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Summary

• This seminar covers

⋄⋄ a new science & engineering of domains as well as

⋄⋄ a new foundation for software development.

We treat the latter first.
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• Instead of commencing with requirements engineering,

⋄⋄ whose pursuit may involve repeated,

⋄⋄ but unstructured forms of domain analysis,

⋄⋄ we propose a predecessor phase of domain engineering.

• That is, we single out domain analysis as an activity to be pursued
prior to requirements engineering.
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• In emphasising domain engineering as a predecessor phase

⋄⋄ we, at the same time, introduce a number of facets

⋄⋄ that are not present, we think,

⋄⋄ in current software engineering studies and practices.

• One facet is the construction of separate domain
descriptions.

⋄⋄ Domain descriptions are void of any reference to requirements

⋄⋄ and encompass the modelling of domain phenomena

⋄⋄ without regard to their being computable.
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• Another facet is the pursuit of domain descriptions as a
free-standing activity.

⋄⋄ In this seminar we emphasize domain description development
need not lead to software development.

⋄⋄ This gives a new meaning to business process engineering,
and should lead to

◦◦ a deeper understanding of a domain

◦◦ and to possible non-IT related business process re-engineering
of areas of that domain.

A Precursor for Requirements Engineering 5 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29



6

• In this seminar we shall investigate

⋄⋄ a method for analysing domains,

⋄⋄ for constructing domain descriptions

⋄⋄ and some emerging scientific bases.
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• Our contribution to domain analysis is

⋄⋄ that we view domain analysis

⋄⋄ as a variant of formal concept analysis
[Wille:ConceptualAnalysis1999],

◦◦ a contribution which can be formulated by the “catch phrase”

◦◦ domain entitities and their qualities form Galois
connections,

⋄⋄ and further contribute with a methodology of

⋄⋄ necessary corresponding principles and techniques of domain
analysis.
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• Those corresponding principles and techniques hinge on our view of
domains as having the following ontology.

⋄⋄ There are the entities that we can describe and then there is
“the rest” which we leave un-described.

⋄⋄ We analyse entities into

◦◦ endurant entities and

◦◦ perdurant entities ,

that is,

◦◦ parts and materials as endurant entities and

◦◦ discrete actions, discrete events and behaviours as perdurant
entities , respectively.

• Another way of looking at entities is as

⋄⋄ discrete entities , or as

⋄⋄ continuous entities.
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• We also contribute to the analysis of discrete endurants in terms of
the following notions:

⋄⋄ part types and material types,

⋄⋄ part unique identifiers,

⋄⋄ part mereology and

⋄⋄ part attributes and material attributes and

⋄⋄ material laws.

• Of the above we point to the introduction, into computing science
and software engineering of the notions of

⋄⋄ materials and

⋄⋄ continuous behaviours

as novel.
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• The example formalisations are expressed in

⋄⋄ RAISE [RaiseMethod] (with
[TheSEBook1wo,TheSEBook2wo,TheSEBook3eps] being a
rather comprehensive monograph cum textbook),

• but could as well have been expressed in, for example,

⋄⋄ Alloy [alloy],

⋄⋄ Event B [JRAbrial:TheBBooks] ,

⋄⋄ VDM [e:db:Bj78bwo,e:db:Bj82b,JohnFitzgerald+PeterGormLarsen]

or

⋄⋄ Z [m:z:jd+jcppw96].
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1. Introduction

• This is primarily a methodology paper.

• By a methodδ we shall understand

⋄⋄ a set of principles

⋄⋄ for selecting and applying

⋄⋄ a number of techniques and tools

⋄⋄ in order to analyse a problem

⋄⋄ and construct an artefact.

• By methodologyδ we shall understand

⋄⋄ the study and knowledge about methods.
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12 1. Introduction

• This seminar contributes to

⋄⋄ the study and knowledge

⋄⋄ of software engineering development methods.

• Its contributions are those of suggesting and exploring

⋄⋄ domain engineering and

⋄⋄ domain engineering as a basis for requirements engineering.

• We are not saying

⋄⋄ “thou must develop software this way”,

• but we do suggest

⋄⋄ that since it is possible

⋄⋄ and makes sense to do so

⋄⋄ it may also be wise to do so.
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1.1. Domains: Some Definitions

• By a domainδ we shall here understand

⋄⋄ an area of human activity

⋄⋄ characterised by observable phenomena:

◦◦ entities

∗ whether endurants (manifest parts and materials)

∗ or perdurants (actions, events or behaviours),

◦◦ whether

∗ discrete or

∗ continuous;

◦◦ and of their properties.
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Example: 1 Some Domains Some examples are:

air traffic,
airport,
banking,
consumer market,
container lines,
fish industry,
health care,

logistics,
manufacturing,
pipelines,
securities trading,
transportation
etcetera.
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1. Introduction 1.1. Domains: Some Definitions1.1.1. Domain Analysis

1.1.1. Domain Analysis

• By domain analysisδ we shall understand

⋄⋄ an inquiry into the domain,

⋄⋄ its entities

⋄⋄ and their properties.
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Example: 2 A Container Line Analysis.

We omit enumerating entity properties.

• parts:

⋄⋄ container,

⋄⋄ vessel,

⋄⋄ terminal port, etc.;

• actions:

⋄⋄ container loading,

⋄⋄ container unloading,

⋄⋄ vessel arrival in port, etc.;

• events:

⋄⋄ container falling overboard;

⋄⋄ container afire;

⋄⋄ etc.;

• behaviour:

⋄⋄ vessel voyage,

⋄⋄ across the seas,

⋄⋄ visiting ports, etc.

Length of a container is a container property.
Name of a vessel is a vessel property.
Location of a container terminal port is a port property.
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1.1.2. Domain Descriptions

• By a domain descriptionδ we shall understand

⋄⋄ a narrative description

⋄⋄ tightly coupled (say line-number-by-line-number)

⋄⋄ to a formal description.

• To develop a domain description
requires a thorough amount of domain analysis.
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18 1. Introduction 1.1. Domains: Some Definitions1.1.2. Domain Descriptions

Example: 3 A Transport Domain Description.

• Narrative:

⋄⋄ a transport net, n:N,
consists of an aggregation of hubs, hs:HS,
which we “concretise” as a set of hubs, H-set, and
an aggregation of links, ls:LS, that is, a set L-set,

• Formalisation:

⋄⋄ type N, HS, LS, Hs = H-set, Ls = L-set, H, L
value

obs HS: N→HS,
obs LS: N→LS.
obs Hs: HS→H-set,
obs Ls: LS→L-set.
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1. Introduction 1.1. Domains: Some Definitions1.1.3. Domain Engineering

1.1.3. Domain Engineering

• By domain engineeringδ we shall understand

⋄⋄ the engineering of a domain description,

⋄⋄ that is,

◦◦ the rigorous construction of domain descriptions, and

◦◦ the further analysis of these, creating theories of domains.
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20 1. Introduction 1.1. Domains: Some Definitions1.1.3. Domain Engineering

• The size, structure and complexity of interesting domain
descriptions is usually such as to put a special emphasis on
engineering:

⋄⋄ the management and organisation of several, typically 5–6
collaborating domain describers,

⋄⋄ the ongoing check of description quality, completeness and
consistency, etcetera.
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1.1.4. Domain Science

• By domain scienceδ we shall understand

⋄⋄ two things:

◦◦ the general study and knowledge of

∗ how to create and handle domain descriptions

∗ (a general theory of domain descriptions)

and

◦◦ the specific study and knowledge of a particular domain.

⋄⋄ The two studies intertwine.
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1. Introduction 1.2. The Triptych of Software Development

1.2. The Triptych of Software Development

• We suggest a “dogma”:

⋄⋄ before software can be designed
one must understand1 the requirements; and

⋄⋄ before requirements can be expressed
one must understand2 the domain.

• We can therefore view software development as
ideally proceeding in three (i.e., TripTych) phases:

⋄⋄ an initial phase of domain engineering, followed by

⋄⋄ a phase of requirements engineering, ended by

⋄⋄ a phase of software design.

1Or maybe just: have a reasonably firm grasp of
2See previous footnote!
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• In the domain engineering phase (D)

⋄⋄ a domain is analysed, described and “theorised”,

⋄⋄ that is, the beginnings of a specific domain theory is established.

• In the requirements engineering phase (R)

⋄⋄ a requirements prescription is constructed —

⋄⋄ significant fragments of which are “derived”,

⋄⋄ systematically, from the domain description.

• In the software design phase (S)

⋄⋄ a software design

⋄⋄ is derived, systematically, rigorously or formally,

⋄⋄ from the requirements prescription.

• Finally the Software is proven correct with respect to the
Requirements under assumption of the Domain: D,S |= R.
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24 1. Introduction 1.2. The Triptych of Software Development

• By a machineδ we shall understand the hardware and software of a
target, i.e., a required IT system.

• In [dines:ugo65:2008,psi2009,Kiev:2010ptI] we indicate
how one can “derive” significant parts of requirements from a
suitably comprehensive domain description – basically as follows.

⋄⋄ Domain projection: from a domain description one projects those
areas that are to be somehow manifested in the software.

⋄⋄ Domain initialisation: for that resulting projected requirements
prescription one initialises a number of part types as well as
action and behaviour definitions, from less abstract to more
concrete, specific types, respectively definitions.
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⋄⋄ Domain determination: hand-in-hand with domain initialisation
a[n interleaved] stage of making values of types less
non-deterministic, i.e., more deterministic, can take place.

⋄⋄ Domain extension: Requirements often arise in the context of
new business processes or technologies either placing old or
replacing human processes in the domain. Domain extension is
now the ‘enrichment’ of the domain requirements, so far
developed, with the description of these new business processes
or technologies.

⋄⋄ Etcetera.

• The result of this part of “requirements derivation” is the domain
requirements.
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26 1. Introduction 1.2. The Triptych of Software Development

• A set of domain-to-requirements operators similarly exists for
constructing interface requirements

⋄⋄ from the domain description and,

⋄⋄ independently, also from knowledge of the machine

⋄⋄ for which the required IT system is to be developed.

• We illustrate the techniques of domain requirements and interface
requirements in Sect. 8.

• Finally machine requirements are “derived”

⋄⋄ from just the knowledge of the machine,

⋄⋄ that is,

◦◦ the target hardware and

◦◦ the software system tools for that hardware.
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271. Introduction 1.2. The Triptych of Software Development

• When you review this section
(‘A Triptych of Software Development’)

⋄⋄ then you will observe how ‘the domain’

⋄⋄ predicates both the requirements

⋄⋄ and the software design.

• For a specific domain one may develop

⋄⋄ many (thus related) requirements

⋄⋄ and from each such (set of) requirements

⋄⋄ one may develop many software designs.

• We may characterise this multitude of domain-predicated
requirements and designs as a product line [dines-maurer].

• You may also characterise domain-specific developments as
representing another ‘definition’ of domain engineering.
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28 1. Introduction 1.3. Issues of Domain Science & Engineering

1.3. Issues of Domain Science & Engineering

• We specifically focus on the following issues of domain science &3

engineering:

⋄⋄ (i) which are the “things” to be described4,

⋄⋄ (ii) how to analyse these “things” into description structures5,

⋄⋄ (iii) how to describe these “things” informally and formally,

⋄⋄ (iv) how to further structure descriptions6, and a further study of

⋄⋄ (v) mereology7.

3When we put ‘&’ between two terms that the compound term forms a whole concept.
4endurants [manifest entities henceforth called parts and materials] and perdurants

[actions, events, behaviours]
5atomic and composite, unique identifiers, mereology, attributes
6intrinsics, support technology, rules & regulations, organisation & manage-

ment, human behaviour etc.
7the study and knowledge of parts and relations of parts to other parts and a “whole”.
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1.4. Structure of Paper

• First (Sect. 1) we introduce the problem. And that was done above.

• Then, in (Sects. 4–6)

⋄⋄ we bring a rather careful analysis of

⋄⋄ the concept of the observable, manifest phenomena

⋄⋄ that we shall refer to as entities.

• We strongly think that these sections of this seminar

⋄⋄ brings, to our taste, a simple and elegant

⋄⋄ reformulation of what is usually called “data modelling”,

⋄⋄ in this case for domains —

⋄⋄ but with major aspects applicable as well to

⋄⋄ requirements development and software design.
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• That analysis focuses on

⋄⋄ endurant entities, also called parts and materials,

◦◦ those that can be observed at no matter what time,

◦◦ i.e., entities of substance or continuant, and

⋄⋄ perdurant entities: action, event and behaviour entities, those

◦◦ that occur,

◦◦ that happen,

◦◦ that, in a sense, are accidents.
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• We think that this “decomposition” of the “data analysis”
problem into

⋄⋄ discrete parts and continuous materials,

⋄⋄ atomic and composite parts,

⋄⋄ their unique identifiers and mereology, and

⋄⋄ their attributes

⋄⋄ is novel,

⋄⋄ and differs from past practices in domain analysis.
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• In Sect. 7 we suggest

⋄⋄ for each of the entity categories

◦◦ parts,

◦◦ materials,

◦◦ actions,

◦◦ events and

◦◦ behaviours,

⋄⋄ a calculus of meta-functions:

◦◦ analytic functions,

∗ that guide the domain description developer

∗ in the process of selection,

and

◦◦ so-called discovery functions,

∗ that guide that person

∗ in “generating” appropriate domain description texts,
informal and formal.
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1. Introduction 1.4. Structure of Paper

• The domain description calculus is to be thought of

⋄⋄ as directives to the domain engineer,

⋄⋄ mental aids that help a team of domain engineers

⋄⋄ to steer it simply through the otherwise daunting task

⋄⋄ of constructing a usually large domain description.

• Think of the calculus

⋄⋄ as directing

⋄⋄ a human calculation

⋄⋄ of domain descriptions.

• Finally the domain description calculus section

⋄⋄ suggests a number of laws that the

⋄⋄ domain description process ought satisfy.
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• In Sect. 8 we bring a brief survey of the kind of requirements
engineering

⋄⋄ that one can now pursue based on a reasonably comprehensive
domain description.

⋄⋄ We show how one can systematically, but not automatically

⋄⋄ “derive” significant fragments

◦◦ of requirements prescriptions

◦◦ from domain descriptions.
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• The formal descriptions will here be expressed in
the RAISE [RaiseMethod] Specification Language, RSL.

• We otherwise refer to [TheSEBook1wo].

• Appendix C of the tutorial notes brings a short primer,
mostly on the syntactic aspects of RSL.

• But other model-oriented formal specification languages
can be used with equal success; for example:

⋄⋄ Alloy [alloy],

⋄⋄ Event B [JRAbrial:TheBBooks] ,

⋄⋄ VDM

[e:db:Bj78bwo,e:db:Bj82b,JohnFitzgerald+PeterGormLarsen]

and

⋄⋄ Z [m:z:jd+jcppw96].
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36 2. Introduction

2. The Main Example – Example 3: Road Traffic System

• The main example presents a terse narrative and formalisation of a
road traffic domain.

⋄⋄ Since the example description conceptually covers also major
aspects of

◦◦ railroad nets,

◦◦ shipping nets, and

◦◦ air traffic nets,

⋄⋄ we shall use such terms as hubs and links to stand for

◦◦ road (or street) intersection and road (or street) segments,

◦◦ train stations and rail lines,

◦◦ harbours and shipping lanes, and

◦◦ airports and air lanes.
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372. The Main Example – Example 3: Road Traffic System 2.1. Parts

2.1. Parts
2.1.1. Root Sorts

• The domain,

⋄⋄ the stepwise unfolding of

⋄⋄ whose description is

⋄⋄ to be exemplified,

is that of a composite traffic system

⋄⋄ with a road net,

⋄⋄ with a fleet of vehicles

⋄⋄ of whose individual position on the road net we can speak, that
is, monitor.
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38 2. The Main Example – Example 3: Road Traffic System 2.1. Parts2.1.1. Root Sorts

1. We analyse the composite traffic system into

a a composite road net,

b a composite fleet (of vehicles), and

c an atomic monitor.

type

1. ∆
1(a). N
1(b). F
1(c). M
value

1(a). obs N: ∆ → N
1(b). obs F: ∆ → F
1(c). obs M: ∆ → M
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2.1.2. Sub-domain Sorts and Types

2. From the road net we can observe

a a composite part, HS, of road (i.e., street) intersections (hubs)
and

b an composite part, LS, of road (i.e., street) segments (links).

type

2. HS, LS
value

2(a). obs HS: N → HS
2(b). obs LS: N → LS
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3. From the fleet sub-domain, F, we observe a composite part, VS, of
vehicles

type

3. VS
value

3. obs VS: F → VS
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4. From the composite sub-domain VS we observe

a the composite part Vs, which we concretise as a set of vehicles

b where vehicles, V, are considered atomic.

type

4(a). Vs = V-set

4(b). V
value

4(a). obs Vs: VS → V-set
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• The “monitor” is considered atomic; it is an abstraction of the fact
that

⋄⋄ we can speak of the positions of each and every vehicle on the net

⋄⋄ without assuming that we can indeed pin point these positions

⋄⋄ by means of for example sensors.
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2.1.3. Further Sub-domain Sorts and Types

• We now analyse the sub-domains of HS and LS.

5. From the hubs aggregate we decide to observe

a the concrete type of a set of hubs,

b where hubs are considered atomic; and

6. from the links aggregate we decide to observe

a the concrete type of a set of links,

b where links are considered atomic;
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type

5(a). Hs = H-set

6(a). Ls = L-set

5(b). H
6(b). L
value

5. obs Hs: HS → H-set

6. obs Ls: LS → L-set
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452. The Main Example – Example 3: Road Traffic System 2.1. Parts2.1.3. Further Sub-domain Sorts and Types

• We have no composite parts left to further analyse into parts

⋄⋄ whether they be again composite

⋄⋄ or atomic.

• That is,

⋄⋄ at various, what we shall refer to as, domain indexes

⋄⋄ we have discovered the following part types:

◦◦ 〈∆〉: N, F, M

◦◦ 〈∆, N〉: HS, LS

◦◦ 〈∆, F 〉: VS

◦◦ 〈∆, HS〉: Hs, H

◦◦ 〈∆, LS〉: Ls, L

◦◦ 〈∆, V S〉: Vs, V

⋄⋄ Thus we have ended up with atomic parts.
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2.2. Properties

• Parts are distinguished by their properties:

⋄⋄ the types and

⋄⋄ the values

of these.

• We consider three kinds of properties:

⋄⋄ unique identifiers,

⋄⋄ mereology and

⋄⋄ attributes.
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2. The Main Example – Example 3: Road Traffic System 2.2. Properties2.2.1. Unique Identifications

2.2.1. Unique Identifications

7. We decide the following:

a each hub has a unique hub identifier,

b each link has a unique link identifier and

c each vehicle has a unique vehicle identifier.

type

7(a). HI
7(b). LI
7(c). VI
value

7(a). uid H: H → HI
7(b). uid L: L → LI
7(c). uid V: V → VI

A Precursor for Requirements Engineering 47 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29



48 2. The Main Example – Example 3: Road Traffic System 2.2. Properties2.2.2. Mereology

2.2.2. Mereology
2.2.2.1 Road Net Mereology

• By mereology we mean the study, knowledge and practice of
understanding parts and part relations.

8. Each link is connected to exactly two hubs, that is,

a from each link we can observe its mereology, that is, the
identities of these two distinct hubs,

b and these hubs must be of the net of the link;

9. and each hub is connected to zero, one or more links, that is,

a from each hub we can observe its mereology, that is, the
identities of these links,

b and these links must be of the net of the hub.
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2. The Main Example – Example 3: Road Traffic System 2.2. Properties2.2.2. Mereology2.2.2.1. Road Net Mereology

value

8(a). mereo L: L → HI-set, axiom ∀ l:L•card mereo L(l)=2
axiom

8(b). ∀ n:N,l:L,hi:HI • l ∈ obs Ls(obs LS(n)) ∧ hi ∈ mereo L(l)
8(b). ⇒ ∃ h:H•h ∈ obs Hs(obs HS(n))∧uid H(h)=hi
value

9(a). mereo H: H → LI-set
axiom

9(b). ∀ n:N,h:H,li:LI • h ∈ obs Hs(obs HS(n)) ∧ li ∈ mereo H(h)
9(b). ⇒ ∃ l:L•l ∈ obs Ls(obs LS(n))∧uid L(l)=li
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50 2. The Main Example – Example 3: Road Traffic System 2.2. Properties2.2.2. Mereology2.2.2.2. Fleet of Vehicles Mereology

2.2.2.2 Fleet of Vehicles Mereology

• In the traffic system that we are building up

⋄⋄ there are no relations to be expressed between vehicles,

⋄⋄ only between vehicles and the (single and only) monitor.

• Thus there is no mereology needed for vehicles.
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512. The Main Example – Example 3: Road Traffic System 2.2. Properties2.2.3. Attributes

2.2.3. Attributes

• We shall model attributes of

⋄⋄ links,

⋄⋄ hubs and

⋄⋄ vehicles.

• The composite parts,

⋄⋄ aggregations of hubs, HS and Hs,

⋄⋄ aggregations of links, LS and Ls and

⋄⋄ aggregations of vehicles, VS and Vs,

also have attributes, but we shall omit modelling them here.
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52 2. The Main Example – Example 3: Road Traffic System 2.2. Properties2.2.3. Attributes2.2.3.1. Attributes of Links

2.2.3.1 Attributes of Links

10. The following are attributes of links.

a Link states, lσ:LΣ, which we model as possibly empty sets of pairs of distinct
identifiers of the connected hubs.

• A link state expresses the directions that are open to traffic across a link.

b Link state spaces, lω:LΩ which we model as the set of link states.

• A link state space expresses the states that a link may attain across time.

c Further link attributes are length, location, etcetera.

• Link states are usually dynamic attributes

• whereas

⋄⋄ link state spaces,

⋄⋄ link length and

⋄⋄ link location (usually some curvature rendition)

are considered static attributes.
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532. The Main Example – Example 3: Road Traffic System 2.2. Properties2.2.3. Attributes2.2.3.1. Attributes of Links

type

10(a). LΣ = (HI × HI)-set
axiom

10(a). ∀ lσ:LΣ • 0 ≤ card lσ ≤ 2
value

10(a). attr LΣ: L → LΣ
axiom

10(a). ∀ l:L • let {hi,hi′}=mereo L(l) in attr LΣ(l)⊆{(hi,hi′),(hi′,hi)} end

type

10(b). LΩ = LΣ-set

value

10(b). attr LΩ: L → LΩ
axiom

10(b). ∀ l:L • let {hi,hi′}=mereo L(l) in attr LΣ(l)∈ attr LΩ(l) end

type

10(c). LOC, LEN, ...
value

10(c). attr LOC: L → LOC, attr LEN: L → LEN, ...
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54 2. The Main Example – Example 3: Road Traffic System 2.2. Properties2.2.3. Attributes2.2.3.2. Attributes of Hubs

2.2.3.2 Attributes of Hubs

11. The following are attributes of hubs:

a Hub states, hσ:HΣ, which we model as possibly empty sets of pairs of
identifiers of the connected links.

• A hub state expresses the directions that are open to traffic across a hub.

b Hub state spaces, hω:HΩ which we model as the set of hub states.

• A hub state space expresses the states that a hub may attain across time.

c Further hub attributes are location, etcetera.

• Hub states are usually dynamic attributes

• whereas

⋄⋄ hub state spaces and

⋄⋄ hub location

are considered static attributes.
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type

11(a). HΣ = (LI × LI)-set
value

11(a). attr HΣ: H → HΣ
axiom

11(a). ∀ h:H • attr HΣ(h)⊆{(li,li′)|li,li′:LI•{li,li′}⊆mereo H(h)}
type

11(b). HΩ = HΣ-set

value

11(b). attr HΩ: H → HΩ
axiom

11(b). ∀ h:H • attr HΣ(h) ∈ attr HΩ(h)
type

11(c). LOC, ...
value

11(c). attr LOC: L → LOC, ...
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2.2.3.3 Attributes of Vehicles

12. Dynamic attributes of vehicles include

a position

i. at a hub (about to enter the hub — referred to by the link it is
coming from, the hub it is at and the link it is going to, all
referred to by their unique identifiers or

ii. some fraction “down” a link (moving in the direction from a
from hub to a to hub — referred to by their unique identifiers)

iii. where we model fraction as a real between 0 and 1 included.

b velocity, acceleration, etcetera.

13. All these vehicle attributes can be observed.
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2. The Main Example – Example 3: Road Traffic System 2.2. Properties2.2.3. Attributes2.2.3.3. Attributes of Vehicles

type

12(a). VP = atH | onL
12((a))i. atH :: fli:LI × hi:HI × tli:LI
12((a))ii. onL :: fhi:HI × li:LI × frac:FRAC × thi:HI
12((a))iii. FRAC = Real, axiom ∀ frac:FRAC • 0 ≤ frac ≤ 1
12(b). VEL, ACC, ...
value

13. attr VP:V→VP, attr onL:V→onL, attr atH:V→atH
13. attr VEL:V→VEL, attr ACC:V→ACC
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2.2.3.4 Vehicle Positions

14. Given a net, n:N, we can define the possibly infinite set of potential
vehicle positions on that net, vps(n).

a vps(n) is expressed in terms of the links and hubs of the net.

b vps(n) is the

c union of two sets:

i. the potentially8 infinite set of “on link” positions

ii. for all links of the net

and

i. the finite set of “at hub” positions

ii. for all hubs in the net.

8The ‘potentiality’ arises from the nature of FRAC. If fractions are chosen as, for
example, 1/5’th, 2/5’th, ..., 4/5’th, then there are only a finite number of “on link”
vehicle positions. If instead fraction are arbitrary infinitesimal quantities, then there
are infinitely many such.
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value

14. vps: N → VP-infset

14(b). vps(n) ≡
14(a). let ls=obs Ls(obs LS(n)), hs=obs Hs(obs HS(n)) in

14((c))i. { onL(fhi,uid(l),f,thi) | fhi,thi:HI,l:L,f:FRAC •

14((c))ii. l ∈ ls ∧ {fhi,thi}=mereo L(l) }
14(c). ∪
14((c))i. { atH(fli,uid H(h),tli) | fli,tli:LI,h:H •

14((c))ii. h ∈ hs ∧ {fli,tli}⊆mereo H(h) }
14(a). end
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60 2. The Main Example – Example 3: Road Traffic System 2.2. Properties2.2.3. Attributes2.2.3.4. Vehicle Positions

• Given a net and a finite set of vehicles

⋄⋄ we can distribute these over the net, i.e., assign initial vehicle positions,

⋄⋄ so that no two vehicles “occupy” the same position, i.e., are “crashed” !

• Let us call the non-deterministic assignment function, i.e., a relation, for vpr.

15. vpm:VPM is a bijective map from vehicle identifiers to (distinct)
vehicle positions.

16. vpr has the obvious signature.

17. vpr(vs)(n) is defined in terms of

18. a non-deterministic selection, vpa, of vehicle positions, and

19. a non-deterministic assignment of these vehicle positions to vehicle
identifiers —

20. being the resulting distribution.
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type

15. VPM′ = VI →m VP
15. VPM = {| vpm:VPM′

• card dom vpm = card rng vpm |}
value

16. vpr: V-set × N → VMP
17. vpr(vs)(n) ≡
18. let vpa:VP-set • vpa ⊆ vps(vs)(n) ∧ card vpa = vard vs in

19. let vpm:VPM • dom vpm = vps ∧ rng vpm = vpa in

20. vpm end end

A Precursor for Requirements Engineering 61 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29
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2.3. Definitions of Auxiliary Functions

21. From a net we can extract all its link identifiers.

22. From a net we can extract all its hub identifiers.

value

21. xtr LIs: N → LI-set
21. xtr LIs(n) ≡ {uid L(l)|l:L•l ∈ obs Ls(obs LS(n))}
22. xtr HIs: N → HI-set
22. xtr HIs(n) ≡ {uid H(l)|h:H•h ∈ obs Hs(obs HS(n))}

23. Given a link identifier and a net get the link with that identifier in
the net.

24. Given a hub identifier and a net get the hub with that identifier in
the net.
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2. The Main Example – Example 3: Road Traffic System 2.3. Definitions of Auxiliary Functions

value

26. get H: HI → N
∼
→ H

26. get H(hi)(n) ≡ ιh:H•h ∈ obs Hs(obs HS(n))∧uid H(h)=hi
26. pre: hi ∈ xtr HIs(n)

26(a). get L: LI → N
∼
→ L

26(a). get L(li)(n) ≡ ι l:L•l ∈ obs Ls(obs LS(n))∧uid L(l)=li
26(a). pre: hl ∈ xtr LIs(n)

• The ι a:A•P(a) expression

⋄⋄ yields the unique value a:A

⋄⋄ which satisfies the predicate P(a).

⋄⋄ If none, or more than one exists then the function is undefined.
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2.4. Some Derived Traffic System Concepts
2.4.1. Maps

25. A road map is an abstraction of a road net. We define one model of
maps below.

a A road map, RM, is a finite definition set function, M, (a
specification language map) from

• hub identifiers (the source hub)

• to (such finite definition set) functions

• from link identifiers

• to hub identifiers (the target hub).

type

25(a). RM′ = HI →m (LI →m HI)

• If a hub identifier in the source or an rm:RM maps into the empty
map then the “corresponding” hub is “isolated”: has no links
emanating from it.
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26. These road maps are subject to a well-formedness criterion.

a The target hubs must be defined also as source hubs.

b If a link is defined from source hub (referred to by its identifier)
shi via link li to a target hub thi, then, vice versa, link li is also
defined from source thi to target shi.

type

26. RM = {| rm:RM′

• wf RM(rm) |}
value

26. wf RM: RM′ → Bool

26. wf RM(rm) ≡
26(a). ∪ { rng(rm(hi))|hi:HI•hi ∈ dom rm } ⊆ dom rm
26(b). ∧ ∀ shi:HI•shi ∈ dom rm ⇒
26(b). ∀ li:LI • li ∈ dom rm(shi) ⇒
26(b). li ∈ dom rm((rm(shi))(li)) ∧ (rm((rm(shi))(li)))(li)=shi
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27. Given a road net, n, one can derive “its” road map.

a Let hs and ls be the hubs and links, respectively of the net n.

b Every hub with no links emanating from it is mapped into the
empty map.

c For every link identifier uid L(l) of links, l, of ls and every hub
identifier, hi, in the mereology of l

d hi is mapped into a map from uid L(l) into hi’

e where hi’ is the other hub identifier of the mereology of l.
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value

27. derive RM: N → RM
27. derive RM(n) ≡
27(a). let hs = obs Hs(obs HS(n)), ls = obs Ls(obs LS(n)) in

27(b). [ hi 7→ [ ] | hi:HI • ∃ h:H • h ∈ hs ∧ mereo H(h) = {} ] ∪
27(d). [ hi 7→ [ uid L(l) 7→ hi′

27(e). | hi′:HI • hi′ = mereo L(l)\{hi} ]
27(c). | l:L,hi:HI • l ∈ ls ∧ hi ∈ mereo L(l) ] end

• Theorem: If the road net, n, is well-formed then
wf RM(derive RM(n)).
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2.4.2. Traffic Routes

28. A traffic route, tr, is an alternating sequence of hub and link
identifiers such that

a li:LI is in the mereology of the hub, h:H, identified by hi:HI, the
predecessor of li:LI in route r, and

b hi’:HI, which follows li:LI in route r, is different from hi, and is in
the mereology of the link identified by li.

type

28. R′ = (HI|LI)∗

28. R = {| r:R′
• ∃ n:N • wf R(r)(n) |}

value

28. wf R: R′ → N → Bool

28. wf R(r)(n) ≡
28. ∀ i:Nat • {i,i+1}⊆inds r ⇒
28(a). is HI(r(i)) ⇒ is LI(r(i+1)) ∧ r(i+1) ∈ mereo H(get H(r(i))(n)),
28(b). is LI(r(i)) ⇒ is HI(r(i+1)) ∧ r(i+1) ∈ mereo L(get L(r(i))(n))
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29. From a well-formed road map (i.e., a road net) we can generate the
possibly infinite set of all routes through the net.

a Basis Clauses:

i. The empty sequence of identifiers is a route.

ii. The one element sequences of link and hub identifiers of links
and hubs of a road map (i.e., a road net) are routes.

iii. If hi maps into some li in rm then 〈hi,li〉 and 〈li,hi〉 are routes
of the road map (i.e., of the road net).

b Induction Clause:

i. Let r̂〈i〉 and 〈i′〉̂r′ be two routes of the road map.

ii. If the identifiers i and i′ are identical, then r̂〈i〉̂r′ is a route.

c Extremal Clause:

i. Only such routes that can be formed from a finite number of
applications of the above clauses are routes.
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value

29. gen routes: M → Routes-infset

29. gen routes(m) ≡
29((a))i. let rs = {〈〉}
29((a))ii. ∪ {〈li,hi〉,〈hi,li〉|li:LI,hi:HI•...}
29((b))i. ∪ {let r̂〈li〉,〈li′〉̂r′:R • {r̂〈li〉,〈li′〉̂r′}⊆rs,
29((b))i. r′′

̂〈hi〉,〈hi′〉̂r′′′:R • {r′′

̂〈hi〉,〈hi′〉̂r′′′}⊆rs in

29((b))ii. r̂〈li〉̂r′,r′′

̂〈hi〉̂r′′′ end} in

29((c))i. rs end
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2.4.2.1 Circular Routes

30. A route is circular if the same identifier occurs more than once.

value

30. is circular route: R → Bool

30. is circular route(r) ≡ ∃ i,j:Nat • {i,j}⊆inds r ∧ i 6=j ⇒ r(i)=r(j)
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2.4.2.2 Connected Road Nets

31. A road net is connected if there is a route from any hub (or any
link) to any other hub or link in the net.

31. is conn N: N → Bool

31. is conn N(n) ≡
31. let m = derive RM(n) in

31. let rs = gen routes(m) in

31. ∀ i,i′:(LI|HI) • {i,i′}⊆xtr LIs(n)∪ xtr HIs(n)
31. ∃ r:R • r ∈ rs ∧ r(1)=i ∧ r(len r)=i′ end end
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2.4.2.3 Set of Connected Nets of a Net

32. The set, cns, of connected nets of a net, n, is

a the smallest set of connected nets, cns,

b whose hubs and links together “span” those of the net n.

value

32. conn Ns: N → N-set

32. conn Ns(n) as cns
32(a). pre: true

32(b). post: conn spans HsLs(n)(cns)
32(a). ∧ ∼∃ kns:N-set • card kns < card cns
32(a). ∧ conn spans HsLs(n)(kns)
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32(b). conn spans HsLs: N → N → Bool

32(b). conn spans HsLs(n)(cns) ≡
32(b). ∀ cn:N•cn ∈ cns ⇒ is connected N(n)(cn)
32(b). ∧ let (hs,ls) = (obs Hs(obs HS(n)),obs Ls(obs LS(n))),
32(b). chs = ∪{obs Hs(obs HS(cn))|cn ∈ cns},
32(b). cls = ∪{obs Ls(obs LS(cn))|cn ∈ cns} in

32(b). hs = chs ∧ ls = cls end
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2.4.2.4 Route Length

33. The length attributes of links can be

a added and subtracted,

b multiplied by reals to obtain lengths,

c divided to obtain fractions,

d compared as to whether one is shorter than another, etc., and

e there is a “zero length” designator.

value

33(a). +,− : LEN × LEN → LEN
33(b). ∗ : LEN × Real → LEN
33(c). / : LEN × LEN → Real

33(d). <,≤,=, 6=,≥,> : LEN × LEN → Bool

33(e). ℓ0 : LEN
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34. One can calculate the length of a route.

value

34. length: R → N → LEN
34. length(r)(n) ≡
34. case r of:
34. 〈〉 → ℓ0,
34. 〈si〉̂r′ →
34. is LI(si)→attr LEN(get L(si)(n))+length(r′)(n)
34. is HI(si)→length(r′)(n)
34. end
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2.4.2.5 Shortest Routes

35. There is a predicate, is R, which,

a given a net and two distinct hub identifiers of the net,

b tests whether there is a route between these.

value

35. is R: N → (HI×HI) → Bool

35. is R(n)(fhi,thi) ≡
35(a). fhi 6= thi ∧ {fht,thi}⊆xtr HIs(n)
35(b). ∧ ∃ r:R • r ∈ routes(n) ∧ hd r = fhi ∧ r(len r) = thi
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36. The shortest between two given hub identifiers

a is an acyclic route, r,

b whose first and last elements are the two given hub identifiers

c and such that there is no route, r′ which is shorter.

value

36. shortest route: N → (HI×HI) → R
36(a). shortest route(n)(fhi,thi) as r
36(b). pre: pre shortest route(n)(fhi,thi)
36(c). post: pos shortest route(n)(r)(fhi,thi)
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36(b). pre shortest route: N → (HI×HI) → Bool

36(b). pre shortest route(n)(fhi,thi) ≡
36(b). is R(n)(fhi,thi) ∧ fhi 6=thi ∧ {fhi,thi}⊂xtr HIs(n)

36(c). pos shortest route: N → R → (HI×HI) → Bool

36(c). pos shortest route(n)(r)(fhi,thi) ≡
36(c). r ∈ routes(n)
36(c). ∧ ∼∃ r′:R • r′ ∈ routes(n) ∧ length(r′) < length(r)
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2.5. States

• There are different notions of state. In our example these are some
of the states:

⋄⋄ the road net composition of hubs and links;

⋄⋄ the state of a link, or a hub; and

⋄⋄ the vehicle position.
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2.6. Actions

• An action is what happens when a function invocation changes, or
potentially changes a state.

• Examples of traffic system actions are:

⋄⋄ insertion of hubs,

⋄⋄ insertion of links,

⋄⋄ removal of hubs,

⋄⋄ removal of links,

⋄⋄ setting of hub state (hσ),

⋄⋄ setting of link state (lσ),

⋄⋄ moving a vehicle along a link,

⋄⋄ moving a vehicle from a link to a hub and

⋄⋄ moving a vehicle from a hub to a link.
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37. The insert action applies to a net and a hub and conditionally
yields an updated net.

a The condition is that there must not be a hub in the “argument”
net with the same unique hub identifier as that of the hub to be
inserted and

b the hub to be inserted does not initially designate links with
which it is to be connected.

c The updated net contains all the hubs of the initial net “plus”
the new hub.

d and the same links.
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value

37. ins H: N → H
∼
→ N

37. ins H(n)(h) as n′, pre: pre ins H(n)(h), post: post ins H(n)(h)

37(a). pre ins H(n)(h) ≡
37(a). ∼∃ h′:H • h′ ∈ obs Hs(n) ∧ uid HI(h)=uid HI(h′)
37(b). ∧ mereo H(h) = {}

37(c). post ins H(n)(h)(n′) ≡
37(c). obs Hs(n) ∪ {h} = obs Hs(n′)
37(d). ∧ obs Ls(n) = obs Ls(n′)
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2.7. Events

• By an event we understand

⋄⋄ a state change

⋄⋄ resulting indirectly from an
unexpected application of a function,

⋄⋄ that is, that function was performed “surreptitiously”.

• Events can be characterised by a pair of (before and after) states, a
predicate over these and, optionally, a time or time interval.

• Events are thus like actions:

⋄⋄ change states,

⋄⋄ but are usually

◦◦ either caused by “previous” actions,

◦◦ or caused by “an outside action”.
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38. Link disappearance is expressed as a predicate on the “before” and
“after” states of the net. The predicate identifies the “missing”
ℓink (!).

39. Before the disappearance of link ℓ in net n

a the hubs h′ and h′′ connected to link ℓ

b were connected to links identified by {l′1, l
′
2, . . . , l

′
p} respectively

{l′′1 , l′′2 , . . . , l′′q}

c where, for example, l′i, l
′′
j are the same and equal to uid Π(ℓ).

38. link dis: N × N → Bool

38. link dis(n,n′) ≡
38. ∃ ℓ:L • pre link dis(n,ℓ) ⇒ post link dis(n,ℓ,n′)
39. pre link dis: N × L → Bool

39. pre link dis(n,ℓ) ≡ ℓ ∈ obs Ls(n)
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40. After link ℓ disappearance there are instead

a two separate links, ℓi and ℓj, “truncations” of ℓ

b and two new hubs h′′′ and h′′′′

c such that ℓi connects h′ and h′′′ and

d ℓj connects h′′ and h′′′′;

e Existing hubs h′ and h′′ now have mereology

i. {l′1, l
′
2, . . . , l

′
p} \ {uid Π(ℓ)} ∪ {uid Π(ℓi)} respectively

ii. {l′′1 , l′′2 , . . . , l′′q} \ {uid Π(ℓ)} ∪ {uid Π(ℓj)}

41. All other hubs and links of n are unaffected.
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42. We shall “explain” link disappearance as the combined,
instantaneous effect of

a first a remove link “event” where the removed link connected
hubs hij and hik;

b then the insertion of two new, “fresh” hubs, hα and hβ;

c “followed” by the insertion of two new, “fresh” links ljα and lkβ
such that

i. ljα connects hij and hα and

ii. lkβ connects hik and hkβ
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value

42. post link dis(n,ℓ,n′) ≡
42. let h a,h b:H •

42. let {li a,li b}=mereo L(ℓ) in

42. (get H(li a)(n),get H(li b)(n)) end in

42(a). let n′′ = rem L(n)(uid L(ℓ)) in

42(b). let hα,hβ:H • {hα,hβ}∩obs Hs(n)={} in

42(b). let n′′′ = ins H(n′′)(hα) in

42(b). let n′′′′ = ins H(n′′′)(hβ) in

42(c). let ljα,lkβ:L • {ljα,lkβ}∩obs Ls(n)={}
42(c). ∧ mereo L(ljα) = {uid H(h a),uid H(hα)}
42(c). ∧ mereo L(lkβ) = {uid H(h b),uid H(hβ)} in

42((c))i. let n′′′′′ = ins L(n′′′′)(ljα) in

42((c))ii. n′ = ins L(n′′′′′)(lkβ) end end end end end end end

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29 88 Domain Science & Engineering



892. The Main Example – Example 3: Road Traffic System 2.8. Behaviours

2.8. Behaviours
2.8.1. Traffic

2.8.1.1 Continuous Traffic

• For the road traffic system

⋄⋄ perhaps the most significant example of a behaviour

⋄⋄ is that of its traffic

43. the continuous time varying discrete positions of vehicles,
vp:VP9,

44. where time is taken as a dense set of points.

type

44. cT
43. cRTF = cT → (V →m VP)

9For VP see Item 12(a) on Slide 56.
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2.8.1.2 Discrete Traffic

• We shall model, not continuous time varying traffic, but

45. discrete time varying discrete positions of vehicles,

46. where time can be considered a set of linearly ordered points.

46. dT

45. dRTF = dT →m (V →m VP)

47. The road traffic that we shall model is, however, of vehicles referred
to by their unique identifiers.

type

47. RTF = dT →m (VI →m VP)
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2.8.1.3 Time: An Aside

• We shall take a rather simplistic view of time
[wayne.d.blizard.90,mctaggart-t0,prior68,J.van.Benthem.Logi

48. We consider dT, or just T, to stand for a totally ordered set of time
points.

49. And we consider TI to stand for time intervals based on T.

50. We postulate an infinitesimal small time interval δ.

51. T, in our presentation, has lower and upper bounds.

52. We can compare times and we can compare time intervals.

53. And there are a number of “arithmetics-like” operations on times
and time intervals.
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type

48. T

49. TI

value

50. δ:TI

51. MIN, MAX: T → T

51. <,≤,=,≥,>: (T×T)|(TI×TI) → Bool

52. −: T×T → TI

53. +: T×TI,TI×T → T

53. −,+: TI×TI → TI

53. ∗: TI×Real → TI

53. /: TI×TI → Real
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54. We postulate a global clock behaviour which offers the current time.

55. We declare a channel clk ch.

value

54. clock: T → out clk ch Unit

54. clock(t) ≡ ... clk ch!t ... clock(t ⌈⌉ t+δ)
channnel
55. clk ch:T
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2.8.2. Globally Observable Parts

• There is given

56. a net, n:N,

57. a set of vehicles, vs:V-set, and

58. a monitor, m:M.

• The n:N, vs:V-set and m:M are observable from the road traffic
system domain.

value

56. n:N = obs N(∆)
56. ls:L-set = obs Ls(obs LS(n)), hs:H-set = obs Hs(obs HS(n)),
56. lis:LI-set = {uid L(l)|l:L•l ∈ ls}, his:HI-set = {uid H(h)|h:H•h ∈ hs}
57. vs:V-set = obs Vs(obs VS(obs F(∆))), vis:V-set = {uid V(v)|v:V•v
58. m:obs M(∆)
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2.8.3. Road Traffic System Behaviours

59. Thus we shall consider our road traffic system, rts, as

a the concurrent behaviour of a number of vehicles and,
to “observe”, or, as we shall call it, to monitor their movements,

b the monitor behaviour, based on

c the monitor and its unique identifier,

d an initial vehicle position map, and

e an initial starting time.
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value

59(c). mi:MI = uid (m)
59(d). vpm:VPM = vpr(vs)(n)
59(e). t0:T = clk ch?

59. rts() =
59(a). ‖ {veh(uid V(v))(v)(vpm(uid V(v)))|v:V•v ∈ vs}
59(b). ‖ mon(mi)(m)([ t0 7→ vpm ])

• where the “extra” monitor argument

⋄⋄ records the discrete road traffic, RTF,

⋄⋄ initially set to the singleton map from an initial start time, t0 to the initial
assignment of vehicle positions.
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2.8.4. Channels

• In order for the monitor behaviour to assess the vehicle positions

⋄⋄ these vehicles communicate their positions

⋄⋄ to the monitor

⋄⋄ via a vehicle to monitor channel.

• In order for the monitor to time-stamp these positions

⋄⋄ it must be able to “read” a clock.

60. Thus we declare a set of channels indexed by the unique identifiers
of vehicles and communicating vehicle positions.

channel

60. {vm ch[ mi,vi ]|vi:VI•vi ∈ vis}:VP
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2.8.5. Behaviour Signatures

61. The road traffic system behaviour, rts, takes no arguments; and
“behaves”, that is, continues forever.

62. The vehicle behaviours are indexed by the unique identifier,
uid V(v):VI, the vehicle part, v:V and the vehicle position; offers
communication to the monitor behaviour; and behaves “forever”.

63. The monitor behaviour takes monitor part, m:M, as argument and
also the discrete road traffic, drtf:dRTF; the behaviour otherwise
runs forever.

value

61. rts: Unit → Unit

62. veh: vi:VI → v:V → VP → out vm ch[ vi ],mi:MI Unit

63. mon: mi:MI → m:M → dRTF → in {vm ch[ mi,vi ]|vi:VI•vi ∈ vis},clk c
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2.8.6. The Vehicle Behaviour

64. A vehicle process

• is indexed by the unique vehicle identifier vi:VI,

• the vehicle “as such”, v:V and

• the vehicle position, vp:VPos.

The vehicle process communicates

• with the monitor process on channel vm[vi]

• (sends, but receives no messages), and

• otherwise evolves “in[de]finitely” (hence Unit).
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65. We describe here an abstraction of the vehicle behaviour at a Hub
(hi).

a Either the vehicle remains at that hub informing the monitor,

b or, internally non-deterministically,

i. moves onto a link, tli, whose “next” hub, identified by thi, is
obtained from the mereology of the link identified by tli;

ii. informs the monitor, on channel vm[vi], that it is now on the
link identified by tli,

iii. whereupon the vehicle resumes the vehicle behaviour
positioned at the very beginning (0) of that link,

c or, again internally non-deterministically,

d the vehicle “disappears — off the radar” !
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65. veh(vi)(v)(vp:atH(fli,hi,tli)) ≡
65(a). vm ch[ mi,vi ]!vp ; veh(vi)(v)(vp)
65(b). ⌈⌉
65((b))i. let {hi′,thi}=mereo L(get L(tli)(n)) in assert: hi′=hi
65((b))ii. vm ch[ mi,vi ]!onL(tli,hi,0,thi) ;
65((b))iii. veh(vi)(v)(onL(tli,hi,0,thi)) end

65(c). ⌈⌉
65(d). stop
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66. We describe here an abstraction of the vehicle behaviour on a Link (ii).
Either

a the vehicle remains at that link position informing the monitor,

b or, internally non-deterministically,

c if the vehicle’s position on the link has not yet reached the hub,

i. then the vehicle moves an arbitrary increment δ along the link informing
the monitor of this, or

ii. else, while obtaining a “next link” from the mereology of the hub (where
that next link could very well be the same as the link the vehicle is about
to leave),

A. the vehicle informs the monitor that it is now at the hub identified by thi,

B. whereupon the vehicle resumes the vehicle behaviour positioned at that
hub.

67. or, internally non-deterministically,

68. the vehicle “disappears — off the radar” !
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64. veh(vi)(v)(vp:onL(fhi,li,f,thi)) ≡
66(a). vm ch[ mi,vi ]!vp ; veh(vi)(v)(vp)
66(b). ⌈⌉
66(c). if f + δ<1
66((c))i. then vm ch[ mi,vi ]!onL(fhi,li,f+δ,thi) ;
66((c))i. veh(vi)(v)(onL(fhi,li,f+δ,thi))
66((c))ii. else let li′:LI•li′ ∈ mereo H(get H(thi)(n)) in

66((c))iiA. vm ch[ mi,vi ]!atH(li,thi,li′);
66((c))iiB. veh(vi)(v)(atH(li,thi,li′)) end end

67. ⌈⌉
68. stop
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2.8.7. The Monitor Behaviour

69. The monitor behaviour evolves around the attributes of an own
“state”, m:M, a table of traces of vehicle positions, while accepting
messages about vehicle positions and otherwise progressing
“in[de]finitely”.

70. Either the monitor “does own work”

71. or, internally non-deterministically accepts messages from vehicles.

a A vehicle position message, vp, may arrive from the vehicle
identified by vi.

b That message is appended to that vehicle’s movement trace,

c whereupon the monitor resumes its behaviour —

d where the communicating vehicles range over all identified
vehicles.
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69. mon(mi)(m)(rtf) ≡
70. mon(mi)(own mon work(m))(rtf)
71. ⌈⌉
71(a). ⌈⌉⌊⌋ { let ((vi,vp),t) = (vm ch[ mi,vi ]?,clk ch?) in

71(b). let rtf′ = rtf † [ t 7→ rtf(max dom rtf) † [ vi 7→ vp ] ] in

71(c). mon(mi)(m)(rtf′) end

71(d). end | vi:VI • vi ∈ vis }

70. own mon work: M → dRTF → M

• We do not describe the clock behaviour by other than stating that
it continually offers the current time on channel clkm ch.
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See You in 30 Minutes — Thanks !
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Welcome Back — Thanks !
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106 3. The Main Example – Example 3: Road Traffic System

3. Domains
3.1. Delineations

We characterise a number of terms.
3.1.0.1 Domain

• By a domainδ we shall here understand

⋄⋄ an area of human activity

⋄⋄ characterised by observable phenomena:

◦◦ entities

∗ whether endurants (manifest parts and materials)

∗ or perdurants (actions, events or behaviours),

◦◦ whether

∗ discrete or

∗ continuous;

◦◦ and of their properties.
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1073. Domains 3.1. Delineations

3.1.0.2 Domain Phenomena

• By a domain phenomenonδ we shall understand

⋄⋄ something that can be observed by the human senses

⋄⋄ or by equipment based on laws of physics and chemistry.

• Those phenomena that can be observed by

⋄⋄ the human eye or

⋄⋄ touched, for example, by human hands,

⋄⋄ we call parts and materials.

• Those phenomena that can be observed of parts and materials

⋄⋄ can usually be measured

⋄⋄ and we call them properties of these parts and those materials.
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3.1.0.3 Domain Entity

• By a domain entityδ we shall understand

⋄⋄ a manifest domain phenomenon or

⋄⋄ a domain concept, i.e., an abstraction,

⋄⋄ derived from a domain entity.

• The distinction between

⋄⋄ a manifest domain phenomenon and

⋄⋄ a concept thereof, i.e., a domain concept,

is important.

• Really, what we describe are the domain concepts derived

⋄⋄ from domain phenomena or

⋄⋄ from other domain concepts.
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3.1.0.4 Endurant Entity

• We distinguish between

⋄⋄ endurants and

⋄⋄ perdurants.

• From Wikipedia:

⋄⋄ By an endurantδ (also known as a continuantδ or a substanceδ)
we shall understand an entity

◦◦ that can be observed, i.e., perceived or conceived,

◦◦ as a complete concept,

◦◦ at no matter which given snapshot of time.

⋄⋄ Were we to freeze time

◦◦ we would still be able to observe the entire endurant.
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3. Domains 3.1. Delineations

3.1.0.5 Perdurant Entity

• From Wikipedia:

⋄⋄ Perdurant: Also known as occurrent, accident or happening.

⋄⋄ Perdurants are those entities for which only a fragment exists if
we look at them at any given snapshot in time.

⋄⋄ When we freeze time we can only see a fragment of the perdurant.

⋄⋄ Perdurants are often what we know as processes, for example
’running’.

⋄⋄ If we freeze time then we only see a fragment of the running,
without any previous knowledge one might not even be able to
determine the actual process as being a process of running.

⋄⋄ Other examples include an activation, a kiss, or a procedure.
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3.1.0.6 Discrete Endurant

• We distinguish between

⋄⋄ discrete endurants and

⋄⋄ continuous endurants.

• By a discrete endurantδ, that is, a part, we shall understand
something which is

⋄⋄ separate or distinct in form or concept,

⋄⋄ consisting of distinct or separate parts.
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3.1.0.7 Continuous Endurant

• By a continuous endurantδ, that is, a material, we shall understand
an endurant whose spatial characteristics are

⋄⋄ prolonged, without interruption,

⋄⋄ in an unbroken spatial series or pattern.
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3.1.0.8 Domain Parts and Materials

• By a partδ we mean

⋄⋄ a discrete endurant,

⋄⋄ a manifest entity which is fixed in shape and extent.

• By a materialδ

⋄⋄ a continuous endurant,

⋄⋄ a manifest entity which typically varies in shape and extent.
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3.1.0.9 Domain Analysis

• By domain analysisδ we shall understand an examination of a
domain,

⋄⋄ its entities,

⋄⋄ their possible composition,

⋄⋄ properties

⋄⋄ and relations between entities,
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3.1.0.10 Domain Description

• By a domain descriptionδ we shall understand

⋄⋄ a narrative description

⋄⋄ tightly coupled (say line-number-by-line-number)

⋄⋄ to a formal description.
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3.1.0.11 Domain Engineering

• By domain engineeringδ we shall understand

⋄⋄ the engineering of a domain description,

⋄⋄ that is,

◦◦ the rigorous construction of domain descriptions, and

◦◦ the further analysis of these, creating theories of domains10,
etc.

10Section (Slides 36–105) is an example of the basis for a theory of road traffic systems.
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3.1.0.12 Domain Science

• By domain scienceδ we shall understand

⋄⋄ two things:

◦◦ the general study and knowledge of

∗ how to create and handle domain descriptions

∗ (a general theory of domain descriptions)

and

◦◦ the specific study and knowledge of a particular domain.

⋄⋄ The two studies intertwine.
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3.1.0.13 Values & Types

• By a valueδ we mean some mathematical quantity.

• By a typeδ we mean

⋄⋄ a largest set of values,

⋄⋄ each characterised by the same predicate,

⋄⋄ such that there are no other values,

⋄⋄ not members of the set,

⋄⋄ but which still satisfy that predicate.

• We do not give examples here of the kind of type predicates
that may characterise types.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29 118 Domain Science & Engineering



1193. Domains 3.1. Delineations

• When we observe a domain we observe instances of entities;

• but when we describe those instances

⋄⋄ (which we shall call values)

⋄⋄ we describe, not the values,

⋄⋄ but their type and properties:

◦◦ parts and materials have types and values;

◦◦ actions, events and behaviours, all, have types and values,
namely as expressed by their signatures; and

◦◦ actions, events and behaviours have properties,
namely as expressed by their function definitions.

• Values are phenomena and types are concepts thereof.
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3.1.0.14 Discrete Perdurant

• By a discrete perdurantδ we shall understand

⋄⋄ a perdurant

⋄⋄ which we consider as taking place instantaneously,

⋄⋄ in no time,

⋄⋄ or where whatever time interval it may take to complete

⋄⋄ is considered immaterial.
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3.1.0.15 Continuous Perdurant

• By a continuous perdurantδ we shall understand a perdurant whose
temporal characteristics are likewise

⋄⋄ prolonged, without interruption,

⋄⋄ in an unbroken temporal series or pattern.
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3.1.0.16 Extensionality

• By extensionalityδ Merriam-Webster11 means

⋄⋄ “something which relates to, or is marked by extension,”

⋄⋄ “that is, concerned with objective reality”.

• Our use basically follows this characterisation:

⋄⋄ We think of extensionality as a syntactic notion,

⋄⋄ one that characterises an exterior appearance or form

• We shall therefore think of

⋄⋄ part types and material types

⋄⋄ whether parts are atomic or composite, and

⋄⋄ how composite parts are composed

as extensional features.

11Extensionality. Merriam-Webster.com. 2011, http://www.merriam-webster.com (16 August 2012).
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3.1.0.17 Intentionality

• By intentionalityδ Merriam-Webster12 means:

⋄⋄ “done by intention or design”,

⋄⋄ “intended”,

⋄⋄ “of or relating to epistemological intention”,

⋄⋄ “having external reference”.

• Our use basically follows this characterisation:

⋄⋄ we think of intentionality as a semantic notion,

⋄⋄ one that characterises an intention.

• We shall therefore think of

⋄⋄ part attributess and material attributes

as intentional features.

12Intentionality. Merriam-Webster.com. 2011, http://www.merriam-webster.com (16 August 2012).
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3. Domains 3.2. Formal Analysis of Entities

3.2. Formal Analysis of Entities
3.2.1. Theory

• This section is a transcription of

⋄⋄ Ganter & Wille’s [Wille:ConceptualAnalysis1999]
Formal Concept Analysis, Mathematical Foundations,
the 1999 edition, Pages 17–18.
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1253. Domains 3.2. Formal Analysis of Entities3.2.1. Theory

Some Notation:

• By E we shall understand the type of entities;

• by E we shall understand a value of type E ;

• by Q we shall understand the type of qualities;

• by Q we shall understand a value of type Q;

• by E-set we shall understand the type of sets of entities;

• by ES we shall understand a value of type E-set;

• by Q-set we shall understand the type of sets of qualities; and

• by QS we shall understand a value of type Q-set.
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Definition: 1 Formal Context:

• A formal contextδ K := (ES, I, QS) consists of two sets;

⋄⋄ ES of entities,

⋄⋄ QS of qualities, and a

⋄⋄ relation I between E and Q.

• To express that E is in relation I to a Quality Q we write

⋄⋄ E · I · Q, which we read as

⋄⋄ “entity E has quality Q”.
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• Example endurant entities are

⋄⋄ a specific vehicle,

⋄⋄ another specific vehicle,

⋄⋄ etcetera;

⋄⋄ a specific street segment (link),

⋄⋄ another street segment,

⋄⋄ etcetera;

⋄⋄ a specific road intersection (hub),

⋄⋄ another specific road intersection,

⋄⋄ etcetera,

⋄⋄ a monitor.

One can also list perdurant entities.

• Example endurant entity qualities are

⋄⋄ has mobility,

⋄⋄ has possible velocity,

⋄⋄ has possible acceleration,

⋄⋄ has length,

⋄⋄ has location,

⋄⋄ has traffic state,

⋄⋄ can vehicles be sensed,

⋄⋄ etcetera.

One can also list perdurant entity qualities.
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Definition: 2 Qualities Common to a Set of Entities:

• For any subset, sES ⊆ ES, of entities we can define

DQ : E-set → (E-set×I ×Q-set) → Q-set

DQ(sES)(ES, I, QS) ≡ {Q | Q:Q, E:E • E∈sES ∧ E · I · Q}
pre: sES ⊆ ES

“the set of qualities common to entities in sES”.

Definition: 3 Entities Common to a Set of Qualities:

• For any subset, sQS ⊆ QS, of qualities we can define

DE : Q-set → (E-set×I ×Q-set) → E-set

DE(sQS)(ES, I, QS) ≡ {E | E:E , Q:Q • Q∈sQ ∧ E · I · Q },
pre: sQS ⊆ QS

“the set of entities which have all qualities in sQ”.
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1293. Domains 3.2. Formal Analysis of Entities3.2.1. Theory

Definition: 4 Formal Concept:

• A formal conceptδ of a context K is a pair:

⋄⋄ (sQ, sE) where

◦◦ DQ(sE)(E, I, Q) = sQ and

◦◦ DE(sQ)(E, I, Q) = sE;

⋄⋄ sQ is called the intentδ of K and sE is called the extentδ of K.

• Now comes the “crunch”:

⋄⋄ In the TripTych domain analysis

⋄⋄ we strive to find formal concepts

⋄⋄ and, when we think we have found one,

⋄⋄ we assign a type to it.
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• In mathematical terms it turns out that formal concepts are Galois
connections.

• We can, in other words, characterise domain analysis to be the
“hunting” for Galois connections.

• Or, even more “catchy”:

⋄⋄ domain types,

⋄⋄ whether they be endurant entity types

⋄⋄ or they be perdurant entity signatures

⋄⋄ are Galois connections.
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3. Domains 3.2. Formal Analysis of Entities3.2.1. Theory

• • •

• The entities referred to by E

⋄⋄ are the domain entities that we shall deal with in this seminar,

• and the qualities referred to by Q

⋄⋄ are the mereologies and attributes of discrete endurant entities

⋄⋄ and the signatures of actions, events and behaviours of discrete
perdurant entities;

⋄⋄ with these terms becoming clearer as we progress through this
seminar.
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3. Domains 3.2. Formal Analysis of Entities3.2.1. Theory

• • •

• Earlier in this section, two signatures were expressed as

⋄⋄ DQ: E → K → Q and

⋄⋄ DE : Q → K → E

• The “switch” between using K for types and K for values of that
type is “explained”:

⋄⋄ K is the Cartesian type: E × I ×Q, and

⋄⋄ K = (E, I, Q) is a value of that type.
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3.2.2. Practice

•

•

•

•

A Precursor for Requirements Engineering 133 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29



134
3. Domains 3.3. Discussion

3.3. Discussion

• The crucial characterisation (above) is that of domain entity
(Slide 108).

⋄⋄ It is pivotal since all we describe are domain entities.

⋄⋄ If we get the characterisation wrong we get everything wrong !

⋄⋄ What might get the characterisation, or its interpretation, wrong
is the interpretation of domain entities:

◦◦ “those phenomena that can be observed by

∗ the human eye or

∗ touched, for example, by human hands,”

and

◦◦ “manifest domain phenomena or

◦◦ domain concepts, i.e., abstractions,

◦◦ derived from a domain entities”.
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3. Domains 3.3. Discussion

• The whole thing hinges of

⋄⋄ what can be described,

⋄⋄ what constitutes a description and

⋄⋄ when is a text a bona fide description.

• Another set of questions are

⋄⋄ of what we have chosen to constitute entities

⋄⋄ which should we describe,

⋄⋄ which not ?
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3. Domains 3.3. Discussion

• Philosophers have dealt with these questions.

⋄⋄ Recent writings are
[Badiou1988,BarrySmith1993,ChrisFox2000] and
[CasatiVarzi2010,HenryLaycock2011,WilsonScpall2012].

⋄⋄ Going back in time we find
[LeonardGoodman1940,Kripke1980,BowmanLClarke81].

⋄⋄ Among the classics we mention
[Russell1905,Russell1922,RudolfCarnap1928,StanislawLesniewksi1927-19
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• We shall only indirectly contribute to this philosophical discussion

⋄⋄ and do so by presenting the material of this paper;

⋄⋄ having studied, over the years, fragments of the above cited
publications

⋄⋄ we have concluded with the suggestions of this paper:

◦◦ following the principles, techniques and tools presented here

◦◦ can lead the domain engineer to

◦◦ a large class of domain descriptionss,

◦◦ large enough for our “immediate future” needs !

• We shall, in the conclusion, return to the questions of

⋄⋄ what can be described,

⋄⋄ what constitutes a description and

⋄⋄ when is a text a bona fide description ?
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4. Discrete Endurant Entities

• For pragmatics reasons we structure our treatment of discrete
endurant domain entities as follows:

⋄⋄ First we treat the extensional aspects of parts,

⋄⋄ then their properties: the intentional aspects.

• One could claim that when we say “first parts”

⋄⋄ we mean fist: a syntactic analysis of parts

⋄⋄ into atomic and composite parts,

⋄⋄ etcetera;

• and when we say “then their properties”

⋄⋄ we mean: then a partial semantic analysis,

⋄⋄ something which “throws” light over parts,

⋄⋄ since parts really are distinguishable
only through their properties.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29 138 Domain Science & Engineering



1394. Discrete Endurant Entities 4.1. Parts

4.1. Parts
4.1.1. What is a Part ?

• By a partδ we mean an observable manifest endurant.

Discussion:

• We use the term ‘part’ where others use different terms, for
example,

⋄⋄ ‘individual’,

⋄⋄ ‘object’,

⋄⋄ ‘particular’,

⋄⋄ ‘thing’,

⋄⋄ ‘unit’,

⋄⋄ or other.
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4. Discrete Endurant Entities 4.1. Parts4.1.1. What is a Part ?

Example: 5 Parts.

• Example parts have their types defined in the items as follows:

⋄⋄ N Item 1(a) Slide 38,

⋄⋄ F Item 1(b) Slide 38,

⋄⋄ M Item 1(c) Slide 38,

⋄⋄ HS Item 2(a) Slide 39,

⋄⋄ LS Item 2(b) Slide 39,

⋄⋄ VS Item 3 Slide 40,

⋄⋄ Vs Item 4(a) Slide 41,

⋄⋄ V Item 4(b) Slide 41,

⋄⋄ Hs Item 5 Slide 44,

⋄⋄ Ls Item 6 Slide 44,

⋄⋄ H Item 5(a) Slide 44,

⋄⋄ L Item 6(b) Slide 44.
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4. Discrete Endurant Entities 4.1. Parts4.1.2. Classes of “Same Kind” Parts

4.1.2. Classes of “Same Kind” Parts

• We repeat:

⋄⋄ the domain describer does not describe instances of parts,

⋄⋄ but seeks to describe classes of parts of the same kind.

• Instead of the term ‘same kind’ we shall use either the terms

⋄⋄ part sort or

⋄⋄ part type.

• By a same kind class of partsδ, that is a part sort or part type we
shall mean

⋄⋄ a class all of whose members, i.e., parts,

⋄⋄ enjoy “exactly” the same properties

⋄⋄ where a property is expressed as a proposition.
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Example: 6 Part Properties. We continue Example 4.

• Examples of part properties are:

⋄⋄ has unique identity ,

⋄⋄ has mereology ,

⋄⋄ has length,

⋄⋄ has location,

⋄⋄ has traffic movement restriction,

⋄⋄ has position,

⋄⋄ has velocity and

⋄⋄ has acceleration.
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4. Discrete Endurant Entities 4.1. Parts4.1.3. A Preview of Part Properties

4.1.3. A Preview of Part Properties

• For pragmatic reasons we group endurant properties into two
categories:

⋄⋄ a group which we shall refer to as meta properties:

◦◦ is discrete,

◦◦ is continuous,

◦◦ is atomic ,

◦◦ is composite,

◦◦ has observers ,

◦◦ is sort and

◦◦ has concrete type;

⋄⋄ and a group which we shall refer to as part properties

◦◦ has unique existence,

◦◦ has mereology and

◦◦ has attributes.

• The first group is treated in this section;

• the second group in the next section.
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4.1.4. Formal Concept Analysis: Endurants

• The domain analyser examines collections of parts.

⋄⋄ In doing so the domain analyser discovers and thus identifies and lists a
number of properties.

⋄⋄ Each of the parts examined usually satisfies only a subset of these properties.

⋄⋄ The domain analyser now groups parts into collections

◦◦ such that each collection have its parts satisfy the same set of properties,

◦◦ such that no two distinct collections are indexed, as it were, by the same
set of properties, and

◦◦ such that all parts are put in some collection.

⋄⋄ The domain analyser now

◦◦ assigns distinct type names (same as sort names)

◦◦ to distinct collections.

• That is how we assign types to parts.
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4.1.5. Part Property Values

• By a part property valueδ, i.e., a property valueδ of a part, we mean

⋄⋄ the value

⋄⋄ associated with an intentional property

⋄⋄ of the part.

Example: 7 Part Property Values.

• A link, l:L, may have the following intentional property values:

⋄⋄ LOCation value loc set,

⋄⋄ LENgth value 123 meters and

⋄⋄ mereology value {κi, κj}.
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• Two parts of the same type are different

⋄⋄ if for at least one of the intentional properties of that part type

⋄⋄ they have different part property values.

slut

Example: 8 Distinct Parts.

• Two links, la,lb:L, may have the following respective property values:

⋄⋄ LOCation values loc seta, and loc setb,

⋄⋄ LENgth value 123 meters and 123 meters , i.e., the same, and

⋄⋄ mereology values {κi, κj} and {κm, κn} where
{κi, κj} 6= {κm, κn}.

• When so, they are distinct, and the cadestral space loc seta must
not share any point with cadestral space loc setb.
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4.1.6. Part Sorts

• By an abstract typeδ, or a sortδ, we shall understand a type

⋄⋄ which has been given a name

⋄⋄ but is otherwise undefined, that is,

◦◦ is a set of values of further undefined quantities
[Milne1990:RSL:SemFound,Milne1990:RSL:ProofTheory].

∗ where these are given properties

∗ which we may express in terms of axioms over
sort (including property) values.

• All of the above examples are examples of sorts.
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Example: 9 Part Sorts.

• The discovery of N, F and M was made as a result of
examining the domain, ∆, at domain index 〈∆〉;

• HS and LS at domain index 〈∆,N〉;

• Hs and H (Ls and L) at domain indexes 〈∆,HS〉 (〈∆,LS〉); and

• Vs and V at domain index 〈∆,VS〉.
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4.1.7. Atomic Parts

• By an atomic partδ we mean a part which,

⋄⋄ in a given context,

⋄⋄ is deemed not to consist of
meaningful, separately observable proper sub-parts.

• A sub-part is a part.
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Example: 10 Atomic Types.

• We have exemplified the following atomic types:

⋄⋄ H (Item 5(b) on Slide 43),

⋄⋄ L (Item 6(b) on Slide 43),

⋄⋄ V (Item 4(b) on Slide 41) and

⋄⋄ M (Item 1(c) on Slide 38).

• Implicit tests,

⋄⋄ at domain indexes,

⋄⋄ by the domain analyser,

⋄⋄ for atomicity

were performed as follows:

⋄⋄ for H at 〈∆, N,HS,Hs,H〉;

⋄⋄ for L at 〈∆, N,LS,Ls,L〉;

⋄⋄ for V at 〈∆, F,VS,Vs,V〉; and

⋄⋄ for M at 〈∆, M〉.
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4.1.8. Composite Parts

• By a composite partδ we mean a part which,

⋄⋄ in a given context,

⋄⋄ is deemed to indeed consist of
meaningful, separately observable proper sub-parts.
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Example: 11 Composite Types.

• We have exemplified the following composite types:

⋄⋄ N (Items 2(a)– 2(b) on Slide 39),
HS (Item 5 on Slide 43),
LS (Item 6 on Slide 43),
Hs (Item 5(a) on Slide 43),

Ls (Item 6(a) on Slide 43),
F (Item 3 on Slide 40),
VS (Item 4(a) on Slide 41),
Va (Item 4(a) on Slide 41),

respectively.

• Tests for compostionality of these were implicitly performed;

⋄⋄ for N at index 〈∆, N〉;

⋄⋄ for HS and LS at index 〈∆, N,HS〉 and 〈∆, N,LS〉;

⋄⋄ for Hs and Ls at indexes 〈∆, N,HS,Hs〉 and 〈∆, N,LS,Ls〉;

⋄⋄ for F at index 〈∆, F〉;

⋄⋄ for VS at index 〈∆, F,VS〉; and

⋄⋄ for Vs at index 〈∆, F,VS,Vs〉.
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4.1.9. Part Observers

• By a part observerδ or a material observerδ we mean

⋄⋄ a meta-physical operatorδ (a meta function),

72. obs B: P → B

⋄⋄ that is, one performed by the domain analyser,

⋄⋄ which “applies” (i.e., who applies it) to a composite part value13,
P,

⋄⋄ and which yields the sub-part of type B,

⋄⋄ of the examined part.

13or composite part type
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• We name these obs erver functions obs X to indicate that they are
observing parts of type X.

• The obs erver functions are not computable.

⋄⋄ They can not be mechanised.

⋄⋄ Therefore we refer to them as mental.

⋄⋄ They can be “implemented” as, for example, follows:
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Example: 12 Implementation of Observer Functions.

• I take you around a particular road net, n,say in my town.

• I point out to you, one-by-one,
all the street intersections, h1, h2, . . . , hn, of that net.

• You “write” them down:

⋄⋄ as many characteristics as you (and I) can come across,

◦◦ including some choice of unique identifiers,

◦◦ their mereologies, and

◦◦ attributes, “one-by-one”.

• In the end we have identified, i.e., visited,
all the hubs in my town’s road net n.
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Example: 13 Observer Functions.

• We have exemplified the following obs erver functions:

⋄⋄ obs N (Item 1(a) on
Slide 38),

⋄⋄ obs F (Item 1(b) on Slide 38),

⋄⋄ obs M (Item 1(c) on
Slide 38),

⋄⋄ obs HS (Item 2(a) on
Slide 39),

⋄⋄ obs LS (Item 2(b) on

Slide 39),

⋄⋄ obs VS (Item 3 on Slide 40),

⋄⋄ obs Vs (Item 4(a) on
Slide 41),

⋄⋄ obs Hs (Item 5 on Slide 44)
and

⋄⋄ obs Ls (Item 6 on Slide 44),

where we list their “definitions”, not their many uses.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29 156 Domain Science & Engineering



1574. Discrete Endurant Entities 4.1. Parts4.1.10. Part Types

4.1.10. Part Types

• By a concrete typeδ we shall understand a type, T,

⋄⋄ which has been given both a name
⋄⋄ and a defining type expression of, for example the form

◦◦ T = A-set,

◦◦ T = A-infset,

◦◦ T = A×B×· · ·×C,

◦◦ T = A∗,

◦◦ T = Aω,

◦◦ T = A →m B,

◦◦ T = A→B,

◦◦ T = A
∼
→B, or

◦◦ T = A|B|· · · |C.

⋄⋄ where A, B, . . . , C are type names or type expressions.

Example: 14 Concrete Types.

• Example concrete part types were exemplified in

⋄⋄ Vs = V-set: Item 4(a) on Slide 41,

⋄⋄ Hs = H-set: Item 5(a) Slide 44,

⋄⋄ Ls = L-set: Item 6(a) Slide 44.
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Example: 15 Has Composite Types.

• The discovery of concrete types were done as follows:

⋄⋄ for HS, Hs = H-set at 〈∆,N,HS〉,

⋄⋄ for LS, Ls = L-set at 〈∆,N,LS〉, and

⋄⋄ for VS, Vs = V-set at 〈∆,F,VS〉.
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4.2. Part Properties

• (I) By a property14 we mean a pair

⋄⋄ a (finite) collection of one or more propositions.

• (II) By an endurant property

⋄⋄ a property which holds of an endurant —

⋄⋄ which we model as a pair of a type and a value (of that type)15.

• (III) By a perdurant propertyδ we shall mean

⋄⋄ a property which holds of an perdurant —

⋄⋄ which we, as a minimum, model as a pair of
a perdurant name and a function type,

⋄⋄ that is, as a function signature.
14By saying ‘a property’ we definitely mean to distinguish our use of the term from one which refers

to legal property such as physical (land) or intangible (legal rights) property.
15 The type value may be a singleton, or lie within a range of discrete values, or lie

within a range of continuous values. The ranges may be finite or may be infinite.
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• Property Value Scales:

⋄⋄ With intentional properties we associate a property value scale.

⋄⋄ By a property value scaleδ of a part type we shall mean

◦◦ a value range that parts of that type

◦◦ will have their property values range over.

Example: 16 Property Value Scales. We continue Example 4.

• The mereology property value scaleδ for hubs of a net range over
finite sets of link identifiers of that net.

• The mereology property value scaleδ for links of a net range over
two element sets of hub identifiers for that net.

• The range of location values for any one hub of a net is restricted
to not share any cadestral point with any other hub’s location value
for that net.
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• Discussion:

⋄⋄ The notion of ‘property’ is central to much philosophical
discussion; we mention a few (that we have studied):

◦◦ [Chris Fox: The Ontology of Language: Properties,
Individuals and Discourse, 2000],

◦◦ [Simons: Parts – A Study in Ontology, 1987] and

◦◦ [Mellor & Oliver (eds.): Properties].16

Their reading has influenced our work.

16 A reading of the contents listing of [Mellor & Oliver] reveals an interpretation of parts and properties:
I Function and Concept, Gottlob Frege

II The World of Universals, Bertrand Russell
III On our Knowledge of Universals, Bertrand Russell
IV Universals, F. P. Ramsey

V On What There Is, W. V. Quine
VI Statements about Universals, Frank Jackson

VII ’Ostrich Nominalism’|’Mirage Realism’, Michael Devitt
VIII Against ’Ostrich’ Nominalism, D. M. Armstrong

IX On the Elements of Being: I, Donald C. Williams

X The Metaphysic of Abstract Particulars, Keith Campbell
XI Tropes, Chris Daly
XII Properties, D. M. Armstrong

XIII Modal Realism at Work: Properties, David Lewis
XIV New Work for a Theory of Universals, David Lewis

XV Causality and Properties, Sydney Shoemaker
XVI Properties and Predicates, D. H. Mellor.
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⋄⋄ The notion of ‘property’ is also central to the recent notion of
concept analysis [Ganter and Wille: Formal Concept Analysis —
Mathematical Foundations, 1999].

◦◦ Here the term concept is understood as a property of a part.

◦◦ There is no associated type and value notions such as we have
expressed in (II) on Slide 157 and Footnote 15 on Slide 157.

◦◦ We shall have more to say about the relations between our
concept of domain analysis and Will & Ganter’s concept
analysis

∗ starting on Slide 124 and

∗ in Item (iii) starting on Slide 461.

• We shall now unravel our ‘Property Theory’17 of parts.

17— with apologies to [Turner:1990,Turner:1992,ChrisFox2000].
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• We see three categories of part properties:

⋄⋄ unique identifiers,

⋄⋄ mereology and

⋄⋄ (general) attributes.

• Each and every part has unique existence
— which we model through unique identifiers.

• Parts relate (somehow) to other parts, that is, mereology
— which we model a relations between unique identifiers.

• And parts usually have other, additional properties
which we shall refer to as attributes
— which we model as pairs of attribute types and attribute values.
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4.2.1. Unique Identifiers

Example: 17 Unique Identifier Functions.

• We have only exemplified the following unique identifier
meta-functions and types:

⋄⋄ uid H, HI Item 7(a) on Slide 47,

⋄⋄ uid L, LI Item 7(b) on Slide 47 and

⋄⋄ uid V, VI Item 7(c) on Slide 47.

• We did not find a need for defining unique identifier meta-functions
for N, F, M, HS, Hs, LS, Ls, VS, and Vs.
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4.2.1.1 A Dogma of Unique Existence

• We take, as a dogma, that

⋄⋄ every two parts whose intentional property values differ for at
least one property,

⋄⋄ other than their unique identifiers,

⋄⋄ are distinct and

⋄⋄ thus have distinct unique identifiers.
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4.2.1.2 A Simplification on Specification of Intentional Properties

• So we make a simplification in our treatment of intentional part
properties

⋄⋄ By postulating distinct unique identifiers

⋄⋄ we are forcing distinctness of parts

⋄⋄ and can dispense with,

◦◦ that is, do not have to explicitly ascribe such intentional
properties

◦◦ whose associated values would then have to differ in order to
guarantee distinctness of parts,
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4.2.1.3 Discussion

• Parts have unique existence.

⋄⋄ Whether they be spatial or conceptual.

⋄⋄ Two manifest parts cannot overlap spatially.

⋄⋄ A part is a conceptual part if it is an abstraction of a part.

⋄⋄ Two conceptual parts are identical

◦◦ if they have identical properties,

◦◦ that is, abstract the same manifest part,

◦◦ otherwise they are distinct.

⋄⋄ We shall therefore associate with each part

◦◦ a unique identifier,

◦◦ whether we may need to refer to that property or not.

⋄⋄ There are only manifest parts and conceptual parts.
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4.2.1.4 The uid P Operator

• More specifically we postulate, for every part, p:P, a meta-function:

73. uid P: P → Π

• where Π is the type of the unique identifiers of parts p:P.
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• In practice

⋄⋄ we “construct” the unique identifier type name
for parts of type P by “suffixing” I to P, and

⋄⋄ we explicitly “postulate define” the meta-function shown in
Item 73 on the facing slide.

• How is the uid PI meta-function “implemented” ?

⋄⋄ Well, for a domain description it suffices to postulate it.

⋄⋄ If we later were to develop software in support of the described domain, then
there are many ways of “implementing” the uid PIs.

A Precursor for Requirements Engineering 169 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29



170
4. Discrete Endurant Entities 4.2. Part Properties4.2.1. Unique Identifiers4.2.1.5. Constancy of Unique Identifiers — Some Dogmas

4.2.1.5 Constancy of Unique Identifiers — Some Dogmas

• We postulate the following dogmas:

⋄⋄ parts may be “added” to or “removed” from a domain;

⋄⋄ parts that are “added” to a domain have unique identifiers that
are not identifiers of any other part of the history of the domain;

⋄⋄ parts that are “removed” from a domain will not have their
identifiers reused should parts subsequently be “added” to the
domain; and

⋄⋄ domains do not allow for the changing (update) of unique
identifier values.
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4.2.2. Mereology

• Mereology: By mereologyδ (Greek: µǫρoς ) we shall understand
the study and knowledge about

⋄⋄ the theory of part-hood relations:

◦◦ of the relations of part to whole and

◦◦ the relations of part to part within a whole.
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• In the following please observe the type font distinctions:

⋄⋄ part, etc., and

⋄⋄ part (etc.).

• In the above definition of the term mereology

⋄⋄ we have used the terms

◦◦ part-hood,

◦◦ part and

◦◦ whole

⋄⋄ in a more general sense than we use the term part.
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• In this the “more general sense”

⋄⋄ we interpret part to include,

◦◦ besides what the term part covers in this seminar,

◦◦ also concepts, abstractions, derived from the concept of part.
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• That is, by part we mean

⋄⋄ not only manifest phenomena

⋄⋄ but also intangible phenomena

◦◦ that may be abstract models of parts,

◦◦ or may be (further) abstract models of parts.

Example: 18 Manifest and Conceptual Parts. We refer to
Example 4.

• A net, n:N (Item 1(a) on Slide 38), is a manifest part

• whereas a map, rm:RM (Item 26 on Slide 65), is a part.
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4.2.2.1 Extensional and Intentional Part Relations

• Henceforth we shall “merge” the two terms

⋄⋄ part and

⋄⋄ part

into one meaning.

• So henceforth the term part shall refer to

⋄⋄ both manifest, tangible and discrete endurants

⋄⋄ and to abstractions of these.
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• We are forced to do so by necessity.

⋄⋄ Instead of describing the manifest phenomena

⋄⋄ we are describing conceptual models of these;

• that is,

⋄⋄ instead of describing manifest parts

⋄⋄ we are describing their part types and part properties.
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• Thus we choose “mereology” to model relations between both

⋄⋄ parts and

⋄⋄ parts.

• We can thus distinguish between two kinds of such relations:

⋄⋄ extensional part relations which typically are spatial relations
between manifest parts and

⋄⋄ intentional part relations which typically are conceptual relations
between abstract parts.
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• Extensional relations between manifest parts are of the kind:

⋄⋄ one part, p:P, is “adjacent to” (“physically neighbouring”)
another part, q:Q,

⋄⋄ one part, p:P, is “embedded within”
(“physically surrounded by”) another part, q:Q, and

⋄⋄ one part, p:P, “overlaps with” another part, q:Q.

• We model these relations, “equivalently”, as follows:

⋄⋄ in the mereology of p, mereo P(p),
there is a reference, uid Q(q), to q, and

⋄⋄ in the mereology of q, mereo Q(q),
there is a reference, uid P(p), to p.
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• Intentional relations between abstractions are of the kind:

⋄⋄ part p:P

◦◦ has an attribute

◦◦ whose value

◦◦ always stand in a certain relation

∗ (for example, a copy of a fragment or the whole)

⋄⋄ to another part q:Q’s “corresponding” attribute value.

Example: 19 Shared Route Maps and Bus Time Tables. We
continue and we extend Example 4.

• The ‘Road Transport Domain’ of Example 4

⋄⋄ has its fleet of vehicles be that of a metropolitan city’s busses

⋄⋄ which ply some of the routes according to the city road map (i.e.,
the net) and

⋄⋄ according to a bus time table — which we leave undefined.

A Precursor for Requirements Engineering 179 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29



180 4. Discrete Endurant Entities 4.2. Part Properties4.2.2. Mereology4.2.2.1. Extensional and Intentional Part Relations

• We can now re-interpret the road traffic monitor to represent a
coordinating bus traffic authority, CBTA.

⋄⋄ CBTA is now the “new” monitor, i.e., is a part.

⋄⋄ Two of its attributes are:

◦◦ a metropolitan area road map and

◦◦ a metropolitan area bus time table

⋄⋄ Vehicles are now busses

◦◦ and each bus

∗ follows a route of the metropolitan area road map

∗ of which it has a copy, as a vehicle attribute,

∗ “shared” with CBTA;

◦◦ each bus additionally

∗ runs according to the metropolitan area bus time table

∗ of which it has a copy, as a vehicle attribute,

∗ “shared” with CBTA.
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• We model these attribute value relations, “ equivalently”, as above:

⋄⋄ in the mereology of p, mereo P(p),
there is a reference, uid Q(q), to q, and

⋄⋄ in the mereology of q, mereo Q(q),
there is a reference, uid P(p), to p.

Example: 20 Monitor and Vehicle Mereologies. We continue
Example 19 on Slide 177.

74. value mereo M: VI-set

75. type MI

76. value uid M: M → MI

77. value mereo V: V → MI
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4.2.2.2 Unique Part Identifier Mereologies

• To express a unique part identifier mereology

⋄⋄ assumes that the related parts

⋄⋄ have been endowed, say explicitly,

⋄⋄ with unique part identifiers.,

⋄⋄ say of unique identifier types

⋄⋄ Πj, Πk, . . . , Πℓ.

• A mereology meta function is now postulated:

78. value mereo P: P → (Πj | Πk | . . . | Πℓ)-set,

⋄⋄ or of some such signature,

⋄⋄ one which applies to parts, p:P,

⋄⋄ and yields unique identifiers

⋄⋄ of other, “the related”, parts —

⋄⋄ where these “other parts” can be of any part type,

⋄⋄ including P.
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Example: 21 Road Traffic System Mereology.

• We have exemplified unique part identifier mereologies for

⋄⋄ hubs, mereo H Item 8(a) on Slide 48 and

⋄⋄ links, mereo L Item 9(a) on Slide 48.

Example: 22 Pipeline Mereology. This is a somewhat lengthy
example from a domain now being exemplified.

• We start by narrating a pipeline domain of pipelines and pipeline
units.
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79. A pipeline consists of pipeline units.

80. A pipeline unit is either

a a well unit output connected to a pipe or a pump unit;

b a pipe, a pump or a valve unit input and output connected to
two distinct pipeline units other than a well;

c a fork unit input connected to a pipeline unit other than a well
and output connected to two pipeline units other than wells and
sinks;

d a join unit input connected to two pipeline units other than wells
and output connected to a a pipeline unit other than a sink; and

e a sink unit input connected to a valve.
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type

79. PL

value

79. obs Us: PL → U-set

type

80. U = WeU | PiU | PuU | VaU | FoU | JoU | SiU

value

80. uid U: U → UI

80. mereo U: U → UI-set × UI-set

80. i mereo U,o mereo U: U → UI-set

80. i UIs(u) ≡ let (ius, ) = mereo U(u) in ius end

80. o UIs(u) ≡ let ( ,ous) = mereo U(u) in ous end

axiom

∀ pl:PL,u:U • u ∈ obs Us(pl) ⇒

80(a). is WeU(u) → card i UIs(u)=0 ∧ card o UIs(u)=1,

80(b). (is PiU|is PuU|is VaU)(u) → card i UIs(u)=1=card o UIs(u),

80(c). is FoU(u) → card i UIs(u)=1 ∧ card o UIs(u)=2,

80(d). is JoU(u) → card i UIs(u)=2 ∧ card o UIs(u)=1,

80(e). is SiU(u) → card i UIs(u)=1 ∧ card o UIs(u)=0

• The UI “typed” value and axiom Items 80 “reveal” the mereology of pipelines.
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4.2.2.3 Concrete Part Type Mereologies

• Let Ai and Bj, for suitable i, j denote distinct part types and let BjI

• Let there be the following concrete type definitions:

type

a1:A1 = bs:B1-set

a2:A2 = bc:B21 × B22 × ... × B2n

a3:A3 = bl:B3
∗

a4:A4 = bm:BI4 →m B4

• The above part type definitions can be interpreted mereologically:

⋄⋄ Part a:A1 has sub-parts b1i
,b12,...,b1m

:B1 of bs parthood related to just part a:A1.

⋄⋄ Parts a:A2 has sub-parts b21,b22,. . . ,b2m
:B2 of bc parthood related only to parts a:A1

⋄⋄ Parts a:A3 has sub-parts b3i
, for all indices i of the list bℓ, parthood related to parts a:A3, and

to part b3i−1
and part b3i+1

, for 1<i<len bℓ by being “neighbours” and also to other b3j
if

the index j is known to b3i
for i 6=j.

⋄⋄ Parts a:A4 have all parts bm(bij) for index bij in the definition set dom bm, be parthood

related to a:A4 and to other such bm:B4 parts if they know their indexes.
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Example: 23 A Container Line Mereology. This example brings
yet another domain into consideration.

81. Two parts, sets of container vessels, CV-set, and sets of container
terminal ports, CTP-set, are crucial to container lines, CL.

82. Crucial parts of container vessels and container terminal ports are
their structures of bays , bs:BS.

83. A bay structure consists of an indexed set of bays.

84. A bay consists of an indexed set of rows

85. A row consists of an index set of stacks .

86. A stack consists of a linear sequence of containers.
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type

81. CP, CVS, CTPS

value

81. obs CVS: CL → CVS

81. obs CTPS: CL → CTPS

type

81. CVS = CV-set

81. CTPS = CTP-set

value

82. obs BS: (CV|CTP) → BS

type

83. BI, BS, B = BI →m B

value

84. obs RS: B → RS

type

84. RI, RS, R = RI →m R

value

85. obs SS: R → SS

type

85. SI, SS, C = SI →m S

86. S = C∗
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BS

B

RS

R

SS

C

S

CL

CTPCV

CVS CTPS

Figure 1: A container line domain index lattice
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• In Fig. 1 on the preceding slide is shown a container line domain
index lattice.

⋄⋄ At the top (“root”) there is the container line domain type name.

⋄⋄ Immediately below it are the, in this case, two sub-domains
(that we consider), CVS and CTPS.

⋄⋄ For each of these two there are the corresponding CV and CTP
sun-domains.

⋄⋄ For each of these one can observe the container bays, hence,
definition-wise, shared sub-domain.

⋄⋄ It is then defined in terms of a sequence of increasingly more
“narrowly” defined sub-domains.

⋄⋄ The lattice “ends” with the atomic sub-domain of containers, C.
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4.2.2.4 Variability of Mereologies

• The mereology of parts (of type P) may be

⋄⋄ a constant, i.e., static, or

⋄⋄ a variable, i.e., dynamic.

• That is, for some, or all, parts of a part type may need to be
updated.

⋄⋄ We express the update of a part mereology as follows:

87. value upd mereo P: (Πi|Πi|. . . |Πi)-set → P → P

⋄⋄ where upd mereo P({πa, πb, . . . , πc})(p)

⋄⋄ results in a part p′:P where

◦◦ all part properties of p′

∗ other than its mereology

∗ are as they “were” in p

∗ but the mereology of p′ is {πa, πb, . . . , πc}.
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Example: 24 Insert Link. We continue Example 4, Item 42 on
Slide 87:

• In the post link dis predicate we referred to the undefined link
insert function, ins L.

• We now define that function:

88. The insert Link action applies to a net, n, and a link, l,

89. and yields a new net, n′.
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90. The conditions for a successful insertion are

a that the link, l, is not in the links of net n,

b that the unique identifier of l is not in the set of unique identifiers
of the net n, and

c that the mereology of link l has been prepared to be, i.e., is the
two element set of unique identifiers of two hubs in net n.

91. The result of a successful insertion is

a that the links of the new net, n′, are those of the previous net, n,
“plus” link l;

b that the hubs, “originally” h a,h b, connected by l, are only
mereo-logically updated to each additional include the unique
identifier of l; and

c that all other hubs of n and n′ are unchanged.
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88. ins L: N → L → N
89. ins L(n)(l) as n′

90. pre:
90(a). l 6∈ obs Ls(obs LS(n))
90(b). ∧ uid L(l) 6∈ in xtr LIs(n)
90(c). ∧ mereo L(l) ⊆ xtr HIs(n)
91. post:
91(a). obs Ls(obs LS(n′))=obs Ls(obs LS(n))∪{l}
91. ∧ let {hi a,hi b}=mereo L(l) in

91. let {h a,h b}={get H(hi a)(n),get H(hi b)(n)} in

91(b). get H(hi a)(n′)=upd mereo H(h a)(mereo H(h a)∪{uid L(l)})
91(b). ∧ get H(hi b)(n′)=upd mereo H(h b)(mereo H(h b)∪{uid L(l)})
91(c). ∧ obs Hs(obs HS(n))=obs Hs(obs HS(n))\{hi a,hi b}∪{h a′,h b′} end end
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• As for the very many other function definitions in this seminar

⋄⋄ we illustrate one form of function definition annotations,

⋄⋄ and not always consistently the same “style”.

• We do not pretend that our function definitions

⋄⋄ are novel, let alone a contribution of this seminar;

⋄⋄ instead we rely on the listener

⋄⋄ having learnt, more laboriously than we this seminar can muster,

⋄⋄ an appropriate function definition narrative style.

• • •
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4.2.3. Attributes

• Attribute: By a part attributeδ we mean

⋄⋄ a part property

◦◦ other than part unique identifier and

◦◦ part mereology,

⋄⋄ and its associated attribute property value.

Example: 25 Road Transport System Part Attributes. We have exemplified,
Example 4, a number of part attribute observation functions:

• attr LΣ Item 10(a) on Slide 52,

• attr LΩ Item 10(b) on Slide 52,

• attr LOC, attr LEN Item 10(c) on Slide 52,

• attr HΣ Item 11(a) on Slide 54,

• attr HΩ Item 11(b) on Slide 54,

• attr LOC Item 11(c) on Slide 54,

• attr VP, attr onL, attr atH, attr VEL and

attr ACC Item 13 on Slide 56.
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4.2.3.1 Stages of Attribute Analysis

• There are four facets to deciding upon part attributes:

⋄⋄ (i) determining on which attributes to focus;

⋄⋄ (ii) selecting appropriate attribute type names,
(viz., LΣ, LΩ, HΣ, HΩ, LEN, LOC, VP, atH, onL, VEL and ACC );

⋄⋄ (iii) determining whether an attribute type is

◦◦ a static attribute type (having constant value)
(viz., LEN, LOC), or

◦◦ a dynamic attribute type (having variable values))
(viz., LΣ, LΩ, HΣ, HΩ, VP, atH, onL, VEL, ACC);

and

⋄⋄ (iv) deciding upon possible concrete type definitions for (some of)
those attribute types
(viz., LΣ, LΩ, HΣ, HΩ, VP, atH, onL).
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Example: 26 Static and Dynamic Attributes. Continuing
Example 4 we have:

• Dynamic attributes:

⋄⋄ LΣ Item 10(a) on Slide 52;

⋄⋄ HΣ Item 11(a) on Slide 54;

⋄⋄ VP, atH, onL Items 12(a)–12((a))ii on Slide 56; and

⋄⋄ VEL and ACC both Item 13 on Slide 56.

• All other attributes are considered static.
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Example: 27 Concrete Attribute Types. From Example 4:

• LΣ=(HI×HI) Item 10(a) on Slide 52,

• LΩ=LΣ-set Item 10(b) on Slide 52,

• HΣ=(LI×LI)-set Item 11(a) on Slide 54 and

• HΩ=HΣ-set Item 11(b) on Slide 54.
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4.2.3.2 The attr A Operator

• To observe a part attribute we therefore describe

⋄⋄ the attribute observer signature

92. attr A: P → A,

⋄⋄ where P is the part type being examined for attributes, and

⋄⋄ A is one of the chosen attribute type names.

• The “hunt” for

⋄⋄ part attributes, i.e., attribute types,

⋄⋄ the resulting attribute function signatures and

⋄⋄ the chosen concrete attribute types

is crucial for achieving successful domain descriptions.
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4.2.3.3 Variability of Attributes

• Static attributes are constants.

• Dynamic attributes are variables.

• To express the update of any one specific dynamic attributevalue we
use the meta-operator:

93. value upd attr A: A → P → P

• where upd attr A(a)(p) results in a part p′:P where

⋄⋄ all part properties of p′

◦◦ other than its the attribute value for attribute A

∗ are as they “were” in p

◦◦ but the attribute value for attribute A is a.
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Example: 28 Setting Road Intersection Traffic Lights. We
refer to Example 4, Items 11(a) (HΣ) and 11(b) (HΩ) on Slide 55.

• The intent of the hub state model
(a hub state as a set of pairs of unique link identifiers) is

⋄⋄ that it expresses the possibly empty set of allowed hub traversals,

⋄⋄ from a link incident upon the hub

⋄⋄ to a link emanating from that hub.
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94. In order to “change” a hub state the set hub state action is
performed,

95. It takes a hub and a hub state and yields a changed hub.
The argument hub state must be in the state space of the hub.
The result of setting the hub state is that the resulting hub has
the argument state as its (updated) hub state.

value

94. set hub state: H → HΣ → H
95. set hub state(h)(hσ) ≡ upd attr HΣ(h)(hσ)
95. pre: hσ ∈ attr HΩ(h)

• The hub state has not changed if attr HΣ(h) = hσ.
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4.2.4. Properties and Concepts

• Some remarks are in order.

4.2.4.1 Inviolability of Part Properties

• Given any part p of type P

⋄⋄ one cannot “remove” any one of its properties

⋄⋄ and still expect the the part to be of type P .

• Properties are what “makes” parts.

• To put the above remark in “context”
let us review Ganter & Wille’s formal concept analysis
[Ganter & Wille: Formal Concept Analysis, 1999].
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4.2.4.2 Ganter & Wille: Formal Concept Analysis

• This review is based on [Ganter & Wille: Formal Concept Analysis,
1999].

⋄⋄ to be written
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4.2.4.3 The Extensionality of Part Attributes

• to be written
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4.2.5. Properties of Parts

• The properties of parts and materials are fully captured by

⋄⋄ (i) the unique part identifiers,

⋄⋄ (ii) the part mereology and

⋄⋄ (iii) the full set ofpart attributes and material attributes

• We therefore postulate a property function

⋄⋄ when when applied to a part or a material

⋄⋄ yield this triplet, (i–iii), of properties

⋄⋄ in a suitable structure.

type

Props = {|PI|nil|} × {|(PI-set×...×PI-set)|nil|} × Attrs
value

props: Part|Material → Props
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• where

⋄⋄ Part stands for a part type,

⋄⋄ Material stands for a material type,

⋄⋄ PI stand for unique part identifiers and

⋄⋄ PI-set×...×PI-set for part mereologies.

• The {|...|} denotes a proper specification language sub-type and
nil denotes the empty type.
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4.3. States

• By a stateδ we mean

⋄⋄ a collection of such parts

⋄⋄ some of whose part attribute values are dynamic,

⋄⋄ that is, can vary.

Example: 29 A Variety of Road Traffic Domain States. We continue
Example 4.

• A link, l:L, constitutes a state by virtue of if its link traffic state lσ:attr LΣ.

• A hub, h:H, constitutes a state by virtue of its

⋄⋄ hub traffic state hσ:attr HΣ, and

⋄⋄ indepenently, its hub mereology lis:LI-set:mereo H.

• A net, n:N, constitutes a state by virtue of if its link and hub states.

• A monitor, m:M, constitutes a state by virtue of if its vehicle position map
vpm:attr VPM.
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4.4. An Example Domain: Pipelines

• We close this lecture with a “second main example”, albeit
“smaller”, in text size, than Example 4.

• The domain is that of pipelines.

• The reason we bring this example is the following:

⋄⋄ Not all domain endurants are discrete domain endurants.

⋄⋄ Some domains possess continuous domain endurants.

⋄⋄ We shall call them materials.

⋄⋄ Two such materials are

◦◦ liquids, like oil (or petroleum), and

◦◦ gaseous, like natural gas.
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• The description of such materials-based domains requires

⋄⋄ additional description concepts and

⋄⋄ new description techniques.

• The examples illustrates these new concepts and techniques

• as do the examples of Sect. 6.1.
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Example: 30 Pipeline Units and Their Mereology.

96. A pipeline consists of connected units, u:U.

97. Units have unique identifiers.

98. And units have mereologies, ui:UI:

a pump, pu:Pu, pipe, pi:Pi, and valve, va:Va, units have one input connector
and one output connector;

b fork, fo:Fo, [join, jo:Jo] units have one [two] input connector[s] and two [one]
output connector[s];

c well, we:We, [sink, si:Si] units have zero [one] input connector and one [zero]
output connector.

d Connectors of a unit are designated by the unit identifier of the connected
unit.

e The auxiliary sel UIs in selector funtion selects the unique identifiers of
pipeline units providing input to a unit;

f sel UIs out selects unique identifiers of output recipients.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29 212 Domain Science & Engineering



2134. Discrete Endurant Entities 4.4. An Example Domain: Pipelines

type

96. U = Pu | Pi | Va | Fo | Jo | Si | We
97. UI
value

97. uid U: U → UI
98. mereo U: U → UI-set × UI-set
98. wf mereo U: U → Bool

98. wf mereo U(u) ≡
98(a). let (iuis,ouis) = mereo U(u) in

98(a). is (Pu|Pi|Va)(u) → card iusi = 1 = card ouis,
98(b). is Fo(u) → card iuis = 1 ∧ card ouis = 2,
98(b). is Jo(u) → card iuis = 2 ∧ card ouis = 1,
98(c). is We(u) → card iuis = 0 ∧ card ouis = 1,
98(d). is Si(u) → card iuis = 1 ∧ card ouis = 0 end

98(e). sel UIs in: U → UI-set
98(e). sel UIs in(u) ≡ let (iuis, )=mereo U(u) in iuis end

98(f). sel UIs out: U → UI-set
98(f). sel UIs out(u) ≡ let ( ,ouis)=mereo U(u) in ouis end
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Example: 31 Pipelines: Nets and Routes.

99. A pipeline net consists of several properly connected pipeline units.

Example 30 on Slide 210 already described pipeline units.

Here we shall concentrate on their connectedness, i.e., the
wellformednes of pipeline nets.

100. A pipeline net is well-formed if

a all routes of the net are acyclic, and

b there are a non-empty set of well-to-sink routes that connect any
well to some sink, and

c all other routes of the net are embedded in the well-to-sink routes
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type

99. PLN′

99. PLN = {| pln:PLN′
• is wf PLN(pln) |}

value

99. obs Us: PLN → U-set

100. is wf PLN: PLN′ → Bool

100. is wf PLN(pln) ≡
100. let rs = routes{pln} in

100(b). well to sink routes(pln)6={}
100(c). ∧ embedded routes(pln) end
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101. An acyclic route is a route where any element occurs at most once.

102. A well-to-sink route of a net, pln, is a route whose first element
designates a well in pln and whose last element designates a sink in
pln.

103. One non-empty route, r′, is embedded in another route, r if the
latter can be expressed as the concatenation of three routes: r =
r′′̂r′̂r′′′ where r′′ or r′′′ may be empty routes (〈〉).
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type

105. R′ = UI∗

100(a). R = {r:R′
•is acyclic(r)}

value

100(a). is acyclic: R → Bool

100(a). is acyclic(r) ≡ ∀ i,j:Nat•i 6=j∧{i,j}⊆inds r⇒r[ i ] 6=r[ j ]

100(b). well to sink routes: PLN → R-set

100(b). well to sink routes(pln) ≡
100(b). {r|r:R•r ∈ routes(pln) ∧ ∃ we:WE,si:Si •

100(b). {we,si}⊆obs Us(pln) ⇒ r[ 1 ]=we ∧ r[ len r ]=si}
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104. One non-empty route, er, is embedded in another route, r,

a if there are two indices, i, j, into r

b such that the sequence of r elements from and including i to and
including j is er.

value

104. is embedded: R × R → Bool

104. is embedded(er,r) ≡
104(a). ∃ i,j:Nat•{i,j}⊆inds r
104(b). ⇒ er = 〈r[ k ]|k:Nat • i≤k≤j〉
104. pre: er6=〈〉
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105. A route, r, of a pipeline net is a sequence of unique unit identifiers,
satisfying the following properties:

a if r[i]=uii has uii designate a unit, u, of the pipeline then 〈uii〉 is
a route of the net;

b if rî〈uii〉 and 〈uij〉̂rj are routes of the net

i. where ui and uj are the units (of the net) designated by uii
and uij

ii. and uij is in the output mereology of ui and uii is in the input
mereology of uj

iii. then rî〈uii〉̂〈uij〉̂rj is a route of the net.

c Only such routes that can be constructed by a finite number of
“applications” of Items 105(a) and 105(b) are routes.
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105. routes: PLN → R-set

105. routes(pln) ≡
105(a). let rs = {〈uid UI(u)〉|u:U•u ∈ obs Us(pln)}
105((b))iii. ∪ { rî〈uii〉̂〈uij〉̂rj
105(b). | rî〈uii〉,〈uij〉̂ri:R • {rî〈uii〉,〈uij〉̂rj}⊆rs
105((b))i. ∧ let ui,uj:U•{ui,ui}⊆obs Us(pln)∧uii=uid U(ui)∧uij=uid U(uj)
105((b))ii. in uii ∈ iuis(uj) ∧ uij ∈ ouis(ui) end }
105(c). in rs end

• Section 6.1 will continue with several examples

⋄⋄ Example 43 on Slide 286,

⋄⋄ Example 44 on Slide 288,

⋄⋄ Example 45 on Slide 292,

⋄⋄ Example 46 on Slide 296 and

⋄⋄ Example 47 on Slide 299

following up on the two examples of this section.
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See You After Lunch: 14:00 — Thanks !

A Precursor for Requirements Engineering 219 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29



219

Welcome Back — Thanks !
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5. Discrete Perdurant Entities

• From Wikipedia:

⋄⋄ Perdurant: Also known as occurrent, accident or happening.

⋄⋄ Perdurants are those entities for which only a fragment exists if
we look at them at any given snapshot in time.

⋄⋄ When we freeze time we can only see a fragment of the perdurant.

⋄⋄ Perdurants are often what we know as processes, for example
’running’.

⋄⋄ If we freeze time then we only see a fragment of the running,
without any previous knowledge one might not even be able to
determine the actual process as being a process of running.

⋄⋄ Other examples include an activation, a kiss, or a procedure.

• A discrete perdurantδ is a perdurant which is a discrete entity.
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• We shall consider the following discrete perdurants.

⋄⋄ actions (Sect. 5.1),

⋄⋄ events (Sect. 5.2), and

⋄⋄ discrete behaviours (Sect. 5.3).

• Actions and events

⋄⋄ occur instantaneously,

⋄⋄ that is, in time, but taking no time, and to therefore be

◦◦ discrete actionδs and

◦◦ discrete eventδs.
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5.1. Formal Concept Analysis: Discrete Perdurants

• The domain analyser examines collections of discrete perdurants.

⋄⋄ In doing so the domain analyser discovers and thus identifies and lists a
number of perdurant properties.

⋄⋄ Each of the discrete perdurants examined usually satisfies only a subset of
these properties.

⋄⋄ The domain analyser now groups discrete perdurant into collections

◦◦ such that each collection have its discrete perdurants satisfy the same set of
properties,

◦◦ such that no two distinct collections are indexed, as it were, by the same
set of properties, and

◦◦ such that all discrete perdurants are put in some collection.

⋄⋄ The domain analyser now

◦◦ classify collections as actions, events or behaviours, and

◦◦ assign signatures

⋄⋄ to distinct collections.

• That is how we assign signatures to discrete perdurants.
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5.2. Actions

• By a functionδ we understand a mathematical concept,

⋄⋄ a thing

⋄⋄ which when applied to a value, called its argument,

⋄⋄ yields a value, called its result.

• A discrete actionδ can be understood as

⋄⋄ a function

⋄⋄ invoked on a state value

⋄⋄ and is one that potentially changes that value.

• Other terms for action are

⋄⋄ function invocationδ and

⋄⋄ function applicationδ.
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Example: 32 Transport Net and Container Vessel Actions.

• Inserting and removing hubs and links in a net are considered
actions.

• Setting the traffic signals for a hub (which has such signals) is
considered an action.

• Loading and unloading containers from or unto the top of a
container stack are considered actions.
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5.2.1. Abstraction: On Modelling Domain Actions

• We claim that we describe domain actions,

⋄⋄ but we actually describe functions,

⋄⋄ which are “somewhat far removed” from domains.

• So what are we actually claiming ?

⋄⋄ We are claiming that there is an interesting class of actions

⋄⋄ and that they can all be abstracted into one, possibly
non-deterministic function

⋄⋄ whose properties are then claimed to “mimic” those of the
actions in the interesting class.
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5.2.2. Agents: An Aside on Actions

Think’st thou existence doth depend on time?
It doth; but actions are our epochs.

George Gordon Noel Byron,
Lord Byron (1788-1824) Manfred. Act II. Sc. 1.

• “An action is

⋄⋄ something an agent does

⋄⋄ that was ‘intentional under some description’ ” [Davidson1980].

• That is, actions are performed by agents.

⋄⋄ We shall not yet go into any deeper treatment of agency or
agents. We shall do so later.

◦◦ Agents will here, for simplicity, be considered behaviours,

◦◦ and are treated later in this lecture.
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• As to the relation between intention and action

⋄⋄ we note that Davidson wrote:
‘intentional under some description’

⋄⋄ and take that as our cue:

◦◦ the agent follows a script,

◦◦ that is, a behaviour description,

◦◦ and invokes actions accordingly,

◦◦ that is, follow, or honours that script.
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5.2.3. Action Signatures

• By an action signature we understand a quadruple:

⋄⋄ a function name,

⋄⋄ a function definition set type expression,

⋄⋄ a total or partial function designator (→, respectively
∼
→), and

⋄⋄ a function image set type expression:
fct name: A → Σ (→|

∼
→) Σ [× R],

where (X | Y ) means either X or Y , and [Z] means that for some
signatures there may be a Z component meaning that the action
also has the effect of “leaving” a type Z value.
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Example: 33 Action Signatures: Nets and Vessels.

insert Hub: N→H
∼
→N;

remove Hub: N→HI
∼
→N;

set Hub Signal: N→HI
∼
→HΣ

∼
→N

load Container: V→C→StackId
∼
→V; and

unload Container: V→StackId
∼
→(V×C).
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5.2.4. Action Definitions

• There are a number of ways in which to characterise an action.

• One way is to characterise its underlying function
by a pair of predicates:

⋄⋄ precondition: a predicate over function arguments — which
includes the state, and

⋄⋄ postcondition: a predicate over function arguments, a proper
argument state and the desired result state.

⋄⋄ If the precondition holds, i.e., is true, then the arguments,
including the argument state, forms a proper ‘input’ to the
action.

⋄⋄ If the postcondition holds, assuming that the precondition held,
then the resulting state [and possibly a yielded, additional
“result” (R)] is as they would be had the function been applied.
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Example: 34 Transport Nets Actions.

• In Example 4 we gave an explicit example of an action:

⋄⋄ ins H: Items 37–37(d),

• while implicit references to net actions were made in the event
predicates

⋄⋄ link dis, pre link dis: Items 38–39(c),

⋄⋄ post link dis (Items 38–39(c)):

◦◦ rem L Item 42(a) and

◦◦ ins L Items 42((c))i–42((c))ii.
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• What is not expressed, but tacitly assume in the above pre- and
post-conditions is

⋄⋄ that the state, here n, satisfy invariant criteria before (i.e. n)
and after (i.e., n′) actions,

⋄⋄ whether these be implied by axioms

⋄⋄ or by well-formedness predicates.

over parts.

• This remark applies to any definition of actions, events and
behaviours.

• There are other ways of defining functions.

• But the form of these are not germane to the aims of this seminar.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29 234 Domain Science & Engineering



2355. Discrete Perdurant Entities 5.2. Actions5.2.4. Action Definitions

Modelling Actions, I/III

• We refer to the section on Formal Concept Analysis of Discrete Per-
durants on Slide 222.

• The domain describer has decided that an entity is a perdurant and
is, or represents an action: was “done by an agent and intentionally
under some description” [Davidson1980].

⋄⋄ The domain describer has further decided that the observed ac-
tion is of a class of actions — of the “same kind” — that need be
described.

⋄⋄ By actions of the ‘same kind’ is meant that these can be described
by the same function signature and function definition.
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Modelling Actions, II/III

• The domain describer must decide on the underlying function sig-
nature.

⋄⋄ The argument type and the result type of the signature are those
of either previously identified

◦◦ parts and/or materials,

◦◦ unique part identifiers, and/or

◦◦ attributes.
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Modelling Actions, III/III

• Sooner or later the domain describer must decide on the function
definition.

⋄⋄ The form must be decided upon.

⋄⋄ For pre/post-condition forms it appears to be convenient to have
developed, “on the side”, a theory of mereology for the part types
involved in the function signature.
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5.3. Events

• By an eventδ we understand

⋄⋄ a state change

⋄⋄ resulting indirectly from an
unexpected application of a function,

⋄⋄ that is, that function was performed “surreptitiously”.

• Events can be characterised by a pair of (before and after) states, a
predicate over these and, optionally, a time or time interval.

• Events are thus like actions:

⋄⋄ change states,

⋄⋄ but are usually

◦◦ either caused by “previous” actions,

◦◦ or caused by “an outside action”.
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Example: 35 Events.

• Container vessel: A container falls overboard
sometimes between times t and t′.

• Financial service industry: A bank goes bankrupt
sometimes between times t and t′.

• Health care: A patient dies
sometimes between times t and t′.

• Pipeline system: A pipe breaks
sometimes between times t and t′.

• Transportation: A link “disappears”
sometimes between times t and t′.
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5.3.1. An Aside on Events

• We may observe an event, and

⋄⋄ then we do so at a specific time or

⋄⋄ during a specific time interval.

• But we wish to describe,

⋄⋄ not a specific event

⋄⋄ but a class of events of “the same kind”.

• In this seminar

⋄⋄ we therefore do not ascribe

⋄⋄ time points or time intervals

⋄⋄ with the occurrences of events.
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5.3.2. Event Signatures

• An event signatureδ

⋄⋄ is a predicate signature

⋄⋄ having an event name (evt),

⋄⋄ a pair of state types (Σ × Σ),

⋄⋄ a total function space operator (→)

⋄⋄ and a Boolean type constant:

⋄⋄ evt: (Σ×Σ) → Bool.

• Sometimes there may be a good reason

⋄⋄ for indicating the type, ET, of an event cause value,

⋄⋄ if such a value can be identified:

⋄⋄ evt: ET × (Σ × Σ) → Bool.
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5.3.3. Event Definitions

• An event definitionδ takes the form of

⋄⋄ a predicate definition:

◦◦ a predicate name and argument list, usually just a state pair,

◦◦ an existential quantification

∗ over some part (of the state) or

∗ over some dynamic attribute of some part (of the state)

∗ or combinations of the above

◦◦ a pre-condition expression over the input argument(s),

◦◦ an implication symbol (⇒), and

◦◦ a post-condition expression over the argument(s):

⋄⋄ evt(σ, σ′) = ∃ (ev:ET) • pre evt(ev)(σ) ⇒ post evt(ev)(σ, σ′).

There may be variations to the above form.
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Example: 36 Road Transport System Event.

• Example 4,

⋄⋄ Items 38–42((c))ii

⋄⋄ (Slides 85–88)

exemplified an event definition.
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Modelling Events I/II

• We refer to the section on
Formal Concept Analysis of Discrete Perdurants on Slide 222.

• The domain describer has decided that an entity is a perdurant and
is, or represents an event: occurred surreptitiously, that is, was not
an action that was “done by an agent and intentionally under some
description” [Davidson1980].

⋄⋄ The domain describer has further decided that the observed event
is of a class of events — of the “same kind” — that need be
described.

⋄⋄ By events of the ‘same kind’ is meant that these can be described
by the same predicate function signature and predicate function
definition.
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Modelling Events, II/II

• First the domain describer must decide on the underlying
predicate function signature.

⋄⋄ The argument type and the result type of the signature
are those of either previously identified

◦◦ parts,

◦◦ unique part identifiers, or

◦◦ attributes.

• Sooner or later the domain describer must decide on
the predicate function definition.

⋄⋄ For predicate function definitions it appears to be convenient to
have developed, “on the side”, a theory of mereology for the part
types involved in the function signature.
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5.4. Discrete Behaviours

• We shall distinguish between

⋄⋄ discrete behaviours (this section) and

⋄⋄ continuous behaviours.

• Roughly discrete behaviours

⋄⋄ proceed in discrete (time) steps —

⋄⋄ where, in this lecture, we omit considerations of time.

⋄⋄ Each step corresponds to an action or an event or a time interval
between these.

⋄⋄ Actions and events may take some (usually inconsiderable time),

⋄⋄ but the domain analyser has decided that it is not of interest to
understand what goes on in the domain during that time
(interval).

⋄⋄ Hence the behaviour is considered discrete.
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• Continuous behaviours

⋄⋄ are continuous in the sense of the calculus of mathematical
analysis;

⋄⋄ to qualify as a continuous behaviour time must be an essential
aspect of the behaviour.

• Discrete behaviours can be modelled in many ways, for example
using

⋄⋄ CSP [Hoare85+2004].

⋄⋄ MSC [MSCall],

⋄⋄ Petri Nets [m:petri:wr09] and

⋄⋄ Statechart [Harel87].

• We refer to Chaps. 12–14 of [TheSEBook2wo].

• In this seminar we shall use RSL/CSP.
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5.4.1. What is Meant by ‘Behaviour’ ?

• We give two characterisations of the concept of ‘behaviour’.

⋄⋄ a “loose” one and

⋄⋄ a “slanted one.

• A loose characterisation runs as follows:

⋄⋄ by a behaviourδ we understand

◦◦ a set of sequences of

◦◦ actions, events and behaviours.
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• A “slanted” characterisation runs as follows:

⋄⋄ by a behaviourδ we shall understand

◦◦ either a sequential behaviourδ consisting of a possibly infinite
sequence of zero or more actions and events;

◦◦ or one or more communicating behaviourδs whose output
actions of one behaviour may synchronise and communicate
with input actions of another behaviour;

◦◦ or two or more behaviours acting either as
internal non-deterministic behaviourδs (⌈⌉) or as
external non-deterministic behaviourδs (⌈⌉⌊⌋).
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• This latter characterisation of behaviours

⋄⋄ is “slanted” in favour of a CSP, i.e., a communicating sequential
behaviour, view of behaviours.

⋄⋄ We could similarly choose to “slant” a behaviour
characterisation in favour of

◦◦ Petri Nets, or

◦◦ MSCs, or

◦◦ Statecharts, or other.
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5.4.2. Behaviour Narratives

• Behaviour narratives may take many forms.

⋄⋄ A behaviour may best be seen as composed from several
interacting behaviours.

◦◦ Instead of narrating each of these,

◦◦ as was done in Example 4,

◦◦ one may proceed by first narrating the interactions of these
behaviours.

⋄⋄ Or a behaviour may best be seen otherwise,

◦◦ for which, therefore, another style of narration may be called
for,

◦◦ one that “traverses the landscape” differently.

⋄⋄ Narration is an art.

⋄⋄ Studying narrations – and practice – is a good way to learn
effective narration.
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5.4.3. Channels

• We remind the listener that we are focusing exclusively on domain
behaviours.

⋄⋄ Domain behaviours, as we shall see in Sect. 5.4.6, take their
“root” in parts.

⋄⋄ We shall find, even when “parts” take the form of concepts, that
these do not “overlap”.

◦◦ They may share properties,

◦◦ but we can consider them “disjoint”.

⋄⋄ Hence communication between processes

◦◦ can be thought of as communication between “disjoint parts”,

◦◦ and, as such, can be abstracted as taking place

◦◦ in a non-physical medium which we shall refer to as channels.
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• By a channelδ we shall understand

⋄⋄ a means of communicating entities

⋄⋄ between [two] behaviours.

• To express channel communications we, at present, make use of RSL [RSL]’s
output (ch ! v) / input (ch ?) clauses and channel declarations,

type M
channel ch M,
value ch!v, ch?,

• Variations of the above clauses are

type ChIdx, ChJdx
channel {ch[ i ]|i:ChIdx•P(i,...)}:M, {ch[ i,j ]|i:ChIdx,j:ChJdx•P(i,j,...)}:M
value ch[ i ]!v, ch[ i ]?, ch[ i,j ]!v, ch[ i,j ]?

• where P is a suitable predicate

⋄⋄ over channel indices and

⋄⋄ possibly global domain values.
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5.4.4. Behaviour Signatures

• By a behaviour signatureδ we shall understand a

⋄⋄ a function signature

⋄⋄ augmented by a clause which declares

◦◦ the in channels on which the function accepts inputs and

◦◦ the out channels on which the function offers output.

value behaviour: A → in in chs out out chs B

• where (i)

⋄⋄ the form in in chs out out chs

◦◦ may be just in in chs

◦◦ or out out chs

◦◦ or both in in chs out out chs

that is, behaviour accepts input(s), or offers output(s), or both;
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value behaviour: A → in in chs out out chs B

• where (ii)

⋄⋄ A typically is of the forms

◦◦ Unit if the behaviour “takes no arguments”,

∗ that is: behaviour(),

or

◦◦ PI×P if the behavior is directly based on a part, p:P, for

∗ that is: behaviour(uid P(p),p);
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value behaviour: A → in in chs out out chs B

⋄⋄ where (iii)

⋄⋄ in chs and out chs are of the form

◦◦ either ch,

◦◦ or {ch[ i ]|i:ChIdx•Q(i,...)}

◦◦ or {ch[ i,j ]|i:ChIdx,j:ChJdx•R(i,j,...)},

Q, R are appropriate predicates; and

⋄⋄ where (iv)

◦◦ either

◦◦ B is

∗ either just Unit when the behaviour is typically a
never-ending (i.e., cyclic) behaviours,

∗ or is some result type C.
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5.4.5. Behaviour Definitions

• This section is about the basic form of behaviour function
definitions.

⋄⋄ We shall only be concerned with behaviours which define part
behaviours.

⋄⋄ By a part behaviourδ we shall understand

◦◦ a behaviour whose state

◦◦ is that of the part for which it is the behaviour.

• There are basically two cases for which we are interested in the
form of the behaviour definition:

⋄⋄ the atomic part behaviour, and

⋄⋄ the composite part behaviour.
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5.4.5.1 Atomic Part Behaviours

• Let p:P be an atomic part of type P.

• Then the basic form of a cyclic atomic behaviour definition is

value

atomic core part behaviour(uid P(p))(p) ≡
let p′ = A(uid P(p))(p) in

atomic core part behaviour(uid P(p))(p′) end

post: uid P(p) = uid P(p′),

A: PI → P → in ... out ... P,

• where A usually is a terminating function

⋄⋄ which synchronises and

⋄⋄ communicates with other part behaviours.
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Example: 37 Atomic Part Behaviours.

• Example 4, Sect. 2.8.6 and Sect. 2.8.7 illustrates cyclic atomic
behaviours:

⋄⋄ vehicle at Hub: Items 65–65(d), on Slide 101,

⋄⋄ vehicle on Link: Items 64–68, on Slide 103 and

⋄⋄ monitor: Items 69–71(d), on Slide 105.
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5.4.5.2 Composite Part Behaviours

• Let p:P be an atomic part of type P.

• Then the basic form of a cyclic atomic behaviour definition is

value

composite part behaviour(uid P(p))(p) ≡
composite core part behaviour(uid P(p))(p)

‖ { part behaviour(uid P(p′))(p′)|p′:P•p′ ∈ obs (p)}

core part behaviour: PI → P → in ... out ... Unit

core part behaviour(uid P(p))(p) ≡
let p′ = C(uid P(p))(p) in

composite core part behaviour(uid P(p))(p′) end

post: uid P(p) = uid P(p′)

C: PI → P → in ... out ... P,
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• where C usually is a terminating function

⋄⋄ which synchronises and

⋄⋄ communicates with other part behaviours.

Example: 38 Compositional Behaviours.

• Example 4, Sect. 2.8.3

⋄⋄ illustrated compositionality,

⋄⋄ cf. Items 59– 59(b) on Slide 95.

• The next section

⋄⋄ illustrates the basic principles

⋄⋄ that we recommend

⋄⋄ when modelling behaviours of domains

⋄⋄ consisting of composite and atomic parts.
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5.4.6. A Model of Parts and Behaviours

• How often have you not “confused”, linguistically,

⋄⋄ the perdurant notion of a train process: progressing from railway
station to railway station,

⋄⋄ with the endurant notion of the train, say as it appears listed in
a train time table, or as it is being serviced in workshops, etc.

• There is a reason for that — as we shall now see:
parts may be considered syntactic quantities
denoting semantic quantities.

⋄⋄ We therefore describe a general model of parts of domains

⋄⋄ and we show that for each instance of such a model

⋄⋄ we can ‘compile’ that instance into a CSP ‘program’.
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• The example additionally has a more general aim,

⋄⋄ namely that of showing

⋄⋄ that to every mereology (or parts)

⋄⋄ there is a λ-expression

⋄⋄ here in the form of basically a CSP [Hoare85+2004] program.
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Example: 39 Syntax and Semantics of Mereology.
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5.4.6.1 A Syntactic Model of Parts

106. The whole contains a set of parts.

107. Parts are either atomic or composite.

108. From composite parts one can observe a set of parts.

109. All parts have unique identifiers
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type

106. W, P, A, C
107. P = A | C
value

108. obs Ps: (W|C) → P-set

type

109. PI
value

109. uid Π: P → Π
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110. From a whole and from any part of that whole we can extract all
contained parts.

111. Similarly one can extract the unique identifiers of all those
contained parts.

112. Each part may have a mereology which may be “empty”.

113. A mereology ’s unique part identifiers must refer to some other
parts other than the part itself.
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value

110. xtr Ps: (W|P) → P-set

110. xtr Ps(w) ≡ {xtr Ps(p)|p:P•p ∈ obs Ps(p)}
110. pre: is W(p)
110. xtr Ps(p) ≡ {xtr Ps(p)|p:C•p∈ obs Ps(p)}∪{p}
110. pre: is P(p)
111. xtr Πs: (W|P) → Π-set

111. xtr Πs(wop) ≡ {uid P(p)|p ∈ xtr Ps(wop)}
112. mereo P: P → Π-set

axiom

113. ∀ w:W
113. let ps = xtr Ps(w) in

113. ∀ p:P • p ∈ ps • ∀ π:Π • π ∈ mereo P(p) ⇒ π ∈ xtr Πs(p) end

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29 268 Domain Science & Engineering



2695. Discrete Perdurant Entities 5.4. Discrete Behaviours5.4.6. A Model of Parts and Behaviours5.4.6.1. A Syntactic Model of Parts

114. An attribute map of a part associates with attribute names, i.e.,
type names, their values, whatever they are.

115. From a part one can extract its attribute map.

116. Two parts share attributes if their respective attribute maps share
attribute names.

117. Two parts share properties if the y

a either share attributes

b or the unique identifier of one is in the mereology of the other.
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type

114. AttrNm, AttrVAL,
114. AttrMap = AttrNm →m AttrVAL
value

115. attr AttrMap: P → AttrMap
116. share Attributes: P×P → Bool

116. share Attributes(p,p′) ≡
116. dom attr AttrMap(p) ∩
116. dom attr AttrMap(p′) 6= {}
117. share Properties: P×P → Bool

117. share Properties(p,p′) ≡
117(a). share Attributes(p,p′)
117(b). ∨ uid P(p) ∈ mereo P(p′)
117(b). ∨ uid P(p′) ∈ mereo P(p)

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29 270 Domain Science & Engineering



2715. Discrete Perdurant Entities 5.4. Discrete Behaviours5.4.6. A Model of Parts and Behaviours5.4.6.2. A Semantics Model of Parts

5.4.6.2 A Semantics Model of Parts

118. We can define the set of two element sets of unique identifiers
where

• one of these is a unique part identifier and

• the other is in the mereology of some other part.

• We shall call such two element “pairs” of unique identifiers
connectors.

• That is, a connector is a two element set, i.e., “pairs”, of unique
identifiers for which the identified parts share properties.

119. Let there be given a ‘whole’, w:W.

120. To every such “pair” of unique identifiers we associate a channel

• or rather a position in a matrix of channels indexed over the
“pair sets” of unique identifiers.

• and communicating messages m:M.
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type

118. K = Π-set axiom ∀ k:K•card k=2

value

118. xtr Ks: (W|P) → K-set

118. xtr Ks(wop) ≡

118. let ps = xtr Ps(w) in

118. {{uid P(p),π}|p:P,π:Π•p∈ ps ∧ ∃ p′:P•p′6=p∧π=uid P(p′) ∧ uid P(p)∈uid P(p′)} end

119. w:W

120. channel {ch[ k ]|k:xtr Ks(w)}:M
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121. Now the ‘whole’ behaviour whole is the parallel composition of
part processes, one for each of the immediate parts of the whole.

122. A part process is

a either an atomic part process, atom, if the part is an atomic
part,

b or it is a composite part process, comp, if the part is a
composite part.
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121. whole: W → Unit

121. whole(w) ≡ ‖ {part(uid P(p))(p) | p:P•p ∈ xtr Ps(w)}

122. part: π:Π → P → Unit

122. part(π)(p) ≡
122(a). is A(p) → atom(π)(p),
122(b). → comp(π)(p)
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123. A composite process, part, consists of

a a composite core process, comp core, and

b the parallel composition of part processes one for each
contained part of part.

.

value

123. comp: π:Π → p:P → in,out {ch[ {π,π′}|{π′∈ mereo P(p)} ]} Unit

123. comp(π)(p) ≡
123(a). comp core(π)(p) ‖
123(b). ‖ {part(uid P(p′))(p′) | p′:P•p′ ∈ obs Ps(p)}
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124. An atomic process consists of just an atomic core process,
atom core

124. atom: π:Π → p:P → in,out {ch[ {π,π′}|{π′∈ mereo P(p)} ]} Unit

124. atom(π)(p) ≡ atom core(π)(p)
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125. The core behaviours both

a update the part properties and

b recurses with the updated properties,

c without changing the part identification.

We leave the update action undefined.
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value

125. core: π:Π → p:P → in,out {ch[ {π,π′}|{π′∈ mereo P(p)} ]} Unit

125. core(π)(p) ≡
125(a). let p′ = update(π)(p)
125(b). in core(π)(p′) end

125(b). assert: uid P(p)=π=uid P(p′)
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• The model of parts can be said to be a syntactic model.

⋄⋄ No meaning was “attached” to parts.

• The conversion of parts into CSP programs can be said to be a
semantic model of parts,

⋄⋄ one which to every part associates a behaviour

⋄⋄ which evolves “around” a state

⋄⋄ which is that of the properties of the part.
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6. Continuous Entities

• There are two kinds of continuous entities:

⋄⋄ materials (Slides 279–300) and

⋄⋄ continuous behaviours (Slides 301–315).

• By a materialδ we small mean

⋄⋄ a continuous endurant,

⋄⋄ a manifest entity which typically varies in shape and extent.

• By a continuous behaviourδ we small mean

⋄⋄ a continuous perdurant,

⋄⋄ which we may think of as a function

◦◦ from continuous Time

◦◦ to some structure, simple or complicated, of

∗ parts and

∗ materials.
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6.1. Materials

• Let us start with examples of materials.

Example: 40 Materials. Examples of endurant continuous entities
are such as

• coal,

• air,

• natural gas,

• grain,

• sand,

• iron ore,

• minerals,

• crude oil,

• solid waste,

• sewage,

• steam and

• water.
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The above materials are either

• liquid materials (crude oil, sewage, water),

• gaseous materials (air, gas, steam), or

• granular materials (coal, grain, sand, iron ore, mineral, or solid
waste).
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• Endurant continuous entities, or materials as we shall call them,

⋄⋄ are the core endurants of process domains,

⋄⋄ that is, domains in which those materials
form the basis for their “raison d’être”.

6.1.1. Materials-based Domains

• By a materials based domainδ we shall mean a domain

⋄⋄ many of whose parts serve to transport materials, and

⋄⋄ some of whose actions, events and behaviours serve to monitor
and control the part transport of materials.
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Example: 41 Material Processing.

• Oil or gas materials are ubiquitous to pipeline systems — so
pipeline systems are oil or gas-based systems.

• Sewage is ubiquitous to waste management systems — so waste
management systems are sewage-based systems.

• Water is ubiquitous to systems composed from reservoirs, tunnels
and aqueducts which again are ubiquitous to hydro-electric power
plants, irrigation systems or water supply utilities — so
hydro-electric power plants, irrigation systems and water supply
utilities are water-based systems.
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• Ubiquitous means ‘everywhere’.

• A continuous entity, that is, a material

⋄⋄ is a core material,

⋄⋄ if it is “somehow related”

⋄⋄ to one or more parts of a domain.

6.1.2. “Somehow Related” Parts and Materials

• We explain our use of the term “somehow related”.

A Precursor for Requirements Engineering 285 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29



286 6. Continuous Entities 6.1. Materials6.1.2. “Somehow Related” Parts and Materials

Example: 42 Somehow Related Materials and Parts. With
teletype font we designate materials and with slanted font we
imply parts or part processes.

• Oil is pumped from wells, runs through pipes, is “lifted” by
pumps, diverted by forks, “runs together” by means of joins, and
is delivered to sinks.

• Grain is delivered to silos by trucks, piped through a network of
pipes, forks and valves to vessels, etc.

• Minerals are mined, conveyed by belts to lorries or trains or
cargo vessels and finally deposited.

• Iron ore, for example, is ‘conveyed’ into smelters, ‘roasted’,
‘reduced’ and ‘fluxed’, ‘mixed’ with other mineral ores to produce
a molten, pure metal, which is then ‘collected’ into ingots.
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6.1.3. Material Observers

• When analysing domains a key question,

⋄⋄ in view of the above notion of core continuous endurants
(i.e., materials)

is therefore:

⋄⋄ does the domain embody a notion of core continuous endurants
(i.e., materials);

⋄⋄ if so, then identify these “early on” in the domain analysis.

• Identifying materials —

⋄⋄ their types and

⋄⋄ attributes —

is slightly different from identifying discrete endurants, i.e., parts.
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Example: 43 Pipelines: Core Continuous Endurant. We
continue Examples 30 on Slide 210 and 31 on Slide 212.

• The core continuous endurant, i.e., material,

• of (say oil) pipelines is, yes, oil:

type

O material

value

obs O: PLN → O

• The keyword material is a pragmatic.

• Materials are “few and far between” as compared to parts,

⋄⋄ we choose to mark the type definitions which designate materials
with the keyword material.

⋄⋄ In contrast, we do not mark the type definitions which designate
parts with the keyword discrete.
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• First we do not associate the notion of atomicity or composition
with a material. Materials are continuous.

• Second, amongst the attributes, none have to do with geographic
(or cadestral) matters. Materials are moved.

• And materials have no unique identification or mereology. No
“part” of a material distinguishes it from other “parts”.

• But they do have other attributes when occurring in connection
with, that is, related to parts, for example,

⋄⋄ volume or

⋄⋄ weight.
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Example: 44 Pipelines: Parts and Materials. We continue
Examples 30 on Slide 210 and 31 on Slide 212.

126. From an oil pipeline system one can, amongst others,

a observe the finite set of all its pipeline bodies,

b units are composite and consists of a unit,

c and the oil, even if presently, at time of observation, empty of oil.

127. Whether the pipeline is an oil or a gas pipeline is an attribute of
the pipeline system.

a The volume of material that can be contained in a unit is an
attribute of that unit.

b There is an auxiliary function which estimates the volume of a
given “amount” of oil.

c The observed oil of a unit must be less than or equal to the
volume that can be contained by the unit.
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type

126. PLS, B, U, Vol
126. O material

value

126(a). obs Bs: PLS → B-set

126(b). obs U: B → U
126(c). obs O: B → O
127. attr PLS Type: PLS → {”oil”|”gas”}
127(a). attr Vol: U → Vol
127(b). vol: O → Vol
axiom

127(c). ∀ pls:PLS,b:B•b ∈ obs Bs(pls)⇒vol(obs O(b))≤attr Vol(obs U(b))

• Notice how bodies are composite and consists of

⋄⋄ a discrete, atomic part, the unit, and

⋄⋄ a material endurant, the oil.

• We refer to Example 45 on Slide 292.

A Precursor for Requirements Engineering 291 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29



292
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6.1.4. Material Properties

• These are some of the key concerns in domains focused on
materials:

⋄⋄ transport, flows, leaks and losses, and

⋄⋄ input to systems and output from systems,

• Other concerns are in the direction of

⋄⋄ dynamic behaviours of materials focused domains
(mining and production), including

⋄⋄ stability, periodicity, bifurcation and ergodicity.

• In this seminar we shall, when dealing with systems focused on
materials, concentrate on modelling techniques for

⋄⋄ transport, flows, leaks and losses, and

⋄⋄ input to systems and output from systems.
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• Formal specification languages like

⋄⋄ Alloy [alloy],

⋄⋄ Event B [JRAbrial:TheBBooks] ,

⋄⋄ CASL [CoFI:2004:CASL-RM]

⋄⋄ CafeOBJ [futatsugi2000a],

⋄⋄ RAISE [RaiseMethod],

⋄⋄ VDM

[e:db:Bj78bwo,e:db:Bj82b,JohnFitzgera

and

⋄⋄ Z [m:z:jd+jcppw96]

do not embody the mathematical calculus notions of

⋄⋄ continuity, hence do not “exhibit”

⋄⋄ neither differential equations

⋄⋄ nor integrals.

• Hence cannot formalise dynamic systems within these
formal specification languages.

• We refer to Sect. 9.3.1 where we discuss these issues at some length.
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Example: 45 Pipelines: Parts and Material Properties. We refer to
Examples 30 on Slide 210, 31 on Slide 212 and 44 on Slide 288.

128. Properties of pipeline units additionally include such which are concerned with
flows (F) and leaks (L) of materials:

a current flow of material into a unit input connector,

b maximum flow of material into a unit input connector while maintaining
laminar flow,

c current flow of material out of a unit output connector,

d maximum flow of material out of a unit output connector while maintaining
laminar flow,

e current leak of material at a unit input connector,

f maximum guaranteed leak of material at a unit input connector,

g current leak of material at a unit input connector,

h maximum guaranteed leak of material at a unit input connector,

i current leak of material from “within” a unit,

j maximum guaranteed leak of material from “within” a unit.
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129. There are “the usual” arithmetic and comparison operators of flows
and leaks, and there is a smallest detectable (flow and) leak.

type

129. F, L

value

129. ⊕,⊖: (F|L)×(F|L) → (F|L)
129. <,≤,=: (F|L)×(F|L) → Bool

129. ⊗: (F|L)×Real → (F|L)
129. /: (F|L)×(F|L) → Real

129. ℓ0:L

128(a). attr cur iF: U → UI → F
128(b). attr max iF: U → UI → F
128(c). attr cur oF: U → UI → F
128(d). attr max oF: U → UI → F
128(e). attr cur iL: U → UI → L
128(f). attr max iL: U → UI → L
128(g). attr cur oL: U → UI → L
128(h). attr max oL: U → UI → L
128(i). attr cur L: U → L
128(j). attr max L: U → L
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• The maximum flow attributes are static attributes
and are typically provided by the manufacturer
as indicators of flows below which laminar flow can be expected.

• The current flow attributes as dynamic attributes.

130. Properties of pipeline materials may additionally include

a kind of material18,

b paraffins,

c naphtenes,

d aromatics,

e asphatics,

f viscosity,

g etcetera.

• We leave it to the student to provide the formalisations.

18For example Brent Blend Crude Oil
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6.1.5. Material Laws of Flows and Leaks

• It may be difficult or costly, or both

⋄⋄ to ascertain flows and leaks in materials-based domains.

⋄⋄ But one can certainly speak of these concepts.

⋄⋄ This casts new light on domain modelling.

⋄⋄ That is in contrast to

◦◦ incorporating such notions of flows and leaks

◦◦ in requirements modelling

⋄⋄ where one has to show implementability.

• Modelling flows and leaks is important to the modelling of
materials-based domains.
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6. Continuous Entities 6.1. Materials6.1.5. Material Laws of Flows and Leaks

Example: 46 Pipelines: Intra Unit Flow and Leak Law. We
continue our line of Pipeline System examples (cf. the opening line of
Example 45 on Slide 292).

131. For every unit of a pipeline system, except the well and the sink
units, the following law apply.

132. The flows into a unit equal

a the leak at the inputs

b plus the leak within the unit

c plus the flows out of the unit

d plus the leaks at the outputs.
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axiom

131. ∀ pls:PLS,b:B\We\Si,u:U •

131. b ∈ obs Bs(pls)∧u=obs U(b)⇒
131. let (iuis,ouis) = mereo U(u) in

132. sum cur iF(iuis)(u) =
132(a). sum cur iL(iuis)(u)
132(b). ⊕ attr cur L(u)
132(c). ⊕ sum cur oF(ouis)(u)
132(d). ⊕ sum cur oL(ouis)(u)
131. end

133. The sum cur iF (cf. Item 132) sums current input flows over all
input connectors.

134. The sum cur iL (cf. Item 132(a)) sums current input leaks over all
input connectors.
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135. The sum cur oF (cf. Item 132(c)) sums current output flows over all output
connectors.

136. The sum cur oL (cf. Item 132(d)) sums current output leaks over all output
connectors.

133. sum cur iF: UI-set → U → F
133. sum cur iF(iuis)(u) ≡ ⊕ 〈attr cur iF(ui)(u)|ui:UI•ui ∈ iuis〉
134. sum cur iL: UI-set → U → L
134. sum cur iL(iuis)(u) ≡ ⊕ 〈attr cur iL(ui)(u)|ui:UI•ui ∈ iuis〉
135. sum cur oF: UI-set → U → F
135. sum cur oF(ouis)(u) ≡ ⊕ 〈attr cur iF(ui)(u)|ui:UI•ui ∈ ouis〉
136. sum cur oL: UI-set → U → L
136. sum cur oL(ouis)(u) ≡ ⊕ 〈attr cur iL(ui)(u)|ui:UI•ui ∈ ouis〉

⊕: (F×F)|F∗ → F | (L×L)|L∗ → L

• where ⊕ is both an infix and a distributed-fix function which adds
flows and or leaks.
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Example: 47 Pipelines: Inter Unit Flow and Leak Law.

137. For every pair of connected units of a pipeline system the following law apply:

a the flow out of a unit directed at another unit minus the leak at that output
connector

b equals the flow into that other unit at the connector from the given unit plus
the leak at that connector.

137. ∀ pls:PLS,b,b′:B,u,u′:U•

137. {b,b′}⊆obs Bs(pls)∧b 6=b′∧u′=obs U(b′)
137. ∧ let (iuis,ouis)=mereo U(u),(iuis′,ouis′)=mereo U(u′),
137. ui=uid U(u),ui′=uid U(u′) in

137. ui ∈ iuis ∧ ui′ ∈ ouis′ ⇒
137(a). attr cur oF(us′)(ui′) ⊖ attr leak oF(us′)(ui′)
137(b). = attr cur iF(us)(ui) ⊕ attr leak iF(us)(ui)
137. end

137. comment: b′ precedes b
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• From the above two laws one can prove the theorem:

⋄⋄ what is pumped from the wells equals

⋄⋄ what is leaked from the systems plus what is output to the sinks.

• We need formalising the flow and leak summation functions.
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6.2. Continuous Behaviours

• This section is still under research and development.

• The aim of this section is to relate

⋄⋄ discrete behaviour domain models of some fragments of a domain

⋄⋄ to continuous behaviour domain models of other fragments of
that domain.

• By a continuous behaviour modelδ we mean

⋄⋄ a domain description that emphasises

⋄⋄ the behaviour of materials, that is,

⋄⋄ how they flow through parts, and related matters.
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6.2.1. Fluid Dynamics

• Continuous behaviour domain models classically express

⋄⋄ the fluid dynamicsδ
◦◦ of flows of fluids,

◦◦ that is, the natural science of

◦◦ liquids and gasses.
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• The natural science of fluids

⋄⋄ (from Wikipedia:)

◦◦ “are based on foundational axioms of fluid dynamics

◦◦ which are the conservation laws,

◦◦ specifically, conservation of mass,

◦◦ conservation of linear momentum

◦◦ (also known as Newton’s Second Law of Motion),

◦◦ and conservation of energy

◦◦ (also known as First Law of Thermodynamics).

◦◦ These are based on classical mechanics.

◦◦ They are expressed using the Reynolds Transport
Theorem.”
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6.2.1.1 Descriptions of Continuous Domain Behaviours

• We are not going to exemplify such descriptive natural science
models.

• Their mathematics, besides being elegant and beautiful,

⋄⋄ includes familiarity with

⋄⋄ Bernoulli Equations,

⋄⋄ Navier Stokes Equations, etc.

• For continuous behaviour domain models

⋄⋄ we shall refer to such mathematical models

⋄⋄ of the natural science of fluids.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29 306 Domain Science & Engineering



307
6. Continuous Entities 6.2. Continuous Behaviours6.2.1. Fluid Dynamics6.2.1.2. Prescriptions of Required Continuous Domain Behaviours

6.2.1.2 Prescriptions of Required Continuous Domain Behaviours

• By a prescriptive domain modelδ we mean

⋄⋄ a desirable behaviour specification

⋄⋄ as in, for example, a requirements prescription

⋄⋄ of a continuous time dynamic system.

• We are also not going to illustrate prescriptive domain models.

⋄⋄ Their mathematics, besides also being elegant and beautiful,

◦◦ is based on the descriptive natural science models;

◦◦ but are now part of the engineering realm of Control Theory.

◦◦ It includes such disciplines as

∗ fuzzy control [Michel-etal-2010],

∗ stochastic control [Karlin+Taylor1998] and

∗ adaptive control [aastroem89], etc.
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Example: 48 Pipelines: Fluid Dynamics and Automatic
Control.

• We refer to Example 49 on Slide 308.

• In that example, next, we expect domain models

⋄⋄ for the fluid dynamics of individual pipeline units: wells, pumps,
pipes, valves, forks, joins and sinks,

⋄⋄ as well as models (one or more) for sequences of such units,

⋄⋄ extending, preferably to entire nets: from wells to sinks.

• And we expect requirements description models

⋄⋄ again for each of some of the individual units:

◦◦ pumps and valves in particular:

◦◦ when they need and how they are controlled:

◦◦ regulating pumps and valves and

◦◦ which unit attributes need be monitored.
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6.2.2. A Pipeline System Behaviour

• We shall model the behaviours of a composite pipeline system.

⋄⋄ We shall be using basically the same form of the description as
first illustrated in Sects. 2.8.2–2.8.7 (Slides 94–105) of Example 4.

⋄⋄ That system, Sects. 2.8.2–2.8.7, can be interpreted as illustrating
the central monitoring of vehicles spread over a wide
geographical area.

⋄⋄ The system to be illustrated in Example 49 can likewise be
interpreted as illustrating the central monitoring of pipeline
units (and their oil) spread over a wide geographical area.
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Example: 49 A Pipeline System Behaviour.

• We consider (cf. Examples 30 on Slide 210 and 31 on Slide 212) the
pipeline system units to represent also the following behaviours:

⋄⋄ pls:PLS, Item 126(a) on Slide 288, to also represent the system
process, pipeline system, and for each kind of unit,
cf. Example 30, there are the unit processes:

◦◦ unit,

◦◦ well (Item 98(c) on Slide 210),

◦◦ pipe (Item 98(a)),

◦◦ pump (Item 98(a)),

◦◦ valve (Item 98(a)),

◦◦ fork (Item 98(b)),

◦◦ join (Item 98(b)) and

◦◦ sink (Item 98(d) on Slide 210).
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channel

{ pls u ch[ ui ]:ui:UI•i ∈ UIs(pls) } MUPLS
{ u u ch[ ui,uj ]:ui,uj:UI•{ui,uj}⊆UIs(pls) } MUU

type

MUPLS, MUU
value

pipeline system: PLS → in,out { pls u ch[ ui ]:ui:UI•i ∈ UIs(pls) } Unit

pipeline system(pls) ≡ ‖ { unit(u)|u:U•u ∈ obs Us(pls) }
unit: U → Unit

unit(u) ≡
98(c). is We(u) → well(uid U(u))(u),
98(a). is Pu(u) → pump(uid U(u))(u),
98(a). is Pi(u) → pipe(uid U(u))(u),
98(a). is Va(u) → valve(uid U(u))(u),
98(b). is Fo(u) → fork(uid U(u))(u),
98(b). is Jo(u) → join(uid U(u))(u),
98(d). is Si(u) → sink(uid U(u))(u)
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• We illustrate essentials of just one of these behaviours.

98(b). fork: ui:UI → u:U → out,in pls u ch[ ui ],
in { u u ch[ iui,ui ] | iui:UI • iui ∈ sel UIs in(u) }
out { u u ch[ ui,oui ] | iui:UI • oui ∈ sel UIs out(u) } Unit

98(b). fork(ui)(u) ≡
98(b). let u′ = core fork behaviour(ui)(u) in

98(b). fork(ui)(u′) end

• The core fork behaviour(ui)(u) distributes

⋄⋄ what oil (or gas) in receives,

◦◦ on the one input sel UIs in(u) = {iui},

◦◦ along channel u u ch[iui]

⋄⋄ to its two outlets

◦◦ sel UIs out(u) = {oui1,oui2},

◦◦ along channels u u ch[oui1], u u ch[oui2].

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29 312 Domain Science & Engineering



3136. Continuous Entities 6.2. Continuous Behaviours6.2.2. A Pipeline System Behaviour

⋄⋄ The core · · · behaviour[s](ui)(u) also communicate with the
pipeline system behaviour.

◦◦ What we have in mind here is to model a traditional
supervisory control and data acquisition, SCADA system.

Figure 2: A supervisory control and data acquisition system
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138. SCADA is then part of the scada pipeline system behaviour.

138. scada pipeline system: PLS →
138. in,out { pls u ch[ ui ]:ui:UI•i ∈ UIs(pls) } Unit

138. scada pipeline system(pls) ≡
138. scada(props(pls)) ‖ pipeline system(pls)

⋄⋄ props was defined on Slide 205.

• We refer to Example 48 on Slide 306:

⋄⋄ for all the core · · · behaviours

◦◦ we expect the scada monitor

◦◦ to be expressed in terms of a prescriptive domain model

◦◦ which prescribes some optimal form of control of the pipeline
net.
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139. scada non-deterministically (internal choice, ⌈⌉), alternates between
continually

a doing own work,

b acquiring data from pipeline units, and

c controlling selected such units.

type

139. Props
value

139. scada: Props → in,out { pls ui ch[ ui ] | ui:UI•ui ∈ ∈ uis } Unit

139. scada(props) ≡
139(a). scada(scada own work(props))
139(b). ⌈⌉ scada(scada data acqui work(props))
139(c). ⌈⌉ scada(scada control work(props))
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• We leave it to the listeners imagination to describe scada own work.

140. The scada data acqui work

a non-deterministically, external choice, ⌈⌉⌊⌋, offers to accept data,

b and scada input updates the scada state —

c from any of the pipeline units.

value

140. scada data acqui work: Props → in,out { pls ui ch[ ui ] | ui:UI•ui ∈ ∈ uis
140. scada data acqui work(props) ≡
140(a). ⌈⌉⌊⌋ { let (ui,data) = pls ui ch[ ui ] ? in

140(b). scada input update(ui,data)(props) end

140(c). | ui:UI • ui ∈ uis }

140(b). scada input update: UI × Data → Props → Props
type

140(a). Data
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141. The scada control work

a analyses the scada state (props) thereby selecting a pipeline unit,
ui, and the controls, ctrl, that it should be subjected to;

b informs the units of this control, and

c scada output updates the scada state.

141. scada control work: Props → in,out { pls ui ch[ ui ] | ui:UI•ui ∈ ∈ uis }
141. scada control work(props) ≡
141(a). let (ui,ctrl) = analyse scada(ui,props) in

141(b). pls ui ch[ ui ] ! ctrl ;
141(c). scada output update(ui,ctrl)(props) end

141(c). scada output update UI × Ctrl → Props → Props
type

141(a). Ctrl
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7. A Domain Discovery Calculus

to be written
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7.1. An Overview

to be written
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7.1.1. Domain Analysers

more to come

• IS ENTITY,
IS ENDURANT,
IS PERDURANT,
IS DISCRETE,
IS CONTINUOUS,
IS MATERIALS BASED,
IS ATOMIC,
IS COMPOSITE and
HAS CONCRETE TYPES.
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7.1.2. Domain Discoverers

more to come

• PART SORTS,
MATERIAL SORTS,
PART TYPES,
UNIQUE ID,
MEREOLOGY,
ATTRIBUTES,
ACTION SIGNATURES,
EVENT SIGNATURES and
BEHAVIOUR SIGNATURES.
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7.1.3. Domain Indexes

• We first made a reference to the concept of a “domain lattice” in
Sect. (Slide 45).

• In Fig. 3 we show a similar “lattice” for the domain of road
transport systems as illustrated in this seminar.

∆
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Figure 3: A domain lattice for the road transport system and the full set of domain indexes
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more to come
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7.2. Domain Analysers

to be written
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7.2.1. Some Meta-meta Discoverers

• IS ENTITY more to come

• IS ENDURANT more to come

• IS PERDURANT more to come

• IS DISCRETE more to come

• IS CONTINUOUS more to come
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7.2.2. IS MATERIALS BASED

IS MATERIALS BASED

• An early decision has to be made as to whether a domain is signifi-
cantly based on materials or not:

142. IS MATERIALS BASED(〈∆Name〉).

• If Item 142 holds of a domain ∆Name

⋄⋄ then the domain describer can apply

⋄⋄ MATERIAL SORTS (Item 145 on Slide 334).

Example: 50 Is Materials-based Domain.

• Example 44 on Slide 288 Item 126 on Slide 289.
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7.2.3. IS ATOMIC

IS ATOMIC

• The IS ATOMIC analyser serves that purpose:

value

IS ATOMIC: Index
∼
→ Bool

IS ATOMIC(ℓ̂〈t〉) ≡ true | false | chaos

Example: 51 Is Atomic Type. The IS ATOMIC analyser has been applied in
the following cases in Example 4:

• Sect. 2.1.1 Item 1(c) (M) on Slide 38,

• Sect. 2.1.2 Item 4(b) (V) on Slide 41,

• Sect. 2.1.3 Item 5(b) (H) on Slide 44 and

• Sect. 2.1.3 Item 6(b) (L) on Slide 44.
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7.2.4. IS COMPOSITE

IS COMPOSITE

• The IS COMPOSITE analyser is

⋄⋄ similarly applied by the domain describer

⋄⋄ to a part type t

⋄⋄ to help decide whether t is a composite type.

value

IS COMPOSITE: Index
∼
→ Bool

IS COMPOSITE(ℓ̂〈t〉) ≡ true | false | chaos
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Example: 52 Is Composite Type. The IS COMPOSITE

analyser has been applied in the following cases in Example 4:

• N: Sect. 2.1.2 Items 2(a) and 2(b) on Slide 39,

• HS: Sect. 2.1.2 Item 2(a) on Slide 39,

• Hs: Sect. 2.1.3 Item 5(a) on Slide 44,

• LS: Sect. 2.1.2 Item 2(b) on Slide 39,

• Ls: Sect. 2.1.3 Item 6(a) on Slide 44,

• F: Sect. 2.1.2 Item 3 on Slide 40,

• VS: Sect. 2.1.2 Item 4(b) on Slide 41 and

• Vs: Sect. 2.1.2 Item 4(a) on Slide 41.
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7.2.5. HAS A CONCRETE TYPE

HAS A CONCRETE TYPE

143. Thus we introduce the analyser:

143 HAS A CONCRETE TYPE: Index
∼
→ Bool

143 HAS A CONCRETE TYPE(ℓ̂〈t〉): true | false | chaos
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Example: 53 Has Concrete Types.

• The HAS CONCRETE TYPE analyser has been applied in the
following cases in Example 4:

⋄⋄ VS, Vs: Sect. 2.1.2 Item 4(a) on Slide 41,

⋄⋄ HS, Hs: Sect. 2.1.3 Item 5(a) on Slide 44,

⋄⋄ LS, Ls: Sect. 2.1.3 Item 6(a) on Slide 44
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7.3. Domain Discoverers
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7.3.1. PART SORTS

PART SORTS I/II

144. The part type discoverer PART SORTS

a applies to a simply indexed domain, ℓ̂〈t〉,

b where t denotes a composite type, and yields a pair

i. of narrative text and

ii. formal text which itself consists of a pair:

A. a set of type names

B. each paired with a part (sort) observer.
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PART SORTS II/II

value

144. PART SORTS: Index
∼
→ (Text×RSL)

144(a). PART SORTS(ℓ̂〈t〉):
144((b))i. [ narrative, possibly enumerated texts ;
144((b))iiA. type t1,t2,...,tm,
144((b))iiB. value obs t1:t→t1,obs t2:t→t2,...,obs tm:t→tm
144(b). pre: IS COMPOSITE(ℓ̂〈t〉) ]
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Example: 54 Discover Part Sorts.

• We refer to Example 4. The PART SORTS discoverer has been
applied in the followig cases:

⋄⋄ ∆: Sect. 2.1.1 Items 1(a)–1(c) on Slide 38,

⋄⋄ N, HS, LS: Sect. 2.1.2 Items 2(a)–2(b) on Slide 39,

⋄⋄ HS: Sect. 2.1.2 Item 5 on Slide 44,

⋄⋄ LS: Sect. 2.1.2 Item 6 on Slide 44,

⋄⋄ Hs: Sect. 2.1.2 Item 5(a) on Slide 44,

⋄⋄ Ls: Sect. 2.1.2 Item 6(a) on Slide 44,

⋄⋄ F, VS: Sect. 2.1.2 Item 3 on Slide 40, and

⋄⋄ VS, Vs: Sect. 2.1.2 Item 4(a) on Slide 41.
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7.3.2. MATERIAL SORTS

MATERIAL SORTS – I/II

145. The MATERIAL SORTS discovery function applies to a domain,
usually designated by 〈∆Name〉
where Name is a pragmatic hinting at the domain by name.

146. The result of the domain discoverer applying this meta-function
is some narrative text

147. and the types of the discovered materials

148. usually affixed a comment

a which lists the “somehow related” part types

b and their related materials observers.
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MATERIAL SORTS II/II

145. MATERIAL SORTS: 〈∆〉 → (Text × RSL)
145. MATERIAL SORTS(〈∆Name〉):
146. [ narrative text ;
147. type Ma, Mb, ..., Mc materials

148. comment: related part types: Pi, Pj, ..., Pk
148. obs Mn : Pm → Mn, ... ]
142. pre: IS MATERIALS BASED(〈∆Name〉)

Example: 55 Material Sort.

• The MATERIAL SORTS discoverer has been applied:

⋄⋄ O: Example , Items 126 and 126(c) on Slide 289.
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7.3.3. PART TYPES

PART TYPES I/II

149. The PART TYPES discoverer applies to a composite sort, t,
and yields a pair

a of narrative, possibly enumerated texts [omitted], and

b some formal text:

i. a type definition, tc = te,

ii. together with the sort definitions
of so far undefined type names of te.

iii. An observer function observes tc from t.

iv. The PART TYPES discoverer is not defined
if the designated sort is judged
to not warrant a concrete type definition.
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PART TYPES II/II

149. PART TYPES: Index
∼
→ (Text×RSL)

149. PART TYPES(ℓ̂〈t〉):
149(a). [ narrative, possibly enumerated texts ;
149((b))i. type tc = te,
149((b))ii. tα, tβ, ..., tγ,
149((b))iii. value obs tc: t → tc
149((b))iv. pre: HAS CONCRETE TYPE(ℓ̂〈t〉) ]
149((b))ii. where: type expression te contains
149((b))ii. type names tα, tβ, ..., tγ
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Example: 56 Part Types.

• The PART TYPES discoverer has been applied in Example 4:

⋄⋄ VS, Vs: Sect. 2.1.2 Item 4(a) on Slide 41,

⋄⋄ HS, Hs: Sect. 2.1.3 Item 5 on Slide 44, and

⋄⋄ LS, Ls: Sect. 2.1.3 Item 6 on Slide 44.
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7.3.4. UNIQUE ID

UNIQUE ID

150. For every part type t we postulate a unique identity analyser func-
tion uid t.

value

150. UNIQUE ID: Index → (Text×RSL)
150. UNIQUE ID(ℓ̂〈t〉):
150. [ narrative, possibly enumerated text ;
150. type ti
150. value uid t: t → ti ]
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Example: 57 Unique ID.

• We refer to Example 4, Sect. 2.2.1 Slide 47:

⋄⋄ LI, Item 7(a),

⋄⋄ HI, Item 7(b) and

⋄⋄ VI, Item 7(c).
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7.3.5. MEREOLOGY

MEREOLOGY I/II

151. Let type names t1, t2, . . . , tn
denote the types of all parts of a domain.

152. Let type names ti1, ti2, . . . , tin
19, be the corresponding

type names of the unique identifiers of all parts of that domain.

153. The mereology analyser MEREOLOGY is a generic function
which applies to a pair of an index and an index set
and yields some structure of unique identifiers.
We suggest two possibilities,
but otherwise leave it to the domain analyser
to formulate the mereology function.

154. Together with the “discovery” of the mereology function
there usually follows some axioms.
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MEREOLOGY II/II

type

151. t1, t2, ..., tn
152. tidx = ti1 | ti2 | ... | tin

153. MEREOLOGY: Index
∼
→ Index-set

∼
→ (Text×RSL)

153. MEREOLOGY(ℓ̂〈t〉)({ℓî〈tj〉,...,ℓk̂〈tl〉}):
153. [ narrative, possibly enumerated texts ;
153. either: {}
153. or: value mereo t: t → tix
153. or: value mereo t: t → tix-set × tiy-set × ... × tix-set
154. axiom Predicate over values of t′ and tidx ]

where none of the tix, tiy, . . . , tiz are equal to ti.

19We here assume that all parts have unique identifications.
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Example: 58 Mereologies.

• The MEREOLOGY discoverer was applied in

⋄⋄ Example 4, Sect. 2.2.2.2, Items 8(a)–9(b) on Slide 49,

⋄⋄ Example 18, Items 74–77 on Slide 179,

⋄⋄ Example , Items 79–80(e) on Slide 183 and

⋄⋄ Example , Items 96–98(d) on Slide 211.
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7.3.6. ATTRIBUTES

ATTRIBUTES I/II

155. Attributes have types.
We assume attribute type names to be distict from part type names.

156. ATTRIBUTES applies to parts of type t and yields a pair of

a narrative text and

b formal text, here in the form of a pair

i. a set of one or more attribute types, and

ii. a set of corresponding attribute observer functions attr at, one
for each attribute sort at of t.
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ATTRIBUTES II/II

type

155. at = at1 | at2 | ... | atn
value

156. ATTRIBUTES: Index → (Text×RSL)
156. ATTRIBUTES(ℓ̂〈t〉):
156(a). [ narrative, possibly enumerated texts ;
156((b))i. type at1, at2, ..., atm
156((b))ii. value attr at1:t→at1,attr at2:t→at2,...,attr atm:t→atm ]

• where m≤n
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Example: 59 Attributes.

• The ATTRIBUTES discoverer was applied in

⋄⋄ Example 4, Sect. 2.2.3 for attributes of

◦◦ Links, Items 10–10(c) Slides 52–53,

◦◦ Hubs, Items 11–11(c) Slides 54–55, and

◦◦ Vehicles, Items 12–12 Slides 56–57;

⋄⋄ as well as in many other examples.
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7.3.7. ACTION SIGNATURES

ACTION SIGNATURES I/II

157. The ACTION SIGNATURES meta-function,
besides narrative texts, yields

a a set of auxiliary sort or concrete type definitions and

b a set of action signatures each consisting of
an action name and
a pair of definition set and range type expressions where

c the type names that occur in these type expressions
are defined by in the domains indexed by the index set.
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ACTION SIGNATURES II/II

157 ACTION SIGNATURES: Index → Index-set
∼
→ (Text×RSL)

157 ACTION SIGNATURES(ℓ̂〈t〉)({ℓ1̂〈t1〉,ℓ2̂〈t2〉,...,ℓn̂〈tn〉}):

157 [ narrative, possibly enumerated texts ;
157 type ta,tb,... tc,
157(b) value

157(b) acti:teid
∼
→teir,actj:tejd

∼
→tejr,...,actk:tekd

∼
→tekr

157(c) where:
157(c) type names in te(i|j|...|k)d and in te(i|j|...|k)r are either
157(c) type names ta, tb, ... tc or are type names defined by the
157(c) indices which are prefixes of ℓm̂〈Tm〉 and where Tm is
157(c) in some signature acti|j|...|k ]
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Example: 60 Action Signatures.

• The ACTION SIGNATURES discoverer was applied in

⋄⋄ Example 4: ins H, Item 37 on Slide 82,

⋄⋄ Sect. 5.2.3, see Example 33 on Slide 229,

⋄⋄ etcetera.
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7.3.8. EVENT SIGNATURES

EVENT SIGNATURES I/II

158. The EVENT SIGNATURES meta-function, besides narrative
texts, yields

a a set of auxiliary event sorts or concrete type definitions and

b a set of event signatures each consisting of

• an event name and

• a pair of definition set and range type expressions

where

c the type names that occur in these type expressions
are defined either in the domains indexed by the indices
or by the auxiliary event sorts or types.
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EVENT SIGNATURES II/II

158 EVENT SIGNATURES: Index → Index-set
∼
→ (Text×RSL)

158 EVENT SIGNATURES(ℓ̂〈t〉)({ℓ1̂〈t1〉,ℓ2̂〈t2〉,...,ℓn̂〈tn〉}):
158(a) [ narrative, possibly enumerated texts omitted ;
158(a) type ta,tb,... tc,
158(b) value

158(b) evt predi: tedi
× teri

→ Bool

158(b) evt predj: tedj
× terj

→ Bool

158(b) ...
158(b) evt predk: tedk

× terk
→ Bool ]

158(c) where: t is any of ta,tb,...,tc or type names listed in in indices; type
names of the ‘d’efinition set and ‘r’ange set type expressions ted and ter are
type names listed in domain indices or are in ta,tb,...,tc, the auxiliary discovered
event types.
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Example: 61 Event Signatures.

• Example 4, Sect. 2.7 Item 38 on Slide 85.
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7.3.9. DISCRETE BEHAVIOUR SIGNATURES

BEHAVIOUR SIGNATURES I/II

159. The BEHAVIOUR SIGNATURES meta-function, besides narrative texts,
yields

160. It applies to a set of indices and results in a pair,

a a narrative text and

b a formal text:

i. a set of one or more message types,

ii. a set of zero, one or more channel index types,

iii. a set of one or more channel declarations,

iv. a set of one or more process signatures with each signature containing a
behaviour name, an argument type expression, a result type expression,
usually just Unit, and

v. an input/output clause which refers to channels over which the signatured
behaviour may interact with its environment.

A Precursor for Requirements Engineering 355 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29



356 7. A Domain Discovery Calculus 7.3. Domain Discoverers7.3.9. DISCRETE BEHAVIOUR SIGNATURES

BEHAVIOUR SIGNATURES II/II

159. BEHAVIOUR SIGNATURES: Index→ Index-set
∼
→ (Text×RSL)

159. BEHAVIOUR SIGNATURES(ℓ̂〈t〉)({ℓ1̂〈t1〉,ℓ2̂〈t2〉,...,ℓn̂〈tn〉}):
160(a). [ narrative, possibly enumerated texts ;
160((b))i. type m = m1 | m 2 | ... | mµ, µ≥1
160((b))ii. i = i1 | i2 | ... | in, n≥0
160((b))iii. channel c:m, {vc[ x ]|x:ia}:m, {mc[ x,y ]|x:ib,y:ic}:m,...
160((b))iv. value

160((b))iv. bhv1: ate1 → inout1 rte1,
160((b))iv. ... ,
160((b))iv. bhvm: atem → inoutm rtem. ]
160((b))iv. where type expressions ateii and rtei for all i involve at least
160((b))iv. two types t′i, t′′j of respective indexes ℓî〈ti〉, ℓĵ〈tj〉,
160((b))v. where Unit may appear in either atei or rtej or both.
160((b))v. where inouti: in k | out k | in,out k
160((b))v. where k: c or vc[ x ] or {vc[ x ]|x:ia•x ∈ xs} or

160((b))v. {mc[ x,y ]|x:ib,y:ic • x ∈ xs ∧ y ∈ ys} or ...
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Example: 62 Behaviour Signatures.

• The BEHAVIOUR SIGNATURES discoverer was applied in
several examples:

⋄⋄ Example 4, Sect. 2.8.5 Items 61–63 on Slide 98;

⋄⋄ Sects. 5,4,3 to 5.4.4 inclusive, Slides 250–254;

⋄⋄ Example 49 on Slide 308;

⋄⋄ etcetera.
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7.4. Some Technicalities
7.4.1. Order of Analysis and “Discovery”

• Analysis and “discovery”, that is, the “application” of

⋄⋄ the analysis meta-functions and

⋄⋄ the “discovery” meta-functions

• has to follow some order:

⋄⋄ starts at the “root”, that is with index 〈∆〉,

⋄⋄ and proceeds with indices appending part domain type names
already discovered.
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7.4.2. Analysis and “Discovery” of “Leftovers”

• The analysis and discovery meta-functions focus on types, that is,
the types

⋄⋄ of abstract parts, i.e., sorts,

⋄⋄ of concrete parts, i.e., concrete types,

⋄⋄ of unique identifiers,

⋄⋄ of mereologies, and of

⋄⋄ attributes – where the latter has been largely left as sorts.

A Precursor for Requirements Engineering 359 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29



360 7. A Domain Discovery Calculus 7.4. Some Technicalities7.4.2. Analysis and “Discovery” of “Leftovers”

• In this seminar we do not suggest any meta-functions for such
analyses that may lead to

⋄⋄ concrete types from non-part sorts, or to

⋄⋄ action, event and behaviour definitions

◦◦ say in terms of pre/post-conditions,

◦◦ etcetera.

⋄⋄ So, for the time, we suggest, as a remedy for the absence of such
“helpers”, good “old-fashioned” domain engineer ingenuity.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29 360 Domain Science & Engineering



3617. A Domain Discovery Calculus 7.5. Laws of Domain Descriptions

7.5. Laws of Domain Descriptions

• By a domain description law we shall understand

⋄⋄ some desirable property

⋄⋄ that we expect (the ‘human’) results of

⋄⋄ the (the ‘human’) use of the domain description calculus

⋄⋄ to satisfy.

• We may think of these laws as axioms

⋄⋄ which an ideal domain description ought satisfy,

⋄⋄ something that domain describers should strive for.
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Notational Shorthands:

• (f ; g; h)(ℜ) = h(g(f (ℜ)))

• (f1; f2; . . . ; fm)(ℜ) ≃ (g1; g2; . . . ; gn)(ℜ)
means that the two “end” states are equivalent modulo appropriate
renamings of types, functions, predicates, channels and behaviours.

• [f ; g; . . . ; h; α]
stands for the Boolean value yielded by α (in state ℜ).
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7.5.1. 1st Law of Commutativity

• We make a number of assumptions:

⋄⋄ the following two are well-formed indices of a domain:

◦◦ ι′: 〈∆〉̂ℓ′̂〈A〉, ◦◦ ι′′: 〈∆〉̂ℓ′′̂〈B〉,

where ℓ′ and ℓ′′ may be different or empty (〈〉)
and A and B are distinct;

⋄⋄ that F and G are two, not necessarily distinct
discovery functions; and

⋄⋄ that the domain at ι′ and at ι′′ have not yet been explored.
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• We wish to express,

⋄⋄ as a desirable property of domain description development

⋄⋄ that exploring domain ∆ at

◦◦ either ι′ first and then ι′′

◦◦ or at ι′′ first and then ι′,

⋄⋄ the one right after the other (hence the “;”),

⋄⋄ ought yield the same partial description fragment:

161. (G(ι′′) ; (F(ι′)))(ℜ) ≃ (F(ι′) ; (G(ι′′)))(ℜ)

When a domain description development satisfies Law 161.,

under the above assumptions,

⋄⋄ then we say that the development,

⋄⋄ modulo type, action, event and behaviour name “assignments”,

⋄⋄ satisfies a mild form of commutativity.
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7.5.2. 2nd Law of Commutativity

• Let us assume

⋄⋄ that we are exploring the sub-domain at index

⋄⋄ ι: 〈∆〉̂ℓ̂〈A〉.

• Whether we

⋄⋄ first “discover” Attributes

⋄⋄ and then Mereology (including Unique identifiers)

or

⋄⋄ first “discover” Mereology (including Unique identifiers)

⋄⋄ and then Attributes

should not matter.
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• We make some abbreviations:

⋄⋄ A stand for the ATTRIBUTES,

⋄⋄ U stand for the UNIQUE IDENTIFIER,

⋄⋄ M stand for the MEREOLOGY,

⋄⋄ ι for index 〈∆〉̂ℓ̂〈A〉, and

⋄⋄ ιs for a suitable set of indices.

• Thus we wish the following law to hold:

162. (A(ι);U(ι);M(ι)(ιs))(ℜ) ≃
(U(ι);M(ι)(ιs);A(ι))(ℜ) ≃
(U(ι);A(ι);M(ι)(ιs))(ℜ).

⋄⋄ here modulo attribute and unique identifier type name renaming.
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7.5.3. 3rd Law of Commutativity

• Let us again assume

⋄⋄ that we are exploring the sub-domain at index

⋄⋄ ι: 〈∆〉̂ℓ̂〈A〉

⋄⋄ where ιs is a suitable set of indices.

• Whether we are

⋄⋄ exploring actions, events or behaviours at that domain index

⋄⋄ in that order,

⋄⋄ or some other order

ought be immaterial.
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• Hence with

⋄⋄ A now standing for the ACTION SIGNATURES,

⋄⋄ E standing for the EVENT SIGNATURES,

⋄⋄ B standing for the BEHAVIOUR SIGNATURES,

• discoverers, we wish the following law to hold:

163. (A(ι)(ιs); E(ι)(ιs);B(ι)(ιs))(ℜ) ≃
(A(ι)(ιs);B(ι)(ιs); E(ι)(ιs))(ℜ) ≃
(E(ι)(ιs);A(ι)(ιs);B(ι)(ιs))(ℜ) ≃
(E(ι)(ιs);B(ι)(ιs);A(ι)(ιs))(ℜ) ≃
(B(ι)(ιs);A(ι)(ιs); E(ι)(ιs))(ℜ) ≃
(B(ι)(ιs); E(ι)(ιs);A(ι)(ιs))(ℜ).

⋄⋄ here modulo action function, event predicate, channel, message
type and behaviour (and all associated, auxiliary type)
renamings.
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7.5.4. 1st Law of Stability

• Re-performing

⋄⋄ the same discovery function

⋄⋄ over the same sub-domain,

⋄⋄ that is with identical indices,

⋄⋄ one or more times,

ought not produce any new description texts.

• That is:

164. (D(ι)(ιs);A and D seq)(ℜ) ≃
(D(ι)(ιs);A and D seq;D(ι)(ιs))(ℜ)

• where

⋄⋄ D is any discovery function,

⋄⋄ A and D seq is any specific sequence of
intermediate analyses and discoveries, and where

⋄⋄ ι and ιs are suitable indices, respectively sets of indices.
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7.5.5. 2nd Law of Stability

• Re-performing

⋄⋄ the same analysis functions

⋄⋄ over the same sub-domain,

⋄⋄ that is with identical indices,

⋄⋄ one or more times,

ought not produce any new analysis results.

• That is:

165. [A(ι)] = [A(ι); . . . ;A(ι)]

• where

⋄⋄ A is any analysis function,

⋄⋄ “. . . ” is any sequence of intermediate analyses and discoveries,
and where

⋄⋄ ι is any suitable index.
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7.5.6. Law of Non-interference

• When performing a discovery meta-operation, D

⋄⋄ on any index, ι, and possibly index set, ιs, and

⋄⋄ on a repository state, ℜ,

⋄⋄ then using the [D(ι)(ιs)] notation

⋄⋄ expresses a pair of a narrative text and some formulas, [txt,rsl],

⋄⋄ whereas using the (D(ι)(ιs))(ℜ) notation

⋄⋄ expresses a next repository state, ℜ′.

• What is the “difference” ?

• Informally and simplifying we can say that the relation between the
two expressions is:

166. [D(ι)(ιs)]: [txt,rsl]
(D(ι)(ιs))(ℜ) = ℜ′

where ℜ′ = ℜ ∪ {[txt,rsl]}
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• We say that when 166. is satisfied

⋄⋄ for any discovery meta-function D,

⋄⋄ for any indices ι and ιs

⋄⋄ and for any repository state ℜ,

then the repository is not interfered with,

⋄⋄ that is, “what you see is what you get:”

and therefore that

⋄⋄ the discovery process satisfies the law on non-interference.
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7.6. Discussion

• The above is just a hint at domain development laws
that we might wish orderly developments to satisfy.

• We invite the audience to suggest other laws.

• The laws of the analysis and discovery calculus

⋄⋄ forms an ideal set of expectations

⋄⋄ that we have of not only one domain describer

⋄⋄ but from a domain describer team

⋄⋄ of two or more domain describers

⋄⋄ whom we expect to work, i.e., loosely collaborate,

⋄⋄ based on “near”-identical domain development principles.
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• These are quite some expectations.

⋄⋄ But the whole point of

◦◦ a highest-level

◦◦ academic scientific education and

◦◦ engineering training

⋄⋄ is that one should expect commensurate development results.
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• Now, since the ingenuity and creativity in the analysis and
discovery process does differ between domain developers

⋄⋄ we expect that a daily process of “buddy checking”,

⋄⋄ where individual team members present their findings

⋄⋄ and where these are discussed by the team

⋄⋄ will result in adherence to the laws of the calculus.

• The laws of the analysis and discovery calculus

⋄⋄ expressed some properties that we wish the repository to exhibit.
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• We have deliberately abstained from “over-defining”

⋄⋄ the structure of repositories and

⋄⋄ the “hidden” operations (i.e., ‘update’, etc.)

repositories.

• We expect further

⋄⋄ research into,

⋄⋄ development of,

⋄⋄ possible changes to

⋄⋄ and use

of the calculus to yield such insight as to lead to

⋄⋄ a firmer understanding of

⋄⋄ the nature of repositories.
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• In the analysis and discovery calculus

⋄⋄ such as we have presented it

• we have emphasised

⋄⋄ the types of parts, sorts and immediate part concrete types, and

⋄⋄ the signatures of actions, events and behaviours —

⋄⋄ as these predominantly featured type expressions.
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• We have therefore, in this seminar, not investigated, for example,

⋄⋄ pre/post conditions of action function,

⋄⋄ form of event predicates, or

⋄⋄ behaviour process expressions.

• We leave that, substantially more demanding issue, for future
explorative and experimental research.
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8. Requirements Engineering

• We shall give a terse overview of some facets of requirements
engineering.

⋄⋄ Namely those which “relate” domain engineering to requirements
engineering.

⋄⋄ The relation is the following:

◦◦ one can “derive”,

∗ not automatically,

∗ but systematically,

◦◦ domain requirements and significant aspects of

◦◦ interface requirements

⋄⋄ from domain descriptions.
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8.1. A Requirements “Derivation”
8.1.1. Definition of Requirements

IEEE Definition of ‘Requirements’

• By a requirements we understand
(cf. IEEE Standard 610.12 [ieee-610.12]):

⋄⋄ “A condition or capability needed by a user
to solve a problem or achieve an objective”.
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8.1.2. The Machine = Hardware + Software

• By ‘the machine’ we shall understand the

⋄⋄ software to be developed and

⋄⋄ hardware (equipment + base software) to be configured

for the domain application.
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8.1.3. Requirements Prescription

• The core part of the requirements engineering of a computing
application is the requirements prescription.

⋄⋄ A requirements prescription tells us which parts of the domain
are to be supported by ‘the machine’.

⋄⋄ A requirements is to satisfy some goals.

⋄⋄ Usually the goals cannot be prescribed in such a manner that
they can serve directly as a basis for software design.

⋄⋄ Instead we derive the requirements from the domain descriptions
and then argue
(incl. prove) that the goals satisfy the requirements.

⋄⋄ In this colloquium we shall not show the latter
but shall show the former.
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8.1.4. Some Requirements Principles

The “Golden Rule” of Requirements Engineering

• Prescribe only such requirements

⋄⋄ that can be objectively shown to hold

⋄⋄ for the designed software.

An “Ideal Rule” of Requirements Engineering

• When prescribing (including formalising) requirements,

⋄⋄ formulate tests (theorems, properties for model checking)

⋄⋄ whose actualisation show adherence to the requirements.

• We shall not show adherence to the above rules.
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8.1.5. A Decomposition of Requirements Prescription

• We consider three forms of requirements prescription:

⋄⋄ the domain requirements,

⋄⋄ the interface requirements and

⋄⋄ the machine requirements.

• Recall that the machine is the hardware and software (to be
required).

⋄⋄ Domain requirements are those whose technical terms
are from the domain only.

⋄⋄ Machine requirements are those whose technical terms
are from the machine only.

⋄⋄ Interface requirements are those whose technical terms
are from both.
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8.1.6. An Aside on Our Example

• We shall continue our “ongoing” example.

• Our requirements is for a tollway system.

• By a requirements goal we mean

⋄⋄ an objective

⋄⋄ the system under consideration

⋄⋄ should achieve [LamsweerdeIEEE2001].

• The goals of having a tollway system are:

⋄⋄ to decrease transport times
between selected hubs of a general net; and

⋄⋄ to decrease traffic accidents and fatalities
while moving on the tollway net
as compared to comparable movements on the general net.

A Precursor for Requirements Engineering 385 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29



386 8. Requirements Engineering 8.1. A Requirements “Derivation”8.1.6. An Aside on Our Example

• The tollway net, however, must be paid for by its users.

⋄⋄ Therefore tollway net entries and exits occur at tollway plazas

⋄⋄ with these plazas containing entry and exit toll collectors

⋄⋄ where tickets can be issued,
respectively collected and
travel paid for.

• We shall very briefly touch upon these toll collectors,
in the Extension part (as from Slide 400) below.

• So all the other parts of the next section
serve to build up to the Extension section.
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8.2. Domain Requirements

• Domain requirements cover all those aspects of the domain —

⋄⋄ parts and materials,

⋄⋄ actions,

⋄⋄ events and

⋄⋄ behaviours —

• which are to be supported by ‘the machine’.
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• Thus domain requirements are developed by systematically
“revising” cum “editing” the domain description:

⋄⋄ which parts are to be projected: left in or out;

⋄⋄ which general descriptions are to be instantiated
into more specific ones;

⋄⋄ which non-deterministic properties
are to be made more determinate; and

⋄⋄ which parts are to be extended
with such computable domain description parts
which are not feasible without IT.
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• Thus

⋄⋄ projection,

⋄⋄ instantiation,

⋄⋄ determination and

⋄⋄ extension

are the basic engineering tasks of domain requirements engineering.
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• An example may best illustrate what is at stake.

• The example is that of a tollway system —

⋄⋄ in contrast to the general nets.

⋄⋄ See Fig. 4 on the facing slide.
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Figure 4: General and Tollway Nets
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8.2.1. Projection

• By domain projectionδ we mean that a subset of the domain description is kept.

• In the tollway example we actually keep all the parts, their properties and
therefore the types and functions derived from these,

• Thus we keep:

⋄⋄ 1(a)–1(c) (N, F, M)

⋄⋄ 2–2(b) (HS, LS),

⋄⋄ 5(a)–6(b) (Hs, Ls, H, L),

⋄⋄ 7(a)–7(b) (HI, LI),

⋄⋄ 10(a)–10(c) (LΣ, LΩ, LEN, LOC)
and

⋄⋄ 11(a)–11(c) (HΣ, HΩ, LOC) ,

⋄⋄ 3–4(b), 7(c) (VS, Vs, V),

⋄⋄ 8(a)–9(b) (mereo L),

⋄⋄ 12(a)–12((a))iii, 13 (VP, atH, onL,
FRAC, attr VP),

• We do not keep any actions or events (!),

• But we keep the behaviours:

⋄⋄ 59–59(b) (trs),

⋄⋄ 61–63 (trs, veh, mon),

⋄⋄ 65–65(d), 64–68 (veh),

⋄⋄ 69–71(d) (mon).
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8.2.2. Instantiation
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Figure 5: General and Tollway Nets
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• From the general net model of earlier formalisations
we instantiate, that is, make more concrete,
the tollway net model now described.

167. The net is now concretely modelled as a pair of sequences.

168. One sequence models the plaza hubs, their plaza-to-tollway link and the connected
tollway hub.

169. The other sequence models the pairs of “twinned” tollway links.

170. From plaza hubs one can observe their hubs and the identifiers of these hubs.

171. The former sequence is of m such plaza “complexes” where m ≥ 2; the latter
sequence is of m − 1 “twinned” links.

172. From a tollway net one can abstract a proper net.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29 394 Domain Science & Engineering



3958. Requirements Engineering 8.2. Domain Requirements8.2.2. Instantiation

type

167. TWN = PC∗ × TL∗

168. PC = PH × L × H

169. TL = L × L

value

168. obs H: PH → H, obs HI: PH → HI

axiom

171. ∀ (pcl,tll):TWN •

171. 2≤len pcl∧len pcl=len tll+1

value

172. abs HsLs: TWN → (Hs×Ls)

172. abs HsLs(pcl,tll) as (hs,ls)

172. pre: wf TWN(pcl,tll)

172. post:

172. hs = {h,h′|(h, ,h′):PC • (h, ,h′)∈ elems pcl}

172. ∧ ls = {l|( ,l, ):PC • ( ,l, )∈ elems pcl} ∪

172. {l,l′|(l,l′):TL•(l,l′)∈ elems tll}

.....

.....
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p1 p3p2 p7 p8
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Figure 6: General and tollway Nets
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8.2.2.1 Model Well-formedness wrt. Instantiation

• Instantiation restricts general nets to tollway nets.

• Well-formedness deals with proper mereology:
that observed identifier references are proper.

• The well-formedness of instantiation of the tollway system model
can be defined as follows:

173. The i’plaza complex, (pi, li, hi), is instantiation-well-formed if

a link li identifies hubs pi and hi, and

b hub pi and hub hi both identifies link li; and if

174. the i’th pair of twinned links, tli, tl
′
i,

a has these links identify the tollway hubs of the i’th and i+1’st plaza complexes
((pi, li, hi) respectively (pi+1, li+1, hi1)).

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29 396 Domain Science & Engineering



3978. Requirements Engineering 8.2. Domain Requirements8.2.2. Instantiation8.2.2.1. Model Well-formedness wrt. Instantiation

value

Instantiation wf TWN: TWN → Bool

Instantiation wf TWN(pcl,tll) ≡
173. ∀ i:Nat • i ∈ inds pcl⇒
173. let (pi,li,hi)=pcl(i) in

173(a). obs LIs(li)={obs HI(pi),obs HI(hi)}
173(b). ∧ obs LI(li)∈ obs LIs(pi)∩ obs LIs(hi)
174. ∧ let (li′,li′′) = tll(i) in

174. i < len pcl ⇒
174. let (pi′,li′′′,hi′) = pcl(i+1) in

174(a). obs HIs(li) = obs HIs(li′)
174(a). = {obs HI(hi),obs HI(hi′)}

end end end
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8.2.3. Determination

• By domain determinationδ we mean, as illustrated in this example,

⋄⋄ making part property values

⋄⋄ less in-determinate, i.e.,

⋄⋄ more determinate.

• The state sets contain only one set.

⋄⋄ Twinned tollway links allow traffic only in opposite directions.

⋄⋄ Plaza to tollway hubs allow traffic in both directions.

⋄⋄ tollway hubs allow traffic to flow freely from

◦◦ plaza to tollway links

◦◦ and from incoming tollway links

◦◦ to outgoing tollway links

◦◦ and tollway to plaza links.
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8.2.3.1 Model Well-formedness wrt. Determination

• We need define well-formedness wrt. determination.

• Please study Fig. 7.

l1 li ln

lm’li’lj’

lj’’ li’’ lm’’l1’’

l1’

j=i−1 m = n−1 = len tll = len pcl − 1

... ...

Figure 7: Hubs and Links
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175. All hub and link state spaces contain just one hub, respectively link state.

176. The i’th plaza complex, pcl(i):(pi, li, hi) is determination-well-formed if

a li is open for traffic in both directions and

b pi allows traffic from hi to “revert”; and if

177. the i’th pair of twinned links (li′, li′′) (in the context of the i+1st plaza complex,

pcl(i+1):(pi+1, li+1, hi+1)) are determination-well-formed if

a link l′i is open only from hi to hi+1 and

b link l′′i is open only from hi+1 to hi; and if

178. the jth tollway hub, hj (for 1 ≤ j ≤ len pcl) is determination-well-formed if, depending on

whether j is the first, or the last, or any “in-between” plaza complex positions,

a [the first:] hub i = 1 allows traffic in from l1 and l′′1 , and onto l1 and l′1.

b [the last:] hub j = i + 1 = len pcl allows traffic in from llen tll and l′′
len tll−1

, and onto

llen tll and l′
len tll−1

.

c [in-between:] hub j = i allows traffic in from li, l′′i and l′i and onto li, l′i−1 and l′′i .
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value

176. Determination wf TWN: TWN → Bool

176. Determination wf TWN(pcl,tll) ≡
176. ∀ i:Nat• i ∈ inds tll ⇒
176. let (pi,li,hi) = pcl(i),
176. (npi,nli,nhi) = pcl(i+1), in

176. (li′,li′′) = tll(i) in

175. obs HΩ(pi)={obs HΣ(pi)}∧obs HΩ(hi)={obs HΣ(hi)}
175. ∧ obs LΩ(li)={obs LΣ(li)}∧obs LΩ(li′)={obs LΣ(li′)}
175. ∧ obs LΩ(li′′)={obs LΣ(li′′)}
176(a). ∧ obs LΣ(li)
176(a). = {(obs HI(pi),obs HI(hi)),(obs HI(hi),obs HI(pi))}
176(a). ∧ obs LΣ(nli)
176(a). = {(obs HI(npi),obs HI(nhi)),(obs HI(nhi),obs HI(npi))}
176(b). ∧ {(obs LI(li),obs LI(li))}⊆obs HΣ(pi)
176(b). ∧ {(obs LI(nli),obs LI(nli))}⊆obs HΣ(npi)
177(a). ∧ obs LΣ(li′)={(obs HI(hi),obs HI(nhi))}
177(b). ∧ obs LΣ(li′′)={(obs HI(nhi),obs HI(hi))}
178. ∧ case i+1 of

178(a). 2 → obs HΣ(h 1)=
178(a). {(obs LΣ(l 1),obs LΣ(l 1)), (obs LΣ(l 1),obs LΣ(l 1′′)),
178(a). (obs LΣ(l′′ 1),obs LΣ(l 1)), (obs LΣ(l′′ 1),obs LΣ(l′ 1))},
178(b). len pcl → obs HΣ(h i+1)=
178(b). {(obs LΣ(l len pcl),obs LΣ(l len pcl)),
178(b). (obs LΣ(l len pcl),obs LΣ(l′ len tll)),
178(b). (obs LΣ(l′′ len tll),obs LΣ(l len pcl)),
178(b). (obs LΣ(l′′ len tll),obs LΣ(l′ len tll))},
178(c). → obs HΣ(h i)=
178(c). {(obs LΣ(l i),obs LΣ(l i)), (obs LΣ(l i),obs LΣ(l′ i)),
178(c). (obs LΣ(l i),obs LΣ(l′′ i−1)), (obs LΣ(l′′ i),obs LΣ(l′ i)),
178(c). (obs LΣ(l′′ i),obs LΣ(l′ i−1)), (obs LΣ(l′′ i),obs LΣ(l′ i))}
176. end end
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8.2.4. Extension

• By domain extensionδ we understand the

⋄⋄ introduction of domain entities, actions, events and
behaviours that were not feasible in the original domain,

⋄⋄ but for which, with computing and communication,

⋄⋄ there is the possibility of feasible implementations,

⋄⋄ and such that what is introduced become part of the
emerging domain requirements prescription.
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8.2.4.1 Backgorund

• The road traffic monitoring domain of Example 4,

⋄⋄ notably the sections on vehicle and monitor behaviours,
(Items 65–71(d) Slides 100–104),

⋄⋄ illustrated the intangible abstraction of road traffic

⋄⋄ in the form of the recording of a discrete version of that traffic:20

46. dT

45. dRTF = dT →m (VI →m VP)

• by the road traffic system:

value

59. trs() =
59(a). ‖ {veh(uid V(v))(v)(vpm(uid V(v)))|v:V•v ∈ vs}
59(b). ‖ mon(mi)(m)([ t0 7→ vpm ])

20In dRTF we change V into a reference to vehicles VI.
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• We say that the road traffic, dRTF is intangible

⋄⋄ since the dRTF function,

⋄⋄ being a function, is an intangible.

• The domain extension is now making that “function”
a tangible notion.

• There is no presumption,

⋄⋄ in defining the monitor behaviour,

⋄⋄ that there is indeed a mechanised behaviour,

⋄⋄ i.e., a computerised process

⋄⋄ that “implements” that monitor.

• Since

⋄⋄ one can speak of the monitor behaviour,

⋄⋄ one can, as well define it.
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8.2.4.2 The Extension

• We now “implement” a version of the above monitor behaviour.

• The proposed domain extension builds upon

⋄⋄ the monitor

⋄⋄ and the ability of vehicles

◦◦ to communicate their vehicle positions

◦◦ to the monitor, cf.

∗ Items 65(a) and 65(a) Slide 101,

∗ Items 66(a), 66((c))i and 66((c))iiA Slide 102 and

∗ Item 71(a) Slide 105.
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• Instead of this “directness”

⋄⋄ we interpret links and hubs of the tollway system

⋄⋄ as behaviours

⋄⋄ endowed with sensors.

• Vehicle behaviours now interact with link and hub behaviours

⋄⋄ communicating their positions

⋄⋄ which the link and hub behaviours

⋄⋄ communicate to a tollway system monitor.

• The domain extension then consists of

⋄⋄ the extension of links and hubs with sensors and

⋄⋄ the modelling of their vehicle interactions and

⋄⋄ their interaction with the tollway system monitor.
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8.2.4.3 The Formalisation

• We introduce

179. rather simple link and hub behaviours, and

180. an array of channels for the interaction of vehicle behaviours
with link and hub behaviours.

• And we modify

181. the vehicle and monitor behaviours and

182. the vehicle/monitor channel

• the latter to now serve at the channel

• for link and hub interactions

• with the refined monitor behaviour.
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value

172. (hs,ls):(Hs,Ls) = abs HsLs(twn)
22. his:HI-set = {uid H(h)|h:H•h ∈ hs}
21. lis:LI-set = {uid L(l)|l:L•l ∈ ls}
channel

180. {vlh ch[ vi,si ]|vi:VI,si:(LI|HI)•vi ∈ vis∧si ∈ lis ∪ his}:VP
182. {lhm ch[ si,mi ]|si:(LI|HI)•si ∈ lis ∪ his}:(VI×VP)
value

180. link: li:LI → L → in { vlh ch[ vi,si ]|si:LI•si ∈ lis } Unit

180. hub: hi:HI → H → in { vlh ch[ vi,si ]|si:HI•si ∈ his } Unit

179. link(li)(l) ≡
179. (...⌈⌉ ⌈⌉⌊⌋ {let (vi,vp) = vlh ch[ vi,li ]? in lhm ch[ li,mi ]!(vi,vp)|vi:VI•vi ∈ vis end});link(li)(l)
179. hub(hi)(h) ≡
179. (...⌈⌉ ⌈⌉⌊⌋ {let (vi,vp) = vlh ch[ vi,hi ]? in lhm ch[ hi,mi ]!(vi,vp)|vi:VI•vi ∈ vis end});h
59. trs() =
59(a). ‖ {veh(uid V(v))(v)(vpm(uid V(v)))|v:V•v ∈ vs}
59(b). ‖ mon(mi)(m)([ t0 7→ vpm ])
179. ‖ {link(uid L(l))(l)|l:L•l ∈ ls}
179. ‖ {hub(uid H(h))(h)|h:H•h ∈ hs}
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• The modifications to the vehicle behaviour is shown in

⋄⋄ Items 65(a)′, 65((b))ii′, 66(a)′, 66((c))i′, 66((c))iiA′ and 71(a)′

⋄⋄ (Slides 407–408).

65. veh(vi)(v)(vp:atH(fli,hi,tli)) ≡
65(a)′. vlh ch[vi,hi]!(vi,vp) ; veh(vi)(v)(vp)
65(b). ⌈⌉
65((b))i. let {hi′,thi}=mereo L(get L(tli)(n)) in assert: hi′=hi
65((b))ii′. vlh ch[vi,tli]!(vi,onL(hi,tli,0,thi)) ;
65((b))iii. veh(vi)(v)(onL(hi,tli,0,thi)) end

65(c). ⌈⌉
65(d). stop
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64. veh(vi)(v)(vp:onL(fhi,li,f,thi)) ≡
66(a)′. vlh ch[vi,li]!(vi,vp) ; veh(vi)(v)(vp)
66(b). ⌈⌉
66(c). if f + δ<1
66((c))i′. then vlh ch[vi,li]!(vi,onL(fhi,li,f+δ,thi)) ;
66((c))i. veh(vi)(v)(onL(fhi,li,f+δ,thi))
66((c))ii. else let li′:LI•li′ ∈ mereo H(get H(thi)(n)) in

66((c))iiA′. vlh ch[vi,thi]!(vi,atH(li,thi,li′)) ;
66((c))iiB. veh(vi)(v)(atH(li,thi,li′)) end end

67. ⌈⌉
68. stop

69. mon(mi)(m)(rtf) ≡
70. mon(mi)(own mon work(m))(rtf)
71. ⌈⌉
71(a)′. ⌈⌉⌊⌋ { let ((vi,vp),t) = (lhm ch[si,mi]?,clk ch?) in

71(b). let rtf′ = rtf † [ t 7→ rtf(max dom rtf) † [ vi 7→ vp ] ] in

71(c). mon(mi)(m)(rtf′) end

71(d). end | si:(LI|HI) • si ∈ lis ∪ his}

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29 410 Domain Science & Engineering



4118. Requirements Engineering 8.2. Domain Requirements8.2.4. Extension8.2.4.3. The Formalisation

• The extension, in this example, does not really amount to much.

⋄⋄ We say that we have extended links and hubs with sensors.

⋄⋄ But we have not really modelled these sensors.

⋄⋄ We have modelled their intent, but not their extent.

⋄⋄ A more complete extension,

◦◦ which has to be done, but which is not shown in this seminar,

◦◦ would now model these sensors

◦◦ as they rely on the unique vehicle identifier to be sensed.

A Precursor for Requirements Engineering 411 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29



412 8. Requirements Engineering 8.2. Domain Requirements8.2.4. Extension8.2.4.3. The Formalisation

• We shall, regrettably, omit this aspect of our presentation of the
extension.

⋄⋄ Whichever sensor technology is chosen, it must be described.

⋄⋄ A description includes both it proper and its erroneous
functioning.

⋄⋄ Such (IT equipment &c.) descriptions may be expressed in a
number of steps:

◦◦ First, as here, a RSL/CSP

[CARH:Electronic,TheSEBook1wo]. model.

◦◦ Then a “derived” description models temporal properties
using Duration Calculus, DC [zcc+mrh2002], or
Temporal Logic of Actions, TLA+ [Lamport-TLA+02].

◦◦ Finally a timed-automata [AluDil:94,olderogdirks2008]

model which “implements” the DC model.
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8.3. Interface Requirements Prescription

• A systematic reading of the domain requirements shall

⋄⋄ result in an identification of all shared

◦◦ parts and materials,

◦◦ actions,

◦◦ events and

◦◦ behaviours.

• An entity is said to be a shared entityδ

⋄⋄ if it is present

⋄⋄ in some related forms,

⋄⋄ in both

◦◦ the domain and

◦◦ the machine.
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8. Requirements Engineering 8.3. Interface Requirements Prescription

• Each such shared phenomenon shall then be individually dealt with:

⋄⋄ part and materials sharing shall lead to interface requirements
for data initialisation and refreshment;

⋄⋄ action sharing shall lead to interface requirements for
interactive dialogues between the machine and its
environment;

⋄⋄ event sharing shall lead to interface requirements for how
events are communicated between the environment of
the machine and the machine.

⋄⋄ behaviour sharing shall lead to interface requirements for
action and event dialogues between the machine and its
environment.
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8. Requirements Engineering 8.3. Interface Requirements Prescription8.3.1. Shared Parts

8.3.1. Shared Parts

• The main shared parts of the main example of this section are

⋄⋄ the net, hence the hubs and the links.

• As domain parts they repeatedly undergo changes with respect to
the values of a great number of attributes and otherwise possess
attributes — most of which have not been mentioned so far:

⋄⋄ length, cadestral information, namings,

⋄⋄ wear and tear (where-ever applicable),

⋄⋄ last/next scheduled maintenance (where-ever applicable),

⋄⋄ state and state space, and

⋄⋄ many others.

A Precursor for Requirements Engineering 415 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29



416 8. Requirements Engineering 8.3. Interface Requirements Prescription8.3.1. Shared Parts

• We “split” our interface requirements development into two
separate steps:

⋄⋄ the development of dr.net

◦◦ (the common domain requirements for
the shared hubs and links),

⋄⋄ and the co-development of dr.db:i/f

◦◦ (the common domain requirements for
the interface between dr.net and DBrel —

• under the assumption of an available
relational database system DBrel
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4178. Requirements Engineering 8.3. Interface Requirements Prescription8.3.1. Shared Parts

• When planning the common domain requirements for the net, i.e.,
the hubs and links,

⋄⋄ we enlarge our scope of requirements concerns
beyond the two so far treated (dr.toll, dr.maint.)

⋄⋄ in order to make sure that
the shared relational database of nets, their hubs and links,
may be useful beyond those requirements.
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418 8. Requirements Engineering 8.3. Interface Requirements Prescription8.3.1. Shared Parts

• We then come up with something like

⋄⋄ hubs and links are to be represented
as tuples of relations;

⋄⋄ each net will be represented by a pair of relations

◦◦ a hubs relation and a links relation;

◦◦ each hub and each link may or will
be represented by several tuples;

⋄⋄ etcetera.

• In this database modelling effort
it must be secured that “standard” actions on nets, hubs and links
can be supported by the chosen relational database system DBrel.
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4198. Requirements Engineering 8.3. Interface Requirements Prescription8.3.1. Shared Parts8.3.1.1. Data Initialisation

8.3.1.1 Data Initialisation

• As part of dr.net one must prescribe data initialisation, that is
provision for

⋄⋄ an interactive user interface dialogue
with a set of proper display screens,

◦◦ one for establishing net, hub or link attributes (names) and
their types and,

◦◦ for example, two for the input of hub and link attribute values.

⋄⋄ Interaction prompts may be prescribed:

◦◦ next input,

◦◦ on-line vetting and

◦◦ display of evolving net, etc.

⋄⋄ These and many other aspects may therefore need prescriptions.

• Essentially these prescriptions concretise the insert link action.
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8.3.1.2 Data Refreshment

• As part of dr.net one must also prescribe data refreshment:

⋄⋄ an interactive user interface dialogue
with a set of proper display screens

◦◦ one for updating net, hub or link attributes (names)
and their types and,

◦◦ for example, two for the update of hub and link
attribute values.

⋄⋄ Interaction prompts may be prescribed:

◦◦ next update,

◦◦ on-line vetting and

◦◦ display of revised net, etc.

⋄⋄ These and many other aspects may therefore need prescriptions.

• These prescriptions concretise remove and insert link actions.
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8.3.2. Shared Actions

• The main shared actions are related to

⋄⋄ the entry of a vehicle into the tollway system and

⋄⋄ the exit of a vehicle from the tollway system.

8.3.2.1 Interactive Action Execution

• As part of dr.toll we must therefore prescribe

⋄⋄ the varieties of successful and less successful sequences

⋄⋄ of interactions between vehicles (or their drivers) and the toll
gate machines.

• The prescription of the above necessitates determination of a
number of external events, see below.

• (Again, this is an area of embedded, real-time safety-critical system
prescription.)
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8.3.3. Shared Events

• The main shared external events are related to

⋄⋄ the entry of a vehicle into the tollway system,

⋄⋄ the crossing of a vehicle through a tollway hub and

⋄⋄ the exit of a vehicle from the tollway system.

• As part of dr.toll we must therefore prescribe

⋄⋄ the varieties of these events,

⋄⋄ the failure of all appropriate sensors and

⋄⋄ the failure of related controllers:

◦◦ gate opener and closer (with sensors and actuators),

◦◦ ticket “emitter” and “reader” (with sensors and actuators),

◦◦ etcetera.

• The prescription of the above necessitates extensive fault analysis.
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8.3.4. Shared Behaviours

• The main shared behaviours are therefore related to

⋄⋄ the journey of a vehicle through the tollway system and

⋄⋄ the functioning of a toll gate machine during “its lifetime”.

• Others can be thought of, but are omitted here.

• In consequence of considering, for example, the journey of a vehicle
behaviour, we may “add” some further, extended requirements:

⋄⋄ requirements for a vehicle statistics “package”;

⋄⋄ requirements for tracing supposedly “lost” vehicles;

⋄⋄ requirements limiting tollway system access in case of traffic
congestion; etcetera.
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8.4. Machine Requirements

• The machine requirements

⋄⋄ make hardly any concrete reference to the domain description;

⋄⋄ so we omit its treatment altogether.
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8.5. Discussion of Requirements “Derivation”

• We have indicated

⋄⋄ how the domain engineer

⋄⋄ and the requirements engineer

⋄⋄ can work together

⋄⋄ to “derive” significant fragments

⋄⋄ of a requirements prescription.

A Precursor for Requirements Engineering 425 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29



426 8. Requirements Engineering 8.5. Discussion of Requirements “Derivation”

• This puts requirements engineering in a new light.

⋄⋄ Without a previously existing domain descriptions

⋄⋄ the requirements engineer has to do double work:

◦◦ both domain engineering

◦◦ and requirements engineering

⋄⋄ but without the principles of domain description,

◦◦ as laid down in this seminar

⋄⋄ that job would not be so straightforward as we now suggest.
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4279. Requirements Engineering

9. Conclusion

• This seminar,

⋄⋄ meant as the basis for my tutorial

⋄⋄ at FM 2012 (CNAM, Paris, August 28),

⋄⋄ “grew” from a paper being written for possible journal
publication.

◦◦ Sections 3–7 possibly represent
two publishable journal papers.

◦◦ Section 8 has been “added” to the ‘tutorial’ notes.
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9. Conclusion

• The style of the two tutorial “parts”,

⋄⋄ Sects. 3–7 and

⋄⋄ Sect. 8

⋄⋄ are, necessarily, different:

◦◦ Sects. 3–7
are in the form of research notes,

◦◦ whereas Sect. 8
is in the form of “lecture notes” on methodology.

⋄⋄ Be that as it may. Just so that you are properly notified !
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9.1. Comparison to Other Work

• In this section we shall only compare

⋄⋄ our contribution to domain science & engineering as presented in
this seminar

⋄⋄ to that found in the broader literature with respect to the
computer science and software engineering term ‘domain’.

• Finally we shall also not compare

⋄⋄ our work on a description calculus

⋄⋄ as we find no comparable literature !
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430 9. Conclusion 9.1. Comparison to Other Work

• Our comparison hinges on basically the following two facets:

⋄⋄ domain analysis and

⋄⋄ domain description.

• We shall see that the former term, seen across the surveyed
literature,

⋄⋄ covers techniques that are claimed used in many steps of
software engineering,

⋄⋄ but that they seldom, if ever, involve formal concept analysis
as we understand it

⋄⋄ (cf. Sects. 3.2 (Slide 124), 4.1.4 (Slide 142) and 5.1 (Slide 222)).
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4319. Conclusion 9.1. Comparison to Other Work9.1.1. Ontological Engineering:

9.1.1. Ontological Engineering:

• Ontological engineering is described mostly on the Internet, see
however [Benjamins+Fensel98].

• Ontology engineers build ontologies.

• And ontologies are, in the tradition of ontological engineering,
“formal representations of a set of concepts within a domain and the
relationships between those concepts” — expressed usually in some
logic.

• Published ontologies usually consists of thousands of logical
expressions.

• These are represented in some, for example, low-level mechanisable
form so that they can be interchanged between ontology groups
building upon one-anothers work and processed by various tools.
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432 9. Conclusion 9.1. Comparison to Other Work9.1.1. Ontological Engineering:

• There does not seem to be a concern for “deriving” such ontologies
into requirements for software.

• Usually ontology presentations

⋄⋄ either start with the presentation

⋄⋄ or makes reference to its reliance

of an upper ontology.

• Instead the ontology databases

⋄⋄ appear to be used for the computerised

⋄⋄ discovery and analysis

⋄⋄ of relations between ontologies.
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4339. Conclusion 9.1. Comparison to Other Work9.1.1. Ontological Engineering:

• The TripTych form of domain science & engineering differs from
conventional ontological engineering in the following, essential ways:

⋄⋄ The TripTych domain descriptions rely essentially
on a “built-in” upper ontology:

◦◦ types, abstract as well as model-oriented (i.e., concrete) and

◦◦ actions, events and behaviours.

⋄⋄ Domain science & engineering is not, to a first degree, concerned
with modalities, and hence do not focus on the modelling of

◦◦ knowledge and belief,

◦◦ necessity and possibility, i.e., alethic modalities,

◦◦ epistemic modality (certainty),

◦◦ promise and obligation (deontic modalities),

◦◦ etcetera.
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9. Conclusion 9.1. Comparison to Other Work9.1.2. Knowledge and Knowledge Engineering:

9.1.2. Knowledge and Knowledge Engineering:

• The concept of knowledge has occupied philosophers since Plato.

⋄⋄ No common agreement on what ‘knowledge’ is has been reached.

⋄⋄ From Wikipedia we may learn that

◦◦ knowledge is a familiarity with someone or something;

∗ it can include facts, information, descriptions, or skills
acquired through experience or education;

∗ it can refer to the theoretical or practical understanding of a
subject;

◦◦ knowledge is produced by socio-cognitive aggregates

∗ (mainly humans)

∗ and is structured according to our understanding of how
human reasoning and logic works.
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4359. Conclusion 9.1. Comparison to Other Work9.1.2. Knowledge and Knowledge Engineering:

• The aim of knowledge engineering was formulated, in 1983, by an
originator of the concept, Edward A. Feigenbaum
[Feigenbaum83]:

⋄⋄ knowledge engineering is an engineering discipline

⋄⋄ that involves integrating knowledge into computer systems

⋄⋄ in order to solve complex problems

⋄⋄ normally requiring a high level of human expertise.

A Precursor for Requirements Engineering 435 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29



436 9. Conclusion 9.1. Comparison to Other Work9.1.2. Knowledge and Knowledge Engineering:

• Knowledge engineering focuses on

⋄⋄ continually building up (acquire) large,
shared data bases (i.e., knowledge bases),

⋄⋄ their continued maintenance,

⋄⋄ testing the validity of the stored ‘knowledge’,

⋄⋄ continued experiments with respect to knowledge representation,

⋄⋄ etcetera.
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9. Conclusion 9.1. Comparison to Other Work9.1.2. Knowledge and Knowledge Engineering:

• Knowledge engineering can, perhaps, best be understood in contrast
to algorithmic engineering:

⋄⋄ In the latter we seek more-or-less conventional, usually
imperative programming language expressions of algorithms
◦◦ whose algorithmic structure embodies the knowledge

◦◦ required to solve the problem being solved by the algorithm.

⋄⋄ The former seeks to solve problems based on an interpreter
inferring possible solutions from logical data. This logical data
has three parts:
◦◦ a collection that “mimics” the semantics of, say, the imperative

programming language,

◦◦ a collection that formulates the problem, and

◦◦ a collection that constitutes the knowledge particular to the problem.

• We refer to [BjornerNilsson1992].
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438 9. Conclusion 9.1. Comparison to Other Work9.1.2. Knowledge and Knowledge Engineering:

• The concerns of TripTych domain science & engineering is based
on that of algorithmic engineering.

⋄⋄ Domain science & engineering is not aimed at

◦◦ letting the computer solve problems based on

◦◦ the knowledge it may have stored.

⋄⋄ Instead it builds models based on knowledge of the domain.

• Further references to seminal exposés of knowledge engineering are
[Studer1998,Kendal2007].
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9. Conclusion 9.1. Comparison to Other Work9.1.3. Prieto-D̃ıaz: Domain Analysis:

9.1.3. Prieto-D̃ıaz: Domain Analysis:

• There are different “schools of domain analysis”.

⋄⋄ Domain analysis, or product line analysis (see below), as it was
first conceived in the early 1980s by James Neighbors

◦◦ is the analysis of related software systems in a domain

◦◦ to find their common and variable parts.

◦◦ It is a model of wider business context for the system.

⋄⋄ This form of domain analysis turns matters “upside-down”:

◦◦ it is the set of software “systems” (or packages)

◦◦ that is subject to some form of inquiry,

◦◦ albeit having some domain in mind,

◦◦ in order to find common features of the software

◦◦ that can be said to represent a named domain.
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440 9. Conclusion 9.1. Comparison to Other Work9.1.3. Prieto-D̃ıaz: Domain Analysis:

• In this section we shall mainly be comparing the TripTych
approach to domain analysis to that of Reubén Prieto-D̃ıaz’s
approach
[Prieto-Diaz:1987,Prieto-Diaz:1990,Prieto-Diaz:1991].

• Firstly, the two meanings of domain analysis basically coincide.

• Secondly, in, for example, [Prieto-Diaz:1987], Prieto-D̃ıaz’s
domain analysis is focused on the very important stages that
precede the kind of domain modelling that we have described.
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4419. Conclusion 9.1. Comparison to Other Work9.1.3. Prieto-D̃ıaz: Domain Analysis:

• Major concerns of Prieto-Dı̃az’s approach are

⋄⋄ selection of what appears to be similar, but specific entities,

⋄⋄ identification of common features,

⋄⋄ abstraction of entities and

⋄⋄ classification.

• In comparison

⋄⋄ selection and identification is assumed in our approach, but using Ganter
& Wille’s Formal Concept Analysis [Wille:ConceptualAnalysis1999]

where Prieto-Dı̃az really does not report on a systematic, let alone formal
approach to identification.

⋄⋄ Abstraction

◦◦ (from values to types and signatures) and

⋄⋄ classification

◦◦ into parts, materials, actions, events and behaviours

⋄⋄ is what we have focused on;

⋄⋄ as we have also focused on their formalisation.
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9. Conclusion 9.1. Comparison to Other Work9.1.3. Prieto-D̃ıaz: Domain Analysis:

• All-in-all we find Prieto-Dı̃az’s work relevant to our work:

⋄⋄ relating to it by providing guidance to pre-modelling steps,

⋄⋄ thereby emphasising issues that are necessarily informal,

⋄⋄ yet difficult to get started on by most software engineers.

• Where we might differ is on the following:

⋄⋄ although Prieto-Dı̃az does mention a need for domain specific languages,

⋄⋄ he does not show examples of domain descriptions in such DSLs.

⋄⋄ We, of course, basically use mathematics as the DSL.

• In the TripTych approach to domain analysis

⋄⋄ we provide a full ontology and

⋄⋄ suggest a domain description calculus.

• In our approach

⋄⋄ we do not consider requirements, let alone software components,

⋄⋄ as does Prieto-Dı̃az,

but we find that that is not an important issue.
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9.1.4. Software Product Line Engineering:

• Software product line engineering,
earlier known as domain engineering,

⋄⋄ is the entire process of reusing domain knowledge in the
production of new software systems.

• Key concerns of software product line engineering are

⋄⋄ reuse,

⋄⋄ the building of repositories of reusable software components, and

⋄⋄ domain specific languages with which to, more-or-less
automatically build software based on reusable software
components.
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444 9. Conclusion 9.1. Comparison to Other Work9.1.4. Software Product Line Engineering:

• These are not the primary concerns of
TripTych domain science & engineering.

⋄⋄ But they do become concerns as we move from domain
descriptions to requirements prescriptions.

⋄⋄ But it strongly seems that software product line engineering is
not really focused on the concerns of domain description — such
as is TripTych domain engineering.

⋄⋄ It seems that software product line engineering is primarily based,
as is, for example, FODA: Feature-oriented Domain

Analysis, on analysing features of software systems.

⋄⋄ Our [dines-maurer] puts the ideas of software product lines
and model-oriented software development in the context of the
TripTych approach.

• Notable sources on software product line engineering are
[dom:Bayer:1999,dom:Weiss:1999,dom:Ardis:2000,dom:Thiel:200
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9.1.5. M.A. Jackson: Problem Frames:

• The concept of problem frames is covered in [mja2001a].

• Jackson’s prescription for software development focuses on the
“triple development” of descriptions of

⋄⋄ the problem world,

⋄⋄ the requirements and

⋄⋄ the machine (i.e., the hardware and software) to be built.

• Here domain analysis means, the same as for us, the problem world
analysis.
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446 9. Conclusion 9.1. Comparison to Other Work9.1.5. M.A. Jackson: Problem Frames:

• In the problem frame approach the software developer plays three,
that is, all the TripTych rôles:

⋄⋄ domain engineer,

⋄⋄ requirements engineer and

⋄⋄ software engineer

“all at the same time”,

• well, iterating between these rôles repeatedly.

• So, perhaps belabouring the point,

⋄⋄ domain engineering is done only to the extent needed by the
prescription of requirements and the design of software.

• These, really are minor points.
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4479. Conclusion 9.1. Comparison to Other Work9.1.5. M.A. Jackson: Problem Frames:

• But in “restricting” oneself to consider

⋄⋄ only those aspects of the domain which are mandated by the
requirements prescription

⋄⋄ and software design

one is considering a potentially smaller fragment
[Jackson2010Facs] of the domain than is suggested by the
TripTych approach.

• At the same time one is, however, sure to

⋄⋄ consider aspects of the domain

⋄⋄ that might have been overlooked when pursuing domain
description development

⋄⋄ the TripTych, “more general”, approach.

.
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9.1.6. Domain Specific Software Architectures (DSSA):

• It seems that the concept of DSSA

⋄⋄ was formulated by a group of ARPA21 project “seekers”

⋄⋄ who also performed a year long study
(from around early-mid 1990s);

⋄⋄ key members of the DSSA project were Will Tracz, Bob Balzer,
Rick Hayes-Roth and Richard Platek [dom:Trasz:1994].

• The [dom:Trasz:1994] definition of domain engineering is “the
process of creating a DSSA:

⋄⋄ domain analysis and domain modelling

⋄⋄ followed by creating a software architecture

⋄⋄ and populating it with software components.”

21ARPA: The US DoD Advanced Research Projects Agency
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• This definition is basically followed also by
[Mettala+Graham:1992,Shaw+Garlan:1996,Medvidovic+Colbert:20

• Defined and pursued this way, DSSA appears,

⋄⋄ notably in these latter references, to start with the

⋄⋄ with the analysis of software components, “per domain”,

⋄⋄ to identify commonalities within application software,

⋄⋄ and to then base the idea of software architecture

⋄⋄ on these findings.
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• Thus DSSA turns matter “upside-down” with respect to
TripTych requirements development

⋄⋄ by starting with software components,

⋄⋄ assuming that these satisfy some requirements,

⋄⋄ and then suggesting domain specific software

⋄⋄ built using these components.

• This is not what we are doing:

⋄⋄ We suggest that requirements

◦◦ can be “derived” systematically from,

◦◦ and related back, formally to domain descriptionss

◦◦ without, in principle, considering software components,

◦◦ whether already existing, or being subsequently developed.
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⋄⋄ Of course, given a domain descriptions

◦◦ it is obvious that one can develop, from it, any number of
requirements prescriptions

◦◦ and that these may strongly hint at shared, (to be)
implemented software components;

⋄⋄ but it may also, as well, be the case

◦◦ two or more requirements prescriptions

◦◦ “derived” from the same domain description

◦◦ may share no software components whatsoever !

⋄⋄ So that puts a “damper” of my “enthusiasm” for DSSA.
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• It seems to this author that had the DSSA promoters

⋄⋄ based their studies and practice on also using formal
specifications,

⋄⋄ at all levels of their study and practice,

⋄⋄ then some very interesting insights might have arisen.
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9.1.7. Domain Driven Design (DDD)

• Domain-driven design (DDD)22

⋄⋄ “is an approach to developing software for complex needs

⋄⋄ by deeply connecting the implementation to an evolving
model of the core business concepts;

⋄⋄ the premise of domain-driven design is the following:

◦◦ placing the project’s primary focus on the core domain
and domain logic;

◦◦ basing complex designs on a model;

◦◦ initiating a creative collaboration between technical and
domain experts to iteratively cut ever closer to the
conceptual heart of the problem.”23

22Eric Evans: http://www.domaindrivendesign.org/
23http://en.wikipedia.org/wiki/Domain-driven design
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• We have studied some of the DDD literature,

⋄⋄ mostly only accessible on The Internet, but see also
[Haywood2009],

⋄⋄ and find that it really does not contribute to new insight into
domains such as wee see them:

⋄⋄ it is just “plain, good old software engineering cooked up with a
new jargon.
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9.1.8. Feature-oriented Domain Analysis (FODA):

• Feature oriented domain analysis (FODA)

⋄⋄ is a domain analysis method

⋄⋄ which introduced feature modelling to domain engineering

⋄⋄ FODA was developed in 1990 following several U.S. Government
research projects.

⋄⋄ Its concepts have been regarded as critically advancing software
engineering and software reuse.

• The US Government supported report [KyoKang+et.al.:1990]
states: “FODA is a necessary first step” for software reuse.
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• To the extent that

⋄⋄ TripTych domain engineering

⋄⋄ with its subsequent requirements engineering

indeed encourages reuse at all levels:

⋄⋄ domain descriptions and

⋄⋄ requirements prescription,

we can only agree.

• Another source on FODA is [Czarnecki2000].

• Since FODA “leans” quite heavily on ‘Software Product Line
Engineering’ our remarks in that section, above, apply equally well
here.
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9.1.9. Unified Modelling Language (UML)

• Three books representative of UML are
[Booch98,Rumbaugh98,Jacobson99].

• The term domain analysis appears numerous times in these books,

⋄⋄ yet there is no clear, definitive understanding

⋄⋄ of whether it, the domain, stands for entities in the domain such
as we understand it,

⋄⋄ or whether it is wrought up, as in several of the ‘approaches’
treated in this section, to wit, Items [3,4,6,7,8], with

◦◦ either software design (as it most often is),

◦◦ or requirements prescription.
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• Certainly, in UML,

⋄⋄ in [Booch98,Rumbaugh98,Jacobson99] as well as

⋄⋄ in most published papers claiming “adherence” to UML,
⋄⋄ that domain analysis usually

◦◦ is manifested in some UML text

◦◦ which “models” some requirements facet.

⋄⋄ Nothing is necessarily wrong with that;

⋄⋄ but it is therefore not really the TripTych form of domain
analysis
◦◦ with its concepts of abstract representations of endurant and perdurants,

and

◦◦ with its distinctions between domain and requirements, and

◦◦ with its possibility of “deriving”

∗ requirements prescriptions from

∗ domain descriptions.
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• There is, however, some important notions of UML

⋄⋄ and that is the notions of

◦◦ class diagrams,

◦◦ objects, etc.

⋄⋄ How these notions relate to the discovery

◦◦ of part types, unique part identifiers, mereology and
attributes, as well as

◦◦ action, event and behaviour signatures and channels,

⋄⋄ as discovered at a particular domain index,

⋄⋄ is not yet clear to me.

⋄⋄ That there must be some relation seems obvious.

• We leave that as an interesting, but not too difficult, research topic.
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9.1.10. Requirements Engineering:

• There are in-numerous books and published papers on requirements
engineering.

⋄⋄ A seminal one is [AvanLamsweerde2009].

⋄⋄ I, myself, find [SorenLauesen2002] full of very useful,
non-trivial insight.

⋄⋄ [Dorfman+Thayer:1997:IEEEComp.Soc.Press] is seminal in
that it brings a number or early contributions and views on
requirements engineering.
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• Conventional text books, notably
[Pfleeger2001,Pressman2001,Sommerville2006] all have
their “mandatory”, yet conventional coverage of requirements
engineering.

⋄⋄ None of them “derive” requirements from domain descriptions,

◦◦ yes, OK, from domains,

◦◦ but since their description is not mandated

◦◦ it is unclear what “the domain” is.

⋄⋄ Most of them repeatedly refer to domain analysis

◦◦ but since a written record of that domain analysis is not
mandated

◦◦ it is unclear what “domain analysis” really amounts to.
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• Axel van Laamsweerde’s book [AvanLamsweerde2009] is
remarkable.

⋄⋄ Although also it does not mandate descriptions of domains

⋄⋄ it is quite precise as to the relationships between domains and
requirements.

⋄⋄ Besides, it has a fine treatment of the distinction between goals
and requirements,

⋄⋄ also formally.

• Most of the advices given in [SorenLauesen2002]

⋄⋄ can beneficially be followed also in

⋄⋄ TripTych requirements development.

• Neither [AvanLamsweerde2009] nor [SorenLauesen2002]
preempts TripTych requirements development.
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9.1.11. Summary of Comparisons

• It should now be clear from the above that there are basically two
notions from above that relate to our notion of domain analysis.

⋄⋄ (i) Prieto-D̃ıaz’s notion of ‘Domain Analysis’ , and

⋄⋄ (ii) Jackson’s notion of Problem Frames .

• But it should also be clear that none of the surveyed literature,

⋄⋄ except, of course, Ganter & Wille’s
[Wille:ConceptualAnalysis1999]

Formal Concept Analysis, Mathematical Foundations,

⋄⋄ covers our notion of domain analysis

⋄⋄ as it hinges crucially on Ganter & Wille’s formal concept analysis.
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9.2. What Have We Omitted: Domain Facets

• One can further structure domain descriptions along the lines of the
following domain facets:

⋄⋄ intrinsics,

⋄⋄ support technologies,

⋄⋄ rules & regulations,

⋄⋄ incl. scripts,

⋄⋄ organisation & management
and

⋄⋄ human behaviour

of domains.

• We refer to [dines:facs:2008] for an early treatment of domain
facets.
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9.2.1. Intrinsics

• By intrinsicsδ we shall mean

⋄⋄ the entities

⋄⋄ in terms of which all other domain facets

⋄⋄ are expressed.

Example: 63 Road Transport System Intrinsics.

• We refer to Example 4.

⋄⋄ The following parts are typical of intrinsic parts:

⋄⋄ N, HS, Hs, LS, Ls, H, L; F, VS, Vs, V.
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9.2.2. Support Technologies

• By a support technologyδ we shall mean

⋄⋄ a human (soft technological) or a hard technological

⋄⋄ means of supporting,

⋄⋄ that is, presenting entities

⋄⋄ and carrying out functions: actions and behaviours.

Example: 64 Tollroad System Support Technologies.

• We refer to Example (Slides 400–410).

⋄⋄ The link sensors,

⋄⋄ the hub sensors, and

⋄⋄ the monitor

are examples of support technologies.
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9.2.3. Rules & Regulations
9.2.3.1 Rules

• By a ruleδ we shall mean

⋄⋄ some, usually syntactically expressed predicate

⋄⋄ which expresses whether an action (say of a behaviour)

⋄⋄ violates some state property.

Example: 65 Road Transport System Rules.

• We refer to Sect. 8.2.4 (Slides 400–410).

⋄⋄ If a vehicle somehow disables its ability to be sensed

⋄⋄ then a rule has been violated.
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9.2.3.2 Regulation

• By a regulationδ we shall mean

⋄⋄ some, usually syntactically expressed state-to-state transformer

⋄⋄ which expresses how an erroneous state

⋄⋄ resulting from a rule violation

⋄⋄ can be restored to a state

⋄⋄ in which rule adherence is “restored”.

Example: 66 Road Transport System Regulations.

• We refer to Sect. 8.2.4 (Slides 400–410).

⋄⋄ A pseudo vehicle identification and position

⋄⋄ replaces a failed sensing of a vehicle at a hub or link.

⋄⋄ Additional precautionary measures may be taken.
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9.2.4. Scripts

• By a scriptδ we shall mean

⋄⋄ a usually syntactic text which

⋄⋄ describes as set of actions

⋄⋄ expected to be taken by human actors of a system,

⋄⋄ including the assumptions under which

⋄⋄ these actions, or alternatives are to be taken.
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Example: 67 Pipeline System Scripts.

• We refer to Example 49.

⋄⋄ When closing a valve somewhere along a route

◦◦ all pumps upstream from the valve must first be shut down.

⋄⋄ Similarly when starting a pump somewhere along a route

◦◦ all valves downstream from the pump must first be opened.

⋄⋄ For a specific pipeline net this gives rise to a number of scripts,
basically one for each pump and valve action.
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9.2.5. Organisation & Management
9.2.5.1 Organisation

• By organisationδ we shall mean

⋄⋄ a partitioning of

◦◦ parts,

◦◦ actions and

◦◦ behaviours.

Example: 68 Tollroad System Organisation.

• We refer to Sect. 8.2.4 (Slides 400–410).

⋄⋄ A simplest reasonable organisation is

◦◦ the set of links and hubs, including their sensors,

◦◦ and the monitor.
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9.2.5.2 Management

• By managementδ we shall mean

⋄⋄ a partitioning of human staff

⋄⋄ into possibly a hierarchy

⋄⋄ strategy, tactics and operational managers,

⋄⋄ each taking care of the monitoring and control

⋄⋄ of the rules & regulations for

⋄⋄ decreasing size sets of organisation partitions.
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Example: 69 Tollroad System Management.

• We refer to Sect. 8.2.4 (Slides 400–410).

⋄⋄ There is one strategic management structure for up to several
tollroad systems.

◦◦ It is to be commonly described wrt., for example,

∗ policies of fixed or varying fee structures; etcetera.

⋄⋄ In the case of tollroad systems it seems reasonable to also have
just one tactical management structure.

◦◦ It is to be commonly described wrt., for example,

∗ when to invoke one from a set of fee structures; etcetera.

⋄⋄ Etcetera.
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9.2.6. Human Behaviour

• By human behaviourδ we shall mean

⋄⋄ the sometimes diligent,

⋄⋄ sometimes sloppy,

⋄⋄ sometimes delinquent, or

⋄⋄ sometimes outright criminal

carrying out of actions and behaviours of the domain.

• We omit giving examples.
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9.3. What Needs More Research

• more to come

9.3.1. Modelling Discrete & Continuous Domains

• more to come

9.3.2. Domain Types and Signatures Form Galois Connections

• We plan, in the Fall of 2012, to study

⋄⋄ whether an altogether different treatment of

⋄⋄ endurant domain entity types and

⋄⋄ perdurant domain entity signatures

⋄⋄ can illuminate the veracity of the title of this section.

9.3.3. A Theory of Domain Facets ?

• We refer to Sect. 9.2. more to come

9.3.4. Other Issues

• more to come
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9.4. What Have We Achieved

• We claim that there are four major contributions having been
lectured upon:

⋄⋄ (i) strongly hinting that domain types and signatures form Galois
connections,

⋄⋄ (ii) the separation of domain engineering from requirements
engineering,

⋄⋄ (iii) the separate treatment of domain science & engineering:

◦◦ as “free-standing” with respect, ultimately, to computer
science,

◦◦ and endowed with quite a number of domain analysis principles
and domain description principles; and
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⋄⋄ (iv) the identification of a number of techniques

◦◦ for “deriving” significant fragments of requirements
prescriptions from domain descriptions —

◦◦ where we consider this whole relation between domain
engineering and requirements engineering to be novel.

• Yes, we really do consider the possibility of a systematic

⋄⋄ ‘derivation’ of significant fragments of requirements prescriptions
from domain descriptions

⋄⋄ to cast a different light on requirements engineering.
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• What we have not shown in this seminar is

⋄⋄ the concept of domain facets;

⋄⋄ this concept is dealt with in [dines:facs:2008] —

⋄⋄ but more work has to be done to give a firm theoretical
understanding of domain facets of

◦◦ domain intrinsics,

◦◦ domain support technology,

◦◦ domain scripts,

◦◦ domain rules and regulations,

◦◦ domain management and
organisation, and

◦◦ human domainbehaviour.

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29 478 Domain Science & Engineering



479
9. Conclusion 9.5. General Remarks

9.5. General Remarks

• Perhaps belaboring the point:

⋄⋄ one can pursue creating and studying domain descriptions

⋄⋄ without subsequently aiming at requirements development,

⋄⋄ let alone software design.

• That is, domain descriptions

⋄⋄ can be seen as

◦◦ “free-standing”,

◦◦ of their “own right”,

◦◦ useful in simply just understanding

◦◦ domains in which humans act.
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• Just like it is deemed useful

⋄⋄ that we study “Mother Nature”,

⋄⋄ the physical world around us,

⋄⋄ given before humans “arrived”;

• so we think that

⋄⋄ there should be concerted efforts to study and create domain
models,

⋄⋄ for use in

◦◦ studying “our man-made domains of discourses”;

◦◦ possibly proving laws about these domains;

◦◦ teaching, from early on, in middle-school, the domains in
which the middle-school students are to be surrounded by;

◦◦ etcetera

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29 480 Domain Science & Engineering



481
9. Conclusion 9.5. General Remarks

• How far must one formalise such domain descriptions ?

⋄⋄ Well, enough, so that possible laws can be mathematically
proved.

⋄⋄ Recall that domain descriptions usually will or must be developed
by domain researchers — not necessarily domain engineers —

◦◦ in research centres, say universities,

◦◦ where one also studies physics.
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⋄⋄ And, when we base requirements development on domain
descriptions,

◦◦ as we indeed advocate,

◦◦ then the requirements engineers

◦◦ must understand the formal domain descriptions,

◦◦ that is, be able to perform formal

∗ domain projection,

∗ domain instantiation,

∗ domain determination,

∗ domain extension,

etcetera.
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• This is similar to the situation in classical engineering

⋄⋄ which rely on the sciences of physics,

⋄⋄ and where, for example,

◦◦ Bernoulli’s equations,

◦◦ Navier-Stokes equations,

◦◦ Maxwell’s equations,

◦◦ etcetera

⋄⋄ were developed by physicists and mathematicians,

⋄⋄ but are used, daily, by engineers:

◦◦ read and understood,

◦◦ massaged into further differential equations, etcetera,

◦◦ in order to calculate (predict, determine values), etc.
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• Nobody would hire non-skilled labour

⋄⋄ for the engineering development of airplane designs

◦◦ unless that “labourer” was skilled in Navier-Stokes equations,

or

⋄⋄ for the design of mobile telephony transmission towers

◦◦ unless that person was skilled in Maxwell’s equations.
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• So we must expect a future, we predict,

⋄⋄ where a subset of the software engineering candidates from
universities

◦◦ are highly skilled in the development of

∗ formal domain descriptions

∗ formal requirements prescriptions

⋄⋄ in at least one domain, such as

◦◦ transportation, for example,

∗ air traffic,

∗ railway systems,

∗ road traffic and

∗ shipping;

or

◦◦ manufacturing,

◦◦ services (health care, public administration, etc.),

◦◦ financial industries, or the like.

A Precursor for Requirements Engineering 485 c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29



486 9. Conclusion 9.6. Acknowledgements

9.6. Acknowledgements

• I thank the tutorial organisers of the FM 2012 event
for accepting my Dec. 31. 2011 tutorial proposal.

• I thank that part of participants

⋄⋄ who first met up for this tutorial this morning (Tuesday 28 August, 2012)

⋄⋄ to have remained in this room for most, if not all of the time.

• I thank colleagues and PhD students around Europe

⋄⋄ for having listened to previous,

⋄⋄ somewhat less polished versions of this seminar.

⋄⋄ I in particular thank Dr. Magne Haveraaen
of the University of Bergen for providing an important step
in the development of the present material.

• And I thank my wife

⋄⋄ for her patience during the spring and summer of 2012

⋄⋄ where I ought to have been tending to the garden, etc. !

c© Dines Bjørner 2012, DTU Informatics, Techn.Univ.of Denmark – September 5, 2012: 11:29 486 Domain Science & Engineering



486

Thanks for Today — Many Thanks !
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