
0

Dines Bjørner’s MAP-i Lecture # 5

Perdurants: Actions, Events and Behaviours

Tuesday, 26 May 2015: 10:00–10:45

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 0 Domain Science & Engineering

242 1. 3. Perdurant Entities

1.3. Perdurant Entities

•We shall give only a cursory overview of perdurants.

• That is, we shall not present

⋄⋄ a set of domain analysis prompts and

⋄⋄ a set of domain description prompts

leading to description language,
i.e., RSL texts describing perdurant entities.

• The reason for giving this albeit cursory overview of perdurants

⋄⋄ is that, through this cursory overview, we can justify our detailed
study of endurants,

◦◦ their part and subparts,

◦◦ their unique identifiers, mereology and attributes.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 242 Domain Science & Engineering

243

1. 3. Perdurant Entities

• This justification is manifested

⋄⋄ (i) in expressing the types of signatures,

⋄⋄ (ii) in basing behaviours on parts,

⋄⋄ (iii) in basing the for need for
CSP-oriented inter-behaviour communications
on shared part attributes,

⋄⋄ (iv) in indexing behaviours as are parts, i.e., on unique identifiers,

and

⋄⋄ (v) in directing inter-behaviour communications across channel
arrays indexed as per the mereology of the part behaviours.

A Prerequisite for Requirements Engineering 243 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

244

1. 3. Perdurant Entities

• These are all notions related to endurants
and are now justified by their use in describing perdurants.

• Perdurants can perhaps best be explained in terms of

⋄⋄ a notion of state and

⋄⋄ a notion of time.

•We shall, in this seminar, not detail notions of time.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 244 Domain Science & Engineering

245

1. 3. Perdurant Entities 3.1.

1.3.1. States

Definition 11 . State: By a state we shall understand

• any collection of parts

• each of which has

• at least one dynamic attribute

• or has components or has material s

A Prerequisite for Requirements Engineering 245 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

246

1. 3. Perdurant Entities 3.1. States

Example 53 . States: Some examples of states are:

• A road hub can be a state,
cf. Hub State, HΣ, Example 38 on Slide 181.

• A road net can be a state – since its hubs can be.

• Container stowage areas, CSA, Example 22 on Slide 135, of container
vessels and container terminal ports can be states as containers can
be removed from and put on top of container stacks.

• Pipeline pipes can be states as they potentially carry material.

• Conveyor belts can be states as they potentially carry components

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 246 Domain Science & Engineering

247

1. 3. Perdurant Entities 3.2. States

1.3.2. Actions, Events and Behaviours

• To us perdurants are further analysed into

⋄⋄ actions,

⋄⋄ events, and

⋄⋄ behaviours.

•We shall define these terms below.

• Common to all of them is that they potentially change a state.

• Actions and events are here considered atomic perdurants.

• For behaviours we distinguish between

⋄⋄ discrete and

⋄⋄ continuous

behaviours.

A Prerequisite for Requirements Engineering 247 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

248

1. 3. Perdurant Entities 3.2. Actions, Events and Behaviours

On Action, Event and Behaviour Distinctions:

• The distinction into action, event and behaviour perdurants is prag-
matic.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 248 Domain Science & Engineering

249

1. 3. Perdurant Entities 3.2. Actions, Events and Behaviours 3.2.1.

1.3.2.1. Time Considerations

•We shall, without loss of generality, assume

⋄⋄ that actions and events are atomic

⋄⋄ and that behaviours are composite.

• Atomic perdurants may “occur” during some time interval,

⋄⋄ but we omit consideration of and concern
for what actually goes on during such an interval.

• Composite perdurants can be analysed into

⋄⋄ “constituent” actions,

⋄⋄ events and

⋄⋄ “sub-behaviours”.

•We shall also omit consideration of temporal properties of behaviours.

A Prerequisite for Requirements Engineering 249 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

250

1. 3. Perdurant Entities 3.2. Actions, Events and Behaviours 3.2.1. Time Considerations

⋄⋄ Instead we shall refer to two seminal monographs:

◦◦ Specifying Systems [Leslie Lamport, 2002] and

◦◦ Duration Calculus: A Formal Approach to Real-Time Systems
[Zhou ChaoChen and Michael Reichhardt Hansen, 2004].

• For a seminal book on “time in computing” we refer to the eclectic
Modeling Time in Computing, Springer 2012.

• And for seminal book on time at the epistemology level we refer to
The Logic of Time, Kluwer 1991.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 250 Domain Science & Engineering

251

1. 3. Perdurant Entities 3.2. Actions, Events and Behaviours 3.2.2. Time Considerations

1.3.2.2. Actors

Definition 12 . Actor: By an actor we shall understand

• something that is capable of initiating and/or carrying out

⋄⋄ actions,

⋄⋄ events or

⋄⋄ behaviours

•We shall, in principle, associate an actor with each part.

⋄⋄ These actors will be described as behaviours.

⋄⋄ These behaviours evolve around a state.

⋄⋄ The state is

◦◦ the set of qualities,
in particular the dynamic attributes,
of the associated parts

◦◦ and/or any possible components or materials of the parts.

A Prerequisite for Requirements Engineering 251 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

252

1. 3. Perdurant Entities 3.2. Actions, Events and Behaviours 3.2.2. Actors

Example 54 . Actors: We refer to the road transport and the pipeline
systems examples of earlier.

• The fleet, each vehicle and the road management of the Transporta-
tion System of Examples 20 on Slide 123 and 43 on Slide 198 can
be considered actors;

• so can the net and its links and hubs.

• The pipeline monitor and each pipeline unit of the Pipeline System,
Example 27 on Slide 140 and Examples 27 on Slide 140 and 33 on
Slide 162 will be considered actors.

• The bank general ledger and each bank customer of the Shared

Passbooks example, Example 44 on Slide 201, will be considered
actors

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 252 Domain Science & Engineering

253

1. 3. Perdurant Entities 3.2. Actions, Events and Behaviours 3.2.3. Actors

1.3.2.3. Parts, Attributes and Behaviours

• Example 54 on the preceding slide focused on what shall soon be-
come a major relation within domains:

⋄⋄ that of parts being also considered actors,

⋄⋄ or more specifically, being also considered to be behaviours.

Example 55 . Parts, Attributes and Behaviours:

• Consider the term ‘train’.

• It has several possible “meanings”.

⋄⋄ the train as a part, viz., as standing on a platform;

⋄⋄ the train as listed in a timetable (an attribute of a transport sys-
tem part),

⋄⋄ the train as a behaviour: speeding down the rail track

A Prerequisite for Requirements Engineering 253 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

254

1. 3. Perdurant Entities 3.3. Actions, Events and Behaviours

1.3.3. Discrete Actions

Definition 13 . Discrete Action: By a discrete action [54] we
shall understand

• a foreseeable thing

• which deliberately

• potentially changes a well-formed state, in one step,

• usually into another, still well-formed state,

• and for which an actor can be made responsible

• An action is what happens when a function invocation changes, or
potentially changes a state.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 254 Domain Science & Engineering

255

1. 3. Perdurant Entities 3.3. Discrete Actions

Example 56 . Road Net Actions:

• Examples of Road Net actions initiated by the net actor are:

⋄⋄ insertion of hubs,

⋄⋄ insertion of links,

⋄⋄ removal of hubs,

⋄⋄ removal of links,

⋄⋄ setting of hub states.

• Examples of Traffic System actions initiated by vehicle actors are:

⋄⋄ moving a vehicle along a link,

⋄⋄ stopping a vehicle,

⋄⋄ starting a vehicle,

⋄⋄ entering a hub and

⋄⋄ leaving a hub

A Prerequisite for Requirements Engineering 255 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

256

1. 3. Perdurant Entities 3.4. Discrete Actions

1.3.4. Discrete Events

Definition 14 . Event: By an event we shall understand

• some unforeseen thing,

• that is, some ‘not-planned-for’ “action”, one

• which surreptitiously, non-deterministically changes a well-formed
state

• into another, but usually not a well-formed state,

• and for which no particular domain actor can be made respon-
sible

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 256 Domain Science & Engineering

257

1. 3. Perdurant Entities 3.4. Discrete Events

• Events can be characterised by

⋄⋄ a pair of (before and after) states,

⋄⋄ a predicate over these

⋄⋄ and, optionally, a time or time interval.

• The notion of event continues to puzzle philosophers
[36, 51, 49, 35] [41, 2, 47, 34] [50, 33].

•We note, in particular, [35, 2, 47].

A Prerequisite for Requirements Engineering 257 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

258

1. 3. Perdurant Entities 3.4. Discrete Events

Example 57 . Road Net and Road Traffic Events:

• Some road net events are:

⋄⋄ “disappearance” of a hub or a link,

⋄⋄ failure of a hub state to change properly when so requested, and

⋄⋄ occurrence of a hub state leading traffic into “wrong-way” links.

• Some road traffic events are:

⋄⋄ the crashing of one or more vehicles (whatever ‘crashing’ means),

⋄⋄ a car moving in the wrong direction of a one-way link, and

⋄⋄ the clogging of a hub with too many vehicles

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 258 Domain Science & Engineering

259

1. 3. Perdurant Entities 3.5. Discrete Events

1.3.5. Discrete Behaviours

Definition 15 . Discrete Behaviour: By a discrete behaviour
we shall understand

• a set of sequences of potentially interacting sets of discrete

⋄⋄ actions,

⋄⋄ events and

⋄⋄ behaviours

A Prerequisite for Requirements Engineering 259 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

260

1. 3. Perdurant Entities 3.5. Discrete Behaviours

Example 58 . Behaviours:

• Examples of behaviours:

⋄⋄ Road Nets: A sequence of hub and link insertions and removals,
link disappearances, etc.

⋄⋄ Road Traffic: A sequence of movements of vehicles along links,
entering, circling and leaving hubs, crashing of vehicles, etc.

⋄⋄ Pipelines: A sequence of pipeline pump and valve openings and
closings, and failures to do so (events), etc.

⋄⋄ Container Vessels and Ports: Concurrent sequences of movements
(by cranes) of containers from vessel to port (unloading), with
sequences of movements (by cranes) from port to vessel (loading),
with dropping of containers by cranes, etcetera

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 260 Domain Science & Engineering

261

1. 3. Perdurant Entities 3.5. Discrete Behaviours 3.5.1.

1.3.5.1. Channels and Communication

• Behaviours

⋄⋄ sometimes synchronise

⋄⋄ and usually communicate.

•We use CSP to model behaviour communication.

⋄⋄ Communication is abstracted as

◦◦ the sending (ch !m) and

◦◦ receipt (ch ?)

◦◦ of messages, m:M,

◦◦ over channels, ch.

type M
channel ch M

A Prerequisite for Requirements Engineering 261 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

262

1. 3. Perdurant Entities 3.5. Discrete Behaviours 3.5.1. Channels and Communication

⋄⋄ Communication between (unique identifier) indexed behaviours
have their channels modeled as similarly indexed channels:

out: ch[idx]!m
in: ch[idx]?
channel {ch[ide]|ide:IDE}:M

where IDE typically is some type expression over unique identitifer
types.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 262 Domain Science & Engineering

263

1. 3. Perdurant Entities 3.5. Discrete Behaviours 3.5.2. Channels and Communication

1.3.5.2. Relations Between Attribute Sharing and Channels

•We shall now interpret

⋄⋄ the syntactic notion of attribute sharing with

⋄⋄ the semantic notion of channels.

• This is in line with the above-hinted interpretation of

⋄⋄ parts with behaviours, and,

as we shall soon see

⋄⋄ part attributes,

⋄⋄ part components and

⋄⋄ part materials

with behaviour states.

A Prerequisite for Requirements Engineering 263 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

264

1. 3. Perdurant Entities 3.5. Discrete Behaviours 3.5.2. Relations Between Attribute Sharing and Channels

• Thus, for every pair of parts, pik:Pi and pjℓ:Pj, of distinct sorts, Pi
and Pj which share attribute values in A

⋄⋄ we are going to associate a channel.

◦◦ If there is only one pair of parts, pik:Pi and pjℓ:Pj, of these
sorts, then just a simple channel, say chPi,Pj .

channel chPi,Pj:A.

◦◦ If there is only one part, pi:Pi, but a definite set of parts pjk:Pj,
with shared attributes, then a vector of channels.

∗ Let {pj1, pj2, ..., pjn} be all the part of the domain of sort
Pj.

∗ Then uids : {πpj1, πpj2, ..., πpjn} is the set of their unique
identifiers.

∗ Now a schematic channel array declaration can be suggested:

channel {ch[{πi,πj}]|πi=uid Pi(pi)∧πj ∈ uids}:A.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 264 Domain Science & Engineering

265

1. 3. Perdurant Entities 3.5. Discrete Behaviours 3.5.2. Relations Between Attribute Sharing and Channels

Example 59 . Bus System Channels:

•We extend Examples 20 on Slide 123 and 43 on Slide 198.

•We consider the fleet and the vehicles to be behaviours.

90 We assume some transportation system, δ. From that system we
observe

91 the fleet and

92 the vehicles.

93 The fleet to vehicle channel array is indexed by the 2-element sets of
the unique fleet identifier and the unique vehicle identifiers. We con-
sider bus timetables to be the only message communicated between
the fleet and the vehicle behaviours.

A Prerequisite for Requirements Engineering 265 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

266

1. 3. Perdurant Entities 3.5. Discrete Behaviours 3.5.2. Relations Between Attribute Sharing and Channels

value
90. δ:∆,
91. f:F = obs part F(δ),
92. vs:V-set = obs part Vs(obs part VC((obs part F(δ))))

channel
93. {fch[{uid F(f),uid V(v)}]|v:V•v ∈ vs}:BT

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 266 Domain Science & Engineering

267

1. 3. Perdurant Entities 3.5. Discrete Behaviours 3.5.2. Relations Between Attribute Sharing and Channels

Example 60 . Bank System Channels:

•We extend Example 44 on Slide 201.

•We consider the general ledger and the customers to be behaviours.

94 We assume some bank system. From the bank system

95 we observe the general ledger.

96 and the set of customers.

97 We consider passbooks to be the only message communicated be-
tween the general ledger and the customer behaviours.

value
94. bs:BS
95. gl=obs part GL(obs part AD(bs)):GL
96. cs=obs part Cs(obs part CS(bs)):C-set
channel
97. {bsch[{uid GL(gl),uid C(c)}]|c:C•c ∈ cs}:PB

A Prerequisite for Requirements Engineering 267 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

268

1. 3. Perdurant Entities 3.6. Discrete Behaviours

1.3.6. Continuous Behaviours

• By a continuous behaviour we shall understand

⋄⋄ a continuous time

⋄⋄ sequence of state changes.

•We shall not go into what may cause these state changes.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 268 Domain Science & Engineering

269

1. 3. Perdurant Entities 3.6. Continuous Behaviours

Example 61 . Flow in Pipelines:

•We refer to Examples 33, 48, 49, 50 and 51.

• Let us assume that oil is the (only) material of the pipeline units.

• Let us assume that there is a sufficient volume of oil in the pipeline
units leading up to a pump.

• Let us assume that the pipeline units leading from the pump (espe-
cially valves and pumps) are all open for oil flow.

•Whether or not that oil is flowing, if the pump is pumping (with a
sufficient head) then there will be oil flowing from the pump outlet
into adjacent pipeline units

A Prerequisite for Requirements Engineering 269 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

270

1. 3. Perdurant Entities 3.6. Continuous Behaviours

• To describe the flow of material (say in pipelines) requires knowledge
about a number of material attributes — not all of which have been
covered in the above-mentioned examples.

• To express flows one resorts to the mathematics of fluid-dynamics
using such second order differential equations as first derived by
Bernoulli (1700–1782) and Navier–Stokes (1785–1836 and 1819–1903).

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 270 Domain Science & Engineering

271

1. 3. Perdurant Entities 3.7. Continuous Behaviours

1.3.7. Attribute Value Access

•We can distinguish between three kinds of attributes:

⋄⋄ the constant attributes which are those whose values are static;

⋄⋄ the programmable attributes which are those dynamic values are
exclusively set by part processes; and

⋄⋄ the remaining dynamic attributes
are here seen as individual behaviours.

1.3.7.1. Access to Static Attribute Values

• The constant attributes can be “copied” attr A(p)
(and retain their values).

A Prerequisite for Requirements Engineering 271 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

272

1. 3. Perdurant Entities 3.7. Attribute Value Access 3.7.2. Access to Static Attribute Values

1.3.7.2. Access to External Attribute Values

• By the external behaviour attributes

⋄⋄ we shall thus understand the

◦◦ inert,

◦◦ reactive,

◦◦ autonomous and the

◦◦ biddable

attributes

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 272 Domain Science & Engineering

273

1. 3. Perdurant Entities 3.7. Attribute Value Access 3.7.2. Access to External Attribute Values

98 Let ξA be the set of names, ηA,
of all external behaviour attributes.

99 Let ΠξA be the set of indexes into the external attribute channel, say
attr A ch, one for each distinct attribute name, A, in ξA.

100 Each external behaviour attribute is seen as an individual behaviour,
each “accessible” by means of a channel, attr A ch.

101 External attribute values are then accessed by the input, from chan-
nel attr A ch[π]-accessible external attribute behaviours.

102 The type of attr A ch[π] is considered to be Unit
∼
→A.

A Prerequisite for Requirements Engineering 273 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

274

1. 3. Perdurant Entities 3.7. Attribute Value Access 3.7.2. Access to External Attribute Values

98. value
98. ξA: {ηA|A is any external attribute name}
99. ΠξA: Π-set
100. channel
100. {attr A ch[π]|π ∈ ΠξA}
101. value
101. attr A ch[π] ?
101. type

101. attr A ch[π]: Unit
∼
→A [abbrv.:UA]

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 274 Domain Science & Engineering

275

1. 3. Perdurant Entities 3.7. Attribute Value Access 3.7.2. Access to External Attribute Values

•We shall omit the η prefix in actual descriptions.

• The choice of representing external behaviour attributes as behaviours
is a technical one.

• See Items 187c. and 187a. Slide 426 for a use of the concept of external
behaviour attribute channels.

A Prerequisite for Requirements Engineering 275 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

276

1. 3. Perdurant Entities 3.7. Attribute Value Access 3.7.3. Access to External Attribute Values

1.3.7.3. Access to Programmable Attribute Values

• The programmable attributes are treated as function arguments.

• This is a technical choice. It is motivated as follows.

⋄⋄ We find that programmable attribute values
are set (i.e., updated) by part processes.

⋄⋄ That is, to each part, whether atomic or composite,
we associate a behaviour.

⋄⋄ That behaviour is (to be) described as we describe functions.

⋄⋄ These functions (normally) “go on forever”.

⋄⋄ Therefore these functions are described basically by a “tail” recursive definition:

value f: Arg → Arg; f(a) ≡ (... let a′ = F(...)(a) in f(a′) end)

⋄⋄ where F is some expression based on values defined within
the function definition body of f and on a’s “input” argument a, and

⋄⋄ where a can be seen as a programmable attribute.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 276 Domain Science & Engineering

277

1. 3. Perdurant Entities 3.8. Attribute Value Access

1.3.8. Perdurant Signatures and Definitions

• We shall treat perdurants as functions.

• In our cursory overview of perdurants

⋄⋄ we shall focus on one perdurant quality:

⋄⋄ function signatures.

A Prerequisite for Requirements Engineering 277 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

278

1. 3. Perdurant Entities 3.8. Perdurant Signatures and Definitions

Definition 16 . Function Signature: By a function signature
we shall understand

• a function name and

• a function type expression

Definition 17 . Function Type Expression: By a function type
expression we shall understand

• a pair of type expressions.

• separated by a function type constructor either → (total function)

or
∼
→ (partial function)

• The type expressions

⋄⋄ are usually part sort or type, material sort or attribute type names,

⋄⋄ but may, occasionally be expressions over respective type names
involving -set, ×, ∗, →m and | type constructors.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 278 Domain Science & Engineering

279

1. 3. Perdurant Entities 3.9. Perdurant Signatures and Definitions

1.3.9. Action Signatures and Definitions

• Actors usually provide their initiated actions with arguments, say of
type VAL.

⋄⋄ Hence the schematic function (action) signature and schematic
definition:

action: VAL → Σ
∼
→ Σ

action(v)(σ) as σ′

pre: P(v,σ)
post: Q(v,σ,σ′)

⋄⋄ expresses that a selection of the domain

⋄⋄ as provided by the Σ type expression

⋄⋄ is acted upon and possibly changed.

A Prerequisite for Requirements Engineering 279 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

280

1. 3. Perdurant Entities 3.9. Action Signatures and Definitions

• The partial function type operator
∼
→

⋄⋄ shall indicate that action(v)(σ)

⋄⋄ may not be defined for the argument, i.e., initial state σ

⋄⋄ and/or the argument v:VAL,

⋄⋄ hence the precondition P(v,σ).

• The post condition Q(v,σ, σ′) characterises the “after” state, σ′:Σ,
with respect to the “before” state, σ:Σ, and possible arguments
(v:VAL).

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 280 Domain Science & Engineering

281

1. 3. Perdurant Entities 3.9. Action Signatures and Definitions

Example 62 . Insert Hub Action Formalisation: We formalise as-
pects of the above-mentioned hub and link actions:

103 Insertion of a hub requires

104 that no hub exists in the net with the unique identifier of the inserted
hub,

105 and then results in an updated net with that hub.

value

103. insert H: H → N
∼
→ N

103. insert H(h)(n) as n′

104. pre: ∼∃ h′:H•h′ ∈ obs part Hs(obs part HS(n))•uid H(h)=uid H(h′)
105. post: obs part Hs(obs part HS(n′))=obs part Hs(obs part HS(n))∪{h}

A Prerequisite for Requirements Engineering 281 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

282

1. 3. Perdurant Entities 3.9. Action Signatures and Definitions

•Which could be the argument values, v:VAL, of actions ?

⋄⋄ Well, there can basically be only two kinds of argument values:

◦◦ parts, components and materials, respectively

◦◦ unique part identifiers, mereologies and attribute values.

⋄⋄ It basically has to be so

◦◦ since there are no other kinds of values in domains.

⋄⋄ There can be exceptions to the above

◦◦ (Booleans,

◦◦ natural numbers),

but they are rare !

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 282 Domain Science & Engineering

283

1. 3. Perdurant Entities 3.9. Action Signatures and Definitions

• Perdurant (action) analysis thus proceeds as follows:

⋄⋄ identifying relevant actions,

⋄⋄ assigning names to these,

⋄⋄ delineating the “smallest” relevant state18,

⋄⋄ ascribing signatures to action functions, and

⋄⋄ determining

◦◦ action pre-conditions and

◦◦ action post-conditions.

⋄⋄ Of these, ascribing signatures is, perhaps, the most crucial:

◦◦ In the process of determining the action signature

◦◦ one oftentimes discovers

◦◦ that part or material attributes have been left “undiscovered”.

18By “smallest” we mean: containing the fewest number of parts. Experience shows
that the domain analyser cum describer should strive for identifying the smallest state.

A Prerequisite for Requirements Engineering 283 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

284

1. 3. Perdurant Entities 3.9. Action Signatures and Definitions

• Example 63 shows examples of signatures
whose arguments are

⋄⋄ either parts,

⋄⋄ or parts and unique identifiers,

⋄⋄ or parts and unique identifiers and attributes.

Example 63 . Some Function Signatures:

• Inserting a link between two identified hubs in a net:

value insert L: L × (HI × HI) → N
∼
→ N

• Removing a hub and removing a link:

value remove H: HI → N
∼
→ N

remove L: LI → N
∼
→ N

• Changing a hub state.

value change HΣ: HI × HΣ → N
∼
→ N

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 284 Domain Science & Engineering

285

1. 3. Perdurant Entities 3.10. Action Signatures and Definitions

1.3.10. Event Signatures and Definitions

• Events are usually characterised by

⋄⋄ the absence of known actors and

⋄⋄ the absence of explicit “external” arguments.

• Hence the schematic function (event) signature:

value
event: Σ × Σ → Bool
event(σ,σ′) as true⌈⌉false

pre: P (σ)
post: Q(σ,σ′)

A Prerequisite for Requirements Engineering 285 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

286

1. 3. Perdurant Entities 3.10. Event Signatures and Definitions

• The event signature expresses

⋄⋄ that a selection of the domain

⋄⋄ as provided by the Σ type expression

⋄⋄ is “acted” upon, by unknown actors, and possibly changed.

• The partial function type operator
∼
→

⋄⋄ shall indicate that event(σ, σ′)

⋄⋄ may not be defined for some states σ.

• The resulting state may, or may not, satisfy axioms and well-formedness
conditions over Σ — as expressed by the post condition Q(σ, σ′).

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 286 Domain Science & Engineering

287

1. 3. Perdurant Entities 3.10. Event Signatures and Definitions

• Events may thus cause well-formedness of states to fail.

• Subsequent actions,

⋄⋄ once actors discover such “disturbing events”,

⋄⋄ are therefore expected to remedy that situation, that is,

⋄⋄ to restore well-formedness.

•We shall not illustrate this point.

A Prerequisite for Requirements Engineering 287 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

288

1. 3. Perdurant Entities 3.10. Event Signatures and Definitions

Example 64 . Link Disappearence Formalisation: We formalise
aspects of the above-mentioned link disappearance event:

106 The result net is not well-formed.

107 For a link to disappear there must be at least one link in the net;

108 and such a link may disappear such that

109 it together with the resulting net makes up for the “original” net.

value
106. link diss event: N × N′ × Bool
106. link diss event(n,n′) as tf
107. pre: obs part Ls(obs part LS(n)) 6={}
108. post: ∃ l:L•l ∈ obs part Ls(obs part LS(n)) ⇒
109. l 6∈ obs part Ls(obs part LS(n′))
109. ∧ n′ ∪ {l} = obs part Ls(obs part LS(n))

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 288 Domain Science & Engineering

289

1. 3. Perdurant Entities 3.11. Event Signatures and Definitions

1.3.11. Discrete Behaviour Signatures and Definitions

•We shall only cover behaviour signatures when expressed in RSL/CSP
[39].

• The behaviour functions are now called processes.

• That a behaviour function is a never-ending function, i.e., a process,
is “revealed” in the function signature by the “trailing” Unit:

behaviour: ... → ... Unit

• That a process takes no argument is ”revealed” by a “leading” Unit:

behaviour: Unit → ...

• That a process accepts channel, viz.: ch, inputs is “revealed” in the
function signature as follows:

behaviour: ... → in ch ...

A Prerequisite for Requirements Engineering 289 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

290

1. 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

• That a process offers channel, viz.: ch, outputs is “revealed” in the
function signature as follows:

behaviour: ... → out ch ...

• That a process accepts other arguments is “revealed” in the function
signature as follows:

behaviour: ARG → ...

• where ARG can be any type expression:

T, T→T, T→T→T, etcetera

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 290 Domain Science & Engineering

291

1. 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

• As shown in [21] we can, without loss of generality, associate with
each part a behaviour;

⋄⋄ parts which share attributes

⋄⋄ and are therefore referred to in some parts’ mereology,

⋄⋄ can communicate (their “sharing”) via channels.

• The process evolves around a state:

⋄⋄ its unique identity, π : Π,,

⋄⋄ its possibly changing mereology, mt:MT19,

⋄⋄ the possible components and materials of the part20, and

⋄⋄ the constant, the external and the programmable attributes of the
part.

19For MT see footnote 12 on Slide 158.
20— we shall neither treat components nor materials further in this document

A Prerequisite for Requirements Engineering 291 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

292

1. 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

• A behaviour signature is therefore:

behaviour: π:Π × me:MT × sa:SA × ea:EA → pa:PA → out ochs in ichns Unit

where

⋄⋄ (i) π:Π is the unique identifier of part p, i.e., π=uid P(p),

⋄⋄ (ii) me:ME is the mereology of part p, me = obs mereo P(p),

⋄⋄ (iii) sa:SA lists the static attribute values of the part behaviour,

⋄⋄ (iv) ea:EA lists the external attribute channels of the part be-
haviour,

⋄⋄ (v) ps:PA lists the programmable attribute values of the part be-
haviour, and where

⋄⋄ (vi) ochs and ichns refer to the shared attributes of the behaviours.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 292 Domain Science & Engineering

293

1. 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

•We focus, for a little while, on the expression of

⋄⋄ sa:SA, ⋄⋄ ea:EA and ⋄⋄ pa:PA,

• that is, on the concrete types of SA, EA and PA.

⋄⋄ SA: SA simply lists the static value types: svT1, svT2, ..., svTs
where s is the number of static attributes of parts p:P.

⋄⋄ EA EA simply lists the channel indexes to the external attribute
values: ((eA1, πeA1

), (eA2, πeA2
), ..., (eAx, πeAx

))21

where x is the number, 0 or more, of external attributes of parts
p:P.

⋄⋄ PA PA simply lists appropriate programmable value expression
type:
(pvT1, pvT2, ..., pvTq)
where q is the number of programmable attributes of parts p:P

21See paragraph Access to External Attribute Values on Slide 274.

A Prerequisite for Requirements Engineering 293 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

294

1. 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

• Let P be a composite sort defined in terms of sub-sorts PA, PB, . . . ,
PC.

⋄⋄ The process compiled from cp:P, is composed from

◦◦ a process,McPcore
, relying on and handling the unique iden-

tifier, mereology and attributes of process p as defined by P

◦◦ operating in parallel with processes pa, pb, . . . , pc where

∗ pa is “derived” from PA,

∗ pb is “derived” from PB,

∗ ..., and

∗ pc is “derived” from PC.

• The domain description “compilation” schematic below “formalises”
the above.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 294 Domain Science & Engineering

295

1. 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

Process Schema I: Abstract is composite(p)

value
compile process: P → RSL-Text
compile process(p) ≡

McP
core

(uid P(p),obs mereo P(p),SA(p),EA(p))(PA(p))

‖ compile process(obs part PA(p))
‖ compile process(obs part PB(p))
‖ ...

‖ compile process(obs part PC(p))

• The text macros: SA, EA and PA were informally explained above.

• Part sorts PA, PB, ..., PC are obtained from the observe part sorts prompt,
Slide 122.

A Prerequisite for Requirements Engineering 295 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

296

1. 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

• Let P be a composite sort defined in terms of the concrete type
Q-set.

⋄⋄ The process compiled from p:P, is composed from

◦◦ a process,McPcore
, relying on and handling the unique iden-

tifier, mereology and attributes of process p as defined by P

◦◦ operating in parallel with processes q:obs part Qs(p).

• The domain description “compilation” schematic below “formalises”
the above.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 296 Domain Science & Engineering

297

1. 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

Process Schema II: Concrete is composite(p)

type
Qs = Q-set

value
qs:Q-set = obs part Qs(p)
compile process: P → RSL-Text
compile process(p) ≡

McP
core

(uid P(p),obs mereo P(p),SA(p),EA(p))(PA(p))

‖ ‖{compile process(q)|q:Q•q ∈ qs}

Process Schema III: is atomic(p)

value
compile process: P → RSL-Text
compile process(p) ≡

MaP
core

(uid P(p),obs mereo P(p),SA(p),EA(p))(PA(p))

A Prerequisite for Requirements Engineering 297 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

298

1. 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

Example 65 . Bus Timetable Coordination:

•We refer to Examples 20 on Slide 123, 21 on Slide 130, 43 on Slide 198
and 59 on Slide 265.

110 δ is the transportation system; f is the fleet part of that system; vs
is the set of vehicles of the fleet; bt is the shared bus timetable of the
fleet and the vehicles.

111 The fleet process is compiled as per Process Schema II (Slide 297)

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 298 Domain Science & Engineering

299

1. 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

type

∆, F, VC [Example 20 on Slide 123]

V, Vs=V-set [Example 21 on Slide 130]

FI, VI, BT [Example 43 on Slide 198]

channel

{fch...} [Example 59 on Slide 265]

value

110. δ:∆,

110. f:F = obs part F(δ),

110. vs:V-set = obs part Vs(obs part VC(f)),

110. bt:BT = attr BT(f)

axiom

110. ∀ v:V•v ∈ vs ⇒ bt = attr BT(v) [Example 43 on Slide 198]

value

111. fleet: fi:FI×BT → in,out {fch[{fi,uid V(v)}]|v:V•v ∈ vs} process

111. fleet(fi,bt) ≡

111. MF (fi,bt)

111. ‖ ‖ {vehicle(uid V(v),fi:FI,bt)|v:V•v ∈ vs}

111. vehicle: vi:VI×fi:FI×bt:BT → in,out fch[{fi,vi}] process

111. vehicle(vi,fi,bt) ≡ MV (vi,fi,bt)

A Prerequisite for Requirements Engineering 299 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

300
1. 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

• Fleet and vehicle processes

⋄⋄ MF and

⋄⋄ MV

• are both “never-ending” processes:

value
MF : fi:FI×bt:BT → in,out {fch[{fi,uid V(v)}]|v:V•v ∈ vs} process
MF (fi,bt) ≡ let bt′ = F(fi,bt) in MF (fi,bt

′) end

MV : vi:VI×fi:FI×bt:BT → in,out fch[{fi,vi}] process
MV (vi,fi,bt) ≡ let bt′ = V(vi,bt) in MV (vi,fi,bt

′) end

• The “core” processes,

⋄⋄ F and

⋄⋄ V ,

are simple actions.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 300 Domain Science & Engineering

301

1. 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

• In this example we simplify them to change only bus timetables.

• The expression of actual synchronisation and communication be-
tween the fleet and the vehicle processes are contained in F and
V .

value
F : fi:FI×bt:BT → in,out {fch[{fi,uid V(v)|v:V•v ∈ vs}]} BT
F(fi,bt) ≡ ...

V : vi:VI×fi:FI×bt:BT → in,out fch[{fi,vi}] BT
V(vi,fi,bt) ≡ ...

•What the synchronisation and communication between the fleet and
the vehicle processes consists of we leave to the reader !

A Prerequisite for Requirements Engineering 301 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

302

1. 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

Process Schema IV: Core Process (I)

• The core processes can be understood as never ending, “tail recursively defined”
processes:

McP
core

: π:Π×me:MT×sa:SA×ea:EA→pa:PA→in inchs out ochs Unit

McP
core

(π,me,sa,ea)(pa) ≡

let (me′,pa′) = F(π,me,sa,ea)(pa) in
McP

core
(π,me′,sa,ea)(pa′) end

F : π:Π×me:MT×sa:SA×ea:EA→PA→in inchs out ochs → MT×PA

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 302 Domain Science & Engineering

303

1. 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

• F

⋄⋄ potentially communicates with all those part processes (of the
whole domain)

⋄⋄ with which it shares attributes, that is, has connectors.

⋄⋄ F is expected to contain input/output clauses referencing the
channels of the in ... out ... part of their signatures.

⋄⋄ These clauses enable the sharing of attributes.

⋄⋄ F also contains expressions, attr ch[(A,π)] ?, to external attributes.

• An example of the update of programmable attributes
is shown in the vehicle definitions in Sect. 6.2.3, Slides 344 and 346.

A Prerequisite for Requirements Engineering 303 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

304

1. 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

• The F action non-deterministically internal choice chooses between

⋄⋄ either [1,2,3,4]

◦◦ [1] accepting input from

◦◦ [4] another part process,

◦◦ [2] then optionally offering a reply to that other process, and

◦◦ [3] finally delivering an updated state;

⋄⋄ or [5,6,7,8] offering

◦◦ [5] an output,

◦◦ [6] val,

◦◦ [8] to another part process,

◦◦ [7] and then delivering an updated state;

⋄⋄ or [9] doing own work resulting in an updated state.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 304 Domain Science & Engineering

305

1. 3. Perdurant Entities 3.11. Discrete Behaviour Signatures and Definitions

Process Schema V: Core Process (II)

value

F : π:Π → me:MT → sa:SA × ea:EA → pa:PA → in,out E(π,me) MT × PA

F(π,me,sa,ea)(pa) ≡

[1] ⌈⌉⌊⌋ { let val = ch[π′] ? in

[2] ch[π′] ! in reply(sa,ea,pa)(val) ;

[3] in update(me,sa,ea,pa)(π′,sa,ea,pa) end

[4] | π′ ∈ E(π,me)}

[5] ⌈⌉ ⌈⌉⌊⌋ { let (π′,val) = await reply(me,sa,ea,pa) in

[6] ch[π′] ! out reply(val,sa,ea,pa) ;

[7] out update(me,sa,ea,pa) end

[8] | π′ ∈ E(π,me)}

[9] ⌈⌉ (me,own work(sa,ea,pa))

in reply: SA×EA×PA × VAL → VAL

in update: (MT×SA×EA×PA) → (MT×PA)

await reply: (MT×SA×EA×PA) → Π×VAL

out reply: (SA×EA×PA×VAL) → VAL

out update: (MT×SA×EA×PA) → (MT×PA)

own work: SA×EA×PA → (MT×PA)

A Prerequisite for Requirements Engineering 305 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

306

1. 3. Perdurant Entities 3.12. Discrete Behaviour Signatures and Definitions

1.3.12. Concurrency: Communication and Synchronisation

• Process Schemas I, II and IV (Slides 295, 297 and 305), reveal

⋄⋄ that two or more parts, which temporally coexist (i.e., at the same
time),

⋄⋄ imply a notion of concurrency.

⋄⋄ Process Schema IV, through the RSL/CSP language expressions
ch ! v and ch ?,

⋄⋄ indicates the notions of communication and synchronisation.

⋄⋄ Other than this we shall not cover these crucial notion related to
parallelism.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 306 Domain Science & Engineering

307

1. 3. Perdurant Entities 3.13. Concurrency: Communication and Synchronisation

1.3.13. Summary and Discussion of Perdurants

• The most significant contribution of this section has been to show
that

⋄⋄ for every domain description

⋄⋄ there exists a normal form behaviour —

⋄⋄ here expressed in terms of a CSP process expression.

A Prerequisite for Requirements Engineering 307 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

308

1. 3. Perdurant Entities 3.13. Summary and Discussion of Perdurants 3.13.1.

1.3.13.1. Summary

•We have proposed to analyse perdurant entities into actions, events
and behaviours — all based on notions of state and time.

•We have suggested modeling and abstracting these notions in terms
of functions with signatures and pre-/post-conditions.

•We have shown how to model behaviours in terms of CSP (commu-
nicating sequential processes).

• It is in modeling function signatures and behaviours that we justify
the endurant entity notions of parts, unique identifiers, mereology
and shared attributes.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 308 Domain Science & Engineering

309

1. 3. Perdurant Entities 3.13. Summary and Discussion of Perdurants 3.13.2. Summary

1.3.13.2. Discussion

• The analysis of perdurants into actions, events and behaviours rep-
resents a choice.

•We suggest skeptical readers to come forward with other choices.

A Prerequisite for Requirements Engineering 309 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

0

Dines Bjørner’s MAP-i Lecture # 5

End of MAP-i Lecture #5:
Perdurants: Actions, Events and Behaviours

Tuesday, 26 May 2015: 10:00–10:45

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 0 Domain Science & Engineering

