
0

Dines Bjørner’s MAP-i Lecture # 9

Domain Requirements: Extension and Fitting

Thursday, 28 May 2015: 10:00–11:15

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 0 Domain Science & Engineering

424 7. 2. 2.4.

7.2.4. Domain Extension

Definition 30 . Extension: By domain extension we understand the

• introduction of endurants and perdurants that were not feasible in the original
domain,

• but for which, with computing and communication,

• and with new, emerging technologies,

• for example, sensors, actuators and satellites,

• there is the possibility of feasible implementations,

• hence requirement,

• that what is introduced becomes27 part of the unfolding requirements prescrip-

tion

27
become or becomes ?

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 424 Domain Science & Engineering

425

7. 2. 2.4. Domain Extension 2.4.1.

7.2.4.1. The Core Requirements Example: Domain Extension

Example 82 . Domain Requirements. Extension Vehicles: Parts, Prop-

erties and Channels:

184 There is a domain, δE :∆E , which contains

185 a fleet, fE :FE ,

186 of a set, vsE :VSE , of

187 extended vehicles, vE :VE — their extension amounting to

a. a dynamic, active and biddable attribute28, whose value, ti-gpos:TiGpos, at any
time, reflects that vehicle’s time-stamped global positions

b. The vehicle’s GNSS receiver calculates its local position, lpos:LPOS, based on
these signals.

c. Vehicles access these external attributes via the external attribute channel, attr TiGPos ch,
cf. Item 100 on Slide 273.

d. The vehicle can, on its own volition, offer the timed local position, ti-lpos:TiLPos
to the price calculator, cE :CE along a vehicles-to-calculator channel, v c ch.

28See Sect. Slide 187.

A Prerequisite for Requirements Engineering 425 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

426

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

type

184. ∆E

185. FE
186. VSE = VE-set

187. VE

187a.. TiGPos = T × GPOS

187a.. TiLPos = T × LPOS

187b.. GPOS, LPOS

value

185. obs part FE : ∆E → FE
186. obs part VSE : FE → VSE
186. vs:obs part VSE(FE)

channel

187c.. {attr TiGPos ch[vi]|viLVI•vi ∈ xtr VIs(vs)}: TiGPos

187d.. {v c ch[vi,ci]

187d.. | vi:VI,ci:CI•vi∈vis∧ci=uid C(c)}:(VI×TiLPos)

value

187a.. attr TiGPos ch[vi]?

187b.. loc pos: GPOS → LPOS

• where vis:VI-set is the set unique vehicle identifiers of all vehicles of the requirements domain fleet,

f:FRE
.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 426 Domain Science & Engineering

427
7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

We define two auxiliary functions,

188 xtr vs, which given a domain, or a fleet, extracts its set of vehicles,
and

189 xtr vis which given a set of vehicles generates their unique identifiers.

value

188. xtr vs: (∆E |FE |VSE) → VE-set
188. xtr vs(arg) ≡
188. is ∆E(arg) → obs part VSE(obs part FE(arg)),
188. is FE(arg) → obs part VSE(arg),
188. is VSE(arg) → arg
189. xtr vis: (∆E |FE |VSE) → VI-set
189. xtr vis(arg) ≡ {uid VI(v)|v ∈ xtr vs(arg)}

A Prerequisite for Requirements Engineering 427 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

428

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 83 . Domain Requirements. Extension Toll-road Net: Parts,

Properties and Channels:

• We extend the domain with toll-gates for vehicles
entering and exiting the toll-road entry and exit links.

• Figure 8 illustrates the idea of gates.

exit sensorentry sensor

toll barrier

Vehicle

Vehicle Identification

linklink link link

Figure 8: A toll plaza gate

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 428 Domain Science & Engineering

429

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

• Figure 8 on the facing slide is intended to illustrate a vehicle entering (or exiting)
a toll-road entry link.

⋄⋄ The toll-gate is equipped with three sensors:
an entry sensor, a vehicle identification sensor and an exit sensor.

⋄⋄ The entry sensor serves to prepare
the vehicle identification sensor.

⋄⋄ The exit sensor serves to prepare
the gate for closing when a vehicle has passed.

⋄⋄ The vehicle identification sensor identifies the vehicle and “delivers” a pair: the
current time and the vehicle identifier.

⋄⋄ Once the vehicle identification sensor has identified a vehicle the gate opens.

A Prerequisite for Requirements Engineering 429 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

430

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

190 There is the domain, δ:∆E ,

191 which contains the extended net, n:NE , with the net extension amounting to the
toll-road net, TRNE ,

192 that is, the instantiated toll-road net, trn:TRNI , is extended, into trn:TRNE , with
entry, eg:EG, and exit, xg:XG, toll-gates.

From entry- and exit-gates we can observe

a. their unique identifier and their mereology: being paired with the entry-, respec-
tively exit link and the calculator (by their unique identifiers); further

b. a pair of gate enter and leave sensors modeled as external attribute channels,
(ges:ES,gls:XS), and

c. a time-stamped vehicle identity sensor modeled as external attribute channels.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 430 Domain Science & Engineering

431

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

type

190 ∆E

191 NE

192 TRNE = (EG×XG)∗ × TRNI

192a. GI
value

190 obs part NE : ∆E → NE

191 obs part TRNE : NE → TRNE

192a. uid G: (EG|XG) → GI
192a. obs mereo G: (EG|XG) → (LI×CI)
channel

192b. {attr enter ch[gi]|gi:GI•...} ′′

enter
′′

192b. {attr leave ch[gi]|gi:GI•...} ′′

leave
′′

192c. {attr passing ch[gi]|gi:GI•...} TIVI
type

192c. TIVI = T × VI

A Prerequisite for Requirements Engineering 431 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

432
7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

We define some auxiliary functions over toll-road nets, trn:TRNE :

193 xtr eGℓ extracts the ℓist of entry gates,

194 xtr xGℓ extracts the ℓist of exit gates,

195 xtr eGIds extracts the set of entry gate identifiers,

196 xtr xGIds extracts the set of exit gate identifiers,

197 xtr Gs extracts the set of all gates, and

198 xtr GIds extracts the set of all gate identifiers.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 432 Domain Science & Engineering

433

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

value

193 xtr eGℓ: TRNE → EG∗

193 xtr eGℓ(pgl,) ≡
193 {eg|(eg,xg):(EG,XG)•(eg,xg)∈ elems pgl}
194 xtr xGℓ: TRNE → XG∗

194 xtr xGℓ(pgl,) ≡
194 {xg|(eg,xg):(EG,XG)•(eg,xg)∈ elems pgl}
195 xtr eGIds: TRNE → GI-set
195 xtr eGIds(pgl,) ≡
195 {uid GI(g)|g:EG•g ∈ xtr eGs(pgl,)}
196 xtr xGIds: TRNE → GI-set
196 xtr xGIds(pgl,) ≡
196 {uid GI(g)|g:EG•g ∈ xtr xGs(pgl,)}
197 xtr Gs: TRNE → G-set
197 xtr Gs(pgl,) ≡
197 xtr eGs(pgl,) ∪ xtr xGs(pgl,)
198 xtr GIds: TRNE → GI-set
198 xtr GIds(pgl,) ≡
198 xtr eGIds(pgl,) ∪ xtr xGIds(pgl,)

A Prerequisite for Requirements Engineering 433 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

434
7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

199 A well-formedness condition expresses

a. that there are as many entry end exit gate pairs as there are toll-
plazas,

b. that all gates are uniquely identified, and

c. that each entry [exit] gate is paired with an entry [exit] link and
has that link’s unique identifier as one element of its mereology,
the other elements being the calculator identifier and the vehicle
identifiers.

The well-formedness relies on awareness of

200 the unique identifier, ci:CI, of the road pricing calculator, c:C, and

201 the unique identifiers, vis:VI-set, of the fleet vehicles.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 434 Domain Science & Engineering

435

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

value

200 ci:CI
201 vis:VI-set
axiom

199 ∀ n:NR3
, trn:TRNR3

•

199 let (exgl,(exl,hl,lll)) = obs part TRNR3
(n) in

199a. len exgl = len exl = len hl = len lll + 1
199b. ∧ card xtr GIds(exgl) = 2 ∗ len exgl
199c. ∧ ∀ i:Nat•i ∈ inds exgl•

199c. let ((eg,xg),(el,xl)) = (exgl(i),exl(i)) in
199c. obs mereo G(eg) = (uid U(el),ci,vis)
199c. ∧ obs mereo G(xg) = (uid U(xl),ci,vis) end end

A Prerequisite for Requirements Engineering 435 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

436

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 84 . Domain Requirements. Extension Parts, Properties and
Channels:

202 The road pricing calculator repeatedly receives

a. information, (vi,(τ ,pos)):VITIPOS,

b. sent by vehicles as to their identify and time-stamped position

c. over a channel, v c ch indexed by the c:CE and the vehicle identities.

203 The road pricing calculator has a number of attributes:

a. a traffic map, trm:TRM, which, for each vehicle inside the toll-road net, records a chronologically

ordered list of each vehicle’s timed position, (τ ,vp), and

b. a (total) road location function, vplf:VPLF.

i The vehicle position location function, vplf:VPLF, is subject to another function, locate VPos,

which, given a local position, lpos:LPos, yields the vehicle position designated by the GNSS-

provided position, or yields the response that the provided position is off the toll-road net.

ii This result is used by the road-pricing calculator to conditionally

A either update the traffic map, trm:TRM, recording also the relevant time,

B or reset that vehicle’s traffic recording while send a bill for the just completed journey.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 436 Domain Science & Engineering

437
7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

type

202a. VITIPos = VI × (T × LPos)
value

202a. ... v c ch[ci,vi] ? ...

202b. ... v c ch[ci,vi] ! (vi,(τ ,p)) ...
channel

202c. {v c ch[ci,vi]|vi:VI•vi ∈ vis}:VITIPos
type

203a. TRM = VI →m (T × VPos)∗

203b. VPLF = LPos → VPos | ′′

off_TRN
′′

value

203(b.)i locate LH: LPos×RLF → (VPos|′′off_TRN′′)
203(b.)iiA update TRM: VI×(T×VPos)→TRM→TRM
203(b.)iiB reset TRM: VI→TRM→TRM

A Prerequisite for Requirements Engineering 437 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

438

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 85 . Domain Requirements. Extension Main Sorts:

204 The main sorts of the road-pricing domain, ∆E , are

a. the net, projected, instantiated (to include the specific toll-road net), made more
determinate and now extended, NE , with toll-gates;

b. the fleet, FE ,

c. of sets, VS, of extended vehicles, VE ;

d. the extended toll-road net, TRNE , extending the instantiated toll-road net,
TRNI , with toll-gates; and

e. the road pricing calculator, CE .

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 438 Domain Science & Engineering

439

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

type

204. ∆E
204a.. NE
204b.. FE
204c.. VSE = VE-set
204d.. TRNE = (EG×XG)∗ × TRNI
204e.. CE
value

204a.. obs part NE : ∆ → NE
204b.. obs part FE : ∆ → FE
204c.. obs part VSE : ∆ → VSE
204d.. obs part TRNE : NE → TRNE
204e.. obs part CE : ∆ → CE

A Prerequisite for Requirements Engineering 439 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

440

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 86 . Domain Requirements. Extension Global Values:

• We exemplify a road-pricing system behaviour, in Example 87 on Slide 442,

• based on the following global values.

205 There is a given domain, δE :∆E ;

206 there is the net, nE :NE , of that domain;

207 there is toll-road net, trnE :TRNE , of that net;

208 there is a set, egsE :EGE-set, of entry gates;

209 there is a set, xgsE :XGE-set, of exit gates;

210 there is a set, gisE :GIE-set, ofgate identifiers;

211 there is a set, vsE :VE-set, of vehicles;

212 there is a set, visE :VIE-set, of vehicle identifiers;

213 there is the road-pricing calculator, cE :CE and

214 there is its unique identifier, ciE :CI.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 440 Domain Science & Engineering

441

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

value

205. δE :∆E
206. nE :NE = obs part NE(δE)
207. trnE :TRNE = obs part TRNE(nE)
208. egsE :EG-set = xtr egs(trnE)
209. xgsE :XG-set = xtr xgs(trnE)
210. gisE :XG-set = xtr gis(trnE)
211. vsE :VE-set = obs part VS(obs part FE(δE))
212. visE :VI-set = {uid VI(vE)|vE :VE •vE ∈ vsE}
213. cE :CE = obs part CE(δE)
214. ciE :CIE = uid CI(cE)

A Prerequisite for Requirements Engineering 441 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

442

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 87 . Domain Requirements. Extension System Behaviour:

• We shall model the behaviour of the road-pricing system as follows:

⋄⋄ we shall only model behaviours related to atomic parts;

⋄⋄ we shall not model behaviours of hubs and links;

⋄⋄ thus we shall model only

◦◦ the set of behaviours of vehicles, veh,

◦◦ the set of behaviours of toll-gates, gate, and

◦◦ the behaviour of the road-pricing calculator, calc.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 442 Domain Science & Engineering

443

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

215 The road-pricing system behaviour, sys, is expressed as

a. the parallel, ‖, (distributed) composition of the behaviours of all
vehicles, with the parallel composition of

b. the parallel (likewise distributed) composition of the behaviours of
all entry gates, with the parallel composition of

c. the parallel (likewise distributed) composition of the behaviours of
all exit gates, with the parallel composition of

d. the behaviour of the road-pricing calculator,

A Prerequisite for Requirements Engineering 443 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

444

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

value

215. sys: Unit → Unit

215. sys() ≡
215a.. ‖ {veh(uid V(v),(ci,gis),UTiGPos)|v:V•v ∈ vsE}
215b.. ‖ ‖ {gate(′′Entry′′)(uid EG(eg),obs mereo G(eg),(Uenter,Upassing,Uleave))|eg:EG
215c.. ‖ ‖ {gate(′′Exit′′)(uid EG(xg),obs mereo G(xg),(Uenter,Upassing,Uleave))|xg:XG•xg
215d.. ‖ calc(ciE ,(visE ,gisE))(rlf)(trm)

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 444 Domain Science & Engineering

445

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 88 . Domain Requirements. Extension Vehicle Behaviour:

216 Instead of moving around by explicitly expressed internal non-determinism29 vehicles
move around by unstated internal non-determinism and instead receive their current
position from the global positioning subsystem.

a. At each moment the vehicle receives its time-stamped local position, tilpos:TiLPos,

b. which it then proceeds to communicate, with its vehicle identification, (vi,tilpos),
to the road pricing subsystem —

c. whereupon it resumes its vehicle behaviour.

29We refer to Items 157b., 157c. on Slide 343 and 158b., 158(c.)ii, 159 on Slide 345

A Prerequisite for Requirements Engineering 445 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

446

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

value

216. veh: vi:VI×(ci:CI×gis:GI-set)×UTiGPos →
216. out v c ch[ci,vi] Unit

216. veh(vi,(ci,gis),attr TiGPos ch[vi]) ≡
216a.. let (τ ,gpos) = attr TiGPos ch[vi]? in

216a.. let lpos = loc pos(gpos) in
216b.. v c ch[ci,vi] ! (vi,(τ ,lpos)) ;
216c.. veh(vi,(ci,gis),attr TiGPos ch[vi]) end end

216. pre vi ∈ visE ∧ ci = ciE ∧ gis = gisE

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 446 Domain Science & Engineering

447

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 89 . Domain Requirements. Extension Gate Behaviour:

• The entry and the exit gates have “vehicle enter”, “vehicle leave” and “vehicle time
and identification” sensors.

⋄⋄ The following assumption can now be made:

◦◦ during the time interval between

◦◦ a gate’s vehicle “enter” sensor having first sensed a vehicle entering that gate

◦◦ and that gate’s “leave” sensor having last sensed that vehicle leaving that
gate

◦◦ that gate’s “vehicle time and identification” sensor registers the time when
the vehicle is entering the gate and that vehicle’s unique identification.

A Prerequisite for Requirements Engineering 447 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

448

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

• We sketch the toll-gate behaviour:

217 We parameterise the toll-gate behaviour as either an entry or an exit gate.

218 Toll-gates

a. inform the calculator of place (i.e., link) and time of entering and exiting of
identified vehicles

b. over an appropriate array of channels.

219 Toll-gates operate autonomously and cyclically.

a. The attr Enter event “triggers” the behaviour specified in formula line Item
219b.–219d..

b. The time-of-entry and the identity of the entering (or exiting) vehicle is sensed
via external attribute channel inputs.

c. Then the road pricing calculator is informed of time-of-entry and of vehicle vi
entering (or exiting) link li.

d. And finally, after that vehicle has left the entry or exit gate that toll-gate’s
behaviour is resumed.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 448 Domain Science & Engineering

449

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

• The toll-gate behaviour, gate:

type

217 EE = ”Enter” | ”Exit”
218a. GCM = EE × (T × VI × LI)
channel

218b. {g c ch[uid GI(g),ci]|g:G,ci:CI•g ∈ gates(trn)} GCM
value

219 gate: ee:EE×gi:GI×(ci:CI×VI-set×LI)×(Uenter×Upassing×Uleave) → out g c ch[gi,ci
219 gate(ee,gi,(ci,vis,li),ea:(attr enter ch[gi],attr passing ch[gi],attr leave ch[gi])) ≡
219a. attr enter ch[gi] ? ;
219b. let (τ ,vi) = attr passing ch[gi] ? in assert vi ∈ vis
219c. g c ch[gi,ci] ! (ee,(τ ,(vi,li)));
219d. attr leave ch[gi] ?
219d. gate(ee)(gi,(ci,vis,li),ea)
219 end

219 pre ci = ciE ∧ vis = visE ∧ li ∈ lisE

A Prerequisite for Requirements Engineering 449 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

450

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

Example 90 . Domain Requirements. Extension Calculator Behaviour:

220 The road-pricing calculator alternates between (offering to accept communication
with)

a. either any vehicle

b. or any toll-gate.

220. calc: ci:CI×(vis:VI-set×gis:GI-set)→RLF→TRM→
220a.. in {v c ch[ci,vi]|vi:VI•vi ∈ vis},
220b.. {g c ch[ci,gi]|gi:GI•gi ∈ gis} Unit

220. calc(ci,(vis,gis))(rlf)(trm) ≡
220a.. react to vehicles(ci,(vis,gis))(rlf)(trm)
220. ⌈⌉⌊⌋
220b.. react to gates(ci,(vis,gis))(rlf)(trm)
220. pre ci = ciE ∧ vis = visE ∧ gis = gisE

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 450 Domain Science & Engineering

451
7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

221 If the communication is from a vehicle inside the toll-road net

a. then its toll-road net position, vp, is found from the road location function, rlf,

b. and the calculator resumes its work with the traffic map, trm, suitable updated,

c. otherwise the calculator resumes its work with no changes.

220a.. react to vehicles(ci,(vis,gis))(rlf)(trm) ≡
220a.. let (vi,(τ ,lpos)) =
220a.. ⌈⌉⌊⌋{v c ch[ci,vi]|vi:VI•vi∈ vis} in

221. if vi ∈ dom trm
221a.. then let vp = rlf(lpos) in
221b.. calc(ci,(vis,gis))(rlf)(trm†[vi7→trm̂〈(τ ,vp)〉]) end
221c.. else calc(ci,(vis,gis))(rlf)(trm) end end

A Prerequisite for Requirements Engineering 451 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

452
7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

222 If the communication is from a gate,

a. then that gate is either an entry gate or an exit gate;

b. if it is an entry gate

c. then the calculator resumes its work with the vehicle (that passed
the entry gate) now recorded, afresh, in the traffic map, trm.

d. Else it is an exit gate and

e. the calculator concludes that the vehicle has ended its to-be-paid
for journey inside the toll-road net, and hence to be billed;

f. then the calculator resumes its work with the vehicle (that passed
the exit gate) now removed from the traffic map, trm.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 452 Domain Science & Engineering

453

7. 2. 2.4. Domain Extension 2.4.1. The Core Requirements Example: Domain Extension

220b.. react to gates(ci,(vis,gis))(rlf)(trm) ≡
220b.. let (ee,(τ ,(vi,li))) =
220b.. ⌈⌉⌊⌋{g c ch[ci,gi]|gi:GI•gi∈ gis} in

222a.. case ee of
222b.. ′′

Enter
′′ →

222c.. calc(ci,(vis,gis))(rlf)(trm∪[vi 7→〈(τ ,(li,0))〉]),
222d.. ′′

Exit
′′ →

222e.. billing(vi,trm(vi)̂〈(τ ,(li,1))〉);
222f.. calc(ci,(vis,gis))(rlf)(trm\{vi}) end end

• • •

•We have made relevant external attributes explicit parameters of
their (corresponding part) processes.

•We refer to Sect. 1.3.7.

A Prerequisite for Requirements Engineering 453 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

454

7. 2. 2.4. Domain Extension 2.4.2. The Core Requirements Example: Domain Extension

7.2.4.2. A Domain Extension Operator

• Domain extension takes a (more-or-less) deterministic requirements
description, RD, and yields an extended requirements prescription,
RE , which extends the domain description, D, and, “at the same
time”, “extends” the requirements prescription, RD,

⋄⋄ type extension: RD → RE

• Semantically

⋄⋄ RD denotes a possibly infinite set of meanings, say RD, and

⋄⋄ RE denotes a possibly infinite set of meanings, say RE,

⋄⋄ but now the relation RE⊑RD is not necessarily satisfied —

⋄⋄ but instead some conservative extension relation RE⊒DD is satis-
fied.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 454 Domain Science & Engineering

455

7. 2. 2.5. Domain Extension

7.2.5. Requirements Fitting

• Often a domain being described

• “fits” onto, is “adjacent” to, “interacts” in some areas with,

• another domain:

⋄⋄ transportation with logistics,

⋄⋄ health-care with insurance,

⋄⋄ banking with securities trading and/or insurance,

⋄⋄ and so on.

A Prerequisite for Requirements Engineering 455 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

456

7. 2. 2.5. Requirements Fitting

• The issue of requirements fitting arises

⋄⋄ when two or more software development projects

⋄⋄ are based on what appears to be the same domain.

• The problem then is

⋄⋄ to harmonise the two or more software development projects

⋄⋄ by harmonising, if not too late, their requirements developments.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 456 Domain Science & Engineering

457

7. 2. 2.5. Requirements Fitting 2.5.1.

7.2.5.1. Some Definitions

•We thus assume

⋄⋄ that there are n domain requirements developments, dr1, dr2, . . . ,
drn, being considered, and

⋄⋄ that these pertain to the same domain — and can hence be as-
sumed covered by a same domain description.

A Prerequisite for Requirements Engineering 457 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

458

7. 2. 2.5. Requirements Fitting 2.5.1. Some Definitions

Definition 31 . Requirements Fitting:

• By requirements fitting we mean

⋄⋄ a harmonisation of n > 1 domain requirements

⋄⋄ that have overlapping (shared) not always consistent parts and

⋄⋄ which results in

◦◦ n partial domain requirements’, pdr1
, pdr2

, . . . , pdrn, and

◦◦ m shared domain requirements, sdr1
, sdr2

, . . . , sdrm,

◦◦ that “fit into” two or more of the partial domain require-
ments

• The above definition pertains to the result of ‘fitting’.

• The next definition pertains to the act, or process, of ‘fitting’.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 458 Domain Science & Engineering

459

7. 2. 2.5. Requirements Fitting 2.5.1. Some Definitions

Definition 32 . Requirements Harmonisation:

• By requirements harmonisation we mean

⋄⋄ a number of alternative
and/or co-ordinated prescription actions,

⋄⋄ one set for each of the domain requirements actions:

◦◦ Projection,

◦◦ Instantiation,

◦◦ Determination and

◦◦ Extension.

A Prerequisite for Requirements Engineering 459 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

460

7. 2. 2.5. Requirements Fitting 2.5.1. Some Definitions

• They are – we assume n separate software product requirements:

⋄⋄ Projection:

◦◦ If the n product requirements
do not have the same projections,

◦◦ then identify a common projection which they all share,

◦◦ and refer to it is the common projection.

◦◦ Then develop, for each of the n product requirements,

◦◦ if required,

◦◦ a specific projection of the common one.

◦◦ Let there be m such specific projections, m ≤ n.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 460 Domain Science & Engineering

461

7. 2. 2.5. Requirements Fitting 2.5.1. Some Definitions

⋄⋄ Instantiation:

◦◦ First instantiate the common projection,
if any instantiation is needed.

◦◦ Then for each of the m specific projections

◦◦ instantiate these, if required.

⋄⋄ Determination:

◦◦ Likewise, if required, “perform” “determination”
of the possibly instantiated common projection,

◦◦ and, similarly, if required,

◦◦ “perform” “determination” of the up to m

possibly instantiated projections.

A Prerequisite for Requirements Engineering 461 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

462

7. 2. 2.5. Requirements Fitting 2.5.1. Some Definitions

⋄⋄ Extension:

◦◦ Finally “perform extension” likewise:

◦◦ First, if required, of the common projection (etc.),

◦◦ then, if required, on the up m specific projections (etc.).

⋄⋄ These harmonization developments may possibly interact
and may need to be iterated

• By a partial domain requirements we mean a domain require-
ments which is short of (that is, is missing) some prescription parts:
text and formula

• By a shared domain requirements we mean a domain require-
ments

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 462 Domain Science & Engineering

463

7. 2. 2.5. Requirements Fitting 2.5.1. Some Definitions

• By requirements fitting m shared domain requirements texts,
sdrs, into n partial domain requirements we mean that

⋄⋄ there is for each partial domain requirements, pdri,

⋄⋄ an identified subset of sdrs (could be all of sdrs), ssdrsi,

⋄⋄ such that textually conjoining ssdrsi to pdri,

⋄⋄ i.e., ssdrsi ⊕ pdri

⋄⋄ can be claimed to yield the “original” dri,

⋄⋄ that is, M(ssdrsi ⊕ pdri) ⊆ M(dri),

⋄⋄ where M is a suitable meaning function over prescriptions

A Prerequisite for Requirements Engineering 463 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

464

7. 2. 2.5. Requirements Fitting 2.5.2. Some Definitions

7.2.5.2. Requirements Fitting Procedure — A Sketch

• Requirements fitting consists primarily of a pragmatically determined sequence of
analytic and synthetic (‘fitting’) steps.

⋄⋄ It is first decided which n domain requirements documents to fit.

⋄⋄ Then a ‘manual’ analysis is made of the selected, n domain requirements.

⋄⋄ During this analysis tentative shared domain requirements are identified.

⋄⋄ It is then decided which m shared domain requirements to single out.

⋄⋄ This decision results in a tentative construction of n partial domain require-
ments.

⋄⋄ An analysis is made of the tentative partial and shared domain requirements.

⋄⋄ A decision is then made

◦◦ whether to accept the resulting documents

◦◦ or to iterate the steps above.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 464 Domain Science & Engineering

465

7. 2. 2.5. Requirements Fitting 2.5.3. Requirements Fitting Procedure — A Sketch

7.2.5.3. Requirements Fitting – An Example

Example 91 . Domain Requirements. Fitting A Sketch:

• We postulate two domain requirements:

⋄⋄ We have outlined a domain requirements development for software support for
a road-pricing system.

⋄⋄ We have earlier hinted at domain operations related to insertion of new and
removal of existing links and hubs.

• We can therefore postulate that there are two domain requirements developments,
both based on the transport domain:

• one, drtoll
, for a road-pricing system, and,

• another, drmaint.
, for a toll-road link and hub building and maintenance system

monitoring and controlling link and hub quality and for development.

A Prerequisite for Requirements Engineering 465 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

466

7. 2. 2.5. Requirements Fitting 2.5.3. Requirements Fitting – An Example

• The fitting procedure now identifies the shared awareness by both
drtoll

and drmaint.
of nets (N), hubs (H) and links (L).

⋄⋄ We conclude from this that we can single out a common require-
ments for software that manages net, hubs and links.

⋄⋄ Such software requirements basically amounts to requirements for
a database system.

⋄⋄ A suitable such system, say a relational database management sys-
tem, DBrel, may already be available with the customer.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 466 Domain Science & Engineering

467

7. 2. 2.5. Requirements Fitting 2.5.3. Requirements Fitting – An Example

⋄⋄ In any case, where there before were two requirements (drtoll
, drmaint.

) there

are now four:

◦◦ d′rtoll
, a modification of drtoll

which omits the description sections pertaining

to the net;

◦◦ d′rmaint.
, a modification of drmaint.

which likewise omits the description sec-

tions pertaining to the net;

◦◦ drnet, which contains what was basically omitted in d′rtoll
and d′rmaint.

; and

◦◦ dr
db:i/f

(db:i/f for database interface) which prescribes a mapping between

type names of drnet and relation and attribute names of DBrel

•Much more can and should be said, but this suffices as an example
in a software engineering methodology paper.

A Prerequisite for Requirements Engineering 467 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

468

7. 2. 2.6. Requirements Fitting

7.2.6. Domain Requirements Consolidation

• After projection, instantiation, determination, extension and fitting,

⋄⋄ it is time to review, consolidate and possibly restructure (including re-specify)

⋄⋄ the domain requirements prescription

⋄⋄ before the next stage of requirements development.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 468 Domain Science & Engineering

0

Dines Bjørner’s MAP-i Lecture # 9

End of MAP-i Lecture #9:
Domain Requirements: Extension and Fitting

Thursday, 28 May 2015: 10:00–11:15

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 0 Domain Science & Engineering

