Dines Bjørner's MAP-i Lecture #7

Requirements – An Overview and Projection

Tuesday, 26 May 2015: 15:30-16:15

0

0

7. Requirements

- In Chapter 1. we introduced a method for analysing and describing manifest domains.
- In the next lectures of this PhD course
 - \otimes we show how to systematically,
 - \otimes but of course, not automatically,
 - \otimes "derive" requirements prescriptions from
 - \otimes domain descriptions.
- There are, as we see it, three kinds of requirements:
 - $\Leftrightarrow \textit{ domain requirements},\\$
 - \otimes interface requirements and
 - « machine requirements.
- The **machine** is the hardware and software to be developed from the requirements

- **Domain requirements** are those requirements which can be expressed sôlely using technical terms of the domain
- Interface requirements are those requirements which can be expressed only using technical terms of both the domain and the machine
- Machine requirements are those requirements which can be expressed sôlely using technical terms of the machine

- We show principles, techniques and tools for "deriving"
 & domain requirements and
 & interface requirements.
- The domain requirements development focus on
 - \otimes projection,
 - \circledast instantiation,
 - \otimes determination,
 - \otimes extension and
 - \otimes fitting.

- These domain-to-requirements operators can be described briefly:
 - *** projection** removes such descriptions which are to be omitted for consideration in the requirements,
 - ∞ instantiation mandates specific mereologies,
 - « determination specifies less non-determinism,
 - \otimes extension extends the evolving requirements prescription with further domain description aspects and
 - solves "loose ends" as they may have emerged during the domain-to-requirements operations.

7.1. Introduction

Definition 18. **Requirements (I):** By a requirements we understand (cf. IEEE Standard 610.12):

• "A condition or capability needed by a user to solve a problem or achieve an objective"

7.1.1. General Considerations

- The objective of requirements engineering is to create a **requirements prescription**:

- A *requirements prescription* thus (**putatively**) expresses what there should be.
- A requirements prescription expresses nothing about the design of the possibly desired (required) software.
- We shall show how a major part of a requirements prescription can be "derived" from "its" prerequisite domain description.

Rule 1 The "Golden Rule" of Requirements Engineering: *Prescribe only those requirements that can be objectively shown to hold for the designed software*

- "Objectively shown" means that the designed software can « either be tested,
 - \otimes or be model checked,
 - \otimes or be proved (verified),
- to satisfy the requirements.

Rule 2 An "Ideal Rule" of Requirements Engineering: When prescribing (including formalising) requirements, also formulate tests and properties for model checking and theorems whose actualisation should show adherence to the requirements

- The rule is labelled "ideal" since such precautions will not be shown in this seminar.
- The rule is clear.
- It is a question for proper management to see that it is adhered to.

Rule 3 Requirements Adequacy: Make sure that requirements cover what users expect

- That is,
 - « do not express a requirement for which you have no users,
 - w but make sure that all users' requirements are represented or some-how accommodated.
- In other words:

 - © One must make sure that all possible stake-holders have been involved in the requirements acquisition process,
 - \otimes and that possible conflicts and other inconsistencies have been obviated.

Rule 4 Requirements Implementability: Make sure that requirements are implementable

- That is, do not express a requirement for which you have no assurance that it can be implemented.
- In other words,

although the requirements phase is not a design phase,
one must tacitly assume, perhaps even indicate, somehow, that an implementation is possible.

• But the requirements in and by themselves, stay short of expressing such designs.

Rule 5 Requirements Verifiability and Validability: *Make sure that requirements are verifiable and can be validated*

- That is, do not express a requirement for which you have no assurance that it can be verified and validated.
- In other words,

∞ once a first-level software design has been proposed,∞ one must show that it satisfies the requirements.

• Thus specific parts of even abstract software designs are usually provided with references to specific parts of the requirements that they are (thus) claimed to implement. **Definition 19**. **Requirements (II):** By **requirements** we shall understand a document which prescribes desired properties of a machine:

- \bullet (i) what endurants the machine shall "maintain", and
- what the machine shall (must; not should) offer of
 - (ii) functions and of
 - (iii) behaviours
- (iv) while also expressing which events the machine shall "handle"

- By a machine that "maintains" endurants we shall mean:

 a machine which, "between" users' use of that machine,
 a "keeps" the data that represents these entities.
- From earlier we repeat:

Definition 20. Machine: By machine we shall understand a, or the, combination of hardware and software that is the target for, or result of the required computing systems development

- So this, then, is a main objective of requirements development:
- to start towards the design of the hardware + software for the computing system.

Definition 21. **Requirements (III)**: To specify the machine

- When we express requirements and wish to "convert" such requirements to a realisation, i.e., an implementation, then we find
 - that some requirements (parts) imply certain properties to hold of the hardware on which the software to be developed is to "run",
 and, obviously, that remaining — probably the larger parts of the — requirements imply certain properties to hold of that software.
- So we find
 - ∞ that although we may believe that our job is software engineering,
- important parts of our job are to also "design the machine"!

7.1.2. Four Stages of Requirements Development

- We shall unravel requirements in four stages the first three stages are sketchy (and thus informal) while the last stage
 - \otimes is systematic,
 - \otimes mandates both strict narrative,
 - \otimes and formal descriptions, and
 - \otimes is "derivable" from the domain description.
- The four stages are:
 - ∞ the *problem/objective* sketch,
 - \otimes the narrative system requirements sketch,
 - \otimes the narrative user requirements sketch, and

7.1.2.1. Problem and/or Objective Sketch

Definition 22. **Problem/Objective Sketch:** *By a* **problem/objective sketch** *we understand*

- a narrative which emphasises
- what the problem or objectie is
- and thereby names its main concepts

A Prerequisite for Requirements Engineering

367

368

Example 66 . The Problem/Objective Requirements: A Sketch:

- The objective is to create a **road-pricing product**.
 - - $\ensuremath{\textcircled{}^{\texttt{o}}}$ we shall understand an information technology-based system
 - [®] containing computers and communications equipment and software
 - \odot that enables the recording of *vehicle* movements
 - $\ensuremath{\textcircled{}^{\texttt{o}}}$ within a well-delineated road net
 - $\ensuremath{\textcircled{}}$ and thus enables
 - * the *owner* of the road net
 - \ast to charge
 - * the *owner* of the vehciles
 - \ast fees for the usage of that road net

7.1.2.2. Systems Requirements

Definition 23. **System Requirements:** By a system requirements ments narrative we understand

- a narrative which emphasises
- the overall hardware and software
- system components

Example 67. The Road-pricing System Requirements: A Narrative:

- The requirements are based on the following a-priori given constellation of system components:
 - there is assumed a GNSS: a Global Navigation Satellite System;

- These four system components are required to behave and interact as follows:
 - The GNSS is assumed to continuously offer vehicles timed informa-tion about their global positions;
 - w vehicles shall contain a GNSS receiver which based on the global position information shall regularly calculate their timed local position and offer this to the calculator — while otherwise cruising the general road net as well as the toll-road net, the latter while carefully moving through toll-gate barriers;

- The requirements are therefore to include requirements to
 - ∞ the GNSS radio telecommunications equipment,
 - the vehicle GNSS receiver equipment,
 - ∞ the vehicle software,
 - ∞ the toll-gate in and out sensor equipment,
 - ∞ the electro-mechanical toll-gate barrier equipment,
 - « the toll-gate barrier actuator equipment,
 - \otimes the toll-gate software,
 - \otimes the actuator software, and
 - \otimes the communications

- It is in this sense that the requirements are for an information technology-based system
 - \circledast of both software and
 - \otimes hardware
 - onot just hard computer and communications equipment,
 - $\ensuremath{\scriptstyle \odot}$ but also movement sensors

ond electro-mechanical "gear"

7.1.2.3. User and External Equipment Requirements

Definition 24. User and External Equipment Requirements: By a user and external equipment requirements narrative we understand

- a narrative which emphasises
 - \otimes the human user and
 - \circledast external equipment

interfaces

• to the system components

Example 68. The Road-pricing User and External Equipment Requirements: Narrative:

- The human users of the road-pricing system are
 - ⊗ vehicle drivers,
 - \circledast toll-gate sensor, actuator and barrier service staff, and
 - \otimes the road-pricing service calculator staff.
- The external equipment are
 - \circledast the GNSS satellites
 - \circledast and the telecommunications equipment
 - $\ensuremath{\textcircled{}^{\texttt{O}}}$ which enables communication between
 - $\ensuremath{\textcircled{}}$ the GNSS satellite sand vehicles ,
 - © vehicles and the road-pricing calculator,
 - © toll-gates and the road-pricing calculator and
 - [®] the road-pricing calculator and vehicles (for billing),
 - \otimes We defer expression of
 - $\ensuremath{\textcircled{}}$ human user and
 - \odot external equipment requirements
 - till our treatment of relevant functional requirements

7.1.2.4. Functional Requirements

Definition 25. **Functional Requirements:** By functional requirements we understand precise prescriptions of

- the endurants
- and perdurants

of the system components

- There are, as we see it, three kinds of requirements:
 - « domain requirements,
 - **∞** interface requirements and
 - machine requirements

- **Domain requirements** are those requirements which can be expressed sôlely using technical terms of the domain
- Interface requirements are those requirements which can be expressed only using technical terms of both the domain and the machine
- Machine requirements are those requirements which can be expressed sôlely using technical terms of the machine

7.2. Domain Requirements

Definition 26. **Domain Requirements Prescription:** *A* **do**main requirements prescription

- is that subset of the requirements prescription
- which can be expressed sôlely using terms from the domain description
- To determine a relevant subset all we need is collaboration with requirements stake-holders.

• Experimental evidence,

 \otimes in the form of example developments

- ∞ of requirements prescriptions
- ∞ from domain descriptions,
- appears to show
- \otimes that one can formulate techniques for such developments
- \otimes around a few domain description to requirements prescription operations.
- \otimes We suggest these:
 - projection,
 instantiation,
 determination,

and, perhaps, other domain description to requirements prescription operations.

7.2.1. Domain Projection

Definition 27. **Domain Projection:** *By a* **domain projection** *we mean*

- a subset of the domain description,
- one which leaves out all those
 - endurants:

 parts,

 materials and

 components,

 as well as

 wendurants:

 perdurants:

 </

that the stake-holders do not wish represented by the machine.

• The resulting document is a partial domain requirements prescription

- In determining an appropriate subset
 - ∞ the requirements engineer must secure
 - \otimes that the final prescription
 - \otimes is complete and consistent that is,
 - that there are no "dangling references",
 i.e., that all entities that are referred to
 are all properly defined.

7.2.1.1. Domain Projection — Narrative

- We now start on a series of examples
- that illustrate domain requirements development.

Example 69. Domain Requirements. Projection A Narrative Sketch:

- We require that the Road-pricing IT, computing & communications system shall embody the following domain entities, in one form or another:
 - \otimes the net,
 - $\ensuremath{\varpi}$ its links and hubs,
 - $\ensuremath{\textcircled{}}$ and their properties
 - (unique identifiers, mereologies and attributes),
 - \otimes the vehicles, as endurants,
 - on as endurants,

383

- ullet To formalise this we copy the domain description, Δ_{Δ} ,
- From that domain description we remove all mention of
 - $\ensuremath{\circledast}$ the link insertion and removal functions,
 - \otimes the link disappearance event,
 - $\ensuremath{\circledast}$ the vehicle behaviour, and
 - \circledast the monitor
- to obtain the $\Delta_{\mathcal{P}}$ version of the domain requirements prescription.²⁵

²⁵Restrictions of the net to the toll road nets, hinted at earlier, will follow in the next domain requirements steps.

7.2.1.2. Domain Projection — Formalisation

- The requirements prescription hinges, crucially,

 not only on a systematic narrative of all the
 - projected,determinated,fittedinstantiated,extended and

specifications,

 \otimes but also on their formalisation.

- In the series of domain projection examples following below we, regretfully, omit the narrative texts.
 - « In bringing the formal texts

we keep the item numbering from Sect. 2.,

 \otimes where you can find the associated narrative texts.

Example 70. Domain Requirements. Projection Root Sorts:

type

112. $\Delta_{\mathcal{P}}$

112a.. $N_{\mathcal{P}}$

112b.. $F_{\mathcal{P}}$

value

- 112a. **obs_part_** $N_{\mathcal{P}}: \Delta_{\mathcal{P}} \rightarrow N_{\mathcal{P}}$
- 112b.. **obs_part_** $F_{\mathcal{P}}$: $\Delta_{\mathcal{P}} \rightarrow F_{\mathcal{P}}$

type

113a.. $HA_{\mathcal{P}}$

113b.. $LA_{\mathcal{P}}$

value

- 113a. **obs_part_HA**: $N_{\mathcal{P}} \rightarrow HA$
- $\texttt{113b..} \quad \textbf{obs_part_LA:} \; \mathsf{N}_\mathcal{P} \to \mathsf{LA}$

```
© Dines Bjørner 2015, Fredsvej 11, DK-2840 Holte, Denmark - May 23, 2015: 15:36
```

Example 71. Domain Requirements. Projection Sub-domain Sorts and Types:

type

- 114. $H_{\mathcal{P}}, HS_{\mathcal{P}} = H_{\mathcal{P}}$ -set 115. $L_{\mathcal{P}}, LS_{\mathcal{P}} = L_{\mathcal{P}}$ -set 116. $V_{\mathcal{P}}, VS_{\mathcal{P}} = V_{\mathcal{P}}$ -set value 114. $obs_part_HS_{\mathcal{P}}: HA_{\mathcal{P}} \rightarrow HS_{\mathcal{P}}$ 115. $obs_part_LS_{\mathcal{P}}: LA_{\mathcal{P}} \rightarrow LS_{\mathcal{P}}$ 116. $obs_part_VS_{\mathcal{P}}: F_{\mathcal{P}} \rightarrow VS_{\mathcal{P}}$ 117a.. links: $\Delta_{\mathcal{P}} \rightarrow L$ -set 117a.. links($\delta_{\mathcal{P}}$) $\equiv obs_part_LS_{\mathcal{R}}(obs_part_LA_{\mathcal{R}}(\delta_{\mathcal{R}}))$ 117b.. hubs: $\Delta_{\mathcal{P}} \rightarrow H$ -set
- 117b. $\mathsf{hubs}(\delta_{\mathcal{P}}) \equiv \mathsf{obs_part_HS}_{\mathcal{P}}(\mathsf{obs_part_HA}_{\mathcal{P}}(\delta_{\mathcal{P}}))$

Example 72. Domain Requirements. Projection Unique Identifications:

type

118a.. HI, LI, VI, MI

value

- 118c.. **uid_**HI: $H_{\mathcal{P}} \rightarrow HI$
- 118c.. uid_LI: $L_{\mathcal{P}} \rightarrow LI$
- 118c.. uid_VI: $V_{\mathcal{P}} \rightarrow VI$
- 118c.. uid_MI: $M_{\mathcal{P}} \rightarrow MI$

axiom

- 118b.. $HI \cap LI = \emptyset$, $HI \cap VI = \emptyset$, $HI \cap MI = \emptyset$,
- 118b.. $LI \cap VI = \emptyset$, $LI \cap MI = \emptyset$, $VI \cap MI = \emptyset$

Example 73. Domain Requirements. Projection Road Net Mereology:

```
value
120.
               obs_mereo_H_{\mathcal{D}}: H_{\mathcal{D}} \rightarrow Ll-set
121.
            obs_mereo_L_\mathcal{P}: L_\mathcal{P} \to HI\text{-set}
                        axiom \forall : L_{\mathcal{P}} \cdot \text{card obs\_mereo\_L_{\mathcal{P}}}(I) = 2
121.
122.
            obs_mereo_V<sub>\mathcal{P}</sub>: V<sub>\mathcal{P}</sub> \rightarrow MI
123. obs_mereo_M_{\mathcal{D}}: M_{\mathcal{D}} \rightarrow VI-set
axiom
124. \forall \delta_{\mathcal{P}}: \Delta_{\mathcal{P}}, \text{ hs:HS-hs=hubs}(\delta), \text{ ls:LS-ls=links}(\delta_{\mathcal{P}}) \Rightarrow
124.
                  \forall h:H<sub>\mathcal{P}</sub>•h \in hs \Rightarrow
                         obs_mereo_H_{\mathcal{P}}(h) \subseteq xtr_his(\delta_{\mathcal{P}}) \land
124.
                  \forall : L_{\mathcal{D}} \cdot | \in \mathsf{s} \cdot
125.
124.
                         obs_mereo_L<sub>\mathcal{P}</sub>(I)\subsetxtr_lis(\delta_{\mathcal{P}}) \land
                  let f:F<sub>P</sub>·f=obs_part_F<sub>P</sub>(\delta_P) \Rightarrow
126a..
                                 vs:VS<sub>\mathcal{P}</sub>•vs=obs_part_VS<sub>\mathcal{P}</sub>(f) in
126a..
126a..
                          \forall v: V_{\mathcal{P}} \cdot v \in vs \Rightarrow
126a..
                                 uid_V<sub>\mathcal{P}</sub>(v) \in obs_mereo_M<sub>\mathcal{P}</sub>(m) \land
126b..
                           obs_mereo_M_{\mathcal{P}}(m)
126b..
                                 = \{ uid_V_{\mathcal{P}}(v) | v: V \cdot v \in vs \}
126b..
                     end
```

Example 74. Domain Requirements. Projection Attributes of Hubs:

```
type
127a.. H\Sigma_{\mathcal{P}} = (LI \times LI)-sett
127b.. H\Omega_{\mathcal{P}} = H\Sigma_{\mathcal{P}}-set
value
127a.. attr_H\Sigma_{\mathcal{P}}: H_{\mathcal{P}} \rightarrow H\Sigma_{\mathcal{P}}
127b.. attr_H\Omega_{\mathcal{P}}: H_{\mathcal{P}} \rightarrow H\Omega_{\mathcal{P}}
type
               HGCL
129
value
129
                attr HGCL: H \rightarrow HGCL
axiom
128.
               \forall \delta_{\mathcal{P}}: \Delta_{\mathcal{P}},
128. let hs = hubs(\delta_{\mathcal{P}}) in
128. \forall h: H_{\mathcal{P}} \cdot h \in hs \cdot
128a..
                             \operatorname{xtr_lis}(h) \subseteq \operatorname{xtr_lis}(\delta_{\mathcal{P}})
                           \wedge \operatorname{attr}_{\Sigma_{\mathcal{P}}}(\mathsf{h}) \in \operatorname{attr}_{\Omega_{\mathcal{P}}}(\mathsf{h})
128b.
128.
                    end
```

Example 75. Domain Requirements. Projection Attributes of Links:

type

131. LEN

132. LGCL

133a.. $L\Sigma_{\mathcal{P}} = (HI \times HI)$ -set

133b.. $L\Omega_{\mathcal{P}} = L\Sigma_{\mathcal{P}}$ -set

value

- 131. **attr**_LEN: $L_{\mathcal{P}} \rightarrow LEN$
- 132. **attr_LGCL**: L $_{\mathcal{P}} \rightarrow$ LGCL
- 133a. attr_L $\Sigma_{\mathcal{P}}$: L $_{\mathcal{P}} \rightarrow L\Sigma_{\mathcal{P}}$

133b. attr_L $\Omega_{\mathcal{P}}$: $L_{\mathcal{P}} \rightarrow L\Omega_{\mathcal{P}}$

axiom

133a..- 133b. on Slide 324.

Example 76. Domain Requirements. Projection Behaviour: Global Values

value

146. $\delta_{\mathcal{P}}:\Delta_{\mathcal{P}}$,

- 147. n:N_{\mathcal{P}} = **obs_part_**N_{\mathcal{P}}($\delta_{\mathcal{P}}$),
- 147. ls:L_{\mathcal{P}}-set = links($\delta_{\mathcal{P}}$),
- 147. hs: $H_{\mathcal{P}}$ -set = hubs $(\delta_{\mathcal{P}})$,
- 147. lis:Ll-set = xtr_lis($\delta_{\mathcal{P}}$),
- 147. his:HI-set = xtr_his($\delta_{\mathcal{P}}$)

Behaviour Signatures

value 153. $trs_{\mathcal{P}}$: Unit \rightarrow Unit 154. $veh_{\mathcal{P}}$: VI \times MI \times ATTR \rightarrow ... Unit

The System Behaviour

value

156a.. trs_{\mathcal{P}}()= $\|\{veh_{\mathcal{P}}(uid_V|(v), obs_mereo_V(v), attr_ATTRS(v)) \mid v:V_{\mathcal{P}} \cdot v \in vs\}$

7.2.1.3. A Projection Operator

- Domain projection thus take a domain description, \mathcal{D} , and yields a projected requirements prescription, $\mathcal{R}_{\mathcal{P}}$.
- \otimes type projection: $\mathcal{D} \to \mathcal{R}_{\mathcal{P}}$.
- Semantically

 $\otimes \mathcal{D}$ denotes a possibly infinite set of meanings, say \mathbb{D} and $\otimes \mathcal{R}_{\mathcal{P}}$ denotes a possibly infinite set of meanings, say $\mathbb{R}_{\mathbb{P}}$, \otimes such that some relation $\mathbb{R}_{\mathbb{P}} \sqsubseteq \mathbb{D}$ is satisfied.

Dines Bjørner's MAP-i Lecture #7

End of MAP-i Lecture #7: **Requirements – An Overview and Projection**

Tuesday, 26 May 2015: 15:30-16:15

0