
Domains and Problem Frames

An Experiment in Triptych Software Development∗

Dines Bjørner
Section on Computer Science and Engineering,

Department of Informatics and Mathematical Modelling,
Technical University of Denmark, DK–28000 Kgs.Lyngby, Denmark.

School of Information Science, JAIST,
1-1, Asahidai, Tatsunokuchi, Nomi, Ishikawa 923-1292, Japan.

db@imm.dtu.dk, bjorner@gmail.com

December 15, 2006

Abstract

In this report we investigate Michael Jackson’s frame concept [4] in the context of the
transition from a domain model of some broad application domain to a set of requirements
models, one for each of a sufficiently distinct set of domain requirements — but for what
is claimed to be “the same” broad application domain.

We shall thus follow the triptych dogma of [3].1

First we develop a domain model (for the application area of transportation nets).
Then we sketch the development of a number of diverse domain requirements for the
computerisation of transportation network management, monitoring and control. Finally
we relate the diverse domain requirements to similarly different problem frames.

The claim of this report is that to better understand the underlying issues of Michael
Jackson’s problem frame one must see the concept of problem frames as a function of the
relation between a domain model and a (domain) requirements model.

Contents

1 Domains and Problem Frames 3

1.1 The Dogma . 3
1.2 Aims & Objectives . 3

1.2.1 Aims . 3
1.2.2 Objectives . 3

1.3 Structure of Paper . 3

∗Technical report for the JAIST Technical Memoranda series.
1[3, 4] (together with references to the companion volumes [1, 2] of [3]) will be the only citations of this

report.

1

2 The Domain 3

2.1 Net Topology . 4
2.1.1 Nets, Segments and Junctions . 4
2.1.2 Segment and Junction Identifications . 5
2.1.3 Segment and Junction Reference Identifications 6
2.1.4 Paths and Routes . 7
2.1.5 Segment and Junction Identifications of Routes 9
2.1.6 Circular and Pendular Routes . 10
2.1.7 Connected Nets . 12
2.1.8 Net Decomposition . 12

2.2 Multi-Modal Nets . 13
2.2.1 General Issues . 13
2.2.2 Segment and Junction Modes . 14
2.2.3 Single-Modal Nets and Net Projection . 15
2.2.4 Sub-Junctions . 16

2.3 Segment and Junction Attributes . 16
2.3.1 Segment and Junction Attribute Observations . 16
2.3.2 Route Lengths . 17
2.3.3 Route Traversal Times . 18
2.3.4 Function Lifting . 19
2.3.5 Transportation Costs . 19

2.4 Road Nets . 20
2.5 Railway Nets . 22

2.5.1 General . 22
2.5.2 Lines, Stations, Units and Connectors . 22

2.6 Net Dynamics . 25
2.6.1 Segment and Junction States . 25
2.6.2 Segment and Junction State Spaces . 26

2.7 More on Net Dynamics: Traffic . 27
2.7.1 Vehicles and Positions . 27
2.7.2 Traffic . 27

2.8 Time Tables and Traffic . 28
2.8.1 Time Tables . 28
2.8.2 Scheduling . 28

2.9 And so on! . 28

3 A Set of Requirements 29

3.1 Plan of Development of Requirements . 29
3.2 Brief Narrative of the Four Sets of Requirements . 29

3.2.1 ‘Net Maintenance’ Software . 29
3.2.2 ‘Traffic Control’ Software . 30
3.2.3 ‘Traffic Simulation’ Software . 31
3.2.4 ‘Transport Logistics’ Software . 32

3.3 Requirements Prescription of Shared Software . 33
3.3.1 Net Repository (i.e., Net Database) . 33
3.3.2 Repository Functions . 33

4 And So On! 34

4.1 What Have we Covered . 34
4.2 Domains, Requirements and Problem Frames . 34
4.3 The Triptych and the Problem Frame Approaches . 35

4.3.1 General Observations . 35
4.3.2 Specific Observations . 35

2

4.4 Grand Challenges of Computing Science . 35
4.4.1 The Grand Challenge of VSTTE . 35
4.4.2 The Grand Challenge of Ubiquitous Computing 35

4.5 Conclusion . 35
4.6 Bibliographical Notes . 35

1 Domains and Problem Frames

1.1 The Dogma

Before software can be designed we must understand its requirements. Before requirements
can be prescribed we must understand the domain2. In this paper we exemplify one domain
description and four related requirements prescriptions. The latter illustrate distinct frames.

1.2 Aims & Objectives

1.2.1 Aims

We aim to illustrate aspects of problem frame independent domain engineering, problem
frame dependent requirements engineering, and the interplay between various requirements
prescriptions.

1.2.2 Objectives

Our objective is to plead for more systematic software engineering work around domain
engineering, before requirements engineering sets in.

1.3 Structure of Paper

We first bring a long and undoubtedly boring domain description, then four requirements
presecriptions. In the conclusion we relate this quadruple development to the problem frame
approach, and briefly discuss a rôle for the triptych cum problem frame approach in the Verified
Software: Theories, Techniques and Experiments (VSTTE) and the Ubiquitous Computing grand
challenges!

We need the “multiple masses of details” in ordee to properly substantiate our aims and
objectives.

2 The Domain

Our domain is that of transportation nets. We abstract in such as way as to capture both road,
rail, air and shipping transport nets. The basic concepts of street segments between street
intersections, rail lines between train stations, air lanes between airports and shipping lanes
between harbours are abstracted into segments and the street intersections, train stations,
airports and harbours are abstracted into junctions.

2The term domain is here used instead of the — in problem frame contexts — perhaps more common term
environment.

3

2.1 Net Topology

We “slowly” (read: carefully) unarrate and formalise a number of concepts related to segments
and junctions.

2.1.1 Nets, Segments and Junctions

Nets consists of one or more segments and two or more junctions.

type
N, S, J

value
obs Ss: N → S-set
obs Js: N → J-set

axiom
∀ n:N • card obs Ss(n) ≥ 1 ∧ card obs Js(n) ≥ 2

Annotations:

• N, S, J are considered abstract types, i.e., sorts. N, S and J are type names, i.e., names
of types of values. Values of type N are nets, values of type S are segments and values
of type J are junctions.

• One can observe from nets, n, their (one or more) segments (obs Ss(n)) and their (two
or more) junctions (obs Js(n)); n is a value of type N.

• Functions have names, obs Ss, and obs Js, and functions, f, have signatures, f: A →
B (not illustrated), where A and B are type names. A designates the definition set of f
and B the range set.

• A-set is a type expression. It denotes the type whose values are finite, possibly empty
set of A values.

• These observer functions are postulated.

• They cannot be formally defined.

• They are “defined” once a net has been pointed out3

• The axiom expresses that in any net there is at lest one segment and at least two
junctions.

Applying the observer functions to the net of Fig. 1 yields:

obs Ss(n) = {sa,sb,sc,sd,se,sf,sg,sh,sj,sk}
obs Js(n) = {j1,j2,j3,j4,j5,j6,j7,j8}

Nets, segments and junctions are physically manifest, i.e., are phenomena.

3Take the transportation net Europe. By inspecting it, and by deciding which segments and which as-
sociated junctions to focus on (i.e., “the interesting ones”) we know which are all the interesting roads, rail
tracks, air lanes and shipping lanes, respectively the interesting (associated) street intersections, trains stations,
airports and harbours.

4

sa

sc

sf

sd
se

sb

sh c5
sg

sj

sk

j6

j4

j7

j8

j2

j3

j1

Figure 1: A simple net of segments and junctions

2.1.2 Segment and Junction Identifications

Segments and junctions have unique identifications.

type
Si, Ji

value
obs Si: S → Si
obs Ji: J → Ji

Segment and junction identifications are abstract concepts. No two segments have the same
segment identifier. And no two junctions have the same junction identifier.

axiom
∀ n:N • card obs Ss(n) ≡ card {obs Si(s)|s:S • s ∈ obs Ss(n)}
∀ n:N • card obs Js(n) ≡ card {obs Ji(c)|j:J • j ∈ obs Js(n)}

Annotations:

• card set expresses the cardinality of the set set, i.e., its number of distinct elements.

• {f(a)|a:A • p(a)} expresses the set of all those B elements f(a) where a is of type A and
has property p(a) [where we do not further state f, A and B. p is a predicate, i.e., a
function, here from A into truth values of type Bool, for Boolean].

• The axioms now express that the number of segments in n is the same as the number
of segment identifiers of n — which is a circumscription for: No two segments have the
same segment identifier.

• Similar for junctions.

The constraints that limit identification of segments and junctions can be physically moti-
vated: Think of the geographic (x, y, z co-ordinate) point spaces “occupied” by a segment or
by a junction. They must necessarily be distinct for otherwise physically distinct segments
and junctions. Segments may thus cross each other without the crossing point (in x, y space)
being a junction, but, for example, one segment may, at the crossing point be physically above
the other segment (tunnels, bridges, etc.).

5

2.1.3 Segment and Junction Reference Identifications

Segments are delimited by two distinct junctions. From a segment one can also observe,
obs Jis, the identifications of the delimiting junctions.

type
Jip = {|{ji,ji′}:Ji-set • ji6=ji′|}

value
obs Jis: S → Jip

Annotations:

• {|a:A • p(a)|} is a subtype expression. It expresses a subset of type A, namely those A
values which enjoys property p(a) [p is a predicate, i.e., a function, here from A into
truth values in the type Bool]. In the above p(a) is ji6=ji′.

• In this case Jip is the subtype of Ji-set whose values are exactly 2 element sets of Ji
elements.

Any junction has a finite, but non-zero number of segments connected to it. From a junction
one can also observe, obs Sis, the identifications of the connected segments.

type
Si1 = {|sis:Si-set•card sis ≥1|}

value
obs Sis: J → Si1

Annotations:

• Si1 is the type whose values are non-empty, but still finite sets of Si values.

One cannot from a segment alone observe the connected junctions. One can only refer to
them. Similarly: one cannot from a junction along observe the connected segments. One can
only refer to them. The identifications serve the role of being referents. In any net, if s is a
segment connected to connectors identified by ji and ji′, respectively, then there must exist
connectors j and j′ which have these identifications and such that the identification si of s is
observable from both j and j′.

axiom
∀ n:N, s:S • s ∈ obs Ss(n) ⇒

let {ji,ji′} = obs Jis(s) in
∃! j,j′:J • {j,j′}⊆obs Js(n) ∧ j 6=j′ ∧

obs Si(s) ∈ obs Sis(c) ∩ obs Sis(c′) end

Annotations:

• We read the above axiom:

– for all nets n and for all segments s in n

– let ji and ji′be the two distinct junction identifications observable from s, then

– exists exactly two distinct junctions, j and j′ of the net, such that

6

sf, sfi, {j4i,j8i}

se, sei, {j8i,j2i}

j8, j8i, {sei,sfi,ski}

sk, ski, {j7i,j8i}

Figure 2: One junction and its connected segments

– the segment identification of s is in both the sets of segment identifications observ-
able from j and j′.

Figure 2 illustrates the relation between observed identifications of segments and junctions.
The above constraints take on the mantle of being laws of nets: If segments and junctions

otherwise have distinct identifications, then the above must follow as a law of man-made
artifacts. Vice-versa: In any net, if j is a junction connecting segments identified by si, si′,
. . . , si′′ then there must exist segments s, s′, . . . , s′′ which have these identifications and such
that the identification ji of j is observable from all s, s′, . . . , s′′.

axiom
∀ n:N, j:J • j ∈ obs Js(n) ⇒

let sis = obs Sis(c), ji = obs Ji(j) in
∃! ss:S-set • ss⊆obs Ss(n) ∧ card ss=card sis ∧
sis = {|obs Si(s)|s:S•s ∈ ss|} end

Annotations:

• Let us read the above axiom:

– for all nets, n, and all junctions, j, of that net

– let sis be the set of segment identifications observed from j, and let ji be the junction
identifier of j, then

– there exists a unique set, ss, of segments of n with as many segments as there are
segment identifications in sis, and such that

– sis is exactly the set of segment identifications of segments in ss.

2.1.4 Paths and Routes

By a path we shall understand a triplet of a junction identification, a segment identification
and a junction identification.

type
P = Ji × Si × Ji

value
paths: N → P-set
paths(n) ≡

{(ji,si,ji′)|s:S,ji,ji′:Ji,si:Si•

s ∈ obs Ss(n)∧{ji,ji′} ∈ obs Jis(s)∧si=obs Si(s)}

7

Annotations:

• Paths are modelled as Cartesians.

• One can generate all the paths of a net.

• It is the set of path triplets, two for each segment of the net and such that the pair of
junction identifications, ji and ji′, observable from a segment is at either “end” of the
triplet, and such that the segment identification is common to the two triplets (and in
the “middle”).

Paths, and as we shall see next, routes are mental concepts. By a route of a net we shall
understand a list, i.e., a sequence of paths as follows:

• A sequence of just one path of the net is a route.

• If r and r′ are routes of the net such that the last junction identification, ji, of the last
path, (, ,ji) of r and the first junction identification, ji′, of the first path (ji′, ,) of
r′ are the same, i.e., ji=ji′, then r̂r′ is a route.

• Only routes that can be generated by uses of the first (the basis) and the second (the
induction) clause above qualify as proper routes of a net.

type
R = {|r:P∗

•wf R(r)|}
value

wf R: P∗ → Bool
wf R(r) ≡

∀ i:Nat • {i,i+1}⊆inds(r) ⇒
let (, ,ji)=r(i), (ji′, ,)=r(i+1) in ji = ji′ end

routes: N → R-infset
routes(n) ≡

let rs = {〈p〉|p:P•p ∈ paths(n)}
∪ {r̂r′|r,r′:R•{r,r′}⊆rs∧wf R(r̂r′)} in

rs end

Annotations:

• Routes are well-formed sequences of paths.

• A sequence of paths is a well-formed route if adjacent path elements of the route share
junction identification.

• Give a net we can compute all its routes as follows:

– let rs be the set of routes to be computed. It consists first of all the single path
routes of the net.

– Then rs also contains the concatenation of all pairs of routes, r and r′, such that
these are members of rs and such that their concatenation is a well-formed route.

– If the net is circular then the set rs is an infinite set of routes. The least fix point
of the recursive equation in rs is the solution to the “routes” computation.

8

2.1.5 Segment and Junction Identifications of Routes

For future purposes we need be able to identify various segment and junction identifications
as well as various segments and junctions of a route.

value
xtr Jis: R → Ci-set, xtr Sis: R → Si-set
xtr Jis(r) ≡ case r of 〈〉 → {}, 〈(ji, ,ji′)〉̂r′ → {ji,ji′}∪ xtr Jis(r′) end
xtr Sis(r) ≡ case r of 〈〉 → {}, 〈(,si,)〉̂r′ → {si}∪ xtr Sis(r′) end

xtr Ss: N × Ji → S-set
xtr Ss(n,ji) ≡ {s|s:S•s ∈ obs Ss(n) ∧ ji ∈ obs Jis(s)}

xtr C: N × Ji → C, xtr S: N × Si → S
xtr C(n,ji) ≡ let j:J • j ∈ obs Js(n) ∧ ji=obs Ji(j) in j end
xtr S(n,si) ≡ let s:S • s ∈ obs Ss(n) ∧ si=obs Si(s) in s end

first Ji: R
∼

→ Ji, last Ji: R
∼

→ Ji
first Ji(r) ≡ case r of 〈〉 → chaos, 〈(ji, ,)〉̂r′ → ji end
last Ji(r) ≡ case r of 〈〉 → chaos, r′̂〈(, ,ji)〉 → ji end

first Si: R
∼

→ Si, last Si: R
∼

→ Si
first Si(r) ≡ case r of 〈〉 → chaos, 〈(,si,)〉̂r′ → si end
last Si(r) ≡ case r of 〈〉 → chaos, r′̂〈(,si,)〉 → si end

first J: R × N
∼

→ J, last J: R × N
∼

→ J
first J(r,n) ≡ xtr J(first Ji(r),n)
last J(r,n) ≡ xtr J(last Ji(r),n)

first S: R × N
∼

→ S, last S: R × N
∼

→ S
first S(r,n) ≡ xtr S(first Si(r),n)
last S(r,n) ≡ xtr S(last Si(r),n)

Annotations:

• Given a route one can extract the set of all its junction identifications.

– If the route is empty, then the set is empty.

– If the route is not empty than it consists of at least one path and the set of junction
identifications is the pair of junction identifications of the path together with set
of junction identifications of the remaining route.

– Possible double “counting up” of route adjacent junction identifications “collapse”,
in the resulting set into one junction identification. (Similarely for cyclic routes.)

• Given a route one can similarly extract the set of all its segment identifications.

• Given a net and a junction identification one can extract all the segments connected to
the identified junction.

9

• Given a net and a junction identification one can extract the identified junction.

• Given a net and a segment identification one can extract the identified segment.

• Given a route one can extract the first junction identification of the route.

– This extraction should not be applied to empty routes.

– A non-empty route can always be thought of as its first path and the remaining
route. The first junction identification of the route is the first junction identification
of that (first) path.

• Given a route one can similarly extract the last junction identification of the route.

• Given a route one can similarly extract the first segment identification of the route.

• Given a route one can similarly extract the last segment identification of the route.

• And similarly for extracting the first and last junctions, respectively first and last seg-
ments of a route.

2.1.6 Circular and Pendular Routes

A route is circular if the same junction identification either occurs more than twice in the
route, or if it occurs as both the first and the last junction identification of the route. Given
a net we can compute the set of all non-circular routes by omitting from the above pairs of
routes, r and r′, where the two paths share more than one junction identification.

non circular routes: N → R-set
non circular routes(n) ≡

let rs = {〈p〉|p:P•p ∈ paths(n)}
∪ {r̂r′|r,r′:R•{r,r′}⊆rs∧wf R(r̂r′)∧non circular(r,r′)} in

rs end
non circular: R×R → Bool
non circular(r,r′) ≡ card xtr Jis(r) ∩ xtr Jis(r′) =1

Annotations:

• To express the finite set of all non-circular routes

– is to re-express the set of all routes

– except constrained by the further predicate: non circular.

• An otherwise well-formed route consisting of a first part r and a remaining part r′

– is non-circular if the two parts share at most one junction identification.

Let a path be (jif , si, jit), then (jit, si, jif) is a reverse path. That is: the two junction
identifications of a path are reversed in the reverse path. A route, rr, is the reverse route of
a route r if the ith path of rr is the reverse path of the n − i + 1’st path of r where n is the
length of the route r, i.e., its number of paths. A route is a pendular route if it is of an even
length and the second half (which is a route) is the reverse of the first half route.

10

sa

sc

sf

c4

sd

sh

sb
se

sj sk

sg

j1

j3

j2

j8

j7
j5

j6

<(j5i,sgi,j4i),(j4i,sji,j3i),(j3i,sbi,j2i),(j2i,sei,j8i)>

Figure 3: A route, graphically and as an expression

sa

sc

sd

sb

sh

sk

sg

sf

se

sj

j1
j2

j3

j8

j7

j4

j6

j5

<(j5i,sgi,j4i),(j4i,sji,j3i),(j3i,sbi,j2i),(j2i,sei,j8i),(j8i,sfi,j4i),(j4i,sci,j7i)>

Figure 4: A circular route, graphically and as an expression

value
reverse: P → P
reverse(jif,si,jit) ≡ (jit,si,jif)

reverse: R → R
reverse(r) ≡

case r of
〈〉 → 〈〉,
〈(jif,si,jit)〉̂r′ → reverse(r′)̂〈(jit,si,jif)〉

end

reverse(r) ≡ 〈reverse(r(i))|i in [n..1]〉

pendular: R → R
pendular(r) ≡ r̂reverse(r)

is pendular(r) ≡ ∃ r′,r′′:R • r′̂r′′ = r ∧ r′′=reverse(r′)

Annotations:

• The reverse of a path is a path with the same segment identification, but with reverse
junction identifications.

• The reverse of a route, r, is

– the empty route if r is empty, and otherwise

– it is the reverse route of all of r except the first path of r concatenate (juxtaposed)
with the singleton route of the reverse path of the first path of r.

11

• Given a route, r, we can construct a pendular route whose first half is the route r and
whose last half is the reverse route of r.

• A (an even length) route is a pendular route if it can be expressed as the concatenation
of two (equal length) routes, r′ and r′′ such that r′′ is the reverse of r′, that is, if its
second half is the reverse of its first half.

2.1.7 Connected Nets

A net is connected if for any two junctions of the net there is a route between them.

value
is connected: N → Bool
is connected(n) ≡

∀ j,j′:J • {j,j′}⊆obs Js(n) ∧ j 6=j′ ⇒
let (ji,ji′) = (obs Ji(j),obs Ji(j′)) in
∃ r:R • r ∈ routes(n) ∧

first Ji(r) = ji ∧ last Ji(r) = ji′ end

Annotations:

• A net n is connected if

– for all two distinct connectors of the net

– where ji and ji′ are their junction identifications,

– there exists a route, r, of the net,

– whose first junction identification is ji and whose last junction identification is ji′.

2.1.8 Net Decomposition

One can decompose a net into all its connected subnets. If a net exhaustively consists of m
disconnected nets, then for any pair of nets in different disconnected nets it is the case that
they share no junctions and no segments. The set of disconnected nets is the smallest such
set that together makes up all the segments and all the junctions of the (“original”) net.

value
decompose: N → N-set
decompose(n) as ns

obs Ss(n) = ∪{obs Ss(n′)|n′:N•n′ ∈ ns} ∧
obs Js(n) = ∪{obs Js(n′)|n′:N•n′ ∈ ns} ∧
{} = ∩{obs Ss(n′)|n′:N•n′ ∈ ns} ∧
{} = ∩{obs Js(n′)|n′:N•n′ ∈ ns} ∧
∀ n′:N•n′ ∈ ns ⇒ connected(n′) ∧ ...

Annotations:

• A set ns of nets constitutes a decomposition of a net, n,

1. if all the segments of n appear in some net of ns,

12

2. if all the junctions of n appear in some net of ns,

3. if no two or more distinct nets of ns share segments,

4. if no two or more distinct nets of ns share junctions, and

5. if all nets of ns are connected.

• Comment: It appears that items 3 and 4 are unnecessary, that is, are properties once
items 1, 2 and 5 hold.

That is, we have the following:

Lemma:
∀ n:N •

let ns = decompose (n) in
∀ n′,n′′:N • {n′,n′′}⊆ns ∧ n′6=n′′ ⇒

obs Ss(n′) ∩ obs Ss(n′′) = {} ∧
obs Js(n′) ∩ obs Js(n′′) = {} end

The above items define a lot of what there is to know about transportation nets if we only op-
erate with the sorts that have been introduced (N, S, Si, J, Ji) and the observer functions that
have likewise been introduced (obs Ss, obs Js, obs Si, obs Ji, obs Jis and obs Sis). The
relationships between sorts, i.e., net, segment, segment identification, junction and junction
identification values are expressed by the axioms. The above is a so-called property-oriented
model of the topology of transportation nets. That model is abstract in that it does not hint
at a mathematical model or at a data structure representation of nets, segments and junc-
tions, let alone their topology. By topology we shall here mean how segments and junctions
are “wired up”. The axioms above guarantee that no segment of a net is left “dangling”: It
is always connected to two distinct junctions; and no junctions of a net is left isolated: It is
always connected to some segments of the net.

We have tacitly assumed that all segments are two way segments, that is, transport can
take place i either direction. Hence a segment gives rise to two paths.

2.2 Multi-Modal Nets

Interesting transportation nets are multi-modal. That is, consists of segments of different
transport modalities: roads, rails, air-lanes, shipping lanes, and, within these of different
categories. Thus roads can be either freeways, motor-ways, ordinary highways, and so on.

2.2.1 General Issues

We introduce a concept, M, of transport mode. M is a small set of distinct, but otherwise
further undefined tokens. An m in M designates a transport modality.

type
M

13

2.2.2 Segment and Junction Modes

With each segment, s, we can associate a single mode, m, and with each junction we can
associate the set of modes of its connected segments.

value
obs M: S → M
obs Ms: J → M-set

axiom
∀ n:N, j:J • j ∈ obs Js(n) ⇒

let ss = xtr Ss(n,obs Ji(j)) in
obs Ms(j) = {obs M(s)|s:S • s ∈ ss} end

∀ n:N, s:S • s ∈ obs Ss(n) ⇒
let {ji,ji′} = obs Jis(s) in
let {j,j′} = {xtr J(n,ji),xtr J(n,ji′)} in
obs M(s) ∈ obs Ms(j) ∩ obs Ms(j′) end end

Annotations:

• From a segment one can observe its mode.

• From a junction one can observe its set of modes.

• Let us read the first axiom:

– for all net, n, and all junctions, j, of that net

– let ss be the set of segments connected to j,

– now the set of modes of c is equal to the set of modes of the segments in ss.

• Let us read the second axiom:

– for all net, n, and all segments, s, of that net

– let ji and ji′ be the junction identifiers of the two junctions to which s is connected,
and

– let j and j′ be the two corresponding junctions,

– then the segment mode is in both the set of modes of the two junctions.

• We can define a function, xtr Ss, which from a net, n, and a junction identification, ji,
extracts the set of segments, ss, connected to the junction identified by ji.

• xtr Ss(n,ji) yields the set of segments, ss, in the net n for which ji is one of the observed
junction identifications of s.

• And we can define a function, xtr J, of signature N × Ji → J, which when applied to
a net, n, and a junction identification, ji,

• extracts the junction in the net which has that junction identifier.

14

2.2.3 Single-Modal Nets and Net Projection

Given a multi-modal net one can project it onto a set of single modality nets, namely one for
each modality registered in the multi-modal net.

type
mmN = {|n:N • card xtr Ms(n) > 1|}
smN = {|n:N • card xtr Ms(n) = 1|}

value
xtr Ms: N → M-set
xtr Ms(n) ≡ {obs M(s) | s:S • s ∈ obs Ss(n)}

projs: N → smN-set
projs(n) ≡ {proj(n,m) | m:M • m ∈ xtr Ms(n)}
proj: N × M → smN
proj(n,m) as n′

post
let ss = obs Ss(n), ss′ = obs Ss(n′),

js = obs Js(n), js′ = obs Js(n′) in
ss′ = {s | s:S • s ∈ ss ∧ m=obs M(s)} ∧
js′ = {j | j:J • j ∈ js ∧ m ∈ obs Ms(j)}
end

Annotations:

• A multi-modal net is a net with more than one mode. mmN is thus the subtype of nets,
n:N, which are multi-modal.

• A single-modal net is a net with exactly one mode. smN is thus the subtype of nets,
n:N, which are multi-modal.

• The xtr Ms function extracts the mode of every segment of a net.

• The projs function applies to any net, n:N, and yields the set of single-modal subnets
of n, one for each mode of n. The projs function makes use of the proj function.

• The proj function applies to any n, n:N, and any mode of that net, and yields the
single-modal subnet on n whose mode is the given mode.

– The proj function is expressed by a post condition, i.e., a predicate that charac-
terises the necessary and sufficient relation between the argument net, n, and the
result net n′.

– In a single-modal net, n′, projected from a multi-modal net, n, and of mode m, we
keep exactly those segments, ss′, of n whose mode is m,

– and we keep exactly those junctions, js′, of n whose mode contains m.

– No more is needed in order to express the necessary and sufficient condition for a
single-modal net to be a subnet of a proper net.

– That is, some single-modal nets are not proper nets since in proper nets every
junction have the set of modes of all the segments connected to the junction.

15

2.2.4 Sub-Junctions

Let ms:{m1,m2, ...,mn} be the set of modes of a junction j. To each such mode mi we can
associate a junction mjmi

.4 With any such junction mjmi
we can associate a modal junction

identification mjmii
.

type
MJ, MJi

value
obs MJs: J → MJ-set
obs MJ: J × M → MJ
obs MJi: MJ → MJi
obs M: MJ → M

axiom
∀ j:J,m:M•m ∈ obs Ms(j) ⇒ let mj = obs MJ(j,m) in obs M(mj)=m end

2.3 Segment and Junction Attributes

2.3.1 Segment and Junction Attribute Observations

We now enrich our segments and junctions.
Segments have lengths. Junctions have modality-determined lengths between pairs of

(same such modality) segments connected to the junction. Segments have standard trans-
portation times, i.e., time durations that it takes to transport any number of units of freight
from one end of the segment to the other. Junctions have standard transfer time per modality
of transport between pairs of segments connected to the junction. Junctions have standard
arrival time per modality of transport. Junctions have standard departure times per modality
of transport. Segments have standard costs of transporting a unit of freight from one end of
the segment to the other end. Junctions have standard costs of transporting a unit of freight
from the end of one connecting segment to the beginning of another connecting segment.
We can now assess (i) length of a route, (ii) shortest routes between two junctions, (iii)
duration time of standard transport along a route, including transfer, stopover and possible
reloading times at junctions, and iv) shortest duration time route of standard transport
between two junctions.

type
L, TI

value
ms:M-set, axiom ms 6={}
obs L: S → L
obs L: Si × J × M × Si → L
obs TI: S → TI
obs TI: Si × J × Si → TI

obs TI: J × M
∼

→ TI, pre obs TI(j,m): m ∈ obs Ms(j)

obs TI: J × M × M
∼

→ TI, pre obs TI(j,m,m′): {m,m′}⊆obs Ms(j)

obs arr TI: J × M
∼

→ TI, pre obs arr TI(j,m): m ∈ obs Ms(j)

4mjmi
is not to be confused with the junction identification of ji of j.

16

obs dep TI: J × M
∼

→ TI, pre obs dep TI(j,m): m ∈ obs Ms(j)
+: L × L → L
+: TI × TI → TI

Annotations:

• L and Ti are sorts designating length and time values.

• ms denotes a non-empty set of modes.

• From a segment one can observe, obs L, its length.

• From a segment one can observe, obs TI, a time duration for a normal conveyour of
the mode of the segment to travel the length of the segment.

• From a junction and a mode (of that junction) one can observe, obs TI, a time duration
for a normal conveyour of the mode to cross, i.e., to travel through the junction.

• From a junction and a pair of modes (m and m′ of that junction) one can observe,
obs TI, a time duration which represents the normal time it takes to transfer freight
from a conveyour of mode m to a conveyour of mode m′. (The two modes may be the
same.)

• From a junction and a mode (of that junction) one can observe, obs arr TI, a time
duration for an item of freight destined for a normal conveyour of the mode to arrive
and be “entry” processed (including loaded) at that junction.

• From a junction and a mode (of that junction) one can observe, obs dep TI, a time
duration for an item of freight destined for a normal conveyour of the mode to arrive
and be “exit” processed (including unloaded) at that junction.

• One can add lengths.

• One can add time durations.

2.3.2 Route Lengths

One can compute the length of a route of a net and one can find the shortest such route
between two identified junctions.

value

length: R → N
∼

→ L
length(r)(n) ≡

case r of
〈〉 → 0,
〈(jf,si,jt)〉 → obs L(xtr S(si,n)),
〈(ji1,sii,ji2),(jj1,sij,jj2)〉̂r′ →

let si=xtr S(sii,n),sj=xtr S(sij,n) in
obs L(si) + obs L(sii,xtr J(ji2,n),sij) + length(〈(jj1,sij,jj2)〉̂r′) end

end
pre: r ∈ routes(n) ∧ ji2=jj1

17

shortest route: Ji × Ji → N
∼

→ R
shortest route(jf,jt)(n) ≡

let rs = routes(n) in
let crs = {r|r:R•r ∈ rs ∧ first Ji(r)=jf ∧ last Ji(r)=jt} in
let sr:R • sr ∈ crs ∧ ∼∃ r:R • r ∈ crs ∧ length(r)(n)<length(sr)(n) in
sr end end end
pre: {jf,jt}⊆obs Jis(n) ∧ jf 6=jt

Annotations:

• The length of a single modality route of a net

– is 0 if the route is empty,

– otherwise it is the length of the first segment of the route plus the length of the
rest of the route computed as follows:

∗ If the route consists of just one segment, then 0,

∗ else, the length of the junction from incident segment to emanating segment
plus

∗ the length of the rest of the route computed as otherwise specified above.

• The shortest route of a net between two of its identified junctions (the precondition)
can be abstractly determined as follows:

– First we find all the routes, rs, of the net.

– Then we find those routes, crs, whose first and last junction identifications are the
given ones, jf and jt.

– Amongst those we find a shortest one, that is, one, in crs, for which there are no
shorter routes, r, in crs.

2.3.3 Route Traversal Times

One can find the total time it takes to traverse a route, including the times it takes to pass
through a junction, and one can find the quickest route between two identified junctions.

all time: R → N → TI
all time(r)(n) ≡

obs arr TI(xtr J(first J(r),n),obs M(first S{r}))
+ time(r)(n)
+ obs dep TI(xtr J(last J{r},n),obs M(last S(r)))

time: R → N → TI
time(r)(n) ≡

case r of
〈〉 → 0,
〈(jf,si,jt)〉 → obs TI(xtr S(si,n)),
〈(ji1,sii,ji2),(jj1,sij,jj2)〉̂r′ →

let si=xtr S(sii,n),sj=xtr S(sij,n) in
obs TI(si) + obs TI(sii,xtr J(ji2,n),sij) + time(〈(jj1,sij,jj2)〉̂r′) end

end

18

pre: r ∈ routes(n) ∧ ji2=jj1
quickest route: Ji × Ji → N → R
quickest route(jf,jt)(n) ≡

let rs = routes(n) in
let crs = {r|r:R•r ∈ rs ∧ first Ji(r)=jf ∧ last Ji(r)=jt} in
let qr:R • qr ∈ crs ∧ ∼∃ r:R • r ∈ crs ∧ all time(r)(n)<all time(qr)(n) in
qr end end end

2.3.4 Function Lifting

Notice how the two functions shortest route and quickest route differ only by the length,
respectively the time functions. Hence:

type
Q
FCT = R → N → Q

value
less: Q × Q → Bool
lowest: Ji × Ji → N → FCT → R
lowest(jf,jt)(n)(fct) ≡

let rs = routes(n) in
let crs = {r|r:R•r ∈ rs ∧ first Ji(r)=jf ∧ last Ji(r)=jt} in
let lr:R • lr ∈ crs ∧ ∼∃ r:R • r ∈ crs ∧ less(fct(r)(n),fct(qr)(n)) in
lr end end end

Similarely one could also lift the ‘less’ predicate:

Q
PRE = Q × Q → Bool
FCT = R → N → Q

value
best: Ji × Ji → N → FCT → PRE → R
best(cf,ct)(n)(fct)(pre) ≡

let rs = routes(n) in
let crs = {r|r:R•r ∈ rs ∧ first Ji(r)=cf ∧ last Ji(r)=ct} in
let br:R • lr ∈ crs ∧ ∼∃ r:R • r ∈ crs ∧ pre(fct(r)(n),fct(qr)(n)) in
br end end end

2.3.5 Transportation Costs

We can further assess (i) transport cost (tk:TK), (ii) lowest (per unit) freight cost (fk:FK)
between two junctions, etc. We assume that if a freight item is transported into a junction
and out of that junction by the same modality conveyour, then it is not reloaded, i.e., along
segments of the same modality.5

5This grossly simplifying assumption will be removed later. For the time being it allows us to operate with
the simple notion of routes that was introduced above. For the reloading case we need to decorate the route
notion, effectively making it into a bill of ladings notion: one that prescribes possible reloading at junctions.

19

type
TK, FK, K = TK|FK

value
obs TK: (S|J) → TK
obs FK: (S|J) → FK

+: K × K → K
cost: R → N → K
cost(r)(n) ≡

case r of
〈〉 → 0,
〈(jf,si,jt)〉 →

obs K(xtr J(jf,n))+obs K(xtr S(si,n))+obs K(xtr J(jt,n))
〈(jf,si,jt),(jf′,si′,jt′)〉̂r′ → assert: jt=jf′

obs K(xtr J(jf,n))+obs K(xtr S(si,n))+...+cost(r′)
end

cheapest: Ji×Ji → N → ((K×K)→K) → ((K×K)→Bool) → R
cheapest(jf,jt)(n) ≡

best(jf,jt)(n)(λ(k1,k2):(K×K)•k1+k2)(λ(k1,k2):(K×K)•k1<k2)

2.4 Road Nets

We wish to view road nets at different levels of abstraction. At a most detailed such level
we make no distinction between the road kinds, whether community roads, provincial roads,
motor roads or freeways. At another level of abstraction we wish to make exactly those
distinctions. And at least detailed level of abstraction we consider certain road junctions to
designate road nets of smaller or larger communities.

J5 J6

J7

J1

J3

J2

J4

J8

[A]

J5 J6

J7

J4

J8

J1

J3

j11

j12

j21 j23
j13

j31

j32

j33

j34

j22 J2

j35

[B]

J1

J3

J2

j13

j11

j33

j31

j32

j34j35

j23j21

j22

j12

[C]

Figure 5: Gross [A] versus semi-detailed [B] road net — and community road nets [C]

Figure [A] 5 shows a road net. Instead of showing junctions J1, J2 and J3 as small black
disks we show them as larger circles — for reasons that transpires from Fig. [B] 5.

Junctions J1, J2 and J3 are considered composite, that is, to represent communities.

We may consider the road net of Fig.[A] 5 to be an abstraction of the road net hinted at
in Fig.[B] 5.

20

Junctions j11, j12, . . . , j35 are considered simple embedded junctions.
We decide to allow three kinds of junctions:

composite, simple embedded and simple.

They are as follows:
Composite junctions stand for road nets themselves. The junctions of those road nets

are all simple embedded junctions. Simple embedded junctions are the junctions, hence, of
composite junction road nets. Simple junctions are those junctions which are not composite
(that is: are not standing for road nets) and are not simple embedded junctions (that is:
simple, hence un-embedded junctions are those remaining junctions of a net which include
modality road).

In Fig. [B] 5 on the preceding page we have left out the internal roads, that is, segments
of junctions J1, J2 and J3, that is between the simple embedded junctions j11, j12 and j13,
between j21, j22 and j23, and between j31, j32, j33, j34 ans j35.

The internal segments of junctions J1, J2 and J3 are shown in Fig. [C] 5 on the facing
page. They are to be considered complete nets “in and by” themselves.

We may consider the implied junction identifications Ji1, Ji2 and Ji3 to be names of
communities.

We may consider the implied junction identifications ji11, ji12 and ji13 to abstract to J1,
ji21, ji22 and ji23 to abstract to J2, and ji31, ji32, ji33, ji34 and ji35 to abstract to J3.

We shall assume that from these junction identifications, say jikℓ, one can observe the
more abstract junction identifications, i.e., Jik.

We shall, conversely, assume that from segment junction identifications one can observe
whether they are identifications of composite, of simple embedded or of simple junctions, and,
if of composite junctions, that one can further observe which simple embedded junction of
the composite junction the segment is connected to.

In summary: When consider any multi-modality net and from it project, that is, consider
only the net, nr, of modality road, then we may find that some junctions are composite while
are are simple. When then examining the road nets, rn, contained in composite junctions
then we will find that their junctions are simple embedded. The embedded road nets, rn,
otherwise satisfy all the properties (i.e., axioms) of nets in general. To link up the segments of
nr incident upon, that is, connected to composite junctions (in nr) we provide their junction
identifications with two levels of observability: the abstract one that made us see that they
were connected to composite junctions (cf. Fig. [A] 5 on the preceding page), and a concrete
one that enables us to decide which ones of the simple embedded junctions they are “finally”
linked to (cf. Fig. [B] 5 on the facing page).

type
M == road | ...

Jc, Js, Jse
Jic, Jis, Jise
J = Jc | Js | Jse
Cn

value
is composite J: J → Bool
is simple J: J → Bool
is simple embedded J: J → Bool
obs N: Jc → N

21

obs Jic: Jc → Jic, obs Jis: Js → Jis, obs Jise: Jse → Jise
obs Cn: Jic → Cn, obs Cn: Jise → Cn
obs Jise: Jic → Jise

axiom
∀ j:Jc • is composite J(j) ∧ xtr Ms(obs N(j,road))={road},
∀ j:Js • is simple J(j),
∀ j:Jse • is simple embedded J(j)

∀ n:N,j:J • j ∈ obs Js(n) ∧ is composite J(j) ⇒
let rn = obs N(j) in

end

2.5 Railway Nets

2.5.1 General

A transportation net of modality railway has segments be lines between stations and have
junctions be stations.

We concretise the concept of modes. Mode m=railway will now designate railway nets:

type
M == road | railway | ...

From a multi-modal transportation net we can project the railway net, rn:RN:

value
proj: N × {railway} → RN

Junctions of a transportation net of modality railway have sub-junctions which are stations:

value
proj: J × {railway} → ST

Segments of a transportation net of modality railway become lines:

value
proj: S × {railway} → LI

2.5.2 Lines, Stations, Units and Connectors

Railway segments are thus called lines, and railway sub-junctions are thus called stations.
A notion of connectors is introduced. It is not to be confused with the previous notion of
junctions.

1. A railway net is a net of mode railway.

22

2. Its segments are lines of mode railway.

3. Its junctions are stations of mode railway.

4. A railway net consists of one or more lines and two or more stations.

5. A railway net consists of rail units.

6. A line is a linear sequence of one or more linear rail units.

7. The rail units of a line must be rail units of the railway net of the line.

8. A station is a set of one or more rail units.

9. The rail units of a station must be rail units of the railway net of the station.

10. No two distinct lines and/or stations of a railway net share rail units.

11. A station consists of one or more tracks.

12. A track is a linear sequence of one or more linear rail units.

13. No two distinct tracks share rail units.

14. The rail units of a track must be rail units of the station (of that track).

15. A rail unit is either a linear, or is a switch, or a is simple crossover, or is a switchable
crossover, etc., rail unit.

16. A rail unit has one or more connectors.

17. A linear rail unit has two distinct connectors. A switch (a point) rail unit has three
distinct connectors. Crossover rail units have four distinct connectors (whether simple
or switchable), etc.

18. For every connector there are at most two rail units which have that connector in
common.

19. Every line of a railway net is connected to exactly two distinct stations of that railway
net.

20. A linear sequence of (linear) rail units is an acyclic sequence of linear units such that
neighbouring units share connectors.

type
1. RN = {| n:smN • obs M(n)=railway |}
2. LI = {| s:S • obs M(s)=railway |}
3. ST = {| c:C • obs M(c)=railway |}

Tr, U, K

value
4. obs LIs: RN → LI-set
4. obs STs: RN → ST-set

23

5. obs Us: RN → U-set
6. obs Us: LI → U-set
8. obs Us: ST → U-set
11. obs Trs: ST → Tr-set
15. is Linear: U → Bool
15. is Switch: U → Bool
15. is Simple Crossover: U → Bool
15. is Switchable Crossover: U → Bool
16. obs Ks: U → K-set

20. lin seq: U-set → Bool
lin seq(us) ≡

∀ u:U • u ∈ us ⇒ is Linear(u) ∧
∃ q:U∗

• len q = card us ∧ elems q = us ∧
∀ i:Nat • {i,i+1} ⊆ inds q ⇒ ∃ k:K •

obs Ks(q(i)) ∩ obs Ks(q(i+1)) = {k} ∧
len q > 1 ⇒ obs Ks(q(i)) ∩ obs Ks(q(len q)) = {}

axiom
4. ∀ n:RN • card obs LIs(n) ≥ 1 ∧ card obs STs(n) ≥ 2

6. ∀ n:RN, l:LI • l ∈ obs LIs(n) ⇒ lin seq(l)

7. ∀ n:RN, l:LI • l ∈ obs LIs(n) ⇒ obs Us(l) ⊆ obs Us(n)

8. ∀ n:RN, s:ST • s ∈ obs STs(n) ⇒ card obs Us(s) ≥ 1

9. ∀ n:RN, s:ST • s ∈ obs LIs(n) ⇒ obs Us(s) ⊆ obs Us(n)

10. ∀ n:RN,l,l′:LI•{l,l′}⊆obs LIs(n)∧l6=l′⇒obs Us(l)∩ obs Us(l′)={}

10. ∀ n:RN,l:LI,s:ST•l ∈ obs LIs(n)∧s ∈ obs STs(n)⇒obs Us(l)∩ obs Us(s)={}

10. ∀ n:RN,s,s′:ST•{s,s′}⊆obs STs(n)∧s 6=s′⇒obs Us(s)∩ obs Us(s′)={}

11. ∀ s:ST•card obs Trs(s)≥1

12. ∀ n:RN,s:ST,t:Tr•s ∈ obs STs(n)∧t ∈ obs Trs(s)⇒lin seq(t)

13. ∀ n:RN,s:ST,t,t′:Tr•s ∈ obs STs(n)∧{t,t′}⊆obs Trs(s)∧t6=t′

⇒ obs Us(t) ∩ obs Us(t′) = {}

18. ∀ n:RN • ∀ k:K •

k ∈ ∪{obs Ks(u)|u:U•u ∈ obs Us(n)}
⇒card{u|u:U•u ∈ obs Us(n)∧k ∈ obs Ks(u)}≤2

19. ∀ n:RN,l:LI • l ∈ obs LIs(n) ⇒

24

∃ s,s′:ST • {s,s′} ⊆ obs STs(n) ∧ s 6=s′ ⇒
let sus=obs Us(s),sus′=obs Us(s′),lus=obs Us(l) in
∃ u,u′,u′′,u′′′:U • u ∈ sus ∧

u′ ∈ sus′ ∧ {u′′,u′′′} ⊆ lus ⇒
let sks = obs Ks(u), sks′ = obs Ks(u′),

lks = obs Ks(u′′), lks′ = obs Ks(u′′′) in
∃!k,k′:K•k 6=k′∧sks ∩ lks={k}∧sks′ ∩ lks′={k′}

end end

2.6 Net Dynamics

By net dynamics we shall mean the changing possibilities of flow of conveyors (cars, trains,
aircraft, ships, etc.) along segments and through junctions. We speak of direction of flow
along segments in terms of “from the junction at one end of the segment to the junction at
the other end”. And we speak of flow through a junction as “proceeding from one segment
incident upon the junction into a (udually different) segment emanating from that junction”.
Segments connected to a junction are both incident upon that junction and emanates from
that junction.

2.6.1 Segment and Junction States

A

C

B

D

Y

X

J

Figure 6: A Special “Carrefour” Junction

Segments may be open for traffic in either or both directions (between the segments’ two
junctions [identified by jix and jiy]) or may be closed. We model the state, sσ : SΣ, of a
segment, s : S, as a set of pairs of junction identifications, namely of the two identifications
of the junctions that the segment connects. This state, sσ : SΣ, is either empty, i.e., the seg-
ment is closed ({}), or has one pair, {(jix, jiy)}, that is, the segment is open in direction from
junction jix to junction jiy , or another pair {(jiy , jix)}, or both pairs {(jix, jiy), (jiy , jix)},
that is, is open in both directions. Junctions may direct traffic from any subset of incident
segments to any subset of emanating segments. We model the state, jσ : JΣ, of a junc-
tion, j : J , as a set of pairs of segment identifications, namely of identifications of segments
connected to the junction. Let the set of identifications of segments connected to junction
j be {si1, si2, ..., sim)}. If, in some state, jσ of the junction, it is possible (allowed) to pass
through the junction from the segment identified by sij to the segment identified by sik, then
the pair (sij , sik) is in jσ. The junction state may be empty, i.e., closed: no traffic is allowed
through the junction. Or the junction state may be “anarchic full”, that is, it contains all
combinations of the pairs of identifiers of segments incident upon the junction.

25

type
SΣ = (Ji×Ji)-set
JΣ = (Si×Si)-set

value
obs SΣ: S → SΣ
obs JΣ: J → JΣ

xtr Jis: SΣ → Ji-set, xtr Jis(sσ) ≡ {ji|ji:Ji • (ji,) ∈ obs sσ ∨ (,ji) ∈ obs sσ}
xtr Sis: JΣ → Si-set, xtr Sis(jσ) ≡ {si|si:Si • (si,) ∈ obs jσ ∨ (,si) ∈ obs jσ}

axiom
∀ s:S • xtr Jis(obs SΣ(s)) ⊆ xtr Jip(s),
∀ j:J • xtr Sis(obs JΣ(j)) ⊆ xtr Sis(j)

Observations:

• A junction, j : J , of just one segment, s : S, that is, s is a cul de sac, may either
be closed, and vehicles trying to enter j will be queued up, or it is open, and vehicles
entering j will be lead back to s.

• As a consequence segment s, in order for this latter routing to happen, must be open
in both directions when j is “open”.

• In general, if the state of a junction j (identified by ji) contains a pair (six, siy) then
the state of the designated segments, sx and sy, must respectively contain pairs (ji′, ji),
respectively (ji, ji′′), where {ji, ji′} and (ji, ji′′} are the pairs of junction identifications
associated with six and siy respectively.

• And this must hold for all states of junctions and adjacent segments.

• This is captured in the axioms below.

axiom
...

The junction of Fig. 6 shows four segments, identified by A, B, C and D. The figure also
suggests a state in which traffic lights prohibit movements from A into J, from B into J, from
C via J into A, and from D via J into B. The “bypass” from A/X into Y/D appears to be
such that traffic can always pass from A into D. The current state alluded to in Fig. 6 on the
previous page appears to be:

jσJ : {(A,D), (C,B), (C,D), (D,A), (D,C)}

(A,D) is potentially a member of every state that the junction can possibly be in — see
next section.

2.6.2 Segment and Junction State Spaces

A state space is a set of states. A segment can be in one of several segments states. A
junction can be in one of several junction states. Hence we introduce segment and junction
state spaces.

26

type
SΩ = SΣ-set
JΩ = JΣ-set

value
obs SΩ: S → SΩ
obs JΩ: J → JΩ

axiom
∀ s:S • obs SΣ(s) ⊆ obs SΩ(s),
∀ j:J • obs JΣ(j) ⊆ obs JΩ(j)

2.7 More on Net Dynamics: Traffic

2.7.1 Vehicles and Positions

There is a further undefined notion of vehicles, V. And there is a notion of the position, P,
of a vehicle. Either a vehicle is positioned in a junction, and then its position is designated
by the junction identifier. Or a vehicle is positioned along a segment, and then its position
is designated by a triplet: the identifier of the junction it is moving away from, the identifier
of the junction it is moving towards, and the fraction of the distances from the position to
the two junctions: If the fraction is 0, then the vehicle has just entered the segment, if the
fraction is 1, then the vehicle is just about to leave the segment, and, hence, if the fraction
is a proper real between o and 1, but neither 0 nor 1, then the vehicle is properly within the
segment.

type
F = {|f:Real•0≤f≤1|}
P == mkP at J(ji:Ji) | mkP along S(fji:Ji,f:F,tji:Ji)

2.7.2 Traffic

Traffic is now a function from time to a pair of a net, and the positions of vehicles within the
net.

type
V
T
TF = T →m (N × (V →m P))

Proper Vehicle Positions The positions of a traffic must designate proper junctions of
the net.

axiom
∀ tf:TF •

∀ t ∈ dom tf •

let (n,vps) = tf(t) in

27

∀ p:P • p ∈ rng vps ⇒
case p of

mkP at J(ji) → ji ∈ obs Jis(n),
mkP along S(jf, ,jt) → {jf,jt}⊆obs Jis(n)

end end

Other Traffic Constraints Traffic must be smooth: Positions of vehicles do not “jump
around”, i.e., movement are monotonic. No “ghost vehicles”: If at times t and t′ considered
close to one another a vehicle is in the traffic then it is also in the traffic at all times in
between t and t′. We omit the formalisations of these constraints.

2.8 Time Tables and Traffic

2.8.1 Time Tables

By a time table we understand an entity which to named transport vehicles associate journey
descriptions. By a journey description we understand a sequence of junction visits. By a
junction visit we understand a triple: Arrival time, junction identifier and departure time.

type
TT = Vn →m Journey
Journey = (at:T × ji:Ji × dt:T)∗

2.8.2 Scheduling

By scheduling we shall here, in a narrow sense, understand a function from nets and time
tables to a possibly infinite set of traffics such that each traffic satisfies the time table.

value
sched: TT → N → TF-infset
sched(tt)(n) as tfs

pre: wf TT and N(tt,n)
post: ∀ tf:TF • tf ∈ tfs ⇒ wf TF(tf) ∧ sat(tf,tt)

wf TT and N: TT × N → Bool, ...

sat: TF × TT → Bool, ...

2.9 And so on!

We have shown fragments of a description of a domain of transportation nets. There is, of
course, much more. “Years of work still to be done!” But, for the time being we have enough
to illustrate some reasonably interesting requirements.

28

3 A Set of Requirements

We shall consider the following three sets of requirements: requirements for software to moni-
tor net maintenance, requirements for software to monitor & control net traffic, requirements
for software to simulate net traffic, and requirements for software to support transport logis-
tics: optimal routes etc.

3.1 Plan of Development of Requirements

The plan is now to first give a brief, rough sketch narrative of the four sets of requirements. We
do so, here, in this paper, in an unusual way. First we ‘extend’ the domain description given
earlier. Then we ‘project’, ‘instantiate’, and make less non-deterministic (‘determination’) the
extended domain description, that is: We transform the description description into domain
requirements prescriptions. But first we present the domain extensions. After that the plan
is to analyse these four domain extension sketches wrt. such common “features” that may be
shared by the four (or triples of three or pairs of two) software implementations; to present
the requirements for each of the four specific software “packages”; and finally to present the
requirements for such a shared “core” of software. That is, we are ‘fitting’. ‘Extension’,
‘projection’, ‘instantiation’, ‘determination’ and ‘fitting’ are three major domain description-
to-reguirements prescription operations. (See Chap. 19 of [3] for details.)

3.2 Brief Narrative of the Four Sets of Requirements

Domain Requirements: By domain requirements we understand requirements that can
be expressed by sôlely using terms of the domain (and ordinary, non-technical language).6

In this paper we shall only consider domain requirements. Of course, many, if not most of
the interesting problems of software development in relation also to ‘problem frames’ may be
those due to interface and machine requirements.

3.2.1 ‘Net Maintenance’ Software

We propose a (parameterised) software package to be developed for monitoring and supporting
the management of the maintenance of both road and rail nets. An instantiation parameter
(road,rail) shall determine whether the package works for road or for rail nets.

‘Net Maintenance’ Domain Description – An Extension: Segments and junctions
need be maintained, that is, we may associate a set of quality attributes related to the
upkeep of segments and junctions, as well as of any traffic signals associated with these, we
may further associate actual and estimated date(s), cost(s), and duration(s) of previous and
next maintenance services, etc., and we may keep “such” records of all segments, junctions and
signals of the net. To monitor the net quality attributes, in the domain, some need perform
work that help advise maintenance staff to evaluate and report quality attributes of segments,
junctions and signals, follow-up on missing such reports, and help update the attributes of
the records kept when reported. To support the management of net maintenance some need

6By machine requirements we understand requirements that can be sôlely expressed using terms of the
machine (and ordinary, non-technical language). By interface requirements we understand requirements that
can be expressed only by using terms of both the domain and the machine (and ordinary, non-technical
language).

29

perform, in the domain, work that help management schedule and allocate resources for the
monitoring of net quality and corresponding update of records, for the actual maintenance
work, and for handling “unforeseen” reports on segment, junction and signal malfunctioning
(i.e., in need of repair).

‘Net Maintenance’ Domain Requirements

Entities: Segments and junctions need be maintained, that is, we must associate a set of
quality attributes related to the upkeep of segments and junctions, as well as of any traffic
signals associated with these, we must further associate actual and estimated date(s), cost(s),
and duration(s) of previous and next maintenance services, etc., and we must keep “such”
records of all segments, junctions and signals of the net.

Monitoring Functions: To monitor the net quality attributes, in the domain, the soft-
ware must have functions that help advise maintenance staff to evaluate and report quality
attributes of segments, junctions and signals, follow-up on missing such reports, and help
update the attributes of the records kept when reported.

Management Functions: To support the management of net maintenance the software
must have functions that help management schedule and allocate resources for the monitoring
of net quality and corresponding update of records, for the actual maintenance work, and for
handling “unforeseen” reports on segment, junction and signal malfunctioning (i.e., in need
of repair). ... Here follows precise requirements details (omitted) ...

Domain to Requirements Operations: We give a terse summary. Projection: Most
of the net attributes have been kept. Many of the concepts (routes, ..) and evaluation
functions (time, length, ...) have been “projected away”. Instantiation: Usually the software,
when delivered to a client, is instantiated to the specific net characteristics of the client.
Determination: No example as looseness and non-determinism is basically absent from this
part of the domain. Etcetera!

3.2.2 ‘Traffic Control’ Software

We propose a software package to be developed for monitoring and controlling road net traffic
not just at local junctions but along segments, and providing for “green” flow along certain
route directions.

Domain Description – A Very Rough Sketch Extension: Traffic control in the con-
ventional, non-technological net domain is done by traffic police controlling junction flows
or by local sensors and actuators positioned near junctions sensors monitor only local traffic
and actuators control only local junction semaphores. An assessment is made (by police or
sensors) of local traffic density only, and appropriate arm signals or semaphore ligting (red,
yellow, green) acts as controls.

Domain Requirements

30

Net Representation “In the Machine”: The road net must be represented: segments,
junctions and signals. Signals must be controlled. Segment, junction and signal states must
be represented. Segment lengths and segment and junction (e.g., average) “traversal” times
must be represented. Vehicle positions in segments and junctions must be represented. Vehicle
positions must be monitored. We assume sensors to record and inform of “density” of vehicles
at segment lanes in vicinity of junctions and leading into these. ... here follows precise
requirements details ...

Traffic Monitoring Functions: Functions shall regularly sample traffic density. There
must be functions for inquiring about and reporting on unusual traffic situations (accidents,
fog, road conditions in general). It is assumed that there are functions which otherwise
report on the statues of the road net. (That is, functions which relate to the net maintenance
software.) ... here follows precise requirements dertails ...

Traffic Control Functions: The objective of the use of these functions is to ensure smooth
traffic. Individual functions shall determine the setting of signals at junctions. Composite
functions shall determine the setting of signals, say in “green waves” along routes — hence
the road net representation must be augmented with information about major and minor
routes, time of day preferred directions: am “into town”, pm “out of town”, and the like. ...
Here follows precise requirements details (omitted) ...

Domain to Requirements Operations. Projection: Only the junction and segment state
attributes need be kept. Instantiation: The net is instantiated to a particular road net of a
particular city, i.e., that of the client. Determination: Some segments are designated as priority
segments, with determined directions being “favoured” for “green traffic flow” at determined
time intervals of the day. Accordingly some junction state transitions are “favoured” over
others. Etcetera!

3.2.3 ‘Traffic Simulation’ Software

We propose a software package to be developed for simulating road net traffic. In the domain
there is, we assume, as yet no such simulation software. So we cannot domain describe
what we mean by simulation — or rather: any such domain description becomes the domain
requirements.

Net Representation: Net representation “ in the machine”: The road net must be repre-
sented: segments, junctions and signals. Segment, junction and signal states must be repre-
sented. Segment lengths and segment and junction (e.g., average) “traversal” times must be
represented. Vehicle positions in segments and junctions must be represented. Assumptions:
Vehicles, when moving, move at average speed plus/minus some minor deviations.

Simulation Concepts: We suggest, not as part of the requirements, but as a software
implementation idea, the following two ideas:

Representation of segment geodetic profile: A segment is decomposed into geodetic blocks.
The curvature of each block is represented by two 3D vectors, from which a Bezier curve for
that block can be constructed.

31

Representation of segment velocity profile: A segment is decomposed into velocity blocks.
The increase/decrease of speed for each block can be represented by two 2D vectors, from
which a Bezier velocity curve for that block can be constructed: The computation of the curve
will, depending on vector characteristics (long or short vectors), compute close, or less close,
or “far away” points on the curve, and we shall take the varying density of these computed
points to designate positions of a vehicle at any one time, one vehicle per computation of the
velocity curve.

Traffic Simulation Functions: Initialise states of segments and junctions wrt. signals.
Initialise states of segments and junctions wrt. vehicle positions. That is: allow vehicles to
start their journey along segments and in junctions when the simukation begins, and/or at
different times during the simulation (say according to some time table). Schedule simulation
interval and resolution (granularity, i.e., one unit of simulation time = R units or real time.7).
“Play, stop, recommence” simulation. Change granularity while “playing”. Insert vehicles
during simulation.

Domain to Requirements Operations. Projection: We project away almost all but the
net and time tables. We adhere to definition of traffic (i.e., TF). Instantiation: We instantiate
to a specific net. Determination: We may decide to constrain to segment-determined constant
velocity traffic. Etcetera!

3.2.4 ‘Transport Logistics’ Software

We propose a software package to be developed for supporting freight (incl. container) trans-
port logistics.

Domain Description – An Extension: In the domain planning a journey, for travelling
(on a crucial trip) as a passenger on trains, by bus, airplane or by ship, usually requires the
use of one or more time tables. Considerations of alternative routes, of multi modal travel, of
cost: fast, perhaps expensive, hrried travel versus slower, perhaps less costly, and of overnight
stays en route may be important. This applies to freight transport too: refrigeration of freight
load, “first to market”, etc.

Domain Requirements

Net Representation “In the Machine”: The multi modal net must be represented:
segments and junctions Segment lengths and average traversal times and traversal costs of
segments and junctions8 must be represented — usually the latter (times and costs) are
provided by transport vehicle (truck, train, boat and aircraft) time tables. We may thus
discover that we need to extend our domain description: Junction hubs, where freight is
transferred from one modality transport to another, may need be further detailed, e.g., as to
warehouse facilities (godowns), etc.

7R can be any real above 0. If R is less than 1 simulation is microscopic, if it is 1 simulation is “real”, if
it is larger than 1 simulation is macroscopic.

8The traversal time and cost of junctions could be differentiated wrt. modalities: freight being unload-
/loaded when incoming and outgoing segment modalities are different, etc.

32

Logistics Functions: Etcetera !

Domain to Requirements Operations. Projection: The net, its segments and junctions,
their length, time, and cost attributes. Also time tables. Most functions related to these.
Instantiation: Maybe we instantiate to only a shipping net, or only a rail net? Determination:
As a representation of the segment and junction traversal times we may rely on the time
tables. Etcetera!

3.3 Requirements Prescription of Shared Software

All four rough sketch requirements prescriptions projected into their requirements a core of
the net, its segments and junctions. We therefore conclude that a repository, i.e., a database,
is needed, one in which segments and junctions are stored. A repository (software system)
which allows flexible representation of segment and junction attributes and their initialisation,
retrieval and update. So we decide on using some relational database management system.

3.3.1 Net Repository (i.e., Net Database)

Informal Rough Sketch: Segment representations are in the form of relation tuples. Seg-
ment attributes are attributes of relations. Junction representations are in the form of relation
tuples. Junction attributes are attributes of relations.

Formalisation – a Sketch:

type
SR = ST-set
JR = JT-set
ST :: si:Si ftj:Jip m:M le:L ti:TI k:K f:F sσ:SΣ sω:SΩ
JT :: ji:Ji si:Si-set m:M ti:TI k:K f:F jσ:JΣ jω:JΩ

This is noit quite first normal form relational representation. A junction connected to n

segments and with a state-space of m possible states — in (primitive) first normal form would
require m×n tuples. Of course “smarter” ways of representing sets of segment identifiers and
state space (ω) can be devised. That is not a requirements issue, but a software design issue.

3.3.2 Repository Functions

Rough Sketch Ideas: The observer functions of the domain description are now simple
tuple projections. Query facilities offered by the relational DBMS9 being deployed can be
used in connection with many of the functions transformed from the domain description into
the specific domain requirements prescriptions. They are the functions that make “heavy” use
of observer functions. The various domain requirements prescriptions additionally prescribe
repository initialisation and refreshment (i.e., update) functions — and again their design
and implementation can be greatly facilitated by the update functions of the chosen rela-
tional DBMS. Of course, queries “against” an RDBMS really deposit results in a designated
workspace and displays this on the GUI.

9DBMS: Database Management System, like Frontbase www.frontbase.com the best, or DB2
www.ibm.com/db2 or SQL www.oracle.com.

33

Specific Function Signatures:

value
obs Jip: S → Jip
sql project: RelNm×{|′′si=seg_name′′|}×{|′′ftj′′|}×Wn → Jip×GUI

The former function is the “further undefined” domain specification observer function.
The latter function “approximates” an SQL query — where we do not show the functional
arguments for the RDBMS and the workspace.

“General” Function Signatures: We intimate database retrieve (query, observer), ini-
tialise, and refresh (update), function signatures:

value
query: retrive function × RDBMS × Wn → GUI
init: (S|J)-set × RDBMS → RDBMS × GUI
refresh: (S|J)-set × RDBMS → RDBMS × GUI

4 And So On!

4.1 What Have we Covered

We have given a rather large fragment of a domain description. We have postulated and
given small fragments of four domain requirement prescriptions. We have indicated how
these domain requirements were “derived” from the domain description. We have formalised
the domain description. We hardly formalised the domain requirements. But could (easily)
do that! The four domain requirements reflect different problem frames.

4.2 Domains, Requirements and Problem Frames

We claim to have intimated the following problem frames (PF):

• Common Software: II: Information Intensive PF.

• Maintenance: Weak Reactive10 ⊕ II PF

• Traffic Control: Strong Reactive11 ⊕ II PF.

• Simulation: Computation ⊕ Virtual Real-time ⊕ II PF.

• Logistics: Computation ⊕ II PF.

10Weak reactive: Non real-time
11Strong reactive: “Critical” (i.e., hard) real-time

34

4.3 The Triptych and the Problem Frame Approaches

4.3.1 General Observations

The triptych approach advises that software development includes: domain engineering (DE),
requirements engineering (RE), and software design (SD). The triptych approach does not
replace the PF approach. To me the triptych approach augments, supplements the PF ap-
proach.

4.3.2 Specific Observations

The triptych approach does not mandate strict linear adherence to DE → RE → SD but
assumes DE ↔ RE ↔ SD ↔ DE iteration. In fact:It is impossible to “discover” all that is
relevant about the domain before proceeding to understand the requirements, and all that is
relevant about the requirements before proceeding to design the software, Etcetera!

4.4 Grand Challenges of Computing Science

4.4.1 The Grand Challenge of VSTTE

The GC of VSTTE12 to me appears to focus on “a million lines” of program code that to me
appears to be verified with respect to program code annotations where it is not clear to what
extent those annotations relate to properties of the code, to requirements, and to domain
assumptions.

4.4.2 The Grand Challenge of Ubiquitous Computing

The grand challenge of ubiquitous computing appears to offer a very nice opportunity for
a “foothill”13 experimental project. Take the proposed Automated Highway project. As
it could be conceived one is thinking of deploying computers and communication wherever
feasible (sometime in future) in the safe and efficient driving of cars, in sorting out cross traffic,
etc. So here a far more detailed domain description of transportation nets than intimated
here is needed. Etcetera!

4.5 Conclusion

So I immodestly propose that research into and use of the PF approach be augmented by
research into and use of the triptych approach, and to adjoin the (“otherwise”) highly laudable
VSTTE effort with some serious, viz., triptych-oriented program code development. I hope
to be able to contribute to the grand challenge of ubiquitous computing.

4.6 Bibliographical Notes

We refer to [1, 2, 3] for a complete coverage of informal as well as formal abstraction and
modelling principles and techniques [1], principles and techniques specification of systems and
languages [2], and principles and techniques of domain engineering, requirements engineering

12VSTTE: Verified Software: Theories, Techniques and Experiments
13“Foothill” project: This is one of those terible “americanisms”: apparently used to characterise a pre-

cursor like, or perhaps rather intial stage project.

35

