
An Informatics View of the World

An HSE Moscow Seminar, Wednesday April 22, 2015

Dines Bjørner

March 25, 2015: 11:33 am

1

2

Summary

• This talk is for beginners in the serious study of computer science1.

• Behind the presentation of this talk

⋄⋄ lies the attitude that software,

⋄⋄ including programmes,

⋄⋄ denote mathematical objects.

1– or for that matter: software engineering, informatics, or the like !

An HSE Moscow Seminar, April 22nd 2015 2 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

3

• Through three examples

⋄⋄ I provide a glimpse into a universe of domains

⋄⋄ for which software is developed every day

⋄⋄ but for which, in most instances,

⋄⋄ there are no formal, i.e., mathematical understanding.

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 3 An Informatics View of the World

4

• Three examples are:

⋄⋄ road transport and platooning systems,

⋄⋄ oil/gas pipeline systems, and

⋄⋄ stock exchange sell offer/buy bid matching.

An HSE Moscow Seminar, April 22nd 2015 4 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

5

• The objective of this talk is to show you

⋄⋄ what it means to develop software using mathematics,

◦◦ albeit it new kind of mathematics,

◦◦ not differential equations, nor integrals, nor statistics, etc.,

◦◦ but mathematical logic and modern algebra,

⋄⋄ so that software can be shown

◦◦ correct, i.e., no bugs, no blue screen, and

◦◦ to met customers’ expectations !

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 5 An Informatics View of the World

6

Opening

• In this talk I show the listener
a number of examples related to software development:

⋄⋄ from the transport domain: road networks,
I move into an example of a “future” domain of platoons;

⋄⋄ then an example of oil or gas pipelines; and finally

⋄⋄ an example domain of securities trading,
more specifically: stock exchanges.

An HSE Moscow Seminar, April 22nd 2015 6 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

71. Opening

• The objective of this talk is to show you

⋄⋄ what it means to develop software using mathematics,

◦◦ albeit it new kind of mathematics,

◦◦ not differential equations, nor integrals, nor statistics, etc.,

◦◦ but mathematical logic and modern algebra,

⋄⋄ so that software can be shown

◦◦ correct, i.e., no bugs, no blue screen, and

◦◦ to met customers’ expectations !

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 7 An Informatics View of the World

8 1. Opening

A First Discourse: Road Nets and Platooning

• In the first example we show a way of describing,

⋄⋄ informally, in natural, but precise language, and

⋄⋄ formally, in some form of mathematics

software.

• The example is that of

⋄⋄ road nets — such that enables

⋄⋄ the transport of people and goods.

⋄⋄ The example is extended into sketching
a domain of platooning !

An HSE Moscow Seminar, April 22nd 2015 8 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

92. A First Discourse: Road Nets and Platooning 2.1.

2.1. Hubs, Links and Nets

1 There are hubs, h:H, and there are links, l:L.

type

H, L

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 9 An Informatics View of the World

10 2. A First Discourse: Road Nets and Platooning 2.1. Hubs, Links and Nets

2 From a net, n:N, one can observe finite sets of one or more hubs,
hs:Hs, and zero, one or more links, ls:Ls.

type

N
Hs = H-set
Ls = L-set

value

obs Hs: N → Hs
obs Ls: N → Ls

axiom

∀ n:N • card(obs Hs(n))≥1 ∧ card(obs Ls(n))>0

An HSE Moscow Seminar, April 22nd 2015 10 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

112. A First Discourse: Road Nets and Platooning 2.1. Hubs, Links and Nets

3 So, to express, that is, to describe a domain we need both

a. an informal language, as here English, and

b. a formal language, as here some
abstract “programming language”-like mathematical notation2.

2That abstract “programming language”-like mathematical notation is here the
RAISE [25] Secification Language [24].

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 11 An Informatics View of the World

12 2. A First Discourse: Road Nets and Platooning 2.2. Hubs, Links and Nets

2.2. Unique Identifiers and Mereology

4 Hubs and links have unique identifiers:

type

HI, LI
value

uid H: H → HI
uid L: L → LI

axiom

HI
⋂

LI = {}

An HSE Moscow Seminar, April 22nd 2015 12 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

132. A First Discourse: Road Nets and Platooning 2.2. Unique Identifiers and Mereology

5 Hubs of a net are connected3 to (a finite set of)
zero, one or more links of the net:

value

mereo H: H → LI-set

3The relation of connectedness of parts, such as hubs and links, is an aspect of the
mereology of such parts.

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 13 An Informatics View of the World

14 2. A First Discourse: Road Nets and Platooning 2.2. Unique Identifiers and Mereology

6 Links of a net are connected to exactly two hubs of the net:

value

mereo L: L → HI-set
axiom

∀ l:L•card(mereo L(l)=2)

An HSE Moscow Seminar, April 22nd 2015 14 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

152. A First Discourse: Road Nets and Platooning 2.2. Unique Identifiers and Mereology

7 The “of the net” constraints are axiomatised:

axiom

∀ n:N, hs:Hs, ls:Ls •

hs = obs Hs(n) ∧ ls = obs Ls(n) ⇒
let his = hub ids(hs), lis = link ids(ls) in
∀ h:H • h ∈ hs ⇒ mereo H(h)⊆lis ∧
∀ l:L • l ∈ ls ⇒ mereo L(l)⊆his
end

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 15 An Informatics View of the World

16 2. A First Discourse: Road Nets and Platooning 2.2. Unique Identifiers and Mereology

8 We used two auxiliary functions above:

value

hub ids: Hs → HI-set
hub ids(hs) ≡ ∪ {mereo H(h)|h:H•h ∈ hs}

link ids: Ls → LI-set
link ids(ls) ≡ ∪ {mereo L(l)|l:L•l ∈ ls}

An HSE Moscow Seminar, April 22nd 2015 16 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

172. A First Discourse: Road Nets and Platooning 2.2. Unique Identifiers and Mereology

9 From a proper hub identifier and a net we can retrieve the
identified hub; and

10 From a proper link identifier and a net we can retrieve the
identified link.

value

retr H: HI → N
∼
→ H

retr H(hi)(n) ≡ let h:H • h ∈ obs Hs(n) • uid H(h)=hi in h end

pre: hi ∈ his(n)

retr L: LI → N
∼
→ L

retr L(li)(n) ≡ let l:L • l ∈ obs Ls(n) • uid L(l)=li in l end
pre: li ∈ lis(n)

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 17 An Informatics View of the World

18 2. A First Discourse: Road Nets and Platooning 2.3. Unique Identifiers and Mereology

2.3. Routes

11 By a route we shall understand
an alternating sequence of hub and link identifiers:

type

R = {| r:(HI|LI)∗ | wf R(r) |}
value

wf R: (HI|LI)∗ → Bool

wf R(r) ≡
∀ i:Nat • {i,i+1}⊆inds r ⇒
is LI(r(i))∧is HI(r(i+1)) ∨ is HI(r(i))∧is LI(r(i+1))

An HSE Moscow Seminar, April 22nd 2015 18 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

192. A First Discourse: Road Nets and Platooning 2.3. Routes

12 A pair 〈hi,li〉 are neighbours in a net if

type

neighbours: (HI×LI) → N → Bool

neighbours(hi,li)(n) ≡ li ∈ mereo(retr H(hi)(n))
pre: hi ∈ his(n)

neighbours: (LI×HI) → N → Bool

neighbours(li,hi)(n) ≡ hi ∈ mereo(retr L(li)(n))
pre: li ∈ lis(n)

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 19 An Informatics View of the World

20 2. A First Discourse: Road Nets and Platooning 2.3. Routes

13 Any net of, n:N, defines a possibly infinite set of finite routes:

value

routes: N → R-infset
routes(n) ≡
let hs = obs Hs(n),

ls = obs Ls(n) in
let rs = {〈〉}

∪ {〈obs HI(h)〉|h:H•h ∈ hs}
∪ {〈obs LI(h)〉|l:L•l ∈ ls}
∪ {〈hi,li〉|hi:HI,li:LI•neighbours(hi,li)(n)}
∪ {〈Li,Hi〉|Li:lI,Hi:hI•neighbours(Li,Hi)(n)}
∪ {r̂r′|r,r′:R•{r,r′}⊆rs} in

rs end end

An HSE Moscow Seminar, April 22nd 2015 20 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

212. A First Discourse: Road Nets and Platooning 2.4. Routes

2.4. Discussion

• And so forth.

• Nets, hubs, links and mereologies are manifest entities.

• Identifiers and routes are abstract concepts.

• We have presented an abstract description of manifest nets and
their hubs and links.

• We could go on describing actions, event and behaviours of nets.

• But we leave that for now.

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 21 An Informatics View of the World

22
2. A First Discourse: Road Nets and Platooning 2.5. Discussion

2.5. Vehicles

14 There are vehicles, v:V.

15 Vehicles have unique identifiers, vi:VI.

16 Vehicles have positions, vp:VP, on the road net.

type

V
VI
VP == atH(li:LI,hi:HI,li:LI) | onL(hi:HI,li:LI,r:Real,hi:HI)

value

uid V: V → VI
attr VP: V → VP

axiom

∀ onL(, ,r,):VP • 0≤r≤1

An HSE Moscow Seminar, April 22nd 2015 22 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

232. A First Discourse: Road Nets and Platooning 2.5. Vehicles

17 The on the road net constraint is axiomatised:

axiom

∀ n:N,vp:VP •

case vp of:
atH(fli,hi,tli) → {fli,tli}⊆mereo H(retr H(hi)(n)),
onL(fhi,li,r,thi) → {fli,tli}=mereo L(retr L(li)(n))

end

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 23 An Informatics View of the World

24 2. A First Discourse: Road Nets and Platooning 2.5. Vehicles

18 Vehicles move:

• veh(vi,attrs)(vp:atH(hi,fli,tli)) expresses that vehicle vi is at a
hub: vp:atH(hi,fli,tli).

value

veh: (VI × ATTRS) → VP → Unit

veh(vi,attrs)(vp:atH(hi,fli,tli)) ≡
wait ; veh(vi,attrs)(vp)

⌈⌉
let {hi′,thi} = mereo L(retr L(tli)(n)) assert: hi=hi′ in
veh(vi,attrs)(onL(tli,hi,thi,0)) end

⌈⌉
stop

where attrs:ATTRS are some vehicle attributes not mentioned.

An HSE Moscow Seminar, April 22nd 2015 24 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

25
2. A First Discourse: Road Nets and Platooning 2.5. Vehicles

• veh(vi,attrs)(vp:onL(li,fhi,thi,r) expresses that vehicle vi is on a
link at position vp:onL(li,fhi,thi,r).

value

veh: (VI × ATTRS) → VP → Unit

veh(vi,attrs)(vp:onL(li,fhi,thi,r)) ≡
veh(vi,attrs)(vp)

⌈⌉
if r + ℓǫ≤1
then veh(vi,attrs)(onL(li,fhi,thi,r+ℓǫ))
else let li′:LI•li′ ∈ mereo H(retr H(thi)(n)) in

veh(vi,attrs)(atH(li,thi,li′)) end end

⌈⌉
stop

where ℓǫ is some very small real close to 0.

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 25 An Informatics View of the World

26 2. A First Discourse: Road Nets and Platooning 2.6. Vehicles

2.6. Platooning

• A platoon (or a convoy) of vehicles
is a “somehow tightly connected” set of vehicles.

• On a road net vehicles can travel at their own leisure,
that is, at different speeds,
weaving in and out of road lanes,
overtaking one another, etc.

• A “somehow tightly connected” platoon,
when traveling along a route,
moves at one speed, with one ac/deceleration,
thus making all its vehicles travel identically.

• This may allow platoons, and hence their vehicles
to travel at overall higher average speeds.

An HSE Moscow Seminar, April 22nd 2015 26 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

272. A First Discourse: Road Nets and Platooning 2.6. Platooning

• Platoons can be formed and be reformed, dynamically,
when traveling along routes:

⋄⋄ (i) two vehicles can form a platoon,

⋄⋄ (ii) a vehicle can join a platoon,

⋄⋄ (iii) a vehicle can leave a platoon,

⋄⋄ (iv) two platoons can be conjoined,

⋄⋄ (v) a platoon can be decomposed into two platoons, and

⋄⋄ (vi) a platoon can be dissolved.

• We shall describe platoons and the beginnings of an algebra of
platoons.

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 27 An Informatics View of the World

28 2. A First Discourse: Road Nets and Platooning 2.7. Platooning

2.7. Platoons

19 A platoon is a collection of at least two vehicles.

type

P
value

obs S: P → V-set
axiom

∀ p:P • card obs S(s) ≥ 2

20 Platoons have unique identifiers:

type

PI
value

uid P: P → PI

An HSE Moscow Seminar, April 22nd 2015 28 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

292. A First Discourse: Road Nets and Platooning 2.7. Platoons

21 Platoons travel along a route.

22 The platoon leader has a position at the head of the platoon route.

value

attr Ldr: P → V
attr VP: (P|V) → VP
attr R: P → R

axiom

∀ p:P •

attr VP(attr Ldr(p)) = attr VP(p)
∧ hd(attr R(p))=

case attr VP(p) of:
atH(,hi,) → hi,
onL(,li, ,)→li
end

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 29 An Informatics View of the World

30 2. A First Discourse: Road Nets and Platooning 2.7. Platoons

23 At any one time there are a finite number
of zero, one or more uniquely identified platoons in existence,
that is, in the platoon state, σ : Σ:

type

Σ
value

obs Ps: Σ → P-set
axiom

∀ σ:Σ •

∀ p,p′:P • p 6=p′∧{p,p′}⊆obs Ps(σ)
⇒ uid P(p) 6= uid P(p′)

24 We define some auxiliary (overloaded) functions:

An HSE Moscow Seminar, April 22nd 2015 30 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

312. A First Discourse: Road Nets and Platooning 2.7. Platoons

value

πs: Σ → PI-set
πs(σ) ≡ {uid P(p)|p:P•p ∈ obs Ps(σ)}

pl: PI → Σ → P
pl(π)(σ) ≡

ι p:P • p ∈ obs Ps(σ) ∧ uid P(p)=π

pre: ∃ p:P • p ∈ obs Ps(σ) ∧ uid P(p)=π

vs: PI → Σ → V-set
vs(π)(σ) ≡ obs S(pl(π)(σ))

pre: p:P • p ∈ obs Ps(σ) ∧ uid P(p)=π

vs: Σ → V-set
vs(σ) ≡ ∪ { vs(π)(σ) | π:PI • ∃ p:P • p ∈ obs Ps(σ) ∧ uid P(p)=π}

vis: Σ → VI-set
vis(σ) ≡ {uid V(v)|v:V•v ∈ vs(σ)}

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 31 An Informatics View of the World

32 2. A First Discourse: Road Nets and Platooning 2.7. Platoons

25 Two vehicles not in a platoon can form a platoon:

value

form: V × V → Σ
∼
→ Σ × PI

form(v,v′)(σ) as (σ′,π)
pre: v 6= v′

∧ {v,v′} ∩ vis(σ) = {},
post: ∃ π:PI • π 6∈ πs(σ)

∧ πs(σ′) = πs(σ) ∪ {π}
∧ ∃ p:P • uid P(p)=π ⇒ p ∈ obs Ps(σ′)
∧ {v,v′}=obs Vs(p)
∧ ps(σ′) = ps(σ) ∪ {p}

An HSE Moscow Seminar, April 22nd 2015 32 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

332. A First Discourse: Road Nets and Platooning 2.7. Platoons

26 A vehicle can join a platoon:

value

join: V × PI → Σ
∼
→ Sigma

join(v,π)(σ) as σ′

pre: v 6∈ vs(σ) ∧ π ∈ πs(σ)
post: let p=pl(π)(σ) in

let p′:P•uid P(p)=uid P(p′)∧obs Vs(p)=obs Vs(p)∪{v} in

π ∈ πs(σ′)
∧ ps(σ′)=ps(σ)\{pl(π)(σ)}∪{pl(π)(σ′)}
end end

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 33 An Informatics View of the World

34 2. A First Discourse: Road Nets and Platooning 2.8. Platoons

2.8. Discussion

• And so forth.

• Platooning is unlike trains.

⋄⋄ Train com- and decomposition occurs
while trains are not running.

⋄⋄ Platoon com- and decomposition occurs only
while platoons are running.

• Platooning requires

⋄⋄ that participating vehicles are

◦◦ are electronically and electron-mechanically instrumented

◦◦ for self-drive,

◦◦ for co-operating, via a “platooning cloud”, with platoons,

◦◦ and so forth.

An HSE Moscow Seminar, April 22nd 2015 34 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

35
2. A First Discourse: Road Nets and Platooning 2.8. Discussion

⋄⋄ Platooning also requires

◦◦ that there is some GPSS-supported “cloud” that

◦◦ can monitor & control platoon traffic.

• The example of platooning

⋄⋄ is “new”, free for you to “hijack”,

⋄⋄ and is one that you might
earn a fortune researching, developing and marketing.

⋄⋄ I invite you to do that !

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 35 An Informatics View of the World

36 2. A First Discourse: Road Nets and Platooning 2.8. Discussion

A Second Discourse: Pipelines
3.1. Pipeline Structures

27 A pipeline consists of an indefinite number of pipeline units.

28 A pipeline unit is either a well, or a pipe, or a pump, or a valve, or a
fork, or a join, or a sink.

29 All these unit sorts are atomic and disjoint.

type

27. PL, U, We, Pi, Pu, Va, Fo, Jo, Si
27. Well, Pipe, Pump, Valv, Fork, Join, Sink
value

27. obs part Us: PL → U-set
type

28. U == We | Pi | Pu | Va | Fo | Jo | Si
29. We::Well, Pi::Pipe, Pu::Pump, Va::Valv, Fo:Fork, Jo::Join, Si::Sink

An HSE Moscow Seminar, April 22nd 2015 36 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

373. A Second Discourse: Pipelines 3.2. Pipeline Structures

3.2. Pipeline Well-formedness

• Pipeline units serve to conduct fluid or gaseous material.

• The flow of these occur in only one direction: from so-called input to so-called
output.

30 Wells have exactly one connection to an output unit.

31 Pipes, pumps and valves have exactly one connection from an input unit and one
connection to an output unit.

32 Forks have exactly one connection from an input unit and exactly two
connections to distinct output units.

33 Joins have exactly one two connection from distinct input units and one
connection to an output unit.

34 Sinks have exactly one connection from an input unit.

35 Thus we model the mereology of a pipeline unit as a pair of disjoint sets of
unique pipeline unit identifiers.

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 37 An Informatics View of the World

38 3. A Second Discourse: Pipelines 3.2. Pipeline Well-formedness

type

35. UM′=(UI-set×UI-set)
35. UM={|(iuis,ouis):UI-set×UI-set•iuis ∩ ouis={}|}
value

35. obs mereo U: UM
axiom [Well−formedness of Pipeline Systems, PLS (0)]

∀ pl:PL,u:U • u ∈ obs part Us(pl) ⇒
let (iuis,ouis)=obs mereo U(u) in
case (card iuis,card ouis) of

30. (0,1) → is We(u),
31. (1,1) → is Pi(u)∨is Pu(u)∨is Va(u),
32. (1,2) → is Fo(u),
33. (2,1) → is Jo(u),
34. (1,0) → is Si(u)

end end

An HSE Moscow Seminar, April 22nd 2015 38 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

393. A Second Discourse: Pipelines 3.3. Pipeline Well-formedness

3.3. Pipeline Flow

• Let us postulate a[n attribute] sort Flow.

• We now wish to examine the flow of liquid (or gaseous) material in
pipeline units.

• We use two types

36 F for “productive” flow, and L for wasteful leak.

• Flow and leak is measured, for example, in terms of volume of
material per second.

• We then postulate the following unit attributes

⋄⋄ “measured” at the point of in- or out-flow

⋄⋄ or in the interior of a unit.

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 39 An Informatics View of the World

40
3. A Second Discourse: Pipelines 3.3. Pipeline Flow

37 current flow of material into a unit input connector,

38 maximum flow of material into a unit input connector while maintaining laminar
flow,

39 current flow of material out of a unit output connector,

40 maximum flow of material out of a unit output connector while maintaining
laminar flow,

41 current leak of material at a unit input connector,

42 maximum guaranteed leak of material at a unit input connector,

43 current leak of material at a unit input connector,

44 maximum guaranteed leak of material at a unit input connector,

45 current leak of material from “within” a unit, and

46 maximum guaranteed leak of material from “within” a unit.

An HSE Moscow Seminar, April 22nd 2015 40 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

413. A Second Discourse: Pipelines 3.3. Pipeline Flow

type

36. F, L
value

37. attr cur iF: U → UI → F
38. attr max iF: U → UI → F
39. attr cur oF: U → UI → F
40. attr max oF: U → UI → F
41. attr cur iL: U → UI → L
42. attr max iL: U → UI → L
43. attr cur oL: U → UI → L
44. attr max oL: U → UI → L
45. attr cur L: U → L
46. attr max L: U → L

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 41 An Informatics View of the World

42 3. A Second Discourse: Pipelines 3.3. Pipeline Flow

• It may be difficult or costly, or both,

⋄⋄ to ascertain flows and leaks in materials-based domains.

⋄⋄ But one can certainly speak of these concepts.

⋄⋄ This casts new light on domain modeling.

⋄⋄ That is in contrast to

◦◦ incorporating such notions of flows and leaks

◦◦ in requirements modeling

⋄⋄ where one has to show implement-ability.

An HSE Moscow Seminar, April 22nd 2015 42 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

433. A Second Discourse: Pipelines 3.3. Pipeline Flow

47 For every unit of a pipeline system, except the well and the sink
units, the following law apply.

48 The flows into a unit equal

a. the leak at the inputs

b. plus the leak within the unit

c. plus the flows out of the unit

d. plus the leaks at the outputs.

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 43 An Informatics View of the World

44 3. A Second Discourse: Pipelines 3.3. Pipeline Flow

axiom [Well−formedness of Pipeline Systems, PLS (1)]
47. ∀ pls:PLS,b:B\We\Si,u:U •

47. b ∈ obs part Bs(pls)∧u=obs part U(b)⇒
47. let (iuis,ouis) = obs mereo U(u) in
48. sum cur iF(iuis)(u) =
48a.. sum cur iL(iuis)(u)
48b.. ⊕ attr cur L(u)
48c.. ⊕ sum cur oF(ouis)(u)
48d.. ⊕ sum cur oL(ouis)(u)
47. end

An HSE Moscow Seminar, April 22nd 2015 44 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

453. A Second Discourse: Pipelines 3.3. Pipeline Flow

49 The sum cur iF
(cf. Item 48) sums current input flows over all input connectors.

50 The sum cur iL
(cf. Item 48a.) sums current input leaks over all input connectors.

51 The sum cur oF
(cf. Item 48c.) sums current output flows over all output connectors.

52 The sum cur oL
(cf. Item 48d.) sums current output leaks over all output connectors.

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 45 An Informatics View of the World

46 3. A Second Discourse: Pipelines 3.3. Pipeline Flow

49. sum cur iF: UI-set → U → F
49. sum cur iF(iuis)(u) ≡ ⊕ {attr cur iF(ui)(u)|ui:UI•ui ∈ iuis}
50. sum cur iL: UI-set → U → L
50. sum cur iL(iuis)(u) ≡ ⊕ {attr cur iL(ui)(u)|ui:UI•ui ∈ iuis}
51. sum cur oF: UI-set → U → F
51. sum cur oF(ouis)(u) ≡ ⊕ {attr cur iF(ui)(u)|ui:UI•ui ∈ ouis}
52. sum cur oL: UI-set → U → L
52. sum cur oL(ouis)(u) ≡ ⊕ {attr cur iL(ui)(u)|ui:UI•ui ∈ ouis}

⊕: (F|L) × (F|L) → F

An HSE Moscow Seminar, April 22nd 2015 46 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

473. A Second Discourse: Pipelines 3.3. Pipeline Flow

53 For every pair of connected units of a pipeline system the following
law apply:

a. the flow out of a unit directed at another unit minus the leak at
that output connector

b. equals the flow into that other unit at the connector from the
given unit plus the leak at that connector.

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 47 An Informatics View of the World

48 3. A Second Discourse: Pipelines 3.3. Pipeline Flow

axiom [Well−formedness of Pipeline Systems, PLS (2)]
53. ∀ pls:PLS,b,b′:B,u,u′:U•

53. {b,b′}⊆obs part Bs(pls)∧b 6=b′∧u′=obs part U(b′)
53. ∧ let (iuis,ouis)=obs mereo U(u),(iuis′,ouis′)=obs mereo U(u′),
53. ui=uid U(u),ui′=uid U(u′) in
53. ui ∈ iuis ∧ ui′ ∈ ouis′ ⇒
53a.. attr cur oF(u′)(ui′) − attr leak oF(u′)(ui′)
53b.. = attr cur iF(u)(ui) + attr leak iF(u)(ui)
53. end

53. comment: b′ precedes b

An HSE Moscow Seminar, April 22nd 2015 48 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

493. A Second Discourse: Pipelines 3.4. Pipeline Flow

3.4. Discussion

• Pipelines, whether oil, gas, water, or other are of increasing
importance.

• Pipelines need be computer monitored & controlled.

• The sketched description need be further researched & developed:

⋄⋄ The model, as presented, basically models discrete properties.

⋄⋄ A fluid dynamics model is needed.

⋄⋄ The two models need be formally related.

⋄⋄ To do so is a serious research issue.

• I invite you to work on such problems.

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 49 An Informatics View of the World

50 3. A Second Discourse: Pipelines 3.4. Discussion

A Third Discourse: Stock Exchanges

• The market of financial instruments is only partially understood.

• Here we present a model of some crucial properties of selling and
buying stocks.

• The model, although that of the Tokyo Stock Exchange, TSE, can
be simply modified to model other stock exchanges.

• For example, the New York Stock Exchange, NYSE, or other.

• Such models need be integrated with models of (“high street”)
banking, mortgaging, portfolio management, etc.

• By my guest !

An HSE Moscow Seminar, April 22nd 2015 50 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

514. A Third Discourse: Stock Exchanges 4.1.

4.1. Market and Limit Offers and Bids

54 A market sell offer or buy bid specifies

a. the unique identification of the stock,

b. the number of stocks to be sold or bought, and

c. the unique name of the seller.

55 A limit sell offer or buy bid specifies the same information as a
market sell offer or buy bid (i.e., Items 54a.–54c.), and

d. the price at which the identified stock is to be sold or bought.

56 A trade order is either a (mkMkt marked) market order or (mkLim
marked) a limit order.

57 A trading command is either a sell order or a buy bid.

58 The sell orders are made unique by the mkSell “make” function.

59 The buy orders are made unique by the mkBuy “make” function.

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 51 An Informatics View of the World

52 4. A Third Discourse: Stock Exchanges 4.1. Market and Limit Offers and Bids

type

54 Market = Stock id × Number of Stocks × Name of Customer
54a. Stock id
54b. Number of Stocks = {|n•n:Nat∧n>1|}
54c. Name of Customer
55 Limit = Market × Price
55d. Price = {|n•n:Nat∧n>1|}
56 Trade == mkMkt(m:Market) | mkLim(l:Limit)
57 Trading Command = Sell Order | Buy Bid
58 Sell Order == mkSell(t:Trade)
59 Buy Bid == mkBuy(t:Trade)

An HSE Moscow Seminar, April 22nd 2015 52 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

534. A Third Discourse: Stock Exchanges 4.2. Market and Limit Offers and Bids

4.2. Order Books

60 We introduce a concept of linear, discrete time, T.

61 We also introduce a concept of Order number.

62 For each stock the stock exchange keeps an Order Book.

63 An order book for stock sid:SI keeps track of limit buy bids and limit sell offers (for the identified

stock, sid:SI), as well as the market buy bids and sell offers; that is, for each price

d. the number stocks, by unique order number, offered for sale at that price, that is, limit Sell

Orders, and

e. the number of stocks, by unique order number, bid for buying at that price, that is, limit Buy

Bid orders.

f. If an offer is a market sell offer, then the number of stocks to be sold is recorded, and if an

offer is a market buy bid (also an offer), then the number of stocks to be bought is recorded,

64 Over time the (Tokyo) Stock Exchange (TSE) displays series of full order books.

65 A Trade Unit, tu:TU, is a pair of a unique order number and an amount (a number larger than 0)

of stocks.

66 An Amount designates a number of one or more stocks.

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 53 An Informatics View of the World

54 4. A Third Discourse: Stock Exchanges 4.2. Order Books

type

60 T
61 On
62 All Stocks Order Book = Stock Id →m Stock Order Book
63 Stock Order Book = (Price →m Orders) × Market Offers
63 Orders:: so:Sell Orders × bo:Buy Bids
63d. Sell Orders = On →m Amount
63e. Buy Bids = On →m Amount
63f. Market Offers :: mkSell(n:Nat) × mkBuy(n:Nat)
64 TSE = T →m All Stocks Order Book
65 TU = On × Amount
66 Amount = {|n•Nat∧n≥1|}

An HSE Moscow Seminar, April 22nd 2015 54 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

554. A Third Discourse: Stock Exchanges 4.3. Order Books

4.3. Aggregate Offers

67 We introduce the concepts of aggregate sell and buy orders for a given stock at a
given price (and at a given time).

68 The aggregate sell orders for a given stock at a given price is

g. the stocks being market sell offered and

h. the number of stocks being limit offered for sale at that price or lower

value

68 aggr sell: All Stocks Order Book × Stock Id × Price → Nat

68 aggr sell(asob,sid,p) ≡
68 let ((sos,),(mkSell(ns),)) = asob(sid) in
68g. ns +
68h. all sell summation(sos,p) end

all sell summation: Sell Orders × Price → Nat

all sell summation(sos,p) ≡
let ps = {p′|p′:Prices • p′ ∈ dom sos ∧ p′ ≥ p} in accumulate(sos,ps)(0) end

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 55 An Informatics View of the World

56 4. A Third Discourse: Stock Exchanges 4.3. Aggregate Offers

69 The aggregate bur bids for a given stock at a given price is

a. including the stocks being market bid offered and

b. the number of stocks being limit bid for buying at that price or
higher

value

69 aggr buy: All Stocks Order Book × Stock Id × Price → Nat

69 aggr buy(asob,sid,p) ≡
69 let ((,bbs),(,mkBuy(nb))) = asob(sid) in
69a. nb +
69b. nb + all buy summation(bbs,p) end

all buy summation: Buy Bids × Price → Nat

all buy summation(bbs,p) ≡
let ps = {p′|p′:Prices • p′ ∈ dom bos ∧ p′ ≤ p} in accumulate(bbs,ps)(0) end

An HSE Moscow Seminar, April 22nd 2015 56 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

574. A Third Discourse: Stock Exchanges 4.3. Aggregate Offers

• The auxiliary accumulate function is shared between the all sell summation and
the all buy summation functions. It sums the amounts of limit stocks in the price
range of the accumulate function argument ps.

• The auxiliary sum function sums the amounts of limit stocks — “pealing off” the
their unique order numbers.

value

accumulate: (Price →m Orders) × Price-set → Nat → Nat

accumulate(pos,ps)(n) ≡
case ps of

{} → n,
{p}∪ ps′ → accumulate(pos,ps′)(n+sum(pos(p)){dom pos(p)}) end

sum: (Sell Orders|Buy Bids) → On-set → Nat

sum(ords)(ns) ≡
case ns of

{} → 0,
{n}∪ ns′ → ords(n)+sum(ords)(ns′) end

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 57 An Informatics View of the World

58 4. A Third Discourse: Stock Exchanges 4.3. Aggregate Offers

• To handle the sub limit sells and sub limit buys indicated by Item 71c. on the
facing slide of the Itayose “algorithm” we need the corresponding
sub sell summation and sub buy summation functions:

value

sub sell summation: Stock Order Book × Price → Nat

sub sell summation(((sos,),(ns,)),p) ≡ ns +
let ps = {p′|p′:Prices • p′ ∈ dom sos ∧ p′

> p} in

accumulate(sos,ps)(0) end

sub buy summation: Stock Order Book × Price → Nat

sub buy summation(((,bbs),(,nb)),p) ≡ nb +
let ps = {p′|p′:Prices • p′ ∈ dom bos ∧ p′

< p} in

accumulate(bbs,ps)(0) end

An HSE Moscow Seminar, April 22nd 2015 58 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

594. A Third Discourse: Stock Exchanges 4.4. Aggregate Offers

4.4. The TSE Itayose “Algorithm”

70 The TSE practices the so-called Itayose “algorithm” to decide on opening and closing prices4.

That is, the Itayose “algorithm” determines a single so-called ‘execution’ price, one that matches

sell and buy orders5:

71 The “matching sell and buy orders” rules:

a. All market orders must be ‘executed’6.

b. All limit orders to sell/buy at prices lower/higher than the ‘execution price’7 must be

executed.

c. The following amount of limit orders to sell or buy at the execution prices must be

executed: the entire amount of either all sell or all buy orders, and at least one ‘trading

unit’8 from ‘the opposite side of the order book’9.

4[26, pp 59, col. 1, lines 4-3 from bottom, cf. Page ??]
5[26, pp 59, col. 2, lines 1–3 and Items 1.–3. after yellow, four line ‘insert’, cf. Page ??] These items 1.–3. are reproduced as “our” Items 71a.–71c..
6To execute an order:
7Execution price:
8Trading unit:
9The opposite side of the order book:

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 59 An Informatics View of the World

60 4. A Third Discourse: Stock Exchanges 4.4. The TSE Itayose “Algorithm”

value

71 match: All Stocks Order Book × Stock Id → Price-set

71 match(asob,sid) as ps

71 pre: sid ∈ dom asob

71 post: ∀ p′:Price • p′ ∈ ps ⇒

71′ ∃ os:On-set •

71a.′ market buys(asob(sid))

71b.′ + sub limit buys(asob(sid))(p′)

71c.′ + all priced buys(asob(sid))(p′)

71a.′ = market sells(asob(sid))

71b.′ + sub limit sells(asob(sid))(p′)

71c.′ + some priced buys(asob(sid))(p′)(os) ∨

71′′ ∃ os:On-set •

71a.′′ market buys(asob(sid))

71b.′′ + sub limit buys(asob(sid))(p′)

71c.′′ + some priced buys(asob(sid))(p′)(os)

71a.′′ = market sells(asob(sid))

71b.′′ + sub limit sells(asob(sid))(p′)

71c.′′ + all priced buys(asob(sid))(p′) ∨

An HSE Moscow Seminar, April 22nd 2015 60 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

61
4. A Third Discourse: Stock Exchanges 4.4. The TSE Itayose “Algorithm”

• The match function calculates a set of prices for each of which a match can be
made.

• The set may be empty: there is no price which satisfies the match rules (cf.
Items 71a.–71c. below).

• The set may be a singleton set: there is a unique price which satisfies match
rules Items 71a.–71c..

• The set may contain more than one price: there is not a unique price which
satisfies match rules Items 71a.–71c..

• The single (′) and the double (′′) quoted (71a.–71c.) group of lines, in the match
formulas above, correspond to the Itayose “algorithm”s Item 71c. ‘opposite sides
of the order book’ description.

• The existential quantification of a set of order numbers of lines 71′ and 71′′

correspond to that “algorithms” (still Item 71c.) point of at least one ‘trading
unit’. It may be that the post condition predicate is only fulfilled for all trading
units – so be it.

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 61 An Informatics View of the World

62 4. A Third Discourse: Stock Exchanges 4.4. The TSE Itayose “Algorithm”

value

market buys: Stock Order Book → Amount
market buys((,(,mkBuys(nb))),p) ≡ nb

market sells: Stock Order Book → Amount
market sells((,(mkSells(ns),)),p) ≡ ns

sub limit buys: Stock Order Book → Price → Amount

sub limit buys(((,bbs),))(p) ≡ sub buy summation(bbs,p)

sub limit sells: Stock Order Book → Price → Amount
sub limit sells((sos,))(p) ≡ sub sell summation(sos,p)

all priced buys: Stock Order Book → Price → Amount
all priced buys((,bbs),)(p) ≡ sum(bbs(p))

all priced sells: Stock Order Book → Price → Amount

all priced sells((sos,),)(p) ≡ sum(sos(p))

some priced buys: Stock Order Book → Price → On-set → Amount
some priced buys((,bbs),)(p)(os) ≡

let tbs = bbs(p) in if {}6=os∧os⊆dom tbs then sum(tbs)(os) else 0 end end

some priced sells: Stock Order Book → Price → On-set → Amount

some priced sells((sos,),)(p)(os) ≡
let tss = sos(p) in if {}6=os∧os⊆dom tss then sum(tss)(os) else 0 end end

An HSE Moscow Seminar, April 22nd 2015 62 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

63
4. A Third Discourse: Stock Exchanges 4.5. The TSE Itayose “Algorithm”

4.5. Discussion

• The TSE is further detailed in [9, 18].

• It would be interesting to compare the TSE model, to that of
similar models for the Frankfurt, Hong Kong, Moscow, NYSE,
NASDAQ, Paris, Shanghai and other stock exchanges.

• Similar models for commodity exchanges (grain (Chicago), metals
(London), etc.) ought be researched & developed.

• Perhaps a generic model of financial instrument and commodity
exchanges can be researched & developed.

• And a family of strongly related (“product line”) software ought be
derivable from this generic domain description.

• By my guest !

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 63 An Informatics View of the World

64 4. A Third Discourse: Stock Exchanges 4.5. Discussion

Conclusion
5.1. What Have We Learned ? — Hopefully

• You have seen informal and formal models of domains such as:

⋄⋄ road net, vehicles and platooning,

⋄⋄ pipelines, and

⋄⋄ stock matching.

• You have therefore seen that

⋄⋄ one can talk of large systems

⋄⋄ very precisely and very comprehensively

⋄⋄ using natural language and mathematics.

• That should give you, I hope, the desire to do likewise !

An HSE Moscow Seminar, April 22nd 2015 64 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

655. Conclusion 5.2. What Have We Learned ? — Hopefully

5.2. A Context for Domain Engineering

• Before software can be developed,

• we must have a reasonable grasp
of its requirements.

• Before requirements can be understood,

• we must have a reasonable grasp
of the domain in which they “reside”.

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 65 An Informatics View of the World

66 5. Conclusion 5.3. A Context for Domain Engineering

5.3. A Triptych Of Software Engineering

• As a result we see software development (“ideally”) proceeding as
follows:

⋄⋄ (i) first we research & develop a description of the domain;

⋄⋄ (ii) then we research & develop a prescription of the requirements
by “deriving” these (more-or-less) from the domain description;

⋄⋄ (iii) finally we design the Software

◦◦ from the Requirements

◦◦ such that we can prove (|=) the Software correct

◦◦ with respect to the Requirements

◦◦ and in the context of the Domain model:

D, S |= R

An HSE Moscow Seminar, April 22nd 2015 66 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

675. Conclusion 5.3. A Triptych Of Software Engineering

• That is:

⋄⋄ Software Engineering =

◦◦ Domain Engineering

◦◦ ⊕ Requirements Engineering

◦◦ ⊕ Software Design

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 67 An Informatics View of the World

68 5. Conclusion 5.3. A Triptych Of Software Engineering

• Tupolev would not hire an aircraft design engineer

⋄⋄ unless that person was well educated in aeronautics,

⋄⋄ fluid dynamics, etc.

• L.M. Ericsson would not hire a radio antenna design engineer

⋄⋄ unless that person was well educated in electro-magnetic field
theory

⋄⋄ and knows how to interpret Maxwell’s Equations.

An HSE Moscow Seminar, April 22nd 2015 68 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

695. Conclusion 5.3. A Triptych Of Software Engineering

• So it will be, in future, for software engineers, sales and marketeers:

⋄⋄ they must know how to read and some even to write domain models,

⋄⋄ and they must know the basics of how to turn these into software.

• So better get started.

• To start up your own software company you must specialise in a domain:

⋄⋄ that means, you must make sure
that your corporate asset is an appropriate domain model,

⋄⋄ and that you continue to research, develop and adapt your domain model(s)
to a competitive market.

⋄⋄ Your highly tuned domain model(s) make you stay ahead of the market.

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 69 An Informatics View of the World

70 5. Conclusion 5.4. A Triptych Of Software Engineering

5.4. Tony Hoare’s Summary on ‘Domain Modeling’
“There are many unique contributions that can be made by domain modeling10.

1 The models describe all aspects of the real world that are relevant for any good
software design in the area. They describe possible places to define the system
boundary for any particular project.

2 They make explicit the preconditions about the real world that have to be made in
any embedded software design, especially one that is going to be formally proved.

3 They describe the whole range of possible designs for the software, and the whole
range of technologies available for its realisation.

4 They provide a framework for a full analysis of requirements, which is wholly
independent of the technology of implementation.

5 They enumerate and analyse the decisions that must be taken earlier or later in
any design project, and identify those that are independent and those that conflict.
Late discovery of feature interactions can be avoided.”

10E-Mail to Dines Bjørner, July 19, 2006

An HSE Moscow Seminar, April 22nd 2015 70 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

715. Conclusion 5.5. Tony Hoare’s Summary on ‘Domain Modeling’

5.5. Acknowledgements

• I thank Academician Victor Petrovich Ivannikov
for inviting me to Moscow —

• in particular challenging me to write this talk.

• I thank his assistant, Ms Darya, for arranging all practical details.

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 71 An Informatics View of the World

72 5. Conclusion 5.5. Acknowledgements

Bibliography
6.1. Published Papers

• I have thought about domain engineering for more than 20 years.

• But serious, focused writing only started to appear since [3, Part
IV] — with [2, 1] being exceptions:

⋄⋄ [4] suggests a number of domain science and engineering research
topics;

⋄⋄ [7] covers a concept of domain facets;

⋄⋄ [22] explores compositionality and Galois connections;

⋄⋄ [5, 21] show how to systematically, but, of course, not
automatically, “derive” requirements prescriptions from domain
descriptions;

⋄⋄ [10] takes the triptych software development as a basis for
outlining principles for believable software management;

An HSE Moscow Seminar, April 22nd 2015 72 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

736. Bibliography 6.1. Published Papers

⋄⋄ [6, 14] presents a model for Stanis law Leśniewski’s [23] concept
of mereology;

⋄⋄ [8, 11] present an extensive example and is otherwise a precursor
for the present paper;

⋄⋄ [12] presents, based on the TripTych view of software
development as ideally proceeding from domain description via
requirements prescription to software design, concepts such as
software demos and simulators;

⋄⋄ [13] analyses the TripTych, especially its domain engineering
approach, with respect to Maslow’s 11 and Peterson’s and
Seligman’s 12 notions of humanity: how can computing relate to
notions of humanity;

11Theory of Human Motivation. Psychological Review 50(4) (1943):370-96; and Motivation and Personality, Third Edition, Harper and Row Publishers, 1954.
12Character strengths and virtues: A handbook and classification. Oxford University Press, 2004

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 73 An Informatics View of the World

74 6. Bibliography 6.1. Published Papers

⋄⋄ the first part of [15] is a precursor for the present paper with its
second part presenting a first formal model of the elicitation
process of analysis and description based on the prompts more
definitively presented in the current paper;

⋄⋄ [16] focus on domain safety criticality;

⋄⋄ [17] is the definitive paper on manifest domains: analysis &
description.

An HSE Moscow Seminar, April 22nd 2015 74 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

756. Bibliography 6.2. Published Papers

6.2. Reports

1 A Railway Systems Domain:
http://euler.fd.cvut.cz/railwaydomain/ (2003)

2 Models of IT Security. Security Rules & Regulations:
it-security.pdf (2006)

3 A Container Line Industry Domain: container-paper.pdf (2007)

4 The “Market”: Consumers, Retailers, Wholesalers, Producers:
themarket.pdf (2007)

5 What is Logistics ?: logistics.pdf (2009)

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 75 An Informatics View of the World

76 6. Bibliography 6.2. Reports

6 A Domain Model of Oil Pipelines: pipeline.pdf (2009)

7 Transport Systems: comet/comet1.pdf (2010)

8 The Tokyo Stock Exchange: todai/tse-1.pdf and
todai/tse-2.pdf (2010)

9 On Development of Web-based Software. A Divertimento:
wfdftp.pdf (2010)

10 Documents (incomplete draft): doc-p.pdf (2013)

An HSE Moscow Seminar, April 22nd 2015 76 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

776. Bibliography 6.2. Reports

6.3. References

[1] D. Bjørner. Michael Jackson’s Problem Frames: Domains,
Requirements and Design. In L. ShaoYang and M. Hinchley,
editors, ICFEM’97: International Conference on Formal
Engineering Methods, Los Alamitos, November 12–14 1997.
IEEE Computer Society. Final Version.

[2] D. Bjørner. Domain Engineering: A ”Radical Innovation” for
Systems and Software Engineering ? In Verification: Theory
and Practice, volume 2772 of Lecture Notes in Computer
Science, Heidelberg, October 7–11 2003. Springer–Verlag. The
Zohar Manna International Conference, Taormina, Sicily 29 June
– 4 July 2003. Final draft version.

[3] D. Bjørner. Software Engineering, Vol. 3: Domains,
Requirements and Software Design. Texts in Theoretical
Computer Science, the EATCS Series. Springer, 2006.

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 77 An Informatics View of the World

78

[4] D. Bjørner. Domain Theory: Practice and Theories, Discussion of
Possible Research Topics. In ICTAC’2007, volume 4701 of
Lecture Notes in Computer Science (eds. J.C.P. Woodcock et
al.), pages 1–17, Heidelberg, September 2007. Springer.

[5] D. Bjørner. From Domains to Requirements. In Montanari
Festschrift, volume 5065 of Lecture Notes in Computer Science
(eds. Pierpaolo Degano, Rocco De Nicola and José Meseguer),
pages 1–30, Heidelberg, May 2008. Springer.

[6] D. Bjørner. On Mereologies in Computing Science. In Festschrift:
Reflections on the Work of C.A.R. Hoare, History of
Computing (eds. Cliff B. Jones, A.W. Roscoe and Kenneth R.
Wood), pages 47–70, London, UK, 2009. Springer.

[7] D. Bjørner. Domain Engineering. In P. Boca and J. Bowen,
editors, Formal Methods: State of the Art and New Directions,

An HSE Moscow Seminar, April 22nd 2015 78 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

79

Eds. Paul Boca and Jonathan Bowen, pages 1–42, London, UK,
2010. Springer.

[8] D. Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of

Informatics, Part I of II: The Engineering Part. Kibernetika i sistemny analiz,
(4):100–116, May 2010.

[9] D. Bjørner. The Tokyo Stock Exchange Trading Rules. R&D
Experiment, Fredsvej 11, DK-2840 Holte, Denmark, January,
February 2010.

[10] D. Bjørner. Believable Software Management. Encyclopedia of
Software Engineering, 1(1):1–32, 2011.

[11] D. Bjørner. Domain Science & Engineering – From Computer Science to The Sciences of

Informatics Part II of II: The Science Part. Kibernetika i sistemny analiz, (2):100–120,
May 2011.

[12] D. Bjørner. Domains: Their Simulation, Monitoring and Control
– A Divertimento of Ideas and Suggestions. In Rainbow of

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 79 An Informatics View of the World

80

Computer Science, Festschrift for Hermann Maurer on the
Occasion of His 70th Anniversary., Festschrift (eds. C. Calude,
G. Rozenberg and A. Saloma), pages 167–183. Springer,
Heidelberg, Germany, January 2011.

[13] D. Bjørner. Domain Science and Engineering as a Foundation
for Computation for Humanity, chapter 7, pages 159–177.
Computational Analysis, Synthesis, and Design of Dynamic
Systems. CRC [Francis & Taylor], 2013. (eds.: Justyna Zander
and Pieter J. Mosterman).

[14] D. Bjørner. A Rôle for Mereology in Domain Science and
Engineering. Synthese Library (eds. Claudio Calosi and Pierluigi
Graziani). Springer, Amsterdam, The Netherlands, October 2014.

[15] D. Bjørner. Domain Analysis: Endurants – An Analysis &
Description Process Model. In S. Iida, J. Meseguer, and K. Ogata,

An HSE Moscow Seminar, April 22nd 2015 80 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

81

editors, Specification, Algebra, and Software: A Festschrift
Symposium in Honor of Kokichi Futatsugi. Springer, May 2014.

[16] D. Bjørner. Domain Engineering – A Basis for Safety Critical
Software. Invited Keynote, ASSC2014: Australian System Safety
Conference, Melbourne, 26–28 May, December 2014.

[17] D. Bjørner. Manifest Domains: Analysis & Description. Research
Report, 2014. Part of a series of research reports: [19, 20], Being
submitted.

[18] D. Bjørner. The Tokyo Stock Exchange Trading Rules. R&D
Experiment, Fredsvej 11, DK-2840 Holte, Denmark, January and
February, 2010. Version 1, 78 pages: many auxiliary appendices,
Version 2, 23 pages: omits many appendices and corrects some
errors..

[19] D. Bjørner. Domain Analysis & Description: Models of Processes
and Prompts. Research Report, To be completed early 2014. Part

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 81 An Informatics View of the World

82

of a series of research reports: [17, 20].

[20] D. Bjørner. From Domains to Requirements. Research Report, To
be completed early 2015. Part of a series of research reports:
[17, 19].

[21] D. Bjørner. The Role of Domain Engineering in Software
Development. Why Current Requirements Engineering Seems
Flawed! In Perspectives of Systems Informatics, volume 5947 of
Lecture Notes in Computer Science, pages 2–34, Heidelberg,
Wednesday, January 27, 2010. Springer.

[22] D. Bjørner and A. Eir. Compositionality: Ontology and
Mereology of Domains. Some Clarifying Observations in the
Context of Software Engineering in July 2008, eds. Martin Steffen,
Dennis Dams and Ulrich Hannemann. In Festschrift for Prof.
Willem Paul de Roever Concurrency, Compositionality, and

An HSE Moscow Seminar, April 22nd 2015 82 c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33

83

Correctness, volume 5930 of Lecture Notes in Computer
Science, pages 22–59, Heidelberg, July 2010. Springer.

[23] R. Casati and A. Varzi. Parts and Places: the structures of
spatial representation. MIT Press, 1999.

[24] C. W. George, P. Haff, K. Havelund, A. E. Haxthausen, R. Milne,
C. B. Nielsen, S. Prehn, and K. R. Wagner. The RAISE
Specification Language. The BCS Practitioner Series.
Prentice-Hall, Hemel Hampstead, England, 1992.

[25] C. W. George, A. E. Haxthausen, S. Hughes, R. Milne, S. Prehn,
and J. S. Pedersen. The RAISE Development Method. The BCS
Practitioner Series. Prentice-Hall, Hemel Hampstead, England,
1995.

[26] T. Tamai. Social Impact of Information System Failures.
Computer, IEEE Computer Society Journal, 42(6):58–65, June
2009.

c© Dines Bjørner 2012, Fredsvej 11, DK–2840 Holte, Denmark – March 25, 2015: 11:33 83 An Informatics View of the World

