Dines Bjørner's MAP-i Lecture #4

Components, Materials – and Discussion of Endurants

Monday, 25 May 2015: 16:45-17:30

© Dines Bjørner 2015, Fredsvej 11, DK-2840 Holte, Denmark - May 23, 2015: 15:36

1.2.10. Components

• Components are discrete endurants which are not considered parts. $*is_component(k) \equiv is_endurant(k) \land \sim is_part(k)$

Example 45. Parts and Components:

- We observe components as associated with atomic parts:
 - The contents, that is, the collection of zero, one or more boxes, of a container is the components of the container part.
 - © Conveyor belts transport machine assembly units and are thus considered the components of the conveyor belt.

- We now complement the **observe_part_sorts** (of earlier).
- We assume, without loss of generality, that only atomic parts may contain components.
- Let p:P be some atomic part.

Analysis Prompt 15 . has_components:

• *The* domain analysis prompt:

• yields **true** if atomic part p potentially contains components otherwise false

- Let us assume that parts p:P embodies components of sorts $\{K_1, K_2, \ldots, K_n\}.$
- Since we cannot automatically guarantee that our domain descriptions secure that

 $\otimes \operatorname{each} K_i ([1 \leq i \leq n])$

« denotes disjoint sets of entities

we must prove it.

Domain Description Prompt 6. *observe_component_sorts*:

• *The* domain description prompt:

 $\otimes observe_component_sorts(e)$

yields the component sorts and component sort observers domain description text according to the following schema:

6. observe_component_sorts schema

s] ... narrative text on component sorts ...

[o] ... narrative text on component sort observers ...

[i] ... narrative text on component sort recognisers ...

[p] ... narrative text on component sort proof obligations ...

Formalisation:

type [s] K1, K2, ..., Kn [s] KS = (K1|K2|...|Kn)-set value [o] components: $P \rightarrow KS$ [i] is_K_i: $K \rightarrow Bool [1 \le i \le n]$ Proof Obligation: [Disjointness of Component Sorts] [p] $\forall m_i:(K_1|K_2|...|K_n) \cdot$ [p] $\land \{is_K_i(m_i) \equiv \bigvee \sim \{is_K_j(m_i)|j \in \{1..m\} \setminus \{i\}\} | i \in \{1..m\}\}$ **Example 46**. **Container Components**: We continue Example 22 on Slide 135.

- 60 When we apply **obs_component_sorts_C** to any container **c:C** we obtain
 - a. a type clause stating the sorts of the various components of a container,
 - b. a union type clause over these component sorts, and
 - c. the component observer function signature.

type

60a. K1, K2, ..., Kn 60b. KS = (K1|K2|...|Kn)-set value

- We have presented one way of tackling the issue of describing components.
 - ∞ There are other ways.
 - \otimes We leave those 'other ways' to the reader.
- We are not going to suggest techniques and tools for analysing, let alone describing qualities of components.
 - We suggest that conventional abstraction of modeling techniques and tools be applied.

1.2.11. Materials

• Continuous endurants (i.e., **materials**) are entities, m, which satisfy:

is_material(m) \equiv is_endurant(m) \land is_continuous(m)

Example 47. Parts and Materials:

- We shall in this seminar not cover the case of parts being immersed in materials.

- We assume, without loss of generality, that only atomic parts may contain materials.
- Let p:P be some atomic part.

Analysis Prompt 16. has_materials:

• *The* domain analysis prompt:

• yields **true** if the atomic part p:P potentially contains materials otherwise false

- Let us assume that parts p:P embodies materials of sorts $\{M_1, M_2, \ldots, M_n\}.$
- Since we cannot automatically guarantee that our domain descriptions secure that

 \otimes each M_i ([1 $\leq i \leq$ n])

 \otimes denotes disjoint sets of entities

we must prove it.

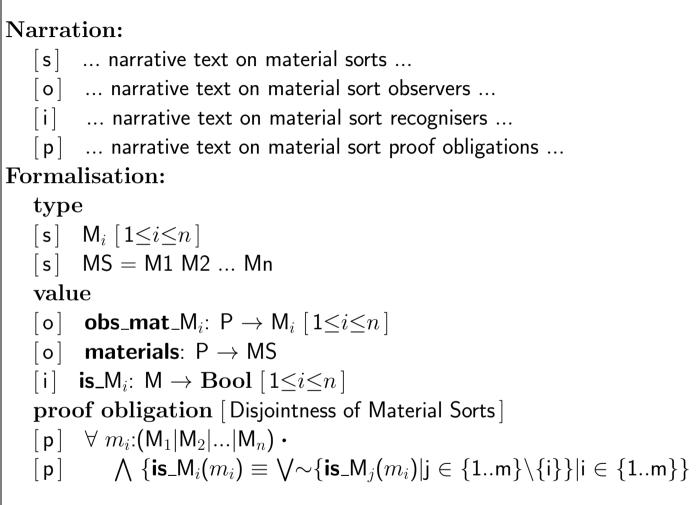
Domain Description Prompt 7. observe_material_sorts:

• *The* domain description prompt:

 $\otimes observe_material_sorts(e)$

yields the material sorts and material sort observers domain description text according to the following schema:

7. observe_material_sorts schema



• The M_i are all distinct

© Dines Bjørner 2015, Fredsvej 11, DK-2840 Holte, Denmark - May 23, 2015: 15:36

Example 48. **Pipeline Material**: We continue Example 27 on Slide 140 and Example 33 on Slide 162.

61 When we apply **obs_material_sorts_U** to any unit **u:U** we obtain

- a. a type clause stating the material sort LoG for some further undefined liquid or gaseous material, and
- b. a material observer function signature.

type

61a. LoG

value

61b. **obs_mat**_LoG: $U \rightarrow LoG$

1.2.11.1. Materials-related Part Attributes

- It seems that the "interplay" between parts and materials
 - ∞ is an area where domain analysis
 - \otimes in the sense of this seminar
 - \otimes is relevant.

Example 49. **Pipeline Material Flow**: We continue Examples 27, 33 and 48.

- Let us postulate a[n attribute] sort **Flow**.
- We now wish to examine the flow of liquid (or gaseous) material in pipeline units.
- We use two types

62 F for "productive" flow, and L for wasteful leak.

- Flow and leak is measured, for example, in terms of volume of material per second.
- We then postulate the following unit attributes
 - \otimes "measured" at the point of in- or out-flow
 - \otimes or in the interior of a unit.

- 63 current flow of material into a unit input connector,
- 64 maximum flow of material into a unit input connector while maintaining laminar flow,
- 65 current flow of material out of a unit output connector,
- 66 maximum flow of material out of a unit output connector while maintaining laminar flow,

67 current leak of material at a unit input

connector,

- 68 maximum guaranteed leak of material at a unit input connector,
- 69 current leak of material at a unit input connector,
- 70 maximum guaranteed leak of material at a unit input connector,
- 71 current leak of material from "within" a unit, and
- 72 maximum guaranteed leak of material from "within" a unit.

type 62. F, L value 63. attr_cur_iF: $U \rightarrow UI \rightarrow F$ 64. attr_max_iF: $U \rightarrow UI \rightarrow F$ 65. attr_cur_oF: $U \rightarrow UI \rightarrow F$ 66. attr_max_oF: $U \rightarrow UI \rightarrow F$

- 67. **attr**_cur_iL: $U \rightarrow UI \rightarrow L$
- 68. **attr**_max_iL: $U \rightarrow UI \rightarrow L$
- 69. **attr**_cur_oL: $U \rightarrow UI \rightarrow L$
- 70. **attr_**max_oL: $U \rightarrow UI \rightarrow L$
- 71. **attr**_cur_L: $U \rightarrow L$
- 72. **attr_**max_L: $U \rightarrow L$
- The maximum flow attributes are static attributes and are typically provided by the manufacturer as indicators of flows below which laminar flow can be expected.
- The current flow attributes are dynamic attributes

1.2.11.2. Laws of Material Flows and Leaks

- It may be difficult or costly, or both,
 - \otimes to ascertain flows and leaks in materials-based domains.
 - ∞ But one can certainly speak of these concepts.
 - ∞ This casts new light on domain modeling.
 - - ∞ incorporating such notions of flows and leaks
 - ∞ in requirements modeling
 - ∞ where one has to show implement-ability.
- Modeling flows and leaks is important to the modeling of materialsbased domains.

Example 50. Pipelines: Intra Unit Flow and Leak Law:

- 73 For every unit of a pipeline system, except the well and the sink units, the following law apply.
- 74 The flows into a unit equal
 - a. the leak at the inputs
 - b. plus the leak within the unit
 - c. plus the flows out of the unit
 - d. plus the leaks at the outputs.

219

axiom [Well-formedness of Pipeline Systems, PLS (1)] 73. \forall pls:PLS,b:B\We\Si,u:U \cdot

- 73. $b \in obs_part_Bs(pls) \land u = obs_part_U(b) \Rightarrow$
- 73. let (iuis,ouis) = **obs_mereo_**U(u) in
- 74. $sum_cur_iF(iuis)(u) =$
- 74a.. sum_cur_iL(iuis)(u)
- 74b.. \oplus **attr**_cur_L(u)
- 74c.. \oplus sum_cur_oF(ouis)(u)
- 74d.. \oplus sum_cur_oL(ouis)(u)

73. end

75 The sum_cur_iF (cf. Item 74) sums current input flows over all input connectors.

76 The sum_cur_iL (cf. Item 74a.) sums current input leaks over all input connectors.

- 77 The sum_cur_oF (cf. Item 74c.) sums current output flows over all output connectors.
- 78 The sum_cur_oL (cf. Item 74d.) sums current output leaks over all output connectors.
- sum cur iF: UI-set \rightarrow U \rightarrow F 75 $sum_cur_iF(iuis)(u) \equiv \bigoplus \{attr_cur_iF(ui)(u)|ui:UI\cdotui \in iuis\}$ 75 sum_cur_iL: UI-set \rightarrow U \rightarrow L 76. $sum_cur_iL(iuis)(u) \equiv \bigoplus \{attr_cur_iL(ui)(u)|ui:UI\cdot ui \in iuis\}$ 76. sum_cur_oF: UI-set \rightarrow U \rightarrow F 77. sum_cur_oF(ouis)(u) $\equiv \bigoplus \{ attr_cur_iF(ui)(u) | ui: UI \cdot ui \in ouis \} \}$ 77. sum_cur_oL: UI-set \rightarrow U \rightarrow L 78. 78. sum_cur_oL(ouis)(u) $\equiv \bigoplus \{ attr_cur_iL(ui)(u) | ui: UI \cdot ui \in ouis \} \}$ \oplus : (F|L) × (F|L) \rightarrow F

Example 51. Pipelines: Inter Unit Flow and Leak Law:

79 For every pair of connected units of a pipeline system the following law apply:

- a. the flow out of a unit directed at another unit minus the leak at that output connector
- b. equals the flow into that other unit at the connector from the given unit plus the leak at that connector.

axiom [Well-formedness of Pipeline Systems, PLS (2)] \forall pls:PLS,b,b':B,u,u':U. 79. $\{b,b'\} \subseteq obs_part_Bs(pls) \land b \neq b' \land u' = obs_part_U(b')$ 79. \wedge let (iuis,ouis)=**obs_mereo_**U(u),(iuis',ouis')=**obs_mereo_**U(u'), 79. $ui = uid_U(u), ui' = uid_U(u')$ in 79. $ui \in iuis \land ui' \in ouis' \Rightarrow$ 79 $attr_cur_oF(u')(ui') - attr_leak_oF(u')(ui')$ 79a. = **attr**_cur_iF(u)(ui) + **attr**_leak_iF(u)(ui) 79b.. 79. end comment: b' precedes b 79.

• From the above two laws one can prove the **theorem:**

what is pumped from the wells equalswhat is leaked from the systems plus what is output to the sinks.

• We need formalising the flow and leak summation functions.

1.2.12. "No Junk, No Confusion"

- - by means of abstract types,
 - \otimes that is, by sorts
 - \otimes for which no concrete models are usually given.
- Sorts are made to denote
 - possibly empty, possibly infinite, rarely singleton,
 sets of entities on the basis of the qualities defined for these sorts, whether external or internal.

- By **junk** we shall understand
 - \otimes that the domain description
 - \otimes unintentionally denotes undesired entities.
- By **confusion** we shall understand
 - \otimes that the domain description
 - « unintentionally have two or more identifications
 - \otimes of the same entity or type.
- The question is
 - ∞ can we formulate a [formal] domain description∞ such that it does not denote junk or confusion?
- The short answer to this is no!

- So, since one naturally wishes "no junk, no confusion" what does one do?
- The answer to that is

« one proceeds with great care !

- To avoid junk we have stated a number of sort well-formedness axioms, for example:
 - \otimes Slide 151 for Well-formedness of Links, L, and Hubs, H,
 - \circledast Slide 158 for Well-formedness of Domain Mereologies,
 - \circledast Slide 161 for Well-formedness of Road Nets, N,
 - \otimes Slide 163 for Well-formedness of Pipeline Systems, PLS (0),
 - \otimes Slide 182 for Well-formedness of Hub States, $H\Sigma$,
 - \otimes Slide 220 for Well-formedness of Pipeline Systems, PLS (1),
 - \otimes Slide 222 for Well-formedness of Pipeline Systems, PLS (2),
 - \otimes Slide 229 for Well-formedness of Pipeline Route Descriptors and
 - \otimes Slide 233 for Well-formedness of Pipeline Systems, PLS (3).

To avoid confusion we have stated a number of proof obligations:
Slide 122 for Disjointness of Part Sorts,
Slide 178 for Disjointness of Attribute Types and
Slide 212 for Disjointness of Material Sorts.

Example 52. No Pipeline Junk:

- We continue Example 27 on Slide 140 and Example 33 on Slide 162.
 80 We define a proper pipeline route to be a sequence of pipeline units.
 - a. such that the i^{th} and $i+1^{\text{st}}$ units in sequences longer than 1 are (forward) adjacent, in the sense defined below, and
 - b. such that the route is acyclic, in the sense also defined below.

To formalise the above we describe some auxiliary notions.

1.2.12.0.1 Pipe Routes

81 A route descriptor is the sequence of unit identifiers of the units of a route (of a pipeline system).

type

80. $R' = U^{\omega}$

- 80. $R = \{ | r:Route \cdot wf_Route(r) | \}$
- 81. $RD = UI^{\omega}$

axiom [Well-formedness of Pipeline Route Descriptors, RD]

81. $\forall rd:RD \cdot \exists r:R \cdot rd = descriptor(r)$

value

- 81. descriptor: $R \rightarrow RD$
- 81. descriptor(r) $\equiv \langle uid_UI(r[i])|i:Nat \cdot 1 \leq i \leq len r \rangle$

82 Two units are (forward) adjacent if the output unit identifiers of one shares a unique unit identifier with the input identifiers of the other.

value

- 82. adjacent: $U \times U \rightarrow Bool$
- 82. $adjacent(u,u') \equiv$
- 82. let (,ouis)=**obs_mereo**_U(u),
- 82. $(iuis,)=obs_mereo_U(u')$ in
- 82. ouis \cap iuis \neq {} end

- 83 Given a pipeline system, pls, one can identify the (possibly infinite) set of (possibly infinite) routes of that pipeline system.
 - a. The empty sequence, $\langle \rangle$, is a route of *pls*.
 - b. Let u be a unit of pls, then $\langle u \rangle$ is a route of pls.
 - c. Let u, u' be adjacent units of *pls* then $\langle u, u' \rangle$ is a route of *pls*.
 - d. If r and r' are routes of pls such that the last element of r is the same as the first element of r', then $r^{tl}r'$ is a route of pls.
 - e. No sequence of units is a route unless it follows from a finite number of applications of the basis and induction clauses of Items 83a.–83d..

value

- 83. Routes: $PLS \rightarrow R$ -infset
- 83. Routes(pls) \equiv
- 83a.. let $rs = \langle \rangle$
- 83b.. $\cup \{ \langle u \rangle | u : U \cdot u \in \mathbf{obs_part}_Us(pls) \}$
- 83c. $\cup \{ \langle u, u' \rangle | u, u': U \cdot \{ u, u' \} \subseteq \mathbf{obs_part_Us(pls)} \land \mathsf{adjacent}(u, u') \}$

83d..
$$\cup \{r \hat{t} l r' | r, r' : R \cdot \{r, r'\} \subseteq rs \wedge r[len r] = hd r'\}$$

83e.. in rs end

1.2.12.0.2 Well-formed Routes

84 A route is acyclic if no two route positions reveal the same unique unit identifier.

value

- 84. acyclic_Route: $R \rightarrow Bool$
- 84. $acyclic_Route(r) \equiv \sim \exists i,j: Nat \{i,j\} \subseteq inds r \land i \neq j \land r[i] = r[j]$

1.2.12.0.3 Well-formed Pipeline Systems

85 A pipeline system is well-formed if

- a. none of its routes are circular and
- b. all of its routes are embedded in well-to-sink routes.

axiom [Well-formedness of Pipeline Systems, PLS (3)] 85. \forall pls:PLS \cdot

- 85a.. non_circular(pls)
- 85b.. \land are_embedded_in_well_to_sink_Routes(pls) value
- 85. non_circular_PLS: $PLS \rightarrow Bool$
- 85. non_circular_PLS(pls) \equiv
- 85. $\forall r: R \cdot r \in routes(p) \land acyclic_Route(r)$

86 We define well-formedness in terms of well-to-sink routes, i.e., routes which start with a well unit and end with a sink unit.

value

- 86. well_to_sink_Routes: $PLS \rightarrow R\text{-set}$
- 86. well_to_sink_Routes(pls) \equiv
- 86. let rs = Routes(pls) in
- 86. { $r|r:R\cdot r \in rs \land is_We(r[1]) \land is_Si(r[len r])$ } end

- 87 A pipeline system is well-formed if all of its routes are embedded in well-to-sink routes.
- 87. are_embedded_in_well_to_sink_Routes: $PLS \rightarrow Bool$
- 87. are_embedded_in_well_to_sink_Routes(pls) \equiv
- 87. let wsrs = well_to_sink_Routes(pls) in

87.
$$\forall r: R \cdot r \in Routes(pls) \Rightarrow$$

- 87. $\exists r: R, i, j: Nat \cdot$
- 87. $\mathbf{r} \in \mathbf{wsrs}$
- 87. $\wedge \{i,j\} \subseteq \mathbf{inds} \ r' \land i \leq j$
- 87. $\wedge \mathbf{r} = \langle \mathbf{r}[\mathbf{k}] | \mathbf{k}: \mathbf{Nat} \cdot \mathbf{i} \leq \mathbf{k} \leq \mathbf{j} \rangle \text{ end}$

1.2.12.0.4 Embedded Routes

88 For every route we can define the set of all its embedded routes.

value

- 88. embedded_Routes: $R \rightarrow R\text{-}\mathbf{set}$
- 88. embedded_Routes(r) \equiv
- 88. $\{ \langle r[k] | k: \mathbf{Nat} \cdot i \leq k \leq j \rangle \mid i, j: \mathbf{Nat} \cdot i \ \{i, j\} \subseteq \mathbf{inds}(r) \land i \leq j \}$

1.2.12.0.5 **A Theorem**

89 The following theorem is conjectured:

a. the set of all routes (of the pipeline system)

- b. is the set of all well-to-sink routes (of a pipeline system) and
- c. all their embedded routes

theorem:

```
89. \forall pls:PLS \cdot

89. let rs = Routes(pls),

89. wsrs = well_to_sink_Routes(pls) in

89a.. rs =

89b.. wsrs \cup

89c.. \cup \{\{r' | r': R \cdot r' \in embedded_Routes(r'')\} \mid r'': R \cdot r'' \in wsrs\}

88. end
```

• The above example,

« besides illustrating one way of coping with "junk",

 \otimes also illustrated the need for introducing a number of auxiliary notions:

∞ types,	• axioms and
∞ functions,	∞ theorems.

1.2.13. Discussion of Endurants

- In Sect. 4.2.2 a "depth-first" search for part sorts was hinted at.
- It essentially expressed

 \otimes that we discover domains epistemologically¹⁶

 \otimes but understand them ontologically.¹⁷

• The Danish philosopher Søren Kirkegaard (1813–1855) expressed it this way:

∞ but is understood backwards.

- The presentation of the of the **domain analysis prompt**s and the **domain description prompt**s results in domain descriptions which are ontological.
- The "depth-first" search recognizes the epistemological nature of bringing about understanding.

 $^{^{16}}$ Epistemology: the theory of knowledge, especially with regard to its methods, validity, and scope. Epistemology is the investigation of what distinguishes justified belief from opinion.

¹⁷**Ontology**: the branch of metaphysics dealing with the nature of being.

• This "depth-first" search

 \otimes that ends with the analysis of atomic part sorts

- « can be guided, i.e., hastened (shortened),
- \otimes by postulating composite sorts
- \otimes that "correspond" to vernacular nouns:
- \otimes every day nouns that stand for classes of endurants.

- We could have chosen our **domain analysis prompt**s and **domain description prompt**s to reflect
 - ∞ a "bottom-up" epistemology,
 - \otimes one that reflected how we composed composite understandings
 - \otimes from initially atomic parts.
 - We leave such a collection of domain analysis prompts and domain description prompts to the student.

Dines Bjørner's MAP-i Lecture #4

End of MAP-i Lecture #4: **Components, Materials – and Discussion of Endurants**

Monday, 25 May 2015: 16:45-17:30

0