[81] K. Futatsugi and A. Nakagawa. An overview of CAFE specification environment - an al-
gebraic approach for creating, verifying, and maintaining formal specifications over net-
works. In Proc. of 1st International Conference on Formal Engineering Methods (ICFEM

’97), November 12-14, 1997, Hiroshima, JAPAN, pages 170–182. IEEE, 1997.

[82] K. Futatsugi, A. Nakagawa, and T. Tamai, editors. CAFE: An Industrial–Strength Algebraic
Formal Method, Sara Burgerhartstraat 25, P.O. Box 211, NL–1000 AE Amsterdam, The
Netherlands, 2000. Elsevier. Proceedings from an April 1998 Symposium, Numazu, Japan.

[83] B. Ganter and R. Wille. Formal Concept Analysis — Mathematical Foundations. Springer-
Verlag, January 1999. ISBN: 3540627715, 300 pages, Amazon price: US $ 44.95.

[84] B. Ganter and R. Wille. Formal Concept Analysis — Mathematical Foundations. Springer-
Verlag, January 1999. ISBN: 3540627715, 300 pages, Amazon price: US $ 44.95.

[85] C. W. George, P. Haff, K. Havelund, A. E. Haxthausen, R. Milne, C. B. Nielsen, S. Prehn,
and K. R. Wagner. The RAISE Specification Language. The BCS Practitioner Series.
Prentice-Hall, Hemel Hampstead, England, 1992.

[86] C. W. George, A. E. Haxthausen, S. Hughes, R. Milne, S. Prehn, and J. S. Pedersen. The
RAISE Development Method. The BCS Practitioner Series. Prentice-Hall, Hemel Hamp-
stead, England, 1995.

[87] D. I. Good and W. D. Young. Mathematical Methods for Digital Systems Development.
In VDM ’91: Formal Software Development Methods, pages 406–430. Springer-Verlag,
October 1991. Volume 2.

[88] C. A. Gunter, E. L. Gunter, M. A. Jackson, and P. Zave. A Reference Model for Require-
ments and Specifications. IEEE Software, 17(3):37–43, May–June 2000.

[89] C. A. Gunter, S. T. Weeks, and A. K. Wright. Models and Languages for Digtial Rights. In
Proc. of the 34th Annual Hawaii International Conference on System Sciences (HICSS-34),
pages 4034–4038, Maui, Hawaii, USA, January 2001. IEEE Computer Society Press.

[90] C. Gunther. Semantics of Programming Languages. The MIT Press, Cambridge, Mass.,
USA, 1992.

[91] P. Hacker. Events and Objects in Space and Time. Mind, 91:1–19, 1982. reprinted in [59],
pp. 429-447.

[92] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274, 1987.

[93] D. Harel and R. Marelly. Come, Let’s Play – Scenario-Based Programming Using LSCs
and the Play-Engine. Springer-Verlag, 2003.

[94] M. Harsu. A Survey on Domain Engineering. Review, Institute of Software Systems, Tam-
pere University of Technology, Finland, December 2002.

[95] D. Haywood. Domain-Driven Design Using Naked Objects. The Pragmatic Bookshelf (an
imprint of ‘The Pragmatic Programmers, LLC.’), http://pragprog.com/, 2009.

[96] M. Heidegger. Sein und Zeit (Being and Time). Oxford University Press, 1927, 1962.

[97] C. A. R. Hoare. Communicating Sequential Processes. C.A.R. Hoare Series in Computer
Science. Prentice-Hall International, 1985. Published electronically: http://www.usingcsp.-
com/cspbook.pdf (2004).

Lect.12: Domain Science & Engineering 193 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

194

[98] IEEE Computer Society. IEEE–STD 610.12-1990: Standard Glossary of Software En-
gineering Terminology. Technical report, IEEE, IEEE Headquarters Office, 1730 Mas-
sachusetts Avenue, N.W., Washington, DC 20036-1992, USA. Phone: +1-202-371-0101,
FAX: +1-202-728-9614, 1990.

[99] ITU-T. CCITT Recommendation Z.120: Message Sequence Chart (MSC), 1992, 1996,
1999.

[100] D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, Cam-
bridge, Mass., USA, April 2006. ISBN 0-262-10114-9.

[101] M. A. Jackson. Software Requirements & Specifications: a lexicon of practice, principles
and prejudices. ACM Press. Addison-Wesley, Reading, England, 1995.

[102] M. A. Jackson. Problem Frames — Analyzing and Structuring Software Development Prob-
lems. ACM Press, Pearson Education. Addison-Wesley, England, 2001.

[103] M. A. Jackson. Program Verification and System Dependability. In P. Boca and J. Bowen,
editors, Formal Methods: State of the Art and New Directions, pages 43–78, London, UK,
2010. Springer.

[104] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development Process.
Addison-Wesley, 1999.

[105] I. Johansson. Qualities, Quantities, and the Endurant-Perdurant Distinction in Top-Level
Ontologies. In D. A. B. R. N. M. R.-B. T. Althoff, K.-D., editor, Professional Knowledge
Management WM 2005, volume 3782 of Lecture Notes in Artificial Intelligence, pages 543–
550. Springer, 2005. 3rd Biennial Conference, Kaiserslautern, Germany, April 10-13, 2005,
Revised Selected Papers.

[106] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. FODA: Fea-
ture-Oriented Domain Analysis. Feasibility Study CMU/SEI-90-TR-021, Soft-
ware Engineering Institute, Carnegie Mellon University, November 1990.
http://www.sei.cmu.edu/library/abstracts/reports/90tr021.cfm.

[107] J. Kim. Supervenience and Mind. Cambridge University Press, 1993.

[108] J. Klose and H. Wittke. An automata based interpretation of Live Sequence Charts. In
T. Margaria and W. Yi, editors, TACAS 2001, LNCS 2031, pages 512–527. Springer-Verlag,
2001.

[109] D. B. . Formal Software Techniques in Railway Systems. In E. Schnieder, editor, 9th

IFAC Symposium on Control in Transportation Systems, pages 1–12, Technical University,
Braunschweig, Germany, 13–15 June 2000. VDI/VDE-Gesellschaft Mess– und Automa-
tisieringstechnik, VDI-Gesellschaft für Fahrzeug– und Verkehrstechnik. Invited talk.

[110] L. Lamport. Specifying Systems. Addison–Wesley, Boston, Mass., USA, 2002.

[111] J. Laprie, editor. Dependability: Basic Concepts and Terminology, volume 5 of Depend-

able Computing and Fault–Tolerant Systems. Springer–Verlag, Vienna, 1992. In English,
French, German, Italian and Japanese.

[112] S. Lauesen. Software Requirements - Styles and Techniques. Addison-Wesley, UK, 2002.

[113] C. Lejewski. A note on Leśniewksi’s Axiom System for the Mereological Notion of Ingredient
or Element. Topoi, 2(1):63–71, June, 1983.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 194 Lect.12: Domain Science & Engineering

195

[114] H. S. Leonard and N. Goodman. The Calculus of Individuals and its Uses. Journal of
Symbolic Logic, 5:45–44, 1940.

[115] W. Little, H. Fowler, J. Coulson, and C. Onions. The Shorter Oxford English Dictionary on

Historical Principles. Clarendon Press, Oxford, England, 1987.

[116] N. Medvidovic and E. Colbert. Domain-Specific Software Architectures (DSSA). Power
Point Presentation, found on The Internet, Absolute Software Corp., Inc.: Abs[S/W], 5
March 2004.

[117] D. Mellor. Things and Causes in Spacetime. British Journal for the Philosophy of Science,
31:282–288, 1980.

[118] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-specific lan-
guages. ACM Computing Surveys, 37(4):316–344, December 2005.

[119] Merriam Webster Staff. Online Dictionary: http://www.m-w.com/home.htm, 2004.
Merriam–Webster, Inc., 47 Federal Street, P.O. Box 281, Springfield, MA 01102, USA.

[120] E. Mettala and M. H. Graham. The Domain Specific Software Architecture Program. Project
Report CMU/SEI-92-SR-009, Software Engineering Institute Carnegie Mellon University
Pittsburgh, Pennsylvania 15213, June 1992.

[121] J. M. Neighbors. The Draco Approach to Constructing Software from Reusable Compo-
nents. IEEE Transactions of Software Engineering, SE-10(5), September 1984.

[122] S. L. Pfleeger. Software Engineering, Theory and Practice. Prentice–Hall, 2nd edition,
2001.

[123] C.-Y. T. Pi. Mereology in Event Semantics. Phd, McGill University, Montreal, Canada,
August 1999.

[124] K. Pohl, G. Bockle, and F. van der Linden. Software Product Line Engineering. Springer,
Berlin, Heidelberg, New York, 2005.

[125] R. S. Pressman. Software Engineering, A Practitioner’s Approach. International Edition,
Computer Science Series. McGraw–Hill, 5th edition, 1981–2001.

[126] R. Prieto-Dı́az. Domain Analysis for Reusability. In COMPSAC 87. ACM Press, 1987.

[127] R. Prieto-Dı́az. Domain analysis: an introduction. Software Engineering Notes, 15(2):47–
54, 1990.

[128] R. Prieto-Dı́az and G. Arrango. Domain Analysis and Software Systems Modelling. IEEE
Computer Society Press, 1991.

[129] R. Pucella and V. Weissman. A Logic for Reasoning about Digital Rights. In Proc. of the

15th IEEE Computer Security Foundations Workshop (CSFW’02), pages 282–294. IEEE
Computer Society Press, 2002.

[130] A. Quinton. Objects and Events. Mind, 88:197–214, 1979.

[131] B. Randell. On Failures and Faults. In FME 2003: Formal Methods, volume 2805 of Lecture
Notes in Computer Science, pages 18–39. Formal Methods Europe, Springer, 2003. Invited
paper.

Lect.12: Domain Science & Engineering 195 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

196

[132] W. Reisig. Petrinetze: Modellierungstechnik, Analysemethoden, Fallstudien. Leitfäden der
Informatik. Vieweg+Teubner, 1st edition, 15 June 2010. 248 pages; ISBN 978-3-8348-
1290-2.

[133] J. Renz and H. W. Guesgen, editors. Spatial and Temporal Reasoning, volume 14, vol.
4, Journal: AI Communications, Amsterdam, The Netherlands, Special Issue. IOS Press,
December 2004.

[134] J. C. Reynolds. The Semantics of Programming Languages. Cambridge University Press,
1999.

[135] D. T. Ross. Computer-aided design. Commun. ACM, 4(5):41–63, 1961.

[136] D. T. Ross. Toward foundations for the understanding of type. In Proceedings of the 1976

conference on Data: Abstraction, definition and structure, pages 63–65, New York, NY,
USA, 1976. ACM.

[137] D. T. Ross and J. E. Ward. Investigations in computer-aided design for numerically con-
trolled production. Final Technical Report ESL-FR-351, , May 1968. 1 December 1959 – 3
May 1967. Electronic Systems Laboratory Electrical Engineering Department, MIT, Cam-
bridge, Massachusetts 02139.

[138] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference

Manual. Addison-Wesley, 1998.

[139] P. Samuelson. Digital rights management {and, or, vs.} the law. Communications of ACM,
46(4):41–45, Apr 2003.

[140] D. Sannella and A. Tarlecki. Foundations of Algebraic Semantcs and Formal Software
Development. Monographs in Theoretical Computer Science. Springer, Heidelberg, 2012.

[141] D. A. Schmidt. Denotational Semantics: a Methodology for Language Development. Allyn
& Bacon, 1986.

[142] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

[143] B. Smith. Mereotopology: A Theory of Parts and Boundaries. Data and Knowledge Engi-
neering, 20:287–303, 1996.

[144] I. Sommerville. Software Engineering. Pearson, 8th edition, 2006.

[145] J. F. Sowa. Knowledge Representation: Logical, Philosophical, and Computational Foun-

dations. Brooks/Cole Thompson Learning, August 17, 1999.

[146] D. Spinellis. Notable design patterns for domain specific languages. Journal of Systems

and Software, 56(1):91–99, Feb. 2001.

[147] Staff of Encyclopœdia Brittanica. Encyclopœdia Brittanica. Merriam Webster/Brittanica:
Access over the Web: http://www.eb.com:180/, 1999.

[148] R. Tennent. The Semantics of Programming Languages. Prentice–Hall Intl., 1997.

[149] W. Tracz. Domain-specific software architecture (DSSA) frequently asked questions (FAQ).
Software Engineering Notes, 19(2):52–56, 1994.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 196 Lect.12: Domain Science & Engineering

197

[150] J. van Benthem. The Logic of Time, volume 156 of Synthese Library: Studies in Episte-
mology, Logic, Methhodology, and Philosophy of Science (Editor: Jaakko Hintika). Kluwer
Academic Publishers, P.O.Box 17, NL 3300 AA Dordrecht, The Netherlands, second edi-
tion, 1983, 1991.

[151] F. Van der Rhee, H. Van Nauta Lemke, and J. Dukman. Knowledge based fuzzy control of
systems. IEEE Trans. Autom. Control, 35(2):148–155, Feb. 1990.

[152] A. van Lamsweerde. Requirements Engineering: From System Goals to UML Models to

Software Specifications. Wiley, 2009.

[153] H. Wang, J. S. Dong, and J. Sun. Reasoning Support for Semantic Web Ontology Family
Languages Using Alloy. International Journal of Multiagent and Grid Systems, IOS Press,
2(4):455–471, 2006.

[154] A. Whitehead. The Concept of Nature. Cambridge University Press, Cambridge, 1920.

[155] G. Wilson and S. Shpall. Action. In E. N. Zalta, editor, The Stanford Encyclopedia of

Philosophy. Summer 2012 edition, 2012.

[156] G. Winskel. The Formal Semantics of Programming Languages. The MIT Press, Cam-
bridge, Mass., USA, 1993.

[157] J. C. P. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement. Prentice
Hall International Series in Computer Science, 1996.

[158] WWW. Domain Descriptions:

1 A Container Line Industry Domain: www2.imm.dtu.dk/˜db/container--

paper.pdf

2 What is Logistics: www2.imm.dtu.dk/˜db/logistics.pdf

3 The “Market”: Consumers, Retailers, Wholesalers, Producers www2.imm.dtu.-

dk/˜db/themarket.pdf

4 MITS: Models of IT Security. Security Rules & Regulations: www2.imm.dtu.-

dk/˜db/it-security.pdf

5 A Domain Model of Oil Pipelines: www2.imm.dtu.dk/˜db/pipeline.pdf

6 A Railway Systems Domain: http://euler.fd.cvut.cz/railwaydomain

7 Transport Systems: www2.imm.dtu.dk/˜db/comet/comet1.pdf

8 The Tokyo Stock Exchange www2.imm.dtu.dk/˜db/todai/tse-1.pdf and
www2.imm.dtu.dk/˜db/todai/tse-2.pdf

9 On Development of Web-based Software. A Divertimento of Ideas and Suggestions:

www2.imm.dtu.dk/˜db/wfdftp.pdf

. R&D Experiments, Dines Bjørner, DTU Informatics, Technical University of Denmark,
2007–2010.

[159] J. Xiang and D. Bjørner. The Electronic Media Industry: A Domain Analysis and a Li-
cense Language. Technical note, JAIST, School of Information Science, 1-1, Asahidai,
Tatsunokuchi, Nomi, Ishikawa, Japan 923-1292, Summer 2006.

[160] C. C. Zhou and M. R. Hansen. Duration Calculus: A Formal Approach to Real–time Sys-
tems. Monographs in Theoretical Computer Science. An EATCS Series. Springer–Verlag,
2004.

Lect.12: Domain Science & Engineering 197 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

Part IV

Appendix

198

Appendix A

RSL

A.1 RSL: The Raise Specification Language

A.1.1 Type Expressions

Type expressions are expressions whose value are type, that is, possibly infinite sets of values
(of “that” type).

Atomic Types

Atomic types have (atomic) values. That is, values which we consider to have no proper con-
stituent (sub-)values, i.e., cannot, to us, be meaningfully “taken apart”.

RSL has a number of built-in atomic types. There are the Booleans, integers, natural numbers,
reals, characters, and texts.

type

[1] Bool true, false

[2] Int ... , −2, −2, 0, 1, 2, ...
[3] Nat 0, 1, 2, ...
[4] Real ..., −5.43, −1.0, 0.0, 1.23· · · , 2,7182· · · , 3,1415· · · , 4.56, ...
[5] Char ”a”, ”b”, ..., ”0”, ...
[6] Text ”abracadabra”

Composite Types

Composite types have composite values. That is, values which we consider to have proper constituent

(sub-)values, i.e., can be meaningfully “taken apart”. There are two ways of expressing composite types:

either explicitly, using concrete type expressions, or implicitly, using sorts (i.e., abstract types) and observer

functions.

Concrete Composite Types From these one can form type expressions: finite sets, infinite sets,

Cartesian products, lists, maps, etc.

Let A, B and C be any type names or type expressions, then:

[7] A-set

[8] A-infset

199

200

[9] A × B × ... × C
[10] A∗

[11] Aω

[12] A →m B[13] A → B

[14] A
∼
→ B

[15] (A)
[16] A | B | ... | C
[17] mk id(sel a:A,...,sel b:B)
[18] sel a:A ... sel b:B

The following are generic type expressions:

1 The Boolean type of truth values false and true.

2 The integer type on integers ..., –2, –1, 0, 1, 2,

3 The natural number type of positive integer values 0, 1, 2, ...

4 The real number type of real values, i.e., values whose numerals can be written as an integer, followed

by a period (“.”), followed by a natural number (the fraction).

5 The character type of character values
′′
a
′′
,
′′
b
′′
, ...

6 The text type of character string values
′′
aa

′′
,
′′
aaa

′′
, ...,

′′
abc

′′
, ...

7 The set type of finite cardinality set values.

8 The set type of infinite and finite cardinality set values.

9 The Cartesian type of Cartesian values.

10 The list type of finite length list values.

11 The list type of infinite and finite length list values.

12 The map type of finite definition set map values.

13 The function type of total function values.

14 The function type of partial function values.

15 In (A) A is constrained to be:

• either a Cartesian B × C × ... × D, in which case it is identical to type expression kind 9,

• or not to be the name of a built-in type (cf., 1–6) or of a type, in which case the parentheses serve

as simple delimiters, e.g., (A →m B), or (A∗)-set, or (A-set)list, or (A|B) →m (C|D|(E→m F)),
etc.

16 The postulated disjoint union of types A, B, . . . , and C.

17 The record type of mk id-named record values mk id(av,...,bv), where av, . . . , bv, are values of

respective types. The distinct identifiers sel a, etc., designate selector functions.

18 The record type of unnamed record values (av,...,bv), where av, . . . , bv, are values of respective

types. The distinct identifiers sel a, etc., designate selector functions.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 200 Lect.12: Domain Science & Engineering

201

Sorts and Observer Functions

type

A, B, C, ..., D
value

obs B: A → B, obs C: A → C, ..., obs D: A → D

The above expresses that values of type A are composed from at least three values — and these are of type

B, C, . . . , and D. A concrete type definition corresponding to the above presupposing material of the next

section

type

B, C, ..., D
A = B × C × ... × D

A.1.2 Type Definitions

Concrete Types

Types can be concrete in which case the structure of the type is specified by type expressions:

type

A = Type expr

Some schematic type definitions are:

[1] Type name = Type expr /∗ without | s or subtypes ∗/
[2] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[3] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[4] Type name :: sel a:Type name a ... sel z:Type name z
[5] Type name = {| v:Type name

′
• P(v) |}

where a form of [2–3] is provided by combining the types:

Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

Types A, B, ..., Z are disjoint, i.e., shares no values, provided all mk id k are distinct and due to the use of

the disjoint record type constructor ==.

axiom

∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1
′
,a2

′
,...,ai

′
) = a in

a1
′
= s a1(a) ∧ a2

′
= s a2(a) ∧ ... ∧ ai

′
= s ai(a) end

Lect.12: Domain Science & Engineering 201 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

202

Subtypes

In RSL, each type represents a set of values. Such a set can be delimited by means of predicates. The set

of values b which have type B and which satisfy the predicate P , constitute the subtype A:

type

A = {| b:B • P(b) |}

Sorts — Abstract Types

Types can be (abstract) sorts in which case their structure is not specified:

type

A, B, ..., C

A.1.3 The RSL Predicate Calculus

Propositional Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values (true or false [or chaos]).

Then:

false, true

a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a6=b

are propositional expressions having Boolean values. ∼, ∧, ∨, ⇒, = and 6= are Boolean connectives (i.e.,

operators). They can be read as: not, and, or, if then (or implies), equal and not equal.

Simple Predicate Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values, let x, y, ..., z (or term

expressions) designate non-Boolean values and let i, j, . . ., k designate number values, then:

false, true

a, b, ..., c
∼a, a∧b, a∨b, a⇒b, a=b, a6=b
x=y, x 6=y,
i<j, i≤j, i≥j, i6=j, i≥j, i>j

are simple predicate expressions.

Quantified Expressions

Let X, Y, . . ., C be type names or type expressions, and let P(x), Q(y) and R(z) designate predicate

expressions in which x,y and z are free. Then:

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

are quantified expressions — also being predicate expressions.

They are “read” as: For all x (values in type X) the predicate P(x) holds; there exists (at least) one y

(value in type Y) such that the predicate Q(y) holds; and there exists a unique z (value in type Z) such that

the predicate R(z) holds.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 202 Lect.12: Domain Science & Engineering

203

A.1.4 Concrete RSL Types: Values and Operations

Arithmetic

type

Nat, Int, Real

value

+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼
→Nat | Int×Int

∼
→Int | Real×Real

∼
→Real

<,≤,=,6=,≥,> (Nat|Int|Real) → (Nat|Int|Real)

Set Expressions
Set Enumerations Let the below a’s denote values of type A, then the below designate simple set

enumerations:

{{}, {a}, {e1,e2,...,en}, ...} ∈ A-set

{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ∈ A-infset

Set Comprehension The expression, last line below, to the right of the ≡, expresses set comprehen-

sion. The expression “builds” the set of values satisfying the given predicate. It is abstract in the sense that

it does not do so by following a concrete algorithm.

type

A, B
P = A → Bool

Q = A
∼
→ B

value

comprehend: A-infset × P × Q → B-infset

comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

Cartesian Expressions
Cartesian Enumerations Let e range over values of Cartesian types involving A, B, . . ., C, then the

below expressions are simple Cartesian enumerations:

type

A, B, ..., C
A × B × ... × C

value

(e1,e2,...,en)

List Expressions
List Enumerations Let a range over values of type A, then the below expressions are simple list enu-

merations:

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ∈ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ∈ Aω

〈 a i .. a j 〉

Lect.12: Domain Science & Engineering 203 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

204

The last line above assumes ai and a j to be integer-valued expressions. It then expresses the set of integers

from the value of ei to and including the value of e j. If the latter is smaller than the former, then the list is

empty.

List Comprehension The last line below expresses list comprehension.

type

A, B, P = A → Bool, Q = A
∼
→ B

value

comprehend: Aω × P × Q
∼
→ Bω

comprehend(l,P,Q) ≡
〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

Map Expressions
Map Enumerations Let (possibly indexed) u and v range over values of type T 1 and T2, respectively,

then the below expressions are simple map enumerations:

type

T1, T2
M = T1 →m T2

value

u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
[], [u7→v], ..., [u17→v1,u27→v2,...,un7→vn] ∀ ∈ M

Map Comprehension The last line below expresses map comprehension:

type

U, V, X, Y
M = U →m V

F = U
∼
→ X

G = V
∼
→ Y

P = U → Bool

value

comprehend: M×F×G×P → (X →m Y)
comprehend(m,F,G,P) ≡

[F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u)]

Set Operations
Set Operator Signatures

value

19 ∈: A × A-infset → Bool

20 6∈: A × A-infset → Bool

21 ∪: A-infset × A-infset → A-infset

22 ∪: (A-infset)-infset → A-infset

23 ∩: A-infset × A-infset → A-infset

24 ∩: (A-infset)-infset → A-infset

25 \: A-infset × A-infset → A-infset

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 204 Lect.12: Domain Science & Engineering

205

26 ⊂: A-infset × A-infset → Bool

27 ⊆: A-infset × A-infset → Bool

28 =: A-infset × A-infset → Bool

29 6=: A-infset × A-infset → Bool

30 card: A-infset
∼
→ Nat

Set Examples

examples

a ∈ {a,b,c}
a 6∈ {}, a 6∈ {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} 6= {a,b}
card {} = 0, card {a,b,c} = 3

Informal Explication

19 ∈: The membership operator expresses that an element is a member of a set.

20 6∈: The nonmembership operator expresses that an element is not a member of a set.

21 ∪: The infix union operator. When applied to two sets, the operator gives the set whose members are

in either or both of the two operand sets.

22 ∪: The distributed prefix union operator. When applied to a set of sets, the operator gives the set

whose members are in some of the operand sets.

23 ∩: The infix intersection operator. When applied to two sets, the operator gives the set whose

members are in both of the two operand sets.

24 ∩: The prefix distributed intersection operator. When applied to a set of sets, the operator gives the

set whose members are in some of the operand sets.

25 \: The set complement (or set subtraction) operator. When applied to two sets, the operator gives the

set whose members are those of the left operand set which are not in the right operand set.

26 ⊆: The proper subset operator expresses that all members of the left operand set are also in the right

operand set.

27 ⊂: The proper subset operator expresses that all members of the left operand set are also in the right

operand set, and that the two sets are not identical.

28 =: The equal operator expresses that the two operand sets are identical.

29 6=: The nonequal operator expresses that the two operand sets are not identical.

30 card: The cardinality operator gives the number of elements in a finite set.

Lect.12: Domain Science & Engineering 205 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

206

Set Operator Definitions The operations can be defined as follows (≡ is the definition symbol):

value

s
′
∪ s

′′
≡ { a | a:A • a ∈ s

′
∨ a ∈ s

′′
}

s
′
∩ s

′′
≡ { a | a:A • a ∈ s

′
∧ a ∈ s

′′
}

s
′
\ s

′′
≡ { a | a:A • a ∈ s

′
∧ a 6∈ s

′′
}

s
′
⊆ s

′′
≡ ∀ a:A • a ∈ s

′
⇒ a ∈ s

′′

s
′
⊂ s

′′
≡ s

′
⊆ s

′′
∧ ∃ a:A • a ∈ s

′′
∧ a 6∈ s

′

s
′
= s

′′
≡ ∀ a:A • a ∈ s

′
≡ a ∈ s

′′
≡ s⊆s

′
∧ s

′
⊆s

s
′
6= s

′′
≡ s

′
∩ s

′′
6= {}

card s ≡
if s = {} then 0 else

let a:A • a ∈ s in 1 + card (s \ {a}) end end

pre s /∗ is a finite set ∗/
card s ≡ chaos /∗ tests for infinity of s ∗/

Cartesian Operations

type

A, B, C
g0: G0 = A × B × C
g1: G1 = (A × B × C)
g2: G2 = (A × B) × C
g3: G3 = A × (B × C)

value

va:A, vb:B, vc:C, vd:D
(va,vb,vc):G0,

(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions

let (a1,b1,c1) = g0,
(a1

′
,b1

′
,c1

′
) = g1 in .. end

let ((a2,b2),c2) = g2 in .. end

let (a3,(b3,c3)) = g3 in .. end

List Operations
List Operator Signatures

value

hd: Aω ∼
→ A

tl: Aω ∼
→ Aω

len: Aω ∼
→ Nat

inds: Aω → Nat-infset

elems: Aω → A-infset

.(.): Aω × Nat
∼
→ A

:̂ A∗ × Aω → Aω=: Aω × Aω → Bool6=: Aω × Aω → Bool

List Operation Examples

examples

hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 206 Lect.12: Domain Science & Engineering

207

〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂ 〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 6= 〈a,b,d〉

Informal Explication

• hd: Head gives the first element in a nonempty list.

• tl: Tail gives the remaining list of a nonempty list when Head is removed.

• len: Length gives the number of elements in a finite list.

• inds: Indices give the set of indices from 1 to the length of a nonempty list. For empty lists, this set

is the empty set as well.

• elems: Elements gives the possibly infinite set of all distinct elements in a list.

• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ having a number of elements larger

than or equal to i, gives the i th element of the list.

• :̂ Concatenates two operand lists into one. The elements of the left operand list are followed by the

elements of the right. The order with respect to each list is maintained.

• =: The equal operator expresses that the two operand lists are identical.

• 6=: The nonequal operator expresses that the two operand lists are not identical.

The operations can also be defined as follows:

List Operator Definitions

value

is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true → if q = 〈〉 then 0 else 1 + len tl q end,
false → chaos end

inds q ≡
case is finite list(q) of

true → { i | i:Nat • 1 ≤ i ≤ len q },
false → { i | i:Nat • i6=0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

q(i) ≡
if i=1

then

if q6=〈〉
then let a:A,q

′
:Q • q=〈a〉̂ q

′
in a end

else chaos end

Lect.12: Domain Science & Engineering 207 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

208

else q(i−1) end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end

| i:Nat • if len iq6=chaos then i ≤ len fq+len end 〉
pre is finite list(fq)

iq
′
= iq

′′
≡

inds iq
′
= inds iq

′′
∧ ∀ i:Nat • i ∈ inds iq

′
⇒ iq

′
(i) = iq

′′
(i)

iq
′
6= iq

′′
≡ ∼(iq

′
= iq

′′
)

Map Operations

Map Operator Signatures and Map Operation Examples

value

m(a): M → A
∼
→ B, m(a) = b

dom: M → A-infset [domain of map]
dom [a17→b1,a27→b2,...,an7→bn] = {a1,a2,...,an}

rng: M → B-infset [range of map]
rng [a17→b1,a27→b2,...,an7→bn] = {b1,b2,...,bn}

†: M × M → M [override extension]
[a7→b,a

′
7→b

′
,a

′′
7→b

′′
] † [a

′
7→b

′′
,a

′′
7→b

′
] = [a7→b,a

′
7→b

′′
,a

′′
7→b

′
]

∪: M × M → M [merge ∪]
[a7→b,a

′
7→b

′
,a

′′
7→b

′′
] ∪ [a

′′′
7→b

′′′
] = [a7→b,a

′
7→b

′
,a

′′
7→b

′′
,a

′′′
7→b

′′′
]

\: M × A-infset → M [restriction by]
[a7→b,a

′
7→b

′
,a

′′
7→b

′′
]\{a} = [a

′
7→b

′
,a

′′
7→b

′′
]

/: M × A-infset → M [restriction to]
[a7→b,a

′
7→b

′
,a

′′
7→b

′′
]/{a

′
,a

′′
} = [a

′
7→b

′
,a

′′
7→b

′′
]

=,6=: M × M → Bool

◦: (A →m B) × (B →m C) → (A →m C) [composition]
[a7→b,a

′
7→b

′
] ◦ [b7→c,b

′
7→c

′
,b

′′
7→c

′′
] = [a7→c,a

′
7→c

′
]

Map Operation Explication

• m(a): Application gives the element that a maps to in the map m.

• dom: Domain/Definition Set gives the set of values which maps to in a map.

• rng: Range/Image Set gives the set of values which are mapped to in a map.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 208 Lect.12: Domain Science & Engineering

209

• †: Override/Extend. When applied to two operand maps, it gives the map which is like an override

of the left operand map by all or some “pairings” of the right operand map.

• ∪: Merge. When applied to two operand maps, it gives a merge of these maps.

• \: Restriction. When applied to two operand maps, it gives the map which is a restriction of the left

operand map to the elements that are not in the right operand set.

• /: Restriction. When applied to two operand maps, it gives the map which is a restriction of the left

operand map to the elements of the right operand set.

• =: The equal operator expresses that the two operand maps are identical.

• 6=: The nonequal operator expresses that the two operand maps are not identical.

• ◦: Composition. When applied to two operand maps, it gives the map from definition set elements

of the left operand map, m1, to the range elements of the right operand map, m2, such that if a is in

the definition set of m1 and maps into b, and if b is in the definition set of m2 and maps into c, then

a, in the composition, maps into c.

Map Operation Redefinitions The map operations can also be defined as follows:

value

rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[a7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m1 ∪ m2 ≡ [a7→b | a:A,b:B •

a ∈ dom m1 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a)]

m \ s ≡ [a7→m(a) | a:A • a ∈ dom m \ s]
m / s ≡ [a7→m(a) | a:A • a ∈ dom m ∩ s]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1 ⇒ m1(a) = m2(a)

m1 6= m2 ≡ ∼(m1 = m2)

m◦n ≡
[a7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a))]
pre rng m ⊆ dom n

A.1.5 λ -Calculus + Functions

The λ -Calculus Syntax

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | (〈A〉)
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ 〈V〉 • 〈L〉
〈A〉 ::= (〈L〉〈L〉)

value /∗ Examples ∗/

Lect.12: Domain Science & Engineering 209 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

210

〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

Free and Bound Variables

Let x,y be variable names and e, f be λ -expressions.

• 〈V〉: Variable x is free in x.

• 〈F〉: x is free in λ y •e if x 6= y and x is free in e.

• 〈A〉: x is free in f (e) if it is free in either f or e (i.e., also in both).

Substitution

In RSL, the following rules for substitution apply:

• subst([N/x]x)≡ N;

• subst([N/x]a)≡ a,

for all variables a6= x;

• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));

• subst([N/x](λ x•P)) ≡ λ y•P;

• subst([N/x](λ y•P)) ≡ λ y• subst([N/x]P),

if x 6=y and y is not free in N or x is not free in P;

• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),

if y 6=x and y is free in N and x is free in P

(where z is not free in (N P)).

α-Renaming and β -Reduction

• α-renaming: λx•M

If x, y are distinct variables then replacing x by y in λx•M results in λy•subst([y/x]M). We can

rename the formal parameter of a λ -function expression provided that no free variables of its body

M thereby become bound.

• β -reduction: (λx•M)(N)

All free occurrences of x in M are replaced by the expression N provided that no free variables of N
thereby become bound in the result. (λx•M)(N) ≡ subst([N/x]M)

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 210 Lect.12: Domain Science & Engineering

211

Function Signatures

For sorts we may want to postulate some functions:

type

A, B, C
value

obs B: A → B,
obs C: A → C,
gen A: B×C → A

Function Definitions

Functions can be defined explicitly:

value

f: Arguments → Result
f(args) ≡ DValueExpr

g: Arguments
∼
→ Result

g(args) ≡ ValueAndStateChangeClause
pre P(args)

Or functions can be defined implicitly:

value

f: Arguments → Result
f(args) as result
post P1(args,result)

g: Arguments
∼
→ Result

g(args) as result
pre P2(args)
post P3(args,result)

The symbol
∼
→ indicates that the function is partial and thus not defined for all arguments. Partial functions

should be assisted by preconditions stating the criteria for arguments to be meaningful to the function.

A.1.6 Other Applicative Expressions

Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

Lect.12: Domain Science & Engineering 211 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

212

Recursive let Expressions

Recursive let expressions are written as:

let f = λa:A • E(f) in B(f,a) end

is “the same” as:

let f = YF in B(f,a) end

where:

F ≡ λg•λa•(E(g)) and YF = F(YF)

Predicative let Expressions

Predicative let expressions:

let a:A • P(a) in B(a) end

express the selection of a value a of type A which satisfies a predicate P(a) for evaluation in the body

B(a).

Pattern and “Wild Card” let Expressions

Patterns and wild cards can be used:

let {a} ∪ s = set in ... end

let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end

let (a, ,...,c) = cart in ... end

let 〈a〉̂ ℓ = list in ... end

let 〈a, ,b〉̂ ℓ = list in ... end

let [a7→b] ∪ m = map in ... end

let [a7→b,] ∪ m = map in ... end

Conditionals

Various kinds of conditional expressions are offered by RSL:

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 212 Lect.12: Domain Science & Engineering

213

elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of

choice pattern 1 → expr 1,
choice pattern 2 → expr 2,
...
choice pattern n or wild card → expr n

end

Operator/Operand Expressions

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
= | 6= | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | 6∈ | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

A.1.7 Imperative Constructs

Statements and State Changes

Often, following the RAISE method, software development starts with highly abstract-applicative con-

structs which, through stages of refinements, are turned into concrete and imperative constructs. Imperative

constructs are thus inevitable in RSL.

Unit

value

stmt: Unit → Unit

stmt()

• Statements accept no arguments.

• Statement execution changes the state (of declared variables).

• Unit → Unit designates a function from states to states.

• Statements, stmt, denote state-to-state changing functions.

• Writing () as “only” arguments to a function “means” that () is an argument of type Unit.

Lect.12: Domain Science & Engineering 213 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

214

Variables and Assignment

0. variable v:Type := expression
1. v := expr

Statement Sequences and skip

Sequencing is expressed using the ‘;’ operator. skip is the empty statement having no value or side-effect.

2. skip

3. stm 1;stm 2;...;stm n

Imperative Conditionals

4. if expr then stm c else stm a end

5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

Iterative Conditionals

6. while expr do stm end

7. do stmt until expr end

Iterative Sequencing

8. for e in list expr • P(b) do S(b) end

A.1.8 Process Constructs

Process Channels

Let A and B stand for two types of (channel) messages and i:KIdx for channel array indexes, then:

channel c:A
channel { k[i]:B • i:KIdx }

declare a channel, c, and a set (an array) of channels, k[i], capable of communicating values of the desig-

nated types (A and B).

Process Composition

Let P and Q stand for names of process functions, i.e., of functions which express willingness to engage in

input and/or output events, thereby communicating over declared channels. Let P() and Q stand for process

expressions, then:

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition

express the parallel (‖) of two processes, or the nondeterministic choice between two processes: either

external (⌈⌉⌊⌋) or internal (⌈⌉). The interlock (–‖) composition expresses that the two processes are forced to

communicate only with one another, until one of them terminates.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 214 Lect.12: Domain Science & Engineering

215

Input/Output Events

Let c, k[i] and e designate channels of type A and B, then:

c ?, k[i] ? Input
c ! e, k[i] ! e Output

expresses the willingness of a process to engage in an event that “reads” an input, respectively “writes” an

output.

Process Definitions

The below signatures are just examples. They emphasise that process functions must somehow express, in

their signature, via which channels they wish to engage in input and output events.

value

P: Unit → in c out k[i]
Unit

Q: i:KIdx → out c in k[i] Unit

P() ≡ ... c ? ... k[i] ! e ...
Q(i) ≡ ... k[i] ? ... c ! e ...

The process function definitions (i.e., their bodies) express possible events.

A.1.9 Simple RSL Specifications

Often, we do not want to encapsulate small specifications in schemes, classes, and objects, as is often done

in RSL. An RSL specification is simply a sequence of one or more types, values (including functions),

variables, channels and axioms:

type

...
variable

...
channel

...
value

...
axiom

...

In practice a full specification repeats the above listings many times, once for each “module” (i.e., as-

pect, facet, view) of specification. Each of these modules may be “wrapped” into scheme, class or object

definitions.1

1For schemes, classes and objects we refer to [23, Chap. 10]

Lect.12: Domain Science & Engineering 215 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

Appendix B

Indexes

B.1. Endurant Analysis Prompts 216

B.2. Description Language Observers and “Built-in” Functions 216

B.3. Description Prompts and Their Schemas 216

B.4. Attribute Analysis Prompts 217

B.5. [Well-formedness] Axioms 217

B.6. [Disjoint Sort] Proof Obligations 217

B.7. Definitions 217

B.8. Examples 222

B.9. Concepts 225

B.10 Index of RSL Language Constructs 233

B.1 Index of Endurant Analysis Prompts

a. is entity, 23

b. is endurant, 24

c. is perdurant, 24

d. is discrete, 24

e. is continuous, 24

f. is part, 25

g. is component, 25

h. is material, 26

i. is atomic, 26

j. is composite, 26

k. observe parts, 27

l. has concrete type, 29

m. has mereology, 34

n. attribute names, 38

o. has components, 44

p. has materials, 45

B.2 Description Language Observers and “Built-in” Functions

a. obs part P, 28

b. is P, 28

c. obs part T, 29

d. uid P, 33

e. mereo P, 35

f. upd mereology, 36

g. attr A, 38

h. components, 44

i. obs part M, 46

j. materials, 46

B.3 Domain Description Prompts and Their Schemas

216

217

[1] observe part sorts, 28

[2] observe part type, 29

[3] observe unique identifier, 33

[4] observe mereology, 35

[5] observe attributes, 39

[6] observe component sorts, 44

[7] observe material sorts, 45

1. Part Sort Observers, 28

2. Part Type Observers, 29

3. Part Unique Identifier, 33

4. Part Mereology, 35

5. Part Attributes, 39

6. Component Observers, 44

7. Material Observers, 45

B.4 Attribute Analysis Prompts

A. is static attribute, 40

B. is dynamic attribute, 40

C. is inert attribute, 40

D. is reactive attribute, 40

E. is active attribute, 40

F. is autonomous attribute, 40

G. is biddable attribute, 40

H. is programmable attribute, 40

I. is external attribute, 41

B.5 [Well–formedness] Axioms

Domain Mereologies, 35

Hub States, HΣ, 40

Links, L, and Hubs, H, 34

Pipeline Route Descriptors, 49

Pipeline Systems, PLS (0), 36

Pipeline Systems, PLS (1), 47

Pipeline Systems, PLS (2), 48

Pipeline Systems, PLS (3), 50

Road Nets, N, 35

B.6 [Disjoint Sort] Proof Obligations

Disjointness of Attribute Types, 39

Disjointness of Component Sorts, 44

Disjointness of Material Sorts, 46

Disjointness of Part Sorts, 28

B.7 Definitions

description

domain

prompt, 29, 33, 39, 44, 45, 52, 71, 183

prompt

domain, 29, 33, 39, 44, 45, 52, 71, 183

domain

description

prompt, 29, 33, 39, 44, 45, 52, 71, 183

prompt

description, 29, 33, 39, 44, 45, 52, 71, 183

prompt

description

domain, 29, 33, 39, 44, 45, 52, 71, 183

domain

description, 29, 33, 39, 44, 45, 52, 71, 183

abstract

type, 27

Accessibility, 174

action

Lect.12: Domain Science & Engineering 217 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

218

discrete, 53

active

attribute, 40

Actor, 53

actor, 53

Adaptive Maintenance, 176

analysis

domain

prompt, 20, 23–27, 29, 34, 38, 44, 45, 52,

71, 183

prompt

domain, 20, 23–27, 29, 34, 38, 44, 45, 52,

71, 183

Atomic

part, 26

Atomic Part, 26

attribute

active, 40

behaviour

external, 56

biddable, 40

dynamic, 40

external, 41

behaviour, 56

inert, 40

programmable, 40

reactive, 40

shared, 42

static, 40

autonomous

attribute, 40

Availability, 174

behaviour

attribute

external, 56

continuous, 56

discrete, 54

external

attribute, 56

biddable

attribute, 40

Component, 25

component, 25

Composite

part, 26

Composite Part, 26

computer

science, 17

computing

science, 17

concept

formal, 22

concrete

type, 27

confusion, 48

context

formal, 22

continuous

behaviour, 56

endurant, 24

Continuous Endurant, 24

Corrective Maintenance, 177

Demonstration Platform Requirements, 178

Dependability, 173

Dependability Attribute, 174

derived, 30

description

domain, 18, 19

prompt, 20, 35

path

tree, 100

prompt

domain, 20, 35

text, 18

tree

path, 100

trees, 100

Determination, 160

determination

domain, 160

Development Platform Requirements, 178

discrete

action, 53

behaviour, 54

endurant, 24

Discrete Action, 53

Discrete Behaviour, 54

Discrete Endurant, 24

Documentation Requirements, 179

domain

analysis

prompt, 20, 23–27, 29, 34, 38, 44, 45, 52,

71, 183

description, 18, 19

prompt, 20, 35

determination, 160

extension, 161

facet, 74

instantiation, 156

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 218 Lect.12: Domain Science & Engineering

219

intrinsics, 75

manifest, 17

partial

requirement, 167

prescription

requirements, 154

projection, 154

prompt

analysis, 20, 23–27, 29, 34, 38, 44, 45, 52,

71, 183

description, 20, 35

requirement

partial, 167

shared, 167

requirements, 151, 154

prescription, 154

shared

requirement, 167

stake-holder, 74

Domain Management, 79

Domain Organisation, 79

Domain Projection, 154

Domain Regulation, 82

Domain Requirements Prescription, 154

Domain Rules, 82

Domain Script, 84

duplicate

node, 98

dynamic

attribute, 40

Endurant, 23

endurant, 23

continuous, 24

discrete, 24

Entity, 23

entity, 23

Epistemology, 52

Error, 173

Event, 54

event, 54

Execution Platform Requirements, 178

expression

function

type, 57

type

function, 57

Extension, 161

extension

domain, 161

Extensional Maintenance, 177

extent, 22

external

attribute, 41

behaviour, 56

behaviour

attribute, 56

part

quality, 32

quality

part, 32

Facet, 74

facet

domain, 74

Failure, 173

Fault, 173

fitting

requirements, 167

formal

concept, 22

context, 22

function

expression

type, 57

signature, 57

type

expression, 57

Function Signature, 57

Function Type Expression, 57

functional

requirements, 154

Functional Requirements, 154

harmonisation

requirements, 167

has concrete type

prerequisite

prompt, 29

prompt

prerequisite, 29

has mereology

prerequisite

prompt, 35

prompt

prerequisite, 35

head

pump, 56

Human Behaviour, 86

inert

attribute, 40

Instantiation, 156

Lect.12: Domain Science & Engineering 219 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

220

instantiation

domain, 156

Integrity, 175

intent, 22

interface

requirements, 151, 154, 168

internal

part

quality, 32

quality

part, 32

Intrinsics, 75

intrinsics

domain, 75

is composite

prerequisite

prompt, 28

prompt

prerequisite, 28

is discrete

prerequisite

prompt, 27

prompt

prerequisite, 27

is entity

prerequisite

prompt, 23, 24

prompt

prerequisite, 23, 24

junk, 48

knowledge, 66

Machine, 152

machine, 151, 172

requirements, 151, 154, 172

Machine Requirements, 172

Machine Service, 173

Maintenance Platform Requirements, 178

Maintenance Requirements, 176

manifest

domain, 17

Material, 25

material, 25, 45

mereology, 34

type, 34

method, 16

methodology, 17

narrative

requirements

system, 153

user and external equipment, 153

system

requirements, 153

user and external equipment

requirements, 153

node

duplicate, 98

observe part type

prerequisite

prompt, 29

prompt

prerequisite, 29

Ontology, 52

Part, 25

part, 25

Atomic, 26

Composite, 26

external

quality, 32

internal

quality, 32

qualities, 32

quality

external, 32

internal, 32

partial

domain

requirement, 167

requirement

domain, 167

path

description

tree, 100

tree

description, 100

Perdurant, 23

perdurant, 23

Perfective Maintenance, 177

Performance Requirements, 172

phenomenon, 23

Platform, 178

Platform Requirements, 178

prerequisite

has concrete type

prompt, 29

has mereology

prompt, 35

is composite

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 220 Lect.12: Domain Science & Engineering

221

prompt, 28

is discrete

prompt, 27

is entity

prompt, 23, 24

observe part type

prompt, 29

prompt

has concrete type, 29

has mereology, 35

is composite, 28

is discrete, 27

is entity, 23, 24

observe part type, 29

prescription

domain

requirements, 154

requirements, 151

domain, 154

Preventive Maintenance, 177

problem/objective

sketch, 153

Problem/Objective Sketch, 153

programmable

attribute, 40

projection

domain, 154

prompt

analysis

domain, 20, 23–27, 29, 34, 38, 44, 45, 52,

71, 183

description

domain, 20, 35

domain

analysis, 20, 23–27, 29, 34, 38, 44, 45, 52,

71, 183

description, 20, 35

has concrete type

prerequisite, 29

has mereology

prerequisite, 35

is composite

prerequisite, 28

is discrete

prerequisite, 27

is entity

prerequisite, 23, 24

observe part type

prerequisite, 29

prerequisite

has concrete type, 29

has mereology, 35

is composite, 28

is discrete, 27

is entity, 23, 24

observe part type, 29

pump

head, 56

qualities

part, 32

quality

external

part, 32

internal

part, 32

part

external, 32

internal, 32

reactive

attribute, 40

Reliability, 175

requirement

domain

partial, 167

shared, 167

partial

domain, 167

shared

domain, 167

requirements, 151, 152

domain, 151, 154

prescription, 154

fitting, 167

functional, 154

harmonisation, 167

interface, 151, 154, 168

machine, 151, 154, 172

narrative

system, 153

user and external equipment, 153

prescription, 151

domain, 154

system

narrative, 153

user and external equipment

narrative, 153

Requirements (I), 151

Requirements (II), 152

Requirements (III), 152

Requirements Fitting, 167

Lect.12: Domain Science & Engineering 221 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

222

Requirements Harmonisation, 167

Robustness, 176

Safety, 175

science

computer, 17

computing, 17

Security, 176

share, 42

shared

attribute, 42

domain

requirement, 167

requirement

domain, 167

sharing, 168

signature

function, 57

sketch

problem/objective, 153

Software, 179

software, 179

sort, 27

stake-holder, 74

domain, 74

State, 52

state, 52

State-holder, 74

static

attribute, 40

sub-part, 26

Support technology, 77

system

narrative

requirements, 153

requirements

narrative, 153

System Requirements, 153

text

description, 18

The Machine, 172

tree

description

path, 100

path

description, 100

trees

description, 100

type, 27

abstract, 27

concrete, 27

expression

function, 57

function

expression, 57

mereology, 34

user and external equipment

narrative

requirements, 153

requirements

narrative, 153

User and External Equipment Requirements, 153

B.8 Examples

126 A Law of Train Traffic at Stations, 184

66 A Law of Train Traffic, 72

54 Actors, 53

36 Atomic Part Attributes, 38

18 Atomic Parts, 26

35 Attribute Propositions and Other Values, 38

41 Autonomous and Programmable Hub Attributes,

41

60 Bank System Channels, 55

58 Behaviours, 54

59 Bus System Channels, 55

65 Bus Timetable Coordination, 61

15 Components, 25

37 Composite Part Attributes, 38

19 Composite Parts, 26

20 Composite and Atomic Part Sorts of Transporta-

tion, 28

21 Concrete Part Types of Transportation, 30

46 Container Components, 45

22 Container Line Sorts, 30

13 Continuous Endurants, 24

28 Derivation Chains, 32

12 Discrete Endurants, 24

4 Endurant Entity Qualities, 17

61 Flow in Pipelines, 56

7 Formal Description of Bank System Endurants, 18

9 Formal Description of Bank System Perdurants,

19

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 222 Lect.12: Domain Science & Engineering

223

39 Inert and Reactive Attributes, 40

62 Insert Hub Action Formalisation, 57

64 Link Disappearence Formalisation, 59

2 Manifest Domain Endurants, 17

1 Manifest Domain Names, 17

3 Manifest Domain Perdurants, 17

16 Materials, 25

34 Mereology Update, 37

6 Narrative Description of Bank System Endurants,

18

8 Narrative Description of Bank System Perdurants,

19

52 No Pipeline Junk, 49

17 Parts Containing Materials, 25

45 Parts and Components, 44

47 Parts and Materials, 45

55 Parts, Attributes and Behaviours, 53

14 Parts, 25

5 Perdurant Entity Qualities, 18

49 Pipeline Material Flow, 46

48 Pipeline Material, 46

33 Pipeline Parts Mereology, 36

27 Pipeline Parts, 31

51 Pipelines: Inter Unit Flow and Leak Law, 48

50 Pipelines: Intra Unit Flow and Leak Law, 47

38 Road Hub Attributes, 39

56 Road Net Actions, 53

32 Road Net Part Mereologies, 35

57 Road Net and Road Traffic Events, 54

30 Shared Attribute Mereology, 34

42 Shared Attributes, 42

44 Shared Passbooks, 43

43 Shared Timetables, 42

63 Some Function Signatures, 58

67 Some Stake-holders, 74

53 States, 52

40 Static, Programmable and Inert Link Attributes,

40

31 Topological Connectedness Mereology, 34

10 Traffic System Endurants, 23

11 Traffic System Perdurants, 24

29 Unique Transportation Net Part Identifiers, 33

77 Trains Along Lines, 82–83

72 Probabilistic Rail Switch Unit State Transitions,

78

73 Railway Optical Gates, 78–79

74 Train Monitoring, I, 79

76 Trains at Stations, 82

69 Comparable Intrinsics, 76

70 Intrinsics of Switches, 76–77

81 A Human Behaviour Mortgage Calculation, 87

79 A Formally Described Bank Script, 85–86

78 A Casually Described Bank Script, 84–85

80 Banking — or Programming — Staff Behaviour,

86–87

75 Railway Management and Organisation: Train

Monitoring, II, 80

68 Railway Net Intrinsics, 75–76

71 Railway Support Technology, 77–78

A Law of Train Traffic (# 66), 72

A Law of Train Traffic at Stations (# 126), 184

Actors (# 54), 53

Atomic Part Attributes (# 36), 38

Atomic Parts (# 18), 26

Attribute Propositions and Other Values (# 35), 38

Autonomous and Programmable Hub Attributes

(# 41), 41

Bank System Channels (# 60), 55

Behaviours (# 58), 54

Bus System Channels (# 59), 55

Bus Timetable Coordination (# 65), 61–62

ch15fac.10 (# 77), 82–83

ch15fac.6 (# 72), 78

ch15fac.7 (# 73), 78–79

ch15fac.8 (# 74), 79

ch15fac.9 (# 76), 82

ch5-diff-models (# 69), 76

ch5-v-i (# 68), 75–76

ch5-v-i-2 (# 70), 76–77

ch5-v-ii-bank-f (# 81), 87

ch5-v-ii-ds (# 78), 84–85

ch5-v-ii-ds-f (# 79), 85–86

ch5-v-ii-hb (# 80), 86–87

ch5-v-ii-mao (# 75), 80

ch5-v-st (# 71), 77–78

Components (# 15), 25

Composite and Atomic Part Sorts of Transportation

(# 20), 28–29

Composite Part Attributes (# 37), 38

Composite Parts (# 19), 26

Concrete Part Types of Transportation (# 21), 30

Container Components (# 46), 45

Container Line Sorts (# 22), 30–31

Continuous Endurants (# 13), 24

Derivation Chains (# 28), 32

Discrete Endurants (# 12), 24

Domain Requirements

Determination

Toll-roads (# 97), 160–161

Lect.12: Domain Science & Engineering 223 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

224

Extension

Calculator Behaviour (# 106), 166

Gate Behaviour (# 105), 165–166

Global Values (# 102), 164

Main Sorts (# 101), 164

Parts, Properties and Channels (# 100), 163–

164

System Behaviour (# 103), 164–165

Toll-road Net: Parts, Properties and Chan-

nels (# 99), 162–163

Vehicle Behaviour (# 104), 165

Vehicles: Parts, Properties and Channels

(# 98), 161–162

Fitting

A Sketch (# 107), 168

Instantiation

Road Net, Abstraction (# 96), 159–160

Road Net, Formal Types (# 94), 157–158

Road Net, Narrative (# 93), 157

Road Net, Well-formedness (# 95), 158–159

Projection

A Narrative Sketch (# 85), 154

Attributes of Hubs (# 90), 155–156

Attributes of Links (# 91), 156

Behaviour (# 92), 156

Road Net Mereology (# 89), 155

Root Sorts (# 86), 155

Sub-domain Sorts and Types (# 87), 155

Unique Identifications (# 88), 155

Endurant Entity Qualities (# 4), 17

Flow in Pipelines (# 61), 56

Formal Description of Bank System Endurants (# 7),

18–19

Formal Description of Bank System Perdurants

(# 9), 19

Inert and Reactive Attributes (# 39), 40

Insert Hub Action Formalisation (# 62), 57–58

Interface Requirements

Shared

Actions, Events and Behaviours (# 110), 172

Endurant Initialisation (# 109), 169–171

Endurants (# 108), 169

Link Disappearence Formalisation (# 64), 59

Machine Requirements

Documentation (# 125), 179

Road-pricing System

Accessibility (# 112), 174

Adaptive Maintenance (# 119), 177

Availability (# 113), 175

Corrective Maintenance (# 120), 177

Extensional Maintenance (# 123), 177

Integrity (# 114), 175

Perfective Maintenance (# 121), 177

Performance (# 111), 173

Platform Requirements (# 124), 178

Preventive Maintenance (# 122), 177

Reliability (# 115), 175

Robustness (# 118), 176

Safety (# 116), 175

Security (# 117), 176

Manifest Domain Endurants (# 2), 17

Manifest Domain Names (# 1), 17

Manifest Domain Perdurants (# 3), 17

Materials (# 16), 25

Mereology Update (# 34), 37

Narrative Description of Bank System Endurants

(# 6), 18

Narrative Description of Bank System Perdurants

(# 8), 19

No Pipeline Junk (# 52), 49–51

Parts (# 14), 25

Parts and Components (# 45), 44

Parts and Materials (# 47), 45

Parts Containing Materials (# 17), 25

Parts, Attributes and Behaviours (# 55), 53

Perdurant Entity Qualities (# 5), 18

Pipeline Material (# 48), 46

Pipeline Material Flow (# 49), 46–47

Pipeline Parts (# 27), 31–32

Pipeline Parts Mereology (# 33), 36

Pipelines: Inter Unit Flow and Leak Law (# 51), 48

Pipelines: Intra Unit Flow and Leak Law (# 50), 47–

48

Requirements

The Problem/Objective

A Sketch (# 82), 153

The Road-pricing System

A Narrative (# 83), 153

The Road-pricing User and External Equip-

ment

Narrative (# 84), 153–154

Road Hub Attributes (# 38), 39–40

Road Net Actions (# 56), 53

Road Net and Road Traffic Events (# 57), 54

Road Net Part Mereologies (# 32), 35

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 224 Lect.12: Domain Science & Engineering

225

Shared Attribute Mereology (# 30), 34

Shared Attributes (# 42), 42

Shared Passbooks (# 44), 43

Shared Timetables (# 43), 42–43

Some Function Signatures (# 63), 58

Some Stake-holders (# 67), 74

States (# 53), 52

Static, Programmable and Inert Link Attributes

(# 40), 40–41

Topological Connectedness Mereology (# 31), 34

Traffic System Endurants (# 10), 23

Traffic System Perdurants (# 11), 24

Unique Transportation Net Part Identifiers (# 29),

33–34

B.9 Concepts

[endurant]

analysis prompts

domain, 90

description prompts

domain, 90

domain

analysis prompts, 90

description prompts, 90

description

domain

prompt, 29, 33, 39, 44, 45, 52, 71, 183

prompt

domain, 29, 33, 39, 44, 45, 52, 71, 183

domain

description

prompt, 29, 33, 39, 44, 45, 52, 71, 183

prompt

description, 29, 33, 39, 44, 45, 52, 71, 183

prompt

description

domain, 29, 33, 39, 44, 45, 52, 71, 183

domain

description, 29, 33, 39, 44, 45, 52, 71, 183

abstract

value, 33

abstraction, 23

access

attribute

value, 42

value

attribute, 42

accessibility, 174

action, 19, 52

adaptive maintenance, 176

algorithmic

engineering, 66

analyser

domain, 16, 19

analysis

domain, 16, 19, 22, 67–69

prompt, 20, 23–27, 29, 34, 38, 44, 45, 52,

71, 183

problem

world, 68

product line, 67

prompt

domain, 20, 23–27, 29, 34, 38, 44, 45, 52,

71, 183

world

problem, 68

analysis prompts

[endurant]

domain, 90

domain

[endurant], 90

architecture

software, 68

atomic, 19

attribute, 56, 65

access

value, 42

behaviour

external, 56, 57

constant, 56

dynamic, 56

external, 161, 162, 165

behaviour, 56, 57

programmable, 56, 57

value

access, 42

authorised user, 176

autonomous, 56

availability, 174

axiom

sort

Lect.12: Domain Science & Engineering 225 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

226

well-formedness, 48

well-formedness

sort, 48

bases

knowledge, 66

behaviour, 19, 52, 173

attribute

external, 56, 57

external

attribute, 56, 57

individual, 56

biddable, 56

change

state, 56

channel

external attribute, 56

class

diagram, 69

code, 179

commitments

ontological, 64

common

projection, 167

communication, 63

component

reusable

software, 67

software, 68

reusable, 67

composite, 19

composite, 140

computer

science, 17, 64–66

computing

science, 17, 66

conceive, 23

concept

formal, 22

concrete

prescription

requirements, 160

requirements

prescription, 160

concurrency, 63

confusion, 49

conservative

extension, 167

constant

attribute, 56

constructor

function

type, 57

type

function, 57

context, 22

continuant, 23

continuous, 19

time, 56

corrective maintenance, 176, 177

criminal human behaviour, 87

defined, 102

delinquent human behaviour, 86, 87

demo

domain, 16

demonstration platform

requirements, 178

demonstration platform requirements, 178

dependability, 173

attribute, 174

requirements, 172

tree, 173

describer, 16

domain, 16, 19

description

development

domain, 68

domain, 16, 19, 67–69

development, 68

prompt, 20, 35

path

tree, 100

prompt

domain, 20, 35

tree

path, 100

description prompts

[endurant]

domain, 90

domain

[endurant], 90

descriptions

domain, 68, 69

design

software, 16, 68, 69

determination, 151, 154

deterministic

prescription

requirements, 161

requirements

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 226 Lect.12: Domain Science & Engineering

227

prescription, 161

development

description

domain, 68

document, 179

domain

description, 68

logbook, 179

model-oriented

software, 68

platform requirements, 178

requirements, 68, 69

software

model-oriented, 68

diagram

class, 69

diligent human behaviour, 86, 87

discrete, 19

documentation

requirements, 172, 179

domain, 69

[endurant]

analysis prompts, 90

description prompts, 90

analyser, 16, 19

analysis, 16, 19, 22, 67–69

prompt, 20, 23–27, 29, 34, 38, 44, 45, 52,

71, 183

analysis prompts

[endurant], 90

demo, 16

describer, 16, 19

description, 16, 19, 67–69, 179

development, 68

prompt, 20, 35

description prompts

[endurant], 90

descriptions, 68, 69

development

description, 68

engineer, 16, 19, 68

engineering, 16, 19, 66–68

facet, 74

language

specific, 67

modeling, 47, 67, 68

partial

requirement, 167

prescription

requirements, 154

prompt

analysis, 20, 23–27, 29, 34, 38, 44, 45, 52,

71, 183

description, 20, 35

requirement

partial, 167

shared, 167

requirements, 151, 154

prescription, 154

science, 19, 65, 66

scientist, 19

shared

requirement, 167

simulator, 16

software

specific, 16, 68

specific

language, 67

software, 16, 68

duplicate, 99

dynamic

attribute, 56

value, 42

endurant, 17, 19

engineer

domain, 16, 19, 68

requirements, 68

software, 19, 68

engineering

algorithmic, 66

domain, 16, 19, 66–68

knowledge, 66

ontological, 66

ontology, 64

product line

software, 67, 68

requirements, 16, 67, 69

software

product line, 67, 68

entities, 19

error, 173

event, 19, 52

execution platform requirements, 178

expression

function

type, 57

type, 57

function, 57

extended

prescription

requirements, 167

Lect.12: Domain Science & Engineering 227 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

228

requirements

prescription, 167

extension, 151, 154

conservative, 167

extensional

maintenance, 176, 177

external

attribute, 161, 162, 165

behaviour, 56, 57

behaviour

attribute, 56, 57

part

quality, 32

quality

part, 32

external attribute

channel, 56

facet

domain, 74

failure, 173

fault, 173, 174

forecasting, 174

prevention, 174

removal, 174

tolerance, 174

fitting, 151, 154

formal

concept, 22

text, 21

formal concept analysis, 23

frame

problem, 68

frames

problem, 68

function

constructor

type, 57

expression

type, 57

name, 57

type

constructor, 57

expression, 57

functional

prescription

requirements, 153

requirements

prescription, 153

goal, 69

golden rule of requirements, 152

hardware, 68

has concrete type

prerequisite

prompt, 29

prompt

prerequisite, 29

has mereology

prerequisite

prompt, 35

prompt

prerequisite, 35

head, 56

human behaviour

criminal, 87

delinquent, 86, 87

diligent, 86, 87

sloppy, 86, 87

ideal rule of requirements, 152

identifier

unique, 33, 65

imperative

language

programming, 66

programming

language, 66

individual

behaviour, 56

inert, 56

information

science, 64–66

installation

manual, 179

instantiation, 151, 154

integrity, 174, 175

interface

requirements, 151, 154

internal

part

quality, 32

qualities, 25, 33, 37

quality

part, 32

interval

time, 54

is composite

prerequisite

prompt, 28

prompt

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 228 Lect.12: Domain Science & Engineering

229

prerequisite, 28

is discrete

prerequisite

prompt, 27

prompt

prerequisite, 27

is entity

prerequisite

prompt, 23, 24

prompt

prerequisite, 23, 24

join

lattice, 32

junk, 48

knowledge, 66

bases, 66

engineering, 66

representation, 66

language

domain

specific, 67

imperative

programming, 66

programming

imperative, 66

specific

domain, 67

lattice

join, 32

machine, 68

=hardware+software, 152

requirements, 151, 154, 172

maintenance

adaptive, 176

corrective, 176, 177

extensional, 176, 177

logbook, 179

manual, 179

perfective, 176, 177

preventive, 176, 177

requirements, 172, 176

maintenance platform

requirements, 178

manifest

phenomena, 17

manual

installation, 179

maintenance, 179

training, 179

user, 179

mereology, 65

observer, 34

type, 34

methodology, 16

model-oriented

development

software, 68

software

development, 68

modeling

domain, 47, 67, 68

requirements, 47

name

function, 57

narrative

requirements

system, 153

user and external equipment, 153

system

requirements, 153

text, 21

user and external equipment

requirements, 153

non-manifest

qualities, 17

obligation

proof, 49

observe, 23

observe part type

prerequisite

prompt, 29

prompt

prerequisite, 29

observer

mereology, 34

occurrent, 23

ontological

commitments, 64

engineering, 66

ontology

engineering, 64

science, 64

upper, 64–66

parallelism, 63

part, 26

external

quality, 32

Lect.12: Domain Science & Engineering 229 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

230

internal

quality, 32

quality

external, 32

internal, 32

sort, 27

partial

domain

requirement, 167

requirement

domain, 167

path

description

tree, 100

tree

description, 100

perdurant, 17, 19

perfective maintenance, 176, 177

performance requirements, 172

phenomena

manifest, 17

philosophy, 64

platform requirements, 172, 178

demonstration, 178

development, 178

execution, 178

maintenance, 178

prerequisite

has concrete type

prompt, 29

has mereology

prompt, 35

is composite

prompt, 28

is discrete

prompt, 27

is entity

prompt, 23, 24

observe part type

prompt, 29

prompt

has concrete type, 29

has mereology, 35

is composite, 28

is discrete, 27

is entity, 23, 24

observe part type, 29

prescription

concrete

requirements, 160

deterministic

requirements, 161

domain

requirements, 154

extended

requirements, 167

functional

requirements, 153

projected

requirements, 156

requirements, 16, 67–69, 151

concrete, 160

deterministic, 161

domain, 154

extended, 167

functional, 153

projected, 156

preventive maintenance, 176, 177

problem

analysis

world, 68

frame, 68

frames, 68

world, 68

analysis, 68

process

schema, 70

product line

analysis, 67

engineering

software, 67, 68

software, 68

engineering, 67, 68

programmable

attribute, 56, 57

programming

imperative

language, 66

language

imperative, 66

projected

prescription

requirements, 156

requirements

prescription, 156

projection, 151, 154

common, 167

specific, 167

prompt, 20–21

analysis

domain, 20, 23–27, 29, 34, 38, 44, 45, 52,

71, 183

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 230 Lect.12: Domain Science & Engineering

231

description

domain, 20, 35

domain

analysis, 20, 23–27, 29, 34, 38, 44, 45, 52,

71, 183

description, 20, 35

has concrete type

prerequisite, 29

has mereology

prerequisite, 35

is composite

prerequisite, 28

is discrete

prerequisite, 27

is entity

prerequisite, 23, 24

observe part type

prerequisite, 29

prerequisite

has concrete type, 29

has mereology, 35

is composite, 28

is discrete, 27

is entity, 23, 24

observe part type, 29

proof

obligation, 49

qualities, 19

internal, 25, 33, 37

non-manifest, 17

quality, 65

external

part, 32

internal

part, 32

part

external, 32

internal, 32

reactive, 56

redefined, 102

reliability, 174, 175

representation

knowledge, 66

requirement

domain

partial, 167

shared, 167

partial

domain, 167

shared

domain, 167

requirements, 68, 69

concrete

prescription, 160

demonstration platform, 178

dependability, 172

deterministic

prescription, 161

development, 68, 69

platform, 178

documentation, 172, 179

domain, 151, 154

prescription, 154

engineer, 68

engineering, 16, 67, 69

execution platform, 178

extended

prescription, 167

functional

prescription, 153

golden rule, 152

ideal rule, 152

interface, 151, 154

machine, 151, 154, 172

maintenance, 172, 176

platform, 178

modeling, 47

narrative

system, 153

user and external equipment, 153

performance, 172

platform, 172, 178

prescription, 16, 67–69, 151, 179

concrete, 160

deterministic, 161

domain, 154

extended, 167

functional, 153

projected, 156

projected

prescription, 156

sketch

system, 153

user, 153

system

narrative, 153

sketch, 153

user

sketch, 153

user and external equipment

Lect.12: Domain Science & Engineering 231 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

232

narrative, 153

reusable

component

software, 67

software

component, 67

reuse, 67

robustness, 174, 176

safety, 174, 175

schema

process, 70

science

computer, 17, 64–66

computing, 17, 66

domain, 19, 65, 66

information, 64–66

ontology, 64

scientist

domain, 19

security, 174, 176

shared

domain

requirement, 167

requirement

domain, 167

sharing, 33

signature, 52, 66

simulator

domain, 16

sketch

requirements

system, 153

user, 153

system

requirements, 153

user

requirements, 153

sloppy human behaviour, 86, 87

software, 68

architecture, 68

component, 68

reusable, 67

design, 16, 68, 69, 179

development

model-oriented, 68

domain

specific, 16, 68

engineer, 19, 68

engineering

product line, 67, 68

model-oriented

development, 68

product line, 68

engineering, 67, 68

reusable

component, 67

specific

domain, 16, 68

sort, 22

axiom

well-formedness, 48

part, 27

well-formedness

axiom, 48

specific

domain

language, 67

software, 16, 68

language

domain, 67

projection, 167

software

domain, 16, 68

stake-holder, 74

state, 52

change, 56

static, 56

value, 42

sub-part, 26

support

document, 179

synchronisation, 63

system

narrative

requirements, 153

requirements

narrative, 153

sketch, 153

sketch

requirements, 153

test

document, 179

text

formal, 21

narrative, 21

time, 52, 54

continuous, 56

interval, 54

training manual, 179

tree

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 232 Lect.12: Domain Science & Engineering

233

description

path, 100

path

description, 100

TripTych, 15, 16, 22, 37, 64–70, 91, 181, 186

type, 22

constructor

function, 57

expression, 57

function, 57

function

constructor, 57

expression, 57

mereology, 34

unauthorised user, 176

Unified Modeling Language

UML, 69

old.UML, 69

unique

identifier, 33, 65

upper

ontology, 64–66

user

authorised, 176

manual, 179

requirements

sketch, 153

sketch

requirements, 153

unauthorised, 176

user and external equipment

narrative

requirements, 153

requirements

narrative, 153

validation

document, 179

value

abstract, 33

access

attribute, 42

attribute

access, 42

dynamic, 42

static, 42

verification

document, 179

well-formedness

axiom

sort, 48

sort

axiom, 48

world

analysis

problem, 68

problem, 68

analysis, 68

B.10 RSL Language Constructs

Arithmetics

...,-2,-1,0,1,2,..., 190

ai*a j , 193

ai+a j , 193

ai/a j , 193

ai=a j , 192

ai≥a j , 192

ai>a j , 192

ai≤a j , 192

ai<a j , 192

ai 6=a j , 192

ai−a j , 193

Cartesians

(e1,e2,...,en) , 193

Chaos

chaos, 196, 197

Clauses

... elsif ... , 203

case be of pa1 → c1, ... pan → cn end , 203

if be then cc else ca end , 202

Combinators

let a:A • P(a) in c end , 202

let pa = e in c end , 201

Functions

f(args) as result, 201

post P(args,result), 201

pre P(args), 201

f(a), 200

f(args) ≡ expr, 201

Imperative

case be of pa1 → c1, ... pan → cn end , 204

do stmt until be end , 204

Lect.12: Domain Science & Engineering 233 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31

234

for e in listexpr • P(b) do stm(e) end , 204

if be then cc else ca end , 204

skip , 204

variable v:Type := expression , 204

while be do stm end , 204

f(), 203

stm1;stm2;...;stmn; , 204

v := expression , 204

Lists

<Q(l(i))|i in<1..lenl> •P(a)> , 194

hAB, 193

ℓ(i) , 196

〈ei ..ej 〉, 193

〈e1,e2, ...,enB , 193

elems ℓ , 196

hd ℓ , 196

inds ℓ , 196

len ℓ , 196

tl ℓ , 196

Logics

bi ∨ b j , 192

∀ a:A • P(a) , 192

∃! a:A • P(a) , 192

∃ a:A • P(a) , 192

∼ b , 192

false, 190, 192

true, 190, 192

ai=a j , 193

ai≥a j , 193

ai>a j , 193

ai≤a j , 193

ai<a j , 193

ai 6=a j , 193

bi ⇒ b j , 192

bi ∧ b j , 192

Maps

[F(e) 7→G(m(e))|e:E•e∈domm∧P(e)] , 194

[] , 194

[u1 7→v1,u2 7→v2,...,un 7→vn] , 194

mi \ m j , 198

mi ◦ m j , 198

mi / m j , 198

dom m , 198

rng m , 198

mi =m j , 198

mi ∪m j , 198

mi † m j , 198

mi 6=m j , 198

m(e) , 198

Processes

channel c:T , 204

channel {k[i]:T•i:KIdx} , 204

c ! e , 205

c ? , 205

k[i] ! e , 205

k[i] ? , 205

P⌈⌉Q, 204

P–‖ Q, 204

P: Unit→ in c out k[i] Unit , 205

P[]Q, 204

P‖ Q, 204

Q: i:KIdx → out c in k[i] Unit, 205

Sets

{Q(a)|a:A•a∈s∧P(a)} , 193

{} , 193

{e1,e2, ...,en} , 193

∩{s1,s2,...,sn} , 194

∪{s1,s2,...,sn} , 194

card s , 195

e∈s , 194

e 6∈s , 194

si=s j , 195

si∩s j , 194

si∪s j , 194

si⊂s j , 195

si⊆s j , 195

si 6=s j , 195

si\s j , 194

Types

(T1×T2×... ×Tn), 190

T∗, 190

Tω , 190

T1 × T2 × ... × Tn, 189

Bool, 189

Char, 189

Int, 189

Nat, 189

Real, 189

Text, 189

Unit, 203, 205

mk id(s1:T1,s2:T2,...,sn:Tn), 190

s1:T1 s2:T2 ... sn:Tn, 190

T = Type Expr, 191

T1 | T2 | ... | T1 | Tn , 190

T={| v:T′• P(v)|} , 191, 192

T==TE1 | TE2 | ... | TEn , 191

Ti
∼
→Tj, 190

Ti→Tj, 190

T-infset, 189

T-set, 189

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:31 234 Lect.12: Domain Science & Engineering

