
0

Dines Bjørner’s MAP-i Lecture # 4

Components, Materials – and Discussion of Endurants

Monday, 25 May 2015: 16:45–17:30

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 0 Domain Science & Engineering

2031. 2. 2.10.

1.2.10. Components

• Components are discrete endurants which are not considered parts.

⋄⋄ is component(k) ≡ is endurant(k)∧∼is part(k)

Example 45 . Parts and Components:

•We observe components as associated with atomic parts:

⋄⋄ The contents, that is, the collection of zero, one or more boxes, of
a container is the components of the container part.

⋄⋄ Conveyor belts transport machine assembly units and are thus
considered the components of the conveyor belt.

A Prerequisite for Requirements Engineering 203 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

204

1. 2. 2.10. Components

•We now complement the observe part sorts (of earlier).

•We assume, without loss of generality, that only atomic parts may
contain components.

• Let p:P be some atomic part.

Analysis Prompt 15 . has components:

• The domain analysis prompt:

⋄⋄ has components(p)

• yields true if atomic part p potentially contains components oth-
erwise false

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 204 Domain Science & Engineering

205

1. 2. 2.10. Components

• Let us assume that parts p:P embodies components of sorts
{K1,K2,. . . ,Kn}.

• Since we cannot automatically guarantee that our domain descrip-
tions secure that

⋄⋄ each Ki ([1≤i≤n])

⋄⋄ denotes disjoint sets of entities

we must prove it.

Domain Description Prompt 6 . observe component sorts :

• The domain description prompt:

⋄⋄ observe component sorts(e)

yields the component sorts and component sort observers domain
description text according to the following schema:

A Prerequisite for Requirements Engineering 205 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

206

1. 2. 2.10. Components

6. observe component sorts schema

Narration:

[s] ... narrative text on component sorts ...
[o] ... narrative text on component sort observers ...
[i] ... narrative text on component sort recognisers ...
[p] ... narrative text on component sort proof obligations ...

Formalisation:

type

[s] K1, K2, ..., Kn
[s] KS = (K1|K2|...|Kn)-set
value

[o] components: P → KS
[i] is Ki: K → Bool [1≤i≤n]

Proof Obligation:

[Disjointness of Component Sorts]
[p] ∀ mi:(K1|K2|...|Kn) •

[p]
∧

{is Ki(mi) ≡
∨
∼{is Kj(mi)|j ∈ {1..m}\{i}}|i ∈ {1..m}}

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 206 Domain Science & Engineering

207

1. 2. 2.10. Components

Example 46 . Container Components: We continue Example 22
on Slide 135.

60 When we apply obs component sorts C to any container c:C we
obtain

a. a type clause stating the sorts of the various components of a
container,

b. a union type clause over these component sorts, and

c. the component observer function signature.

type

60a. K1, K2, ..., Kn
60b. KS = (K1|K2|...|Kn)-set
value

60c. obs comp KS: C → KS

A Prerequisite for Requirements Engineering 207 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

208

1. 2. 2.10. Components

•We have presented one way of tackling the issue of describing com-
ponents.

⋄⋄ There are other ways.

⋄⋄ We leave those ‘other ways’ to the reader.

•We are not going to suggest techniques and tools for analysing,
let alone describing qualities of components.

⋄⋄ We suggest that conventional
abstraction of modeling techniques
and tools be applied.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 208 Domain Science & Engineering

209

1. 2. 2.11. Components

1.2.11. Materials

• Continuous endurants (i.e.,materials) are entities,m, which satisfy:

⋄⋄ is material(m) ≡ is endurant(m)∧is continuous(m)

Example 47 . Parts and Materials:

•We observe materials as associated with atomic parts:

⋄⋄ Thus liquid or gaseous materials are observed in pipeline units

•We shall in this seminar not cover
the case of parts being immersed in materials.

A Prerequisite for Requirements Engineering 209 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

210

1. 2. 2.11. Materials

•We assume, without loss of generality, that only atomic parts may
contain materials.

• Let p:P be some atomic part.

Analysis Prompt 16 . has materials:

• The domain analysis prompt:

⋄⋄ has materials(p)

• yields true if the atomic part p:P
potentially contains materials
otherwise false

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 210 Domain Science & Engineering

211

1. 2. 2.11. Materials

• Let us assume that parts p:P embodies materials of sorts
{M1,M2,. . . ,Mn}.

• Since we cannot automatically guarantee that our domain descrip-
tions secure that

⋄⋄ each Mi ([1≤i≤n])

⋄⋄ denotes disjoint sets of entities

we must prove it.

Domain Description Prompt 7 . observe material sorts :

• The domain description prompt:

⋄⋄ observe material sorts(e)

yields the material sorts and material sort observers domain descrip-
tion text according to the following schema:

A Prerequisite for Requirements Engineering 211 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

212

1. 2. 2.11. Materials

7. observe material sorts schema

Narration:

[s] ... narrative text on material sorts ...

[o] ... narrative text on material sort observers ...

[i] ... narrative text on material sort recognisers ...

[p] ... narrative text on material sort proof obligations ...

Formalisation:

type

[s] Mi [1≤i≤n]

[s] MS = M1 M2 ... Mn

value

[o] obs mat Mi: P → Mi [1≤i≤n]

[o] materials: P → MS

[i] is Mi: M → Bool [1≤i≤n]

proof obligation [Disjointness of Material Sorts]

[p] ∀ mi:(M1|M2|...|Mn) •

[p]
∧

{is Mi(mi) ≡
∨
∼{is Mj(mi)|j ∈ {1..m}\{i}}|i ∈ {1..m}}

• The Mi are all distinct

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 212 Domain Science & Engineering

213

1. 2. 2.11. Materials

Example 48 .Pipeline Material: We continue Example 27 on Slide 140
and Example 33 on Slide 162.

61 When we apply obs material sorts U to any unit u:U we obtain

a. a type clause stating the material sort LoG for some further un-
defined liquid or gaseous material, and

b. a material observer function signature.

type

61a. LoG
value

61b. obs mat LoG: U → LoG

A Prerequisite for Requirements Engineering 213 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

214

1. 2. 2.11. Materials 2.11.1.

1.2.11.1. Materials-related Part Attributes

• It seems that the “interplay” between parts and materials

⋄⋄ is an area where domain analysis

⋄⋄ in the sense of this seminar

⋄⋄ is relevant.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 214 Domain Science & Engineering

215

1. 2. 2.11. Materials 2.11.1. Materials-related Part Attributes

Example 49 . Pipeline Material Flow: We continue Examples 27,
33 and 48.

• Let us postulate a[n attribute] sort Flow.

•We now wish to examine the flow of liquid (or gaseous) material in
pipeline units.

•We use two types

62 F for “productive” flow, and L for wasteful leak.

• Flow and leak is measured, for example, in terms of volume of ma-
terial per second.

•We then postulate the following unit attributes

⋄⋄ “measured” at the point of in- or out-flow

⋄⋄ or in the interior of a unit.

A Prerequisite for Requirements Engineering 215 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

216

1. 2. 2.11. Materials 2.11.1. Materials-related Part Attributes

63 current flow of material into a unit in-
put connector,

64 maximum flow of material into a
unit input connector while maintain-
ing laminar flow,

65 current flow of material out of a unit
output connector,

66 maximum flow of material out of a
unit output connector while maintain-
ing laminar flow,

67 current leak of material at a unit input

connector,

68 maximum guaranteed leak of material
at a unit input connector,

69 current leak of material at a unit input
connector,

70 maximum guaranteed leak of material
at a unit input connector,

71 current leak of material from “within”
a unit, and

72 maximum guaranteed leak of material
from “within” a unit.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 216 Domain Science & Engineering

217

1. 2. 2.11. Materials 2.11.1. Materials-related Part Attributes

type

62. F, L

value

63. attr cur iF: U → UI → F

64. attr max iF: U → UI → F

65. attr cur oF: U → UI → F

66. attr max oF: U → UI → F

67. attr cur iL: U → UI → L

68. attr max iL: U → UI → L

69. attr cur oL: U → UI → L

70. attr max oL: U → UI → L

71. attr cur L: U → L

72. attr max L: U → L

• The maximum flow attributes are static attributes
and are typically provided by the manufacturer
as indicators of flows below which laminar flow can be expected.

• The current flow attributes are dynamic attributes

A Prerequisite for Requirements Engineering 217 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

218

1. 2. 2.11. Materials 2.11.2. Materials-related Part Attributes

1.2.11.2. Laws of Material Flows and Leaks

• It may be difficult or costly, or both,

⋄⋄ to ascertain flows and leaks in materials-based domains.

⋄⋄ But one can certainly speak of these concepts.

⋄⋄ This casts new light on domain modeling.

⋄⋄ That is in contrast to

◦◦ incorporating such notions of flows and leaks

◦◦ in requirements modeling

⋄⋄ where one has to show implement-ability.

•Modeling flows and leaks is important to the modeling of materials-
based domains.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 218 Domain Science & Engineering

219

1. 2. 2.11. Materials 2.11.2. Laws of Material Flows and Leaks

Example 50 . Pipelines: Intra Unit Flow and Leak Law:

73 For every unit of a pipeline system, except the well and the sink
units, the following law apply.

74 The flows into a unit equal

a. the leak at the inputs

b. plus the leak within the unit

c. plus the flows out of the unit

d. plus the leaks at the outputs.

A Prerequisite for Requirements Engineering 219 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

220

1. 2. 2.11. Materials 2.11.2. Laws of Material Flows and Leaks

axiom [Well−formedness of Pipeline Systems, PLS (1)]
73. ∀ pls:PLS,b:B\We\Si,u:U •

73. b ∈ obs part Bs(pls)∧u=obs part U(b)⇒
73. let (iuis,ouis) = obs mereo U(u) in
74. sum cur iF(iuis)(u) =
74a.. sum cur iL(iuis)(u)
74b.. ⊕ attr cur L(u)
74c.. ⊕ sum cur oF(ouis)(u)
74d.. ⊕ sum cur oL(ouis)(u)
73. end

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 220 Domain Science & Engineering

221

1. 2. 2.11. Materials 2.11.2. Laws of Material Flows and Leaks

75 The sum cur iF (cf. Item74) sums current input flows over all input connectors.

76 The sum cur iL (cf. Item74a.) sums current input leaks over all input connectors.

77 The sum cur oF (cf. Item74c.) sums current output flows over all output connec-
tors.

78 The sum cur oL (cf. Item74d.) sums current output leaks over all output connec-
tors.

75. sum cur iF: UI-set → U → F
75. sum cur iF(iuis)(u) ≡ ⊕ {attr cur iF(ui)(u)|ui:UI•ui ∈ iuis}
76. sum cur iL: UI-set → U → L
76. sum cur iL(iuis)(u) ≡ ⊕ {attr cur iL(ui)(u)|ui:UI•ui ∈ iuis}
77. sum cur oF: UI-set → U → F
77. sum cur oF(ouis)(u) ≡ ⊕ {attr cur iF(ui)(u)|ui:UI•ui ∈ ouis}
78. sum cur oL: UI-set → U → L
78. sum cur oL(ouis)(u) ≡ ⊕ {attr cur iL(ui)(u)|ui:UI•ui ∈ ouis}

⊕: (F|L) × (F|L) → F

A Prerequisite for Requirements Engineering 221 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

222

1. 2. 2.11. Materials 2.11.2. Laws of Material Flows and Leaks

Example 51 . Pipelines: Inter Unit Flow and Leak Law:

79 For every pair of connected units of a pipeline system the following law apply:

a. the flow out of a unit directed at another unit minus the leak at that output
connector

b. equals the flow into that other unit at the connector from the given unit plus
the leak at that connector.

axiom [Well−formedness of Pipeline Systems, PLS (2)]
79. ∀ pls:PLS,b,b′:B,u,u′:U•

79. {b,b′}⊆obs part Bs(pls)∧b6=b′∧u′=obs part U(b′)
79. ∧ let (iuis,ouis)=obs mereo U(u),(iuis′,ouis′)=obs mereo U(u′),
79. ui=uid U(u),ui′=uid U(u′) in
79. ui ∈ iuis ∧ ui′ ∈ ouis′ ⇒
79a.. attr cur oF(u′)(ui′) − attr leak oF(u′)(ui′)
79b.. = attr cur iF(u)(ui) + attr leak iF(u)(ui)
79. end

79. comment: b′ precedes b

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 222 Domain Science & Engineering

223

1. 2. 2.11. Materials 2.11.2. Laws of Material Flows and Leaks

• From the above two laws one can prove the theorem:

⋄⋄ what is pumped from the wells equals

⋄⋄ what is leaked from the systems plus what is output to the sinks.

•We need formalising the flow and leak summation functions.

A Prerequisite for Requirements Engineering 223 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

224

1. 2. 2.12. Materials

1.2.12. “No Junk, No Confusion”

• Domain descriptions are, as we have already shown, formulated,

⋄⋄ both informally ⋄⋄ and formally,

by means of abstract types,

⋄⋄ that is, by sorts

⋄⋄ for which no concrete models are usually given.

• Sorts are made to denote

⋄⋄ possibly empty, ⋄⋄ possibly infinite, ⋄⋄ rarely singleton,

⋄⋄ sets of entities on the basis of the qualities defined for these sorts,
whether external or internal.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 224 Domain Science & Engineering

225

1. 2. 2.12. “No Junk, No Confusion”

• By junk we shall understand

⋄⋄ that the domain description

⋄⋄ unintentionally denotes undesired entities.

• By confusion we shall understand

⋄⋄ that the domain description

⋄⋄ unintentionally have two or more identifications

⋄⋄ of the same entity or type.

• The question is

⋄⋄ can we formulate a [formal] domain description

⋄⋄ such that it does not denote junk or confusion ?

• The short answer to this is no !

A Prerequisite for Requirements Engineering 225 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

226

1. 2. 2.12. “No Junk, No Confusion”

• So, since one naturally wishes “no junk, no confusion”
what does one do ?

• The answer to that is

⋄⋄ one proceeds with great care !

• To avoid junk we have stated a number of sort well-formedness ax-
ioms, for example:

⋄⋄ Slide 151 for Well-formedness of Links, L, and Hubs, H,

⋄⋄ Slide 158 for Well-formedness of Domain Mereologies,

⋄⋄ Slide 161 for Well-formedness of Road Nets, N,

⋄⋄ Slide 163 for Well-formedness of Pipeline Systems, PLS (0),

⋄⋄ Slide 182 for Well-formedness of Hub States, HΣ,

⋄⋄ Slide 220 for Well-formedness of Pipeline Systems, PLS (1),

⋄⋄ Slide 222 for Well-formedness of Pipeline Systems, PLS (2),

⋄⋄ Slide 229 for Well-formedness of Pipeline Route Descriptors and

⋄⋄ Slide 233 for Well-formedness of Pipeline Systems, PLS (3).

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 226 Domain Science & Engineering

227

1. 2. 2.12. “No Junk, No Confusion”

• To avoid confusion we have stated a number of proof obligations:

⋄⋄ Slide 122 for Disjointness of Part Sorts,

⋄⋄ Slide 178 for Disjointness of Attribute Types and

⋄⋄ Slide 212 for Disjointness of Material Sorts.

A Prerequisite for Requirements Engineering 227 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

228

1. 2. 2.12. “No Junk, No Confusion”

Example 52 . No Pipeline Junk:

•We continue Example 27 on Slide 140 and Example 33 on Slide 162.

80 We define a proper pipeline route to be a sequence of pipeline
units.

a. such that the ith and i+1st units in sequences longer than 1
are (forward) adjacent, in the sense defined below, and

b. such that the route is acyclic, in the sense also defined below.

To formalise the above we describe some auxiliary notions.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 228 Domain Science & Engineering

229

1. 2. 2.12. “No Junk, No Confusion”

1.2.12.0.1 Pipe Routes

81 A route descriptor is the sequence of unit identifiers of the units of
a route (of a pipeline system).

type

80. R′ = Uω

80. R = {| r:Route′

•wf Route(r) |}
81. RD = UIω

axiom [Well−formedness of Pipeline Route Descriptors, RD]
81. ∀ rd:RD • ∃ r:R•rd=descriptor(r)
value

81. descriptor: R → RD
81. descriptor(r) ≡ 〈uid UI(r[i])|i:Nat•1≤i≤len r〉

A Prerequisite for Requirements Engineering 229 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

230

1. 2. 2.12. “No Junk, No Confusion”

82 Two units are (forward) adjacent if the output unit identifiers of one
shares a unique unit identifier with the input identifiers of the other.

value

82. adjacent: U × U → Bool

82. adjacent(u,u′) ≡
82. let (,ouis)=obs mereo U(u),
82. (iuis,)=obs mereo U(u′) in
82. ouis ∩ iuis 6= {} end

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 230 Domain Science & Engineering

231

1. 2. 2.12. “No Junk, No Confusion”

83 Given a pipeline system, pls, one can identify the (possibly infinite) set of (possibly
infinite) routes of that pipeline system.

a. The empty sequence, 〈〉, is a route of pls.

b. Let u be a unit of pls, then 〈u〉 is a route of pls.

c. Let u, u′ be adjacent units of pls then 〈u, u′〉 is a route of pls.

d. If r and r′ are routes of pls such that the last element of r is the same as the
first element of r′, then r̂tl r′ is a route of pls.

e. No sequence of units is a route unless it follows from a finite number of appli-
cations of the basis and induction clauses of Items 83a.–83d..

value

83. Routes: PLS → R-infset
83. Routes(pls) ≡
83a.. let rs = 〈〉
83b.. ∪ {〈u〉|u:U•u ∈ obs part Us(pls)}
83c.. ∪ {〈u,u′〉|u,u′:U•{u,u′}⊆obs part Us(pls) ∧ adjacent(u,u′)}
83d.. ∪ {r̂tl r′|r,r′:R•{r,r′}⊆rs∧r[len r]=hd r′}
83e.. in rs end

A Prerequisite for Requirements Engineering 231 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

232

1. 2. 2.12. “No Junk, No Confusion”

1.2.12.0.2 Well-formed Routes

84 A route is acyclic if no two route positions reveal the same unique
unit identifier.

value

84. acyclic Route: R → Bool

84. acyclic Route(r) ≡ ∼∃ i,j:Nat•{i,j}⊆inds r ∧ i 6=j ∧ r[i]=r[j]

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 232 Domain Science & Engineering

233

1. 2. 2.12. “No Junk, No Confusion”

1.2.12.0.3 Well-formed Pipeline Systems

85 A pipeline system is well-formed if

a. none of its routes are circular and

b. all of its routes are embedded in well-to-sink routes.

axiom [Well−formedness of Pipeline Systems, PLS (3)]
85. ∀ pls:PLS •

85a.. non circular(pls)
85b.. ∧ are embedded in well to sink Routes(pls)
value

85. non circular PLS: PLS → Bool

85. non circular PLS(pls) ≡
85. ∀ r:R•r ∈ routes(p)∧acyclic Route(r)

A Prerequisite for Requirements Engineering 233 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

234

1. 2. 2.12. “No Junk, No Confusion”

86 We define well-formedness in terms of well-to-sink routes, i.e., routes
which start with a well unit and end with a sink unit.

value

86. well to sink Routes: PLS → R-set
86. well to sink Routes(pls) ≡
86. let rs = Routes(pls) in
86. {r|r:R•r ∈ rs ∧ is We(r[1]) ∧ is Si(r[len r])} end

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 234 Domain Science & Engineering

235

1. 2. 2.12. “No Junk, No Confusion”

87 A pipeline system is well-formed if all of its routes are embedded in
well-to-sink routes.

87. are embedded in well to sink Routes: PLS → Bool

87. are embedded in well to sink Routes(pls) ≡
87. let wsrs = well to sink Routes(pls) in
87. ∀ r:R • r ∈ Routes(pls) ⇒
87. ∃ r′:R,i,j:Nat •

87. r′ ∈ wsrs
87. ∧ {i,j}⊆inds r′∧i≤j
87. ∧ r = 〈r′[k]|k:Nat•i≤k≤j〉 end

A Prerequisite for Requirements Engineering 235 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

236

1. 2. 2.12. “No Junk, No Confusion”

1.2.12.0.4 Embedded Routes

88 For every route we can define the set of all its embedded routes.

value

88. embedded Routes: R → R-set
88. embedded Routes(r) ≡
88. {〈r[k]|k:Nat•i≤k≤j〉 | i,j:Nat• i {i,j}⊆inds(r) ∧ i≤j}

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 236 Domain Science & Engineering

237

1. 2. 2.12. “No Junk, No Confusion”

1.2.12.0.5 A Theorem

89 The following theorem is conjectured:

a. the set of all routes (of the pipeline system)

b. is the set of all well-to-sink routes (of a pipeline system) and

c. all their embedded routes

theorem:

89. ∀ pls:PLS •

89. let rs = Routes(pls),
89. wsrs = well to sink Routes(pls) in
89a.. rs =
89b.. wsrs ∪
89c.. ∪ {{r′|r′:R • r′ ∈ embedded Routes(r′′)} | r′′:R • r′′ ∈ wsrs}
88. end

A Prerequisite for Requirements Engineering 237 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

238

1. 2. 2.12. “No Junk, No Confusion”

• The above example,

⋄⋄ besides illustrating one way of coping with “junk”,

⋄⋄ also illustrated the need for introducing a number of auxiliary
notions:

◦◦ types,

◦◦ functions,

◦◦ axioms and

◦◦ theorems.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 238 Domain Science & Engineering

239

1. 2. 2.13. “No Junk, No Confusion”

1.2.13. Discussion of Endurants

• In Sect. 4.2.2 a “depth-first” search for part sorts was hinted at.

• It essentially expressed

⋄⋄ that we discover domains epistemologically16

⋄⋄ but understand them ontologically.17

• The Danish philosopher Søren Kirkegaard (1813–1855) expressed it this way:

⋄⋄ Life is lived forwards,

⋄⋄ but is understood backwards.

• The presentation of the of the domain analysis prompts and the domain

description prompts results in domain descriptions which are ontological.

• The “depth-first” search recognizes the epistemological nature of bringing about
understanding.

16Epistemology: the theory of knowledge, especially with regard to its methods, validity, and scope. Epistemology is the investigation of what distinguishes

justified belief from opinion.
17Ontology: the branch of metaphysics dealing with the nature of being.

A Prerequisite for Requirements Engineering 239 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

240

1. 2. 2.13. Discussion of Endurants

• This “depth-first” search

⋄⋄ that ends with the analysis of atomic part sorts

⋄⋄ can be guided, i.e., hastened (shortened),

⋄⋄ by postulating composite sorts

⋄⋄ that “correspond” to vernacular nouns:

⋄⋄ everyday nouns that stand for classes of endurants.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 240 Domain Science & Engineering

241

1. 2. 2.13. Discussion of Endurants

•We could have chosen our domain analysis prompts and domain

description prompts to reflect

⋄⋄ a “bottom-up” epistemology,

⋄⋄ one that reflected how we composed composite understandings

⋄⋄ from initially atomic parts.

⋄⋄ We leave such a collection of domain analysis prompts and
domain description prompts to the student.

A Prerequisite for Requirements Engineering 241 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

0

Dines Bjørner’s MAP-i Lecture # 4

End of MAP-i Lecture #4:
Components, Materials – and Discussion of Endurants

Monday, 25 May 2015: 16:45–17:30

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 0 Domain Science & Engineering

