
0

Dines Bjørner’s MAP-i Lecture # 10

Interface Requirements

Thursday, 28 May 2015: 12:15–13:00

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 0 Domain Science & Engineering

4697. 3. Interface Requirements

7.3. Interface Requirements

• By an interface requirements we mean

⋄⋄ a requirements prescription
which refines and extends the domain requirements

⋄⋄ by considering those requirements
of the domain requirements whose

◦◦ endurants (parts, materials) and

◦◦ perdurants (actions, events and behaviours)

⋄⋄ are “shared”

⋄⋄ between the domain and the machine
(being requirements prescribed)

A Prerequisite for Requirements Engineering 469 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

470

7. 3. Interface Requirements 3.1.

7.3.1. Shared Phenomena

• By sharing we mean

⋄⋄ that an endurant is represented both

◦◦ in the domain and

◦◦ “inside” the machine, and

◦◦ that its machine representation

◦◦ must at suitable times

◦◦ reflect its state in the domain;

and/or

⋄⋄ that an action

◦◦ requires a sequence of several “on-line” interactions

◦◦ between the machine (being requirements prescribed) and

◦◦ the domain, usually a person or another machine;

and/or

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 470 Domain Science & Engineering

471

7. 3. Interface Requirements 3.1. Shared Phenomena

⋄⋄ that an event

◦◦ arises either in the domain,
that is, in the environment of the machine,

◦◦ or in the machine,

◦◦ and need be communicated to the machine, respectively to the
environment;

and/or

⋄⋄ that a behaviour is manifested both

◦◦ by actions and events of the domain and

◦◦ by actions and events of the machine

A Prerequisite for Requirements Engineering 471 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

472

7. 3. Interface Requirements 3.1.

• So a systematic reading of the domain requirements shall

⋄⋄ result in an identification of all shared

◦◦ endurants,

∗ parts,

∗ materials and

∗ components;

and

◦◦ perdurants

∗ actions,

∗ events and

∗ behaviours.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 472 Domain Science & Engineering

473

7. 3. Interface Requirements 3.1.

• Each such shared phenomenon shall then be individually dealt with:

⋄⋄ endurant sharing shall lead to interface requirements for data
initialisation and refreshment;

⋄⋄ action sharing shall lead to interface requirements for interactive
dialogues between the machine and its environment;

⋄⋄ event sharing shall lead to interface requirements for how such
event are communicated between the environment of the machine
and the machine; and

⋄⋄ behaviour sharing shall lead to interface requirements for action
and event dialogues between the machine and its environment.

• • •

•We shall now illustrate these domain interface requirements

• development steps with respect to our ongoing example.

A Prerequisite for Requirements Engineering 473 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

474

7. 3. Interface Requirements 3.2.

7.3.2. Shared Endurants

•We “split” our interface requirements development into two separate
steps:

⋄⋄ the development of drnet
◦◦ (the common domain requirements for the shared hubs and
links),

⋄⋄ and the co-development of drdb:i/f
◦◦ (the common domain requirements for the interface between
drnet and DBrel —

• under the assumption of an available relational database system
DBrel)

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 474 Domain Science & Engineering

475

7. 3. Interface Requirements 3.2. Shared Endurants

Example 92 . Interface Requirements. Shared Endurants:

• The main shared endurants are

⋄⋄ the net (hubs, links) and

⋄⋄ the vehicles.

• As domain endurants hubs and links undergo changes,

⋄⋄ all the time,

⋄⋄ with respect to the values of several attributes:

◦◦ length, cadestral information, names,

◦◦ wear and tear (where-ever applicable),

◦◦ last/next scheduled maintenance (where-ever applicable),

◦◦ state and state space,

◦◦ and many others.

A Prerequisite for Requirements Engineering 475 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

476

7. 3. Interface Requirements 3.2. Shared Endurants

• Similarly for vehicles:

⋄⋄ their position,

⋄⋄ velocity and acceleration, and

⋄⋄ many other attributes.

•When planning the common domain requirements for the net, i.e., the
hubs and links,

⋄⋄ we enlarge our scope of requirements concerns beyond the two so
far treated (drtoll

, drmaint.
)

⋄⋄ in order to make sure that the shared relational database of nets,
their hubs and links, may be useful beyond those requirements.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 476 Domain Science & Engineering

477

7. 3. Interface Requirements 3.2. Shared Endurants

• We then come up with something like

⋄⋄ hubs and links are to be represented as tuples of relations;

⋄⋄ each net will be represented by a pair of relations

◦◦ a hubs relation and a links relation;

◦◦ each hub and each link may or will be represented by several tuples;

⋄⋄ etcetera.

• In this database modeling effort it must be secured that “standard” operations on
nets, hubs and links can be supported by the chosen relational database system
DBrel

A Prerequisite for Requirements Engineering 477 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

478

7. 3. Interface Requirements 3.2. Shared Endurants 3.2.1.

7.3.2.1. Data Initialisation

• As part of drnet one must prescribe data initialisation, that is pro-
vision for

⋄⋄ an interactive user interface dialogue with a set of proper display
screens,

◦◦ one for establishing net, hub or link attributes names and their
types, and, for example,

◦◦ two for the input of hub and link attribute values.

⋄⋄ Interaction prompts may be prescribed:

◦◦ next input,

◦◦ on-line vetting and

◦◦ display of evolving net, etc.

⋄⋄ These and many other aspects may therefore need prescriptions.

• Essentially these prescriptions concretise the insert and remove link
and hub actions.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 478 Domain Science & Engineering

479

7. 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

Example 93 . Interface Requirements. Shared Endurant Initialisation:

• The domain is that of the road net, n:N, say of Chapter 6 —
see also Example 92 on Slide 475

• By ‘shared road net initialisation’
we mean the “ab initio” establishment, “from scratch”
of a data base recording the properties of all links, l:L, and hubs, h:H,

⋄⋄ their unique identifications, uid L(l) and uid H(h),

⋄⋄ their mereologies, obs mereo L(l) and obs mereo H(h) , and

⋄⋄ the initial values of all their attributes, attributes(l) and attributes(h).

A Prerequisite for Requirements Engineering 479 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

480

7. 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

223 There are rl and rh “recorders” recording link, respectively hub prop-
erties with each recorder having a unique identity,

224 Each recorder is charged with a set of links or a set of hubs according
to some partitioning of all such.

225 The recorders inform a central data base, net db, of their recordings:

a. (ri,nol,(uj,mj,attrsj)) where

b. ri is the identity of the recorder,

c. nol is either link or hub,

d. uj = uid L(l) or uid H(h) for some link or hub,

e. mj = obs mereo L(l) or obs mereo H(h) for that link or hub
and

f. attrsj = attributes(l) or attributes(h) for that link or hub.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 480 Domain Science & Engineering

481

7. 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

type

223. RI
value

223. rl,rh:NAT axiom rl>0 ∧ rh>0
type

225a.. M = RI×′′

link
′′×LNK | RI×′′

hub
′′×HUB

225a.. LNK = LI × HI-set × LATTRS
225a.. HUB = HI × LI-set × HATTRS

A Prerequisite for Requirements Engineering 481 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

482

7. 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

value

224. partitioning: L-set → Nat → (L-set)∗

224. | H-set → Nat → (H-set)∗

224. partitioning(s)(r) as sl
224. post: len sl = r
224. ∧ ∪ elems sl = s
224. ∧ ∀ si,sj:(L-set|H-set) •

224. si 6={}
224. ∧ sj6={}
224. ∧ {si,sj}⊆elems ss ⇒ si ∩ sj = {}

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 482 Domain Science & Engineering

483

7. 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

226 The rl + rh recorder behaviours interact with the one net db be-
haviour

channel

226. r db: RI×(LNK|HUB)
value

226. LNK recorder: RI → L-set → out r db Unit

226. HUB−recorder: RI → H-set → out r db Unit

226. net db: Unit → in r db Unit

A Prerequisite for Requirements Engineering 483 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

484

7. 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

227 The data base behaviour, net db, offers to receive messages from the
link an hub recorders.

228 And the data base behaviour, net db, deposits these messages in
respective variables.

229 Initially there is a net, n : N ,

230 from which is observed its links and hubs.

231 These sets are partitioned into rl, respectively rh length lists of non-
empty links and hubs.

232 The ab-initio data initialisation behaviour, ab initio data, is then
the parallel composition of link recorder, hub recorder and data base
behaviours with link and hub recorder being allotted appropriate
link, respectively hub sets.

233 We construct, for technical reasons, as the listener will soon see,
disjoint lists of link, respectively hub recorder identities.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 484 Domain Science & Engineering

485

7. 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

value

227. net db:
variable

228. lnk db: (RI×LNK)-set
228. hub db: (RI×HUB)-set
value

229. n:N
230. ls:L-set = obs Ls(obs LS(n))
230. hs:H-set = obs Hs(obs HS(n))
231. lsl:(L-set)∗ = partition(ls)(rl)
231. lhl:(H-set)∗ = partition(hs)(rh)
233. rill:RI∗ axiom len rill = rl = card elems rill
233. rihl:RI∗ axiom len rihl = rh = card elems rihl

A Prerequisite for Requirements Engineering 485 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

486

7. 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

232. ab initio data: Unit → Unit

232. ab initio data() ≡
232. ‖ {lnk rec(rill[i])(lsl[i])|i:Nat•1≤i≤rl}
232. ‖ {hub rec(rihl[i])(lhl[i])|i:Nat•1≤i≤rh}
232. ‖ net db()

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 486 Domain Science & Engineering

487

7. 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

234 The link and the hub recorders are near-identical behaviours.

a. They both revolve around an imperatively stated for all ... do

... end.
The selected link (or hub) is inspected and the “data” for the data
base is prepared from

b. the unique identifier,

c. the mereology, and

d. the attributes.

e. These “data” are sent, as a message, prefixed the senders identity,
to the data base behaviour.

f. We presently leave the . . . unexplained.

A Prerequisite for Requirements Engineering 487 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

488

7. 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

value

226. link rec: RI → L-set → Unit

234. link rec(ri,ls) ≡
234a.. for ∀ l:L•l ∈ ls do uid L(l)
234b.. let lnk = (uid L(l),
234c.. obs mereo L(l),
234d.. attributes(l)) in
234e.. rdb ! (ri,′′link′′,lnk);
234f.. ... end

234a.. end

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 488 Domain Science & Engineering

489

7. 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

226. hub rec: RI × H-set → Unit

234. hub rec(ri,hs) ≡
234a.. for ∀ h:H•h ∈ hs do uid H(h)
234b.. let hub = (uid L(h),
234c.. obs mereo H(h),
234d.. attributes(h)) in
234e.. rdb ! (ri,′′hub′′,hub);
234f.. ... end

234a.. end

A Prerequisite for Requirements Engineering 489 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

490

7. 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

235 The net db data base behaviour revolves around a seemingly “never-
ending” cyclic process.

236 Each cycle “starts” with acceptance of some,

237 either link or hub data.

238 If link data then it is deposited in the link data base,

239 if hub data then it is deposited in the hub data base.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 490 Domain Science & Engineering

491

7. 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

value

235. net db() ≡
236. let (ri,loh,data) = r db ? in

237. case loh of

238. ′′

link
′′ → ... ; lnk db := lnk db ∪ (ri,data),

239. ′′

hub
′′ → ... ; hub db := hub db ∪ (ri,data)

237. end end ;
235′. ... ;
235. net db()

A Prerequisite for Requirements Engineering 491 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

492

7. 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

• The above model is an idealisation.

⋄⋄ It assumes that the link and hub data represent a well-formed net.

⋄⋄ Included in this well-formedness are the following issues:

◦◦ (a) that all link or hub identifiers are communicated exactly once,

◦◦ (b) that all mereologies refer to defined parts, and

◦◦ (c) that all attribute values lie within an appropriate value range.

⋄⋄ If we were to cope with possible recording errors then we could,
for example, extend the model as follows:

◦◦ (i) when a link or a hub recorder has completed its recording
then it increments an initially zero counter (say at Item 234f., Slide 488);

◦◦ (ii) before the net data base recycles it tests whether

all recording sessions has ended and then proceeds to check the data base

for well-formedness issues (a–b–c) (say at Item235′, Slide 491)

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 492 Domain Science & Engineering

493

7. 3. Interface Requirements 3.2. Shared Endurants 3.2.1. Data Initialisation

• The above example illustrates the ‘interface’ phenomenon:

⋄⋄ In the formulas, for example, we show both

◦◦ manifest domain entities, viz., n, l, h etc., and

◦◦ abstract (required) software objects, viz., (ui,me, attrs).

A Prerequisite for Requirements Engineering 493 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

494

7. 3. Interface Requirements 3.2. Shared Endurants 3.2.2. Data Initialisation

7.3.2.2. Data Refreshment

• As part of drnet one must also prescribe data refreshment:

⋄⋄ an interactive user interface dialogue
with a set of proper display screens

◦◦ one for selecting the updating of net, of hub or of link attribute
names and their types and, for example,

◦◦ two for the respective update of hub and link attribute values.

⋄⋄ Interaction-prompts may be prescribed:

◦◦ next update,

◦◦ on-line vetting and

◦◦ display of revised net, etc.

⋄⋄ These and many other aspects may therefore need prescriptions.

• These prescriptions also concretise insert and remove link and hub
actions.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 494 Domain Science & Engineering

495

7. 3. Interface Requirements 3.3. Shared Endurants

7.3.3. Shared Actions, Events and Behaviours

•We illustrate the ideas of

⋄⋄ shared actions, events and behaviours

⋄⋄ through the domain requirements extension

⋄⋄ of Sect. 7.2.4,

⋄⋄ more specifically Examples 87–89
Slides 442–449.

A Prerequisite for Requirements Engineering 495 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

496

7. 3. Interface Requirements 3.3. Shared Actions, Events and Behaviours

Example 94 . Interface Requirements. Shared Actions, Events and

Behaviours:
This Example has yet to be written

Examples 88–90, Slides 445–453,
illustrate shared interactive actions, events and behaviours.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 496 Domain Science & Engineering

497

7. 4. Machine Requirements

7.4. Machine Requirements

7.4.1. Delineation of Machine Requirements

7.4.1.1. On Machine Requirements

Definition 33 . Machine Requirements: By machine require-

ments we shall understand

• such requirements

• which can be expressed “sôlely” using terms

• from, or of the machine

Definition 34 . The Machine: By the machine we shall under-
stand

• the hardware

• and software

• to be built from the requirements

A Prerequisite for Requirements Engineering 497 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

498

7. 4. Machine Requirements 4.1. Delineation of Machine Requirements 4.1.1. On Machine Requirements

• The expression

⋄⋄ which can be expressed

⋄⋄ “sôlely” using terms

⋄⋄ from, or of the machine

shall be understood with “a grain of salt”.

⋄⋄ Let us explain.

◦◦ The machine requirements statements

◦◦ may contain references to domain entities

◦◦ but these are meant to be generic references,

◦◦ that is, references to certain classes of entities in general.

We shall illustrate this “genericitiy” in some of the examples below.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 498 Domain Science & Engineering

499

7. 4. Machine Requirements 4.1. Delineation of Machine Requirements 4.1.2. On Machine Requirements

7.4.1.2. Machine Requirements Facets

•We shall, in particular, consider the following five kinds of machine
requirements:

⋄⋄ performance requirements,

⋄⋄ dependability requirements,

⋄⋄ maintenance requirements,

⋄⋄ platform requirements and

⋄⋄ documentation requirements.

A Prerequisite for Requirements Engineering 499 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

500

7. 4. Machine Requirements 4.2. Delineation of Machine Requirements

7.4.2. Performance Requirements

Definition 35 . Performance Requirements: By performance

requirements we mean machine requirements that prescribe

• storage consumption,

• (execution, access, etc.) time consumption,

• as well as consumption of any other machine resource:

⋄⋄ number of CPU units (incl. their quantitative characteristics
such as cost, etc.),

⋄⋄ number of printers, displays, etc., terminals (incl. their quan-
titative characteristics),

⋄⋄ number of “other”, ancillary software packages (incl. their
quantitative characteristics),

⋄⋄ of data communication bandwidth,

⋄⋄ etcetera

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 500 Domain Science & Engineering

501

7. 4. Machine Requirements 4.2. Performance Requirements

Example 95 . Machine Requirements. Road-pricing System Performance:

• Possible road pricing system performance requirements
could evolve around:

⋄⋄ maximum number of cars entering and leaving the sum total of all gates within
a minimum period —
for example 10.000 maximum within any interval of 10 seconds minimum;

⋄⋄ maximum time between a car entering a gate and the raising of the gate barrier
—
for example 3 seconds;

⋄⋄ etcetera,

• We cannot be more specific:

⋄⋄ that would require more details about

⋄⋄ gate sensors and

⋄⋄ gate barriers.

A Prerequisite for Requirements Engineering 501 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

502

7. 4. Machine Requirements 4.3. Performance Requirements

7.4.3. Dependability Requirements

more to come

7.4.3.1. Failures, Errors and Faults

• To properly define the concept of dependability we need first intro-
duce and define the concepts of

⋄⋄ failure,

⋄⋄ error, and

⋄⋄ fault.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 502 Domain Science & Engineering

503

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

Definition 36 . Failure:

• A machine failure occurs

• when the delivered service

• deviates from fulfilling the machine function,

• the latter being what the machine is aimed at

A Prerequisite for Requirements Engineering 503 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

504

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

Definition 37 . Error:

• An error

• is that part of a machine state

• which is liable to lead to subsequent failure.

• An error affecting the service

• is an indication that a failure occurs or has occurred

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 504 Domain Science & Engineering

505

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

Definition 38 . Fault:

• The adjudged (i.e., the ‘so-judged’) or hypothesised cause of an
error

• is a fault

• The term hazard is here taken to mean the same as the term fault.

• One should read the phrase: “adjudged or hypothesised cause” care-
fully:

• In order to avoid an unending trace backward as to the cause,

• we stop at the cause which is intended to be prevented or toler-

ated.

A Prerequisite for Requirements Engineering 505 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

506

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

Definition 39 . Machine Service: The service delivered by a
machine

• is its behaviour

• as it is perceptible by its user(s),

• where a user is a human, another machine or a(nother) system

• which interacts with it

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 506 Domain Science & Engineering

507

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

Definition 40 . Dependability: Dependability is defined

• as the property of a machine

• such that reliance can justifiably be placed on the service it delivers

• We continue, less formally, by characterising the above defined concepts.

• “A given machine, operating in some particular environment (a wider system),
may fail in the sense that some other machine (or system) makes, or could in
principle have made, a judgement that the activity or inactivity of the given
machine constitutes a failure”.

• The concept of dependability can be simply defined as “the quality or the char-
acteristic of being dependable”, where the adjective ‘dependable’ is attributed to
a machine whose failures are judged sufficiently rare or insignificant.

A Prerequisite for Requirements Engineering 507 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

508

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

• Impairments to dependability are the unavoidably expectable cir-
cumstances causing or resulting from “undependability”: faults, er-
rors and failures.

•Means for dependability are the techniques enabling one

⋄⋄ to provide the ability to deliver a service on which reliance can be
placed,

⋄⋄ and to reach confidence in this ability.

• Attributes of dependability enable

⋄⋄ the properties which are expected from the system to be expressed,

⋄⋄ and allow the machine quality resulting from the impairments and
the means opposing them to be assessed.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 508 Domain Science & Engineering

509

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

• Having already discussed the “threats” aspect,

• we shall therefore discuss the “means” aspect of the dependability tree.

• Attributes:

⋄⋄ Accessibility

⋄⋄ Availability

⋄⋄ Integrity

⋄⋄ Reliability

⋄⋄ Safety

⋄⋄ Security

• Means:

⋄⋄ Procurement

◦◦ Fault prevention

◦◦ Fault tolerance

⋄⋄ Validation

◦◦ Fault removal

◦◦ Fault forecasting

• Threats:

⋄⋄ Faults

⋄⋄ Errors

⋄⋄ Failures

A Prerequisite for Requirements Engineering 509 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

510

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

• Despite all the principles, techniques and tools aimed at fault pre-
vention,

• faults are created.

• Hence the need for fault removal.

• Fault removal is itself imperfect.

• Hence the need for fault forecasting.

• Our increasing dependence on computing systems in the end brings
in the need for fault tolerance.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 510 Domain Science & Engineering

511

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

Definition 41 . Dependability Attribute: By a dependability

attribute we shall mean either one of the following:

• accessibility,

• availability,

• integrity,

• reliability,

• robustness,

• safety and

• security.

A Prerequisite for Requirements Engineering 511 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

512

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.1. Failures, Errors and Faults

That is, a machine is dependable if it satisfies some degree of “mixture” of

being accessible, available, having integrity, and being reliable, safe and secure

• The crucial term above is “satisfies”.

• The issue is: To what “degree”?

• As we shall see — in a later later lecture — to cope properly

⋄⋄ with dependability requirements and

⋄⋄ their resolution

requires that we deploy

⋄⋄ mathematical formulation techniques,

⋄⋄ including analysis and simulation,

from statistics (stochastics, etc.).

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 512 Domain Science & Engineering

513

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.2. Failures, Errors and Faults

7.4.3.2. Accessibility

• Usually a desired, i.e., the required, computing system, i.e., the ma-
chine, will be used by many users — over “near-identical” time in-
tervals.

• Their being granted access to computing time is usually specified,
at an abstract level, as being determined by some internal nondeter-
ministic choice, that is: essentially by “tossing a coin”!

• If such internal nondeterminism was carried over, into an implemen-
tation, some “coin tossers” might never get access to the machine.

A Prerequisite for Requirements Engineering 513 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

514

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.2. Accessibility

Definition 42 . Accessibility: A system being accessible — in
the context of a machine being dependable —

•means that some form of “fairness”

• is achieved in guaranteeing users “equal” access

• to machine resources, notably computing time (and what derives
from that)

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 514 Domain Science & Engineering

515

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.2. Accessibility

Example 96 . Machine Requirements. Road-pricing System Accessibil-

ity:

• Fairness of the calculator behaviour, cf. formula Item 220 on Slide 450 (⌈⌉⌊⌋)

⋄⋄ shall mean that “earlier” (wrt. time-stamped) messages

⋄⋄ from either vehicles

⋄⋄ or from gates

⋄⋄ shall be accepted by the calculator

⋄⋄ before “later” such messages.

• This is guaranteed by the semantics of RSL.

⋄⋄ And, hence, shall be guaranteed

⋄⋄ by any implementation of the deterministic choice ⌈⌉⌊⌋

A Prerequisite for Requirements Engineering 515 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

516

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.3. Accessibility

7.4.3.3. Availability

• Usually a desired, i.e., the required, computing system, i.e., the ma-
chine, will be used by many users — over “near-identical” time in-
tervals.

• Once a user has been granted access to machine resources, usually
computing time, that user’s computation may effectively make the
machine unavailable to other users —

• by “going on and on and on”!

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 516 Domain Science & Engineering

517

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.3. Availability

Definition 43 . Availability: By availability — in the context of
a machine being dependable — we mean

• its readiness for usage.

• That is, that some form of “guaranteed percentage of computing

time” per time interval (or percentage of some other computing
resource consumption)

• is achieved — hence some form of “time slicing” is to be effected

A Prerequisite for Requirements Engineering 517 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

518

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.3. Availability

Example 97 . Machine Requirements. Road-pricing System Availability:

• Formula Item 216b. (Slide 445) specify that

⋄⋄ vehicles “continuously” inform

⋄⋄ the calculator (cf. formula Items 220 on Slide 450)

⋄⋄ of their time-stamped local position.

• This may lead you to think that these messages

⋄⋄ may effectively “block out”

⋄⋄ “concurrent” messages from toll-road gates.

• In an implementation we may choose

⋄⋄ to discretize vehicle-to-calculator messages.

⋄⋄ That is, to “space them apart”,

⋄⋄ some time interval —

⋄⋄ so long as an “intentional semantics is maintained”

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 518 Domain Science & Engineering

519

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.4. Availability

7.4.3.4. Integrity

Definition 44 . Integrity: A system has integrity — in the context of a
machine being dependable — if

• it is and remains unimpaired,

• i.e., has no faults, errors and failures,

• and remains so, without these,

• even in the situations where the environment of the machine has faults, errors

and failures

• Integrity seems to be a highest form of dependability,

• i.e., a machine having integrity is 100% dependable!

• The machine is sound and is incorruptible.

A Prerequisite for Requirements Engineering 519 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

520

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.4. Integrity

Example 98 . Machine Requirements. Road-pricing System Integrity:

• We divide the integrity concerns for
the road-pricing computing and communications system
into two “spheres”:

⋄⋄ the integrity of the sensor and actuator equipment
attached to

◦◦ vehicles (i.e., their GNSS attributes), and to

◦◦ toll-road gates:

∗ in/out sensors, ∗ vehicle identifiers and ∗ gates;

and

⋄⋄ the software of the road-pricing computing and communications system,

◦◦ that is, the software which interfaces with

∗ vehicles, ∗ toll-gates and ∗ the calculator.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 520 Domain Science & Engineering

521

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.4. Integrity

• As for the integrity of the the sensor and actuator equipment
we do not require

⋄⋄ that the road-pricing computing and communications system

⋄⋄ is 100% dependable,

⋄⋄ It is satisfactory if it retains its

◦◦ accessibility,

◦◦ availability,

◦◦ reliability,

◦◦ safety and

◦◦ security

in the presence of maintenance.

A Prerequisite for Requirements Engineering 521 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

522

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.4. Integrity

• As for the integrity of the software we require that it

⋄⋄ is proven correct

with respect to domain and requirements specifications
under the assumption that
sensor and actuator equipment functions
with 100%’s integrity;

⋄⋄ and where correctness proofs
may not be feasible or possible,
that the software is appropriately model-checked;

⋄⋄ and where “complete” model-checks
may not be feasible or possible,
that the software is formally tested

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 522 Domain Science & Engineering

523

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.4. Integrity

Definition 45 . Reliability: A system being reliable — in the
context of a machine being dependable — means

• some measure of continuous correct service,

• that is, measure of time to failure

A Prerequisite for Requirements Engineering 523 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

524

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.4. Integrity

Example 99 . Machine Requirements. Road-pricing System Reliability:

• Mean-time between failures, MTBF,

⋄⋄ (i) of any vehicle’s GNSS correct recording of local position must be at least
30.000 hours;

⋄⋄ (ii) of any toll-gate complex, that is,

◦◦ it’s ability to correctly identify a passing vehicle, or

◦◦ it’s ability to correctly close and open gates

must be at least 20.000 hours

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 524 Domain Science & Engineering

525

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.5. Integrity

7.4.3.5. Safety

Definition 46 . Safety: By safety — in the context of a machine
being dependable — we mean

• some measure of continuous delivery of service of

⋄⋄ either correct service, or incorrect service after benign failure,

• that is: Measure of time to catastrophic failure

A Prerequisite for Requirements Engineering 525 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

526

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.5. Safety

Example 100 . Machine Requirements. Road-pricing System Safety:

• Mean time to catastrophic failure, MTCF,

⋄⋄ (i) for a vehicle’s GNSS to function properly shall be 60.000 hours; and

⋄⋄ (ii) of any toll-gate complex, that is,

◦◦ it’s ability to correctly identify a passing vehicle, or

◦◦ it’s ability to correctly close and open gates

must be at least 40.000 hours

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 526 Domain Science & Engineering

527

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.6. Safety

7.4.3.6. Security

We shall take a rather limited view of security. We are not including
any consideration of security against brute-force terrorist attacks. We
consider that an issue properly outside the realm of software engineer-
ing.

• Security, then, in our limited view, requires a notion of authorised
user,

• with authorised users being fine-grained authorised to access only a
well-defined subset of system resources (data, functions, etc.).

• An unauthorised user (for a resource) is anyone who is not autho-
rised access to that resource.

A Prerequisite for Requirements Engineering 527 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

528

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.6. Security

Definition 47 . Security: A system being secure — in the context
of a machine being dependable —

•means that an unauthorised user, after believing that he or she
has had access to a requested system resource:

⋄⋄ cannot find out what the system resource is doing,

⋄⋄ cannot find out how the system resource is working

⋄⋄ and does not know that he/she does not know!

• That is, prevention of unauthorised access to computing and/or
handling of information (i.e., data)

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 528 Domain Science & Engineering

529

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.6. Security

Example 101 . Machine Requirements. Road-pricing System Security:

• Vehicles are authorised

⋄⋄ to receive GNSS timed global positions,
but not to tamper with, e.g. misrepresent them,

are authorised

⋄⋄ to, and shall correctly compute
their local positions
based on the received global positions,

and are finally authorised

⋄⋄ to, and shall correctly
inform the calculator of their timed local positions

A Prerequisite for Requirements Engineering 529 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

530

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.7. Security

7.4.3.7. Robustness

Definition 48 . Robustness: A system is robust — in the con-
text of dependability —

• if it retains its attributes

⋄⋄ after failure, and

⋄⋄ after maintenance

• Thus a robust system is “stable”

⋄⋄ across failures

⋄⋄ and “across” possibly intervening “repairs”

⋄⋄ and “across” other forms of maintenance.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 530 Domain Science & Engineering

531

7. 4. Machine Requirements 4.3. Dependability Requirements 4.3.7. Robustness

Example 102 . Machine Requirements. Road-pricing System Robust-

ness:

• The road-pricing computing and communications system shall retain its

⋄⋄ performance and

⋄⋄ dependability, that is,

◦◦ accessibility,

◦◦ availability,

◦◦ reliability, and

◦◦ safety

requirements

• in the presence of maintenance.

A Prerequisite for Requirements Engineering 531 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

532

7. 4. Machine Requirements 4.4. Dependability Requirements

7.4.4. Maintenance Requirements

to be typed

7.4.4.1. Delineation and Facets of Maintenance Requirements

Definition 49 . Maintenance Requirements: By maintenance

requirements we understand a combination of requirements with
respect to:

• adaptive maintenance,

• corrective maintenance,

• perfective maintenance,

• preventive maintenance and

• extensional maintenance

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 532 Domain Science & Engineering

533

7. 4. Machine Requirements 4.4. Maintenance Requirements 4.4.1. Delineation and Facets of Maintenance Requirements

•Maintenance of building, mechanical, electrotechnical and electronic
artifacts — i.e., of artifacts based on the natural sciences — is based
both on documents and on the presence of the physical artifacts.

•Maintenance of software is based just on software, that is, on all the
documents (including tests) entailed by software — see Definition 61
on Slide 553.

A Prerequisite for Requirements Engineering 533 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

534

7. 4. Machine Requirements 4.4. Maintenance Requirements 4.4.2. Delineation and Facets of Maintenance Requirements

7.4.4.2. Adaptive Maintenance

Definition 50 . Adaptive Maintenance: By adaptive mainte-

nance we understand such maintenance

• that changes a part of that software so as to also, or instead, fit
to

⋄⋄ some other software, or

⋄⋄ some other hardware equipment

(i.e., other software or hardware which provides new, respec-
tively replacement, functions)

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 534 Domain Science & Engineering

535

7. 4. Machine Requirements 4.4. Maintenance Requirements 4.4.2. Adaptive Maintenance

Example 103 . Machine Requirements. Road-pricing System Adaptive

Maintenance:

• Two forms of adaptive maintenance occur in connection with the
road-pricing computing and communication system:

⋄⋄ adaptive maintenance of vehicle and toll-gate sensors and actuators, and

⋄⋄ adaptive maintenance of the “interfacing” software, that is,

◦◦ the vehicle software as prescribed by Item 216 on Slide 445,

◦◦ the toll-gate software as prescribed by Item 219 on Slide 448, and

◦◦ the calculator software as prescribed by Item 220 on Slide 450.

A Prerequisite for Requirements Engineering 535 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

536

7. 4. Machine Requirements 4.4. Maintenance Requirements 4.4.2. Adaptive Maintenance

• Adaptive maintenance of vehicle and toll-gate
sensors and actuators occurs when

⋄⋄ existing sensors or actuators

⋄⋄ are replaced due to failure.

• Adaptive maintenance of interfacing software
is required when

⋄⋄ existing sensors or actuators have been replaced
and their characteristics are different from those of the replaced
equipment,

⋄⋄ hence requires modifications of interfacing software

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 536 Domain Science & Engineering

537

7. 4. Machine Requirements 4.4. Maintenance Requirements 4.4.3. Adaptive Maintenance

7.4.4.3. Corrective Maintenance

Definition 51 . Corrective Maintenance: By corrective main-

tenance we understand such maintenance which

• corrects a software error

A Prerequisite for Requirements Engineering 537 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

538

7. 4. Machine Requirements 4.4. Maintenance Requirements 4.4.3. Corrective Maintenance

Example 104 . Machine Requirements. Road-pricing System Corrective

Maintenance:

• Corrective maintenance of the road-pricing computing and communications system
is required in two “spheres”:

⋄⋄ when system, that is, toll-gate and vehicles sensors or actuators
fail, and

⋄⋄ when, despite all verification efforts, the interfacing, that is,

◦◦ the vehicle,

◦◦ the gate, or

◦◦ the calculator

software fails.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 538 Domain Science & Engineering

539

7. 4. Machine Requirements 4.4. Maintenance Requirements 4.4.3. Corrective Maintenance

• In the former case (equipment failure)

⋄⋄ the failing sensor or actuator is replaced

⋄⋄ possibly implying adaptive maintenance.

• In the latter case (software failure)

⋄⋄ the failing software is analysed

⋄⋄ in order to locate the erroneous code,

⋄⋄ whereupon that code is replaced by such code

⋄⋄ that can lead to a verification of the full system

A Prerequisite for Requirements Engineering 539 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

540

7. 4. Machine Requirements 4.4. Maintenance Requirements 4.4.4. Corrective Maintenance

7.4.4.4. Perfective Maintenance

Definition 52 . Perfective Maintenance: By perfective maintenance we
understand such maintenance which

• helps improve (i.e., lower) the need for

• hardware storage, time and (hard) equipment

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 540 Domain Science & Engineering

541

7. 4. Machine Requirements 4.4. Maintenance Requirements 4.4.4. Perfective Maintenance

Example 105 . Machine Requirements. Road-pricing System Perfective

Maintenance:

• We focus on perfective maintenance of

⋄⋄ vehicle,

⋄⋄ toll-gate and

⋄⋄ calculator

software.

A Prerequisite for Requirements Engineering 541 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

542

7. 4. Machine Requirements 4.4. Maintenance Requirements 4.4.4. Perfective Maintenance

•We focus, in particular, on

⋄⋄ the reaction time in connection with response to external stimuli
for the gate software

◦◦ the timed local position, Item 216a. on Slide 445, of vehicles;

◦◦ the attr enter ch[gi] event from a toll-gate’s in coming sensor,
Item 219a. on Slide 448;

◦◦ the timed vehicle identity for a attr TIVI ch[gi] event form a toll-
gate sensor, Item 219b. on Slide 448; and

◦◦ the attr leave ch[gi] event from a toll-gate’s out going sensor,
Item 219d. on Slide 448;

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 542 Domain Science & Engineering

543

7. 4. Machine Requirements 4.4. Maintenance Requirements 4.4.4. Perfective Maintenance

⋄⋄ the reaction time, of the calculator, Item 220 on Slide 450, to
incoming, alternating, communications from

◦◦ either vehicles, Item 220a. on Slide 450,

◦◦ or gates, Item 220b. on Slide 450.

⋄⋄ and the calculation time of the calculator

◦◦ for billing, cf. Item 222e. on Slide 452.

A Prerequisite for Requirements Engineering 543 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

544

7. 4. Machine Requirements 4.4. Maintenance Requirements 4.4.5. Perfective Maintenance

7.4.4.5. Preventive Maintenance

Definition 53 . Preventive Maintenance: By preventive main-

tenance we understand such maintenance which

• helps detect, i.e., forestall, future occurrence

• of software or hardware failures

Example 106 . Machine Requirements. Road-pricing System Preven-

tive Maintenance:

to be written

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 544 Domain Science & Engineering

545

7. 4. Machine Requirements 4.4. Maintenance Requirements 4.4.6. Preventive Maintenance

7.4.4.6. Extensional Maintenance

Definition 54 . Extensional Maintenance: By extensional main-

tenance we understand such maintenance which adds new function-
alities to the software, i.e., which implements additional require-
ments

Example 107 . Machine Requirements. Road-pricing System Exten-

sional Maintenance:

to be written

A Prerequisite for Requirements Engineering 545 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

546

7. 4. Machine Requirements 4.5. Maintenance Requirements

7.4.5. Platform Requirements

to be written

7.4.5.1. Delineation and Facets of Platform Requirements

Definition 55 . Platform: By a [computing] platform is here
understood

• a combination of hardware and systems software

• so equipped as to be able to develop and execute software,

• in one form or another

•What the “in one form or another” is

• transpires from the next characterisation.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 546 Domain Science & Engineering

547

7. 4. Machine Requirements 4.5. Platform Requirements 4.5.1. Delineation and Facets of Platform Requirements

Definition 56 . Platform Requirements: By platform require-

ments we mean a combination of the following:

• development platform requirements,

• execution platform requirements,

•maintenance platform requirements and

• demonstration platform requirements

A Prerequisite for Requirements Engineering 547 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

548

7. 4. Machine Requirements 4.5. Platform Requirements 4.5.2. Delineation and Facets of Platform Requirements

7.4.5.2. Development Platform

Definition 57 . Development Platform Requirements: By de-

velopment platform requirements we shall understand such ma-
chine requirements which

• detail the specific software and hardware

• for the platform on which the software

• is to be developed

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 548 Domain Science & Engineering

549

7. 4. Machine Requirements 4.5. Platform Requirements 4.5.3. Development Platform

7.4.5.3. Execution Platform

Definition 58 . Execution Platform Requirements: By exe-

cution platform requirements we shall understand such machine
requirements which

• detail the specific (other) software and hardware

• for the platform on which the software

• is to be executed

A Prerequisite for Requirements Engineering 549 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

550

7. 4. Machine Requirements 4.5. Platform Requirements 4.5.4. Execution Platform

7.4.5.4. Maintenance Platform

Definition 59 . Maintenance Platform Requirements: By
maintenance platform requirements we shall understand such ma-
chine requirements which

• detail the specific (other) software and hardware

• for the platform on which the software

• is to be maintained

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 550 Domain Science & Engineering

551

7. 4. Machine Requirements 4.5. Platform Requirements 4.5.5. Maintenance Platform

7.4.5.5. Demonstration Platform

Definition 60 . Demonstration Platform Requirements: By
demonstration platform requirements we shall understand such ma-
chine requirements which

• detail the specific (other) software and hardware

• for the platform on which the software

• is to be demonstrated to the customer — say for acceptance tests,
or for management demos, or for user training

A Prerequisite for Requirements Engineering 551 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

552

7. 4. Machine Requirements 4.5. Platform Requirements 4.5.5. Demonstration Platform

Example 108 . Machine Requirements. Road-pricing System Platform

Requirements:

• The platform requirements are the following:

⋄⋄ the development platform to be typed

⋄⋄ the execution platform to be typed

⋄⋄ the maintenance platform to be typed

and

⋄⋄ the demonstration platform to be typed .

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 552 Domain Science & Engineering

553

7. 4. Machine Requirements 4.6. Platform Requirements

7.4.6. Documentation Requirements

Definition 61 . Software: By software we shall understand

• not only code that may be the basis for executions by a computer,

• but also its full development documentation:

⋄⋄ the stages and steps of application domain description,

⋄⋄ the stages and steps of requirements prescription, and

⋄⋄ the stages and steps of software design prior to code,

with all of the above including all validation and verification

(incl., test) documents.

A Prerequisite for Requirements Engineering 553 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

554

7. 4. Machine Requirements 4.6. Documentation Requirements

• In addition, as part of our wider concept of software, we also
include a comprehensive collection of supporting documents:

⋄⋄ training manuals,

⋄⋄ installation manuals,

⋄⋄ user manuals,

⋄⋄ maintenance manuals, and

⋄⋄ development and maintenance logbooks.

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 554 Domain Science & Engineering

555

7. 4. Machine Requirements 4.6. Documentation Requirements

Definition 62 . Documentation Requirements: By documen-

tation requirements

• we mean requirements

• of any of the software documents

• that together make up

⋄⋄ software and

⋄⋄ hardware30

Example 109 . Machine Requirements — Documentation:

to be written

30— we omit a definition of what we mean by hardware such as the one we gave for
software, cf. Definition 61 on Slide 553.

A Prerequisite for Requirements Engineering 555 c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36

556

7. 4. Machine Requirements 4.7. Documentation Requirements

7.4.7. Discussion

to be typed

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 556 Domain Science & Engineering

0

Dines Bjørner’s MAP-i Lecture # 10

End of MAP-i Lecture #10:
Interface Requirements

Thursday, 28 May 2015: 12:15–13:00

c© Dines Bjørner 2015, Fredsvej 11, DK–2840 Holte, Denmark – May 23, 2015: 15:36 0 Domain Science & Engineering

