
Domain Engineering

A Basis for Safety Critical Software

Dines Bjørner

Fredsvej 11, DK-2840 Holte, Danmark
E–Mail: bjorner@gmail.com, URL: www.imm.dtu.dk/˜dibj

Abstract

Before software can be designed we must have a rea-
sonable grasp of the requirements that the software
is supposed to fulfil. And before requirements can
be prescribed we must have a reasonable grasp of the
“underlying” application domain. Domain engineer-
ing now becomes a software engineering development
phase in which a precise description, desirably for-
mal, of the domain within which the target software
is to be embedded. Requirements engineering then
becomes a phase of software engineering in which
one systematically derives requirements prescriptions
from the domain description. (Software design is then
the software engineering phase which (also) results in
code.) We illustrate the first element, D, of this
triptych (D,R,S) by an example, Sect. 2, in which
we show a description of a pipeline domain where,
for example, the operations of pumps and valves are
safety critical. We then, Sects. 3–5, summarise the
methodological stages and steps of domain engineer-
ing. We finally weave considerations of domain safety
criticality1 into a section (Sect. 5) on domain facets.
We believe this aspect of safety criticality is new:
the connection of issues of safety criticality to do-
main engineering. The study presented here need be
deepened. Similar connections need be made to re-
quirements engineering such as it can be “derived”
from domain engineering (Bjørner 2008), and to the
related software design. That is, three distinct “lay-
ers” of safety engineering.

1 Introduction

1.1 A Software Development Triptych

Before software can be designed we must have a rea-
sonable grasp of the requirements that the software
is supposed to fulfil. And before requirements can
be prescribed we must have a reasonable grasp of
the “underlying” application domain. Domain engin-
eering now becomes a software engineering develop-
ment phase in which a precise description, desirably
formal, of the domain within which the target soft-
ware is to be embedded. Requirements engineering
then becomes a phase of software engineering in which
one systematically derives requirements prescriptions
from the domain description — carving out and ex-
tending, as it were, a subset of those domain prop-

Copyright c©2014, Australian Computer Society, Inc. This
paper appeared at the Australian System Safety Conference
(ASSC 2014), held in Melbourne 28-30 May, 2014. Conferences
in Research and Practice in Information Technology (CRPIT),
Vol. 156, Ed. Tony Cant. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

1– as opposed to ‘system safety criticality’

erties that are computable and for which computing
support is required. Software design is then the soft-
ware engineering phase which results in code (and
further documentation). .

1.2 Domain Description

To us a domain description is a set of pairs of narra-
tive, that is, informal, and formal description texts.
The narrative texts should go hand-in-hand with the
formal texts; that is, the narrative should be “a
reading” of the formalisation; and the formalisation
should be an abstraction that emphasises properties
of the domain, not some intricate, for example, “ex-
ecutable” model of the domain.2 These “pairings”
will be amply illustrated in Sect. 2. The meaning of
a domain description is basically a heterogeneous al-
gebra3, that is: sets of typed entities and a set of
typed operations over these. The formalisation lan-
guage is here the RAISE (George et al. 1995) Spec-
ification Language RSL (George et al. 1992); but it
could be any of, for example, Alloy (Jackson 2006),
Event B (Abrial 2009a), VDM-SL (Bjørner and Jones
1978, 1982, Fitzgerald and Larsen 1998) or Z (Wood-
cock and Davies 1996). That is, the main structure of
the description of the domain endurants, such as we
shall advocate it, may, by some readers, be thought of
as an ontology (Benjamin and Fensel 1998, Fox 2000).
But our concept a domain description is a much wider
concept of ontology than covered by (Benjamin and
Fensel 1998); it is more in line with (Mellor and Oliver
1997, Fox 2000).

1.3 A Domain Description ”Ontology”

We shall, in Sect. 2, give a fairly large example, ap-
proximately 3.5 Pages, of a postulated domain of (say,
oil or gas) pipelines; the focus will be on endurants:
the observable entities that endure, their mereology,
that is, how they relate, and their attributes. Per-
durants: actions, events and behaviours will be very
briefly mentioned.

We shall then, in Sect. 3 on the background of
this substantial example, outline the basic principles,
techniques and tools for describing domains — focus-
ing only on endurants.

The mathematical structure that is built up when
describing a domain hinges on the following elements:
there are entities; entities are either endurants or per-
durants; endurants are either discrete or continuous;
discrete endurants are also called parts; continuous
endurants are also called materials; parts are either

2Domain descriptions are usually not deiscriptions of com-
putable phenomena.

3This is just one of the ways in which a domain description
differs from an ontology.

atomic or composite; parts have unique identifiers,
mereologies and attributes; materials have attributes;
so entities are what we see and unique identifiers,
mereologies and attributes are entity qualities. A do-
main description is then composed from one or more
part and material descriptions; descriptions of unique
part identifiers, part mereologies and part attributes.
This structure that, to some, may remind them of an
“upper ontology.” Different domain descriptions all
basically have the same “upper ontology.”

1.4 A Method: its Principles, Tools and Tech-
niques

By a method we shall understand a set of principles
of selecting and applying a number of techniques
and tools, for analysing and constructing an artefact.
By a formal method we shall understand a set of a
method whose techniques and tools can be given a
mathematical basis that enable formal reasoning.

The principles of our approach to domain analy-
sis and description are embodies in the above “up-
per ontology”. The tools of analysis are embodied
in a number of domain analysis prompts. Analysis
prompts form a comprehensive and small set of pred-
icates mentally “executed” by the domain analyser.
The tools of description are embodied in a number
of domain description prompts. Description prompts
form a comprehensive and small set of RSL-text gen-
erating functions mentally “executed” by the domain
describer. The domain analyser and describer is usu-
ally one and the same person the domain engineer
cum scientist. The analysis and description tech-
niques are outlined in the texts of Sects. 3 and 5. We
claim that this formulation of the concept of method
and formal method, their endowment with prompt
tools, and the underlying techniques is new.

1.5 Safety Criticality

In Sect. 4 we shall review notions of safety critical-
ity: safety, failure, error, fault, hazard and risk.
We emphasize that we are focusing sôlely on issues of
domain safety. That is, we are not dealing with sys-
tem safety where we understand the term ‘system’
to designate a composition of software and hardware
that is being designed in order to solve problems, in-
cluding such which may aris from issues of domain
safety. Finally, in Sect. 5, we shall detail the notion
of domain facets. The various domain facets some-
how reflect domain views — of logical or algebraic
nature — views that are shared across stake-holder
groups, but are otherwise clearly separable. It is in
connection with the summary explanation of respec-
tive domain facets that we identify respective faults
and hazards. The presentation is brief. We refer to
(Bjørner 2010a) for a more thorough coverage of the
notion of domain facets.

1.6 Contribution

We consider the following ideas new: the idea of de-
scribing domains before prescribing requirements (but
see (Bjørner 2006c, Part IV, 2006), (Bjørner 2007,
2007), (Bjørner 2010a, written in 2007, published in
2010), (Bjørner 2008, 2008), (Bjørner 2010b, 2011a,
2010), and (Bjørner 2014b, 2014)), and the idea of
enumerating faults and hazards as related to individ-
ual facets. For the latter “discovery” we thank the
organisers of ASSC 2014, notably Prof. Clive Victor
Boughton.

2 An Example

Our example is an abstraction of pipeline system en-
durants. The presentation of the example reflects
a rigorous use of the domain analysis & description
method outlined in Sect. 3, but is relaxed with re-
spect to not showing all – one could say intermedi-
ate – analysis steps and description texts, but fol-
lowing stoichiometry ideas from chemistry makes a
few short-cuts here and there. The use of the “stoi-
chiometrical” reductions, usually skipping intermedi-
ate endurant sorts, ought properly be justified in each
step — and such is adviced in proper, industry-scale
analyses & descriptions.

To guide your intuition with respect to what a
pipeline system might be we suggest some diagrams
and some pictures. See Figs. 1 and 2.

Pump

Valve

Join

Fork

Pipe

Join
Fork
Pump
Valve

Units

Connection

Oil Well

Oil (Depot) Sink

Figure 1: Pipelines. Flow is right-to-left in left figure,
but left-to-right in right figure.

The description only covers a few aspects of en-
durants.

Figure 2: Pump, pipe and valve pipeline units

2.1 Parts

1. A pipeline system contains a set of pipeline units
and a pipeline system monitor.

2. The well-formedness of a pipeline system de-
pends on its mereology (cf. Sect. 2.2.3) and the
routing of its pipes (cf. Sect. 2.3.2).

3. A pipeline unit is either a well, a pipe, a pump,
a valve, a fork, a join, or a sink unit.

4. We consider all these units to be distinguishable,
i.e., the set of wells, the set pipe, etc., the set of
sinks, to be disjoint.

type
1. PLS′, U, M4

2. PLS = {| pls:PLS′
•wf PLS(pls) |}5

value
2. wf PLS: PLS′ → Bool6

2. wf PLS(pls) ≡
2. wf Mereology(pls) ∧ wf Routes(pls)7

1. obs Us: PLS → U-set8

1. obs M: PLS → M9

type
3. U = We | Pi | Pu | Va | Fo | Jo | Si10

4. We :: Well11

4. Pi :: Pipe
4. Pu :: Pump
4. Va :: Valv
4. Fo :: Fork
4. Jo :: Join
4. Si :: Sink

2.2 Part Identification and Mereology

2.2.1 Unique Identification.

5. Each pipeline unit is uniquely distinguished by
its unique unit identifier.

type
5. UI

value
5. uid UI: U → UI12

axiom
5. ∀ pls:PLS,u,u′:U•

5. {u,u′}⊆obs Us(pls)⇒
5. u6=u′⇒uid UI(u)6=uid UI(u′)13

2.2.2 Unique Identifiers.

6. From a pipeline system one can observe the set
of all unique unit identifiers.

value
6. xtr UIs: PLS → UI-set14

6. xtr UIs(pls) ≡ {uid UI(u)|u:U•u ∈ obs Us(pls)}

7. We can prove that the number of unique unit
identifiers of a pipeline system equals that of the
units of that system.

theorem:
7. ∀ pls:PLS•card obs Us(pl)=card xtr UIs(pls)

2.2.3 Mereology.

8. Each unit is connected to zero, one or two other
existing (formula line 8x.) input units and zero,
one or two other existing (formula line 8x.) out-
put units as follows:

a A well unit is connected to exactly one out-
put unit (and, hence, has no “input”).

b A pipe unit is connected to exactly one in-
put unit and one output unit.

4PLS′, US, U and M are being defined as sorts, i.e., sets of en-
durant entities.

5PLS is the subtype (i.e., subset) of well-formed PLS entities.
6wf PLS is the PLS well-formedness predicate whose signature

(i.e., type) is that of a function from PLS′ entities to truth values
in Bool.

7wf PLS(pls) is defined to be the conjunction of the well-
formedness of the mereology of pls and pls defining only well-formed
routes.

8obs US is an observer function which maps plss into sets of units.
9obs M is an observer function which maps plss into a monitor.

10U is defined to be the discriminated (::) union (|) of sorts We,
Pi, Pu, Va, Fo, Jo and Si.

11We is discriminated from Pi, Pu, Va, Fo, Jo and Si by the con-
structor: :: mkWell, etcetera.

12uid UI is the unique identifier observer function for parts u:U.
It is total. uid UI(u) yields the unique identifier of u.

13The axiom expresses that for all pipeline systems all two dis-
tinct units, u, u′ of such pipeline systems have distinct unique iden-
tifiers.

14xtr UIs is a total function. It extracts all unique unit identifiers
of a pipeline system.

c A pump unit is connected to exactly one
input unit and one output unit.

d A valve is connected to exactly one input
unit and one output unit.

e A fork is connected to exactly one input unit
and two distinct output units.

f A join is connected to exactly two distinct
input units and one output unit.

g A sink is connected to exactly one input unit
(and, hence, has no “output”).

type
8. MER = UI-set × UI-set

value
8. mereo U: U → MER

axiom
8. wf Mereology: PLS → Bool
8. wf Mereology(pls) ≡
8. ∀ u:U•u ∈ obs Us(pls)⇒
8x. let (iuis,ouis) = mereo U(u)15 in
8x. iuis ∪ ouis ⊆ xtr UIs(pls)16∧
8. case (u,(card iuis,card ouis)) of17

8a (mk We(we),(0,1)) → true,18

8b (mk Pi(pi),(1,1)) → true,19

8c (mk Pu(pu),(1,1)) → true,
8d (mk Va(va),(1,1)) → true,
8e (mk Fo(fo),(1,2)) → true,20

8f (mk Jo(jo),(2,1)) → true,21

8g (mk Si(si),(1,0)) → true,
8. → false end end

2.3 Part Concepts

An aspect of domain analysis & description that
was not covered in Sects. 2.1–2.2 was that of de-
rived concepts. Example pipeline concepts are routes,
acyclic or cyclic, circular, etcetera. In expressing well-
formedness of pipeline systems one often has to de-
velop subsidiary concepts such as these by means of
which well-formedness is then expressed.

2.3.1 Pipe Routes.

9. A route (of a pipeline system) is a sequence of
connected units (of the pipeline system).

10. A route descriptor is a sequence of unit identifiers
and the connected units of a route (of a pipeline
system).

type
9. R′ = Uω23

9. R = {| r:Route′•wf Route(r) |}
10. RD = UIω

axiom
10. ∀ rd:RD • ∃ r:R•rd=descriptor(r)

value
10. descriptor: R → RD24

10. descriptor(r) ≡ 〈uid UI(r[i])|i:Nat•1≤i≤len r〉

15The let clause names the pair resulting from mereo U(u).
16The input and out unique identifiers are a subset of all pipe

line unit unique identifiers.
17This case..pattern..end clause “sequentially matches” the

pattern “against” the →.. clauses.
18Wells have 0 input and 1 output.
19Pipes, Pumps and Valves have 1 input and 1 out.
20Forks have 1 input and 2 outputs.
21Joins have 2 input and 1 output.
22Sinks have 1 input and 0 output.

11. Two units are adjacent if the output unit iden-
tifiers of one shares a unique unit identifier with
the input identifiers of the other.

value
11. adjacent: U × U → Bool
11. adjacent(u,u′) ≡
11. let (,ouis)=mereo U(u),(iuis,)=mereo U(u′) in
11. ouis ∩ iuis 6= {} end

12. Given a pipeline system, pls, one can identify the
(possibly infinite) set of (possibly infinite) routes
of that pipeline system.

a The empty sequence, 〈〉, is a route of pls.

b Let u, u′ be any units of pls, such that an
output unit identifier of u is the same as an
input unit identifier of u′ then 〈u, u′〉 is a
route of pls.

c If r and r′ are routes of pls such that the last
element of r is the same as the first element
of r′, then r̂tlr′ is a route of pls.

d No sequence of units is a route unless it fol-
lows from a finite (or an infinite) number
of applications of the basis and induction
clauses of Items 12a–12c.

value
12. Routes: PLS → RD-infset25

12. Routes(pls) ≡
12a. let rs = 〈〉 ∪
12b. {〈uid UI(u),uid UI(u′)〉|u,u′:U•{u,u′}
12b. ⊆ obs Us(pls) ∧ adjacent(u,u′)}
12c. ∪ {r̂tl r′|r,r′:R•{r,r′}⊆rs}26

12d. in rs27 end

2.3.2 Well-formed Routes.

13. A route is acyclic if no two route positions reveal
the same unique unit identifier.

value
13. acyclic Route: R → Bool
13. acyclic Route(r) ≡
13. ∼∃ i,j:Nat•{i,j}⊆inds r ∧ i6=j ∧ r[i]=r[j]

14. A pipeline system is well-formed if none of its
routes are circular (and all of its routes embedded
in well-to-sink routes).

value
14. wf Routes: PLS → Bool
14. wf Routes(pls) ≡
14. non circular(pls) ∧
14. embedded in well to sink Routes(pls)

14. non circular PLS: PLS → Bool
14. non circular PLS(pls) ≡
14. ∀ r:R•r ∈ routes(p)∧acyclic Route(r)

23Uω denotes the class of finite and infinite length sequences of
U elements.

24The descriptor function converts a finite or infinite length se-
quence of U elements to a “corresponding length” UI elements.

25The Routes function generates the potentially infinite set of
routes of a pipe line system.

26The let rs = ... clause is defined recursively and (cf. Foot-
note 27).

27rs is the smallest set which satisfies the let rs = ... equation..

15. We define well-formedness in terms of well-to-
sink routes, i.e., routes which start with a well
unit and end with a sink unit.

value
15. well to sink Routes: PLS → R-set
15. well to sink Routes(pls) ≡
15. let rs = Routes(pls) in
15. {r|r:R•r ∈ rs ∧
15. is We(r[1]) ∧ is Si(r[len r])} end

16. A pipeline system is well-formed if all of its routes
are embedded in well-to-sink routes.

16. embedded in well to sink Routes: PLS → Bool
16. embedded in well to sink Routes(pls) ≡
16. let wsrs = well to sink Routes(pls) in
16. ∀ r:R • r ∈ Routes(pls) ⇒
16. ∃ r′:R,i,j:Nat •

16. r′ ∈ wsrs
16. ∧ {i,j}⊆inds r′∧i≤j
16. ∧ r = 〈r′[k]|k:Nat•i≤k≤j〉 end

2.3.3 Embedded Routes.

17. For every route we can define the set of all its
embedded routes.

value
17. embedded Routes: R → R-set
17. embedded Routes(r) ≡
17. {〈r[k]|k:Nat•i≤k≤j〉
17. | i,j:Nat• i {i,j}⊆inds(r) ∧ i≤j}

2.3.4 A Theorem.

18. The following theorem is conjectured:

a the set of all routes (of the pipeline system)

b is the set of all well-to-sink routes (of a
pipeline system) and

c all their embedded routes

theorem:
18. ∀ pls:PLS •

18. let rs = Routes(pls),
18. wsrs = well to sink Routes(pls) in
18a. rs =
18b. wsrs ∪
18c. ∪ {{r′|r′:R • r′ ∈ embedded Routes(r′′)}
18c. | r′′:R • r′′ ∈ wsrs}
17. end

2.4 Materials

19. The only material of concern to pipelines is the
gas28 or liquid29 which the pipes transport30.

type
19. GoL

value
19. obs GoL: U → GoL

28Gaseous materials include: air, gas, etc.
29Liquid materials include water, oil, etc.
30The description of this paper is relevant only to gas or oil

pipelines.

2.5 Attributes

2.5.1 Part Attributes.

20. These are some attribute types:

a estimated current well capacity (barrels of
oil, etc.),

b pipe length,

c current pump height,

d current valve open/close status and

e flow (e.g., volume/second).

type
20a. WellCap
20b. LEN
20c. Height
20d. ValSta == open | close
20e. Flow

21. Flows can be added (also distributively) and sub-
tracted, and

22. flows can be compared.

value
21. ⊕,⊖: Flow×Flow → Flow
21. ⊕: Flow-set → Flow
22. <,≤,=,6=,≥,>: Flow × Flow → Bool

23. Properties of pipeline units include

a estimated current well capacity (barrels of
oil, etc.),

b pipe length,

c current pump height,

d current valve open/close status,

e current Laminar in-flow at unit input,

f current Laminar in-flow leak at unit input,

g maximum Laminar guaranteed in-flow leak
at unit input,

h current Laminar leak unit interior,

i current Laminar flow in unit interior,

j maximum Laminar guaranteed flow in unit
interior,

k current Laminar out-flow at unit output,

l current Laminar out-flow leak at unit out-
put,

m maximum guaranteed Laminar out-flow
leak at unit output.

value
23a. attr WellCap: We → WellCap
23b. attr LEN: Pi → LEN
23c. attr Height: Pu → Height
23d. attr ValSta: Va → VaSta
23e. attr In FlowL: U → UI → Flow
23f. attr In LeakL: U → UI → Flow
23g. attr Max In LeakL: U → UI → Flow
23h. attr body FlowL: U → Flow
23i. attr body LeakL: U → Flow
23j. attr Max FlowL: U → Flow
23k. attr Out FlowL: U → UI → Flow
23l. attr Out LeakL: U → UI → Flow
23m. attr Max Out LeakL: U → UI → Flow

2.5.2 Flow Laws.

24. “What flows in, flows out !”. For Laminar flows:
for any non-well and non-sink unit the sums of
input leaks and in-flows equals the sums of unit
and output leaks and out-flows.

Law:
24. ∀ u:U\We\Si •

24. sum in leaks(u) ⊕ sum in flows(u) =
24. attr body LeakL(u) ⊕
24. sum out leaks(u) ⊕ sum out flows(u)

value

sum in leaks: U → Flow
sum in leaks(u) ≡

let (iuis,) = mereo U(u) in

⊕ {attr In LeakL(u)(ui)|ui:UI•ui ∈ iuis} end

sum in flows: U → Flow
sum in flows(u) ≡

let (iuis,) = mereo U(u) in

⊕ {attr In FlowL(u)(ui)|ui:UI•ui ∈ iuis} end

sum out leaks: U → Flow
sum out leaks(u) ≡

let (,ouis) = mereo U(u) in

⊕ {attr Out LeakL(u)(ui)|ui:UI•ui ∈ ouis} end

sum out flows: U → Flow
sum out flows(u) ≡

let (,ouis) = mereo U(u) in

⊕ {attr Out LeakL(u)(ui)|ui:UI•ui ∈ ouis} end

25. “What flows out, flows in !”. For Laminar flows:
for any adjacent pairs of units the output flow at
one unit connection equals the sum of adjacent
unit leak and in-flow at that connection.

Law:
25. ∀ u,u′:U•adjacent(u,u′) ⇒
25. let (,ouis) = mereo U(u),
25. (iuis′,) = mereo U(u′) in
25. uid U(u′) ∈ ouis ∧ uid U(u) ∈ iuis′ ∧
25. attr Out FlowL(u)(uid U(u′)) =
25. attr In LeakL(u)(uid U(u))
25. ⊕ attr In FlowL(u′)(uid U(u)) end

2.5.3 Open Routes.

26. A route, r, is open

a if all valves, v, of the route are open and

b if all pumps, p, of the route are pumping.

value
26. is open: R → Bool
26. is open(r) ≡
26a. ∀ mkPu(p):Pu • mkPu(p) ∈ elems r
26a. ⇒ is pumping(p) ∧
26b. ∀ mkVa(v):Va • mkVa(v) ∈ elems r
26b. ⇒ is open(v)

2.6 Domain Perdurants

2.6.1 Actions.

We shall not formalise any specific actions. Informal
examples of actions are: opening and closing a well,
start and stop pumping, open and close valves, open-
ing and closing a sink and sense current unit flow.

2.6.2 Events.

We shall not formalise any specific events. Infor-
mal examples of events are: empty well, full sink,
start pumping signal to pump with no liquid mate-
rial, pump ignores start/stop pumping signal, valve
ignores opening/closing signal, excessive to catas-
trophic unit leak, and unit fire or explosion.

2.6.3 Behaviours.

We shall not formalise any specific behaviours. Infor-
mal examples of behaviours are: start pumping and
opening up valves across a pipeline system, and stop
pumping and closing down valves across a pipeline
system.

3 Basic Domain Description

In this section and in Sect. 5 we shall survey basic
principles of describing, respectively, domain intrin-
sics and other domain facets.

By an entity we shall understand a phenomenon
that can be observed, i.e., be seen or touched by hu-
mans, or that can be conceived as an abstraction of an
entity •.

Example: Pipeline systems, units and materials
are entities (Page 2, Item 1.) .

The method can thus be said to provide the do-
main analysis prompt: is entity where is enti-
ty(θ) holds if θ is an entity.

A domain is characterised by its observable, i.e.,
manifest entities and their qualities •.

By a quality of an entity we shall understand a
property that can be given a name and whose value
can be precisely measured by physical instruments or
otherwise identified •.

Example: Unique identifiers (Page 3, Item 5.),
mereology (Page 3, Item 8.)and the well capacity
(Page 5, Item 20a.), pipe length (Page 5, Item 20b.),
current pump height (Page 5, Item 20c.), current
valve open/close status (Page 5, Item 20d.) and flow
(Page 5, Item20e.) attributes are qualities .

By a sort (or type – which we take to be the same)
we shall understand the largest set of entities all of
which have the same qualities •.

By an endurant entity (or just, an endurant)
we shall understand anything that can be observed
or conceived, as a “complete thing”, at no matter
which given snapshot of time. Thus the method pro-
vides a domain analysis prompt: is endurant where
is endurant(e) holds if entity e is an endurant.

By a perdurant entity (or just, an perdurant)
we shall understand an entity for which only a frag-
ment exists if we look at or touch them at any given
snapshot in time, that is, were we to freeze time we
would only see or touch a fragment of the perdu-
rant •. Thus the method provides a domain analysis
prompt: is perdurant where is perdurant(e) holds
if entity e is a perdurant.

By a discrete endurant we shall understand
something which is separate or distinct in form
or concept, consisting of distinct or separate parts
•. Thus the method provides a domain analysis prompt:
is discrete where is discrete(e) holds if entity e
is discrete.

By a continuous endurant we shall understand
something which is prolonged without interruption, in
an unbroken series or pattern •. We use the term ma-
terial for continuous endurants •. Thus the method
provides a domain analysis prompt: is continuous

where is continuous(e) holds if entity e is a contin-
uous entity.

3.1 Endurant Entities

We distinguish between endurant and perdurant en-
tities.

Parts and Materials: The manifest entities, i.e., the
endurants, are called parts, respectively materials.
We use the term part for discrete endurants, that
is: is part(p)≡ is endurant(p)∧is discrete(p)
•. We use the term material for continuous endurants
•.

Discrete endurants are either atomic or are com-
posite.

By an atomic endurant we shall understand a dis-
crete endurant which in a given context, is deemed
to not consist of meaningful, separately observable
proper sub-parts •. The method can thus be said to
provide the domain analysis prompt: is atomic where
is atomic(p) holds if p is an atomic part.

Example: Pipeline units, U, and the monitor, M,
are considered atomic .

By a composite endurant we shall understand a
discrete endurant which in a given context, is deemed
to indeed consist of meaningful, separately observ-
able proper sub-parts •. The method can thus be said
to provide the domain analysis prompt: is composite
where is composite(p) holds if p is a composite part.

Example: The pipeline system, PLS, and the set,
Us, of pipeline units are considered composite entities
.

3.1.1 Part Observers.

From atomic parts we cannot observe any sub-parts.
But from composite parts we can. For composite
parts, p, the domain description prompt observe -
part sorts(p) yields some formal description text ac-
cording to the following schema:

type P1, P2, ..., Pn;31

value obs P1: P→P1,
obs P2: P→P2,
...,
obs Pn: P→Pn;32

where sort names P1, P2, ..., Pn are chosen by the
domain analyser, must denote disjoint sorts, and may
have been defined already, but not recursively A proof
obligation may need be discharged to secure disjoint-
ness of sorts.

Example: Three formula lines (Page 2, Items 1.) il-
lustrate the basic sorts (PLS′, US, U, M) and observers
(obs US, obs M) of pipeline systems .

3.1.2 Sort Models.

A part sort is an abstract type. Some part sorts, P,
may have a concrete type model, T. Here we con-
sider only two such models: one model is as sets
of parts of sort A: T = A-set; the other model
has parts being of either of two or more alternative,
disjoint sorts: T=P1|P2|...|PN. The domain analysis
prompt: has concrete type(p) holds if part p has
a concrete type. In this case the domain description
prompt observe concrete type(p) yields some for-
mal description text according to the following schema,

* either
31This RSL type clause defines P1, P2, ..., Pn to be sorts.
32This RSL value clause defines n function values. All from type

P into some type Pi.

type
P1, P2, ..., PN,
T = E(P1,P2,...,PN)33

value
obs T: P → T34

where E(...) is some type expression over part
sorts and where P1,P2,...,PN are either (new)
part sorts or are auxiliary (abstract or concrete)
types35;

* or:

type
T = P1 | P2 | ... | PN36

P1, P2, ..., Pn

P1 :: mkP1(P1),
P2 :: mkP2(P2),
...,
PN :: mkPN(Pn) 37

value
obs T: P → T38

Example: obs T: P → T is exemplified by obs Us: PS
→ U-set (Page 2, Item1.), T = P1 | P2 | ... | PN by
We | Pu | Va | Fo | Jo | Si (Page 2, Item 3.) and P1 ::
mkP1(P1), P2 :: mkP2(P2), ..., PN :: mkPN(Pn) by
(Page 2, Item4.) .

3.1.3 Material Observers.

Some parts p of sort P may contain material. The do-
main analysis prompt has material(p) holds if com-
posite part p contains one or more materials. The do-
main description prompt observe material sorts(p)
yields some formal description text according to the
following schema:

type M1, M2, ..., Mm;
value obs M1: P → M1, obs M2: P → M2,
..., obs Mm: P → Mm;

where values, mi, of type Mi satisfy is material(m)
for all i; and where M1, M2, ..., Mm must be disjoint
sorts.

Example: We refer to Sect. 2.4 (Page 4, Item 19.)
.

3.2 Endurant Qualities

We have already, above, treated the following prop-
erties of endurants: is discrete, is continuous,
is atomic, is composite and has material. We
may think of those properties as external qualities. In
contrast we may consider the following internal quali-
ties: has unique identifier (parts), has mereolo-
gy (parts) and has attributes (parts and materi-
als).

33The concrete type definition T = E(P1,P2,...,PN) define type T
to be the set of elements of the type expressed by type expression
E(P1,P2,...,PN).

34obs T is a function from any element of P to some element of
T.

35The domain analysis prompt: sorts of(t) yields a subset of
{P1,P2,...,PN}.

36A|B is the union type of types A and B.
37Type definition A :: mkA(B) defines type A to be the set of

elements mkA(b) where b is any element of type B
38obs T is a function from any element of P to some element of

T.

3.2.1 Unique Part Identifiers.

Without loss of generality we can assume that every
part has a unique identifier39. A unique part identifier
(or just unique identifier) is a further undefined, ab-
stract quantity. If two parts are claimed to have the
same unique identifier then they are identical, that
is, their possible mereology and attributes are (also)
identical •. The domain description prompt: obser-
ve unique identifier(p) yields some formal descrip-
tion text according to the following schema:

type PI;
value uid P: P → PI;

Example: We refer to Page 3, Item 5. .

3.2.2 Part Mereology.

By mereology (Luschei 1962) we shall understand the
study, knowledge and practice of parts, their relations
to other parts and “the whole” •.

Part relations are such as: two or more parts being
connected, one part being embedded within another
part, and two or more parts sharing attributes.

The domain analysis prompt: has mereology(p)
holds if the part p is related to some others parts
(pa, pb, . . . , pc). The domain description prompt:
observe mereology(p) can then be invoked and
yields some formal description text according to the
following schema:

type MT = E(PIA,PIB,...,PIC);
value mereo P: P → MT;

where E(...) is some type expression over unique
identifier types of one or more part sorts. Mereolo-
gies are expressed in terms of structures of unique
part identifiers. Usually mereologies are constrained.
Constraints express that a mereology’s unique part
identifiers must indeed reference existing parts, but
also that these mereology identifiers “define” a proper
structuring of parts.

Example: We refer to Items 8.–8g. Pages 3–3 .

3.2.3 Part and Material Attributes.

Attributes are what really endows parts
with qualities. The external properties
is discrete,is continuous,is atomic,is compositehas material
are far from enough to distinguish one sort of parts
from another. Similarly with unique identifiers
and the mereology of parts. We therefore assume,
without loss of generality, that every part, whether
discrete or continuous, whether, when discrete,
atomic or composite, has at least one attribute.

By an endurant attribute, we shall understand
a property that is associated with an endurant e of
sort E, and if removed from endurant e, that en-
durant would no longer be endurant e (but may be
an endurant of some other sort E′); and where that
property itself has no physical extent (i.e., volume),
as the endurant may have, but may be measurable
by physical means •. The domain description prompt
observe attributes(p) yields some formal descrip-
tion text according to the following schema:

type A1, A2, ..., An;
value attr A1:P→A1,

attr A2:P→A2,
...,
attr An:P→An;

Example: We refer to Sect. 2.5 Pages 5–5 .

39That is, has unique identifier(p) for all parts p.

3.3 Perdurant Entities

We shall not cover the principles, tools and techniques
for “discovering”, analysing and describing domain
actions, events and behaviours to anywhere the de-
tail with which the “corresponding” principles, tools
and techniques were covered for endurants. But
we shall summarise one essence for the description of
perdurants.

There is a notion of state. Any composition of
parts having dynamic qualities can form a state. Dy-
namic qualities are qualities that may change. Exam-
ples of such qualities are the mereology of a part, and
part attributes whose value may change.

There is the notion of function signature. A func-
tion signature, f: A (→|

∼
→) R, gives a name, say f ,

to a function, expresses a type, say TA, of the argu-
ments of the function, expresses whether the function
is total (→) or partial (

∼
→), and expresses a type, say

TR, of the result of the function.
There is the notion of channels of synchronisa-

tion & communication between behaviours. Channels
have names, e.g., ch, chi, cho. Channel names appear
in the signature of behaviour functions: value b: A
→ in ch i out ch o R. in ch i indicates that behaviour
b may express willingness to communicate an input
message over channel chi; and out ch o indicates that
behaviour b may express an offer to communicate an
output message over channel cho.

There is a notion of function pre/post-conditions.
A function pre-condition is a predicate over argument
values. A function post-condition is a predicate over
argument and result values.

Action signatures include states, Σ, in both argu-
ments, A×Σ, and results, Σ: f: A×Σ→Σ; f denotes
a function in the function space A×Σ→Σ. Action
pre/post-conditions:

value
f(a,σ) as σ′;
pre: Pf (a,σ);
post: Qf (a,σ,σ′)

have predicates Pf and Qf delimit the value of f
within that function space.

Event signatures are typically predicates from
pairs of before and after states: e: Σ×Σ→Bool.
Event pre/post-conditions

value
e: Σ×Σ→Bool;
e(σ,σ′) ≡

Pe(σ) ∧ Qe(σ,σ′)

have predicates Pe and Qe delimit the value of e
within the Σ×Σ→Bool function space; Pe charac-
terises states leading to event e; Qe characterises
states, σ′, resulting from the event caused by σ.

In principle we can associate a behaviour with
every part of a domain. Parts, p, are charac-
terised by their unique identifiers, pi:PI and a state,
attrs:ATTRS. We shall, with no loss of generality,
assume part behaviours to be never-ending. The
unique part identifier, pi:PI, and its part mereology,
say {pi1,pi2,...,pin}, determine a number of channels
{chs[pi,pij]|j:{1,2,...,n}} able to communicate mes-
sages of type M. Behaviour signatures:

b: pi:PI×ATTR→in in chs out out chs Unit

then have input channel expressions in chs and out-
put channel expressions out chs be suitable predicates
over {chs[pi,pij]|j:{1,2,...,n}}. Unit designate that b
denote a never-ending process. We omit dealing with
behaviour pre-conditions and invariants.

4 Interlude

We have covered one aspect of the modelling of one set
of domain entities, the intrinsic facets of endurants.
For the modelling of perdurants we refer to (Bjørner
2010b, 2011a, 2014a). In the next section, Sect. 5, we
shall survey the modelling of further domain facets.
We shall accompany this survey to a survey of safety
issues. To do so in a reasonably coherent way we
need establish a few concepts: the safety notions of
failure, error and fault; the notion of stake-holder and
the notion of requirements.

4.1 Safety-related Concepts

Some characterisations are:

Safety: By safety, in the context of a domain being
dependable, we mean some measure of continuous de-
livery of service of either correct service, or incorrect
service after benign failure, that is: measure of time
to catastrophic failure.

Failure: A domain failure occurs when the delivered
service deviates from fulfilling the domain function,
the latter being what the domain is aimed at (Randell
2003).

Error: An error is that part of a domain state which
is liable to lead to subsequent failure. An error affecting
the service is an indication that a failure occurs or has
occurred (Randell 2003).

Fault: The adjudged (i.e., the ‘so-judged’) or hy-
pothesised cause of an error is a fault (Randell 2003).

Hazard: A hazard is any source of potential dam-
age, harm or adverse health effects on something or
someone under certain conditions at work. Hazards
are thus domain faults or are faults of the environ-
ment of the domain.

Risk: A risk is the chance or probability that a per-
son will be harmed or experience an adverse health
effect if exposed to a hazard. It may also apply to
situations with property or equipment loss.

4.2 Domain versus System Safety

We must reiterate that we are, in this paper, con-
cerned only with issues of domain safety. Usually
safety criticality is examined in the context of (new)
systems design. When considering domain safety is-
sues we are concerned with hazards of domain entities
without any consideration of whether these hazards
enter or do not enter into conceived systems.

4.3 Stake-holder

By a domain stake-holder we shall understand a per-
son, or a group of persons, “united” somehow in their
common interest in, or dependency on the domain;
or an institution, an enterprise, or a group of such,
(again) characterised (and, again, loosely) by their
common interest in, or dependency on the domain •.

Examples: The following are examples of pipeline
stake-holders: the owners of the pipeline, the oil or
gas companies using the pipeline, the pipeline man-
agers and workers, the owners and neighbours of the
lands occupied by the pipeline, the citizens possibly
worried about gas- or oil pollution, the state author-
ities regulating and overseeing pipelining, etcetera .

5 Domain Facets and Safety Criticality

5.1 Introductory Notions

By a domain facet we shall understand one amongst
a finite set of generic ways of analysing a domain:
a view of the domain, such that the different facets
cover conceptually different views, and such that
these views together cover the domain •.

We shall in this paper distinguish between the fol-
lowing facets: intrinsics, support technologies, human
behaviour, rules &40 regulations and organisation &
management.

In the following we refer to respective subsections
of (Bjørner 2010a) should the reader wish further
elaborations of the facet concept.

5.2 Intrinsics

By domain intrinsics (Bjørner 2010a, 1.4.1, 11–15)41

we shall understand those phenomena and concepts
of a domain which are basic to any of the other facets
(listed earlier and treated, in some detail, below),
with such domain intrinsics initially covering at least
one specific, hence named, stake-holder view •.

Example: The example of Sect. 2 focused on the in-
trinsics of pipeline systems as well as some derived
concepts (routes etc.) .

Hazards: The following are examples of hazards
based sôlely on the intrinsics of the domain: environ-
mental hazards: destruction of one or more pipeline
units due to an earth quake, an explosion, a fire
or something “similar” occurring in the immedi-
ate neighbourhood of these units; design faults: the
pipeline net is not acyclic; etcetera .

Intrinsics hazards are such which violate the well-
formedness of the domain. A “domain description” is
presented, but it is not a well-formed domain descrip-
tion. One could claim that whichever (event) falls
outside the intrinsics domain description, whether it
violates well-formedness criteria for domain parts or
action, event or behaviour pre/post-conditions, is a
hazard. In the context of system safety we shall take
the position that explicitly identified hazards must be
described, also formally.42

5.3 Support Technologies

By domain support technology (Bjørner 2010a, 1.4.2,
15–17) we shall understand technological ways and
means of implementing certain observed phenomena
or certain conceived concepts •.

The facet of support technology, as a concept, is
related to actions of specific parts; that is, a part
may give rise to one or more support technologies,
and we say that the support technologies ‘reside’ in
those parts.

Examples: wells are, in the intrinsics facet description
abstracted as atomic units but in real instances they
are complicated (composite) entities of pumps, valves
and pipes; pumps are similarly, but perhaps not as
complicated complex units; valves likewise; and sinks
are, in a sense, the inverse of wells .

40We use the ampersand ‘&’ between terms A and B to empha-
size that we mean to refer to one subject, the conjoint A&B

41(Bjørner 2010a, 1.4.1, 11–15) refers to publication (Bjørner
2010a), Sect. 1.4.1, Pages 11–15.

42We refer to the example of Sect. 2. More specifically to the
well-formedness of pipeline systems as expressed in wf PLS (Page 2,
Item 2.). We express hazards of the intrinsics of pipeline systems
by named predicates over PLS′ and not PLS.

Hazards: a pump may fail to respond to a stop pump
signal; and a valve may fail to respond to an open
valve signal . I think it is fair to say that most papers
on the design of safety critical software are on software
for the monitoring & control of support technology.

Describing causes of errors is not simple. With to-
day’s formal methods tools and techniques43 quite a
lot can be formalised — but not all !

5.4 Human Behaviour

A proper domain description includes humans as both
(usually atomic) parts and the behaviours that we
(generally) “attach” to parts.

Examples: The human operators that operate wells,
valves, pumps and sinks; check on pipeline units; de-
cide on the flow of material in pipes, etcetera .

By domain human behaviour (Bjørner 2010a,
1.4.6, 27–29) we shall understand any of a quality
spectrum of humans44 carrying out assigned work:
from (i) careful, diligent and accurate, via (ii) sloppy
dispatch, and (iii) delinquent work, to (iv) outright
criminal pursuit •.

Typically human behaviour focus on actions and
behaviours that are carried out by humans. The in-
trinsics description of actions and behaviours focus
sôlely on intended, careful, diligent and accurate per-
formance.

Hazards: This leaves “all other behaviours” as haz-
ards ! Proper hazard analysis, however, usually ex-
plicitly identifies failed human behaviours, for exam-
ple, as identified deviations from described actions
etc. Hazard descriptions thus follow from “their cor-
responding” intrinsics descriptions .

5.5 Rules & Regulations

Rules and regulations (Bjørner 2010a, 1.4.4, 24–26)
come in pairs (Ru,Re).

5.5.1 Rules.

By a domain rule we shall understand some text
which prescribes how people are, or equipment is,
“expected” (for “. . . ” see below) to behave when
dispatching their duty, respectively when performing
their function •.

Example: There are rules for operating pumps. One
is: A pump, p, on some well-to-sink route r =
r′̂〈p〉̂r′′, may not be started if there does not exist
an open, embedded route r′′′ such that 〈p〉̂r′′′ ends
in an open sink .

Hazards: when stipulating “expected”, as above, the
rules more or less implicitly express also the safety
criticality: that is, when people are, or equipment is,
behaving erroneously .

Example: A domain rule which states, for exam-
ple, that a pump, p, on some well-to-sink route

43These tools and techniques typically include two or more for-
mal specification languages, for example: VDM (Bjørner and Jones
1978, 1982, Fitzgerald and Larsen 1998), DC (Zhou and Hansen
2004), Event-B (Abrial 2009a), RAISE/RSL (George et al. 1995,
1992, Bjørner 2006a,b,c), TLA+ (Lamport 2002) and Alloy (Jack-
son 2006); one or more theorem proving tools, for example: ACL
(Kaufmann et al. 2000b,a), Coq (Bertot and Castéran 2004), Is-
abelle/HOL (Nipkow et al. 2002), STeP (Bjørner et al. 2000), PVS
(Shankar et al. 1999) and Z3 (Bjørner et al. 2013); a model-checker,
for example: SMV (Clarke et al. January 2000) and SPIN/Promela
(Holzmann 2003); and other such tools and techniques; cf. (Bjørner
and Havelund 2014).

44— in contrast to technology

r = r′̂〈p〉̂r′′, may be started even if there does not
exist an open, embedded route r′′′ such that 〈p〉̂r′′′

ends in an open sink is a hazardous rule .

Modelling Rules: We can model a rule by giving it
both a syntax and a semantics. And we can choose
to model the semantics of a rule, Ru, as a predicate,
P , over pairs of states: P : Σ×Σ→Bool. That is, the
meaning, M, of Ru is P . An action or an event has
changed a state σ into a state σ′. If P(σ, σ′) is true
it shall mean that the rule as been obeyed. If it is
false it means that the rule has been violated.

5.5.2 Regulations.

By a domain regulation we shall understand some
text which “prescribe” (“. . . ”, see below) the remedial
actions that are to be taken when it is decided that a
rule has not been followed according to its intention
•.

Example: There are regulations for operating pumps
and valves: Once it has been discovered that a rule
is hazardous there should be a regulation which (i)
starts an administrative procedure which ensures that
the rule is replaced; and (ii) starts a series of actions
which somehow brings the state of the pipeline into
one which poses no danger and then applies a non-
hazard rule .

Hazards: when stipulating “prescribe”, regulations
express requirements to emerging hardware and soft-
ware .

Modelling Regulations: We can model a regulation
by giving it both a syntax and a semantics. And we
can choose to model the semantics of a regulation,
Re, as a state-transformer, S, over pairs of states:
S : Σ×Σ→Σ. That is, the meaning, M, of Re is S.
A state-transformation S(σ, σ′) for rule Ru results in
a state σ′′ where: if P(σ, σ′) is true then σ′ = σ′′, else
σ′′ is a corrected state such that P(σ, σ′′) is true.

5.5.3 Discussion.

Where do rules & regulations reside ?” That is, “Who
checks that rules are obeyed ?” and “Who ensures that
regulations are applied when rules fail ?” Are some of
these checks and follow-ups relegated to humans (i.e.,
parts) or to machines (i.e., “other” parts) ? that is,
to the behaviour of part processes ? The next section
will basically answer those questions.

5.6 Organisation & Management

To (Bjørner 2010a, 1.4.3, 17–21) properly appreciate
this section we need remind the reader of concepts
introduced earlier in this paper. With parts we asso-
ciate mereologies, attributes and behaviours. Sup-
port technology is related to actions and these again
focused on parts. Humans are often modelled first as
parts, then as their associated behaviour. It is out of
this seeming jigsaw puzzle of parts, mereologies, at-
tributes, humans, rules and regulations that we shall
now form and model the concepts of organisation and
management.

5.6.1 Organisation.

By domain organisation we shall understand one
or more partitionings of resources where resources
are usually representable as parts and materials and
where usually a resource belongs to exactly one parti-
tion; such that n such partitionings typically reflects

strategic45 (say partition πs), tactical46 (say partition
πt), respectively operational 47 (say partition πo) con-
cerns (say for n = 3), and where “descending” par-
titions, say πs, πt, πo, represents coarse, medium and
fine partitions, respectively •.

Examples: This example only illustrates production
aspects. At the strategic level one may partition a
pipeline system into just one component: the entire
collection of all pipeline units, π. At the tactical level
one may further partition the pipeline system into the
partition of all wells, πws, the partition of all sinks,
πss, and a partition of all pipeline routes, πℓs, that
πℓs, is the set of all routes of π excluding wells and
sinks. At the organisational level may further parti-
tion the pipeline system into the partitions of individ-
ual wells, πwi

(πwi
∈ πws), the partitions of individual

sinks, πsj
(πsi

∈ πws) and the partitions of individual
pipeline routes, πrk

(πℓi
∈ πℓs) .

A domain organisation serves to structure manage-
ment and non-management staff levels and the allo-
cation of strategic, tactical and operational concerns
across all staff levels; and hence the “lines of com-
mand”: who does what, and who reports to whom,
administratively and functionally.

Organisations are conceptual parts, that is, parti-
tions are concepts, they are conceptual parts in ad-
dition, i.e., adjoint to physical parts. They serve as
“place-holders” for management.

Modelling Organisations: We can normally model an
organisation as an attribute of some, usually compos-
ite, part. Typically such a model would be in terms
of the one or more partitionings of unique identifiers,
π:Π, of domain parts, p:P. For example:

type
ORG = Str × Tac × Ope × ...
Str, Tac, Ope = (Π-set)-set

value
attr ORG: P → ORG

axiom
P : ORG → ... → Bool

where we leave the details of the partitionings Str,
Tac, Org, ... and the axiom governing the individual
partitionings and their relations for further analysis.

5.6.2 Management.

By domain management we shall understand such
people who (such decisions which) (i) determine, for-
mulate and thus set standards (cf. rules and regula-
tions, above) concerning strategic, tactical and oper-
ational decisions; (ii) who ensure that these decisions
are passed on to (lower) levels of management, and
to floor staff; (iii) who make sure that such orders, as
they were, are indeed carried out; (iv) who handle un-
desirable deviations in the carrying out of these orders
cum decisions; and (v) who “backstops” complaints
from lower management levels and from floor staff •.

Example: At the strategic level there is the overall
management of the pipeline system. At the tacti-
cal level there may be the management of all wells;

45Strategic management, one can claim, deals with the manage-
ment of the most generic and general, year-to-year company re-
sources: invested capital, overall market, production and service
goals, etc.

46Tactical management, one can claim, deals with the manage-
ment of the quarter/month-to-quarter/month resources “closest”
to the implementation if strategic goals.

47Operational management, one can finally claim, deals with the
management of day-to-day resources “closest” to the actual market,
production and services.

all sinks; specific (disjoint) routes. At the opera-
tional there may then be the management of indi-
vidual wells, individual sinks, and individual groups
of valves and pumps .

Modelling Management: Some parts are associated
with strategic management. They will have their
unique identifiers, π : Π, belong to some partition
in an str:Str. Other parts are associated with tactical
management. They will have their unique identifiers,
π : Π, belong to some partition in a corresponding
tac:Tac. Yet other parts are associated with oper-
ational management. They will have their unique
identifiers, π : Π, belong to some partition in the cor-
responding ope:Ope. The “management” parts have
their attributes form corresponding states (σ:Σ).

type
ΣSTR, ΣTAC , ΣOPE ,

An idealised rendition of management actions is:

value
actionStrategic: ΣSTR→ΣTAC→ΣOPE→ΣSTR

actionTactical: ΣSTR→ΣTAC→ΣOPE→ΣTAC

actionOperational: ΣSTR→ΣTAC→ΣOPE→ΣOPE

actionStrategic expresses that strategic management
considers the “global” state (ΣSTR×ΣTAC×ΣOPE)
but potentially changes only the “strategy” state.

actionTactical expresses that tactical management
considers the “global” state (ΣSTR×ΣTAC×ΣOPE)
but potentially changes only the “tactical” state.

actionOperational expresses that tactical
management considers the “global” state
(ΣSTR×ΣTAC×ΣOPE) but potentially changes
only the “operational” state.

We can normally model management as part of the
behavioural model of some, usually composite part.
Typically such a model would be in terms communica-
tion procedures between managers, p:P, and their im-
mediate subordinates, {p1:P1,p2:P2,. . . ,pn:PN}: For
example:

channel mgt:{{π,πj}|πj :PIj•πj ∈ ...}:M
value

p: π:Π × pt:P →
in,out {{π,πj}|πj :PIj•πj ∈ ...} Unit

p(π,pt) ≡ ...
[management orders staff]

⌈⌉ let (πj ,m) = queryboss(p) in
m ! mgt[{π,πj}]!m ;
p(π,actiondowns

(pt,m)) end
[management “listens” to staff]

⌈⌉ let (πj ,m) = ⌈⌉⌊⌋ {mgt[{π,πj}]? | ... } in
p(π,actiondownr

(pt,m)) end
[management reports to boss]

⌈⌉ let (πboss,m) = querystaff(pt) in
m ! mgt[{π,πboss}]!m ;
p(π,actionups

(pt,m)) end
[management “listens” to boss]

⌈⌉ let (πboss,m) =
⌈⌉⌊⌋ {mgt[{π,πboss}]? | ... } in

p(π,actionups
(pt,m)) end ...

The boss communications express that process p
serves a boss. All other communications express that
process p interacts with staff (i.e., “subordinates and
“others”).

Hazards: Hazards of organisations & management
come about also as the result of “mis-management”:

Strategic management updates tactical and opera-
tional management states. Tactical management up-
dates strategic and operational management states.
Operational management updates strategic and tac-
tical management states. That is: these states are
not clearly delineated, Etcetera !

• • •

This section on organisation & management is rather
terse; in fact it covers a whole, we should think,
novel and interesting theory of business organisation
& management.

5.7 Discussion

There may be other facets but our point has been
made: that an analysis of hazards (including faults)
can, we think, be beneficially structured by being re-
lated to reasonably distinct facets.

A mathematical explanation of the concept of facet
is needed. One that helps partition the domain phe-
nomena and concepts into disjoint descriptions. We
are thinking about it and encourage the reader to do
likewise !

6 Conclusion

The present author’s research has since the early
1970s focused on programming methodology: how to
develop software such that it was correct with respect
to some specification — call it requirements. The
emphasis was on abstract software specifications and
their refinement or transformation into code. Pro-
gramming language semantics and the stage- and
step-wise development of compilers, in many, up to
nine stages and steps, became a highlight of the 1980s.
The step from programming language semantics to
domain descriptions followed: Domain descriptions,
in a sense, specified the language inherent in the de-
scribed domain — that is: “spoken” by its actors,
etc. Since the early 1990s I therefore additionally fo-
cused on domain descriptions. Now an additional goal
of software development might be achieved: securing
that the software meet customers’ expectations. With
the observation (Bjørner 2008) that requirements pre-
scriptions can be systematically — but, of course, not
automatically — “derived” from domain descriptions
a bridge was established: from domains via require-
ments to software.

6.1 Comparison to Other Work

(Bjørner 2014b) contains a large section, Sect. 4.1
(4+ pages), which compares our domain analysis
and description approach to the domain analysis ap-
proaches of Ontology and Knowledge Engineering,
Database Analysis (Bachmann Diagrams, Relational
Data Models, Entity Set Relations, etc., Prieto-Dı̃az’s
work, Domain Specific Languages, Feature-oriented
Domain Analysis, Software Product Line Engineer-
ing, Michael Jackson’s Problem Frames, Domain Spe-
cific Software Architectures, Domain Driven Design,
Unified Modelling Language, etcetera. We refer
to (Bjørner 2014b) for its lengthy discussion and al-
most 30 citations. (Bjørner 2014b, Sect. 4.1) shows
that our approach is significantly different from the
above-enumerated approaches.

6.2 What Have We Achieved ?

When Dr Clive Victor Boughton, on November 4,
2013, approached me on the subject of “Software

Safety: New Challenges and Solutions”, I therefore,
naturally questioned: can one stratify the issues of
safety criticality into three phases: searching for
sources of faults and hazards in domains, elaborating
on these while “discovering” further sources during
requirements engineering, and, finally, during early
stages of software design. I believe we have answered
that question partially with there being good hopes
for further stratification.

Yes, I would indeed claim that we have contributed
to the “greater” issues of safety critical systems by
suggesting a disciplined framework for faults “discov-
ery”and hazards: investigate separately the domains,
the requirements and the design.

6.3 Further Work

But, clearly, that work has only begun.

7 Acknowledgements

I thank Dr Clive Victor Boughton of aSSCa, ANU,
&c. for having the courage to convince his colleagues
to invite me, for having inspired me to observe that
faults and hazards can be “discovered” purely in the
context of domain descriptions, for his support in an-
swering my many questions, and for otherwise ar-
ranging my visit. I also, with thanks, acknowledge
comments and remarks by the ASSC program chair,
Dr Anthony Cant and especially by hos colleague Dr
Brendan Mahony. Their joint paper (Cant and Ma-
hony 2012), alas, came only to my attention in the
last days before the present paper had to be submit-
ted.

8 Bibliography

8.1 Notes

This conference contribution is part of a series of pa-
pers on the topic of domains. (Bjørner 2007, 2008,
2010a,b, 2011a,b, 2013a,b, 2014b, 2009, 2010c, Bjørner
and Eir 2010). In (Bjørner 2008) we show how to “de-
rive” requirements prescriptions from domain descrip-
tions; (Bjørner 2010a) shows techniques for describing
domain facets: intrinsics, support technologies, rules
& regulations, management & organisation as well as
human behaviour; (Bjørner 2011b) illuminates such
concepts as simulation, demos, monitoring and con-
trol in the new light afforded by the domain view-
point; (Bjørner 2013b) speculates on various issues
of “computation for humanity” (!); (Bjørner 2013a)
relates our modelling of mereology to the classical ax-
iom systems for mereology; and (Bjørner 2014c) pro-
vides a systematic introduction to principles, tech-
niques and tools for the analysis and description of
domain endurants.

8.2 References

Abrial, J.-R. (1996 and 2009b), The B Book: Assigning Programs to Mean-
ings and Modeling in Event-B: System and Software Engineering, Cam-
bridge University Press, Cambridge, England.

Abrial, J.-R. (2009a), Modeling in Event-B: System and Software Engineer-
ing, Cambridge University Press, Cambridge, England.

Benjamin, J. & Fensel, D. (1998), The Ontological Engineering Ini-
tiative (KA)2. Internet publication + Formal Ontology in Infor-
mation Systems, University of Amsterdam, SWI, Roetersstraat 15,
1018 WB Amsterdam, The Netherlands and University of Karl-
sruhe, AIFB, 76128 Karlsruhe, Germany, 1998.http://www.aifb.uni-
karlsruhe.de/WBS/broker/KA2.htm.

Bertot, Y. & Castéran, P. (2004), Interactive Theorem Proving and Pro-
gram Development. Coq’Art: The Calculus of Inductive Constructions,
EATCS Series: Texts in Theoretical Computer Science, Springer.

Bjørner, D. (2006a), Software Engineering, Vol. 1: Abstraction and Mod-
elling, Texts in Theoretical Computer Science, the EATCS Series,
Springer.

Bjørner, D. (2006b), Software Engineering, Vol. 2: Specification of Systems
and Languages, Texts in Theoretical Computer Science, the EATCS
Series, Springer. Chapters 12–14 are primarily authored by Christian
Krog Madsen.

Bjørner, D. (2006c), Software Engineering, Vol. 3: Domains, Require-
ments and Software Design, Texts in Theoretical Computer Science,
the EATCS Series, Springer.

Bjørner, D. (2007), Domain Theory: Practice and Theories, Discussion of
Possible Research Topics, in ‘ICTAC’2007’, Vol. 4701 of Lecture Notes in
Computer Science (eds. J.C.P. Woodcock et al.), Springer, Heidelberg,
pp. 1–17.

Bjørner, D. (2008), From Domains to Requirements, in ‘Montanari
Festschrift’, Vol. 5065 of Lecture Notes in Computer Science (eds. Pier-
paolo Degano, Rocco De Nicola and José Meseguer), Springer, Heidel-
berg, pp. 1–30.

Bjørner, D. (2009), Domain Engineering: Technology Management, Re-
search and Engineering, A JAIST Press Research Monograph # 4, 536
pages.

Bjørner, D. (2010a), Domain Engineering, in P. Boca & J. Bowen, eds,
‘Formal Methods: State of the Art and New Directions’, Eds. Paul
Boca and Jonathan Bowen, Springer, London, UK, pp. 1–42.

Bjørner, D. (2010b), ‘Domain Science & Engineering – From Computer
Science to The Sciences of Informatics, Part I of II: The Engi-
neering Part’, Kibernetika i sistemny analiz (4), 100–116.

Bjørner, D. (2010c), The Rôle of Domain Engineering in Software De-
velopment. Why Current Requirements Engineering Seems Flawed!, in
‘Perspectives of Systems Informatics’, Vol. 5947 of Lecture Notes in
Computer Science, Springer, Heidelberg, pp. 2–34.

Bjørner, D. (2011a), ‘Domain Science & Engineering – From Computer
Science to The Sciences of Informatics Part II of II: The Science
Part’, Kibernetika i sistemny analiz (2), 100–120.

Bjørner, D. (2011b), Domains: Their Simulation, Monitoring and Control
– A Divertimento of Ideas and Suggestions, in ‘Rainbow of Computer
Science, Festschrift for Hermann Maurer on the Occasion of His 70th
Anniversary.’, Festschrift (eds. C. Calude, G. Rozenberg and A. Saloma),
Springer, Heidelberg, Germany, pp. 167–183.

Bjørner, D. (2013a), A Rôle for Mereology in Domain Science and Engi-
neering, Synthese Library (eds. Claudio Calosi and Pierluigi Graziani),
Springer, Amsterdam, The Netherlands.

Bjørner, D. (2013b), Domain Science and Engineering as a Foundation
for Computation for Humanity, Computational Analysis, Synthesis, and
Design of Dynamic Systems, CRC [Francis & Taylor], chapter 7, pp. 159–
177. (eds.: Justyna Zander and Pieter J. Mosterman).

Bjørner, D. (2014a), Domain Analysis & Description: Perdurants [Writing
to begin Summer/Fall 2014], Research Report, Fredsvej 11, DK-2840
Holte, Denmark.

Bjørner, D. (2014b), Domain Analysis: Endurants – An Analysis & De-
scription Process Model, in J. Meseguer & K. Ogata, eds, ‘Specification,
Algebra, and Software: A Festschrift Symposium in Honor of Kokichi
Futatsugi’, pages 1–34, Springer.

Bjørner, D. (2014c), Domain Analysis, Fredsvej 11, DK-2840 Holte,
Denmark. (Note: This is currently the “definitive” paper on do-
main description methodology: www.imm.dtu.dk/~dibj/2014/domain-
-analysis.pdf.)

Bjørner, D. & Eir, A. (2010), Compositionality: Ontology and Mereology
of Domains. Some Clarifying Observations in the Context of Software
Engineering in July 2008, eds. Martin Steffen, Dennis Dams and
Ulrich Hannemann, in ‘Festschrift for Prof. Willem Paul de Roever
Concurrency, Compositionality, and Correctness’, Vol. 5930 of Lecture
Notes in Computer Science, Springer, Heidelberg, pp. 22–59.

Bjørner, D. & Havelund, K. (2014), 40 Years of Formal Methods — 8
Obstacle and 3 Possibilities, in ‘FM 2014, Singapore, May 14-16, 2014’,
Springer. Distinguished Lecture.

Bjørner, D. & Jones, C. B., eds (1978), The Vienna Development Method:
The Meta-Language, Vol. 61 of LNCS, Springer.

Bjørner, D. & Jones, C. B., eds (1982), Formal Specification and Software
Development, Prentice-Hall.

Bjørner, N., Browne, A., Colon, M., Finkbeiner, B., Manna, Z., Sipma, H.
& Uribe, T. (2000), ‘Verifying Temporal Properties of Reactive Systems:
A STeP Tutorial’, Formal Methods in System Design 16, 227–270.

Bjørner, N., McMillan, K. & Rybalchenko, A. (2013), Higher-
order Program Verification as Satisfiability Modulo Theories
with Algebraic Data-types, in ‘Higher-Order Program Analysis’.
http://hopa.cs.rhul.ac.uk/files/proceedings.html.

Cant, A. & Mahony, B. (2012), Safety protocols: a new safety engineering
paradigm, in Australian System Safety Conference (ASSC 2012).

Clarke, E. M., Grumberg, O. & Peled, D. A. (January 2000), Model Check-
ing, The MIT Press, Five Cambridge Center, Cambridge, MA 02142-
1493, USA. ISBN 0-262-03270-8.

Fitzgerald, J. & Larsen, P. G. (1998), Modelling Systems – Practical Tools
and Techniques in Software Development, Cambridge University Press,
The Edinburgh Building, Cambridge CB2 2RU, UK. ISBN 0-521-62348-
0.

George, C. W., Haff, P., Havelund, K., Haxthausen, A. E., Milne, R.,
Nielsen, C. B., Prehn, S. & Wagner, K. R. (1992), The RAISE Spec-
ification Language, The BCS Practitioner Series, Prentice-Hall, Hemel
Hampstead, England.

George, C. W., Haxthausen, A. E., Hughes, S., Milne, R., Prehn, S. &
Pedersen, J. S. (1995), The RAISE Development Method, The BCS
Practitioner Series, Prentice-Hall, Hemel Hampstead, England.

Fox, C. (2000), The Ontology of Language: Properties, Individuals and
Discourse. CSLI Publications, Center for the Study of Language and
Information, Stanford University, California, ISA, 2000.

Holzmann, G. J. (2003), The SPIN Model Checker, Primer and Reference
Manual, Addison-Wesley, Reading, Massachusetts.

IEEE Computer Society (1990), IEEE–STD 610.12-1990: Standard Glos-
sary of Software Engineering Terminology, Technical report, IEEE, IEEE
Headquarters Office, 1730 Massachusetts Avenue, N.W., Washington,
DC 20036-1992, USA. Phone: +1-202-371-0101, FAX: +1-202-728-
9614.

Jackson, D. (2006), Software Abstractions: Logic, Language, and Analysis,
The MIT Press, Cambridge, Mass., USA. ISBN 0-262-10114-9.

Kaufmann, M., Manolios, P. & Moore, J. S. (2000a), Computer-Aided
Reasoning: ACL2 Case Studies, Kluwer Academic Publishers.

Kaufmann, M., Manolios, P. & Moore, J. S. (2000b), Computer-Aided
Reasoning: An Approach, Kluwer Academic Publishers.

Lamport, L. (2002), Specifying Systems, Addison–Wesley, Boston, Mass.,
USA.

Luschei, E. (1962), The Logical Systems of Lésniewksi, North Holland,
Amsterdam, The Netherlands.

Mellor, D.H. & Oliver, A., editors (1997), Properties. Oxford Readings
in Philosophy. Oxford Univ Press, May 1997. ISBN: 0198751761, 320
pages.

Nipkow, T., Paulson, L. C. & Wenzel, M. (2002), Isabelle/HOL, A Proof
Assistant for Higher-Order Logic, Vol. 2283 of Lecture Notes in Com-
puter Science, Springer-Verlag.

Randell, B. (2003), On Failures and Faults, in ‘FME 2003: Formal Meth-
ods’, Vol. 2805 of Lecture Notes in Computer Science, Formal Methods
Europe, Springer, pp. 18–39. Invited paper.

Shankar, N., Owre, S., Rushby, J. M. & Stringer-Calvert, D. W. J. (1999),
PVS Prover Guide, Computer Science Laboratory, SRI International,
Menlo Park, CA.

Woodcock, J. C. P. & Davies, J. (1996), Using Z: Specification, Proof and
Refinement, Prentice Hall International Series in Computer Science.
URL: http://www.comlab.ox.ac.uk/usingz.html

Zhou, C. C. & Hansen, M. R. (2004), Duration Calculus: A Formal Ap-
proach to Real–time Systems, Monographs in Theoretical Computer Sci-
ence. An EATCS Series, Springer–Verlag.

