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Abstract

2

This is Part I of a two-part paper. The present part first brings an example narrative
+ formalisation of a domain, that is, of a part of some real, man-made world — in this
case a world of pipelines, whether oil or gas. Then we characterise some engineering
and societal aspects of domains. In this part we wish to advocate (i) that schools,
institutes and departments of computer science, software engineering, informatics,
cybernetics, and the like, re-orient themselves along two lines: (i.1) more emphasis

on teaching programming and software engineering based on formal methods; and
(i.2) more emphasis on research into formal methods for the trustworthy develop-
ment of software that meets customers’ expectations and is correct, that is, the right
software and that the software is right. We also wish to advocate (ii) that the con- 3

cepts of domain science and domain engineering become an indispensable part of
the science of informatics and of software engineering. And we finally wish to ad- 4

vocate (iii) that informatics research centers embark on path-finder projects which
research and experimentally develop domain models for infra-structure components,
for example, (iii.1) financial service industries (banks, stock exchanges, etc.), (iii.2)
health-care (hospitals, clinics, private physicians, etc.) (iii.3) pipeline systems (oil,
gas), (iii.4) transportation (such as railways, shipping, air traffic, etc.). In part II of
the paper we explore the possibilities of of establishing a “domain science’.
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1 Introduction 5

The background postulates of this paper are the following: (i) half a century of computer
science research may very well have improved our understanding of computing devices (au-
tomata etc.), but it has yet to contribute significantly to the quality of software products;
(ii) our students, the future leading software engineers, those of them who go into industry
rather than “remaining” in academia, are being mislead by too many foundational courses
to believe that these are relevant for the practice of software engineering; (iii) a significant6

re-orientation of university teaching and research into both ‘computer science’ and software
engineering must occur if we are to improve the relevance of ‘computer science’ to software
engineering. In this paper we shall, unabashedly, suggest the kind of re-orientation that
we think will rectify the situation alluded to in Items (i–iii).

1.1 Some Definitions of Informatics Topics 7

Let us first delineate our field of study. It first focuses on computer science, computing

science, software and software engineering.8
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From Computer Science to The Sciences of Informatics 3

Definition 1 – Computer Science: By computer science we shall understand the study
and knowledge of the properties of the ‘things’ that can ‘exist’ inside computers: data and
processes.

Examples of computer science disciplines are: automata theory (studying automata [finite
or otherwise] and state machines [without or with stacks]), formal languages (studying,
mostly the syntactic the “foundations” and “recognisability” of abstractions of of computer
programming and other “such” languages), complexity theory, type theory, etc. 9

Some may take exception to the term ‘things’1 used in the above and below definition.
They will say that it is imprecise. That using the germ conjures some form of reliance on
Plato’s Idealism, on his Theory of Forms. That is, “that it is of Platonic style, and thus,

is disputable. One could avoid this by saying that these definitions are just informal rough

explanations of the field of study and further considerations will lead to more exact defi-

nitions.”2 Well, it may be so. It is at least a conscious attempt, from this very beginning,
to call into dispute and discuss “those things”. Part II of this paper (“A Specification
Ontology and Epistemology”) has as one of its purposes to encircle the problem. 10

Definition 2 – Computing Science: By computing science we shall understand the
study and knowledge of the how to construct the ‘things’ that can ‘exist’ inside computers:
the software and its data.

Conventional examples of computing science disciplines are: algorithm design, imperative
programming, functional programming, logic programming, parallel programming, etc. To
these we shall add a few in this paper. 11

Definition 3 – Software: By software we shall understand not only the code intended for
computer execution, but also its use, i.e., programmer manuals: installation, education, user
and other guidance documents, as well all as its development documents: domain models,
requirements models, software designs, tests suites, etc. “zillions upon zillions” of documents.

12

The fragment description of the example Pipeline System of this paper exhibits, but a tiny
part of a domain model.

Definition 4 – Software Engineering: By software engineering we shall understand the
methods (analysis and construction principles, techniques and tools) needed to carry out, man-
age and evaluate software development projects as well as software product marketing, sales
and service — whether these includes only domain engineering, or requirements engineering, or
software design, or the first two, the last two or all three of these phases. Software engineering,
besides documents for all of the above, also includes all auxiliary project information, stake-
holder notes, acquisition units, analysis, terminology, verification, model-checking, testing, etc.
documents

1and also to the term ‘exist’.
2Cf. personal communication, 12 Feb., 2010, with Prof. Mikula Nikitchenko, Head of the Chair of

Programming Theory of Shevchenko Kyiv National University, Ukraine
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4 Domain Science & Engineering

1.2 The Triptych Dogma 13

Dogma 1 – Triptych: By the triptych dogma we shall understand a dogma which insists
on the following: Before software can be designed one must have a robust understanding of its
requirements; and before requirements can be prescribed one must have a robust understanding
of their domain.

14

Dogma 2 – Triptych Development: By triptych development we shall understand a
software development process which starts with one or more stages of domain engineering
whose objective it is to construct a domain description, which proceeds to one or more stages
of requirements engineering whose objective it is to construct a requirements prescription, and
which ends with one or more stages of software design whose aim it is to construct the software.

1.3 Structure of This Paper 15

In Sect. 2 we present a non-trivial example. It shall serve to illustrate the new concepts
of domain engineering, domain description and domain model. In Sect. 3 we shall then
discuss ramifications of the triptych dogma. Then we shall follow-up, in Part II of this
paper, on what we have advocated above, namely a beginning discussion of our logical and
linguistic means for description, of “the kind of ‘things’ that can ‘exists’ or the things (say
in the domain, i.e., “real world”) that they reflect”.

2 Example: A Pipeline System 16

The example is to be read “hastily”. That is, emphasis, by the reader, should be on
the narrative, that is, on conveying what a domain model describes, rather than on the
formulas.

The example is that of domain modelling an pipeline system Figure 1 on the facing
page show the planned Nabucco pipeline system.17

2.1 Pipeline Basics 18

Figure 2 on page 6 conceptualises an example pipeline. Emphasis is on showing a pipeline
net consisting of units and connectors (•).19

These are some non-temporal aspects of pipelines. nets and units: wells, pumps, pipes,
valves, joins, forks and sinks; net and unit attributes; and units states, but not state
changes. We omit consideration of “pigs” and “pig”-insertion and “pig”-extraction units.20

Pipeline Nets and Units:

1. We focus on nets, n : N , of pipes, π : Π, valves,
v : V , pumps, p : P , forks, f : F , joins, j : J ,
wells, w : W and sinks, s : S.

2. Units, u : U , are either pipes, valves, pumps,
forks, joins, wells or sinks.

3. Units are explained in terms of disjoint types

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00



From Computer Science to The Sciences of Informatics 5

Figure 1: The Planned Nabucco Pipeline: http://en.wikipedia.org/wiki/Nabucco Pipeline

of PIpes, VAlves, PUmps, FOrks, JOins, WElls
and SKs.

type

1 N, PI, VA, PU, FO, JO, WE, SK
2 U = Π | V | P | F | J | S| W
2 Π == mkΠ(pi:PI)

2 V == mkV(va:VA)
2 P == mkP(pu:PU)
2 F == mkF(fo:FO)
2 J == mkJ(jo:JO)
2 W == mkW(we:WE)
2 S == mkS(sk:SK)

Unique Identifiers:

4. We associate with each unit a unique identifier,
ui : UI.

5. From a unit we can observe its unique identifier.

6. From a unit we can observe whether it is a pipe,
a valve, a pump, a fork, a join, a well or a sink
unit.

type

4 UI
value

5 obs UI: U → UI
6 is Π: U → Bool

is Π(u) ≡
case u of mkPI( )→true, →false end

6 is V: U → Bool

is V(u) ≡
case u of mkV( )→true, →false end

6 ...

6 is S: U → Bool

is S(u) ≡
case u of mkS( )→true, →false end

A connection is a means of juxtaposing units. A connection may connect two units in
which case one can observe the identity of connected units from “the other side”.

Pipe Unit Connectors:

7. With a pipe, a valve and a pump we associate
exactly one input and one output connection.

8. With a fork we associate a maximum number
of output connections, m, larger than one.

9. With a join we associate a maximum number
of input connections, m, larger than one.

10. With a well we associate zero input connections
and exactly one output connection.

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



6 Domain Science & Engineering

Pump

Valve
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Oil (Depot) Sink

Figure 2: An oil pipeline system

11. With a sink we associate exactly one input con-
nection and zero output connections.

value

7 obs InCs,obs OutCs: Π|V|P → {|1:Nat|}
8 obs inCs: F → {|1:Nat|}
8 obs outCs: F → Nat

9 obs inCs: J → Nat

9 obs outCs: J → {|1:Nat|}
10 obs inCs: W → {|0:Nat|}
10 obs outCs: W → {|1:Nat|}
11 obs inCs: S → {|1:Nat|}
11 obs outCs: S → {|0:Nat|}

axiom

8 ∀ f:F • obs outCs(f) ≥ 2
9 ∀ j:J • obs inCs(j) ≥ 2

If a pipe, valve or pump unit is input-connected [output-connected] to zero (other) units,
then it means that the unit input [output] connector has been sealed. If a fork is input-
connected to zero (other) units, then it means that the fork input connector has been
sealed. If a fork is output-connected to n units less than the maximum fork-connectability,
then it means that the unconnected fork outputs have been sealed. Similarly for joins:
“the other way around”.

Observers and Connections:

12. From a net one can observe all its units.

13. From a unit one can observe the the pairs of
disjoint input and output units to which it is
connected:

a) Wells can be connected to zero or one
output unit — a pump.

b) Sinks can be connected to zero or one
input unit — a pump or a valve.

c) Pipes, valves and pumps can be con-
nected to zero or one input units and to
zero or one output units.

d) Forks, f , can be connected to zero or
one input unit and to zero or n, 2 ≤
n ≤obs Cs(f) output units.

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00



From Computer Science to The Sciences of Informatics 7

e) Joins, j, can be connected to zero or n,

2 ≤ n ≤obs Cs(j) input units and zero
or one output units.

value

12 obs Us: N → U-set

13 obs cUIs: U → UI-set × UI-set
wf Conns: U → Bool

wf Conns(u) ≡
let (iuis,ouis)=obs cUIs(u) in

iuis ∩ ouis={}∧
case u of

13a mkW( ) →
card iuis ∈{0}∧card ouis ∈{0,1},

13b mkS( ) →

card iuis ∈{0,1}∧card ouis ∈{0},
13c mkΠ( ) →

card iuis ∈{0,1}∧card ouis ∈{0,1},
13c mkV( ) →

card iuis ∈{0,1}∧card ouis ∈{0,1},
13c mkP( ) →

card iuis ∈{0,1}∧card ouis ∈{0,1},
13d mkF( ) →

card iuis ∈{0,1}∧
card ouis ∈{0}∪{2..obs inCs(j)},

13e mkJ( ) →
card iuis ∈{0}∪{2..obs inCs(j)}∧
card ouis ∈{0,1}

end end

26

Wellformedness:

14. The unit identifiers observed by the obs cUIs
observer must be identifiers of units of the net.

axiom

14 ∀ n:N,u:U • u ∈ obs Us(n) ⇒

14 let (iuis,ouis) = obs cUIs(u) in

14 ∀ ui:UI • ui ∈ iuis ∪ ouis ⇒
14 ∃ u′:U •

14 u′ ∈ obs Us(n)∧u′6=u∧obs UI(u′)=ui
14 end

2.2 Routes 27

Routes:

15. By a route we shall understand a sequence of
units.

16. Units form routes of the net.

type

15 R = UIω

value

16 routes: N → R-infset

16 routes(n) ≡
16 let us = obs Us(n) in

16 let rs = {〈u〉|u:U•u ∈ us}
16 ∪ {r̂r′|r,r′:R• {r,r′}⊆rs∧adj(r,r′)} in

16 rs end end

28

Adjacent Routes:

17. A route of length two or more can be decom-
posed into two routes

18. such that the last unit of the first route “con-
nects” to the first unit of the second route.

value

17 adj: R × R → Bool

17 adj(fr,lr) ≡
17 let (lu,fu)=(fr(len fr),hd lr) in

18 let (lui,fui)=(obs UI(lu),obs UI(fu)) in

18 let (( ,luis),(fuis, )) =
18 (obs cUIs(lu),obs cUIs(fu)) in

18 lui ∈ fuis ∧ fui ∈ luis end end end

29

No Circular Routes:

March 13, 2010, 00:00, Ukraine May 2010 c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark



8 Domain Science & Engineering

19. No route must be circular, that is, the net must
be acyclic.

value

19 acyclic: N → Bool

19 let rs = routes(n) in

19 ∼∃ r:R•r ∈ rs ⇒
19 ∃ i,j:Nat•{i,j}⊆inds r∧
19 i 6=j∧r(i)=r(j) end

30

Wellformed Nets, Special Pairs, wfN SP:

20. We define a “special-pairs” well-formedness
function.

a) Fork outputs are output-connected to
valves.

b) Join inputs are input-connected to valves.

c) Wells are output-connected to pumps.

d) Sinks are input-connected to either
pumps or valves.

value

20 wfN SP: N → Bool

20 wfN SP(n) ≡
20 ∀ r:R • r ∈ routes(n) in

20 ∀ i:Nat • {i,i+1}⊆inds r ⇒
20 case r(i) of

20a mkF( ) → ∀ u:U•adj(〈r(i)〉,〈u〉)
20a ⇒ is V(u),
20a →true end ∧
20 case r(i+1) of

20b mkJ( ) → ∀ u:U•adj(〈u〉,〈r(i)〉)
20b ⇒ is V(u),
20b →true end ∧
20 case r(1) of

20c mkW( ) → is P(r(2)),
20c →true end ∧
20 case r(len r) of

20d mkS( ) → is P(r(len r−1))
20d ∨ is V(r(len r−1)),
20d →true end

The true clauses may be negated by other case dis-
tinctions’ is V or is V clauses.

2.2.1 Special Routes, I 31

21. A pump-pump route is a route of length two or more whose first and last units are
pumps and whose intermediate units are pipes or forks or joins.

22. A simple pump-pump route is a pump-pump route with no forks and joins.

23. A pump-valve route is a route of length two or more whose first unit is a pump,
whose last unit is a valve and whose intermediate units are pipes or forks or joins.

24. A simple pump-valve route is a pump-valve route with no forks and joins.

25. A valve-pump route is a route of length two or more whose first unit is a valve, whose
last unit is a pump and whose intermediate units are pipes or forks or joins.

26. A simple valve-pump route is a valve-pump route with no forks and joins.

27. A valve-valve route is a route of length two or more whose first and last units are
valves and whose intermediate units are pipes or forks or joins.

28. A simple valve-valve route is a valve-valve route with no forks and joins.

32
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From Computer Science to The Sciences of Informatics 9

value
21-28 ppr,sppr,pvr,spvr,vpr,svpr,vvr,svvr: R → Bool

pre {ppr,sppr,pvr,spvr,vpr,svpr,vvr,svvr}(n): len n≥2

21 ppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is P(fu) ∧ is P(lu) ∧ is πfjr(ℓ)
22 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)
23 pvr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is P(fu) ∧ is V(r(len r)) ∧ is πfjr(ℓ)
24 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)
25 vpr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is V(fu) ∧ is P(lu) ∧ is πfjr(ℓ)
26 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)
27 vvr(r:〈fu〉̂ℓ̂〈lu〉) ≡ is V(fu) ∧ is V(lu) ∧ is πfjr(ℓ)
28 sppr(r:〈fu〉̂ℓ̂〈lu〉) ≡ ppr(r) ∧ is πr(ℓ)

is πfjr,is πr: R → Bool
is πfjr(r) ≡ ∀ u:U•u ∈ elems r⇒is Π(u)∨is F(u)∨is J(u)
is πr(r) ≡ ∀ u:U•u ∈ elems r⇒is Π(u)

2.2.2 Special Routes, II 33

Given a unit of a route,

29. if they exist (∃),

30. find the nearest pump or valve unit,

31. “upstream” and

32. “downstream” from the given unit.
34

value
29 ∃UpPoV: U × R → Bool
29 ∃DoPoV: U × R → Bool

31 find UpPoV: U × R
∼

→ (P|V), pre find UpPoV(u,r): ∃UpPoV(u,r)

32 find DoPoV: U × R
∼

→ (P|V), pre find DoPoV(u,r): ∃DoPoV(u,r)
29 ∃UpPoV(u,r) ≡
29 ∃ i,j Nat•{i,j}⊆inds r∧i≤j∧{is V|is P}(r(i))∧u=r(j)
29 ∃DoPoV(u,r) ≡
29 ∃ i,j Nat•{i,j}⊆inds r∧i≤j∧u=r(i)∧{is V|is P}(r(j))
31 find UpPoV(u,r) ≡
31 let i,j:Nat•{i,j}⊆indsr∧i≤j∧{is V|is P}(r(i))∧u=r(j) in r(i) end
32 find DoPoV(u,r) ≡
32 let i,j:Nat•{i,j}⊆indsr∧i≤j∧u=r(i)∧
32 {is V|is P}(r(j))
32 in r(j) end
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10 Domain Science & Engineering

2.3 State Attributes of Pipeline Units 35

By a state attribute of a unit we mean either of the following three kinds: (i) the open/close
states of valves and the pumping/not pumping states of pumps; (ii) the maximum (laminar)
oil flow characteristics of all units; and (iii) the current oil flow and current oil leak states
of all units.36

Unit Attributes:

33. Oil flow, φ : Φ, is measured in volume per time
unit.

34. Pumps are either pumping or not pumping, and
if not pumping they are closed.

35. Valves are either open or closed.

36. Any unit permits a maximum input flow of oil
while maintaining laminar flow. We shall as-
sume that we need not be concerned with tur-
bulent flows.

37. At any time any unit is sustaining a current in-
put flow of oil (at its input(s)).

38. While sustaining (even a zero) current input
flow of oil a unit leaks a current amount of oil
(within the unit).

type

33 Φ
34 PΣ == pumping | not pumping

34 VΣ == open | closed
value

−,+: Φ × Φ → Φ,
<,=,>: Φ × Φ → Bool

34 obs PΣ: P → PΣ
35 obs VΣ: V → VΣ
36–38 obs LamiΦ.obs CurrΦ,obs LeakΦ: U → Φ
is Open: U → Bool

case u of

mkΠ( )→true,
mkF( )→true,
mkJ( )→true,
mkW( )→true,
mkS( )→true,
mkP( )→obs PΣ(u)=pumping,
mkV( )→obs VΣ(u)=open

end

accept LeakΦ,excess LeakΦ: U → Φ
axiom

∀ u:U • excess LeakΦ(u) > accept LeakΦ(u)

37

The sum of the current flows into a unit equals the the sum of the current flows out of
a unit minus the (current) leak of that unit. This is the same as the current flows out of a
unit equals the current flows into a unit minus the (current) leak of that unit. The above
represents an interpretation which justifies the below laws.38

Flow Laws (I):

39. When, in Item 37, for a unit u, we say that
at any time any unit is sustaining a current in-
put flow of oil, and when we model that by
obs CurrΦ(u) then we mean that obs CurrΦ(u)
- obs LeakΦ(u) represents the flow of oil from
its outputs.

value

39 obs inΦ: U → Φ
39 obs inΦ(u) ≡ obs CurrΦ(u)
39 obs outΦ: U → Φ

law:

39 ∀ u:U • obs outΦ(u) =
39 obs CurrΦ(u)−obs LeakΦ(u)

39

Flow Laws (II):
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40. Two connected units enjoy the following flow
relation, if

a) two pipes, or

b) a pipe and a valve, or

c) a valve and a pipe, or

d) a valve and a valve, or

e) a pipe and a pump, or

f) a pump and a pipe, or

g) a pump and a pump, or

h) a pump and a valve, or

i) a valve and a pump

are immediately connected

41. then

a) the current flow out of the first unit’s con-
nection to the second unit

b) equals the current flow into the second
unit’s connection to the first unit

law:

40 ∀ u,u′:U •

40 {is Π,is V,is P,is W}(u′|u′′)
40 ∧ adj(〈u〉,〈u′〉)
40 ∧ is Π(u)∨is V(u)∨is P(u)∨is W(u)
40 ∧ is Π(u′)∨is V(u′)∨is P(u′)∨is S(u′)
41 ⇒ obs outΦ(u)=obs inΦ(u′)

40

A similar law can be established for forks and joins. For a fork output-connected to,
for example, pipes, valves and pumps, it is the case that for each fork output the out-
flow equals the in-flow for that output-connected unit. For a join input-connected to, for
example, pipes, valves and pumps, it is the case that for each join input the in-flow equals
the out-flow for that input-connected unit. We leave the formalisation as an exercise.

2.4 Pipeline Actions 41

Simple Pump and Valve Actions:

42. Pumps may be set to pumping or reset to not
pumping irrespective of the pump state.

43. Valves may be set to be open or to be closed
irrespective of the valve state.

44. In setting or resetting a pump or a valve a de-
sirable property may be lost.

value

42 to pump, to not pump: P→N→N
43 vlv to op, vlv to clo: V→N→N
42 to pump(p)(n) as n′

42 pre p ∈ obs Us(n)
42 post let p′:P•obs UI(p)=obs UI(p′) in

42 obs PΣ(p′)=pumping
42 ∧ else equal(n,n′)(p,p′) end

42 to not pump(p)(n) as n′

42 pre p ∈ obs Us(n)
42 post let p′:P•obs UI(p)=obs UI(p′) in

42 obs PΣ(p′)=not pumping
42 ∧ else equal(n,n′)(p,p′) end

43 vlv to op(v)(n) as n′

42 pre v ∈ obs Us(n)
43 post let v′:V•obs UI(v)=obs UI(v′) in

42 obs VΣ(v′)=open
42 ∧ else equal(n,n′)(v,v′) end

43 vlv to clo(v)(n) as n′

42 pre v ∈ obs Us(n)
43 post let v′:V•obs UI(v)=obs UI(v′) in

42 obs VΣ(v′)=close
42 ∧ else equal(n,n′)(v,v′) end

else equal: (N×N) → (U×U) → Bool

else equal(n,n′)(u,u′) ≡
obs UI(u)=obs UI(u′)

∧ u ∈ obs Us(n) ∧ u′ ∈ obs Us(n′)
∧ omit Σ(u) = omit Σ(u′)
∧ obs Us(n)\{u} = obs Us(n) \ {u′}
∧ ∀ u′′:U•u′′ ∈ obs Us(n)\{u}

≡ u′′ ∈ obs Us(n′) \ {u′}
omit Σ: U → Uno state — ”magic” function
=: Uno state × Uno state → Bool

axiom

∀ u,u′:U•omit Σ(u)=omit Σ(u′)
≡ obs UI(u)=obs UI(u′)
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42

Unit Handling Events:

45. Let n be any acyclic net.

45. If there exists p, p′, v, v′, pairs of distinct pumps
and distinct valves of the net,

45. and if there exists a route, r, of length two or
more of the net such that

46. all units, u, of the route, except its first and last
unit, are pipes, then

47. if the route “spans” between p and p′ and the
simple desirable property, sppr(r), does not hold
for the route, then we have a possibly undesir-
able event — that occurred as soon as sppr(r)
did not hold;

48. if the route “spans” between p and v and the
simple desirable property, spvr(r), does not hold
for the route, then we have a possibly undesir-
able event;

49. if the route “spans” between v and p and the
simple desirable property, svpr(r), does not hold
for the route, then we have a possibly undesir-
able event; and

50. if the route “spans” between v and v′ and the
simple desirable property, svvr(r), does not hold
for the route, then we have a possibly undesir-
able event.

events:

45 ∀ n:N • acyclic(n) ∧
45 ∃ p,p′:P,v,v′:V • {p,p′,v,v′}⊆obs Us(n)⇒
45 ∧ ∃ r:R • r ∈ routes(n) ∧
46 ∀ u:U•u ∈ elems(r)\{hd r,r(len r)}⇒
47 is Π(i) ⇒
47 p=hd r∧p′=r(len r) ⇒ ∼sppr prop(r) ∧
48 p=hd r∧v=r(len r) ⇒ ∼spvr prop(r) ∧
49 v=hd r∧p=r(len r) ⇒ ∼svpr prop(r) ∧
50 v=hd r∧v′=r(len r) ⇒ ∼svvr prop(r)

43

Wellformed Operational Nets:

51. A well-formed operational net

52. is a well-formed net

a) with at least one well, w, and at least one
sink, s,

b) and such that there is a route in the net
between w and s.

value

51 wf OpN: N → Bool

51 wf OpN(n) ≡
52 satisfies axiom 14 on page 7
52 ∧ acyclic(n): Item 19 on page 8
52 ∧ wfN SP(n): Item 20 on page 8
52 ∧ satisfies 39 on page 10 and 40 on the preceding page
52a ∧ ∃ w:W,s:S • {w,s}⊆obs Us(n)
52b ⇒ ∃ r:R• 〈w〉̂r̂〈s〉 ∈ routes(n)

44

Initial Operational Net:

53. Let us assume a notion of an initial operational
net.

54. Its pump and valve units are in the following
states

a) all pumps are not pumping, and

b) all valves are closed.

value

53 initial OpN: N → Bool

54 initial OpN(n) ≡ wf OpN(n) ∧
54a ∀ p:P • p ∈ obs Us(n) ⇒ obs PΣ(p)=not pumping ∧
54b ∀ v:V • v ∈ obs Us(n) ⇒ obs VΣ(p)=closed

45

Oil Pipeline Preparation and Engagement:
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55. We now wish to prepare a pipeline from some
well, w : W , to some sink, s : S, for flow.

a) We assume that the underlying net is op-
erational wrt. w and s, that is, that there
is a route, r, from w to s.

b) Now, an orderly action sequence for en-
gaging route r is to “work backwards”,
from s to w

c) setting encountered pumps to pumping
and valves to open.

In this way the system is well-formed wrt. the desirable
sppr, spvr, svpr and svvr properties. Finally, setting
the pump adjacent to the (preceding) well starts the
system.

value

55 prepare and engage: W × S → N
∼

→ N
55 prepare and engage(w,s)(n) ≡
55a let r:R • 〈w〉̂r̂〈s〉 ∈ routes(n) in

55b act seq(〈w〉̂r̂〈s〉)(len〈w〉̂r̂〈s〉)(n) end

55 pre ∃ r:R • 〈w〉̂r̂〈s〉 ∈ routes(n)
55c act seq: R → Nat → N → N
55c act seq(r)(i)(n) ≡
55c if i=1 then n else

55c case r(i) of

55c mkV( )→
55c act seq(r)(i−1)(vlv to op(r(i))(n)),
55c mkP( )→
55c act seq(r)(i−1)(to pump(r(i))(n)),
55c →act seq(r)(i−1)(n)
55c end end

2.5 Connectors 46

The interface , that is, the possible “openings”, between adjacent units have not been
explored. Likewise the for the possible “openings” of “begin” or “end” units, that is, units
not having their input(s), respectively their “output(s)” connected to anything, but left
“exposed” to the environment. We now introduce a notion of connectors: abstractly you
may think of connectors as concepts, and concretely as “fittings” with bolts and nuts, or
“weldings”, or “plates” inserted onto “begin” or “end” units. 47

Connectors:

56. There are connectors and connectors have
unique connector identifiers.

57. From a connector one can observe its unique
connector identifier.

58. From a net one can observe all its connectors

59. and hence one can extract all its connector iden-
tifiers.

60. From a connector one can observe a pair of “op-
tional” (distinct) unit identifiers:

a) An optional unit identifier is

b) either a unit identifier of some unit of the
net

c) or a ‘‘nil’’ “identifier”.

61. In an observed pair of “optional” (distinct) unit
identifiers

• there can not be two ‘‘nil’’ “identi-
fiers”.

• or the possibly two unit identifiers must
be distinct

type

56 K, KI
value

57 obs KI: K → KI
58 obs Ks: N → K-set

59 xtr KIS: N → KI-set
59 xtr KIs(n) ≡ {obs KI(k)|k:K•k ∈ obs Ks(n)}

type

60 oUIp′ = (UI|{|nil|})×(UI|{|nil|})
60 oUIp = {|ouip:oUIp′•wf oUIp(ouip)|}

value

60 obs oUIp: K → oUIp
61 wf oUIp: oUIp′ → Bool

61 wf oUIp(uon,uon′) ≡
61 uon=nil⇒uon′6=nil
61 ∨ uon′=nil⇒uon 6=nil ∨ uon 6=uon′
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48

Connector Adjacency:

62. Under the assumption that a fork unit cannot
be adjacent to a join unit

63. we impose the constraint that no two distinct
connectors feature the same pair of actual (dis-
tinct) unit identifiers.

64. The first proper unit identifier of a pair of “op-
tional” (distinct) unit identifiers must identify a
unit of the net.

65. The second proper unit identifier of a pair of
“optional” (distinct) unit identifiers must iden-
tify a unit of the net.

axiom

62 ∀ n:N,u,u′:U•{u.u′}⊆obs Us(n)∧adj(u,u′)
⇒ ∼(is F(u)∧is J(u′))

63 ∀ k,k′:K•obs KI(k)6=obs KI(k′)⇒
case (obs oUIp(k),obs oUIp(k′)) of

((nil,ui),(nil,ui′)) → ui 6=ui′,
((nil,ui),(ui′,nil)) → false,
((ui,nil),(nil,ui′)) → false,
((ui,nil),(ui′,nil)) → ui 6=ui′,

→ false

end

∀ n:N,k:K•k ∈ obs Ks(n) ⇒
case obs oUIp(k) of

64 (ui,nil) → ∃UI(ui)(n)
65 (nil,ui) → ∃UI(ui)(n)
64-65 (ui,ui′) → ∃UI(ui)(n)∧∃UI(ui′)(n)

end

value

∃UI: UI → N → Bool

∃UI(ui)(n) ≡ ∃ u:U•u ∈ obs Us(n)∧obs UI(u)=ui

2.6 A CSP Model of Pipelines 49

We recapitulate Sect. 2.5 — now adding connectors to our model:

Connectors: Preparation for Channels:

66. From an oil pipeline system one can observe
units and connectors.

67. Units are either well, or pipe, or pump, or valve,
or join, or fork or sink units.

68. Units and connectors have unique identifiers.

69. From a connector one can observe the ordered
pair of the identity of the two from-, respec-
tively to-units that the connector connects.

type

66 OPLS, U, K
68 UI, KI
value

66 obs Us: OPLS → U-set

66 obs Ks: OPLS → K-set

67 is WeU, is PiU, is PuU, is VaU,
67 is JoU, is FoU, is SiU: U → Bool [mut. excl.]
68 obs UI: U → UI, obs KI: K → KI
69 obs UIp: K → (UI|{nil}) × (UI|{nil})

50

Above, we think of the types OPLS, U, K, UI and KI as denoting semantic entities. Below,
in the next section, we shall consider exactly the same types as denoting syntactic entities !

51

CSP Behaviours, Channels, etc.:

70. There is given an oil pipeline system, opls.

71. To every unit we associate a CSP behaviour.

72. Units are indexed by their unique unit
identifiers.

73. To every connector we associate a CSP channel.

Channels are indexed by their unique
”k”onnector identifiers.

74. Unit behaviours are cyclic and over the state
of their (static and dynamic) attributes, repre-
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sented by u.

75. Channels, in this model, have no state.

76. Unit behaviours communicate with neighbour-
ing units — those with which they are con-
nected.

77. Unit functions, Ui, change the unit state.

78. The pipeline system is now the parallel compo-
sition of all the unit behaviours.

value

70 opls:OPLS

channel

73 {ch[ obs KI(k) ]|k:K•k ∈ obs Ks(opls)} M
value

78 pipeline system: Unit → Unit

78 pipeline system() ≡
71 ‖{unit(obs UI(u))(u)|u:U•u ∈ obs Us(opls)}
72 unit: ui:UI → U →
76 in,out {ch[ obs KI(k) ]|k:K•k ∈ obs Ks(opls)∧
76 let (ui′,ui′′)=obs UIp(k) in

76 ui ∈{ui′,ui′′}\{nil} end} Unit

74 unit(ui)(u) ≡ let u′ = Ui(ui)(u) in unit(ui)(u′) end

77 Ui: ui:UI → U →
77 in,out {ch[ obs KI(k) ]|k:K•k ∈ obs Ks(opls)∧
77 let (ui′,ui′′)=obs UIp(k) in

77 ui ∈{ui′,ui′′}\{nil} end} Unit

3 Issues of Domains and Software Engineering 53

3.1 Domain Description Observations

The domain model of the previous section was supposed to have been read in a hasty
manner, one which emphasised what the formulas were intended to model, rather than
going into any details on modelling choice and notation.

What can we conclude from such a hastily read example ?

3.1.1 Syntax 54

We describe and formalise some of the syntax of nets of pipeline units: not the syntactical,
physical design of units, but the conceptual “abstract structure” of nets. how units are
connected, and notions like routes and special property routes.

3.1.2 Semantics 55

We hint at and formalise some of the semantics of nets of pipeline units, not a “full”
semantics, just “bits and pieces”: the flow of liquids (oil) or gasses (has), the opening and
closing of valves, the pumping or not pumping of pumps, and how all of these opened
or closed valves and pumping or not pumping pumps conceptually interact, concurrently,
with other units.

3.1.3 Domain Laws 56

We also hint at some laws that pipelines must satisfy. Laws of physical systems (such as
pipelines) are properties that hold irrespectively of how we model these systems. They are,
for physical systems, “laws of nature”. For financial service systems, such as the branch
offices of a bank, a law could be:
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The amount of cash in the bank immediately before the branch office opens in
the morning (for any day) minus the amount of cash withdrawn from the branch
during its opening hours (that day) plus the amount of cash deposited into the
branch during its opening hours (that day) equals the amount of cash in the bank
immediately after the branch office closes for the day !

This law holds even though the branch office staff steals money from the bank or criminals
robs the bank. The law is broken if (someone in) the bank prints money !

3.1.4 Description Ontology 57

The pipeline description focuses on entities such as the composite entity, the pipeline net,
formed, as we have treated them in this model, from atomic entities such as forks, joins,
pipes, pumps, valves and wells; operations such as opening and closing valves, setting
pumps to pump and resetting them to not pump, etc.; events, not illustrated in this
model, but otherwise such as a pipe exploding, that is, leaking more than acceptable, etc.;
and behaviours — which are only hinted at in the CSP model of nets. Where nets were
composite so is the net process: composed from “atomic” unit processes, all cyclic, that
is, never-ending.

3.1.5 Modelling Composite Entities 58

We have not modelled pipeline nets as the graphs, as they are normally seen, using
standard mathematical models of graphs. Instead we have made use of the uniqueness of
units, hence of unit identifiers, to endow any unit with the observable attributes of the
other units to which they are connected. We shall later, Part II of this paper, comment
on how we utilise the concept of unique identifiers of entities (such as pipeline units) to
abstractly model how such system components form parts of wholes (including parts of
parts).

3.2 Domain Modelling 59

Physicists model Mother Nature, that is, such natural science phenomena such as classical
mechanics, thermodynamics, relativity and quantum mechanics. And physicists rely on
mathematics to express their models and to help them predict or discover properties of
Mother Nature.60

Physicists research physics, classically, with the sôle intention of understanding, that
is, not for the sake of constructing new mechanical, thermodynamical, nuclear, or other
gadgets.61

Software engineers now study domains, such as air traffic, banking, health care,
pipelines, etc. for the sake of creating software requirements from which to create software.
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3.3 Current and Possible Practices of Software Development 62

3.3.1 Todays Common, Commercial Software Development

A vast majority of todays practice lets software development (2) start with UML-like software
design specifications, (3) followed by a “miraculous” stage of overall code design, and (4)
ending with coding — with basically no serious requirements prescription and no attempts
to show that (3) relates to (2) and (4) to (3) ! 40 years of Hoare Logics has had basically
no effect. Hoare Logics may be taught at universities, but !?

3.3.2 Todays “Capability Maturity Model” Software Development 63

In “a few hundred” software houses software development (1) starts with more proper,
still UML-like, but now requirements prescription, (2) continues with more concrete UML-like
software design specifications, (3) still followed by a “miraculous” stage of overall code
design, (4) and ending with coding — with basically all these (1–4) phases being process
assessed and process improved [14] based on rather extensive, cross-correlated documents
and more-or-less systematic tests.

3.3.3 Todays Professional Software Development 64

In “a few dozen” software houses software development phases and stages within (1–4)
above are pursued (a) in a systematic (b) or a rigorous (c) or a formal manner and (a)
where specifications of (1–4) are also formalised, where properties of individual stages (b-
c) are expressed and (b) sometimes or (c) or always proved or model-checked or formally
tested, and where correctness of relations between phases (1↔2, 2↔3 and 3↔4) are likewise
expressed etc. (b–c–d) ! Now 40 years of computing science is starting to pay off, but only
for such a small fraction of the industry !

3.4 Tomorrows Software Development 65

3.4.1 The Triptych Dogma

The dogma expresses that before software can be designed we must have a robust under-
standing of the requirements; and before requirements can be prescribed we must have a
robust understanding of the domain.

An “ideal” consequence of the dogma is that software development is pursued in three
phases: first (0) one of domain engineering, then (1) one of requirements engineering and
finally (2–4) one of software design.

3.4.2 Triptych Software Development 66

In domain engineering (i) we liaise with clearly identified groups of all relevant domain

stakeholders, far more groups and far more liaison that you can imagine; (ii) acquiring

and analysing knowledge about the domain; (iii) creating a domain terminology; (iv)
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rough-describing the business processes; (v) describing: narratively and formally, “the”
domain; (vi) verifying (proving, model checking, formally testing) properties (laws etc.)
about the described domain; (vi) validating the domain description; and, all along, (vii)
creating a domain theory — all this in iterative stages and steps67

In requirements engineering we (i) “derive”, with clearly identified groups of all rele-
vant requirements stakeholders, domain, interface and machine requirements; (ii) rough-
describing the re-engineered business processes; (iii) creating a domain terminology;
(iv) prescribing: narratively and formally, “the” requirements (based on the “deriva-
tions”); (v) verifying (proving, model checking, formally testing) properties (laws etc.)
about the prescribed requirements; and thus (vi) establishing the feasibility and satisfia-

bility of the requirements — all this in iterative stages and steps, sometimes bridging back
to domain engineering.68

In software design we refine, in stages of increasing concretisation, the requirements
prescription into components and modules — while model-checking, formally testing

and proving correctness of refinements as well as properties of components and modules.69

Thus formal specifications, phases, stages and steps of refinement, formal tests,

model checks, and proofs characterise tomorrows software development.
A few companies are doing just this: Altran Praxis (UK) — throughout all projects;

Chess Consulting (NL), — consulting on formal methods; Clearsy Systems Engineering
(F) — throughout most projects; CSK Systems (J) — in some, leading edge projects;
ISPRAS (RU) — in some projects; and Microsoft (US) — in a few projects.

But none of them are, as yet, including domain engineering.

3.4.3 Justification 70

How can we then argue that domain engineering is a must ? We do so in three ways.

The Right Software and Software That Is Right

First we must make sure that the customers get the right software. A thorough study of
the domain and a systematic “derivation” of requirements from the domain description are
claimed to lead to software that meets customers’ expectations.71

Then we must make sure that the software is right. We claim that carefully expressed
and analysed specifications, of domains, of requirements and of software designs, together
with formal verifications, model checks and tests — all based also on formalisations — will
result in significantly less error-prone software.

Professional Engineering 72

Classical engineering is based on the natural sciences and proceeds on the basis of their
engineers having a deep grasp of those sciences.

Aeronautical engineers have deep insight into aerodynamics and celestial mechanics
and understands and exploits their mathematical models.73

c© Dines Bjørner 2010, Fredsvej 11, DK–2840 Holte, Denmark Ukraine May 2010 March 13, 2010, 00:00



From Computer Science to The Sciences of Informatics 19

Mobile radio-telephony engineers understands Maxwell’s equations and can “massage”
these while designing new Mobile telephony radio towers.

Control engineers designing automation for paper mills, power plants, cement factories,
etc., are well-versed in stochastic and adaptive control theories and rely on these to design
optimal systems.

Practicing software engineers, in responsible software houses, must now specialise in
domain-specific developments — documented domain models become corporate assets —
and are increasingly forced to formalise these models.

4 Conclusion 74

4.1 What Have We Done in Part I ?

We have emphasised the crucial rôles that computing science plays in software engineering
and that formalisation plays in software devdlopment. We have focused on domain engi-
neering as a set of activities preceding those of requirements engineering and hence those of
software design. We have given a concise description of pipeline systems emphasising the
close, but “forever” informal relations between narrative, informal, but concise descriptions
and formalisations. 75

• • •

The example pipeline systems description was primarly, in this paper intended to illustrate
that one can indeed describe non-trivial aspects of domains and the challenges that domain
descriptions pose to software engineering, to computing science and to computer science.

4.2 What Shall We Do in Part II ?

In Part II of this paper we shall discuss one of the above mentioned challenges, namely the
foundations of description; albeit for a postulated set of description primitives:

• categories,

• observers,

• axioms,

• actions,

• events and

• behaviours.

4.3 Discussion 76

The chosen description primitives are not necessarily computable, but then domains ap-
pears to be characterised also by such, incomputable phenomena and concepts.

The, by now “classical”, formal specification languages

• Alloy [16],

• ASM [23],

• CafeOBJ [9],

• CASL [7],

• CSP [13],

• DC [27],

• Event B [1],

• Maude [6, 20, 5],
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• MSCs [15],

• Petri Nets [24],

• RSL [10],

• Statecharts [11],

• TLA+ [17],

• VDM [8],

• Z [26],

• etcetera.

need be further explored, formal interfaces of satisfaction established, and new, formal, or
at least mathematical specification languages be developed.

77

Domain engineering gives rise to a number of exciting computer and computing science
as well as software engineering research problems.
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5 Bibliographical Notes

Specification languages, techniques and tools, that cover the spectrum of domain and
requirements specification, refinement and verification, are dealt with in Alloy: [16], ASM:
[23], B/event B: [1], CafeOBJ: [9], CSP [13], DC [27] (Duration Calculus), Live Sequence
Charts [12], Message Sequence Charts [15], RAISE [10] (RSL), Petri nets [24], Statecharts
[11], Temporal Logic of Reactive Systems [18, 19, 21, 22], TLA+ [17] (Temporal Logic of
Actions), VDM [8], and Z [26]. Techniques for integrating “different” formal techniques
are covered in [2]. The recent book on Logics of Specification Languages [4] covers ASM,

B/event B, CafeObj, CASL, DC, RAISE, TLA+, VDM and Z.
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