
0

Dines Bjørner’s MAP-i Lecture # 3

Unique Identifiers, Mereologies and Attributes

Monday, 25 May 2015: 14:30–15:15

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 0 Domain Science & Engineering

146 1. 2. 2.7.

1.2.7. Unique Part Identifiers

• Two parts are either identical or a distinct, i.e., unique.

⋄⋄ Two parts are identical

◦◦ if all their respective qualities

◦◦ have the same values.

That is, their location in space/time are one and the same.

⋄⋄ Two parts are distinct

◦◦ even if all the attribute qualities of the two parts,

◦◦ that we have chosen to consider have the same values,

◦◦ if, in that case, their space/time locations are distinct.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 146 Domain Science & Engineering

147

1. 2. 2.7. Unique Part Identifiers

• We can assume, without any loss of generality,

⋄⋄ (i) that all parts, p, of any domain P, have unique identifiers,

⋄⋄ (ii) that unique identifiers (of parts p:P) are abstract values
(of the unique identifier sort PI of P),

⋄⋄ (iii) such that distinct part sorts, Pi and Pj, have distinctly named
unique identifier sorts, say PIi and PIj,

⋄⋄ (iv) that all πi:PIi and πj:PIj are distinct, and

⋄⋄ (v) that the observer function uid P applied to p yields the unique
identifier, say π:PI, of p.

A Prerequisite for Requirements Engineering 147 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

148

1. 2. 2.7. Unique Part Identifiers

Representation of Unique Identifiers:

• Unique identifiers are abstractions.

⋄⋄ When we endow two parts (say of the same sort) with distinct unique identifiers

⋄⋄ then we are simply saying that these two parts are distinct.

⋄⋄ We are not assuming anything about how these identifiers otherwise come
about.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 148 Domain Science & Engineering

149

1. 2. 2.7. Unique Part Identifiers

Domain Description Prompt 3 . observe unique identifier :

•We can therefore apply the domain description prompt:

⋄⋄ observe unique identifier

• to parts p:P resulting in the analyser writing down the unique
identifier type and observer domain description text according to
the following schema:

A Prerequisite for Requirements Engineering 149 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

150

1. 2. 2.7. Unique Part Identifiers

3. observe unique identifier schema

Narration:

[s] ... narrative text on unique identifier sort ...
[u] ... narrative text on unique identifier observer ...
[a] ... axiom on uniqueness of unique identifiers ...

Formalisation:

type

[s] PI
value

[u] uid P: P → PI
axiom

[a] U

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 150 Domain Science & Engineering

151

1. 2. 2.7. Unique Part Identifiers

Example 29 . Unique Transportation Net Part Identifiers:
We continue Example 20 on Slide 123.

30 Links and hubs have unique identifiers

31 and unique identifier observers.

type

30. LI, HI
value

31. uid LI: L → LI
31. uid HI: H → HI
axiom [Well−formedness of Links, L, and Hubs, H]
30. ∀ l,l′:L • l 6=l′⇒uid LI(l) 6=uid LI(l′),
30. ∀ h,h′:H • h 6=h′⇒uid HI(h) 6=uid HI(h′)

A Prerequisite for Requirements Engineering 151 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

152

1. 2. 2.8. Unique Part Identifiers

1.2.8. Mereology

•Mereology is the study and knowledge of parts and part relations.

⋄⋄ Mereology as a logical/philosophical discipline
can perhaps best be attributed to the Polish mathematician/logi-
cian
Stanis law Leśniewski [32, 21].

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 152 Domain Science & Engineering

153

1. 2. 2.8. Mereology 2.8.1.

1.2.8.1. Part Relations

• Which are the relations that can be relevant for part-hood ?

• We give some examples.

⋄⋄ Two otherwise distinct parts may share attribute values.

Example 30 . Shared Attribute Mereology:

◦◦ (i) two or more distinct public transport busses may run ac-
cording to the same, thus “shared”, bus time table;

◦◦ (ii) all vehicles in a traffic participate in that traffic, each with
their “share”, that is, position on links or at hubs – as observed
by the (thus postulated, and shared) traffic observer.

etcetera

A Prerequisite for Requirements Engineering 153 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

154

1. 2. 2.8. Mereology 2.8.1. Part Relations

⋄⋄ Two otherwise distinct parts may be said to, for example, be
topologically “adjacent” or one “embedded” within the other.

Example 31 . Topological Connectedness Mereology:

◦◦ (i) two rail units may be connected (i.e., adjacent),

◦◦ (ii) a road link may be connected to two road hubs;

◦◦ (iii) a road hub may be connected to zero or more road links;

etcetera.

• The above examples are in no way indicative of the “space” of part
relations that may be relevant for part-hood.

• The domain analyser is expected to do a bit of experimental research
in order to discover necessary, sufficient and pleasing “mereology-
hoods” !

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 154 Domain Science & Engineering

155

1. 2. 2.8. Mereology 2.8.2. Part Relations

1.2.8.2. Part Mereology: Types and Functions

Analysis Prompt 13 . has mereology:

• To discover necessary, sufficient and pleasing “mereology-hoods”
the analyser can be said to endow a truth value true to the
domain analysis prompt:

⋄⋄ has mereology

A Prerequisite for Requirements Engineering 155 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

156

1. 2. 2.8. Mereology 2.8.2. Part Mereology: Types and Functions

• When the domain analyser decides that

⋄⋄ some parts are related in a specifically enunciated mereology,

⋄⋄ the analyser has to decide on suitable

◦◦ mereology types and

◦◦ mereology (i.e., part relation) observers.

• We can define a mereology type as a type Expression over unique
[part] identifier types.

⋄⋄ We generalise to unique [part] identifiers over a definite collection
of part sorts, P1, P2, ..., Pn,

⋄⋄ where the parts p1:P1, p2:P2, ..., pn:Pn are not necessarily (im-
mediate) sub-parts of some part p:P.

type

PI1, PI2, ..., PIn
MT = E(PI1, PI2, ..., PIn),

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 156 Domain Science & Engineering

157

1. 2. 2.8. Mereology 2.8.2. Part Mereology: Types and Functions

Domain Description Prompt 4 . observe mereology :

• If has mereology(p) holds for parts p of type P,

⋄⋄ then the analyser can apply the domain description prompt:

◦◦ observe mereology

⋄⋄ to parts of that type

⋄⋄ and write down the mereology types and observers domain de-
scription text according to the following schema:

A Prerequisite for Requirements Engineering 157 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

158

1. 2. 2.8. Mereology 2.8.2. Part Mereology: Types and Functions

4. observe mereology schema

Narration:

[t] ... narrative text on mereology type ...
[m] ... narrative text on mereology observer ...
[a] ... narrative text on mereology type constraints ...

Formalisation:

type

[t] MT12= E(PI1,PI2,...,PIm)
value

[m] obs mereo P: P → MT
axiom [Well−formedness of Domain Mereologies]
[a] A(MT)

12
MT will be used several times in Sect. .

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 158 Domain Science & Engineering

159

1. 2. 2.8. Mereology 2.8.2. Part Mereology: Types and Functions

⋄⋄ Here E(PI1,PI2,...,PIm) is a type expression
over possibly all unique identifier types of the domain descrip-
tion,

⋄⋄ and A(MT) is a predicate
over possibly all unique identifier types of the domain descrip-
tion.

⋄⋄ To write down the concrete type definition for MT
requires a bit of analysis and thinking.

⋄⋄ has mereology is a
prerequisite prompt for observe mereology

A Prerequisite for Requirements Engineering 159 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

160

1. 2. 2.8. Mereology 2.8.2. Part Mereology: Types and Functions

Example 32 . Road Net Part Mereologies: We continue Exam-
ple 20 on Slide 123 and Example 29 on Slide 151.

32 Links are connected to exactly two distinct hubs.

33 Hubs are connected to zero or more links.

34 For a given net the link and hub identifiers of the mereology of hubs
and links must be those of links and hubs, respectively, of the net.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 160 Domain Science & Engineering

161

1. 2. 2.8. Mereology 2.8.2. Part Mereology: Types and Functions

type

32. LM′ = HI-set, LM = {|his:HI-set • card(his)=2|}
33. HM = LI-set
value

32. obs mereo L: L → LM
33. obs mereo H: H → HM
axiom [Well−formedness of Road Nets, N]
34. ∀ n:N,l:L,h:H• l ∈ obs part Ls(obs part LC(n))∧h ∈ obs part Hs(obs
34. let his=mereology H(l), lis=mereology H(h) in
34. his⊆∪{uid H(h) | h ∈ obs part Hs(obs part HC(n))}
34. ∧ lis⊆∪{uid H(l) | l ∈ obs part Ls(obs part LC(n))} end

A Prerequisite for Requirements Engineering 161 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

162

1. 2. 2.8. Mereology 2.8.2. Part Mereology: Types and Functions

Example 33 . Pipeline Parts Mereology:

• We continue Example 27 on Slide 140.

• Pipeline units serve to conduct fluid or gaseous material.

• The flow of these occur in only one direction: from so-called input to so-called
output.

35 Wells have exactly one connection to an output unit.

36 Pipes, pumps and valves have exactly one connection from an input unit and one
connection to an output unit.

37 Forks have exactly one connection from an input unit and exactly two connections
to distinct output units.

38 Joins have exactly one two connection from distinct input units and one connection
to an output unit.

39 Sinks have exactly one connection from an input unit.

40 Thus we model the mereology of a pipeline unit as a pair of disjoint sets of unique
pipeline unit identifiers.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 162 Domain Science & Engineering

163

1. 2. 2.8. Mereology 2.8.2. Part Mereology: Types and Functions

type

40. UM′=(UI-set×UI-set)
40. UM={|(iuis,ouis):UI-set×UI-set•iuis ∩ ouis={}|}
value

40. obs mereo U: UM
axiom [Well−formedness of Pipeline Systems, PLS (0)]

∀ pl:PL,u:U • u ∈ obs part Us(pl) ⇒
let (iuis,ouis)=obs mereo U(u) in
case (card iuis,card ouis) of

35. (0,1) → is We(u),
36. (1,1) → is Pi(u)∨is Pu(u)∨is Va(u),
37. (1,2) → is Fo(u),
38. (2,1) → is Jo(u),
39. (1,0) → is Si(u)

end end

A Prerequisite for Requirements Engineering 163 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

164
1. 2. 2.8. Mereology 2.8.3. Part Mereology: Types and Functions

1.2.8.3. Update of Mereologies

• We normally consider a part’s mereology to be constant.

• There may, however, be cases where the mereology of a part changes.

• In order to update mereology values the description language offers
the “built-in” operator:

Mereology Update Function

⋄⋄ upd mereology: P → M → P

for all relevant M and P.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 164 Domain Science & Engineering

165

1. 2. 2.8. Mereology 2.8.3. Update of Mereologies

• The meaning of upd mereology is, informally:

type

P, M
value

upd mereology: P → M → P
upd mereology(p)(m) as p′

post: obs mereo H(p′) = m

A Prerequisite for Requirements Engineering 165 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

166

1. 2. 2.8. Mereology 2.8.3. Update of Mereologies

• The above is a simplification.

⋄⋄ It lacks explaining that all other aspects of the part p:P are left
unchanged.

⋄⋄ It also omits mentioning some proof obligations.

◦◦ The updated mereology must, for example,

◦◦ only specify such unique identifiers of parts

◦◦ that are indeed existing parts.

⋄⋄ A proper formal explication requires

⋄⋄ that we set up a formal model of the

⋄⋄ domain/method/analyser/description quadrangle.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 166 Domain Science & Engineering

167

1. 2. 2.8. Mereology 2.8.3. Update of Mereologies

Example 34 . Mereology Update:

• The example is that of updating the mereology of a hub.

• Cf. Example 32 on Slide 160.

41 Inserting a link, l:L, between two hubs, ha:H,hb:H require the update of the mere-
ologies of these two existing hubs.

42 The unique identifier of the inserted link, l:L, is li, li=uid L(l) and h is either ha
or hb;

43 li is joined to the mereology of both ha or hb; and respective hubs are updated
accordingly.

value

41. update hub mereology: H → LI → H
42. update hub mereology(h)(li) ≡
43. let m = {li} ∪ obs mereo H(h) in upd mereology(h)(m) end

A Prerequisite for Requirements Engineering 167 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

168
1. 2. 2.8. Mereology 2.8.4. Update of Mereologies

1.2.8.4. Formulation of Mereologies

• The observe mereology domain descriptor, Slide 158,

⋄⋄ may give the impression that the mereo type MT can be described

⋄⋄ “at the point of issue” of the observe mereology prompt.

⋄⋄ Since the MT type expression may, in general, depend on any part
sort

⋄⋄ the mereo type MT can, for some domains,

⋄⋄ “first” be described when all part sorts have been dealt with.

• In Domain Analysis: Endurants – An Analysis & Description Pro-
cess Model we we present a model of one form of evaluation of the
TripTych analysis and description prompts.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 168 Domain Science & Engineering

169

1. 2. 2.9. Mereology

1.2.9. Part Attributes
1.2.9.1. Inseparability of Attributes from Endurants

• Parts are

⋄⋄ typically recognised because of their spatial form

⋄⋄ and are otherwise characterised by their intangible, but measur-
able attributes.

• We learned from our exposition of formal concept analysis that

⋄⋄ a formal concept, that is, a type, consists of all the entities

⋄⋄ which all have the same qualities.

• Thus removing a quality from an entity makes no sense:

⋄⋄ the entity of that type

⋄⋄ either becomes an entity of another type

⋄⋄ or ceases to exist (i.e., becomes a non-entity) !

A Prerequisite for Requirements Engineering 169 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

170

1. 2. 2.9. Part Attributes 2.9.2. Inseparability of Attributes from Endurants

1.2.9.2. Attribute Quality and Attribute Value

• We distinguish between

⋄⋄ an attribute, as a logical proposition and

⋄⋄ an attribute value as a value in some value space.

Example 35 . Attribute Propositions and Other Values:

• A particular street segment (i.e., a link), say ℓ,

⋄⋄ satisfies the proposition (attribute) has length, and

⋄⋄ may then have value length 90 meter for that attribute.

• A particular road transport domain, δ,

⋄⋄ has three immediate sub-parts: net, n, fleet, f , and monitor m;

⋄⋄ typically nets has net name and has net owner proposition attributes

⋄⋄ with, for example, US Interstate Highway System respectively US Department

of Transportation as values for those attributes

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 170 Domain Science & Engineering

171

1. 2. 2.9. Part Attributes 2.9.3. Attribute Quality and Attribute Value

1.2.9.3. Endurant Attributes: Types and Functions

• Let us recall that attributes cover qualities other than unique iden-
tifiers and mereology.

• Let us then consider that parts have one or more attributes.

⋄⋄ These attributes are qualities

⋄⋄ which help characterise “what it means” to be a part.

A Prerequisite for Requirements Engineering 171 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

172

1. 2. 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions

Example 36 . Atomic Part Attributes:

• Examples of attributes of atomic parts such as a human are:

⋄⋄ name,

⋄⋄ gender,

⋄⋄ birth-date,

⋄⋄ birth-place,

⋄⋄ nationality,

⋄⋄ height,

⋄⋄ weight,

⋄⋄ eye colour,

⋄⋄ hair colour,

etc.

• Examples of attributes of transport net links are:

⋄⋄ length,

⋄⋄ location,

⋄⋄ 1 or 2-way link,

⋄⋄ link condition,

etc.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 172 Domain Science & Engineering

173

1. 2. 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions

Example 37 . Composite Part Attributes:

• Examples of attributes of composite parts such as a road net are:

⋄⋄ owner,

⋄⋄ public or private net,

⋄⋄ free-way or toll road,

⋄⋄ a map of the net,

etc.

• Examples of attributes of a group of people could be: statistic dis-

tributions of

⋄⋄ gender,

⋄⋄ age,

⋄⋄ income,

⋄⋄ education,

⋄⋄ nationality,

⋄⋄ religion,

etc.

A Prerequisite for Requirements Engineering 173 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

174

1. 2. 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions

• We now assume that all parts have attributes.

• The question is now, in general, how many and, particularly, which.

Analysis Prompt 14 . attribute names:

• The domain analysis prompt attribute names

⋄⋄ when applied to a part p

⋄⋄ yields the set of names of its attribute types:

⋄⋄ attribute names(p): {ηA1, ηA2, ..., ηAn}.

• η is a type operator. Applied to a type A it yields is name13

13Normally, in non-formula texts, type A is referred to by ηA. In formulas A denote
a type, that is, a set of entities. Hence, when we wish to emphasize that we speak of
the name of that type we use ηA. But often we omit the distinction

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 174 Domain Science & Engineering

175

1. 2. 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions

• We cannot automatically, that is, syntactically, guarantee that our
domain descriptions secure that

⋄⋄ the various attribute types

⋄⋄ for an emerging part sort

⋄⋄ denote disjoint sets of values.

Therefore we must prove it.

A Prerequisite for Requirements Engineering 175 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

176

1. 2. 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions 2.9.3.1. The Attribute Value Observer

1.2.9.3.1 The Attribute Value Observer

• The “built-in” description language operator

⋄⋄ attr A

• applies to parts, p:P, where ηA∈attribute names(p).

• It yields the value of attribute A of p.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 176 Domain Science & Engineering

177

1. 2. 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions 2.9.3.1. The Attribute Value Observer

Domain Description Prompt 5 . observe attributes :

• The domain analyser experiments, thinks and reflects about part
attributes.

• That process is initated by the domain description prompt:

⋄⋄ observe attributes.

• The result of that domain description prompt is that the
domain analyser cum describer writes down the attribute (sorts
or) types and observers domain description text according to the
following schema:

A Prerequisite for Requirements Engineering 177 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

178

1. 2. 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions 2.9.3.1. The Attribute Value Observer

5. observe attributes schema

Narration:

[t] ... narrative text on attribute sorts ...

[o] ... narrative text on attribute sort observers ...

[i] ... narrative text on attribute sort recognisers ...

[p] ... narrative text on attribute sort proof obligations ...

Formalisation:

type

[t] Ai [1≤i≤n]

value

[o] attr Ai:P→Ai [1≤i≤n]

[i] is Ai:Ai→Bool [1≤i≤n]

proof obligation [Disjointness of Attribute Types]

[p] ∀ δ:∆

[p] let P be any part sort in [the ∆ domain description]

[p] let a:(A1|A2|...|An) in is Ai(a) 6= is Aj(a) end end [i 6=j, 1≤i,j≤n]

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 178 Domain Science & Engineering

179
1. 2. 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions 2.9.3.1. The Attribute Value Observer

• The type (or rather sort) definitions: A1, A2, ..., An inform us
that the domain analyser has decided to focus on the distinctly
named A1, A2, ..., An attributes.

• And the value clauses

⋄⋄ attr A1:P→A1,

⋄⋄ attr A2:P→A2,

⋄⋄ ...,

⋄⋄ attr An:P→An

are then “automatically” given:

⋄⋄ if a part (type P) has an attribute Ai
⋄⋄ then there is postulated, “by definition” [eureka]
an attribute observer function attr Ai:P→Ai etcetera

A Prerequisite for Requirements Engineering 179 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

180

1. 2. 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions 2.9.3.1. The Attribute Value Observer

• The fact that, for example, A1, A2, ..., An are attributes of p:P,
means that the propositions

⋄⋄ has attribute A1(p),
has attribute A2(p),
..., and
has attribute An(p)

holds.

• Thus the observer functions attr A1, attr A2, ..., attr An

⋄⋄ can be applied to p in P

⋄⋄ and yield attribute values a1:A1, a2:A2, ..., an:An respectively.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 180 Domain Science & Engineering

181

1. 2. 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions 2.9.3.1. The Attribute Value Observer

Example 38 . Road Hub Attributes: After some analysis a domain
analyser may arrive at some interesting hub attributes:

44 hub state: from which links (by reference) can one reach which links
(by reference),

45 hub state space: the set of all potential hub states that a hub may
attain,

46 such that

a. the links referred to in the state are links of the hub mereology

b. and the state is in the state space.

47 Etcetera — i.e., there are other attributes not mentioned here.

A Prerequisite for Requirements Engineering 181 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

182

1. 2. 2.9. Part Attributes 2.9.3. Endurant Attributes: Types and Functions 2.9.3.1. The Attribute Value Observer

type

44. HΣ = (LI×LI)-set
45. HΩ = HΣ-set
value

44. attr HΣ:H→HΣ
45. attr HΩ:H→HΩ
axiom [Well−formedness of Hub States, HΣ]
46. ∀ h:H • let lis = obs mereo H(h) in
46. let hσ = attr HΣ(h) in
46a.. {li,li′|li,li′:LI•(li,li′)∈ hσ}⊆lis
46b.. ∧ hσ ∈ attr HΩ(h)
46. end end

type

47. ..., ...
value

47. attr ..., ...

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 182 Domain Science & Engineering

183

1. 2. 2.9. Part Attributes 2.9.4. Endurant Attributes: Types and Functions

1.2.9.4. Attribute Categories

• One can suggest a hierarchy of part attribute categories:

⋄⋄ static or

⋄⋄ dynamic values — and within the dynamic value category:

◦◦ inert values or

◦◦ reactive values or

◦◦ active values — and within the dynamic active value category:

∗ autonomous values or

∗ biddable values or

∗ programmable values.

• We now review these attribute value types.

A Prerequisite for Requirements Engineering 183 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

184

1. 2. 2.9. Part Attributes 2.9.4. Attribute Categories

Part attributes are either constant or varying, i.e., static or dynamic

attributes.

• By a static attribute, is static attribute,
we shall understand an attribute whose values

⋄⋄ are constants,

⋄⋄ i.e., cannot change.

• By a dynamic attribute, is dynamic attribute,
we shall understand an attribute whose values

⋄⋄ are variable,

⋄⋄ i.e., can change.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 184 Domain Science & Engineering

185

1. 2. 2.9. Part Attributes 2.9.4. Attribute Categories

Dynamic attributes are either inert, reactive or active attributes.

• By an inert attribute, is inert attribute,
we shall understand a dynamic attribute whose values

⋄⋄ only change as the result of external stimuli where

⋄⋄ these stimuli prescribe properties of these new values.

• By a reactive attribute, is reactive attribute,
we shall understand a dynamic attribute whose values,

⋄⋄ if they vary, change value in response to

⋄⋄ the change of other attribute values.

• By an active attribute, is active attribute,
we shall understand a dynamic attribute whose values

⋄⋄ change (also) of its own volition.

A Prerequisite for Requirements Engineering 185 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

186

1. 2. 2.9. Part Attributes 2.9.4. Attribute Categories

Example 39 . Inert and Reactive Attributes:

• Buses (i.e., vehicles) have a timetable attribute which is dynamic,
i.e., can change, namely when the operator of the bus decides so,
thus the bus timetable attribute is inert.

• Pipeline valve units include the two attributes of valve opening (open,
close) and internal flow (measured, say gallons per second).

⋄⋄ The valve opening attribute is of the programmable attribute cat-
egory.

⋄⋄ The flow attribute is reactive (flow changes with valve opening/closing)

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 186 Domain Science & Engineering

187

1. 2. 2.9. Part Attributes 2.9.4. Attribute Categories

Active attributes are either autonomous, biddable or programmable
attributes.

• By an autonomous attribute, is autonomous attribute,
we shall understand a dynamic active attribute

⋄⋄ whose values change value only “on their own volition”.14

• By a biddable attribute, is biddable attribute, (of a part)
we shall understand a dynamic active attribute whose values

⋄⋄ may be subject to a contract

⋄⋄ as to which values it is expected to exhibit.

• By a programmable attribute, is programmable attribute,
we shall understand a dynamic active attribute whose values

⋄⋄ can be accurately prescribed.

14The values of an autonomous attributes are a “law onto themselves and their surroundings”.

A Prerequisite for Requirements Engineering 187 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

188

1. 2. 2.9. Part Attributes 2.9.4. Attribute Categories

Example 40 . Static, Programmable and Inert Link Attributes:

48 Some link attributes

a. length, b. name,

can be considered static,

49 whereas other link attributes

a. state, b. state space

can be considered programmable,

50 Finally link attributes

a. link state–of–repair, b. date last maintained,

can be considered inert.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 188 Domain Science & Engineering

189

1. 2. 2.9. Part Attributes 2.9.4. Attribute Categories

type

48a.. LEN
value

48a.. obs part LEN: L → LEN
type

48b.. Name
value

48b.. obs part Name: L → Name
type

49a.. LΣ′=(HI×HI)-set
49a.. LΣ={|lσ:LΣ • card lσ ≤ 2|}
value

49a.. obs part LΣ: L → LΣ
type

49b.. LΩ′=LΣ-set
49b.. LΩ={|lω:LΩ • card lω = 1|}
value

49b.. obs part LΩ: L → LΩ
type

50a.. LSoR
50b.. DLM
value

50a.. obs part LSoR: L → LSoR
50b.. obs part DLM: L → DLM

A Prerequisite for Requirements Engineering 189 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

190

1. 2. 2.9. Part Attributes 2.9.4. Attribute Categories

Example 41 . Autonomous and Programmable Hub Attributes:
We continue Example??.

• Time progresses autonomously,

• Hub states are programmed (traffic signals):

⋄⋄ changing

◦◦ from red to green via yellow,

◦◦ in one pair of (co-linear) directions,

⋄⋄ while changing, in the same time interval,

◦◦ from green via yellow to red

◦◦ in the “perpendicular” directions

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 190 Domain Science & Engineering

191

1. 2. 2.9. Part Attributes 2.9.4. Attribute Categories

• External Attributes: By an external attribute we shall under-
stand

⋄⋄ either a inert,

⋄⋄ or a reactive,

⋄⋄ or an autonomous,

⋄⋄ or a biddable

attribute

• Thus we can define the domain analysis prompt:

⋄⋄ is external attribute,

⋄⋄ as:

value

is external attribute: P → Bool

is external attribute(p) ≡
is dynamic attribute(p) ∧ ∼is programmable attribute(p)

pre: is endurant(p) ∧ is discrete(p)

A Prerequisite for Requirements Engineering 191 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

192

1. 2. 2.9. Part Attributes 2.9.4. Attribute Categories

• Figure 2 captures the attribute value ontology.

dynamic

active

static

biddable
programmable

inert

endurant

autonomous

reactive

external

Figure 2: Attribute Value Ontology

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 192 Domain Science & Engineering

193

1. 2. 2.9. Part Attributes 2.9.5. Attribute Categories

1.2.9.5. Access to Attribute Values

• In an action, event or a behaviour description

⋄⋄ static values of parts, p,

⋄⋄ (say of type A)

⋄⋄ can be “copied”, attr A(p),

⋄⋄ and still retain their (static) value.

• But, for action, event or behaviour descriptions,

⋄⋄ dynamic values of parts, p,

⋄⋄ cannot be “copied”,

⋄⋄ but attr A(p) must be “performed”

⋄⋄ every time they are needed.

A Prerequisite for Requirements Engineering 193 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

194

1. 2. 2.9. Part Attributes 2.9.5. Access to Attribute Values

• That is:

⋄⋄ static values require at most one domain access,

⋄⋄ whereas dynamic values require repeated domain accesses.

• We shall return to the issue of attribute value access in Sect. 1.3.8.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 194 Domain Science & Engineering

195

1. 2. 2.9. Part Attributes 2.9.6. Access to Attribute Values

1.2.9.6. Shared Attributes

• Normally part attributes of different part sorts are distinctly named.

• If, however, observe attributes(pik:Pi) and observe attributes(pjℓ:P

⋄⋄ for any two distinct part sorts, Pi and Pj, of a domain,

⋄⋄ “discovers” identically named attributes, say A,

⋄⋄ then we say that parts pi:Pi and pj:Pj share attribute A.

⋄⋄ that is, that a:attr A(pi) (and a′:attr A(pj))
is a shared attribute

⋄⋄ (with a=a′ always (�) holding).

A Prerequisite for Requirements Engineering 195 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

196

1. 2. 2.9. Part Attributes 2.9.6. Shared Attributes

Attribute Naming:

• Thus the domain describer has to exert great care when naming
attribute types.

⋄⋄ If Pi and Pj are two distinct types of a domain

⋄⋄ then if and only if an attribute of Pi is to be shared with an
attribute of Pj

⋄⋄ must that attribute be identically named in the description of Pi
and Pj.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 196 Domain Science & Engineering

197

1. 2. 2.9. Part Attributes 2.9.6. Shared Attributes

Example 42. Shared Attributes. Examples of shared attributes:

• Bus timetable attributes have the same value as the regional transport system
timetable attribute.

• Bus clock attributes have the same value as the regional transport system clock
attribute.

• Bus owner attributes have the same value as the regional transport system owner
attribute.

• Bank customer passbooks record bank transactions on, for example, demand/deposit
accounts share values with the bank general ledger passbook entries.

• A link incident upon or emanating from a hub shares the connection between that
link and the hub as an attribute.

• Two pipeline units15, pi, pj, that are connected, such that an outlet πj of pi “feeds
into” an inlet πi of pj, are said to share the connection (modeled by, e.g., {(πi, πj)}.

15See upcoming Example 33 on Slide 162

A Prerequisite for Requirements Engineering 197 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

198

1. 2. 2.9. Part Attributes 2.9.6. Shared Attributes

Example 43 . Shared Timetables:

• The fleet and vehicles of Example 20 on Slide 123 and Example 21
on Slide 130 is that of a bus company.

51 From the fleet and from the vehicles we observe unique identifiers.

52 Every bus mereology records the same one unique fleet identifier.

53 The fleet mereology records the set of all unique bus identifiers.

54 A bus timetable is a share fleet and bus attribute.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 198 Domain Science & Engineering

199

1. 2. 2.9. Part Attributes 2.9.6. Shared Attributes

type

51. FI, VI, BT
value

51. uid F: F → FI
51. uid V: V → VI
52. obs mereo F: F → VI-set
53. obs mereo V: V → FI
54. attr BT: (F|V) → BT
axiom

� ∀ f:F ⇒
∀ v:V • v ∈ obs part Vs(obs part VC(f)) • attr BT(f) = attr BT(v)

[which is the same as]
� ∀ f:F ⇒
{attr BT(f)}={attr BT(v):v:V•v ∈ obs part Vs(obs part VC(f))}

A Prerequisite for Requirements Engineering 199 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

200

1. 2. 2.9. Part Attributes 2.9.6. Shared Attributes

• Part attributes of one sort, Pi, may be simple type expressions such
as

⋄⋄ A-set,

⋄⋄ where A may be an attribute of some other part sort, Pj,

⋄⋄ in which case we say that part attributes

◦◦ A-set and

◦◦ A

are shared.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 200 Domain Science & Engineering

201

1. 2. 2.9. Part Attributes 2.9.6. Shared Attributes

Example 44 . Shared Passbooks:

55 A banking system contains

• an administration and

• a set of customers.

56 The administration contains a general ledger.

57 An attribute of a general ledger is a set of passbooks.

58 An attribute of a customer is that of a passbook.

59 Passbooks are uniquely identified by unique customer identifiers.

A Prerequisite for Requirements Engineering 201 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

202

1. 2. 2.9. Part Attributes 2.9.6. Shared Attributes

type

55. [parts] BS, AD, GL, CS, Cs = C-set
58. [attributes] PB
value

55. obs part AD: BS → AD
56. obs part GL: AD → GL
57. attr PBs: GL → PB-set
55. obs part CS: BS → CS
55. obs part Cs: BS → Cs
58. attr PB: C → PB
59. uid PB: PB → PBI
axiom

� ∀ bs:BS •

attr PBs(attr GL(obs part AD(bs)))
= {attr PB(c)|c:C•c ∈ obs part Cs(obs part CS(bs))}

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 202 Domain Science & Engineering

0

Dines Bjørner’s MAP-i Lecture # 3

End of MAP-i Lecture #3:
Unique Identifiers, Mereologies and Attributes

Monday, 25 May 2015: 14:30–15:15

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 0 Domain Science & Engineering

