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Abstract: We present an informal narrative and a formal model of the train maintenance
routing problem. The problem to be tackled is as follows: There is a railway net. There
are stations and lines in the net. Trains travel from station to station according to given
schedule and rolling stock roster. Trains are composed of assemblies. There are several
types of assemblies and several types of maintenances. Each assembly has to be maintained
before a certain time interval between maintenance elapses, and at a limited numbers of
maintenance stations. At stations pairs of assemblies may be exchanged.
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1. INTRODUCTION

Railway planners handle time–consuming
tasks of railway operations. There are a
number of tasks which can be solved by
computers using operation research algo-
rithms. These tasks are mainly being solved
separately without any relations or integra-
tions between them. We would like to fo-
cus not only at their integration, but we
would like to find some common parts of
these tasks already during the software de-
velopment stages.

This is the main reason for presentin, in
this paper, a formal methods approach to
one of the railway optimisation problems —
train maintenance routing. Formal meth-
ods approaches to other problems (crew
rostering and optimal train length/train
composition and decomposition) is pre-
sented in a separate paper (Strupchanska
et al., 2003), respectively in a separate re-
port (Karras and Bjørner, 2002).

In future, this approach should lead to

much deeper, better and easier integration
of railway applications in and among all
tasks of the railway monitoring, control and
planning processes.

1.1 Synopsis

Each railway company operating trains
deals with the problem of maintenance of
their rolling stock. By a circulation plan
we shall understand a schedule of sequences
of station visits. Each train is composed
of carriages, which, according to a circula-
tion plan, can be grouped into in–divisible
parts — called assemblies. In other words,
an assembly is one ore more carriages that
have the same circulation plan. We do not
discuss how to device circulation plans for
assemblies in this paper. This is a task of
rolling stock rostering and of optimal train
length determination.

In this paper we define notions of
rolling stock rosters and of maintenance
events, and we show how maintenance
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proceedings, and their presentation at Budapest, is sponsored by the EU IST Research Training Network AMORE: Algorithmic
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events can be added into rolling stock ros-
ters. By maintenance we do not mean only
regular check of all systems (assemblies,
etc.) in the depot, but we present mainte-
nance in a more general sense. We under-
stand maintenance as all activities, which
must be done with rolling stock, regularly
according to some rules, and which should
be planned in advance except for the oper-
ation of rolling stock itself. That is the rea-
son, why we also include outside and inside
cleaning of carriages, refuelling diesel en-
gines, refilling supplies into restaurant car-
riages, water and oil refilling, etc.

Each carriage, according to its type,
has associated certain types of maintenance
tasks. Each task has a defined frequency
of necessary handling of this task upon
the carriage. The frequency can be ex-
pressed by the elapsed number of kilometer
or oeprating house since a previous main-
tyenance, ie., are intervals, for which main-
tenance need be done.

Basically there are two different ways
on how to add maintenance to the rolling
stock plans.

Rostering with Maintenance is the first
possible way. Maintenance is planned al-
ready in the rolling stock roster planning
process (maintenance is seen just as a one
of the tasks in the roster). All maintenance
actions for all rolling stock are planned in
advance. This approach seems to be ap-
propriate for long–distance trains and also
for maintenance types that have to be done
quite often (eg., inside cleaning, diesel fu-
elling, etc.).

Maintenance Routing is the second
possible way. In this case, the rolling stock
roster has several maintenance opportuni-
ties only. That means, that not all car-
riages have maintenance in their plans. In
this approach it is necessary to have on–
line statistics about actually elapsed kilo-
meters and operating hours for all assem-
blies. Later, during train operation, main-
tenance checks are planned for those assem-
blies which are close to reach a given kilo-
meter or time limit. It is done by mod-
ifying previous plans in such a way, that
all assemblies are routed to maintenance
stations. These modifications are called
night and day exchanges or empty rides be-
tween stations. Maintenance routing better
fits short-distance trains, typically trains
“around” big cities, and also for those types
of maintenance, where irregularities can be
expected. For example, a broken engine
must be routed to the maintenance station
immediately, with no care about kilometer
distance for which it was slated at the time
of the breakdown event.

In this paper we deal only with the
second approach — maintenance routing.
This means that our input is a rolling stock
roster with several maintenance opportu-
nities (not assigned to concrete assemblies
yet). For all assemblies in the network we
can find their position in the network ac-
cording to the schedule at a given time,
number of kilometers and hours elapsed
from the most recent maintenance checks.
Certain events (like breakdowns) must be
recorded and taken into account as well.

Output from the maintenance routing
planning is a list of changes in rolling stock
roster for the next few days. Once a day,
changes and recorded events are applied to
the current rolling stock roster plan and are
used as input for the follwing day’s mainte-
nance routing planning.

1.2 The Major Functions

Given a railway net, N, a traffic schedule
TS, and a planning period (from day-time,
DT, to day-time, DT) the job is to formally
characterize and generate all the possible
sets of changes, CS, necessary and sufficient
to secure finely maintenance. What we un-
derstand by terms net, traffic schedule and
sets of changes can be found further on in
the paper.

type
N, TS, DT, CS

value

gen Changes: N × TS × (DT × DT)
∼

→ CS-set

Given these possible change sets, one
is selected and applied to the traffic sched-
ule to generate a new traffic schedule for a
given period.

value
ApplyChanges: TS × CS × (DT × DT) → TS

1.3 Requirements and
Software Design

We emphasis that we formally character-
ize schedules, assembly plans and mainte-
nance changes — such as they are “out
there”, in realty, not necessarily as we wish
them to be. On the basis of such formal
domain specificatons we can then express
software requirements, ie., such as we wish
schedules, assembly plans and maintenance
changes to be.

The actual software design relies on the
identification of suitable operation research
techniques (ie., algorithms), that can pro-
vide reasonably optimal solutions and at
reasonable computing times.



It is not the aim of this paper to show
such operation research algorithms. In-
stead we refer to (Kroon and Fischetti,
2000; Kroon, 2001; Maróti, 2001).

1.4 Paper Structure

The paper is divided into two main parts.
In the first part (Section 2) we give a full
description of those railway domain terms
that are relevant to the problem at hand.
We start with a description of railway nets,
lines and stations. Then it is explained
what we mean by trains and assemblies.
Further we explain the concept of traffic
schedules and describe some functions on
such schedules. The last part of Section 2
presents a detailed description of mainte-
nance.

The second main part is Section 3:
Planning. In it we explain the necessary
and sufficient changes to rolling stock ros-
ters, introducing the concepts of day and
night changes and of empty rides. We ex-
plaon their generation, as well as the appli-
cation of these changes to the new traffic
schedule.

All these descriptions are presented in
natural English language as well as in the
Raise Specification Language (RSL) (George
et al., 1992).

2. FORMAL MODEL

In this section we introduce the actual do-
main phenomena and concepts of railway
nets, trains, schedules, rolling stock rosters
and maintenance, and we build a domain
model in a ‘formal methods’ approach —
step–by–step.

First we define the concept of railway
nets. We describe railway nets as a set of
lines and a set of stations and all properties,
which belongs to these concepts.

2.1 Nets, Lines, Stations

In the first part basic concepts of railway
net, lines and stations are described. We
present it in natural English description as
well as in RSL.

Narrative:
Each net (N) is composed from two

main parts: stations (S) and lines (L). Sta-
tions and lines can be observed from the
net. Axioms (ie., constraints) are:

• There are at least two stations and
one line in a net (α1).

• Each line connects exactly two dis-
tinct stations (α2).

• Each station is connected at least to
one line (α3).

• Each line has no zero length (α4).

Formal Model:

scheme NETWORK S =
class

type N, L, S, KM

value
zero km : KM,
> : KM × KM → Bool,
obs S : N → S-set,
obs L : N → L-set,
obs S : L → S-set,
obs Length : L → KM

axiom
(α1) ∀ n : N •

card obs S(n) ≥ 2 ∧
card obs L(n) ≥ 1,

(α2) ∀ n : N, ℓ: L •

ℓ∈ obs L(n) ⇒
card obs S(ℓ) = 2,

(α3) ∀ n : N, s : S • s ∈ obs S(n) ⇒
∃ ℓ: L ⇒ s ∈ obs S(ℓ)

(α4) ∀ n : N, ℓ:Lin •

ℓ∈ obs L(n) ⇒
obs Length(ℓ) > zero km

end

2.2 Time & Date

Narrative:
In this part, basic functions about date

(D), time (T) and time intervals (TI) are pre-
sented. Since it is not the main subject of
this paper, no detailed description is given.

Formal Model:

scheme TIME S =
class

type T, TI

value
+ : T × TI → T,
+ : TI × T → T,
+ : TI × TI → TI,
− : T × TI → T,
− : TI × TI → TI,
> : T × T → Bool,
> : TI × TI → Bool,
< : T × T → Bool,
< : TI × TI → Bool

end

scheme DATE S =
class

type
D,
Day,
Month,
Year,
WD == mo | tu | we | th | fr | sa | su



value
obs Day : D → Day,
obs Month : D → Month,
obs Year : D → Year,
obs WeekDay : D → WD

end

scheme TIME DATE S =
extend TIME S, DATE S with
class

type DT = D × T

value
+ : DT × TI → DT,
+ : TI × DT → DT,
− : DT × TI → DT,
− : TI × TI → TI,
> : DT × DT → Bool,
< : DT × DT → Bool,

end

2.3 Trains and Assemblies

Narrative:
There are trains (TR) travelling in the

network from station to station. Each train
has a train number (TRNo) and a train name
(TRNa). Each train is composed of an or-
dered list of assemblies (A). In a real world
assembly can be composed of cars, but in
this task, the assembly is always the small-
est part of the train and can never be di-
vided into pieces.

Each assembly has its unique identifica-
tion number (AID). There is a kilometer dis-
tance, which each assembly has run in total
at certain time. There are several different
types of assemblies (AT) operated by railway
companies. These type could be passenger
or cargo car, diesel or electric engine, dou-
bledecker or sprinter unit, etc.

Since each train is a ordered list of as-
semblies, we can easily find out the position
(POS) of an assembly in a train. In our case,
we just distinguish, if an assembly is first,
last or properly internal. If the train is com-
posed of one assembly, then it is called solo.

There are some axioms: Each train is
composed of least one assembly (α5). Each
assembly has its unique identification num-
ber (α6).

Formal Model:

scheme TRAIN S =
extend TIME DATE S with
class

type
TR,
A,
TRNo,
TRNa,
AID,
AT == el loko | di loko | cargo car
POS == fir | mid | las | sol | non

value
obs TrnNa : TR → TRNa,
obs TrnNo : TR → TRNo,

obs Asml : TR → A∗ ,
obs AId : A → AID,
obs AType : A → AT,
obs Km : A × DT → KM,
Position : TR × A → POS
Position(trn, a) ≡

case obs Asml(trn) of
〈a〉 → sol
〈a〉 ̂ asl → fir
asl ̂ 〈a〉 → las
asl ̂ 〈a〉 ̂ asm′ → mid

→ non
end

axiom
(α5) ∀ trn : TR •

len obs Asml(trn) ≥ 1
(α6) ∀ a : A • ∼∃ a′ •

a 6= a′ ∧
obs AId(a) = obs AId(a′)

end

2.4 Traffic Schedule

Traffic schedules together with network
topologies and train descriptions are the
main inputs into our application.

Narrative
Each railway company which operates

trains needs to deal with schedules (SCH)
from which traffic schedule (TS) can be ex-
tracted. Traffic schedules assign journeies
(J) to each train number and date . A jour-
ney is a sequence of rides (R). A ride is com-
posed of departure time and station, arrival
time and station, and the train, that serves
the ride. Sequence of rides served always
by the same assembly is called an assembly
roster or an assembly plan (AP).

The function (APlan) extracts the as-
sembly plan for a given assembly identi-
fication from given traffic schedule and in
a given time interval. Function (AIDL) re-
turns a list of assembly identifications from
a given ride. Function (ActAsms) extracts
the set of assemblies which are active ac-
cording to a given traffic schedule in a given
time interval.

There are other axioms. Each traf-
fic schedule has at least one journey (α7).
In each ride, the arrival station is differ-
ent from the departure station and the ar-
rival time is “later” than the departure time
(α8). The train number is the same for all
rides of a journey. The arrival station of
any ride in a journey is equal to the depar-
ture station of the next ride in that journey
(α9).

Formal Model:

scheme SCHEDULE S =
extend TRAIN S with
class

type



SCH,
TS = TRNo →m (DT →m J),
J = R∗ ,
R = (DT × S) × (S × DT) × TR,
AP = R∗

value
obs TraSCH : SCH → TS,

APlan :
TS × AID × (DT × DT) → AP

APlan(ts, aid, (t, t′)) as rl post
∀ i : Nat • {i, i+1} ⊆ indx rl ⇒

aid ∈ elems AIDL(rl(i)) ∧
aid ∈ elems AIDL(rl(i+1)) ∧
{rl(i), rl(i+1)} ⊆ JSet(ts) ∧
DepS(rl(i+1)) = ArrS(rl(i)) ∧
t ≤ DeptT(rl(i)) <

DepT(rl(i+1)) ≤ t′,

AIDL : R → AID∗

AIDL(r) ≡
let( , , , , trn) = r,

a = obs Asml(trn) in
〈aid | aid in
〈obs AId(hd a)..obs AId(a(len a))〉〉
end

ActAsms : TS × (DT × DT) → A-set
ActAsms(ts, (t, t′)) ≡

{a | a : A •

len APlan(ts, a, (t, t′)) > 0},

JSet : TS → J-set,
JSet(ts) ≡

∪ {rng tn | tn : (DT →m J) •

tn ∈ rng ts}

DepS : R → S
DepS(r) ≡

let ( , s, , , ) = s in s end,

DepT : R → DT
DepT(r) ≡

let (t, , , , ) = r in t end,

ArrS : R → S
ArrS(r) ≡

let ( , , s, , ) = r in s end,

ArrT : R → DT
ArrT(r) ≡

let ( , , , t, ) = r in t end,

axiom
(α7) ∀ ts : TS • card JSet(ts) ≥ 1,
(α8) ∀ r : Ride •

let ((dt, ds), (ast, ast), ) = r
in ds 6= ad ∧ dst < ast end,

(α9) ∀ j : J, i : Nat •

{i, i+1} ∈ inds j ⇒
let (t1, , s, t2, trn) = j(i),

(t1′, s′, , t2′, trn′) = j(i+1)
in
obs TrnNa(trn)=obs TrnNa(trn′)∧
obs TrnNo(trn)=obs TrnNo(trn′) ∧

t1<t2≤t1′<t2′ ∧ s = s′

end
end

2.5 Maintenance

Narrative:
We extend the general model of rail-

way network. First we define different types

of maintenance (MT). Some possible mainte-
nance types can be:
Regular operation check. Each engine and
carriage — according to given rules and
safety regulations — must be checked regu-
larly. There is a limited number of stations
where this maintenance can be made (usu-
ally just one for each train type).
Inside cleaning is the most common mainte-
nance operation for passenger carriages. It
can be done at nearly every station, with-
out additional shunting demands and costs.
Outside cleaning is also common mainte-
nance, but usually not all stations in the
network have required equipment.
Diesel engine refuel and Water/sand/oil refill
are other examples of maintenance types.

We next define maintenance plans.
They, (MNTPLAN,) are lists of actions
(ACTION), which are temporally ordered.
These action could be: ‘Working Ride’
(WR), ‘Empty Ride’ (ER), and ‘Maintenance
Check’ (MNT).

Each assembly type has defined certain
maintenance types that have to be done
(REQMNT). There are also given upper lim-
its (MNTLIM) for each assembly and mainte-
nance type. These limits are given either
in or kilometer or in time intervals. Ac-
cording to the position of a given assem-
bly (in a train) and of its assembly type,
we can find out how difficult it is to ex-
change the assembly in the train with an-
other assembly of the same type (EXDIF).
Each station in the set has defined costs
(COST) and required time for each mainte-
nance type (MNTDUR).

For each assembly and maintenance
type one can observe where and when that
assembly was last maintained according to
that type. Different topologies and shunt-
ing possibilities of each station allow or does
not allow exchange of two assemblies within
certain time limits. This time need not be
the same for nights and for days.

The functions below are explained, ie.,
narrated, after their definition.

Formal Model:

extend SCHEDULE S with
class

type
IMP,
DIF,
COST,
MT ==

regular check | out clean |
in clean | diesel fuel,

ACTION == WR | ER | MNT,

WR = R,
ER = R,
MNT = DT × S × DT × MT,

MNTPLAN = ACTION∗ ,



REQMNT = AT →m MT-set,
MNTLIM =

(AT × MT) →m (TI | KMS)
MNTIMP = (AT × MT) →m IMP,
MNTDUR = AT →m (MT →m (S →m TI)),
EXDIF = (AT × POS) →m DIF

value
max imp : IMP,
req mnt : REQMNT,
mnt lim : MNTLIM,
mnt imp : MNTIMP,
mnt dur : MNTDUR,
exc dif : EXDIF,

obs LastMnt: A × MT → (TI|KMS),
obs MinExDTime: S × DT→ TI,
obs MinExNTime: S × DT → TI,

obs ExDCost: S × DT
∼

→ COST,

obs ExNCost: S × DT
∼

→ COST,

obs MntCost: N×AT×MT×S×DT
∼

→COST,

≤ : IMP × IMP → Bool,
≤ : DIF × DIF → Bool,

RemDist : A × MT × DT → KMS
RemDist(a, mt, t) ≡

obs LastMnt(a, mt) +

mnt lim(obs AType(a), mt) −
obs Km(a, t),

RemTime : A × MT × DT → TI
RemTime(a, mt, t) ≡

obs LastMnt(a, mt) +

mnt lim(obs AType(a), mt) − t,

MStas : N × AT × MT → Sta-set
MStas(n, at, mt) ≡

{s | s : Sta •

s ∈ obs Sta(n) ∧
s ∈ dom mnt dur(at)(mt)},

MTypes : N × S × AT → MT-set
MTypes(n, s, at) ≡

{mt | mt : MType •

mt ∈ dom mnt dur(at) ∧
s ∈ dom mnt dur(at)(mt) ∧
s ∈ MStas(n, at, mt)},

isMPos : N × AP × AT × MT → Bool
isMPos(n, p, at, mt) ≡

∃ s : S, i : Nat •

s ∈ MSta(n, at, mt) ∧
{i, i+1} ⊆ inds p ∧
s = ArrS(p(i)) ∧
ArrT(p(i)) +

mnt dur(at)(mt)(s) <

DepT(p(i+1)),

isInSta: AP × S × DT → Bool
isInSta(p, s, t) ≡

∃ i:Nat •

{i, i+1} ⊆ inds p ⇒
ArrT(p(i)) ≤ t ≤
DepT(p(i+1)) ∧
s = ArrS(p(i)) = DepS(p(i+1)),

DisToMS:

N × AP × AT × MT
∼

→ (TI|KMS)
DisToMS(n, p, at, mt) ≡

if DepS(hd p) ∈ MStas(n, at, mt)
then 0
else

RideDis(hd p) +

DisToMS(n, tl p, at, mt)
end,

MntUrg : A × MT × DT → IMP

MntUrg(a, mt, t) ≡
if RemDist(a, mt, t) ≤ 0
then max imp
else

mnt imp(obs AType(a), mt) /
RemDist(a, mt, t)

end

TMax : TS → DT
TMax(ts) as tmax post

∀ j : J, i : Nat •

j ∈ JSet(ts) ∧ i ∈ inds j ⇒
ArrT(j(i)) < tmax

axiom
(α10) ∀ i : IMP • i ≤ max imp,
(α11) ∀ n : N, at:AT •

∃ s : S, mt : MT ⇒
s ∈ obs S(n) ∧
mt ∈ MTypes(n, s, at) ∧
s ∈ MStas(n, at, mt),

(α12) ∀ at : AT, mt : MT •

mt ∈ req mnt(at) ⇒
0 < mnt imp(at, mt) ≤

max imp,
(α13) ∀ at : AT, mt : MT •

mt 6∈ req mnt(at) ⇒
mnt imp(at, mt) = 0,

(α14) ∀ at : AT •

exc dif(at, sol) ≤
exc dif(at, las) ≤
exc dif(at, fir) ≤
exc dif(at, mid),

end

We now explain the above planning
functions.

(RemDist) and (RemTime) calculate re-
maining distance to the maintenance of a
given type either in kilometers or in time
interval, for a given assembly at a given
time. (MStas) yields the set of stations that
are maintenance stations for a given assem-
bly and maintenance type, and in a given
network. (MTypes) yields all maintenance
types, which a given assembly can undergo
at a given station. (isMPos) checks if there
is a maintenance opportunity in a given
plan, for given assembly and maintenance
types. (isInSta) checks if, according to a
given plan, a given assembly is at a given
station and at a given time. (DisToMS)
espresses the “distance” to a maintenance
opportunity, in a given plan for a given as-
sembly and maintenance type. (MntUrg) ex-
presses the importance of undergoing main-
tenance of a given type at a given time for
a given assembly. (TMax) espresses the total
time horizon of a given traffic schedule.

3. PLANNING

Every day, last-moment changes and up-
dates must be applied to the previously
planned rolling stock roster. In this section
we describe two basic functions for rolling
stock maintenance routing: Generation of



changes to a rolling stock roster and applica-
tion of changes to a roster.

3.1 Generation of Rolling Stock
Roster Changes

Given a rolling stock roster and a net we
can express sets of necessary rolling stock
roster changes. An example of rolling stock
roster for several consecutive days is shown
in figure 1.

Fig. 1: The Original Plan

Each change set is composed from three dif-
ferent types of changes. They are called:
Day Change, Night Change and Empty Ride.

Day Change is composed of two assemblies,
of a station and a time, where and when the
interchange between these two assemblies
takes place. Day change may occur when
the first assembly is an ‘urgent’ assembly
(needs to undergo maintenance check in
couple of days) and the second assembly
has a maintenance station in the plan, and
when both assemblies are in the same sta-
tion at the same time, during a day time,
and there is enough time to interchange
them.

In Figure 2 assembly C is exchanged at
station 1 with assembly G — designated,
thus, to reach the maintenance station in

two days.

Fig. 2: Example of ‘Day Change’

Night Change is quite similar to the day
change. The main difference is in the time
when this change is applied. Night changes
may occur when the first assembly is an
‘urgent’ assembly and the second assembly
has a maintenance station in the plan, and
when both assemblies are in the same de-
pot or station during the same night. It
is the least expensive way in which to add
maintenance into the assembly plan.

In Figure 3 assembly D is exchanged at
station 3 with assembly G — designated,
thus, to reach the maintenance station the
second night.

Fig. 3. Example of ‘Night Change’

Empty Ride is the last possible change that
can be applied to the rolling stock roster.
This change must be applied, when there is
no day or night change possible (ie., when
there is no such situation in the rolling
stock roster where two assemblies are in the
same station and time during their opera-
tions). In that case, two additional rides
have to be added into the plan. An ‘Empty
Ride’ is composed of two assemblies and
two additional rides for these assemblies. In



general, an ‘Empty Ride’ is always possible,
but it has the highest cost.

In Figure 4 assembly B is routed from
station 2 to station 3 and assembly G in
opposite direction.

Fig. 4. Example of Empty Ride

Formal model:

scheme CHANGES S =
extend MAINTENANCE S
class

type
C == DC | NC | ER
DC == mkDC(a1:A,a2:A,t:DT,s:S)
NC == mkNC(a1:A,a2:A,t:DT,s:S)
ER == mkER(a1:A,a2:A,r1:R,r2:R)
CS = C-set

value
NPlan:

TS × C × (DT × DT) → A
NPlan(ts,c,(t,t′)) ≡

APlan(ts,UAID(c),(t,CT(c)))
̂APlan(ts,SAID(c),(CT(c),t′))

UAID: C → AID
UAID(c) ≡
case c of

mkDC(a, , , ) → obs AsmID(a),
mkNC(a, , , ) → obs AsmID(a),
mkER(a, , , ) → obs AsmID(a)

end

SAID: C → AID
SAID(c) ≡
case c of

mkDC( ,a, , ) → obs AsmID(a),
mkNC( ,a, ) → obs AsmID(a),
mkER( ,a, , ) → obs AsmID(a)

end

CT: C → DT
CT(c) ≡
case c of

mkDC( , ,t, ) → t,
mkNC( , ,t, ) → t,
mkER( , ,r, ) →

let (( , ),( ,t), )=r
in t end

end

CS: C → S
CS(c) ≡
case c of

mkDC( , , ,s) → s,
mkNC( , , ,s) → s,

mkER( , ,r, ) →
let (( ,s),( , ), )=r
in s end

end

MinExT: C → TI
MinExT(c) ≡
case c of

mkDC( ,t,s) →
obs MinExDTime(s,t)

mkNC( , ,t,s) →
obs MinExNTime(s,t)

mkER( , ,r, ) →
let (( ,s),( ,t), ) = r
in obs MinExDTime(s,t)
end

end
end

3.2 Generating changes

We now present the main function of this
paper: (gen Changes). This function ex-
presses all possible sets of changes from a
given net, traffic schedule and planning pe-
riod. These change sets are limited by sev-
eral constraints (ie., post conditions). All
changes which are in the generated set must
be possible, necessary and sufficient.

The ‘possible’ condition checks whether
two assemblies are of the same type and
whether these two assemblies are active as-
semblies in a given time period. Then it is
checked if it is a case that both assemblies
are in the same station at the same time
for a long enough period according to their
plans.

The change is ‘necessary’ when remain-
ing distance to becomin an ‘urgent’ assem-
bly is smaller than the distance to the main-
tenance station in the plan of this assembly.

The ‘sufficiency’ condition checks if an
‘urgent assembly’ can arrive at its mainte-
nance station before exceeding its (time or
kilometer) limit according to the new plan.

scheme PLANNING S =
extend CHANGES S
class

type
value

gen Chgs: N×TS×(DT×DT)
∼

→CS-set
gen Chgs(n, ts, (t, t′)) as css
pre

∃ a : A, mt : MT •

DisToMS(APlan(ts, obs AID(a),
(t, t′)), obs AType(a), mt)
> RemDis(a, mt, t)

post
∀ cs : CS, c : C • c
∈ cs ∧ cs ∈ css
⇒ isPossible(ts, c, (t, t′)) ∧

isNecessary(ts, c, (t, t′)) ∧
isSufficient(ts, c, (t, t′))

isPossible:
TS × C × (DT×DT) → Bool

isPossible(ts, c, (t, t′)) ≡
obs AType(UA(c)) =

obs AType(SA(c)) ∧
{UA(c), SA(c)} ⊆



ActAsms(ts, (t, t′)) ∧
MntUrg(UA(c), mt, t′) >

MntUrg(SA(c), mt, t′) ∧
isInSta(APlan(ts, UAID(c),

(t, t′)), CS(c), CT(c)) ∧
isInSta(APlan(ts, UAID(c),

(t, t′)), CS(c), CT(c) +

MinExTU(c)) ∧
isInSta(APlan(ts, SAID(c),

(t, t′)), CS(c), CT(c)) ∧
isInSta(APlan(ts, SAID(c),

(t, t′)), CS(c), CT(c) +

MinExTU(c)),

isNecessary:
TS × C × (DT×DT) → Bool

isNecessary(ts, c, (t, t′)) ≡
∃ mt: M •

DisToMS(APlan(ts,
UAID(c), (t, t′)),
obs AType(UA(a)), mt) >

RemaDist(a, mt, t),

isSufficient:
TS × C × (DT×DT) → Bool

isSufficient(ts, c, (t, t′)) ≡
∀ mt: MT •

mt ∈ req mnt(obs AType(a))
⇒
DisToMS(NPlan(ts, c, (t, t′)),
obs AsmType(UA(c)), mt) ≤
RemaDist(UA(c), mt, t)

end

3.3 Applying changes

Once a day, specified changes are applied to
the rolling stock roster traffic schedule. We
get a new traffic schedule, which is used as
an input to next day’s operations. There
can be only one difference between the old
and the new traffic schedule: some trains in
the new schedule can be served by different
assemblies of the same type. That means,
that assembly plans are modified as shown
on Figure 5.

Fig. 5: Plan modification

The correct solution is when all as-
semblies which require maintenance in the
given period, after application of calcu-
lated changes in the new traffic schedule
can reach the maintenance station in the
remaining distance.

scheme UPDATE S =

extend PLANNING S
class

value
AppChgs: TS×CS×(DT×DT)→TS
AppChgs(ts, cs, (t, t′)) as ts′

post
∀ c: C • c ∈ cs ⇒
let aid1 = UAID(c),

aid2 = SAID(c)
in

APlan(ts, aid1, (t, CT(c))) ̂
APlan(ts, aid2, (CT(c), t′)) =

APlan(ts′, aid1, (t, t′))
∧
APlan(ts, aid2, (t, CT(c))) ̂
APlan(ts, aid1, (CT(c), t′)) =

APlan(ts′, aid2, (t, t′))
end
∧
∀ a: A, mt: MT, cs: CS •

a ∈ ActAsms(ts, (t, t′)) ∧
mt ∈ req mnt(obs AType(a)) ∧
MntUrgency(a, mt, t) > 0 ⇒

∃ c: C •

c ∈ cs ∧ a = UA(c) ∧
DisToMS(APlan(ts′,

obs AId(a), (t, t′)),
obs AType(a),mt) ≤

RemDis(a, mt, t)
end

4. SUMMARY

A formal model of maintenance routing
have been shown. The task was divided into
two basic steps:

• generation of possible, necessary and
sufficient changes of the traffic sched-
ule

• application of these changes to the
traffic schedule

We emphasize that we formally char-
acterized schedules, assembly plans and
changes in the plan to meet maintenance
demands. On the basis of such formal
space software we can now prescribe re-
quirements.

In the future, this formal approach, we
claim, should lead to deeper, better and
easier integration of all railway optimiza-
tion applications in all the tasks of railway
planning, monitoring and control processes.

5. BIBLIOGRAPHY

We refer to two papers in these proceedings:
(Strupchanska et al., 2003) and (Bjørner,
2003). In (Strupchanska et al., 2003) a
model, very much along the lines of the
present paper, is presented of (what ul-
timately becomes an operations research
problem, namely) train staff (ie., crew)



rostering. In (Bjørner, 2003) arguments
are presented for developing software from
domain descriptions, as here, via require-
ments, to software design.
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