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Summary

• We argue that computing systems requirements
must be based on precisely described domain models.

⋄⋄ We further argue that domain science & engineering
offers a new dimension in computing.

⋄⋄ We review our work in this area

⋄⋄ and we hint at a

◦◦ research and

◦◦ experimental engineering

programme for

⋄⋄ the first two phases of the triptych of

◦◦ domain enginering,

◦◦ requirements engineering and

◦◦ software design.
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Introduction

• This speaker can refer to some substantial evidence
that using formal specifications in
software development brings some substantial benefits.

⋄⋄ Section 2 recalls a first, 1981–1984, instance of such benefits.

⋄⋄ Yet, as also outlined in
[17, Bjørner & Havelund: 40 Years of Formal Methods — 10
Obstacles and 3 Possibilities ],
“propagation” of formal methods into a wider industry
seems lacking.

⋄⋄ Although [33, Woodcock et al.] lacks a reference to the formal
methods project covered in Sect. 2, it is a fair reference to a
number of projects supporting the author’s “benefits” claim.
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1.Introduction 1.1.

1.1. The Domain Engineering Claim

• In this talk we wish, however,
to not “push” the formal methods claim,
but to “push” a, or the, domain science & engineering claim:

⋄⋄ in order to design software one must have a good grasp of its
requirements;

⋄⋄ in order to prescribe requirements one must have a good
grasp of the underlying domain;

⋄⋄ so we expect that behind every serious software development
there lies a stable domain description.

• This, then, is the purpose of this talk:
to “tout” the concept of domain science and engineering,
emphasizing, in this talk, the latter.
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1.Introduction 1.2.The Domain Engineering Claim

1.2. Aim of Talk

• So this is neither a theory nor a programming methodology talk.

⋄⋄ It is a review paper:

◦◦ “where do we stand ?” with respect to
being able to develop
correct software and software that meets customers’
expectations ?; and

◦◦ “how can those two issues:
‘correctness’ and ‘meeting expectations’
be improved ?”.
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1.Introduction 1.3.Aim of Talk

1.3. Structure of Talk

• Section 2 brings two examples:

⋄⋄ one of arbitrary, but well-formed transportation nets (illustrated
by a road net),

⋄⋄ the other of arbitrary, but well-formed pipelines with the flow
(laws) of liquid materials.

• The purpose of Sect. 2
is to review a 44 man-year project using formal methods (“lightly”).

⋄⋄ We bring this example
— of a now more than 30 year old project (1981–1984) —

⋄⋄ to show an early use of a carefully narrated formal domain
description,

⋄⋄ a project that we claim to have been a very successful one.
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1.Introduction 1.3.Structure of Talk

• Section 3 overviews our concept of TripTych development:

⋄⋄ from domain descriptions,

⋄⋄ via requirements prescriptions,

⋄⋄ to software design.

We emphasize the domain science & engineering aspects.

• Section 4 Discusses our claim that this TripTych
suggests a new foundation for computing science.

• Section 5 very briefly draws, what we see as,
the necessary conclusions.
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1.Introduction 1.3.Structure of Talk

A Background Development

• We sketch the structure

⋄⋄ of a successful

⋄⋄ 44 man year project

⋄⋄ which developed a commercial compiler

⋄⋄ according to the TripTych approach

⋄⋄ and using formal specifications —

⋄⋄ with success measured in therms of

◦◦ meeting customers’ expectations

◦◦ and being correct.
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2.A Background Development 2.1.

2.1. The 1981–1984 DDC Ada Compiler Development Project

• In the spring semester (6 months) of 1980 five MSc students

⋄⋄ worked out their MSc theses:

⋄⋄ A Formal Description of Ada.

⋄⋄ The four theses were published as [21].

⋄⋄ That work became the basis for a full-scale industry-size project:

◦◦ The DDC1 ADA Compiler Project,

◦◦ funded, in part by the CEC,
the Commission of the European Countries.

• The project was carried out

⋄⋄ according to abstraction and refinement principles laid down in
[2], and

⋄⋄ can be diagrammed as shown in Fig. 1 on the following slide

1DDC: Dansk Datamatik Center was an industry-operated R&D centre, 1979–1989.
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2.A Background Development 2.1.The 1981–1984 DDC Ada Compiler Development Project
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2.A Background Development 2.1.The 1981–1984 DDC Ada Compiler Development Project

• We explain the approach taken to develop,
using formal specifications,
a compiler for the Ada programming language.

• We do so using Fig. 1 as a reference point.

⋄⋄ Each box

◦◦ represents a specification

◦◦ and denotes a mathematical object.

⋄⋄ Each directed line between boxes

◦◦ represents a step of development,

◦◦ and denotes a proof
(of correctness, also a mathematical object).
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122.A Background Development 2.1.The 1981–1984 DDC Ada Compiler Development Project

• There were three phases of development:

⋄⋄ the domain engineering phase,

⋄⋄ the requirements engineering phase, and

⋄⋄ the software design phase.

They are clearly marked in Fig. 1.
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132.A Background Development 2.1.The 1981–1984 DDC Ada Compiler Development Project

• First a formal description was developed for Ada.

⋄⋄ This phase is referred to as the ‘Domain’.

⋄⋄ It had four stages:

◦◦ first the Abstract Syntax,

⋄⋄ then (developed “concurrently”)

◦◦ the Higher-order Static Semantics,

◦◦ the “Denotational” Dynamic Sequential Semantics and

◦◦ the “Operational” Dynamic Parallel Semantics.
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2.A Background Development 2.1.The 1981–1984 DDC Ada Compiler Development Project

• Then a phase, Requirements, consisting of several stages.

⋄⋄ The refinement work represented by each of the boxes,

⋄⋄ were conditioned by various requirements.

⋄⋄ But we show such only for two boxes:
dashed, labelled pointed red lines.
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2.A Background Development 2.1.The 1981–1984 DDC Ada Compiler Development Project

⋄⋄ The Higher-order Static Semantics is refined in two stages:

◦◦ first a Resumption Static Semantics

◦◦ and then a First-order Static Semantics.

⋄⋄ The “Denotational” Dynamic Sequential Semantics was refined in
three stages:

◦◦ a 1st-order Functional Interpreter,

◦◦ a Imperative Stack dynamic semantics and

◦◦ a Macro-expansion dynamic semantics.

⋄⋄ From the Operational “Parallel” Semantics was developed

◦◦ an operational Run-time Semantics

◦◦ for the concurrency constructs of Ada.
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2.A Background Development 2.1.The 1981–1984 DDC Ada Compiler Development Project

⋄⋄ From the Macro-expansion semantics was developed

◦◦ the design of an A[da] Code Language

◦◦ which was given a semantics

◦◦ commensurate with the specification language and
Macro-expansion semantics.

⋄⋄ And from the

◦◦ Macro-expansion semantics and the

◦◦ A Code Language

◦◦ was developed a Compiling Algorithm

∗ which to every construct of Ada

∗ prescribed a sequence of A Code.

⋄⋄ The Run-time Interpreter

◦◦ was developed from the

◦◦ Operational “Parallel” Ada Semantics.

A Discussion of Possibilities and Problems 16 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – April 20, 2015: 09:46



17
2.A Background Development 2.1.The 1981–1984 DDC Ada Compiler Development Project

⋄⋄ Two requirements assumptions were:

◦◦ the compiler should execute within
a 128 KB addressing space, and

◦◦ the compiled code should likewise execute within
a 128 KB addressing space.

⋄⋄ Therefore the compiler need be decomposed
into a number of passes
where a pass was defined as that of a linear reading
of of the Ada program text
either left-to-right, or right-to-left, and
in either pre-, in- or post-order.
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2.A Background Development 2.1.The 1981–1984 DDC Ada Compiler Development Project

⋄⋄ From the combined

◦◦ 1st-order Static Semantics and the

◦◦ Compiling Algorithm

was, after careful analysis of these, developed

◦◦ a specification for a multi-pass administrator.

• The multi-pass analysis and synthesis resulted in

⋄⋄ five passes for the statics checks (i.e., “front-end”),

⋄⋄ and four passes for the code generator (i.e., “back-end”).

• These concluded the domain and requirements phases

⋄⋄ which were all specified in VDM [18, 29]

⋄⋄ for a total of approximately

◦◦ 10.000, respectively ◦◦ 56,000 lines

of VDM and formula annotations.
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2.A Background Development 2.1.The 1981–1984 DDC Ada Compiler Development Project

• The

⋄⋄ nine compiler Passes,

⋄⋄ Multi-pass Administrator, and the

⋄⋄ Run-time Administrator

were all coded from their specifications

⋄⋄ in a subset of the Ada language

⋄⋄ for which a compiler was developed

⋄⋄ in parallel with the full-Ada development !
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2.A Background Development 2.2.The 1981–1984 DDC Ada Compiler Development Project

2.2. A Review
2.2.1. Resources

• The above project took place more than 30 years ago !

• Approximately the following man-power resources were used:

⋄⋄ For the Domain phase: seven people, one year;

⋄⋄ for the Requirements phase
(exclusive of the Multi-pass Administrator :
eleven people, one year;

⋄⋄ for the Multi-pass Administrator : six people, half a year; and

⋄⋄ for the rest (nine Passes and the Administrators): 12 people, 14 months.

⋄⋄ The subset Ada compiler development consumed seven man years.

⋄⋄ Thus a total of

◦◦ 42 man years was spent on effective development and its management,

◦◦ 2 man years on management of donors, funding and marketing.
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212.A Background Development 2.2.A Review 2.2.2. Resources

2.2.2. Formal Methods “Lite”

• VDM was the prime “carrier” of the Ada compiler development.

⋄⋄ The domain and the requirements phases were specified in VDM.

⋄⋄ No properties of these specifications were formalised
let alone proved.

⋄⋄ The first 10 years of use by industry on three continents
(China, Japan, USA and Europe)
revealed few, and only trivial errors:

◦◦ less than 2% of original development resources

◦◦ were spent on error corrections

◦◦ with average “repair” times being in the order of 1–2 days.
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2.A Background Development 2.2.A Review 2.2.3. Formal Methods “Lite”

2.2.3. Epilogue

• The above-outlined Ada compiler development project was reported in [22, 31].

• The use of formal methods was clear.

• But ‘formal methods’ were not used in any other sense than formal specifications.

• Properties of and relationships between stage specifications
were not formalised.

• And yet, the project must be judged an unqualified success for formal methods.

⋄⋄ It took far fewer manpower resources
than any other Ada compiler development project in those days.

⋄⋄ It had far, far fewer “bugs” than any comparable
software development project in those days or since.

⋄⋄ Yet there were no tools available:

◦◦ No VDM syntax checker,

◦◦ No specification analyser.

◦◦ No nothing !
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2.A Background Development 2.2.A Review 2.2.3. Epilogue

The Triptych of Software Engineering

• We suggest a TripTych view of software engineering:

⋄⋄ before software can be designed and coded

⋄⋄ we must have a reasonable grasp of “its” requirements; and

⋄⋄ before requirements can be prescribed

⋄⋄ we must have a reasonable grasp of “the underlying” domain.

• To us, therefore, software engineering contains the three
sub-disciplines:

⋄⋄ domain engineering,

⋄⋄ requirements engineering and

⋄⋄ software design.
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3.The Triptych of Software Engineering 3.1.

3.1. What’s New ?

• So “What’s New ?” in this ?

⋄⋄ Well, as far as the surveyed compiler development is concerned,
nothing:

◦◦ that is how one should develop compilers —

◦◦ although it seems that it was done only once !

A Discussion of Possibilities and Problems 24 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – April 20, 2015: 09:46



25
3.The Triptych of Software Engineering 3.1.What’s New ?

• What can we learn from the example of Sect. 2 ?

⋄⋄ We can postulate that when

⋄⋄ there is a formal understanding of the domain —

⋄⋄ and of the stages

◦◦ from domain to requirements

◦◦ and on to software design,

⋄⋄ then software can be developed with greater assurance

⋄⋄ of meeting users’ expectations and be correct

⋄⋄ than if not !
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3.The Triptych of Software Engineering 3.1.What’s New ?

• So that is what we are therefore proposing:

⋄⋄ to treat the domain,

⋄⋄ the application area for software development,

⋄⋄ as “a language” whose terms

⋄⋄ designate phenomena in the domain

⋄⋄ and “spoken/uttered” about by practitioners in the domain.

• So we consider a domain description

⋄⋄ to be the description of

◦◦ the syntax and ◦◦ the semantics

⋄⋄ of a language.
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3.The Triptych of Software Engineering 3.2.What’s New ?

3.2. Domain Science & Engineering
3.2.1. What is a Domain ?

• A domain is a

⋄⋄ human- and

⋄⋄ artifact-assisted

⋄⋄ arrangement of

◦◦ endurant, that is spatially “stable”, and

◦◦ perdurant, that is temporally “fleeting”

entities.
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.2. What is a Domain ?

3.2.2. Example Domains

• To help understand the above delineation

⋄⋄ of the ‘domain’ concept

⋄⋄ we list some examples

⋄⋄ for which we can also refer to some

◦◦ either published

◦◦ or reported

domain descriptions:
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.2. Example Domains

Example 1 . Manifest Domain Names: Examples of suggestive
names of manifest domains are:

• air traffic,

• banks,

• container lines,

• documents,

• hospitals,

• manufacturing,

• pipelines,

• railways and

• road nets.
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.3. Example Domains

3.2.3. Comparison to Other Sciences and Their Engineering

• We focus on the natural sciences and their engineerings:

⋄⋄ civil (or construction) engineering,

⋄⋄ mechanical engineering,

⋄⋄ chemical engineering,

⋄⋄ electrical, electronics engineering and radio engineering.

• For all of these related technologies engineers

⋄⋄ are properly educated,

⋄⋄ knows the underlying sciences,

⋄⋄ that is, the domains of their artifacts.

• Not so, today, 2015, for software engineers for the domains listed in
Example 1 on the previous slide.
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.3. Comparison to Other Sciences and Their Engineering

• Software engineers asked to develop software for either of

⋄⋄ air traffic control,

⋄⋄ banking.

⋄⋄ container lines,

⋄⋄ health care,

⋄⋄ railways,

⋄⋄ road pricing,

etcetera, are expected to find out, themselves,

⋄⋄ what the relevant domain is,

⋄⋄ how it behaves, etc.

⋄⋄ No wonder that it often fails !
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.4. Comparison to Other Sciences and Their Engineering

3.2.4. Domain Descriptions: Internet References

• Now, we would not postulate the above without firm evidence.

• “Proof in the pudding” sort-of-evidence that domains
can indeed be properly, informally and formally described.

• We shall first mention some existing descriptions
before we exemplify fragments of such descriptions.
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.4. Domain Descriptions: Internet References

1 A Railway Systems Domain D.Bjørner et al.

• Scheduling and Rescheduling of Trains; C.W.George and
S.Prehn, 1996, amore/scheduling.pdf

• Formal Software Techniques in Railway Systems; 2000,
amore/dines-fac.pdf

• Dynamics of Railway Systems; 2000,
amore/ifac-dynamics.pdf

• Railway Staff Rostering; A.Strupchanska et al., 2003,
amore/albena-amore.pdf

• Train Maintenance Routing; M.Peñicka et al., 2003,
amore/martin-amore.pdf

• Train Composition and Decomposition: Domain and
Requirements (draft), P.Karras et al., 2003,
amore/panos-amore.pdf
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.4. Domain Descriptions: Internet References

2 Models of IT Security. Security Rules & Regulations , it-security.pdf, 2006.
See [13]. A sketch is given of the IT security rules laid down by ISO

3 A Container Line Industry Domain, container-paper.pdf, 2007

4 The “Market”: Consumers, Retailers, Wholesalers, Producers , themarket.pdf,
2007 See [3].

5 What is Logistics ? logistics.pdf, 2009

6 A Domain Model of Oil Pipelines , pipeline.pdf, 2009

7 Transport Systems , comet/comet1.pdf, 2010

8 The Tokyo Stock Exchange, todai/tse-1.pdf and todai/tse-2.pdf, 2010

9 On Development of Web-based Software. A Divertimento, wfdftp.pdf, 2010

10 Documents (incomplete draft), doc-p.pdf, See [12]. 2013
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.5. Domain Descriptions: Internet References

3.2.5. An Example: Road Nets, Vehicles and Traffic
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.5. An Example: Road Nets, Vehicles and Traffic 3.2.5.1. Parts

3.2.5.1 Parts

• The root domain, ∆D,

• the step-wise unfolding of whose description is to be exemplified,
is that of a composite traffic system

⋄⋄ with a road net,

⋄⋄ with a fleet of vehicles and

⋄⋄ of whose individual position on the road net we can speak, that
is, monitor.
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.5. An Example: Road Nets, Vehicles and Traffic 3.2.5.1. Parts

1 We analyse the composite
traffic system into

a. a composite road net,

b. a composite fleet (of
vehicles), and

c. an atomic monitor.

2 The road net consists of two
composite parts,

a. an aggregation of hubs and

b. an aggregation of links.

type
1. ∆∆

1a.. N∆

1b.. F∆
1c.. M∆

value
1a.. obs part N∆: ∆∆ → N∆

1b.. obs part F∆: ∆∆ → F∆

1c.. obs part M∆: ∆∆ → M∆

type
2a.. HA∆

2b.. LA∆

value
2a.. obs part HA∆: N∆ → HA∆

2b.. obs part LA∆: N∆ → LA∆
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.5. An Example: Road Nets, Vehicles and Traffic 3.2.5.1. Parts

3 Hub aggregates are sets of hubs.

4 Link aggregates are sets of links.

5 Fleets are sets of vehicles.

6 We introduce some auxiliary

functions.

a. links extracts the links of a
network.

b. hubs extracts the hubs of a
network.

type
3. H∆, HS∆ = H∆-set
4. L∆, LS∆ = L∆-set
5. V∆, VS∆ = V∆-set
value
3. obs part HS∆: HA∆ → HS∆

4. obs part LS∆: LA∆ → LS∆
5. obs part VS∆: F∆ → VS∆
6a.. links∆: ∆∆ → L-set
6a.. links∆(δ∆) ≡ obs part LS(obs part LA(δ∆))
6b.. hubs∆: ∆∆ → H-set
6b.. hubs∆(δ∆) ≡ obs part HS(obs part HA(δ∆
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.5. An Example: Road Nets, Vehicles and Traffic 3.2.5.2. Unique Identifiers

3.2.5.2 Unique Identifiers
We cover the unique identifiers of all parts, whether needed or not.

7 Nets, hub and link aggregates,
hubs and links, fleets, vehicles
and the monitor all

a. have unique identifiers

b. such that all such are
distinct, and

c. with corresponding
observers.

8 We introduce some auxiliary
functions:

a. xtr lis extracts all link

identifiers of a traffic system.

b. xtr his extracts all hub
identifiers of a traffic system.

c. given an appropriate link
identifier and a net get link
‘retrieves’ the designated
link.

d. given an appropriate hub
identifier and a net get hub
‘retrieves’ the designated
hub.
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type
7a.. NI, HAI, LAI, HI, LI, FI, VI, MI
value
7c.. uid NI: N∆ → NI
7c.. uid HAI: HA∆ → HAI
7c.. uid LAI: LA∆ → LAI
7c.. uid HI: H∆ → HI

7c.. uid LI: L∆ → LI
7c.. uid FI: F∆ → FI
7c.. uid VI: V∆ → VI
7c.. uid MI: M∆ → MI
axiom
7b.. NI

⋂
HAI=Ø, NI

⋂
LAI=Ø, NI

⋂
HI=Ø, etc.

where axiom 7b. is expressed semi-formally, in mathematics.
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value
8a.. xtr lis: ∆∆ → LI-set
8a.. xtr lis(δ∆) ≡
8a.. let ls = links(δ∆) in {uid LI(l)|l:L•l ∈ ls} end
8b.. xtr his: ∆∆ → HI-set
8b.. xtr his(δ∆) ≡
8b.. let hs = hubs(δ∆) in {uid HI(h)|h:H•k ∈ hs} end

8c.. get link: LI → ∆∆
∼
→ L

8c.. get link(li)(δ∆) ≡
8c.. let ls = links(δ∆) in
8c.. let l:L • l ∈ ls ∧ li=uid LI(l) in l end end
8c.. pre: li ∈ xtr lis(δ∆)

8d.. get hub: HI → ∆∆
∼
→ H

8d.. get hub(hi)(δ∆) ≡
8d.. let hs = hubs(δ∆) in
8d.. let h:H • h ∈ hs ∧ hi=uid HI(h) in h end end
8d.. pre: hi ∈ xtr his(δ∆)
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3.2.5.3 Mereology

9 Links are connected to exactly two distinct hubs.

10 Hubs are connected to zero or more links.

11 For a given net the link and hub identifiers of the mereology of hubs
and links must be those of links and hubs, respectively, of the net.
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type
9. LM′ = HI-set, LM = {|his:HI-set • card(his)=2|}
10. HM = LI-set
value
9. mereo L: L → LM
10. mereo H: H → HM
axiom [Well−formedness of Road Nets, N ]
11. ∀ n:N,l:L,h:H• l ∈ obs part Ls(obs part LC(n))∧h ∈ obs part Hs(obs
11. let his=mereology H(l), lis=mereology H(h) in
11. his⊆∪{uid H(h) | h ∈ obs part Hs(obs part HC(n))}
11. ∧ lis⊆∪{uid H(l) | l ∈ obs part Ls(obs part LC(n))} end
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3.2.5.4 Attributes
We may not have shown all of the attributes mentioned below — so
consider them informally introduced !

•Hubs:

⋄⋄ locations are considered static,

⋄⋄ wear and tear (condition of road surface) is considered inert,

⋄⋄ hub states and hub state spaces are considered programmable;
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• Links:

⋄⋄ lengths and locations are considered static,

⋄⋄ wear and tear (condition of road surface) is considered inert,

⋄⋄ link states and link state spaces are considered programmable;
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• Vehicles:

⋄⋄ manufacturer name, engine type (whether diesel, gasoline or
electric) and engine power (kW/horse power) are considered
static;

⋄⋄ velocity and acceleration may be considered reactive (i.e., a
function of gas pedal position, etc.),

⋄⋄ global position (informed via a GNSS: Global Navigation

Satellite System) and local position (calculated from a
global position) are considered biddable
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We treat one attribute each for hubs, links, vehicles and the monitor. First we treat
hubs.

12 Hubs

a. have hub states which are sets of pairs of identifiers of links connected to the
hub2,

b. and have hub state spaces which are sets of hub states3.

13 For every net,

a. link identifiers of a hub state must designate links of that net.

b. Every hub state of a net must be in the hub state space of that hub.

14 Hubs have geodetic and cadestral location.

15 We introduce an auxiliary function: xtr lis extracts all link identifiers of a hub
state.

2A hub state “signals” which input-to-output link connections are open for traffic.
3A hub state space indicates which hub states a hub may attain over time.
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type

12a.. HΣ = (LI×LI)-set

12b.. HΩ = HΣ-set

value

12a.. attr HΣ: H → HΣ

12b.. attr HΩ: H → HΩ

axiom

13. ∀ δ:∆,

13. let hs = hubs(δ) in

13. ∀ h:H • h ∈ hs •

13a.. xtr lis(h)⊆xtr lis(δ)

13b.. ∧ attr Σ(h) ∈ attr Ω(h)

13. end

type

14. HGCL

value

14. attr HGCL: H → HGCL

15. xtr lis: H → LI-set

15. xtr lis(h) ≡

15. {li | li:LI,(li′,li′′):LI×LI •

15. (li′,li′′) ∈ attr HΣ(h) ∧ li ∈ {li′,li′′}}
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Then links.

16 Links have lengths.

17 Links have geodetic and cadestral location.

18 Links have states and state spaces:

a. States modeled here as pairs, (hi′, hi′′), of identifiers the hubs
with which the links are connected and indicating directions
(from hub h′ to hub h′′.) A link state can thus have 0, 1, 2, 3 or
4 such pairs.

b. State spaces are the set of all the link states that a link may
enjoy.
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type

16. LEN

17. LGCL

18a.. LΣ = (HI×HI)-set

18b.. LΩ = LΣ-set

value

16. attr LEN: L → LEN

17. attr LGCL: L → LGCL

18a.. attr LΣ: L → LΣ

18b.. attr LΩ: L → LΩ

axiom

18. ∀ n:N •

18. let ls = xtr−links(n), hs = xtr hubs(n) in

18. ∀ l:L•l ∈ ls ⇒

18a.. let lσ = attr LΣ(l) in

18a.. 0≤card lσ≤4

18a.. ∧ ∀ (hi′,hi′′):(HI×HI)•(hi′,hi′′) ∈ lσ ⇒

18a.. {get H(hi′)(n),get H(hi′′)(n)}=mereo L(l)

18b.. ∧ attr LΣ(l) ∈ attr LΩ(l)

18. end end
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Then vehicles.

19 Every vehicle of a traffic system has a position which is either ‘on a
link’ or ‘at a hub’.

a. An ‘on a link’ position has four elements: a unique link identifier
which must designate a link of that traffic system and a pair of
unique hub identifiers which must be those of the mereology of
that link.

b. The ‘on a link’ position real is the fraction, thus properly
between 0 (zero) and 1 (one) of the length from the first
identified hub “down the link” to the second identifier hub.

c. An ‘at a hub’ position has three elements: a unique hub
identifier and a pair of unique link identifiers — which must be
in the hub state.
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type
19. VPos = onL | atH
19a.. onL :: LI HI HI R
19b.. R = Real axiom ∀ r:R • 0≤r≤1
19c.. atH :: HI LI LI
value
19. attr VPos: V∆ → VPos
axiom
19a.. ∀ n∆:N∆, onL(li,fhi,thi,r):VPos •

19a.. ∃ l∆:L∆•l∆∈obs part LS(obs part N∆(n∆))
19a.. ⇒ li=uid L∆(l)∧{fhi,thi}=mereo L∆(l∆),
19c.. ∀ n∆:N∆, atH(hi,fli,tli):VPos •

19c.. ∃ h∆:H∆
•h∆∈obs part HS∆(obs part N(n∆))

19c.. ⇒ hi=uid H∆(h∆)∧(fli,tli) ∈ attr LΣ(h∆)
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And finally monitors. We consider only one monitor attribute.

20 The monitor has a vehicle traffic attribute.

a. For every vehicle of the road transport system the vehicle traffic attribute
records a possibly empty list of time marked vehicle positions.

b. These vehicle positions are alternate sequences of ‘on link’ and ‘at hub’
positions

i such that any sub-sequence of ‘on link’ positions record the same link
identifier, the same pair of ‘’to’ and ‘from’ hub identifiers and increasing
fractions,

ii such that any sub-segment of ‘at hub’ positions are identical,

iii such that vehicle transition from a link to a hub is commensurate with the
link and hub mereologies, and

iv such that vehicle transition from a hub to a link is commensurate with the
hub and link mereologies.
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type

20. Traffic = VI →m (T × VPos)∗

value
20. attr Traffic: M → Traffic
axiom
20b.. ∀ δ:∆ •

20b.. let m = obs part M∆(δ) in
20b.. let tf = attr Traffic(m) in
20b.. dom tf ⊆ xtr vis(δ) ∧
20b.. ∀ vi:VI • vi ∈ dom tf •

20b.. let tr = tf(vi) in
20b.. ∀ i,i+1:Nat • {i,i+1}⊆dom tr •

20b.. let (t,vp)=tr(i),(t′,vp′)=tr(i+1) in
20b.. t<t′

20(b.)i. ∧ case (vp,vp′) of
20(b.)i. (onL(li,fhi,thi,r),onL(li′,fhi′,thi′,r′))
20(b.)i. → li=li′∧fhi=fhi′∧thi=thi′∧r≤r′

20(b.)i. ∧ li ∈ xtr lis(δ)
20(b.)i. ∧ {fhi,thi} = mereo L(get link(li)(δ)),
20(b.)ii. (atH(hi,fli,tli),atH(hi′,fli′,tli′))
20(b.)ii. → hi=hi′∧fli=fli′∧tli=tli′

20(b.)ii. ∧ hi ∈ xtr his(δ)
20(b.)ii. ∧ (fli,tli) ∈ mereo H(get hub(hi)(δ)),
20(b.)iii. (onL(li,fhi,thi,1),atH(hi,fli,tli))
20(b.)iii. → li=fli∧thi=hi
20(b.)iii. ∧ {li,tli} ⊆ xtr lis(δ)
20(b.)iii. ∧ {fhi,thi}=mereo L(get link(li)(δ))
20(b.)iii. ∧ hi ∈ xtr his(δ)
20(b.)iii. ∧ (fli,tli) ∈ mereo H(get hub(hi)(δ)),
20(b.)iv. (atH(hi,fli,tli),onL(li′,fhi′,thi′,0))
20(b.)iv. → etcetera,
20b.. → false
20b.. end end end end end
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3.2.6. Another Example: Pipelines
3.2.6.1 Parts

21 A pipeline consists of an indefinite number of pipeline units.

22 A pipeline units is either a well, or a pipe, or a pump, or a valve, or
a fork, or a join, or a sink.

23 All these unit sorts are atomic and disjoint.

type
21. PL, U, We, Pi, Pu, Va, Fo, Jo, Si
21. Well, Pipe, Pump, Valv, Fork, Join, Sink
value
21. obs part Us: PL → U-set
type
22. U == We | Pi | Pu | Va | Fo | Jo | Si
23. We::Well, Pi::Pipe, Pu::Pump, Va::Valv, Fo:Fork, Jo::Join, Si::Sink
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3.2.6.2 Unique Identifiers

24 Every pipeline unit has a unique identifier.

type
24. UI
value
24. uid U: U → UI
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3.2.6.3 Materials

25 Applying obs material sorts U to any pipeline unit, u:U, yields

a. a type clause stating the material sort LoG for some further
undefined liquid or gaseous material, and

b. a material observer function signature.

type
25a. LoG
value

25b. obs mat LoG: U → LoG
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3.2.6.4 Mereology

• Pipeline units serve to conduct fluid or gaseous material.

• The flow of these occur in only one direction: from so-called input
to so-called output.

26 Wells have exactly one connection to an output unit.

27 Pipes, pumps and valves have exactly one connection from an input
unit and one connection to an output unit.

28 Forks have exactly one connection from an input unit and exactly
two connections to distinct output units.

29 Joins have exactly one two connection from distinct input units
and one connection to an output unit.

30 Sinks have exactly one connection from an input unit.

31 Thus we model the mereology of a pipeline unit as a pair of disjoint
sets of unique pipeline unit identifiers.
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type
31. UM′=(UI-set×UI-set)
31. UM={|(iuis,ouis):UI-set×UI-set•iuis ∩ ouis={}|}
value
31. mereo U: UM
axiom [Well−formedness of Pipeline Systems, PLS (0) ]

∀ pl:PL,u:U • u ∈ obs part Us(pl) ⇒
let (iuis,ouis)=mereo U(u) in
case (card iuis,card ouis) of

26. (0,1) → is We(u),
27. (1,1) → is Pi(u)∨is Pu(u)∨is Va(u),
28. (1,2) → is Fo(u),
29. (2,1) → is Jo(u),
30. (1,0) → is Si(u)

end end
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3.2.6.5 Attributes

• Let us postulate a[n attribute] sort Flow.

• We now wish to examine the flow of liquid (or gaseous) material in
pipeline units.

• We use two types

32 F for “productive” flow, and L for wasteful leak.

• Flow and leak is measured, for example, in terms of volume of
material per second.

• We then postulate the following unit attributes

⋄⋄ “measured” at the point of in- or out-flow

⋄⋄ or in the interior of a unit.
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33 current flow of material into a unit
input connector,

34 maximum flow of material into a unit
input connector while maintaining
laminar flow,

35 current flow of material out of a unit
output connector,

36 maximum flow of material out of a
unit output connector while
maintaining laminar flow,

37 current leak of material at a unit

input connector,

38 maximum guaranteed leak of material
at a unit input connector,

39 current leak of material at a unit
input connector,

40 maximum guaranteed leak of material
at a unit input connector,

41 current leak of material from “within”
a unit, and

42 maximum guaranteed leak of material
from “within” a unit.
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type
32. F, L
value
33. attr cur iF: U → UI → F
34. attr max iF: U → UI → F
35. attr cur oF: U → UI → F
36. attr max oF: U → UI → F

37. attr cur iL: U → UI → L
38. attr max iL: U → UI → L
39. attr cur oL: U → UI → L
40. attr max oL: U → UI → L
41. attr cur L: U → L
42. attr max L: U → L

• The maximum flow attributes are static attributes
and are typically provided by the manufacturer
as indicators of flows below which laminar flow can be expected.

• The current flow attributes are dynamic attributes
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3.2.6.6 Intra Unit Flow and Leak Law

43 For every unit of a pipeline system, except the well and the sink units, the
following law apply.

44 The flows into a unit equal

a. the leak at the inputs

b. plus the leak within the unit

c. plus the flows out of the unit

d. plus the leaks at the outputs.

axiom [Well−formedness of Pipeline Systems, PLS (1) ]
43. ∀ pls:PLS,b:B\We\Si,u:U •

43. b ∈ obs part Bs(pls)∧u=obs part U(b)⇒
43. let (iuis,ouis) = mereo U(u) in
44. sum cur iF(iuis)(u) =
44a.. sum cur iL(iuis)(u)
44b.. ⊕ attr cur L(u)
44c.. ⊕ sum cur oF(ouis)(u)
44d.. ⊕ sum cur oL(ouis)(u)
43. end

A Discussion of Possibilities and Problems 63 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – April 20, 2015: 09:46



643.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.6. Another Example: Pipelines 3.2.6.6. Intra Unit Flow and Leak Law

45 The sum cur iF (cf. Item 44) sums current input flows over all input connectors.

46 The sum cur iL (cf. Item 44a.) sums current input leaks over all input connectors.

47 The sum cur oF (cf. Item 44c.) sums current output flows over all output
connectors.

48 The sum cur oL (cf. Item 44d.) sums current output leaks over all output
connectors.

45. sum cur iF: UI-set → U → F
45. sum cur iF(iuis)(u) ≡ ⊕ {attr cur iF(ui)(u)|ui:UI•ui ∈ iuis}
46. sum cur iL: UI-set → U → L
46. sum cur iL(iuis)(u) ≡ ⊕ {attr cur iL(ui)(u)|ui:UI•ui ∈ iuis}
47. sum cur oF: UI-set → U → F
47. sum cur oF(ouis)(u) ≡ ⊕ {attr cur iF(ui)(u)|ui:UI•ui ∈ ouis}
48. sum cur oL: UI-set → U → L
48. sum cur oL(ouis)(u) ≡ ⊕ {attr cur iL(ui)(u)|ui:UI•ui ∈ ouis}

⊕: (F|L) × (F|L) → F
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3.2.6.7 Inter Unit Flow and Leak Law

49 For every pair of connected units of a pipeline system the following law apply:

a. the flow out of a unit directed at another unit minus the leak at that output
connector

b. equals the flow into that other unit at the connector from the given unit plus
the leak at that connector.

axiom [Well−formedness of Pipeline Systems, PLS (2) ]
49. ∀ pls:PLS,b,b′:B,u,u′:U•

49. {b,b′}⊆obs part Bs(pls)∧b6=b′∧u′=obs part U(b′)
49. ∧ let (iuis,ouis)=mereo U(u),(iuis′,ouis′)=mereo U(u′),
49. ui=uid U(u),ui′=uid U(u′) in
49. ui ∈ iuis ∧ ui′ ∈ ouis′ ⇒
49a.. attr cur oF(u′)(ui′) − attr leak oF(u′)(ui′)
49b.. = attr cur iF(u)(ui) + attr leak iF(u)(ui)
49. end
49. comment: b′ precedes b
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• From the above two laws one can prove the theorem:

⋄⋄ what is pumped from the wells equals

⋄⋄ what is leaked from the systems plus what is output to the sinks.
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3.2.7. Domain Descriptions: Methodology

• By a method we shall understand

⋄⋄ a set of principles

⋄⋄ for selecting and applying

⋄⋄ techniques and

⋄⋄ tools

⋄⋄ for constructing

⋄⋄ artifacts

• By methodology we shall understand

⋄⋄ the study and knowledge

⋄⋄ of methods.
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.7. Domain Descriptions: Methodology

• The tools of the domain description method centers around two
kinda of prompts.

• By a prompt we shall understand something that

⋄⋄ induces an action,

⋄⋄ an occasion or incitement to inspire, or

⋄⋄ an assist suggesting something to be expressed.

• There are two kinds of prompts:

⋄⋄ analysis prompts and

⋄⋄ description prompts.
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.7. Domain Descriptions: Methodology

• The analysis prompts to be summarised next

⋄⋄ can be thought of as predicates

⋄⋄ that the domain engineer applies

⋄⋄ to phenomena of the domain

⋄⋄ yielding true, false or undefined answers.

• The description prompts to be summarised next

⋄⋄ are applied, by the domain engineer,

⋄⋄ to phenomena of the domain

⋄⋄ for which preceding analysis prompts

⋄⋄ has yielded truth answers.

• Thus the domain analysis & description process

⋄⋄ alternates between analysis prompts

⋄⋄ and description prompts.

• The domain description method is here specialised to manifest domains
[10].
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.7. Domain Descriptions: Methodology

First the domain engineer cum scientist examines a perceived domain
phenomena, φ:

• is entity(φ), and if true,

• then inquires which of is endurant(φ)

• or is perdurant(φ) holds.

• If is endurant(φ) holds then the domain analyser inquires as to
whether is discrete(φ) or is continuous(φ) holds.

• If is discrete(φ) holds then is part(φ) holds,

• otherwise either of is material or is component holds.

• If is part(φ) then either is atomic(φ) or is composite(φ).

• If is composite(φ) holds then observe parts(φ) yields some
parts that can now be analysed, eventually leading the domain
analyser to conclude that the part φ can be described.
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.7. Domain Descriptions: Methodology

• By applying observe part sorts(φ) to a composite domain δ we
then obtain its constituent parts —

⋄⋄ as exemplified in formula lines 1.–1c..

type
1. ∆∆
1a.. N∆
1b.. F∆
1c.. M∆
value
1a.. obs part N∆: ∆∆ → N∆
1b.. obs part F∆: ∆∆ → F∆
1c.. obs part M∆: ∆∆ → M∆
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723.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.7. Domain Descriptions: Methodology

⋄⋄ and similarly formula lines 2a..–2b.

type
2a.. HA∆
2b.. LA∆
value
2a.. obs part HA∆: N∆ → HA∆
2b.. obs part LA∆: N∆ → LA∆

A Discussion of Possibilities and Problems 72 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – April 20, 2015: 09:46



733.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.7. Domain Descriptions: Methodology

• Some composite parts may be modelled by concrete types:
has concrete type(φ)

• in which case observe part types(φ) will yield those concrete types

⋄⋄ as exemplified in formula lines 3.–5

type
3. H∆, HS∆ = H∆-set
4. L∆, LS∆ = L∆-set
5. V∆, VS∆ = V∆-set
value
3. obs part HS∆: HA∆ → HS∆
4. obs part LS∆: LA∆ → LS∆
5. obs part VS∆: F∆ → VS∆
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743.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.7. Domain Descriptions: Methodology

⋄⋄ and in formula lines 21

type
21. PL, U, ...
value
21. obs part Us: PL → U-set

A Discussion of Possibilities and Problems 74 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – April 20, 2015: 09:46



753.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.7. Domain Descriptions: Methodology

• Once the atomic and composite parts of a domain
has been settled their properties:

⋄⋄ unique identifiers,

⋄⋄ mereology and

⋄⋄ attributes

can be analysed and described.
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.7. Domain Descriptions: Methodology

• First their uniqueness: observe unique identifiers,
such as f.ex. illustrated by formula lines 7a..–7b.:

type
7a.. NI, HAI, LAI, HI, LI, FI, VI, MI
value
7c.. uid NI: N∆ → NI
7c.. uid HAI: HA∆ → HAI, uid LAI: LA∆ → LAI
7c.. uid HI: H∆ → HI, uid LI: L∆ → LI
7c.. uid FI: F∆ → FI
7c.. uid VI: V∆ → VI
7c.. uid MI: M∆ → MI
axiom
7b.. NI

⋂
HAI=Ø, NI

⋂
LAI=Ø, NI

⋂
HI=Ø, etc.
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773.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.7. Domain Descriptions: Methodology

• Once all parts have been identified
one can inquire as to their mereology:
how parts relate to other parts: if has mereology(φ) holds

• then observe mereology(φ) yields which specific other parts,
of same or other sorts, such as for example in formula lines 9.–10

type
9. LM′ = HI-set, LM = {|his:HI-set • card(his)=2|}
10. HM = LI-set
value
9. mereo L: L → LM
10. mereo H: H → HM

or formula lines 31

type
31. UM′=(UI-set×UI-set)
31. UM={|(iuis,ouis):UI-set×UI-set•iuis ∩ ouis={}|}
value
31. mereo U: UM
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783.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.7. Domain Descriptions: Methodology

• Finally a last set of properties of parts can be investigated,
namely their attributes.

⋄⋄ Any part, φ, may have any number of attributes.

⋄⋄ The analysis prompt attribute names(φ) yields names of
attributes. — with

⋄⋄ the description prompt observe attributes(φ) yielding their
description —

⋄⋄ as in formula lines 12a..–12b.

type
12a.. HΣ = (LI×LI)-set
12b.. HΩ = HΣ-set
value
12a.. attr HΣ: H → HΣ
12b.. attr HΩ: H → HΩ
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793.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.7. Domain Descriptions: Methodology

⋄⋄ or in formula lines 16.–18b..

type
16. LEN
17. LGCL
18a.. LΣ = (HI×HI)-set
18b.. LΩ = LΣ-set
value
16. attr LEN: L → LEN
17. attr LGCL: L → LGCL
18a.. attr LΣ: L → LΣ
18b.. attr LΩ: L → LΩ
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803.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.7. Domain Descriptions: Methodology

• There are other aspects to the methodology

⋄⋄ analysing and describing endurants:

◦◦ gaseous or

◦◦ liquid materials

◦◦ being contained in parts,

⋄⋄ and perdurants

◦◦ actions,

◦◦ events and

◦◦ behaviours.

• We shall not cover these here, but refer to

⋄⋄ [10, Manifest Domains: Analysis & Description] and

⋄⋄ [16, From Domains to Requirements].
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813.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.8. Domain Descriptions: Methodology

3.2.8. Domain Science

• There are a number of issues that need be researched.

3.2.8.1 A Prompt Semantics:

• The analysis and description prompts

⋄⋄ need be precisely, that is, mathematically defined.

⋄⋄ Such a semantics is a first step towards securing
a foundation for our approach.

⋄⋄ We refer to [8].
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823.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.8. Domain Science 3.2.8.2. Laws of Domain Descriptions:

3.2.8.2 Laws of Domain Descriptions:

• A semantics of the analysis and description prompts
and thus their applications is expected to satisfy the following law:

⋄⋄ Analysing (A) and/or describing (D) two otherwise unrelated
composite parts, pi and pj, shall yield the same results
whether pi is treated before pj or vice-versa:
A(pi);A(pj) and A(pj);A(pi), respectively
D(pi);D(pj) and D(pj);D(pi).

⋄⋄ There are many others such laws.
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.8. Domain Science 3.2.8.3. Laws of Domains:

3.2.8.3 Laws of Domains:

• Given an appropriate domain description

⋄⋄ it should be possible to prove certain laws

⋄⋄ about that domain.
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.8. Domain Science 3.2.8.3. Laws of Domains:

•An example:

⋄⋄ Assume a railway system

⋄⋄ with trains operating according to a timetable

⋄⋄ that prescribes train departures from and arrivals at any station

⋄⋄ according to a 24 hour cycle,

⋄⋄ and assume that all trains function precisely.

• Now we would expect the following law to hold
over any 24 hour period:

⋄⋄ The of trains arriving at a station,

⋄⋄ minus the number of trains ending their journey at that station,

⋄⋄ plus number of trains starting their journey at that station,

⋄⋄ equals the number of trains leaving that station •
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.8. Domain Science 3.2.8.3. Laws of Domains:

• • •

• Physics is characterised by its laws.

• So should man-assisted domains.

• A proper theory of domain description

⋄⋄ should invite domain laws

⋄⋄ to be identified

⋄⋄ and proved.

• There is a rich world “out there”.
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.9. Domain Science

3.2.9. What Can Be Described ?

• Even if we limit ourselves to physically manifest domains [10],

⋄⋄ that is, entities that we can observe, i.e., see,

⋄⋄ in cases even touch,

⋄⋄ there are such which we do not yet know
how to describe objectively,

⋄⋄ that is, mathematically.

• Moreover, we cannot give a precise delineation of
which domains, or aspects of domains, are describable.
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.9. What Can Be Described ?

•An example:

⋄⋄ We have described aspects of a pipeline system, Sect. 3.2.6.

⋄⋄ We have even postulated (implementable) functions
for observing the flow and leaks of
the material (oil, gas, or other) conducted by pipeline units.

⋄⋄ We also know, but do not show, how to formalise
the fluid dynamics of these flows,
namely in terms of partial differential equations
based on Bernoulli and Navier–Stokes models
through individual pipeline units.

⋄⋄ But we have yet to show how to combine our “discrete
mathematics” models with hose of fluid dynamics.
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.9. What Can Be Described ?

• One problem here is

⋄⋄ that our discrete mathematics descriptions

◦◦ model an infinite variety of pipelines,

◦◦ that is, arbitrary compositions of pipeline units,

⋄⋄ whereas, conventionally, PDEs,

◦◦ model the dynamics only of specific, single units.

⋄⋄ It has been suggested that perhaps the
Wiener–Feynman–Dirac–Wheeler concept of Path Integrals. may
be a way to solve the problem •
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3.The Triptych of Software Engineering 3.2.Domain Science & Engineering 3.2.9. What Can Be Described ?

• Our domain models are just abstractions !

⋄⋄ One cannot expect any domain description to “completely”
model a domain.

⋄⋄ There are simply too many properties to describe.

⋄⋄ And there are domain properties that we can informally describe
in words, but cannot yet formalise.

⋄⋄ Domain description is (therefore) a matter of choice,

◦◦ of abstraction level

◦◦ and of what to include in the description

◦◦ and what to leave out !
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3.The Triptych of Software Engineering 3.3.Domain Science & Engineering

3.3. Requirements Engineering

• We would not advocate the TripTych to software development

⋄⋄ unless we had a method for “deriving” requirements

⋄⋄ from domain descriptions.

• And from formal requirements prescriptions

⋄⋄ we know how to design software

⋄⋄ such that D,S |= R,

⋄⋄ that is:

◦◦ the Software

◦◦ can be proved correct

◦◦ — in the context of the Domain —

◦◦ with respect to the Requirements.
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3.The Triptych of Software Engineering 3.3.Requirements Engineering 3.3.1.

3.3.1. Three Kinds of Requirements

• Our approach to the “derivation” of requirements
is based on the following decomposition of requirements
into three kinds:

⋄⋄ domain requirements,

⋄⋄ interface requirements and

⋄⋄ machine requirements

• where the machine is the

⋄⋄ hardware and

⋄⋄ software

to be developed
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3.The Triptych of Software Engineering 3.3.Requirements Engineering 3.3.2. Three Kinds of Requirements

3.3.2. Domain Requirements

• By domain requirements

⋄⋄ we shall understand such requirements

⋄⋄ that can be expressed

⋄⋄ sôlely using terms of the domain

◦◦ that is, terms defined in

◦◦ the domain description.
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3.The Triptych of Software Engineering 3.3.Requirements Engineering 3.3.2. Domain Requirements

• The “derivation”

⋄⋄ of domain requirements prescriptions

⋄⋄ from domain descriptions

⋄⋄ is governed by a set of “derivation” operations.

• Examples of these ‘derivation’ operations are:

⋄⋄ projection,

⋄⋄ instantiation,

⋄⋄ determination,

⋄⋄ extension and

⋄⋄ fitting.
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3.The Triptych of Software Engineering 3.3.Requirements Engineering 3.3.2. Domain Requirements

• Projection means that we remove

⋄⋄ from the evolving requirements prescription

⋄⋄ those entity descriptions of the domain

⋄⋄ which are not to be considered

⋄⋄ when (further) prescribing the requirements.

•An example:

⋄⋄ From the example of the road net and traffic system
we remove the vehicles and the monitor •
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3.The Triptych of Software Engineering 3.3.Requirements Engineering 3.3.2. Domain Requirements

• Instantiation means that we concretise, i.e., prescribe
“less-abstract”,

⋄⋄ those retained domain phenomena

⋄⋄ whose concretisation

⋄⋄ it is suitable to prescribe.

•An example: The general road net

⋄⋄ is instantiated to a “linear” toll-road system

⋄⋄ of a sequence of toll-road hubs

⋄⋄ connected, “up” and “down” the toll-road
to neighbouring toll-road hubs,

⋄⋄ and, by means of toll-road plazas, to a remaining road net •
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3.The Triptych of Software Engineering 3.3.Requirements Engineering 3.3.2. Domain Requirements

• What do we mean by: “it is suitable to prescribe” ?

⋄⋄ Well, first of all, we have to realize the following:

◦◦ requirements must only prescribe what can be computed.

◦◦ That means that entities whose realisability

◦◦ in terms of computable data structure or functions

◦◦ must eventually be so prescribed.
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3.The Triptych of Software Engineering 3.3.Requirements Engineering 3.3.2. Domain Requirements

⋄⋄ Secondly, as requirements prescription may, and normally will

◦◦ proceed in stages,

◦◦ one (i.e., the requirements engineer) may decide

◦◦ to instantiate some entities

◦◦ while leaving other entities “untouched”,

◦◦ only to return to the concretisation of these n a later stage.

⋄⋄ And so forth.

⋄⋄ It is all a matter of style and taste !
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3.The Triptych of Software Engineering 3.3.Requirements Engineering 3.3.2. Domain Requirements

• Determination means that there may be

⋄⋄ entities, i.e., endurants or perdurants,
that are described to be non-deterministic in the domain

⋄⋄ but which, after projection and instantiation

⋄⋄ need be prescribed to be “less non-deterministic”.

⋄⋄ An example:

◦◦ Whereas hubs

∗ in general allow traffic

∗ from any link incident upon that hub

∗ to any links emanating from that hub

∗ but so that signaling, as expressed in the hub states,

∗ may, at times, prevent some emanating links

to be accessible from some incident links;

◦◦ a toll-road hub,

∗ in order to be an appropriate toll-road,

∗ must allow for free flow

∗ from any incident link

∗ to any emanating link •
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• Extension typically means

⋄⋄ that there may be entities

◦◦ that were “hitherto” not computationally feasible,

◦◦ but where

∗ new technologies

∗ or higher labour costs

◦◦ mandate their feasibility —

◦◦ thus making way for introducing these mew technologies

◦◦ into a this ‘extended’ domain.

⋄⋄ An example is that of

◦◦ the electronic sensing of vehicles

◦◦ entering or leaving a toll-road —

◦◦ thus enabling “road pricing” •
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3.The Triptych of Software Engineering 3.3.Requirements Engineering 3.3.2. Domain Requirements

• Fitting is necessitated

⋄⋄ when two or more requirements projects

◦◦ based on “the same” domain,

◦◦ and with “overlapping domain coverage”

◦◦ need be “harmonised”.

⋄⋄ An example:

◦◦ One set of requirements are being prescribed
for a road state-of-repair and maintenance facility,

◦◦ another set of requirements are being prescribed
for a road pricing system.

◦◦ Now they must both rely on some sort of representation
of the same road net •
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3.The Triptych of Software Engineering 3.3.Requirements Engineering 3.3.3. Domain Requirements

3.3.3. Interface Requirements

• By interface requirements

⋄⋄ we shall understand such requirements

⋄⋄ that can be expressed

⋄⋄ only using terms both

◦◦ of the domain and

◦◦ of the machine.
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3.The Triptych of Software Engineering 3.3.Requirements Engineering 3.3.3. Interface Requirements

• In order to structure the interface requirements

⋄⋄ we introduce a notion of shared phenomena

⋄⋄ whether endurants or perdurants.

⋄⋄ If a phenomenon is present in the domain

⋄⋄ and if it is also to be present in the machine to be designed

⋄⋄ then that phenomenon is said to be shared.

• As a result we structure interface requirements prescriptions around

⋄⋄ shared endurants,

⋄⋄ shared actions,

⋄⋄ shared events and

⋄⋄ shared behaviours.
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3.The Triptych of Software Engineering 3.3.Requirements Engineering 3.3.3. Interface Requirements

• Shared endurants

⋄⋄ pose two “problems”

◦◦ the initialisation of endurant data structures and their values,

◦◦ and the regular access to and update of endurant data.

⋄⋄ Both must be prescribed.

⋄⋄ Usually both require

◦◦ the interaction between

◦◦ the domain and the machine.

⋄⋄ An example:

◦◦ Road nets are shared between the domain and the machine.

◦◦ Initially all hubs and all links
need be structured in some data structure, say a database.

◦◦ The shared endurant requirements must now specify
which, usually composite database operations

∗ are to be used in establishing the database, and

∗ which are to be used in accessing and updating the endurants.
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• Shared actions

⋄⋄ imply an interaction between

◦◦ between the domain

◦◦ and the machine.

⋄⋄ That interaction is typically manifested

◦◦ by interaction between

∗ either humans of the domain

∗ or physical domain entities

◦◦ and the machine
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⋄⋄ Example: Human/Machine Interaction:

◦◦ The payment of a road price fee today involves
a human (say, with a credit card)

◦◦ and the machine, checking and accepting or rejecting
the credit card, etcetera •

⋄⋄ Example: Machine/Machine Interaction:

◦◦ The electronic recording (within the machine)

◦◦ of a vehicle passing a toll-gate barrier
(another part of the machine)

◦◦ and the vehicle itself
(another machine, external to required machine) •
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• And so on, for

⋄⋄ shared events and

⋄⋄ shared behaviours.
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3.The Triptych of Software Engineering 3.3.Requirements Engineering 3.3.4. Interface Requirements

3.3.4. Machine Requirements

• By machine requirements

⋄⋄ we shall understand such requirements

⋄⋄ that can be expressed

⋄⋄ sôlely using terms of the machine.

• Since that is the case:

⋄⋄ no “mention” of the domain

⋄⋄ in the machine requirements

⋄⋄ we shall omit covering this field.
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3.The Triptych of Software Engineering 3.4.Requirements Engineering

3.4. Discussion

• We have suggested that

⋄⋄ there are a set of principles and techniques

⋄⋄ for “deriving” a major set of requirements

⋄⋄ from domain descriptions.

• This, then, is an argument for

⋄⋄ taking domain modelling serious:

⋄⋄ there are principles and techniques

⋄⋄ for bringing you

◦◦ from domain descriptions

◦◦ to requirements prescriptions

◦◦ and from there on to software design.

◦◦ We refer to [4, 16, 2008–2015] for details.
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1093.The Triptych of Software Engineering 3.4.Discussion

Concluding Discussion

• We claim to have justified our claim

⋄⋄ that Software must be designed on the basis

⋄⋄ of Requirements prescriptions that have been “derived”

⋄⋄ from Domain descriptions,

⋄⋄ all of them formally.

• In this way we can secure that software

⋄⋄ fulfill users’/customers’ expectations

◦◦ since the requirements

◦◦ are strongly related to the domain

⋄⋄ and is correct: D,S |= R.

• It is the only way in which we can see these two,
expectations and correctness,
fulfilled.
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4.Concluding Discussion 4.1.

4.1. Papers on Domain Science & Engineering

• I mention but a few of my earlier papers related to
domain science & engineering.

• [10, Manifest Domains: Analysis & Description, 2014 ] is the
definitive paper on domain analysis and description.

• [16, From Domains to Requirements — A Different View of
Requirements Engineering, 2015 ] is the definitive paper on
“derivation” of requirements prescriptions from
domaindescruptions. It is based, in part, on [4, From Domains to
Requirements].

• [5, Domain Engineering, 2008 ] treats and aspect of domain
modelling referred to as domain facets. We expect to revise [5].

• [6, Domains: Their Simulation, Monitoring and Control, 2011 ]. The
concepts of simulation, monitoring and simulation are analysed in
the light of the domain–requirements–design TripTych.
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4.Concluding Discussion 4.1.Papers on Domain Science & Engineering

• [7, A Rôle for Mereology in Domain Science and Engineering, 2009 ].
Stanis law Leśhniewski’s replacement of Bertrand Russells set
theory axiomatisation is reviewed amd it is shown how
part/sub-part relations can interpreted as a reation between
(Hoare) CSP-processes.

• [9, Domain Engineering – A Basis for Safety Critical Software.
2014 ]. Issues of system safety criticality that can be considered
already before requirements engineering are here seen in the light of
domain engineering.

A Discussion of Possibilities and Problems 111 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – April 20, 2015: 09:46



112
4.Concluding Discussion 4.2.Papers on Domain Science & Engineering

4.2. A Research and Experimental Engineering Programme

• In the papers on which the current paper is based
a number of open problems have been identified.

4.2.1. The Mathematics of Analysis & Description Prompts

• In [8, Domain Analysis: Endurants – An Analysis & Description
Process Model ] we present a formal semantics of the analysis and
description process.

• And in [11, Domain Analysis: Endurants – a Consolidated Model of
Prompts ] we are extending this model to also cover the meaning of
the prompts themselves.

• These are models of the informal “worlds” of domains.

• The study of this area is elusive.
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4.Concluding Discussion 4.2.A Research and Experimental Engineering Programme 4.2.2. The Mathematics of Analysis & Description Prompts

4.2.2. Analysis & Description Calculi for Other Domains

• The analysis and description calculus of this paper appears suitable
for manifest domains.

• For other domains other calculi appears necessary.

⋄⋄ There is the introvert, composite domain of systems software:

◦◦ operating systems, compilers, database management systems,
Internet-related software, etcetera.

◦◦ The classical computer science and software engineering
disciplines related to these components of systems software
appears to have provided the necessary
analysis and description “calculi.”
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4.Concluding Discussion 4.2.A Research and Experimental Engineering Programme 4.2.2. Analysis & Description Calculi for Other Domains

⋄⋄ There is the domain of financial systems software

◦◦ accounting & bookkeeping,

◦◦ banking systems,

◦◦ insurance,

◦◦ financial instruments handling (stocks, etc.),

◦◦ etcetera.

• Etcetera.

• For each domain characterisable by a distinct set of analysis &
description calculus prompts such calculi must be identified.

• It seems straightforward:

⋄⋄ to base a method for analysing & describing a category of
domains

⋄⋄ on the idea of prompts like those developed in this lecture.
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4.Concluding Discussion 4.2.A Research and Experimental Engineering Programme 4.2.3. Analysis & Description Calculi for Other Domains

4.2.3. On Domain Description Languages

• We have in this seminar expressed the domain descriptions in the
RAISE [25] specification language RSL [24].

• With what is thought of as basically inessential, editorial changes,
one can reformulate these domain description texts in either of

⋄⋄ Alloy [28] or

⋄⋄ The B-Method [1] or

⋄⋄ VDM [19, 20, 23] or

⋄⋄ Z [34].

• One could also express domain descriptions algebraically, for
example in CafeOBJ.

⋄⋄ The analysis and the description prompts remain the same.

⋄⋄ The description prompts now lead to CafeOBJ texts.
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4.Concluding Discussion 4.2.A Research and Experimental Engineering Programme 4.2.3. On Domain Description Languages

• We did not go into much detail with respect to perdurants, let alone behaviours.

⋄⋄ For all the very many domain descriptions, covered elsewhere, RSL (with its
CSP sub-language) suffices.

⋄⋄ But there are cases where we have conjoined our RSL domain descriptions
with descriptions in

◦◦ Petri Nets [32] or

◦◦ MSC [27] or

◦◦ StateCharts [26].

• Since this seminar only focused on endurants there was no need, it appears, to
get involved in temporal issues.

• When that becomes necessary, in a study or description of perdurants, then we
either deploy

⋄⋄ DC: The Duration Calculus [35] or
⋄⋄ TLA+: Temporal Logic of Actions [30].
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4.Concluding Discussion 4.2.A Research and Experimental Engineering Programme 4.2.4. On Domain Description Languages

4.2.4. Commensurate Discrete and Continuous Models

• The pipeline example hinted at

⋄⋄ co-extensive descriptions of discrete and continuous behaviours,

⋄⋄ the former in, for example, RSL,

⋄⋄ the latter in, typically, the calculus mathematics of partial
different equations (PDEs).

⋄⋄ The problem that arises in this situation is the following:

◦◦ there will be, say variable identifiers, e.g., x, y, . . . , z

◦◦ which in the RSL formalisation has one set of meanings, but

◦◦ which in the PDE “formalisation” has another set of meanings.
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4.Concluding Discussion 4.2.A Research and Experimental Engineering Programme 4.2.4. Commensurate Discrete and Continuous Models

⋄⋄ Current formal specification languages4 do not cope with
continuity.

• Some research is going on.

• But to substantially cover, for example, the proper description of
laminar and turbulent flows in networks (e.g., pipelines) requires
more substantial results.

4Alloy [28],
Event B [1],
RSL [24],
VDM-SL [19, 20, 23],
Z, etc.
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4.Concluding Discussion 4.2.A Research and Experimental Engineering Programme 4.2.5. Commensurate Discrete and Continuous Models

4.2.5. Interplay between Parts and Materials

• The pipeline example revealed but a small fraction of the problems
that may arise in connection with modeling the interplay between
parts and materials.

• Subject to proper formal specification language and, for example
PDE specification we may expect more interesting

⋄⋄ laws, as for example those of pipeline flows

⋄⋄ and even proof of these as if they were theorems.

• Formal specifications have focused on verifying properties of
requirements and software designs.

• With co-extensive (i.e., commensurate) formal specifications of
both discrete and continuous behaviours we may expect formal
specifications to also serve as bases for predictions.
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4.Concluding Discussion 4.2.A Research and Experimental Engineering Programme 4.2.6. Interplay between Parts and Materials

4.2.6. The Mathematics of Domain-to-Requirements Operators

• In [16, From Domains to Requirements – A Different View of
Requirements Engineering ]5

⋄⋄ we postulate that certain properties hold

⋄⋄ between domain requirements prescriptions

⋄⋄ “before”and “after”

⋄⋄ the application of the domain-to-requirements operations:

◦◦ projection,

◦◦ instantiation,

◦◦ determination,

◦◦ extension and

◦◦ fitting.

• These postulated properties need be studied further.

5[16] is a rather extensive revision of [4].
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4.Concluding Discussion 4.2.A Research and Experimental Engineering Programme 4.2.7. The Mathematics of Domain-to-Requirements Operators

4.2.7. Further Work on Domain-to-Requirements and Interface Techniques

• In [16, From Domains to Requirements – A Different View of
Requirements Engineering ]

⋄⋄ we have shown a number of techniques

⋄⋄ for domain-to-requirements operations,

⋄⋄ in particular those that yield domain requirements.

• In [16] we also show some techniques

⋄⋄ that pertain to interface requirements,

⋄⋄ but it seems more study is required.
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4.Concluding Discussion 4.3.A Research and Experimental Engineering Programme

4.3. Tony Hoare’s Summary on ‘Domain Modeling’

• In a 2006 e-mail, in response, undoubtedly to my steadfast, perhaps
conceived as stubborn insistence, on domain engineering,

• Tony Hoare summed up his reaction to domain engineering as
follows, and I quote6:

“There are many unique contributions that can be made by domain
modeling.

1 The models describe all aspects of the real world that are relevant
for any good software design in the area. They describe possible
places to define the system boundary for any particular project.

2 They make explicit the preconditions about the real world that have
to be made in any embedded software design, especially one that is
going to be formally proved.

6E-Mail to Dines Bjørner, July 19, 2006
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4.Concluding Discussion 4.3.Tony Hoare’s Summary on ‘Domain Modeling’

3 They describe the whole range of possible designs for the software,
and the whole range of technologies available for its realisation.

4 They provide a framework for a full analysis of requirements, which
is wholly independent of the technology of implementation.

5 They enumerate and analyse the decisions that must be taken earlier
or later in any design project, and identify those that are
independent and those that conflict. Late discovery of feature
interactions can be avoided.”
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4.Concluding Discussion 4.4.Tony Hoare’s Summary on ‘Domain Modeling’

4.4. A Re-evaluation of Computer and Computing Science

• By computer science we understand

⋄⋄ the study and knowledge about

⋄⋄ the phenomena that can “exist inside” computers.

• By computing science we understand

⋄⋄ the study and knowledge about

⋄⋄ how to construct those phenomena.
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4.Concluding Discussion 4.4.A Re-evaluation of Computer and Computing Science

• If we accept the TripTych dogma

⋄⋄ of basing software design

⋄⋄ on precise requirements prescriptions

⋄⋄ which are based on precise domain descriptions,

• then training, teaching and research in

⋄⋄ computer and

⋄⋄ computing science

• must be revised.
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4.Concluding Discussion 4.4.A Re-evaluation of Computer and Computing Science
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